

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Method for the Architectural

Design of Distributed Control

Systems for Large, Civil Jet Engines

A Systems Engineering Approach

by

Duncan Bourne

Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of Engineering Doctorate (EngD) of

Loughborough University

October 2011

Abstract

The design of distributed control systems (DCSs) for large, civil gas turbine engines is a complex

architectural challenge. To date, the majority of research into DCSs has focused on the contributing

technologies and high temperature electronics rather than the architecture of the system itself. This

thesis proposes a method for the architectural design of distributed systems using a genetic algorithm to

generate, evaluate and refine designs. The proposed designs are analysed for their architectural quality,

lifecycle value and commercial benefit. The method is presented along with results proving the concept.

Whilst the method described here is applied exclusively to Distributed Control System (DCS) for jet

engines, the principles and methods could be adapted for a broad range of complex systems.

ii

Contents

Executive Summary xi

I Introduction & Background 1

1 Introduction 2
1.1 Rationale: The Role of Product Architecture . 2
1.2 Introduction: Distributed Control Systems for Aero Jet Engines 3
1.3 Motivation for the Study of DCSs . 4

1.3.1 The Wider Motivation . 5
1.4 Aims and Objectives . 6

1.4.1 Scope . 7
1.5 Computational Constraint and Results . 8
1.6 Thesis Structure . 8

1.6.1 Part I - Introduction & Background . 9
1.6.2 Part II - Method . 9
1.6.3 Conclusions . 10

1.7 Contributions . 10

2 Background Information and Industrial Context 11
2.1 Introduction . 11
2.2 The Gas Turbine System . 12
2.3 The Full Authority Digital Engine Controller (FADEC) 14

2.3.1 Subsidiary FADEC Systems . 14
2.3.2 Fuel Control and the Fuel Metering Unit (FMU)/hydromechanical unit (HMU) . 15
2.3.3 The Electronic Engine Controller (EEC) . 16
2.3.4 Common Circuit Blocks (CCBs) . 18
2.3.5 Power Sources and the Permanent Magnet Alternator (PMA) 19
2.3.6 FADEC Mounting . 19

2.4 The Engine Environment . 20
2.4.1 Airframe Communications . 21
2.4.2 Distribution of the Present Day Electronic Engine Controller (EEC) 22

2.5 AEC’s Experience with Distributed Control Systems . 24
2.5.1 High Performance Engine Control System (HiPECS-A) c. 1997 - 2000 25
2.5.2 High Performance Engine Control System (HiPECS-B) c. 2000 - 2002 26
2.5.3 Advanced Near-Term Low Emissions Engine (ANTLE) c. 2000 - 2005 27
2.5.4 High Temperature Electronics Projects . 27
2.5.5 Summary . 29

3 Literature Review 30
3.1 Introduction . 30
3.2 Historical and technical perspective . 31
3.3 Application to Jet Engine Control . 33
3.4 Research Challenges in Distributed System Design . 36

iii

3.4.1 Architectural Design and Whole System Simulation of Distributed Control Systems 37
3.4.2 High-Temperature Electronics and Other Device Considerations 39
3.4.3 Communications Technologies . 40
3.4.4 Lifecycle Modelling . 41

3.5 Positioning the Study . 41
3.5.1 Factors influencing the research method . 42
3.5.2 Research Objectives . 42

3.6 Summary . 44

4 Optimisation Algorithms 45
4.1 Introduction . 45
4.2 Selecting an Optimisation Technique . 45
4.3 General Form of the Genetic Algorithm . 50

4.3.1 Selecting the appropriate GA . 51
4.4 Implementation . 52

4.4.1 Testing . 54
4.5 Conclusion . 56

II Method 57

5 Research Method 58
5.1 Introduction . 58
5.2 Overview of the Method . 58
5.3 The Optimisation Process . 59
5.4 Metaphysical Modelling Approach for the Engine and DCS 63

5.4.1 Engine Architecture Framework . 64
5.4.2 Control System Framework . 66
5.4.3 Metaphysical Engine Model . 69
5.4.4 Finding Harness Lengths and Paths . 78
5.4.5 Distances between engine stations (Floyd-Warshall Algorithm) 81
5.4.6 Control System Meta-physical Model . 82
5.4.7 DCS Architecture Framework . 87
5.4.8 The Hybrid Framework: DCS on Engine . 89

5.5 Composition and Analysis of the Hybrid Model using Binary Relations 90
5.6 Architecture Construction . 95
5.7 The Chromosome . 95
5.8 The Blueprint - Decoding the chromosome . 97

5.8.1 Matrix form and Relation Composition . 98
5.9 Redundancy Scheme . 99
5.10 Node Construction . 101
5.11 Harnesses . 107
5.12 Data and Power Network Topologies . 110
5.13 Visualisation . 114
5.14 Implementation with Matlab . 116
5.15 Evaluation Functions . 116

6 Architectural Evaluation 119
6.1 Introduction . 119
6.2 Calculating the Architectural Measures . 119

6.2.1 Output . 123
6.3 Testing the architectural evaluation: A case study . 124

6.3.1 The Baseline System . 124
6.4 Optimisation for 2 to 29 Nodes . 126
6.5 Validation . 129
6.6 Conclusion . 130

iv

7 Lifecycle evaluation 131
7.1 Introduction . 131
7.2 Lifecycle Modelling - Literature review . 132
7.3 The Engine Lifecycle . 133
7.4 Engine Maintenance . 135

7.4.1 Repair and Overhaul (R&O) . 135
7.4.2 Uncertainty in Maintenance Actions . 137

7.5 Time Limited Despatch (TLD) . 138
7.5.1 Maintenance strategies for TLD . 139

7.6 Measures of Lifecycle performance . 140
7.7 The Lifecycle Evaluation Function . 141

7.7.1 Component Failure Models . 143
7.7.2 The Failure Event Class . 144
7.7.3 TLD Maintenance Strategy . 147
7.7.4 Algorithm . 148
7.7.5 Determining the Despatch Status . 151
7.7.6 The Results Array . 156
7.7.7 Implementation . 159

7.8 Verification and Validation . 159
7.9 Simulation Test and Results . 160

7.9.1 Test Results . 162
7.9.2 Analysis . 165

7.10 Conclusion . 166
7.10.1 Strengths and Weaknesses of the Simulation . 166

8 Business Evaluation 168
8.0.2 Investment . 168
8.0.3 Fleet Profile . 169

8.1 Determining Fleet Performance . 170
8.2 Attributing Costs and Incomes . 171
8.3 Present Values, Net Present Value and Rate of Return . 173

8.3.1 Rate of Return (IRR and MIRR) . 174
8.4 Results . 174
8.5 Conclusion . 176

III Conclusion 177

9 Conclusions 178
9.1 Contributions . 179
9.2 Strengths and Weaknesses of the Method . 179

9.2.1 Potential Improvements . 179
9.2.2 A Modified Approach . 180

9.3 Related Research Topics . 183
9.4 Resume . 184

Appendices

A The Data structure and database 187

B Parallel Processing 189
B.1 Introduction . 189
B.2 Steps taken to reduce computational burden . 189
B.3 Factors Influencing Parallel Computing Performance . 190
B.4 Performance Gains . 191

B.4.1 Gains from Task Parallelisation . 191

v

B.4.2 Gains from Software and Implementation . 193
B.4.3 Hardware Gains . 194

B.5 Scalability of the DCS Design Problem . 195
B.6 Hardware Configurations Considered . 196
B.7 Conclusion . 197

C Control System Functional Model 198

D Published Papers 203

vi

Aero Engine Controls is a 50-50 joint venture company formed between Rolls-Royce plc and Goodrich

Corporation1. The company commenced business in January 2009 and produces many of the electronic

and hydromechanical sub-systems which constitute the Full Authority Digital Engine Controller (FADEC)

used on many Rolls-Royce jet engines2. The FADEC is a collection of engine-mounted sub-systems

including pumps, actuators and electronic hardware that control, sustain and monitor the engine during

flight. Aero Engine Controls designs and manufactures these products at their sites in Birmingham and

Derby in the UK. The company operates in both civil and military markets and provides control systems

for the engines powering airframes such as the Boeing 787 ‘Dreamliner’ and the Eurofighter. The first

major project for the joint venture was the development of the FADEC for the Rolls-Royce Trent XWB

engine to power the Airbus XWB (Xtra Wide Body). This engine powers the Airbus XWB airframes due

to enter service in 2013.

Prior to the formation of the joint venture, Goodrich Engine Control Systems (GECS) operated

as an independent supplier of FADEC components. Their business was principally with Rolls-Royce

although the company conducted projects with other engine suppliers. GECS was formally known as

TRW Aeronautical Systems (formerly Lucas Aerospace) before being acquired by Goodrich Corporation in

2002. Goodrich Corporation was formed following the transformation of B.F. Goodrich, who after selling

their tyre brand to Michelin in 1988, acquired a group of aerospace and chemical businesses. Subsequent

acquisitions have given Goodrich Corporation capability in airborne actuation systems, landing gear,

nacelles and many other aerospace technologies. Goodrich Corporation has bases in America, Australia,

South-East Asia and Europe, as well as service centres at airports around the world.

Rolls-Royce is one of the most familiar names in British industry and the second largest manufacturer

of aero-engines behind General Electric (GE). Alongside aero-gas turbines, the company operates in

the marine and power generation markets. Following near collapse and nationalisation in 1971, (and

subsequent separation of the luxury car business in 1973) the business was re-privatised in 1989 as

Rolls-Royce plc. Today, 53% of its sales are in the commercial aerospace sector led by the Trent family of

turbofan engines. Trent engines power airframes such as the Boeing 777, 787 and many Airbus airframes

such as the A330 and A380. Additionally, Rolls-Royce design and manufacture engines for business jets,

regional jets and a broad range of military aircraft. Rolls-Royce are the sole provider of engines for the

Airbus XWB series of aircraft. The deal constitutes the company’s largest ever contract. The Rolls-Royce

headquarters is in Derby (UK) although the company has operations in America, Germany and field

service centres at many of the world’s major airports.

1Aero Engine Controls is formally titled, ‘‘Rolls-Royce Goodrich Engine Control Systems’’ but operates under the trade

name ‘‘Aero Engine Controls’’
2This research was conceived by Goodrich Engine Control Systems prior to the establishment of the joint venture

company.

vii

Acknowledgments

The research presented in this thesis has been undertaken whilst enrolled as a Research Enginer at

Loughborough University and on placement at Aero Engine Controls in Birmingham.

Firstly, I would like to thank my academic and industrial supervisors, Dr. Roger Dixon and Alex

Horne for their dedication and encouragement. Their input and knowledge have been invaluable to

this work. Roger’s tireless commitment has provided the fillip allowing this research to evolve and

produce the given outcomes. Despite increasing responsibility in his own job, Alex has supported and

promoted my work within Aero Engine Controls. Alex has also dedicated time to the Systems Engineering

Doctorate Centre (SEDC) management committee. I would like to thank Professor Charles Dickerson

for introducing me to the formalisms of system architecture and the principles of graph theory which

underpin so much of this work.

Furthermore, I am indebted to the staff of Aero Engine Controls for their time and willingness to

share their work and experience with me. Special thanks to members of the Electronics Technology Team

who have accommodated me and where possible, involved me in their professional and social activities.

Members of the team have provided a wealth of information and understanding which has contributed

greatly to the project.

Background information regarding the aerospace industry and the company circumstances could not

have been acquired without the generously afforded time of many Aero Engine Controls staff. Whilst

many staff have contributed their expertise, special thanks are due to Peter Smout, Gary Chandler and

Ian James.

Thanks are due to the staff who manage and administer the SEDC at Loughborough University.

Particular thanks go to Sharon Henson, Karen Holmes, Bob Malcolm and again to Roger Dixon - their

tolerance of my non-cooperation in administrative and procedural matters has been admirable.

My thanks extend to the members of the Control Systems Research Group at Loughborough University

and fellow students enrolled on the Engineering Doctorate programme. Their humour, understanding

and own personal experiences have provided a priceless antidote to the tribulations of academic research.

I acknowledge the role of the Engineering and Physical Sciences Research Council (EPSRC) and Aero

Engine Controls in providing the funding, infrastructure and support that enabled this research.

Finally, I would like to thank my friends and colleagues with whom I have shared so many experiences

over the past three years: Luke Bowman, Nathaneal Rice, Craig Shelley, Jeffery Escosio, Richard Smart

and David Hodgkinson. As fellow house mates, climbers, mountain bikers, cyclists and pub-goers, their

friendship has been invaluable.

viii

Acronyms

3D 3-dimensional

ACO Ant Colony Optimisation

AFDX Avionics Full Duplex Switched

Ethernet

AIDA Automatic Control in Distributed

Applications

ANTLE Affordable Near-Term Low Emissions

API Advanced Peripheral Interface

ASTOVL Advanced Short Take-off Vertical

Landing

CAD Computer Aided Design

CAN Controller Area Network (Bosch)

CC Combustion Chamber

CCB Common Circuit Block

CCS Centralised Control System

CPU Central Processing Unit

D&C Delay & Cancelation

DCS Distributed Control System

DECWG Distributed Engine Control Working

Group

DFADEC Distributed Full Authority Digital

Engine Controller

DND Do Not Despatch

DOP Data Over Power

EA Evolutionary Algorithm

EEC Electronic Engine Controller

EHM Engine Health Monitoring

EIS Entry Into Service

EMI Electromagnetic Interference

EPSRC Engineering and Physical Sciences

Research Council

FADEC Full Authority Digital Engine

Controller

FANI Farthest Neighbour Nearest Insertion

FH Flight-Hour

FMU Fuel Metering Unit

FMV Fuel Metering Valve

FOHE Fuel Oil Heat Exchanger

FUD Full Up Despatch

GA Genetic Algorithm

GE General Electric

GECS Goodrich Engine Control Systems

HiPECS High Performance Engine Control

System

HiPECS-A High Performance Engine Control

System ‘A’

HiPECS-A High Performance Engine Control

System ‘B’

HiTEAM High Temperature Electronics for

Aerospace Manufacture

HiTED High Temperature Electronic Device

HMU hydromechanical unit

HP High Pressure

HPC High Pressure Compressor

IATA International Air Transport

Association

ICB Inter-Channel Bus

IO input/output

IRR Internal Rate of Return

IPC Intermediate Pressure Compressor

ix

LP Low Pressure

LTD Long Term Despatch

LOTC Loss of Thrust Control

LVDT Linear Variable Displacement

Transducer

MCS Monte Carlo simulation

MDD Manufacturer Defined Despatch

MEL Minimum Equipment List

MIRR Modified Internal Rate of Return

MIT Massachusetts Institute of Technology

MLO Mid-life Overhaul

MoD Ministry of Defence

MOEA Multi-Objective Evolutionary

Algorithm

MOGA Multi-Objective Genetic Algorithm

MTTF Mean Time To Failure

MTTUR Mean Time to Unscheduled Removal

NFF No Fault Found

NSGA-II Non-dominated Sorting Genetic

Algorithm

NPD New Product Development

NPV Net Present Value

PCB Printed Circuit Board

PIR Periodic Inspection/Repair

PMA Permanent Magnet Alternator

POA Power Optimised Aircraft

PSO Particle Swarm Optimisation

R&O Repair & Overhaul

RR Rolls-Royce

RTDCS Real-Time Distributed Control System

SAT Surrounding Air Temperature

SEDC Systems Engineering Doctorate Centre

SiC Silicon Carbide (electronic devices)

SOI Silicon on Insulator

SQL Structured Query Language

SPEA2 Strength Pareto Evolutionary

Algorithm

STD Short Term Despatch

STF System Test Facility

SysML Systems Modelling Language

TDMA Time Division Multiple Access

(network)

TGT Turbine Gas Temperature

TLD Time Limited Despatch

TRL Technology Readiness Level

TTCAN Time Triggered CAN

TTP Time Triggered Protocol (TTTech

time-triggered network)

UAV Unmanned Aerial Vehicle

UTC University Technology Centre

UML Unified Modelling Language

USM Unscheduled Maintenance

VSV Variable Stator Vane

VSVA Variable Stator Vane Actuator

XWB Xtra Wide Body

Executive Summary

Introduction

Distributed Control Systems (DCSs) are widely seen as an inevitable advance in gas turbine control

technology. The touted gains are numerous and appeal to subsystem suppliers, engine manufacturers and

airlines alike. Notional benefits include weight reduction, increased reliability, improved fault isolation

and an increase in processing power to support advanced health monitoring and diagnostic algorithms.

DCSs involve the division of a centralised control system into individual sub-systems comprising of

smart sensors, actuators and controllers; each individual sub-system is known as a node and contains

processing capability. The nodes are physically separated and communicate via a shared data network.

Sensors and actuators may exist as independent network nodes or be connected directly to a controller

node. A typical DCS architecture is shown in figure 1. The degree of distribution is open to the designer.

Each sensor and actuator may be afforded it’s own node or groups of hardware interfaced to a control

node or data concentrator.

Despite the plausible advantages, DCSs have yet to replace Centralised Control Systems (CCSs) on

large, civil gas turbine engines. The unavailability of High Temperature Electronic Devices (HiTEDs)

capable of surviving in the engine environment for the duration of a 25-35 year product life-cycle is

an insuperable barrier to highly distributed systems. Broader concerns include system safety and the

response of control system dynamics in the event of network delays or failure. These concerns are justified

and tangible yet not without remedy. Better understanding of these issues and techniques for overcoming

them are addressed by a wealth of academic, commercial and popular literature (see Kopetz (1995); Chen

et al. (2007); Baillieul & Antsaklis (2007) for example). However, cardinal barriers remain - it is very

difficult to conceive or propose control system architectures which provably realise the potential benefits.

Figure 1: A distributed control system architecture. The black boxes represent the control
system nodes and the interconnecting lines the data network.

xi

It is often difficult for system designers to demonstrate that introducing new or emerging technology will

add sufficient value to warrant the effort and cost of development.

DCSs are neither a technology nor a method, but a conglomeration of technologies and methods

which realise an architectural form. Consequentially, industry lacks the tools and techniques necessary to

design, simulate, evaluate and compare candidate distributed architectures. This research is concerned

with developing such a method and using it to propose and evaluate DCS.

Method

The chosen method uses of a Genetic Algorithm (GA) to optimise distributed system architectures. A

GA is a meta-heuristic optimisation method which aims to refine solutions to complex problems by

mimicking the processes of evolutionary biology. The algorithm starts with a set of randomly generated

solutions to a particular problem encoded as a set of digital ‘chromosomes’. As the algorithm progresses,

the fitness of each solution is evaluated and recorded. Solutions are ranked according to fitness with the

best being duplicated and the poorest discarded. New solutions are generated by mating and mutating

the best solutions in the hope that improved offspring result. The algorithm is iterative and finishes once

a pre-defined period of time has elapsed or certain quality criteria are met.

In this implementation, the GA’s chromosomes contain a coded representation of a DCS architecture.

The chromosome dictates the location of each node on the engine, the tasks each node will perform and

the electronic hardware contained within the node. This coded information is used in conjunction with a

database of components and a functional model of the engine to build a meta-physical representation

of the DCS in question. The meta-physical model exists entirely in software but reflects the structure,

layout and properties of the control system as it would appear on engine. The model includes harnessing

and has properties such as weight, size and cost.

Once built, the fitness of each DCS is assessed using three evaluation functions. Each reflects a

fundamental concern of commercial DCS designers: the Architecture Evaluation Function, the Life-cycle

Evaluation Function and the Business Evaluation Function.

• The architecture evaluation function considers the weight and size of the system, the length

of harnessing, the modularity of the components and the quantity of data passed between

them.
• The Life-cycle evaluation function uses a Monte Carlo simulation to model the performance

of the DCS over a typical thirty year life-cycle. As the components fail so the cost and

consequences of maintenance actions are recorded.
• The Business Evaluation Function uses the information generated by the architecture and

life-cycle evaluation functions to determine the costs associated with a particular DCS. The

cost of building and supporting the DCS are calculated. Using these costs, it is possible to

determine how quickly an initial investment could be recouped based on the fleet size and

sales pattern.

The entire scheme is shown in figure 2 below:

xii

Figure 2: Schematic diagram of optimisation scheme

The research outcomes have been constrained by a lack of computational power. This thesis presents

results for the optimisation scheme using the architectural evaluation alone. The lifecycle and business

evaluation functions are demonstrated on a standalone test case. Despite the full implementation being

implausible, it is shown in appendix B that the execution time could be reduced from 15 weeks to around

10 hours given the appropriate software implementation and hardware platform.

Results

The GA was run for 1000 iterations using the architectural optimisation alone. The system selected as

the most optimal comprised two nodes: one mounted on the fancase and the other on the core. Two

views of the optimal solution are shown in figures 3 and 4 below:

Figure 3: The two node optimal architecture
Figure 4: Two node optimal solution from underside of

engine and showing temperature profile

Whilst it is impossible to prove that the architecture is truly optimal, a qualititative assessment

highlights that the nodes are sensibly placed and that the components (indicated by the green boxes and

blue circles) on the core are connected to the core node and the fancase components to the fancase node.

Having only been subject to the architectural evaluation, this architecture cannot be considered

holistically optimal. It is likely that the influence of the lifecycle and business evaluation would move the

core mounted node towards the fancase in order to reduce the surrounding air temperature and increase

xiii

reliability.

The lifecycle and business evaluation functions were exercised on a standalone test system with 14

components. Each component in the system fails according to a failure distribution incorporating both

burn in and wear out failures. As the monte carlo simulation progresses, so components fail. The failures

influence the operability of the system and hence the level of service disription.

The lifecycle simulation was tested on three different systems. Each system has a set of components

with differing levels of reliability. The test cases are refereed to as ‘R’ which has the greatest reliability,

‘R/3’ in which the Mean Time To Failure (MTTF) of the components is one third of ‘R’ and ‘R/5’ where

the MTTF is one fifth of ‘R’. Each set of components is assumed to have a 30 year service life. The

graphs below show the number of components replaced and in-flight shutdowns experienced during each

service year.

Figure 5: Average number of components replaced in a
given service year

Figure 6: Average number of in-flight shutdowns due to
control system unreliability

It is clear to see that the most reliable set of components, ‘R’ produces the most reliable and least

disruptive system.

The business evaluation function takes the performance metrics from the lifecycle results, scales them

to be representative of an entire fleet and attributes costs to each of the metrics. By summing these costs

and the income generated from flying hours, the evaluation function is able to calculate the return on

investment for the system developer. Using data taken from the three systems described above, the Net

Present Value (NPV) for the three candidate system is calculated.

The graph shows how the most reliable set of components provides the greatest financial return.

Figure 7: Annualised present values of initial investment

xiv

Conclusion

Whilst it has not been possible to run the optimisation in its entirety, the results presented above show

that the constituent parts of the algorithm perform as required. The tool enables system architects to

ascertain the wider consequences of archtiectural decisions. The optimisation scheme itself, the monte

carlo simulation and the process of constructing the DCS architectures, provide both industrial and

academic novelty.

xv

Part I

Introduction & Background

1

Introduction

Chapter 1

Introduction

1.1 Rationale: The Role of Product Architecture

Product architecture plays a subtle yet significant role in defining a system’s properties

and performance. Despite this, the drive towards a specific system architecture is often

made automatically during the early stages of product development. In many instances,

the natural tendency is to assume a system architecture based on a previous product

or one which confines the proposed system to a single physical entity. Reasons for

these approaches include the retention of experience, conceptual simplicity, retention

of capabilities gained during the development of legacy systems and the difficulty of

quantifying and proving the value of novel architectures. However, being that 90% (Smith

& Reinertsen, 1997) of a product’s financial cost and performance may be attributed

to its initial design, decisions regarding product architecture are irremissibly significant.

Effective use of architecture can shorten development times, help reduce or control

complexity and significantly change the operation and efficiency of a business.

Modular architectures provide an alternative to centralised architectures although

centralised systems may in themselves be modularised. Modules may be physically

disparate or collocated and be designed to inhabit similar or vastly different physical

environments. Logically, modular products are designed to maximise component reuse

and promote ‘‘plug-and-play’’ composition.

2

Introduction: Distributed Control Systems for Aero Jet Engines Introduction

1.2 Introduction: Distributed Control Systems for Aero Jet En-

gines

Present day jet engines are controlled and monitored by a series of hydraulic, fuel-

draulic, electrical and pneumatic sub-systems known as the Full Authority Digital Engine

Controller (FADEC). At the heart of the FADEC is the centralised Electronic Engine

Controller (EEC) responsible for control and safety of the wider engine system.

The EEC is a dual redundant computing system hosting engine control, monitoring

and safety functions. Each channel has an independent power supply, computing platform

and interface circuitry to connect the unit to transducers on the engine chassis. Both

channels reside in a single physical unit. The EEC receives the pilot thrust demand and

controls the engine subsystems to achieve the desired performance. Furthermore, the

EEC is responsible for the prompt shutdown of the engine in the event of an over-speed

or over-temperature condition that would otherwise compromise the engine or airframe.

The sensors and actuators associated with the engine sub-systems are located across the

engine chassis and connected to the EEC by wiring harnesses as shown in figure 1.2.1. It

is commonplace that the EEC is mounted on the engine fancase to protect the electronics

from the extreme heat of the compressor, combustor and turbine stages.

Figure 1.2.1: High-level overview of a centralised control system. All sensors (s) and
actuators (a) are connected to a single command module containing all the processing power

It has long been postulated that a distributed EEC would contribute to improvements

in control system performance and lifecycle costs. Distributed Control Systems (DCSs)

involve the division of a control system into individual sub-systems comprising of smart

sensors, actuators and controllers; each separate sub-system is known as a node and may

contain processing capability. Nodes are physically separated and communicate via a

shared data network as outlined in figure 1.2.2:

3

Motivation for the Study of DCSs Introduction

Figure 1.2.2: Outline architecture of a DCS showing nodes (black boxes) connected to a
data network (dashed lines). The architecture shown is arbitrary

The sensors and actuators may exist as independent nodes or be directly coupled

to a controller node. The topology of such systems varies considerably depending on

application and may be flat or hierarchical as shown by figures 1.2.3 and 1.2.4.

Figure 1.2.3: Flat distributed system architecture without
a central command module. The sensors and actuators reside
on the network as independent nodes and communicate

between themselves to achieve global system control.

Figure 1.2.4: Hierarchical distributed control system - the
distributed controllers receive set point information from a
central command module and control local actuators based
on local sensor measurements to achieve global control. The
controller and associated sensors and actuators constitute a

node

This research considers the architectural design of DCSs for controlling large, civil gas

turbine engines. The following section describes the motivation for this work.

1.3 Motivation for the Study of DCSs

Intuitively, Distributed Control Systems offer a raft of commercial and technical gains

across the system lifecycle. These benefits include (in no particular order):

• An overall reduction in control system weight

• Reduction in harnessing and harness complexity

• The ability to extend or modify a system once in service and protect against

obsolescence using targeted upgrades

4

Motivation for the Study of DCSs Introduction

• Reuse of modular components during system design (hence savings in develop-

ment time and certification costs)

• Improved fault containment and isolation

• The ability to partition technical risk and new engine technologies

• Simplified testing (at node level)

• Decreased maintenance times

• Increased control system processing power which could be used to:

◦ Implement more sophisticated engine control laws

◦ Increase diagnostic and prognostic capability

◦ Increase sampling rates and measurement accuracy

• Reduced Electromagnetic Interference (EMI)

• Increased number of despatch configurations (see section 7.5)

• Provide a platform for the introduction of new and emerging technologies

Despite the extensile list of benefits and the belief that the obtrusion of distributed

control systems is inevitable, such systems have yet to become commonplace beyond

demonstrator engines. Previous demonstrator programmes have failed to convince system

developers that distributed systems are commercially viable or intrinsically capable of

achieving the widely advertised benefits. Whilst many of the tools, techniques and

technologies required to realise these systems are in themselves mature, the process of

integrating them to design and evaluate distributed architectures has yet to be formalised.

The practice of architecting complex systems such as the DCS is much practiced yet

poorly understood. There are few proven techniques or mathematical formalisms that

permit architectural design decisions to be related to in-service performance. Bringing

such formalisms to the discipline of architectural design is a key research topic in systems

engineering.

1.3.1 The Wider Motivation

Airlines require more efficient engines and increased reliability to decrease fuel and

operating costs. These demands will only be met through the introduction of new

technology and an increased focus on innovation.

Reducing fuel consumption is not only an environmental concern, but perhaps more

pertinently, a commercial necessity. Rising fuel costs have hit the industry hard and

contributed to the collapse of several carriers such as Silverlink and xL. Fuel efficiency

5

Aims and Objectives Introduction

has become pivotal to the survival of airlines. This need has translated into pressure on

engine manufacturers to improve engine design and accelerate the pace of new technology

integration. (Source: International Air Transport Association (IATA) Jet Fuel Price

Monitor)

Fuel technology alone is unlikely to see radical change in the short term. Bio-fuels have

been demonstrated and are expected to make an impact in the next 10-15 years. Despite

these emerging technologies, it seems conclusive that conventional fuels will remain in

use for the foreseeable future - be it exclusively or as components of bio-fuel blends. It is

unlikely that the FADEC will undergo significant changes in either structure or premises

of operation whilst hydrocarbon-based fuels predominate. Many of the technologies

proposed for reducing fuel burn such as lean-burn and turbine tip-clearance systems

require components to be mounted on the engine core. Furthermore, the functionality of

these systems is readily decoupled from the existing control laws; their integration requires

an increasingly agile platform capable of adaptation and extension. New and emerging

technologies driven by performance, commercial and legislative demands strengthen the

case for DCSs.

1.4 Aims and Objectives

The aim of this research is to: develop and analyse a set of candidate distributed

control system architectures for controlling a large, civil turbofan engine using

a systems engineering approach. Given the industrial context of the research, the

architectures shall be designed to achieve both technical performance and commercial

viability.

The industrial context of this research engenders a further intangible aim - to stimu-

late and maintain an industrial awareness of distributed control systems, challenge the

precedents and norms of legacy systems and promote mindfulness of alternative control

system architectures.

In order to achieve these aims, this research uses a Genetic Algorithm (GA) as a tool

to propose, evaluate and optimise DCS architectures. The research considers the context

of the problem and the difficulties of designing distributed systems in order to realise the

benefits listed previously in section 1.3.

6

Aims and Objectives Introduction

The GA’s current population contains coded specifications for a set of DCS architectures.

The specification includes the location of each node, the control system tasks that each

node will perform and the electronic interfaces contained within the node. This information

is used in conjunction with a database of components and a functional model of the engine

control system to construct a meta-physical model of the DCS in question. The meta-

physical model exists entirely in software but reflects the structure, layout and properties

of the control system as it would appear on engine. The model includes harnessing and

has properties such as weight, size and cost.

Each of the architectures is evaluated for its architectural quality, (weight and size

etc), and system performance whilst in service. Data gleaned through these evaluations is

used to assess the system from a business perspective by considering the costs and return

on investment. The scores given by the various evaluation functions reflect the holistic

quality of the proposed architecture from the perspective of the system architect.

The following objectives allow this aim to be realised. This research will:

• Gain an understanding of the design problem, trade space and design parame-

ters.

• Select and implement an appropriate GA for optimising system architectures.

• Develop a set of architecture frameworks upon which metaphysical models of

the engine and DCS may be built

• Devise the process of building the metaphysical models from the design variables

• Develop algorithms to evaluate each of the models for architectural quality,

lifecycle value and business cost.

• Realise all of the above in an appropriate software environment

The objectives listed were defined following a detailed analysis of the relevant academic

literature and current industrial practice. The industrial background is discussed in

chapter 2 and the literature in chapter 3. Section 3.5 of the literature review combines

the findings of these chapters and the concerns of Aero Engine Controls to position the

study and engender the objectives stated above.

1.4.1 Scope

No system level study could adequately address all facets and concerns of control sys-

tem designers and business administrators; the breadth of applications, platforms and

7

Computational Constraint and Results Introduction

implementation possibilities is vast. Consequentially, this research focuses on distributed

control systems for large civil turbofan aero-engines. Examples include the Rolls-Royce

Trent 1000 which powers the Boeing 787 Dreamliner and the General Electric (GE)

GP7000 for the Airbus A380.

The data used in this research is guided by industrial axioms and practices. Where

necessary, the data has been distorted to protect Aero Engine Control’s intellectual

property. This research only considers the architecture of the EEC and not the wider

engine or FADEC.

1.5 Computational Constraint and Results

The optimisation framework developed in this thesis was conceived to operate as a

complete system for designing and evaluating DCS architectures. However, the monte-

carlo simulation used for the life-cycle analysis proved to be very processor intensive

and made a full implementation infeasible. Therefore, this thesis presents results for the

optimisation scheme using the architectural analysis alone. The lifecycle and business

evaluation functions are demonstrated on a small-scale test case. The lifecycle simulation

operates exactly as it would for a full scale implementation and all elements of the

implementation have been written with scalability in mind.

The computational limitation is a product of the resources afforded to this research,

rather than any inherent flaw or in the structure of the optimisation or the associated

software. It is shown in Appendix B how the estimated execution time of 15 weeks

could be cut to around 10 hours using only a modest quantity of relatively inexpensive

computing hardware.

1.6 Thesis Structure

This thesis is divided into three parts: Introduction & Background, Method and Conclu-

sions. Each is described presently.

8

Thesis Structure Introduction

1.6.1 Part I - Introduction & Background

Chapter 2 provides the background information necessary to understand the basic operation

of the jet engine, FADEC and EEC. The industrial context is set by considering Aero

Engine Control’s previous experience with DCSs, the difficulties of distributed system

design and a high-level overview of the wider commercial context. A literature review is

given in chapter 3. The review highlights areas where previous academic literature has

contributed to DCS design and identifies those topics which have received little attention.

The final background chapter (chapter 4) describes the basic functionality of the GA, the

process of selecting and developing the algorithm and the results from verification testing.

Further background information is presented throughout the thesis where necessary.

1.6.2 Part II - Method

Chapter 5 discusses the architecture frameworks and the process of building the meta-

physical DCS architectures. The chapter describes the structures used to capture the

architectural specification and the methods for building the software models. The tech-

niques used for harness routing and reliability assessment are discussed. Furthermore,

a technique of generating and analysing systems using binary relations is presented. A

brief overview of the evaluation functions concludes the chapter. The following three

chapters (6, 7 & 8) explain the processes used by the evaluation functions. Chapter 6

considers the functions required to ascertain the architectural quality of the system using

the meta-physical model. The lifecycle evaluation chapter (chapter 7) describes how a

Monte Carlo Simulation (MCS) is used to ‘fly’ the engine through a 30 year service life.

The performance data gained is used to determine the likely disruption that a given design

will have on airline operations. Information gleaned from the lifecycle evaluation is used

by the business evaluation function (chapter 8) to examine the costs associated with a

particular architecture. Given that the algorithm could not be executed to its full extent,

each of the evaluation chapters contains a set of results from verification testing. The

results for the architectural evacuation present an optimal DCS architecture based on

this evaluation alone. These results demonstrate the ability of the GA to optimise DCS

architectures.

9

Contributions Introduction

1.6.3 Conclusions

The third part of this thesis contains the conclusions. The conclusion summarises

the strengths of the method and the associated contributions made by this research.

Weaknesses of the method and potential improvements are discussed along with an

alternative method. Subjects for further research are considered.

1.7 Contributions

The methods and techniques used in this research provide the following contributions to

the field:

• A framework for the design of Distributed Control Systems for large civil jet

engines using a Genetic Algorithm

• A better understanding of the technical and commercial difficulties of DCS

design and techniques which may help overcome them

• A system of binary relations to describe and analyse system architecture

• Use of a Monte Carlo Simulation for ascertaining system performance over an

extended lifecycle operating under Time Limited Despatch (TLD)

10

Background Information and Industrial Context

Chapter 2

Background Information and

Industrial Context

2.1 Introduction

The introductory chapter discussed the motivation and aims for this research. This

chapter provides a technical and commercial context for the research by providing

background information on the jet engine, present day control systems and the business

environment. Over the past 20 years, Aero Engine Controls has undertaken an number

of development projects aimed at demonstrating distributed control systems for both civil

and military engines. These projects are described and accompanied by a brief analysis of

the lessons learned and capabilities gained.

Ultimately, the DCS proposed by the Genetic Algorithm provides a hardware platform

capable of implementing the engine control laws. The information contained in this

chapter is intended to highlight the design issues and considerations faced by control

system architects. The basic descriptions grant familiarity with the FADEC system, basic

redundancy schemes, basic control system tasks, engine parameters and the challenges

of architectural design. Nearly all the information presented here is either implicitly

or explicitly incorporated into the models and evaluation functions used during the

optimisation. Readers familiar with the FADEC and EEC systems may wish to move

directly to sections 2.4.2 and 2.5.

The explanations herein are introductory; they provide the unfamiliar reader with the

11

The Gas Turbine System Background Information and Industrial Context

background information necessary to understand the premises of the research. In-depth

information is provided throughout the thesis where necessary.

Section 2.2 gives an overview of the working principles of a large gas turbine engine,

the FADEC and its subsystems. Following a brief look at the present day EEC, various

options for partial distribution of the centralised EEC are presented and evaluated. Aero

Engine Control’s previous work on DCSs is presented.

2.2 The Gas Turbine System

The basic structure and operation of a gas turbine engine has not changed significantly

since its inception in the 1930’s. The working principle is as follows: The engine is a

tube open at both ends - air enters the engine where a compressor raises the pressure

before being mixed with fuel and expanded by combustion. The exhaust gasses from the

combustion process are expelled from the engine to produce thrust. Before leaving the

engine, the heated gasses are used to power a turbine which drives the input compressor

via an interconnecting shaft. This increases the compressor speed and thus, the mass of

air entering the combustion chamber. The processes is colloquially known as the, ‘‘suck,

squeeze, bang, blow’’ cycle or more formally as the Brayton cycle. The effort required

to design and manufacture gas turbine engines is disproportionate to their conceptual

simplicity. A basic diagram of a turbofan engine is shown in figure 2.2.1 below.

It is unlikely that the basic functional design of a turbofan engine will ever change

significantly. Open rotor engines proposed for short-haul aircraft will see the removal of

the fancase but the fundamental core engine design will remain. Literature suggests that

engines will become more efficient with the introduction of refined designs and lighter,

more temperature tolerant materials. In contrast, the methods of actuation and control

are likely to change significantly with the desire to reduce weight, maintenance times,

control system complexity and the use of flammable fluids in hydraulic systems.

Ultimately, the only control input is the mass flow of fuel into the burner manifold.

The control laws are complex and beyond the scope of this thesis. The modulation of fuel

dictates the speed and acceleration of the engine spools and consequentially, thrust. The

system responsible for controlling and monitoring fuel flow is known as the Full Authority

Digital Engine Controller (FADEC). The FADEC comprises a system of both active and

12

The Gas Turbine System Background Information and Industrial Context

Figure 2.2.1: Three shaft turbofan engine (Trent 1000) showing the bypass fan, two core
compressor stages and three turbine stages. Figure adapted from www.rolls-royce.com

13

The FADEC Background Information and Industrial Context

passive hydromechanical subsystems under the control of the EEC.

2.3 The FADEC

Present day jet engines are controlled and monitored by a series of hydraulic, fueldraulic,

electrical and pneumatic sub-systems known as the FADEC. All FADEC subsystems

are mounted on the engine and permit the engine to be operated as an isolated entity

providing a fuel supply, power supply and input commands are available. In normal

operation, the FADEC receives a thrust demand from the cockpit and adjusts the fuel

flow to maintain the desired thrust whilst removing the complexities of control from the

pilot. Whilst the pilot has the overriding ability to shut the engine down, the FADEC

monitors the engine for serious malfunctions and can shut the engine down automatically

in response to events that could otherwise cause a hazardous or catastrophic failure or the

engine or airframe 1. Prior to the advent of electronic control systems, engine control was

performed using hydromechanical apparatus incorporating valves and bellows. Without

the FADEC, the pilot would have to maintain a constant thrust by calculating and

adjusting the fuel flow to accommodate changes in airspeed and altitude. To do this

whilst maintaining safe and efficient operation would be nigh-on impossible.

As well as controlling fuel flow, the FADEC controls the aerodynamic geometry of

the engine by means of bleed valves and guide vanes to prevent stall and ensure efficient

operation. As engine technologies progress and the number of control variables increases,

so the FADEC will become increasingly important and complex.

The primary function of the FADEC is to control fuel flow to the burner manifold.

The FADEC fuel control system comprises of three main hydromechanical and electronic

elements - The Fuel Metering Unit (FMU)/hydromechanical unit (HMU) , Variable Stator

Vane Actuators (VSVAs) and the EEC as shown in figure 2.3.1 below...

2.3.1 Subsidiary FADEC Systems

A brief description of the FADEC components and their functionality is given below.

With reference to figure 2.3.1 the list follows the fuel path from the tank feed (l.h.s) to

1‘Hazardous’ and ‘Catastrophic’ are the two most severe designations of four aircraft failure categories. Hazardous and

catastrophic failures are those deemed to endanger either the lives of passengers and/or the survivability of the airframe

14

The FADEC Background Information and Industrial Context

Figure 2.3.1: A typical FADEC fuel control system for a large civil turbo fan jet engine.

the burner manifold (r.h.s) but ignores the feedback and spill flows.

2.3.2 Fuel Control and the FMU/HMU

Low Pressure (LP) and High Pressure (HP) pump The LP pump increases the

pressure of fuel fed from the aircraft tanks to remove modulated flows caused by

dissolved gasses leaving solution.

Fuel Oil Heat Exchanger (FOHE) The FOHE is an intricate matrix of pipes de-

signed to cool the engine oil using the cooler fuel from the aircraft tanks. It is usually

located after the LP pump. This action has the combined benefit of reducing the oil

temperature and removing ice particles from the fuel.

LP and HP Filter The fuel filters are designed to prevent contaminants and fuel borne

ice particles from entering the fuel control system and blocking or damaging the

injector nozzles.

Filter Bypass Valves Both the HP and LP filters have passive bypass valves. If the

filter becomes blocked and the differential pressure across the filter rises sufficiently,

the valve opens and the fuel bypasses the filter. This mechanism ensures that

operation is preserved.

FMU/HMU The Fuel Metering Unit (FMU) or hydromechanical unit (HMU) unit

comprises of a series of solenoid valves which regulate the fuel flow into the burner

15

The FADEC Background Information and Industrial Context

manifold and allow for automated or pilot-initiated shutdown of the engine. At

the heart on the FMU/HMU is the Fuel Metering Valve (FMV). The position

of the FMV controls the fuel flow to the burners. The position of the FMV is

measured using an Linear Variable Displacement Transducer (LVDT) stimulated

and monitored by the EEC. The position of the FMV is controlled fueldraulically

- the fuel flow which moves the valve is controlled by an electromechanical servo

valve.

Fuel Flow Meter The fuel flow meter is used only for pilot information and control

system verification, not to control fuel flow. Present day fuel flow metres suitable

for flight applications have insufficient bandwidth and accuracy to monitor the fuel

to the accuracy demanded by the control laws.

Drains Tank Valves within the FMU/HMU allow fuel to drain from the burner manifold

once the engine is shut down. In addition to preventing the build-up of lacquer in the

manifold and fuel nozzles, this facility helps the engine to conform to environmental

legislation precluding the release of vaporised fuel into the atmosphere.

2.3.3 The Electronic Engine Controller (EEC)

The EEC is a dual redundant computing system hosting engine control and safety

functions. Each channel has an independent power supply, computing platform and

interface circuitry which reside in a single physical unit. The EEC interprets the pilot

thrust demand and controls the engine subsystems to achieve the desired performance.

Furthermore, the EEC is responsible for the prompt shutdown of the engine in the event

of an over-speed, shaft-break or Loss of Thrust Control (LOTC) condition which could

otherwise compromise the engine or airframe. The sensors and actuators associated with

the engine sub-systems are located across the engine chassis and connected to the EEC

by wiring harnesses.

Architecturally, the EEC is divided into two dual redundant channels (nominally A

and B) although the system is manufactured as a single unit. Both channels are physically

and electrically isolated but able to communicate via an isolated data link known as the

Inter-Channel Bus (ICB). The hardware and software in both channels is identical,

so the redundancy acts to accommodate sensor, actuator, harness and power supply

16

The FADEC Background Information and Industrial Context

Figure 2.3.2: A typical EEC for a large civil engine. The two redundant channel are clearly
marked on the case and physically isolated within the unit. (figure courtesy of Aero Engine

Controls)

malfunctions alone. The ICB allows the sharing of data between channels so as inputs and

outputs from one channel may be controlled by the processing element of the other. This

adds a further level of redundancy and increases the number of despatch configurations.

Each channel is further divided into control and protection elements. The control

element implements the control laws and commands the FMV position whilst the protection

functionality monitors the engine for over-speed, shaft break and loss of thrust control

events. The protection element has the authority to shut the engine down without pilot

involvement. This action is permissable in instances where a slow human response may

compromise safety. By preference, the control and protection elements are powered by

separate isolated, supplies. Furthermore, the control and protection circuitry reside on

different circuit boards and interface to sensors via separate connectors. Both channels

have connections to the engine sensors and actuators. Most of the engine sensors are dual

redundant whilst many of the actuators have redundant elements such as dual windings.

An ideal high level architecture for an EEC is shown in figure 2.3.3:

17

The FADEC Background Information and Industrial Context

Figure 2.3.3: The ideal centralised EEC architecture. The double headed arrows show the
paths of communication between the control and protection elements as well as inter-channel
communication. The dotted line represents the physical and electrical isolation between

channels A and B.

Each of the four elements has its own input signal conditioning, processing capability

and output signal conditioning. The control elements interface to nearly all engine sensors

whilst the protection elements interface to only those sensors required to detect serious

engine malfunctions. In some instances, a separate sensor is provided for control and

safety giving a total of four engine sensors monitoring a single parameter. The signal

conditioning includes analogue buffers, amplifiers, lightning strike protection, anti-aliasing

filters, multiplexors and analogue to digital converters. The computation is performed on a

microprocessor which controls output circuitry such as torque motor drives, current drives,

logic level drivers and data communications. Whilst the specific hardware configuration

varies from application to application, the basic elements remain largely unchanged.

2.3.4 Common Circuit Blocks (CCBs)

Aero Engine Controls builds its EECs from modular components known as Common

Circuit Blocks (CCBs). The company hold a library of CCBs associated with the electronic

functions of the EEC. For example, there are amplifier and integrator circuit blocks

as well as one for the processing and signal conditioning elements. Every transducer

interface has an associated circuit block. If an EEC requires four LVDTs interfaces, four

instances of the LVDT circuit block are instantiated in the design. All the circuit blocks

are optimised for PCB layout and have been extensively tested. The concept allows

complete EECs to be composed from primitive modules, thus decreasing development,

test and certification time. The notion of CCBs is a fundamental part of the models used

18

The FADEC Background Information and Industrial Context

in the DCS optimisation.

2.3.5 Power Sources and the Permanent Magnet Alternator (PMA)

Airframe power from a 115VAC supply is used to power the starter system. Once

started, the FADEC is required to draw electrical power from an on-engine source. The

generator used is known as the Permanent Magnet Alternator (PMA). The PMA harnesses

rotational power form the accessory gearbox. Therefore, the output frequency (and thus

available power), varies with the engine speed. The variable frequency supply is rectified

and converted to a 55VDC supply which powers the EEC. The PMA is dual wound to

provide redundancy - nominally, one winding powers each channel. The 55VDC supply is

regulated down to voltage levels suitable for low level circuitry by independent power

supplies within the EEC. Ideally, there are 4 independent supplies to provide independent

power to control and protection functionality on both channels.

2.3.6 FADEC Mounting

The high-temperatures and vibration experienced during operation are a major constraint

in component design and location. The engine and its environment may be broadly

categorised into three distinct zones - the fancase (zone 1), a pre-combustion core zone

known as ‘‘core zone 2’’ (zone 2) and a post combustion core known as ‘‘core zone 3’’

(zone 3) (see figure 2.3.4). There are two temperatures of principle interest to component

designers - the surface temperature of the engine chassis and the temperature of the

bypass steam known as the Surrounding Air Temperature (SAT). Furthermore, the

engine environment may be affected by ingestion of foreign objects and debris from within

the engine or other engines on the airframe. Whilst the majority of an engine’s operational

life is spent in the cold surroundings of the mid or upper atmosphere, the engine must be

capable of operating from the world’s hottest airports.

The zones are shown in figure 2.3.4. The location of FADEC components across the

engine chassis is largely dictated by the harsh environment. Conventional electronics

are incapable of surviving in zones 2 and 3 so nearly all electronic devices are located on

the fancase. Consequentially, the location of nearly all FADEC components is non-ideal.

The FMU/HMU and the PMA require a mechanical drive which is taken from the HP

19

The Engine Environment Background Information and Industrial Context

shaft to the accessory gearbox. These components are mounted together on the underside

of the fancase where they are easily accessible to maintenance staff. The VSVAs are

mounted directly to the unison ring which is mechanically coupled to the Variable Stator

Vanes (VSVs) in the compressor. Fuel is transferred from the pumps and valves on the

fancase to zones 2 and 3 by means of pipes mounted within the bifurcation duct.

2.4 The Engine Environment

Zone 1 is the least hostile, partly because the fancase is cooled by air entering the engine

during flight. At cruise altitude, the temperature of the inlet air may be -50◦C. The

operating temperature of the fancase is typically 90--110◦C and is the most uniform

environment of the three engine zones. Despite providing favourable temperatures, the

fancase is exposed to threats from debris, bird strike and ‘‘fanblade-off’’ events. Fanblade-

off is the fracture and release of a bypass fan blade during flight. The fancase must be

capable of containing a loose fanblade which may impact with a force of 200G if released

at maximum engine speed. A loose fanblade deforms the fancase with an oscillatory ripple

as it circulates during its deceleration. Components mounted on the fancase must be

capable of withstanding this deformation and retain their mountings during a fanblade-off

event.

Zone 2 provides an intermediate environment. Surface metals may reach 150◦C and

the SATs 250◦C. Zone 2 is not exposed to as many mechanical threats as zone 1.

Zone 3 includes the combustion chamber and turbine stages and provides the most

hostile environment. The gas stream may reach temperatures of 1500--2000◦C whilst

typical metal temperatures may be 350◦C and SATs 600◦C.

Engine components are designed to be unaffected by lightning strikes. On average, an

airframe will be struck once a year during flight. Whilst the strike may not compromise

the safety of the airframe, electronic subsystems must be designed to withstand the surge.

Zones 2 and 3 tend not to have a uniform temperature profile. Temperatures may vary

considerably depending on the location of fuel and oil system elements and the way the

engine is dressed. Therefore, profiles vary from engine to engine. Whilst the designation

of zones conveys a broad understanding of environmental conditions, only zone 1 may be

treated as a uniform and well-defined environment.

20

The Engine Environment Background Information and Industrial Context

Figure 2.3.4: Location of the FADEC components. The items marked with bold outlines
are those designed and manufactured by aero engine controls. Each of these components

relates to the fuel delivery system or requires fueldraulic power for actuation.

The high temperatures and flammable liquids give an inherent risk of fire in the event

of a leak or malfunction. Engine components are mounted in locations which prevent the

spread of fire and permit the engine to be shutdown quickly and safely.

Engine malfunctions such as over-speed or oscillatory thrust may inflict mechanical

damage and result in engine debris. Where possible, engines are designed to contain

engine debris, although this is not always achievable. In the event of an over-speed

condition, turbine blades could be ripped from their axial mountings. At full speed, each

blade has the weight of a London bus and aided by a small, sharp profile, would easily rip

through the engine casing. The debris could leave the engine, rip through the airframe

and lodge in the other engine(s) causing wider destruction. This failure mode is known as

cross-engine debris and is a considerable threat to the airframe.

2.4.1 Airframe Communications

The EEC communicates with the airframe via a dual-redundant ethernet network known

as Avionics Full Duplex Switched Ethernet (AFDX). The AFDX bus communicates the

speeds, pressures and temperatures that the pilot requires to verify engine function. The

21

The Engine Environment Background Information and Industrial Context

EEC also communicates maintenance messages and status messages which require the

pilot’s or maintenance technician’s attention. The messages are sent as raw data and

appear on displays in the cockpit. Such messages may alert the pilot to unusually high

Turbine Gas Temperature (TGT) or low oil pressure. The maintenance messages are

stored on the airframe and read by maintenance staff post flight.

2.4.2 Distribution of the Present Day EEC

The following section outlines the potential for ‘distributing’ or ‘disbursing’ elements of

the centralised EEC. The descriptions and evaluations introduce some of the drivers for

distribution and the various architectural considerations.

The architecture of the centralised EEC was designed to allow partial distribution or

‘disbursal’ of the control and protection modules. The control and protection functions

communicate via a serial data buses which may be extended, thus allowing the four main

modules of the EEC to be spatially distributed. This approach is more consistent with

‘remote electronics’ than ‘distributed control’ but nevertheless may permit future systems

to be more space efficient and architecturally robust.

The strongest drivers for separating EEC modules are reducing unit size and the

likelihood of damage from fire and debris. On smaller engines where space is constrained,

two or four smaller units may be easier to mount than an equivalent centralised EEC.

There is potential for control units to be mounted in the cooler areas of zone 2 which

may engender shorter, lighter harnesses - this benefit may compensate for the weight gain

arising form separation.

The possibility of EEC destruction and loss of control during fire and debris events

is an important consideration. Spatially distributed units are less likely to be damaged

or destroyed by the effects of fire and cross-engine debris. Accordingly, the availability

of the EEC functions to shut the engine down or gracefully degrade performance may

be increased. This gain is set against the increased risk of disruption to inter-module

communication in the event that data harnesses are severed or burned. Smaller units are

easier to mount and less likely to be dislodged during a ‘‘fanblade-off’’ event.

The three basic schemes for EEC separation are shown in the diagrams below. Figure

2.4.1 shows the present day EEC contained in a single unit. Figure 2.4.2 shows all four

22

The Engine Environment Background Information and Industrial Context

modules separated. The arrow-headed lines connecting the blocks imply the presence of a

serial data link conveying information between the modules.

Figure 2.4.1: Centralised EEC Architecture Figure 2.4.2: Architecture with both control and protection
portions separated by extension of serial busses

For cost reasons alone, the arrangement shown in figure 2.4.2 is unlikely see imple-

mentation unless mounting space is severely constrained. As the most distributable of

the architectures, the design is less prone to damage from fire and debris and therefore

carries merit.

Other alternatives reduce the number of units from four to two by hosting a single

channel or both control and protection modules in a single unit. These units would be

individually smaller than a present day EEC, allow for good physical separation and be

more economical to develop and produce than the four module option.

Figure 2.4.3: Channel A and B physically separated
Figure 2.4.4: Control and protection functions physically

separated

The arrangement shown in figure 2.4.3 is perhaps the most vaunted of the three

alternative architectures. Indeed, similar schemes were successfully used in some of Aero

Engine Control’s legacy products. By co-hosting the the control and protection functions,

the risk to inter-module communications is decreased and the necessary spares holding

reduced. However, the size of the individual units and the conterminous nature of the

23

AEC’s Experience with Distributed Control Systems Background Information and Industrial Context

control and protection functions, make the units less suited to core mounting.

The final architecture figure 2.4.3 is similar in physical form to that in figure 2.4.4

but hosts both channel’s control and protection modules within the same physical unit.

The desirability of this architecture relies substantially on the routing of data harnesses

between modules and the likelihood of both serial links being severed simultaneously.

When compared to those used in demonstrator programmes such as High Performance

Engine Control System (HiPECS) and Affordable Near-Term Low Emissions (ANTLE)

(section 2.5) these architecture bear overt simplicity. However, they represent potential

solutions to design scenarios where space is a fundamental constraint as with the open

rotor engine (see figure 2.4.5). Each offers low level dispersion without modification to the

fundamental electronic or software design. Their conceptual simplicity makes them low

risk and hence commercially attractive. From the perspective of the DCS designer, these

configurations swash as commercially tangible alternatives to more advanced architectures.

The value of each alterative is defined using uncomplicated benchmarks against which

all DCSs will be compared. Adversely, such configurations are unlikely to yield systems

which deliver many of the benefits associated with more elaborate DCSs.

2.5 AEC’s Experience with Distributed Control Systems

THE FOLLOWING SECTION WAS WRITTEN BY THE AUTHOR AND

EDITED BY EMPLOYEES OF AERO ENGINE CONTROLS. MINOR

MODIFICATIONS WERE MADE TO THE ORIGINAL TEXT.

DCSs are widely seen as an inevitable advance in gas turbine control technology. The

perceived gains are numerous and appeal to subsystem suppliers, engine manufacturers and

airlines alike. Potential benefits include weight reduction, increased reliability, improved

fault isolation, an increase in processing power necessary to support advanced performance,

health monitoring, diagnostic and prognostic algorithms and an open architecture which

enables cost-effective up-grades for engine control and monitoring systems.

Since the early 1990’s, Aero Engine Controls has undertaken several technology demon-

strator programs aimed at advancing the understanding and design of distributed control

systems. Affordable high temperature electronics, or a means to enable electronics to

survive in the harsh engine environment were recognised as key enablers; as a result, a

24

AEC’s Experience with Distributed Control Systems Background Information and Industrial Context

Figure 2.4.5: The lack of a fancase and small diameter core of the open rotor engine makes it
unlikely that a centralised dual-channel EEC could be mounted on engine. Source:www.rolls-

royce.com

high temperature electronics technology acquisition programme was launched (see section

2.5.4).

The following sections summarise the key development programs undertaken by Aero

Engine Controls, and the capabilities gained:

2.5.1 High Performance Engine Control System (HiPECS-A) c. 1997 - 2000

High Performance Engine Control System ‘B’ (HiPECS-A) was a Ministry of Defence

(MoD) funded programme to develop distributed components for military transport

aircraft. The chosen architecture included a core-mounted data concentrator, a ‘smart’

FMU and a fan-case mounted data concentrator/controller. Inter-node communication

was achieved using a Controller Area Network (CAN) augmented with a proprietary

Time Division Multiple Access (TDMA) layer to achieve the necessary determinism. Loop

closure for the fuel control and metering functions were performed using electronics in the

smart FMU.

The system was demonstrated on an in-house System Test Facility (STF) using rack

mounted nodes and a wholly integrated smart FMU (see figure 2.5.1). Despite not

being run on engine, the HiPECS demonstrator was a fully functional, dual redundant

control system and included all the fault detection and safety features of a contemporary

commercial system.

25

AEC’s Experience with Distributed Control Systems Background Information and Industrial Context

Figure 2.5.1: Elements of the HiPECS-A demonstrator (figure courtesy of Aero Engine
Controls)

2.5.2 High Performance Engine Control System (HiPECS-B) c. 2000 - 2002

Like its predecessor, HiPECS-B considered the application of DCSs to military engines.

The MoD funded project was undertaken in collaboration with Rolls-Royce. The project

comprised a systems study of both centralised and distributed architectures for controlling

a hypothetical military engine. In order that the proposed designs could be evaluated

against likely future requirements, the engine was assumed to include advanced features

such as staged combustion (for both main flow and reheat), thrust vectoring and advanced

health monitoring.

A 13-node architecture was proposed and evaluated. A subset of these nodes was

realised as an off-engine demonstrator exercised on a Rolls-Royce STF.

The systems study concluded that the distributed architecture offered weight savings,

reliability improvements and reduced likelihood of lost missions when compared to its

centralised counterpart. Furthermore, the technology demonstrator proved the integrity

of the CAN communications protocol and the potential for DCSs as a future technology.

26

AEC’s Experience with Distributed Control Systems Background Information and Industrial Context

2.5.3 Advanced Near-Term Low Emissions Engine (ANTLE) c. 2000 - 2005

The European funded ANTLE program used the same basic DCS architecture as the

HiPECS-A programme, with two nodes and a smart FMU. The system was based on the

functionality of the Trent 500 controller and was realised using electronics technology

developed during the HiTEAM 2 project (see section 2.5.4). In March 2005, the ANTLE

control system became the first DCS to control a Rolls-Royce demonstrator engine.

The ANTLE system included a smart actuator in the form of an electrically driven

Variable Inlet Guide Vane Actuator (VIGVA). The actuator incorporated both control

and power electronics. As in previous DCSs, a CAN network was used for inter-node

communication.

The DCS designed for ANTLE was carried forward into the Power Optimised Aircraft

(POA) programme which followed in 2008 (see figure 2.5.2). Whilst Aero Engine Controls

was not involved with its development, the system was expanded to include additional

interfaces.

2.5.4 High Temperature Electronics Projects

HiTEAM 1 c. 1994 - 1998

High Temperature Electronics for Aerospace Manufacture (HiTEAM) 1 was a government

supported project aimed at developing the art of high temperature electronic design

using bulk-silicon components. The project was undertaken in collaboration with a

mining industry partner and investigated the design and manufacture of electronic

circuitry for high temperature environments. Whilst no high-temperature parts were

produced or tested, the work provided an opportunity to ascertain the availability of

High Temperature Electronic Devices (HiTEDs) and the suitability of Printed Circuit

Board (PCB) manufacturing techniques.

HiTEAM 2 c. 1999 - 2002

HiTEAM 2 continued the work of HiTEAM 1 into a demonstration and evaluation phase.

The work saw the introduction of hybrid circuits (see figure 2.5.3) and a number of Silicon

on Insulator (SOI) components. Demonstrator printed circuit boards were manufactured

using conventional materials, bulk silicon and high-temperature solder. To meet the

27

AEC’s Experience with Distributed Control Systems Background Information and Industrial Context

Figure 2.5.2: The Aero Engine Controls ANTLE demonstrator was successfully adapted
to control the POA demonstrator in 2008 (figure courtesy of Aero Engine Controls)

requirements of the engine environment, the need for chip-and-wire was confirmed (see

figure 2.5.4).

The smart FMU incorporated a computer, 40V power supply unit, drives for torque

motor, solenoid and a LVDT. This unit successfully demonstrated functional operation

at 200◦C.

Environmentally Friendly Engine (EFE) 2006 - 2011

Aero Engine Controls has produced a fully functional 170◦C electronic demonstrator,

and continues to invest in demonstrating 250◦C packaging and thermal management

technologies. For example, Aero Engine Controls is developing a high temperature

lightning protection solution based on Silicon Carbide (SiC) diode technology.

28

AEC’s Experience with Distributed Control Systems Background Information and Industrial Context

Figure 2.5.3: Hybrid circuit such as that used in HiTEAM
2 (figure courtesy of Aero Engine Controls)

Figure 2.5.4: Wire bonding (figure courtesy of Aero En-
gine Controls)

2.5.5 Summary

As the functionality demanded from engine control systems increases, so the complexity,

computational demands and physical dimensions of systems will grow. These development

programs have demonstrated that DCSs offer a plausible alternative to the centralised

control system. DCSs have the potential to reduce weight, size and increase reliability

whilst accommodating new functionality and offering an expandable platform capable of

accommodating low cost upgrades.

Aero Engine Controls has successfully operated a distributed architecture on demon-

strator engines, showing how such a system is plausible and realisable. In doing so, the

capability to design distributed systems has been gained; the challenge remains to devise

architectures and component technologies which most readily realise the benefits.

29

Literature Review

Chapter 3

Literature Review

Chapters 1 and 2 introduced the notion of DCSs, their industrial context and the lessons

learned from previous demonstrator programmes. This literature review considers academic

contributions to both the art of DCS design and the component technologies necessary to

realise them. Literature reviews specific to GAs, the method and evaluation functions are

presented in their respective chapters.

3.1 Introduction

There is a surprising lack of academic and popular literature relating to the architectural

design and implementation of Distributed Control Systems (DCSs). This is particularly

true of DCSs for real-time safety critical applications and consequentially, their application

to jet engine control. This may be due to the industrial nature of distributed system

design whereby the specifics of application determine so many of the system’s properties.

Commercial secrecy may also have thwarted potential publications. Indeed, this research

is naturally set apart from conventional research having stemmed from an occurring

industrial need with a predefined context, rather than the academic process of reviewing

and furthering the work of others. Törngren & Wikander (1996), propose that the lack of

engineering methodology and tools is due to the multi-disciplinary nature of distributed

control system design. Real-time control system design requires an understanding which

spans the fields of electronic engineering, computer science, control theory, mechanical

engineering and systems engineering - it is a truly architectural problem. Historically,

research concerning distributed control systems has pertained to the communications

30

Historical and technical perspective Literature Review

technologies, network scheduling, high-temperature electronics and software development

rather than the system in its entirety. The following discussion indicates that this trend

is beginning to change, yet a significant amount of system level research into distributed

control system design and analysis remains outstanding. Törngren & Wikander’s belief

further underpins the need for a systems engineering approach to DCS design and

development. Distributed systems are neither a technology nor a methodology, but a

conglomeration of technologies which realise an architectural form. Distributed control

systems as a generic entity are difficult to define and therefore, study. DCSs may have

any number of nodes, be physically separated over any area and utilise an enumerable

combination of network topologies, communications technologies, power supply systems

and software applications. The term ‘‘distributed system’’ is broad and unless applied

with context becomes ambiguous - it may be used to describe any number of systems from

the internet, to group control of Unmanned Aerial Vehicles (UAVs), multi-media systems,

industrial process control and remote electricity metering to robot and jet engine control.

This research is concerned with real-time DCSs with fixed architecture, static-scheduling

and pre-determined functional allocation.

3.2 Historical and technical perspective

When compared to technical disciplines such as power generation or industrial process

engineering, distributed control system design is an immature and unexplored art. Perhaps

the earliest published work of direct relevance to this research was a MIT PhD thesis

(Mok, 1983) considering the problems of software and communication design in real time

DCSs. The work proposed advancements to an abstract model for software design and

scheduling for distributed control applications from textual requirements but did not

consider the wider concerns of network or control system architecture. Mok’s references

contain no papers relating directly to distributed control system design.

Hermann Kopetz, Professor of Real-Time Systems at the Vienna University of Tech-

nology, is one of the few academics to have produced a substantial body of research

concerning real-time distributed systems. Work from over 100 of Kopetz’s papers cover

many contrasting aspects of real-time DCS design from best practice at a systems level

(Kopetz et al., 1991a,b), to fault tolerance (Kopetz et al., 2000) and the low-level design

31

Historical and technical perspective Literature Review

considerations of clock synchronisation and chip design (Kopetz, 2007, 2008). His earlier

work culminated in the Time Triggered Protocol (TTP) (Kopetz & Grunsteidl, 1993)

of which he is the chief architect. TTP is a time-triggered communications protocol for

embedded real time systems which has found application in automotive (TTTech, 2007a),

civil aerospace (TTTech, 2004) and its ethernet based equivalent in manned space systems

(TTTech, 2007b).

In 1997, Kopetz published a monograph of works related to the design of real-time

distributed systems. Kopetz draws on his own work (Kopetz & Ochsenreiter, 1987; Kopetz,

1995) and the work of other researchers from software and control system design disciplines

(see Locke, 1992; Lin & Herkert, 1996, for example). The resulting book (Kopetz, 1997)

entitled, ‘‘Real Time Systems: Design Principles for Embedded Applications’’ has become

a seminal text and despite its heritage, has not been superseded (2009). A later text (Pop

et al., 2004) considers distributed real-time embedded systems in a wider context and

includes more detailed discussion on event-driven and multi-cluster systems yet adds little

to the understanding of real-time DCS design.

Whilst Kopetz’s work is technically comprehensive, the majority has been undertaken

from the perspective of a real-time system’s designer rather than a system architect. His

work presents a multitude of design considerations and technologies that will greatly

influence DCS architectures, yet he does not directly address the practice of architecting

or designing value into such systems. Whilst his treatment of these technologies stems

from an academic perspective, the problems addressed and techniques proposed were

familiar to designers of legacy demonstrator systems such as ANTLE and HiPECS.

From the late 1980s onwards, a body of academic work relating to the technologies

and control system techniques required for distributed control systems was published.

Several academics investigated the effect of packet loss and communications jitter on the

stability of closed loop control. Contributions include Chan & Ozguner (1995), Chow &

Tipsuwan (2001), Chen et al. (2007) and Yedavalli et al. (2008). An insight into the the

future of DCSs, the difficulties of implementation and application of wireless control of

wide-area control problems is given by Lian et al. (2002). Whilst this work highlights many

important design considerations and is valuable for the wider application of distributed

control systems, relevance to this research is negligible. The techniques discussed are either

outdated or unsuitable for the applications where absolute determinism is prerequisite.

32

Application to Jet Engine Control Literature Review

Perhaps the most familiar application of distributed control systems originates from the

automotive industry, where the CAN has been used extensively to permit communication

between distributed processing elements located throughout the car. Work in this area

has focused on increasing the determinism of the CAN network through the application

of Time Triggered CAN (TTCAN) to ‘‘by-wire’’ systems. Papers from Short & Pont

(2007) and Führer et al. (2000) address the issue of determinism and fault tolerance of

TTCAN and the wider application to distributed control. However, the environment and

nature of distribution in the jet engine is very different from automotive applications. The

functionality of the jet engine control system is very tightly coupled and almost wholly

dependant on real-time communications. Therefore, lessons learned in the automotive

sector provide a stimulus for discussion rather than a direct application to jet engine

control.

The internet, wide area networks and multi-cluster computing systems have spawned

a new generation of distributed computing systems that evolved into their present form

rather than definition through systematic design. A substantial body of academic literature

and research programmes consider such networks for use in supercomputers and industrial

control (see Tsai et al., 1996, for example). Whilst many of these systems have hard

real-time constraints, the level of determinism and the technologies which host them are

inappropriate for this application.

3.3 Application to Jet Engine Control

It is noteworthy that both the Rolls-Royce HiPECS (1997) and ANTLE (2000) pro-

grammes preceded much of the systems level research focusing on DCS for gas turbine

engines; both programmes were technically successful but failed deter Aero Engine Con-

trols from commercial production of centralised systems. Despite their apparent novelty,

the military and commercial sensitivity of these projects meant that very few academic

papers were published. One paper, Watkinson (2003) presents the architecture used

in the ANTLE programme and basic operation of the communications bus. HiPECS

and ANTLE preceded the formation of the NASA Distributed Engine Control Working

Group (DECWG). The DECWG was formed between the NASA Glenn Research Centre

and North American industrial partners to examine current and future requirements of

33

Application to Jet Engine Control Literature Review

propulsion systems. The group is primarily concerned with the development of distributed

systems for military purposes; this is reflected in the group’s industrial composition. The

scope of their study includes an assessment of the paradigm shift from centralised engine

control architecture to distributed systems using open-system standards (SAE, 2007).

Since 2002, the group have published a number of technical papers which are discussed

presently.

Culley et al. (2007b) present an overview of the concepts and problems involved in

developing distributed architectures for gas turbine engines. The paper is written with

a slant towards engines for military fighter-attack aircraft, but the vast majority of the

content is directly applicable to distributed FADEC design for large civil platforms. The

authors acknowledge that DCS design is a complex problem and relate that complexity

to the ambiguous nature and number of architectural possibilities. They highlight the

lack of concrete definition to describe DCSs. Having presented the benefits of distributed

FADEC systems, the environmental constraints and costs are discussed. The paper is a

preliminary attempt at summarising the basic technical and commercial issues involved in

distributed system design. A further paper (Culley et al., 2007a) authored by a broader

contingent of the DECWG discusses the wider constraints to DCS and proposes that

such systems will only become viable once industrial standards for the communications

protocol and technology are realised. The group’s paper recognises the complexity of the

business case and the reluctance of commercial manufacturers to conform to industrial

standards. Neither of these papers present the outcome of ‘research’ - their contribution

is to formalise and substantiate the many industrial opportunities and concerns which

surround distributed systems. Furthermore, whilst not proposing solutions, the authors

recognise the complexity of the DCS design problem. That is not to undermine their

importance to the field. In a subject area where the complexities are vast and the

perspectives diverse, better understanding may be required before meaningful research

directions are established.

Papers from the DECWG reference many earlier NASA papers concerned with the

development of specific engine technologies related to DCSs. This is inevitable given the

impact that system functionality and communications technology has on architectural

design. Such references include Garg (2002) who discusses NASA’s research into Engine

Health Monitoring (EHM) systems. Subsequent papers include Volponi et al. (2004) and

34

Application to Jet Engine Control Literature Review

Litt et al. (2005) which describe data fusion and engine intelligence respectively. EHM is

likely to have a substantial impact on DCS design. Engine manufacturers have a thirst

for diagnostic data to aid fault diagnosis and therefore, reduce lifecycle costs. As the

algorithms and data required for EHM increase in complexity and size, distributed control

systems offer the potential for the increase in processing power required to support them.

Simon et al. (2004) discuss the requirements for novel sensors required to improve engine

control and health monitoring capability. Their paper does not directly address distributed

control systems but does present a list of future sensor needs and their specifications. Novel

sensors will operate at bandwidths many orders of magnitude higher than present day

systems. The need for higher-bandwidths and more localised control will inevitably require

some form of distributed architecture for implementation. Distributed control systems

must be designed with architectures that are sympathetic to future engine technology

and expansion.

A later report from the DECWG (Culley & Behbahani, 2008) presents an overview

of the communications technologies required to implement DCSs. The authors discuss

the wider implications of the communications technology chosen - the effect on weight,

acquisition cost and lifecycle cost are highlighted. Without making direct recommendation,

many design considerations are presented. The authors attempt to quantify the amount

of communicated data necessary to implement distributed control on a typical turbofan

engine. Their estimates seem improbably low and account only for the most basic of system

functions, yet such estimates hold indicative value. The paper references a comprehensive

comparison of various communications technologies which many be used in future NASA

aerospace applications. This study (Gwaltney & Briscoe, 2006) was conducted at the

NASA Glenn Research Center and compares many different communications technologies

suitable for Real-Time Distributed Control System (RTDCS) application.

A further overview of distributed control systems for gas turbines (Huang & Xu, 2003)

entitled, ‘‘Distributed control systems for aeroengines: A survey’’ was published in Chinese

and an English translation is currently unavailable.

Thompson et al. (1999b) present the first any only instance of academic literature

considering architectural design of DCS for gas turbine control. The work was undertaken

at the Rolls-Royce University Technology Centre (UTC) in Sheffield and uses a genetic

algorithm to optimise the design of a distributed FADEC system. The authors consider

35

Research Challenges in Distributed System Design Literature Review

Distributed Full Authority Digital Engine Controller (DFADEC) design for a generic

Advanced Short Take-off Vertical Landing (ASTOVL) aircraft such as the F-35 Joint

Strike Fighter (in practice, the principles demonstrated are independent of application).

The authors use the Multi-Objective Genetic Algorithm (MOGA) to locate smart units

(nominally sensors and actuators) across the engine platform. The evaluation used is

seemingly comprehensive - Each architecture is assessed for reliability, cost, component

cost, failure rate and maintenance costs. The analysis permits different network topologies

to be considered. Whilst the principles are demonstrated, the system does not consider

many of the commercial nuances of DCS design and is insufficiently comprehensive for

use in an industrial evaluation. Additionally, the research neglects the allocation of

functionality to nodes or communications throughput. More fundamentally, the method

does not constrain node allocation based on the engine environment - it highlights where

improvements in technology may be required to realise the system but falls short of

proposing distributed systems which meet present day technology constraints. It is

noteworthy that despite the work’s heritage, subsequent citations have been made by

researchers interested in the application of MOGAs rather than distributed gas turbine

control. This notion extends to all the academic texts covered in this section - these

papers are rarely cited and very few academic authors have shown an interest in defining

the design of DCS for jet engines or other comparable systems.

3.4 Research Challenges in Distributed System Design

Discussion with industrial engineers and wider academic reading have highlighted five

areas where significant progress is required before DCSs become commercially viable.

The literature reviewed in the following five areas is intended to provide the technical

perspective required of a system architect:

• Architectural Design of Distributed Systems (including fault tolerance)

• Provision and Integration of HiTEDs and other device considerations

• Whole system simulation and evaluation of DCSs

• Performance and cost effectiveness of communications technology

• Predicting, measuring and evaluating the lifecycle value of DCSs

These considerations are not an exclusive set - there are many commercial forces

and precedents which must be overcome, yet they cover areas where academic research

36

Research Challenges in Distributed System Design Literature Review

may contribute to furthering the understanding of DCS technology. Relevant academic

contributions to these research challenges are discussed presently. Architectural design

and system simulation are discussed together.

3.4.1 Architectural Design and Whole System Simulation of Distributed

Control Systems

The multidisciplinary nature of DCS designs makes them very difficult to architect and

simulate in their entirety. The cost savings, performance and risk analysis offered by

modern software packages has become a fundamental part of modern industrial engineering

practice. Software packages are available to support the simulation of many different

technical systems, but not distributed systems in their entirety.

Törngren & Wikander (1996) recognise the design of distributed systems as an optimi-

sation problem and present a method for control system decentralisation derived from

functional analysis. Their method involves determining the input/output (IO) bounds

(effectively functional coupling) of system functions to isolate the elementary functions

which are subsequently allocated to hardware based a number of optimisation criteria.

Whilst Törngren & Wikander’s method is based on a sound systems approach, it relies

upon there being only a small number of permissable hardware architectures and does not

take into account environmental constraints or lifecycle value.

Few authors have addressed design frameworks for RTDCS. Törngren & Torin (1998)

discuss the conceptual design of distributed systems and the need for an enhanced

focus during the design phase. They identify six key phases in the design of RTDCSs

including structuring and allocation of functionality to the underlying hardware platform.

Törngren & Torin discuss how the multidisciplinary nature of DCSs has resulted in a

deficit of tools able to model and simulate the behaviour of real-time distributed systems.

They describe the technical design considerations and the difficulties of formulating

network schedules and modelling internode communication. This discussional paper was

a precursor to developing a toolset (later known as Automatic Control in Distributed

Applications (AIDA)) intended to support modeling and analysis of real time distributed

systems. In a later more detailed paper (Törngren & Redell, 2000) the authors propose

a framework for AIDA, which considers behavioural, structural and temporal models

37

Research Challenges in Distributed System Design Literature Review

of the distributed system. This is perhaps the first published application of a broader

approach to distributed control system design, although the inspiration stems from best

practice in embedded system design rather than systems engineering. Approaches and

tools for modelling the control application, computing and mechanical aspects of DCSs

are discussed and compared. El-Khoury & Törngren (2001) presents some of the basic

Matlab/Simulink R© models used within the AIDA toolset to the analysis of control

system performance in the presence of temporal uncertainty. The completed toolset was

published by Redell et al. (2004).

Many of the design considerations identified by Törngren et al. whilst developing

AIDA reflect genuine concerns of engineers considering distributed systems for aero-engine

control. However, the approaches proposed assume that system architectures are derived

from the underlying control laws and system functionality rather than non-technical

requirements. Whilst such an approach may offer technical superiority, the realities

and constraints of the commercial aerospace market mean architectures derived in this

way are unlikely to produce the necessary financial rewards. In a commercial context,

architectural changes are required to lower lifecycle costs and increase design efficiency in

preference to technical superiority. The authors do not consider value or the ability to

produce and sell the system.

Fault Tolerance in DCSs

An area of distributed control system design that has received wider research interest

is that of fault tolerant nodes. Brasileiro et al. (1996) present a method for replica

synchronisation using a software based comparison of system outputs. Authors have given

particular credence to the development and use of distributed recovery blocks in node

design. Recovery blocks use both hardware and software techniques to permit the failed

element of a dual redundant node to resume proper operation using information from the

fully functioning element (see Kim & Welch, 1989, for detailed explanation). As described

by Randell & Xu (1994), the recovery block concept has evolved over many years and

despite the obvious benefits has failed to gain industrial acceptance. The author believes

that this may be due to the lack of an industrial strength proof of concept rather than

technical inferiority. Hecht et al. (1991) gives an example of a recovery block for a nuclear

reactor application.

38

Research Challenges in Distributed System Design Literature Review

3.4.2 High-Temperature Electronics and Other Device Considerations

The present unavailability of HiTEDs is one of the few hard barriers to DCS implementa-

tion. Conventional military specification semiconductor and passive devices cannot survive

in hostile environment of the compressor, combustion and turbine stages where SATs

may reach 800◦C. Present day engine electronics are located on the engine fancase where

SATs are considerably lower. The importance of HiTEDs is perhaps overemphasised as

the solitary barrier to DCS implementation, yet such systems will not be realised without

electronic devices capable of withstanding the engine environment for the duration of a

twenty-five to thirty year service life. The potential uses for HiTEDs in aerospace applica-

tions are well understood by industry but highlighted in academic literature by Johnston

et al. (2000). The aerospace industry is far from the only sector interested in HiTEDs

- papers such as Johnson et al. (2004) highlight increasing demand in the automotive

industry where engineers are investigating the possibility of embedding electronics within

the engine chassis and exhaust stream. Johnson et al. suggests that like the aerospace

industry, the integration of HiTEDs has been stifled by a conservatism which promotes

reliability and cost reduction over novelty and performance. Additionally, the Oil and

Gas industries have a great interest in furthering HiTED technology for both resource

discovery and drilling devices (see Ohme et al., 2006, for example). Here the business

case is substantially different as drilling components may be considered expendable.

Lande (1999) discusses the potential applications of HiTEDs and their use in the

aerospace, automotive and oil and gas industries. His paper briefly discusses the supply

and demand problem which is keenly felt by industry. Although there are many interested

parties, the volume of sales and likely uptake are insufficient to lure device manufacturers

into self-funded research and the mass production necessary to drive down costs. The

market situation differs little from that seen in high-temperature polymer production

(discussed by Hergenrother (2003)). High temperature polymers which have potential

for plastic casing and mounting items for DCSs are a considerable way from commercial

viability.

According to Hornberger et al. (2004) SiC devices hold the greatest potential for both

high-temperature processing and power electronic devices. Obviously, the work required

to develop these devices has its origins in theoretical physics and electronic engineering

39

Research Challenges in Distributed System Design Literature Review

design. The specifics of these disciplines lie outside the scope of a systems study. Papers

such as Flandre (1995) and Flandre et al. (2001) discuss some of the more technical aspects

of HiTED design and implementation. Alongside research into new devices, manufactures

are keen to improve thermal management within their devices to increase component

operating life and allow a greater number of devices to be co-located. A discussion into

this research area is provided by McGlen et al. (2004). Devices used in engine control must

not only withstand extremely high temperatures, but neutron bombardment. Discussion

regarding ‘latch-up’ (whereby a logic gate’s status becomes changes or fixed following a

neutron collision) and the status of suitably qualified integrated circuits are provided by

Layton et al. (2003) and Page Jr et al. (2005) respectively.

3.4.3 Communications Technologies

Developing the real-time communications technology to the necessary specification and

cost has presented a surprising technical challenge. Absolute determinism is required

for safety-critical real-time systems. Such a standard of communication is not achieved

without computational complexity or financial cost. Communication technologies and

the effect of non-determinism on control system performance have received wide coverage

from academic researchers. Two overview papers on networked control systems (Antsaklis

& Baillieul, 2004; Baillieul & Antsaklis, 2007) dedicate much of their content to discussing

communication constraints and the problems which must be overcome to achieve desirable

control system performance. Many of the papers discussed previously in section 3.2 are

concerned with the development and analysis of communication technologies.

Until the advent of TTP, CAN was favoured for real-time distributed networks.

Torngren (1995) presents a review of CAN technology and the considerations which

influence distributed system design. A later paper from the Rolls-Royce UTC in Sheffield

(Thompson et al., 1999a) considers the use of CAN networks for distributed jet engine

control. Many of the technologies and techniques considered are now obsolete. CAN was

used as the communications bus for ANTLE and HiPECS, but failed to gain favour with

Rolls-Royce.

The Time Triggered Protocol was specifically designed for use in RTDCS and stemmed

from the aforementioned work of Hermann Kopetz. The protocol and associated hardware

40

Positioning the Study Literature Review

is specially designed to overcome the weakness of communication technologies such as CAN

and provide the very highest levels of determinism. The protocol has found academic

favour and various facets of the technology such as clique avoidance, fault handling

and TDMA synchronisation are considered in papers such as Lonn (1999) and Bauer &

Paulitsch (2000). Papers and articles such as Jakovljevic (2006), Jakovljevic et al. (2006)

and Samuel et al. (2007) as well as cases previously mentioned in section 3.2 show that

TTP has been used in a number of aerospace applications. Despite it’s technical merits,

the cost of licences, hardware and lack of implementation experience makes the industry

reticent of the technology.

3.4.4 Lifecycle Modelling

Developing a business case for new and emerging technology is notoriously difficult. The

costs of developing technology are often well understood - indeed, the cost to the system

developer is often the cost of undertaking a process driven development rather than the

cost of a specific technology. However, the most substantial costs and ultimately those

which dictate a system’s viability, are those which arise over the duration of the product

lifecycle. For commercial realisation, the lifecycle value of a system must not only prove

viable, but provide sufficient value above and beyond existing systems, that the risk and

costs of development are commercially palatable.

A small but significant body of work from the systems engineering community has

attempted to realise an academic perspective on product lifecycle analysis. Fricke &

Schulz (2005) takes an academic look at design and a later paper (Browning & Honour,

2008) at measurement of lifecycle value for products with long service lives. Both papers

describe principles well understood by industry. Engel & Browning (2008) relate lifecycle

value to the architecture of a system and discuss methods of measuring lifecycle value

based on a product’s composition. Their work is very high-level and deals principally with

large-scale socio-technical systems rather than products akin to engine control systems.

3.5 Positioning the Study

This section combines the knowledge gained in the background chapters to position the

study and substantiate the research objectives stated in section 1.4. Various constraints

41

Positioning the Study Literature Review

and the concerns of Aero Engine Controls are considered in the process of selecting the

specific areas for the research and the ensuing methods.

3.5.1 Factors influencing the research method

There are five important notions drawn from the background information and literature

which significantly influence the choice of research method. Broadly, they are concerned

with the aims of the research and the gaps in both industrial and academic understanding:

• Aero Engine Controls has demonstrated a distributed control systems with

three nodes. Despite the system’s technical success and effectiveness on engine,

the implementation did not yield a system considered to be commercially viable

nor convincingly realise the touted benefits.

• Aero Engine Controls has stipulated that this research have a broad focus

and approach distributed control system design from a systems perspective. A

declared aim of the research is to produce candidate architectures with the

potential to realise the benefits associated with DCSs.

• To date, academic research into DCSs has focused primarily on the constituent

technologies rather than architectural techniques and design guidance.

• Most academic literature on DCSs for gas turbine engines neglects or sub-

stantially underestimates the commercial constraints that ultimately define a

system’s viability.

• In accordance with the degree regulations, the research should make both an

academic and industrial contribution.

3.5.2 Research Objectives

Further to the stated research aims, the research should provide:

• A platform independent solution to the DCS design problem permitting ap-

plication to a variety of technology platforms. Traits of portability include

scalability, flexibility and technology independence. Accordingly, the solution

should be relevant beyond Aero Engine Controls, large, civil jet engines and

hold applicability once present day electronics and control technology has been

superseded.

42

Positioning the Study Literature Review

• Proactive, not reactive solutions: the research seeks to deliver optimal dis-

tributed architectures by design rather than by disbursal of centralised systems

or analysis of existing or postulated distributed designs.

• A solution which addresses the broadest range of systems engineering concerns

possible - or could be extended to do so with further research or development.

Further to the notions stated above, there are a number of stabile constraints which

limited the variety of tennable approaches:

• DCS designs could not be built or functionally tested. No demonstrator

platform is available and it is inconceivable that control system hardware

would be fabricated to meet the needs of this research.

• Information and raw data relating to the target engines and operation of the

companies involved is commercially sensitive and therefore, difficult to obtain

or publish.

• Given the lack of tools and techniques to analyse distributed architectures,

validation of any DCS would prove extremely challenging or impossible.

• There are a lack of established heuristics and guidance concerned with dis-

tributed architecture. Demonstrator programmes such as ANTLE acquired

their architectures by ‘‘engineering judgement’’ rather than theoretical concern

for optimality.

• This research is the work of an individual researcher and is not part of a

wider collaboration. Whilst Aero Engine Controls employees and supporting

academics provide stimuli, information and analysis, their role in the research is

non-participatory. Funding for practical aspects of the research is constrained.

The qualifications given in section 1.4 define the objectives and boundaries which limit

the choice of hypothesis and method. Several approaches to fulfilling the research aims

were proposed. A mind-map of the alternatives is given below in figure 3.5.1. It was

believed that a research hypothesis could be devised around each alternative. Ultimately,

the use of computational techniques to design optimal distributed systems was chosen.

43

Summary Literature Review

Figure 3.5.1: Potential methods for fulfilling research aims

The use of MOGAs by Thompson et al. (1999b) to generate DCS designs acknowledges

a general consensus that architectural design is a complex optimisation problem. This

research will aim to build on this work and introduce a clearer systems engineering

perspective to DCS design - Thompson et al’s work has several (previously discussed)

limitations which this research will aim to overcome. Most notably, by acknowledging the

wider business case and the present day limitations on devices capable of withstanding

the harsh engine environment. The research will aim to provide a structure for the

architectural optimisation of complex systems which could equally be applied to products

beyond jet engine control systems.

3.6 Summary

Having considered the research challenges, the foundations of this research project and

the commercial needs of Aero Engine Controls, this research endeavours to further the

understanding of the architectural design of DCSs from a systems engineering perspective.

In doing so, it will address the concerns of Aero Engine Controls as a potential DCS

developer.

44

Optimisation Algorithms

Chapter 4

Optimisation Algorithms

4.1 Introduction

The vast number of architectural choices and decisions lend this optimisation problem to

resolution by a multi-objective optimisation algorithm, or more specifically, a Genetic

Algorithm (GA). This chapter considers the nature of the optimisation task and justifies

the use of a GA and the specific algorithm chosen. The chapter considers the design

decisions necessary to select the algorithm and shows how the structure of the algorithm

is used in this research. It is shown that the choice of algorithm is dictated by both the

nature of the problem and the specific GA’s effectiveness.

Part II presents a more holistic perspective on the research method and details the

structure of the optimisation scheme and the techniques by which the Distributed Control

Systems (DCSs) are built and evaluated. In the context of this research, the GA is

considered a tool - the chosen GA is a widely established, well researched and heavily

documented; there is no intention to contribute novelty to the to the academic field of GA

design (beyond increasing the wealth of application examples). Accordingly, the discourse

and evaluations presented herein provide the reader with a high-level summary. Readers

seeking more exhaustive explanations may refer to Haupt (2004) and Deb (2001).

4.2 Selecting an Optimisation Technique

Mathematics provides a multitude of methods for determining solutions to optimisation

problems. The most widely recognised techniques involve finding maxima and minima

45

Selecting an Optimisation Technique Optimisation Algorithms

using calculus and attendant mathematical programming techniques such as gradient

descent. However, calculus based methods rely on bounded, continuous functions to

describe the given search space. Furthermore, they cannot be used to solve multi-objective

problems. System architecture and hence the design of DCS do not lend themselves to

description in these terms and cannot be afforded the resources required by inherently

inefficient greedy algorithms. From hereon-in, we will consider only multi-objective

approaches. The term GA implies a multi-objective generic algorithm. Important facets

of the DCS optimisation problem are listed below:

Non-Linear Complex system architectures are usually non-linear - the components which

constitute the system itself are rarely linear in their structure, operation or physical

arrangement.

Discontinuous System architectures are discrete in form. Architectures are composed of

discrete instances of specific objects and are likely to be evaluated by discrete means.

For example, an electronic system may have two power supplies and accordingly

be recognised as dual redundant (true or false). Here, both the composition of the

system and its evaluation are in discrete terms.

Multi-objective Systems engineers are often concerned with trade-offs influencing many

stakeholders with vastly different viewpoints - common trade-offs include weight,

reliability and cost. Where the tradeoffs between different objectives are not under-

stood, a multi-objective algorithm is necessary. The optimisation must operate in

many dimensions in both the design and objective spaces. An optimisation routine

would be overtly limited if it were able to optimise only a single parameter.

Many Permutations The number of permutations by which hardware elements may

be arranged and mounted on the engine is seemingly infinite.

When considered in combination, the properties listed above engender a further consid-

eration.

Computationally Expensive Whatever the method of optimisation chosen, intuition

suggests that it would impose a considerable computational burden.

46

Selecting an Optimisation Technique Optimisation Algorithms

The characteristics listed above form a basic specification for the optimisation algorithm;

it must be capable of handling non-linear, discontinuous, multi-dimensional problems and

analysing vast numbers of permutations in a computationally efficient manner.

Papers comparing multi-objective optimisation techniques and their applications (Mar-

ler & Arora (2004); Coello (1999); Coello et al. (2006) for example) highlight two classes

of algorithm capable of addressing such problems - Evolutionary Algorithms (EAs) and

Particle Swarm Optimisation (PSO) - computational optimisation algorithms stemming

from the field of artificial intelligence and machine learning. Whilst both algorithms are a

product of the computational, meta-heuristic age, the advent of PSO is comparatively

recent having first been demonstrated in 1995 (Eberhart & Kennedy, 2002).

‘‘Evolutionary Algorithms are important and established tools for engineers and scien-

tists approaching complex optimisation problems’’ (Deb, 2001). EAs and hence Multi-

Objective Evolutionary Algorithms (MOEAs), use computational mechanisms based on

or inspired by natural evolutionary processes such as inheritance, mutation and natural

selection. Their fundamental operation applies these processes to generate solutions,

disregard those considered inferior and use those considered favourable as the basis for

generating increasingly favourable solutions. Four different approaches constitute the

family of EAs (Fleming & Purshouse, 2001):

1. Genetic Algorithms

2. Genetic Programming

3. Evolutionary Programming

4. Evolutionary Strategy

Genetic algorithms (first proposed by Holland (1975)) are perhaps the most widely

known of the approaches and considered in more detail presently. Genetic Programming

and Evolutionary Programming (Walker (2001) and Fogel & Fogel (1996) provide intro-

ductory papers covering the respective subjects) are related techniques designed to evolve

computer programmes to fulfil pre-determined requirements and thus automate the coding

process; neither technique lends itself to this optimisation when applied in their canonical

form. Evolutionary strategy is another related technique more similar to the GA, but

best suited to problems where solutions are represented by real numbers. Fleming &

Purshouse (2001) note that the boundaries between the four approaches have been blurred

47

Selecting an Optimisation Technique Optimisation Algorithms

as scientists and engineers combine the most desirable traits of each algorithm to suit their

particular problem. More recently, practitioners have combined evolutionary algorithms

with game theory when tackling non-corporative optimisation problems. Périaux et al.

(2001) gives one such example.

PSO may be considered as a member of the EAs family although the method’s

comparative novelty and differences in operating principle help maintain the distinction.

As the name suggests, PSO mimics the flight of insects (particles) working as a swarm to

achieve a common goal; the swarm members ‘fly’ within and ‘explore’ the search space.

Rather than using genetic operators, the individuals adjust their, ‘‘flight path’’ according

to their own experience and that bought to bear by other swarm members (Eberhart &

Shi, 1998). Like the GA, PSO is an iterative, meta-heuristic method capable of working

within n-dimensional decision spaces. In PSO, the ‘velocity’ of each particle is adjusted

by changing its ‘weight inertia’. This parameter determines how far a swarm member

can ‘fly’ around the search space and thus, how far the swarm member can deviate from

a given position. The particle velocities of the present generation are influenced by the

experiences of the previous generations. This mechanism provides a means of controlling

the balance between further exploration of local optima and permitting particles to explore

the global space.

Choosing between the two methods is challenging. Various authors (Eberhart &

Shi (1998); Hassan et al. (2005)) have published papers comparing the success of the

two approaches on widely established test problems. Whilst such work provides useful

guidance, both authors acknowledge that the disparities in performance are dependent on

the nature of the problem in hand. Both papers promote PSO but do not dismiss GAs,

nor argue that PSO is ubiquitously superior. Poli (2008) provides a clear and concise

categorisation of over 700 papers citing the application of PSO to real world problems -

the review gives useful context, yet the applications identified are broadly similar to those

practiced on GAs (Gen & Cheng (1997); Fleming & Purshouse (2001)). A review of GAs

and PSO performance across a breadth of applications would prove a consuming task

and is beyond the scope of this research. By considering a subset of papers comparing

the application of both approaches (Panda & Padhy (2008); Lee et al. (2004); Ou & Lin

(2006); Gao et al. (n.d.)) and those papers referenced above, the author concludes the

following:

48

Selecting an Optimisation Technique Optimisation Algorithms

• Both GAs and PSO have proven effective when applied to test problems

and real world applications. Both are capable of repeatedly finding optimal

solutions (where optimal solutions are known) to complex, non-linear problems.

• Both algorithms boast a similar breadth of applications

• Both algorithms operate effectively on n-dimensional search spaces

• Applications of GAs are more numerous than for PSO but this is likely due to

heritage

• PSO algorithms are generally less complex than for GAs (especially for the

more sophisticated GAs)

• GAs are more computationally expensive than PSO (contradicted by Panda

& Padhy (2008))

• For the single objective case, PSO often returns a greater breadth of candidate

solutions and does not converge to a single solution. GAs are more likely to

locate an optimal solution and guide the entire population to converge towards

it

• GAs are equally or more effective when applied to problems that cannot be

described using real numbers.

• The conceptual complexity of the algorithms is broadly similar although the

GAs are more familiar to both industrial and academic audiences.

• The suitability of each algorithm is very dependant on the nature of the

problem. It may not be known which is more effective until both have been

trailled.

In essence, there is very little to chose between the two approaches and consequentially

the selection is influenced by factors beyond technical merit alone. Given that the optimi-

sation technique is not itself a matter of this research, comparing multiple optimisation

approaches is not a concern and a single technique must be chosen - The strengths of

the GA, the number of variants available, the breadth of academic literature covering

both theory, application and test problems, make the GA the chosen, if not undisputed

optimisation solution for this task. Although not used within Aero Engine Controls, the

identity of the GA is familiar to industrial practitioners and the fundamental concepts

easy to convey to an industrial audience. Figure 4.2.1 shows the various options and

decisions taken during method selection.

49

General Form of the Genetic Algorithm Optimisation Algorithms

Figure 4.2.1: Options and decisions taken whilst selecting an appropriate multi-objective
optimisation method

It is noteworthy that the choice of algorithm was made before the implications of the

computational demands were fully understood. Whilst there is no compelling evidence

that PSO would have provided better solutions or that the original decision was misguided,

hindsight suggests that the generally reported reduced computational demand of PSO

may have granted the algorithm favour. A further or improved implementation using

PSO is therefore a matter for future research. Several authors including Settles & Soule

(2005) and Esmin et al. (2006) have proposed and demonstrated hybrid algorithms that

combine the swarm behaviour of PSO with the evolutionary concepts of GAs. This

hybrid approach seems well suited to this optimisation problem, as the possible number

of permutation is vast, but the number of good quality solutions likely to be small. It is

conceivable that a PSO algorithm could narrow the search space and identify salutary

regions before using the elitist GA to refine a smaller set of solutions.

4.3 General Form of the Genetic Algorithm

The diagram below shows a functional model of the GA as used in this research. The

‘decode’, ‘construct’ and ‘evaluate’ blocks will be referred to in the method (chapter 5). In

essence, the method chapter and subsequent chapters discuss how these basic functions

have been implemented to realise the overarching method.

The decode function translates the chromosome from a series of integer values into a

blueprint for a DCS architecture. The construct function uses that blueprint to build a

metaphysical model of the system. The evaluate function analyses that model from three

perspectives: for architectural quality, lifecycle value and the quality of investment. In

essence, each evaluation function provides a view of the architecture frameworks discussed

50

General Form of the Genetic Algorithm Optimisation Algorithms

Figure 4.3.1: High Level block diagram of the GA as used in this research

in the next chapter. The genetic operators use the results from the evaluation functions

to rank the solutions and produce the next population of chromosomes. The process is

iterated until an optimality criterion is met, or a predetermined number of iterations has

passed.

4.3.1 Selecting the appropriate GA

Following a high-level literature survey based on (Deb, 2001; Haupt, 2004), four candidate

GAs were selected: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto

Evolutionary Algorithm (SPEA2) and Multi-Objective Genetic Algorithm (MOGA). Each

is eminently suited to this task yet differentiated by characteristic strengths and weaknesses.

This section, discusses those characteristics and justifies the Strength Pareto Evolutionary

Algorithm (SPEA2)’s application to this task.

The nature of the optimisation problem itself excludes many other available GAs; the

algorithm must be capable of handling multi-objective problems, the problem may only be

represented by discrete values and the number of possible permutations makes a random

search untenable. It is preferable to use an elitist evolutionary algorithm to ensure that

the best solutions are never lost and decrease the time to convergence. The effects of

elitism both help and hinder the optimisation process. The preservation of elite solutions

means that the best solution is never lost and that future offspring are based entirely on

better solutions. Maintaining the evolutionary advantage means the algorithm should

converge faster. The downside is the potential for solution-space niching and a higher

probability of convergence to a non-optimal solution. A further advantage of an elitist

algorithm is the ability to isolate a small subset of solutions rather than provide a large

pareto optimal front. Choosing an elitist algorithm meant that MOGA was no longer a

candidate. Figure 4.3.2 shows the decisions taken in choosing the appropriate GA.

51

Implementation Optimisation Algorithms

Figure 4.3.2: Process of choosing the appropriate GA

NSGA-II is perhaps the most documented of the approaches and various studies have

shown the algorithm to outperform the other candidates on many different test problems.

The number of successful application examples and the algorithm’s low computational

overhead made NSGA-II the preliminary choice for this work. Only through testing and

discussion with other researchers, were the algorithm’s weakness in multidimensional

objective spaces realised. NSGA-II performs exceptionally well on 2-dimensional problems

- optimal solutions are obtained quickly and almost uniformly spaced across the pareto

optimal front. SPEA2 found optimal solutions but was slower to execute and more

prone to clustering. However, NSGA-II performed poorly on 3-dimensional problems

with multiple decision variables - although optimal solutions were found, the diversity

amongst solutions was very poor. Despite the speed deficit, SPEA2 provided both optimal

and diverse solutions when tested on 3-dimensional objective spaces. Therefore, SPEA2

became the favoured algorithm.

The SPEA2 GA is an improved implementation of the original SPEA algorithm which

better selects and retains diverse solutions. The original SPEA algorithm operates in a

similar manner to MOGA.

4.4 Implementation

The operation of the SPEA2 is presented by Zitzler et al. (2001) and not covered in depth

here. In short, the algorithm maintains two populations: an elite, ‘Archive’ (A) population

52

Implementation Optimisation Algorithms

and a current population (P) of new solutions created by the genetic operators. The initial

set of chromosomes is generated randomly and constitute random set of DCS architectures.

The fitness of a solution is determined by the number of solutions it dominates (in the

combined population R = A∪P and density function based on the k-th nearest neighbour

algorithm. The density function aims to avoid objective space niching.

The algorithm has been coded specifically for this project and realised as three classes:

a GA class, a solution class and a ‘‘GA association’’ class. The GA class contains functions

for non-dominated sorting, selection, crossover, density calculation and fitness assignment.

The GA class could be used to apply the SPEA2 algorithm to any problem without

modification. The solution class contains the chromosome for each solution and the

functions (or function calls to) construct, decode and evaluate the solutions. The solution

class is almost entirely application specific and holds the relational matrices used to

compose and analyse the systems (see section 5.5). An instantiation of the solution object

exists for every solution in both the current and archive population. The GA association

class permits the GA and solution to interact. The class instantiates containers for the

objective space values and provides functions for ranking solutions. The scheme is shown

below:

Figure 4.4.1: Object-oriented implementation of the SPEA2 algorithm

The entire algorithm is coded in object-oriented matlab. The Visualise() operation

53

Implementation Optimisation Algorithms

of the solution class prepares the solution for viewing using the visualisation tool (section

5.13).

The GA uses multi-point, random permutation crossover to produce two offspring

from any given number of crossover points. This technique permits small portions of

chromosomes to be interchanged and brings about subtle mutations in long chromosomes.

The chromosomes and construction process have been designed to avoid the generation of

infeasible solutions and so additional functionality for constraint handling and objective-

space violations are unnecessary.

4.4.1 Testing

It is practically impossible to verify the performance of the SPEA2 code on the DCS

optimisation itself. Therefore, the algorithm was tested a number of standard test

problems proposed by Deb et al. (2002). The problems are devised to test algorithms with

non-linear functions exhibiting high sensitivity to parameter variation. The problems

have multi-dimensional decisions spaces and 3-dimensional objective spaces to facilitate

visualisation of the results. The implementation of the GA used for this optimisation was

tested on two of Deb et al.’s test problems, DTLZ1 and DTLZ2. The test problems are

designed to be scalable in both the decision and objective spaces. The equations given

below are stated for 5 decision space variables and 3 objective space variables.

In each instance, x = [x1, . . . , xk] is a vector of decision variables of length k, where

k is the number of decision variables. The tests used here have 5 decision-space variables

and 3 objective space variables. Each decision variable takes a value 0 to 1. The decision

values are calculated as the recipricol of a 14-bit binary coded integer. The vector xM

is a subset of x containing the final 3 values of x. The SPEA2 algorithm is run for 350

iterations with a 99% crossover probability, 3 randomly generated crossover points and

2% mutation probability. The formula for the two test problems are given below:

54

Implementation Optimisation Algorithms

DTLZ1

f1(x) =
1

2
x1x2(1 + g(xM)) (4.1)

f2(x) =
1

2
x1(1− g(x2)(1 + g(xM)) (4.2)

f3(x) =
1

2
(1− g(x1))(1 + g(xM)) (4.3)

g(xM) = 10

|xM |+ |M |∑
i=1

(xi − 0.5)2 − cos(20π(xi − 0.5))

 (4.4)

DTLZ2

f1(x) = [1 + g(xM)] cos
(x1π

2

)
cos
(x2π

2

)
(4.5)

f2(x) = [1 + g(xM)] cos
(x1π

2

)
sin
(x2π

2

)
(4.6)

f3(x) = [1 + g(xM)] sin
(x1π

2

)
(4.7)

g(xM) =

|M |∑
i=1

(xi − 0.5)2 (4.8)

In both cases, optimal solutions are found where all vales of xM are 0.5. As shown

by the plots below, the algorithm converges to both pareto optimal fronts indicated

by the solid line in figure 4.4.2 and the spherical mesh in figure 4.4.3. The diversity

amongst solutions is comparable with results from the original paper by Zitzler et al.

(2001) although some niching has occurred.

Figure 4.4.2: The SPEA2 algorithm tested on DTLZ1

Figure 4.4.3: The SPEA2 algorithm tested on DTLZ2

55

Conclusion Optimisation Algorithms

Whilst these results do not provide a comprehensive analysis of the algorithm’s per-

formance, they demonstrate its proper function and give confidence that the algorithm

executes as required.

4.5 Conclusion

The preceding discussion has justified the use of a GA and in particular, the SPEA2 variant.

The algorithm itself is more computationally expensive than other similar algorithms but

proven to provide a diverse set of solutions from multi-dimensional decision and objective

spaces. Particle Swarm Optimisation is another technique worthy of consideration for

future implementations. The SPEA2 algorithm has been written and implemented as

three Matlab R© classes. The algorithm has been tested and proven to operate effectively

on canonical test problems with known pareto-optimal fronts.

56

Part II

Method

57

Research Method

Chapter 5

Research Method

5.1 Introduction

This research uses the Strength Pareto Evolutionary Algorithm (SPEA2) to automatically

design and optimise Distributed Control System (DCS) architectures. The previous

chapter detailed the development of the Genetic Algorithm (GA) and demonstrated its

suitability for tackling complex, non-linear, multi-dimensional problems. This chapter

focuses on the processes required to construct the candidate Distributed Control Systems

- it examines the implementation of the the, ‘decode’ and ‘construct’ functions as applied

to this optimisation. The structure of the evaluation functions is presented at the end of

this chapter. The subsequent chapters 6, 7 and 8 describe the three evaluation functions

in greater detail and present results which verify their function.

5.2 Overview of the Method

The optimisation process commences by generating a set of random chromosomes rep-

resenting DCS architectures (see figure 5.2.1). Each solution becomes a member of the

GA’s current population and constitutes a coded string of integer values. Each solution

in the current population is decoded and subsequently ‘built’ to realise a metaphysical

model of a DCS. The model includes nodes, harnesses and electronic hardware. This

metaphysical control system is ‘mounted’ on a metaphysical engine with both physical

and functional architecture. The engine model remains unchanged for the duration of the

optimisation process.

58

The Optimisation Process Research Method

Figure 5.2.1: Synoptic diagram of the optimisation scheme

Once built, each DCS is evaluated using three separate evaluation functions. The

first examines the architectural quality of the control system by considering facets such

as weight, size and the length of harnessing required. The second uses a Monte Carlo

Simulation (MCS) to calculate the lifecycle costs and disruption associated with operating

the DCS over a thirty year service life. Finally, a business evaluation function uses

the measures from the architectural and lifecycle evaluations, to determine the costs of

production and ownership.

Depending on the configuration, each evaluation function produces either a single score

or number of scores that the GA uses to rank the solutions. The GA applies genetic

operators to produce the next generation of solutions and ensures that elite solutions are

maintained in an archive. The optimisation iterates until either optimality criteria are

met or a maximum number of iterations has passed.

5.3 The Optimisation Process

Not all the information required to build the architectures is coded within the chromosome

- the chromosome provides a basic structure from which the remaining constructs are

derived. The ancillary information required to build the complete models is read from a

relational database prior to the optimisation starting.

The chromosome encodes the following architectural decisions:

59

The Optimisation Process Research Method

• Node locations

• Hardware (Common Circuit Blocks (CCBs)) contained in each node

• Tasks preformed by each node

• Data network topology

• Power system topology

The metaphysical model is a complete (w.r.t the scope of this research), tangible model

of a DCS. This research considers a ‘DCS architecture’ to include the following physical

elements and attributes:

• Physical elements

◦ Set of nodes

◦ Physical dimensions and weight of each node

◦ Location of nodes on the engine chassis

◦ Electronic hardware (CCBs) contained within each node

◦ Connectors on each node, their size and weight

◦ Harnesses sizes and routes for connections between engine components and

nodes

◦ Harnesses for data and power networks

• Non-physical elements

◦ Control systems tasks performed by each node

◦ Signals sent between nodes

A formal logical definition of this architecture is given in section 5.4.7. The model may

be viewed using a basic visualisation tool designed for this research (see section 5.13).

The algorithm starts by reading the information stored in the relational database. The

database holds data which defines the structure of the engine, the CCB specifications, a

list of control system tasks and the parameters required to action them.

As the data is read from the database, so the metaphysical model of the engine is

constructed. Details of the database structure and implementation are given in Appendix

A The engine model includes the engine dimensions and environment, in addition to

the locations and size of sensors, actuators and subsystems on the engine chassis. All

elements of the engine model are considered independent of the distributed Electronic

Engine Controller (EEC). The engine and its structure are unaffected by the decisions

of the GA. Once the process of building the engine model and reading the configuration

information is complete, the database connection is closed and the optimisation process

started. The database can hold model data for many different engines, although the

60

The Optimisation Process Research Method

optimiser considers only one engine at a time. The engine environment is recorded in

matrices holding temperature and vibration data. Models relating connector size and

weight, and reliability and temperature are required during construction.

The user must specifies which engine the optimisation is for and which configuration

of the GA is required.

The number of nodes, η, remains constant for the duration of a single optimisation

pass. Fixing the number of nodes is necessary to allow the algorithm to converge quickly

and avoid the complication of dynamically sized chromosomes (section 5.7). The optimal

number of nodes is established by executing the algorithm iteratively with the number

of nodes η increasing from a lower value, ηmin to a upper value, ηmax on every pass

(where ηmin, ηmax ∈ (Z ≥ 1)). The progression in node number may simply increment

from ηmin to ηmax or be a pre-determined vector of node numbers eg. η = [3 7 10]. The

Pareto-optimal set of solutions for each number of nodes Jη is combined to form a set, J .

On completion of all optimisation passes, the combined set is subjected to non-dominated

sorting and ranking to reveal the set of global pareto-optimal solutions, J∗. The results

pertain only to a specific engine. The pseudocode for a complete optimisation is given in

algorithm 5.3.1 and diagrammed in figure 5.3.2. Figure figure 5.3.2 is an expansion of the,

‘‘OPTIMISATION’’ block in figure 5.3.1.

Algorithm 5.3.1: SystemOptimisation(ηmin, ηmax)

J = ∅

for η ← ηmin to ηmaxJη = NodeOptimisationGA(η)

J = J ∪ Jη

J∗ = Front(J)

61

The Optimisation Process Research Method

Figure 5.3.1: Flow diagram
showing the high level initiali-
sation and model building pro-

cess

Figure 5.3.2: The global op-
timal set of DCS solutions is
built by considering a single
number of nodes in each iter-

ation

62

Metaphysical Modelling Approach for the Engine and DCS Research Method

5.4 Metaphysical Modelling Approach for the Engine and DCS

The metaphysical models of the engine and DCSs are based on a set of primitive architec-

ture frameworks. The frameworks were devised for this research and draw inspiration

from (but do not wholly conform to) ISO1471 (IEEE, 2000). The framework defines

the model entities and the relationships between them. The frameworks define a single

‘structural’ view assumed from the viewpoint of the system architect. Whilst no other

views are formerly defined, it could be argued that the three evaluation functions offer

a technical, lifecycle and business view of the framework. Both the engine and DCS

frameworks are static; there are no behaviours or methods associated with the final designs.

All engines and DCS architectures considered during the optimisation process adhere to

the architecture framework.

The architecture of the engine remains unchanged for the duration of the optimisation

process, whereas the architecture of the DCSs is determined by the GA. It will be

shown in section 5.5 how a system of binary relations is used to construct and evaluate

each architecture - this system is based on the structure of the architecture frameworks.

Although only one engine is used in this research, the optimisation process has been

designed to work on many different engines and could easily be extended to work across

product family or range. All engines share the same framework but could be differentiated

by their dimensions and environments.

Set Notation

The entities and relationships in the frameworks are recorded in a series of relational sets

and matrices. In this document the notation for the sets is introduced after the definition

of the framework. The set notation is continued throughout the thesis.

Some examples given in this chapter employ nomenclature and abbreviations highly par-

ticular to aero-engine control systems. Examples include ‘PRSOV POS’ and ‘FMV DRIVE’.

This nomenclature serves to align examples to the target system. Readers unfamiliar with

the meaning of these terms should be aware that they are chosen arbitrarily and do not

influence the method presented. Intuitive abbreviations are used where possible. The

architecture frameworks are presented using Unified Modelling Language (UML)/Systems

Modelling Language (SysML) diagrams. Where textual interpretation of a diagram is

63

Metaphysical Modelling Approach for the Engine and DCS Research Method

given, entities are highlighted in bold, multiplicities stated in [square brackets], relations

underlined and relationships underlined and italicised

5.4.1 Engine Architecture Framework

An engine is considered to be an adynamic system of fixed dimensions with an associated

set of components: sensors, actuators and subsystems (see figure 5.4.1); it is simply

a target platform for a DCS. The sensors, actuators and subsystems are the set of

components required to measure physical parameters and actuate the necessary control

action. In the parlance of this research, the term, ‘subsystem’ implies an engine component

incorporating more than one sensor or actuator. Practical examples of subsystems include

the Fuel Metering Unit (FMU), the solenoid banks and the T20P20 probe.

The engine framework includes dimensional data used to constrain the placement of

nodes and harnesses. Dimensional information includes the length and diameter of the

engine core and fancase. Each component has a height, width and depth and a unique

location on the engine chassis. The location of a component is deemed the point at which

its electrical interfaces is presented to the control system. eg. A speed probe may be

mounted deep within the engine chassis, yet the electrical interface is located on the

engine case. This model is perhaps oversimplified but is considered representative of

the perspective that Aero Engine Controls could expect should the company develop

DCSs commercially. The optimisation does not consider the placement of engine or Full

Authority Digital Engine Controller (FADEC) components beyond the distributed EEC.

Amongst other parameters, the engine environment comprises the temperature and

Figure 5.4.1: UML class diagram of the logical framework for the metaphysical engine

64

Metaphysical Modelling Approach for the Engine and DCS Research Method

vibration experienced during operation and the accessibility of different engine zones to

maintenance staff.

The constraints are those factors which limit the layout and composition of the DCS

on engine. Constraints include areas where control system hardware cannot be placed

and locations through which harnesses may or may not be routed. These constraints are

mostly realised as ‘keepout zones’ which preclude the placement of hardware and harness

routing in certain areas of the engine.

The functionality of the engine control system is represented by the ‘control system’

framework which aggregates the engine framework. It is assumed that the functionality

of the control system belongs to the engine rather than the DCS. i.e. The tasks

required to control the engine are defined independently of the control system hardware

necessary to implement them. From the perspective of the optimiser, it is assumed

that all engine components fulfil the required specification and that electronic interfaces

and the computational resources are available. As a result, it is impossible for the

optimisation process to produce DCS architectures that are incapable of meeting the

functional requirements. The algorithm is concerned with how best to assemble the

constituent DCS hardware rather than the design of the parts themselves.

Set Notation

Only one entity relation in the Engine framework is required during the optimisation

process:

The Engine-Component relation may be read as: [one] Engine incorporates [one to

many] components.

• Each engine e belongs to the set of engines in the product family E. Therefore:

E = { e | e is an engine in the product family considered during optimisation }
eg. E = { Trent 1000,RB282, ... }

• Each component, c belongs to a set of components C. Therefore c ∈ C

C = { c | c is a sensor, actuator or subsystem to which the control is required

to interface }
eg. C = { FMU,LP Speed probe,Oil Quantity Sensor, ... }

• The relational set R(EC) is a set of ordered pairs (e, c) ∈ R(EC) denoting which

engines in the product family incorporate certain components.

65

Metaphysical Modelling Approach for the Engine and DCS Research Method

eg. if the Trent 1000 has an FMU then (Trent 1000,FMU) ∈ R(EC)

• The relation R(EC) has an equivalent matrix REC

• The relation is symmetric and non-reflexive

5.4.2 Control System Framework

The control system framework (figure 5.4.1) aggregates the engine framework. The

framework defines the resources required to control, sustain and monitor the engine

during flight. The control system is considered a platform independent entity at a level

of abstraction above the EEC hardware. That is to say that the control laws are abstract

of the underlying hardware and could be implemented on any platform providing the

appropriate measurement, actuation and computational resources are available. Indeed,

system functionality is usually beyond the influence of Aero Engine Controls when

designing present-day centralised systems. Any given control system can be implemented

on either centralised hardware or any level of distributed hardware. In general, control laws

for different engines are broadly transferable; the control system hardware is considered

specific to a particular engine. A UML diagram for the control system framework is given

in figure 5.4.2.

Figure 5.4.2: UML diagram of the control system framework

The control system framework comprises many non-tactile elements: signals, tasks

and the input and output parameters on which those tasks depend. It is assumed that

the functional behaviour of the control system is predetermined and not influenced by

the specific hardware platform on which it is deployed. With reference to figure 5.4.2 the

entities in the framework adhere to the following definitions.

Signals Unconditioned inference of a measurable engine parameters. Usually electric

quantities (voltage/current) representing transducer measurements or actuator stim-

uli associated with engine components (sensors, actuators or subsystems). Signals

66

Metaphysical Modelling Approach for the Engine and DCS Research Method

may be analogue, digital, coded, baseband or modulated. The control system designer

has visibility of the component interfaces as shown in figure 5.4.1. Each engine

component may provide or require one or more signals.

Interface Conditions, calibrates and converts signals to yield usable parameters. Con-

ventionally, interfaces are implemented as a combination of analogue electronics and

signal processing software and realised as Common Circuit Blocks. Interfaces are the

only elements of the control system model with a physical analogue.

Parameter References, values or commands representing states of the system - usually

as tangible values in standard units commodities. eg. spool speed measured in rads−1

Task An action or activity performed by the control system in order to start, sustain,

monitor and shutdown the engine. Tasks usually perform arithmetic or logical

operations on input parameters in order to calculate and perform control system

actions. Tasks include both operating system and application system level procedures

and may be arranged hierarchically.

Computational Resource A computing platform capable of performing the calculations

and logic required to process input signals and execute the engine control algorithm.

Typically, this is a microprocessor but could be a power PC or external computer.

Set Notation

Four entity relations in the Control System Framework are used during the optimisation

process:

1. The Component-Signal relation may be read as: [one] component provides [one to

many] signals.

• Each component is a member of the set C (defined previously).

• Each signal s belongs to a set of signals S. Therefore s ∈ S

S = { s | s is an electronic quantiy representing a physical quantity measured

on the engine }
eg. S = { T20 RAW,N1-T1 RAW,AFDX RAW, ... }

• The relational set R(CS) is a set of ordered pairs (c, s) ∈ R(CS) denoting which

components in the product family supply certain components.

67

Metaphysical Modelling Approach for the Engine and DCS Research Method

eg. if the FMU (component) provides a raw measurement of the Fuel

Metering Valve (FMV) position then (FMU,FMV POS RAW) ∈ R(EC)

• The relation R(CS) has an equivalent matrix RCS

• The relation is symmetric and non-reflexive

2. The Signal-Interface relation may be read as: [one] signal is connected to [one]

interface.

• Each signal is a member of the set S as defined above

• Each interface i belongs to a set of interfaces I. Therefore i ∈ I

I = { i | i referes to a common circuit block for conditioning a given signal type }
eg. I =

{ LVDT INTERFACE, SPEED PROBE INTERFACE,AFDX INTERFACE, ... }
• The relational set R(SI) is a set of ordered pairs (s, i) ∈ R(SI) denoting which

signals [are] connected to which interfaces.

eg. if the FMV position signal is measured by a LVDT then

(FMV RAW,LVDT INTERFACE) ∈ R(SI)

• The relation R(SI) has an equivalent matrix RSI

• The relation is symmetric and non-reflexive

3. The Interface-Parameter relation may be read as: [one] interface provides [one to

many] parameters.

• Each interface is a member of the set I as defined above

• Each parameter p belongs to a set of interfaces P . Therefore p ∈ P

P = { p | p is an input out output value used by a control system task }
eg. P = { P30,T25,N1-T, ... }

• The relational set R(IP) is a set of ordered pairs (i, p) ∈ R(IP) denoting which

interfaces provide certain parameters used by the control system.

eg. if a given instance of the Linear Variable Displacement Transducer

(LVDT) interface provides the parameter PRSOV POS then

((instance of) LVDT INTERFACE,PRSOV POS) ∈ R(IP)

• The relation R(IP) has an equivalent matrix RIP

• The relation is symmetric and non-reflexive

4. The Task-Parameter relation may be read as: [one] task requires [one to many]

parameters.

68

Metaphysical Modelling Approach for the Engine and DCS Research Method

• Each task q belongs to a set of tasks Q. Therefore q ∈ Q

Q = { q | q is a task (function) performed by the control system }
eg. Q =

{ THRUST CONTROL, START ENGINE,MINOR LOOP FUEL CONTROL, ... }
• Each parameter is a member of the set P as defined above

• The relational set R(QP) is a set of ordered pairs (q, p) ∈ R(QP) denoting which

tasks require certain parameters in order to perform their function.

eg. if a task START ENGINE requires the parameter N1T-1 then

(START ENGINE,N1T-1) ∈ R(QP)

• The relation R(QP) has an equivalent matrix RQP

• The relation is symmetric and non-reflexive

Having defined the framework for the engine and control system, the following section

describes how the metaphysical model of the engine is realised in software.

5.4.3 Metaphysical Engine Model

The metaphysical engine model is based upon the framework presented in section 5.4.1

and implemented as the instantiation of a software class. The class is constructed using

information from the relational database prior to the optimisation starting. Once created,

the model remains static for the duration of the process.

Attributes of the engine class (figure 5.4.3) include the dimensions of the engine such

as the fancase length and diameter and the environment profiles. Sub-classes of the engine

class include the sensors, actuators and subsystems. Whilst the engine framework contains

no methods, the class relies on some ancillary methods to calculate temperature profiles

and convert between coordinate systems.

The engine structure and DCS layout are performed using a 3-dimensional (3D)

representation of the engine. The engine has a length le, a fancase circumference θf and a

core circumference θc. The position of components on the engine is denoted in 3D space

using cylindrical-polar co-ordinates (r, φ, z). The z-axis runs through the centre of the

engine’s core and the angle φ is assumed to be zero at the base of the engine and increase

in an anti-clockwise direction if looking at the engine from the front. The scheme is

shown in figure 5.4.4. The parameter r may take one of only two distinct values: the

diameter of the engine’s core θc, or the diameter of the fancase θf - accordingly, all engine

69

Metaphysical Modelling Approach for the Engine and DCS Research Method

Figure 5.4.3: Engine Class

mounted items appear to be on the upper surface of the engine chassis. The output from

the visualisation tool is shown in figure 5.4.5

The following sections detail how each of the class’s attributes are realised in software.

Engine Structure and Dimensions

Designing effective DCS architectures relies heavily on knowledge of the engine structure

and dimensions. An elementary engine structure has been assumed for the purposes of

Figure 5.4.4: The 3-dimensional engine
Figure 5.4.5: Engine viewed using the visualisation tool

70

Metaphysical Modelling Approach for the Engine and DCS Research Method

this work. Each engine has a fancase and core composed of the Intermediate Pressure

Compressor (IPC), High Pressure Compressor (HPC), Combustion Chamber (CC) and

the turbine stages. The turbine stages are combined to form a single entity. This structure

is representative of a large, civil, triple-spool jet engine. The engine core is of uniform

diameter and supporting struts and chassis mountings are neglected. The engine structure,

dimensions, notation and units are shown in figure 5.4.6 and figure 5.4.7. Dimensions

marked with an * are derived from other measurements.

Figure 5.4.6: Elementary engine model showing engine stages, dimensions and nomencla-
ture.

71

Metaphysical Modelling Approach for the Engine and DCS Research Method

Figure 5.4.7: Engine model from the rear of the engine

The most basic derived dimensions are the fancase diameter, θf which is twice the

fancase radius, 2rf and similarly the core diameter, θc is equal to 2rc. Two parameters not

shown on the diagram are the core and fancase circumferences, cc = 2πrc and cf = 2πrf

respectively, The core length, lc is the summation of the core engine stage lengths: the

IPC, lIPC , the HPC lHPC , the combustion chamber lCC and the turbine length, lT . The

engine length, le is given by lf + lc −Ψ. The fancase overlap, Ψ is the distance in metres

by which the fancase overlaps the engine core with respect the rear of the fancase.

The radial shaft transmits power from the accessory gearbox to the intermediate

gearbox through the bifurcation duct. The shaft is of little interest to DCS designers yet

its length provides an important dimension for harness routing (see section 5.11). The

length of the radial shaft, lrs is the hypotenuse of the right angled triangle formed from

the fancase radius, the IPC length and the HPC length. Assuming that the intermediate

gearbox is located half way along the bottom case of the HPC, the length of the shaft

may be calculated using pythagoras’s theorem as in equation 5.1:

lrs =

√(
rf − rc

2

)2

+

(
lIPC +

lHPC
2
−Ψ

)2

(5.1)

The structure of the engine may be modified to represent an open rotor engine by

assigning the fancase diameter equal to the core diameter (θf := θc) and setting the

fancase overlap, Ψ, to zero.

72

Metaphysical Modelling Approach for the Engine and DCS Research Method

Chassis Stations

The engine chassis is divided into a grid which covers the fancase and core. The intersec-

tions of the grid’s horizontal and vertical lines are known as chassis stations and represent

a set of discrete locations on which control system components and harness vertices may

be placed. The chassis stations are illustrated in figure 5.4.8 and the stations of the real

model in figure 5.4.9. A chassis station must either be vacant or uniquely occupied - in

most cases, nodes cannot be placed upon existing components and harnesses cannot be

routed over nodes or components. Chassis stations are used to form a graph over which

the wiring harnesses are routed (section 5.11). The resolution of the grid may be changed

to improve placement and routing accuracy at the expense of computational time and

architectural permutations. Component locations are mapped from cylindrical coordinates

to chassis stations using transform functions associated with the engine class.

The grid resolution is set by the grid square height ∆φ and the grid square width

∆z. The resolution of the grid is easily changed in software but remains constant for the

duration of an optimisation. Therefore, the number of chassis stations available on a

given engine is found by equation 5.2:

le
∆z

× 2π

∆φ

≡ x× y (5.2)

The number of chassis stations in the x-axis and y-axis are denoted by the parameters

x and y respectively. Typically, ∆z and ∆φ may be set to a value of between 0.05m and

0.1m meaning that a 4m long engine with a 0.5m core radius would have between 1200

and 5040 chassis stations. The difference in diameter between the fancase and core means

Figure 5.4.8: The 3-dimensional engine chassis stations
Figure 5.4.9: Chassis stations viewed using the visualisa-

tion tool. The engine has 5040 chassis stations

73

Metaphysical Modelling Approach for the Engine and DCS Research Method

that chassis stations on the fancase cover a larger area than those on the core. Stations

are numbered sequentially from the top left to bottom right - numbers are stored in a

x× y matrix L whose elements L(a,b) are the integer station numbers:

L =



1 x

x+ 1 2x

2x+ 1 3x
...

...

(y − 1)x+ 1 yx


(5.3)

Engine components, nodes and harness vertices are assigned to chassis stations. Once

the optimisation starts, cylindrical coordinates are neglected and all positional references

are made using chassis station numbers alone. Parameters such as temperature and

accessibility are recorded in corresponding matrices where the elements hold values

relating to a particular chassis station.

The fancase matrix F has the same dimensions as L and denotes which stations are

on the fancase and which are on the engine core. The matrix is essentially a look-up table

and used in the translation between cylindrical coordinates and chassis stations.

F =


1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 where F (a,b) =

 1 if F (a,b) is on the fancase

0 otherwise
(5.4)

The rows of F are always identical - the full matrix is retained to promote simplicity

in other parts of the algorithm.

Engine Components

Every engine component is located at a unique chassis station. The component matrix C

relates the placement of components to chassis stations. Each component is represented

by a unique identifer taken from the relational database (section A). C has the same

dimensions as L:

74

Metaphysical Modelling Approach for the Engine and DCS Research Method

C(a,b) =

 c where c is the unique component ID

0 if the respective chassis station is unoccupied
(5.5)

eg. For a set of components C = {1 2 3 4 5 }:

C =


0 0 0 3

0 1 0 0

4 0 5 0

0 0 2 0

 (5.6)

Environment Profiles

Three environmental parameters are considered: temperature, vibration and accessibility.

All three profiles are used to constrain the placement of control system hardware and

harnesses. Furthermore, keepout zones indicate areas of the engine chassis that may not

be populated by DCS components. Uses for keepout zones are plentiful but the notion

admits miscellaneous environmental considerations including the avoidance of pipework

and areas of the engine deemed at risk from engine debris.

The environment is considered to be uniform across the area covered by a particular

chassis station. Consequentially, increasing the number of chassis stations (by changing

values for ∆z and ∆φ) allows for greater resolution in profile data. Each environmental

parameter has an associated matrix of dimensions x × y whose elements represent the

value of that parameter at the relevant chassis station.

Temperature

Temperature data may be entered on a station-by-station basis or derived from basic

mathematical functions. Each element of the temperature matrix Λa,b indicates the

temperature at the respective chassis station L(a,b) in degrees celsius. eg. for an engine

with 16 chassis stations:

Λ =


78.6 210.5 430.8 740.0

90.2 205.4 404.6 734.7

87.6 200.7 420.4 699.4

88.3 198.2 430.1 755.8

 �◦ C (5.7)

75

Metaphysical Modelling Approach for the Engine and DCS Research Method

There are many different measures of engine temperature - in this research, temperature

refers to Surrounding Air Temperatures (SATs) as this is most important to hardware

designers. Other measures of temperature include surface metal temperature and gas

stream temperature. The temperatures matrix indicates the maximum SATs at the

respective chassis station.

Derived Temperature Profiles

Temperature data for real engines is both commercially sensitive and difficult to accumulate.

Rather than requiring high resolution temperature maps for this work, temperatures are

derived from mathematical functions aligned with representative values. These functions

provide a scalar value of engine temperature at a given cylindrical coordinate. The

scalar values are mapped to engine stations and entered into the temperature matrix.

Temperature profiles are derived from either a straight line (equation 5.8) or exponential

function (equation 5.9):

λ(z, φ) = mλz + λ(z = 0) (5.8) λ(z, φ) = λ(z = 0)eαλz (5.9)

Where λ is the temperature at a given location, z is the position along the length of

the engine, mλ is the temperature gradient, λ(z = 0) is the temperature at the front of

the engine and αλ determines the rate of exponential growth. In practice, it is easier to

specify a fancase temperature λ(z = 0) and a turbine temperature λmax and calculate

a linear or exponential change from one to the other. This approach assumes that the

maximum temperature occurs at the turbine - whilst this is not true of the gas-stream,

the ducting of hot air around the engine and heat-soak make this a realistic model for

component mounting.

Variations in circumferential temperature are less characterisable and highly dependent

on the placement of pipework and ancillary systems. Accordingly, the temperature is

assumed to be constant for all values of φ. SATs vary considerably from engine to engine

but typical fancase and turbine case temperatures are 85◦C and 600◦C respectively. The

fancase is generally uniform and every chassis station on the fancase may be set to a

single temperature eg. Λ(F = 1) = 85.

76

Metaphysical Modelling Approach for the Engine and DCS Research Method

Temperature profiles for real engines are obviously more complex. The profiles above

provide sufficient accuracy to demonstrate the principle.

Vibration

Similarly, the elements of the vibration matrix, V indicate the vibration level at a

particular chassis station. Obviously, a full spectral analysis would require that a vibration

profile for a node be calculated and compared against design limits - this is well beyond

the scope of this research although it is not implausible to add such functionality to

the evaluation functions. The vibration at a given engine station indicates the severity

of vibration on a scale from 0 to 1 with 1 being the most hostile. The fancase is the

most hostile environment with the compressor stages being the most benign. As for

temperature, vibration profiles may be derived from basic functions.

V (a,b) =
{

a value representing the vibration environment at L(a,b) in the range (0,1)

(5.10)

Accessibility

Elements of the accessibility matrix, A state the length of time in hours that a maintenance

technician would take to access the specific chassis station. Generally, the fancase cowl

makes accessing components at the front of the engine relatively quick. Components

towards the rear of the engine are less easily accessed and require time to cool before they

become safe to work on. As before, profiles may be derived from basic functions in place

of real world data.

A(a,b) =
{

the time in hours taken to access the chassis station L(a,b) (5.11)

Keepout Zones

Keepout zones are chassis stations where nodes cannot be placed and harnesses cannot be

routed. Keepout zones may be used to maintain clearances between control system nodes

and existing engine subsystems, pipes or components. Keepout zones may also be used to

77

Metaphysical Modelling Approach for the Engine and DCS Research Method

isolate areas prone to cross engine debris. Like the temperature and vibration matrix,

each element of the keepout matrix relates to the respective chassis station given in L.

The keepout matrix K has the same dimensions as L - elements of the matrix take

the value one if the station is a keepout zone or zero otherwise:

K(a,b) =

 0 if L(a,b) is a keepout zone

1 otherwise
(5.12)

5.4.4 Finding Harness Lengths and Paths

Further facets of the engine class are the attributes and operations necessary to determine

distances between engine stations and route harnesses. The functions used to calculate

harness lengths, configure network topologies and route harnesses are based on techniques

from graph theory: namely, the Floyd-Warshall algorithm (Floyd, 1962) and the Farthest

Neighbour Nearest Insertion (FANI) routing algorithm (Ravikumar et al., 1998). Within

the model, the engine chassis is cloaked in a cylindrical graph where the vertices are the

chassis stations and the edge quantities the distances between them. Chassis stations

(and hence vertices) are considered to be connected if they are vertically, horizontally or

diagonally adjacent. There is no connection between the fancase and core other than via

two edges protected by the bifurcation duct.

The graph wraps around the entire engine chassis and may be thought of as being,

‘3-dimensional’. All edge dimensions are positive. Figure 5.4.10 shows how the adjacent

chassis stations are connected to form a graph for distance finding and harness routing:

Figure 5.4.10: Pictorial representation of the engine graph
used for routing and distance finding. The black circles
represent the vertices (chassis stations) and the lines the

edges between adjacent vertices.

Figure 5.4.11: The routing graph as displayed by the
visualisation tool

78

Metaphysical Modelling Approach for the Engine and DCS Research Method

Vertex and edge dimensions define the graph G:

G = {{L}, {W}} (5.13)

Where l ∈ L is a set of chassis stations of size xy and w ∈ W is a set of ordered

pairs denoting connectivity between vertices (w ⊂ L). In this application, vertices are

synonymous with chassis stations.

The edge lengths are the distances between chassis stations. If two chassis stations are

not connected, the edge dimension is infinity. It is important that the edge dimensions are

known and accurate as this information is used to ascertain the length and consequentially,

the weight of each harness. Figure 5.4.12 shows a portion of the graph from for a typical

engine. The full graph for an engine has |L| ≡ xy vertices (5040) in this implementation).

For the graph in figure 5.4.12 chassis station 1 is connected to chassis stations 2, 6

and 7. Therefore, the pairs {1, 2}, {1, 6} and {1, 7} are all members of the set W . The

relation is symmetric.

The edge dimensions are a function of the the resolution parameters, ∆z and ∆φ.

Consequentially, harnesses are routed to the same resolution as nodes are and engine

locations are placed. This is advantageous as a hareness may be routed between component

and node locations using station numbers alone. However, harness routing in real world

applications is likely to require a far higher degree of accuracy than is applied here.

The horizontal distance between connected chassis stations is always ∆z (except at

the boundary between the fancase and core). The distance between vertically adjacent

Figure 5.4.12: Section of the harness routing graph

79

Metaphysical Modelling Approach for the Engine and DCS Research Method

engine stations is dictated by the parameter ∆φ. Therefore, the vertical distance between

vertices is dependent on the radius over which the graph is formed and changes depending

on whether that portion of the graph relates to the core or the fancase. This approach

maintains simplicity and avoids the need for separate fancase and core routing graphs.

As all harnesses are routed on the upper surface of the chassis, the distance between

vertically adjacent vertices, κ is the arc length of the segment formed by the angle ∆φ as

shown in figure 5.4.13. Therefore, the distance between vertically adjacent nodes on the

fancase, κf = ∆φrf and vertically adjacent nodes on the core is κc = ∆φrc.

These dimensions are used for harness routing and consequentially, determining total

harness length.

These edge lengths are used throughout the graph other than at the fancase core

boundary. Wiring harnesses can only be routed from the engine to the fancase at the

bottom and top of the engine where they are supported by a frame enclosed in the

bifurcation duct. This envelopes the harnesses between the the accessory gearbox on the

fancase to the intermediate gearbox on the core. The intermediate gearbox is located on

the base of the engine core at approximately the mid-point of HPC chassis. All harnesses

routed between the fancase and the engine core must follow these paths. Engine stations

at the fancase-core interface are not connected (ie. their length is infinity) except at the

vertices corresponding to the locations at either end of the bifurcation duct. Here, the

edge length is lrs (see figure 5.4.12).

The dimensions described above are stored in an adjacency-distance matrix G. G is

a |L| × |L| matrix whose elements Ga,b are the length of the shortest distance between

Figure 5.4.13: Graph dimensions across the engine case

80

Metaphysical Modelling Approach for the Engine and DCS Research Method

vertex a and b. If no path exists, G(a,b) is infinity. The distance matrix for the routing

graph of figure 5.4.12 is given in equation 5.14.

G =



0 ∆z ∞ ∞ κf α ∞ ∞

∆z 0 ∞ ∞ α κf ∞ ∞

∞ ∞ 0 ∆z ∞ ∞ κc α

∞ ∞ ∆z 0 ∞ ∞ α κc

κf α ∞ ∞ 0 ∆z ∞ ∞

α κf ∞ ∞ ∆z 0 ∞ lrs

∞ ∞ κc α ∞ ∞ 0 ∆z

∞ ∞ α κc ∞ lrs ∆z 0



(5.14)

G is calculated for a specific engine prior to optimisation and used for all subsequent

harness routing and distance finding functions. The matrix is symmetrical about the

leading diagonal which reflects the symmetry of the relationships represented. Mathemat-

ically, there is no need to replicate the information in the lower diagonal of the matrix.

However, the Floyd-Warshall algorithm is most easily implemented by exploiting this

symmetry and so the lower half is maintained.

5.4.5 Distances between engine stations (Floyd-Warshall Algorithm)

Harness routes and hence lengths are assumed to take the shortest feasible distances

between source and destination chassis stations. Assuming that the shortest distance

can be found, there is no need to find the path taken. The Floyd-Warshall algorithm

provides a computationally efficient method of calculating the minimum distance between

all nodes in a graph and can be extended to determine the path between vertices. The

algorithm renders only distance information - it does not specify the walk between graph

vertices corresponding to the shortest route.

In this implementation, the Floyd-Warshall algorithm uses the adjacency matrix G to

produce a distance matrix D of dimensions |L| × |L| where each element corresponds to

the shortest distance between each pair of chassis stations.

Once the distance matrix has been populated, it is used as a lookup table to quickly

ascertain the distance between any two chassis stations on the engine. Whist the algorithm

is computationally expensive, it proves a markedly efficient alternative to the process of

81

Metaphysical Modelling Approach for the Engine and DCS Research Method

routing every harness on every iteration of the optimisation. The worst case computational

time for the Floyd-Warshall algorithm is O(|L|3). The pseudocode for the algorithm is

shown in algorithm 5.4.5

Algorithm 5.4.1: FloydWarshall()

D = G

for k ← 1 to |L|

for i← 1 to |L|
for j ← 1 to |L|

D(i, j) = Min(D(i, j),D(i, k) +D(k, j))

N (i, j) = k

The algorithm is implemented as an operation of the engine class.

5.4.6 Control System Meta-physical Model

The control system model is based on the framework presented in section 5.4.2. The model

(presented in full in appendix C) is too vast to describe in this thesis and not necessary to

explaining its structure or principles. This section describes the main precepts and ideas

behind the model using an example subset of functions.

The following paragraphs describe the process of modelling, visualising and verifying

the task-parameter relationships. The process presented is broadly similar to that required

for the component-signal, signal-interface and interface-parameter relationships discussed

later.

Figure 5.4.14 presents an example dataflow diagram showing three control system tasks

and the parameters they require. The tasks and parameters shown are a representative

subset of a much lager functional model. The arrow headed lines represent the flow of

parameters into or out of a particular task. The flows are labelled with the parameter

number and name and may be visualised as a graph. Owing to the difficulties of obtaining

formal descriptions, the functional model used has been created specifically for this research

and is based solely on the author’s understanding.

82

Metaphysical Modelling Approach for the Engine and DCS Research Method

Figure 5.4.14: Data flow diagram showing an example subset of tasks and parameters

This functional representation is realised as a series of sets and matrices. The set of

tasks Q, is a set of functions that the control system must perform in order to control

and sustain the engine during flight. Each task requires a subset of the parameters in

order to perform that task. The list associating parameters with tasks is the relational set

R(QP). Both input and output parameters are treated equally as the direction of data

flow between tasks is irrelevant to the optimisation algorithm.

In the example above, the three tasks require a total of nine parameters. Assuming that

the task numbers correspond to rows and parameter numbers to columns, the relational

matrix RQP for the dataflow diagram in figure 5.4.14 is:

RQP =


1 1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1 1

 (5.15)

These relationships are stored in the relational database. The algorithm reads the

necessary values and populates the sets and matrices during initialisation.

The parameter flow is a closed system - a task may only receive parameters from or

output parameters to another task or hardware interface. Parameters may not originate

from or be returned to a any other entity. The model is verified by defining an adjacency

matrix Aqp for the relation in RQP and using a graph visualisation tool to produce a

83

Metaphysical Modelling Approach for the Engine and DCS Research Method

graphical representation.

Aqp ,

 0 RQP

0 0

 (5.16)

The graph visualisation tool uses the adjacency matrix in equation 5.16 to display the

corresponding graph. The output for 5.16 is shown in figure 5.4.15.

Manual verification shows that the graph in figure 5.4.15 has a structure equivalent

to the dataflow diagram in figure 5.4.14. As previously stated, the direction of dataflow

is unimportant and so an undirected graph is sufficient. This assumption simplifies the

process of obtaining of the adjacency matrix.

The framework for the control system defines other relationships between components

and signals, signals and interfaces and interfaces and parameters. The diagram below is

an extension of the dataflow diagram in figure 5.4.14 and shows the other relationships.

Figure 5.4.16: Logical diagram of the arrangement of components, interfaces and parameters
for the example control system model

Figure 5.4.16 shows the components, the signals they produce, multiple instances of

interfaces (shown as CCBs) and the parameters they provide. The data flow diagram of

figure 5.4.14 is encapsulated in the rectangle with one further task (Task 4) added.

Using the same approach as for the tasks-parameters relationships we can define an

adjacency matrix Asys for the whole control system model:

84

Metaphysical Modelling Approach for the Engine and DCS Research Method

Figure 5.4.15: Graph representation of the task-parameter relationship matrix. The graph
has the same structure as the functional flow diagram of figure 5.4.14. The square vertices

represent parameters and the circular vertices represent tasks.

Asys ,



0 RCS 0 0 0

0 0 RSI 0 0

0 0 0 RIP 0

0 0 0 0 RQP
T

0 0 0 0 0


(5.17)

As before, a graph visualisation tool is used to provide a pictorial representation of the

matrix Asys. The graph shown in figure 5.4.17 is equivalent to the system diagram given

in figure 5.4.16.

85

Metaphysical Modelling Approach for the Engine and DCS Research Method

Figure 5.4.17: Graph representation of the logical diagram in figure 5.4.16. Hollow circles
represent components, triangles signals, diamonds interfaces, squares parameters and shaded

circles tasks.

86

Metaphysical Modelling Approach for the Engine and DCS Research Method

5.4.7 DCS Architecture Framework

The framework shown in figure 5.4.18 considers a DCS as the aggregation of nodes,

signal harnesses, data harness and a power system. The DCS aggregates the engine.

Data harnesses carry parameters between nodes whilst signal harness connect engine

components to nodes. The power system comprises harnesses, a distribution hub and

conditioning circuitry. The structure of the power system is discussed in section 5.12.

Figure 5.4.18: UML diagram of the logical architecture of the physical segment of the
DCS model

A node (figure 5.4.19) is a single physical entity containing processing capability,

circuitry and interfaces for power and data. Each node has two redundant channels

although the redundancy scheme used herein differs substantially from that used in

present day centralised systems. Both channels of the node have separate connectors for

data and power harnesses. Every node contains power conditioning circuitry to provide

the power processing platform and interfaces. A node need not have any connection to

engine components (i.e. it is a dedicated computational platform) but may host electrical

interfaces that permit connection to sensors, actuators and subsystems. A node can

perform any number of system tasks. The interfaces in the node and the tasks it performs

are allocated by the GA. The two UML diagrams represent a single framework - they are

shown separately to aid presentation and should be thought of as concatenated by the

‘Node’ entity.

87

Metaphysical Modelling Approach for the Engine and DCS Research Method

Figure 5.4.19: UML diagram of a node

A single instance of the DCS model is created for every member of the current population

on every iteration of the genetic algorithm. Each DCS has three sets of wiring harnesses: a

set of signal harness, a set of power harnesses and a set of data harnesses. Signal harnesses

connect nodes to engine components whilst data harnesses transfer information between

nodes. The number of cores is specific to the harness and the number of signals which

require routing to a given node - the number of cores is determined from the interface

specifications. Data harnesses carry inter-node communication data and are assumed to

consist of a two wire digital bus. Each harness is a dynamically created instance of the

harness class within the DCS class. The number of harnesses and their composition is

likely to vary considerably between solutions. The source and destination of each harness

depend upon the location of the system nodes. Further details on harness creation and

routing are given in section 5.11.

Set Notation

The optimisation process does not require knowledge of the relationships between any

elements of the DCS framework as all relations are either fixed or derived independently.

However, the optimisation process requires the set of nodes.

• Each task n belongs to a set of nodes N . Therefore n ∈ N

N = { n | (ηmin ≤ n ≤ ηmax) ∈ Z}
i.e. A node is identified by an integer number from 1 to the number of

nodes considered in the optmisation.

88

Metaphysical Modelling Approach for the Engine and DCS Research Method

The entities with relations to the set of nodes are described in (section 5.4.8) below.

5.4.8 The Hybrid Framework: DCS on Engine

An architecture framework for an engine (aggregated with a platform independent control

system) and a Distributed Control System have been defined. It has been shown how the

metaphysical models for the engine and control system are based on these frameworks

and realised in software as sets of parameters and relational matrices.

Much of the structure instituted in these frameworks is not required to define or

construct the architecture of DCSs during optimisation. This arises because either the

entities and relationships remain unchanged for the duration of the optimisation, or the

structure of the framework need not be reflected in the software architecture. Therefore,

we define a hybrid framework containing only the entities and relations required during

the construction and evaluation phase. The hybrid framework is compiled from entities

of the engine, control system and DCS frameworks and represents the structure of a DCS

on an engine. It should be noted that the hybrid framework does not negate the engine,

control system and DCS models. These structures remain present in the software.

Figure 5.4.20: Hybrid model using elements from the Engine, DCS and control system
frameworks

The following section demonstrates how the relationships arising from the hybrid model

are used to construct each of the distributed architectures.

89

Composition and Analysis of the Hybrid Model using Binary Relations Research Method

5.5 Composition and Analysis of the Hybrid Model using Bi-

nary Relations

It has been shown how binary relations between framework entities are recorded in

relational sets and matrices. The ordered pairs infer the structure of the engine and

DCS. Thus far, only relations between connected entities are considered. This section

shows how multiplication of the relational matrices allows the relationships between all

framework entities to be calculated; these new relations are used to construct and analyse

the DCSs during the optimisation and evaluation.

The control system framework (section 5.4.2) states that interfaces provide parameters

and those parameters are required by tasks. Supposing we want to know which tasks are

dependent on which interfaces. This relation shows which tasks the control system will

no longer be able to perform should a given interface fail.

It is possible to find the relationship between any two entities in the hybrid model

using relationship composition. In effect, relationship composition adds a new relationship

to the framework. Supposing we have three entities: A, B and C and want to find the

relationship A→C. from the defined relationships A→B and B→C. The composition of

the relationships is found by multiplication of the two relational matrices.

RAC = RAB ◦RBC ≡ RAC = RAB ×RBC (5.18)

Where ◦ denotes relational composition. If we consider the relationships RAB and

RBC to infer that B is a function of A and C is a function of B, the process of matrix

multiplication performs function composition:

Figure 5.5.1: The new relation RAC created as the composition of RAB and RBC .

90

Composition and Analysis of the Hybrid Model using Binary Relations Research Method

RAC =


a1R

(AB)
b1 a1R

(AB)
b2 a1R

(AB)
b3

a2R
(AB)
b1 a2R

(AB)
b2 a2R

(AB)
b3

a3R
(AB)
b1 a3R

(AB)
b2 a3R

(AB)
b3




b1R
(BC)
c1 b1R

(BC)
c2 b1R

(BC)
c3

b2R
(BC)
c1 b2R

(BC)
c2 b2R

(BC)
c3

b3R
(BC)
c1 b3R

(BC)
c2 b3R

(BC)
c3



=


a1R

(AC)
c1 a1R

(AC)
c2 a1R

(AC)
c3

a2R
(AC)
c1 a2R

(AC)
c2 a2R

(AC)
c3

a3R
(AC)
c1 a3R

(AC)
c2 a3R

(AC)
c3


(5.19)

The same result can be found by defining an adjacency matrix for the relations in

equation 5.18 and applying the Floyd-Warshall algorithm (section 5.11) to find the length

of the walk between vertices. This approach is less computationally expensive than matrix

multiplication, but has some limitations discussed later. The Floyd-Warshall algorithm

would require an adjacency matrix Asys in the form:

Asys ,


0 Rab 0

0 0 Rbc

0 0 0

 (5.20)

By using this principle, it is possible to define an adjacency matrix for the entire hybrid

framework - every instance of every entity is considered to be a graph vertex. The matrix

Asys records the relationships between every pair of entities in the hybrid framework

and consequentially the metaphysical model. In the parlance of this research, Asys is the

blueprint for a distributed architecture.

Asys ,



0 REC RES REI REP REQ REN REL

RCE 0 RCS RCI RCP RCQ RCN RCL

RSE RSC 0 RSI RSP RSQ RSN RSL

RIE RIC RIS 0 RIP RIQ RIN RIL

RPE RPC RPS RPI 0 RPQ RPN RPL

RQE RQC RQS RQI RQP 0 RQN RQL

RNE RNC RNS RNI RNP Rnq 0 RNL

RLE RLC RLS RLI RLP RLQ RLN 0



(5.21)

Given that the locations matrix may have over 20 million elements, it is neglected from

the adjacency matrix as indicated by the partition. The previously unknown relational

91

Composition and Analysis of the Hybrid Model using Binary Relations Research Method

matrices such as RIQ may be calculated using the procedure given in equation 5.19.

Those matrices that are previously undefined follow the notation used in this work.

Therefore, RCN is the relation between components and nodes and RSN the relation

between signals and nodes. The calculated relations may be used when building and

analysing the DCSs. Not all the newly calculated relations are useful for this purpose.

The adjacency matrix is more easily comprehended using the form shown in figure

5.5.2. The relational matrix RSQ is found at the ‘Signals’ row and ‘Task’ column of the

matrix

The matrices surrounded by heavy solid lines are those corresponding to the structure

of the engine and control system; they are fixed for the duration of the optimisation. Those

surrounded by a heavy, dashed line are populated by the GA and represent architectural

decisions.

92

Composition and Analysis of the Hybrid Model using Binary Relations Research Method

Figure 5.5.2: Complete Hybrid Framework Matrix Structure

RCP = RCSRSIRIP (5.22)

The hybrid framework may be used as a map for establishing relationships between

arbitrary pairs of entities. If the UML diagram is considered to be a graph, a derived

relationship may be composed from the relationships on the walk from the first to the

second entity. For example, (with reference to figure 5.4.20) supposing we wish to establish

the relationship between signals and parameters - the walk between signals and parameters

goes from signals to interfaces and then from interfaces to parameters. Therefore, the

relationship may be calculated as:

93

Composition and Analysis of the Hybrid Model using Binary Relations Research Method

R(SP) = R(SI) ◦R(IP) ≡ RSP = RSIRIP (5.23)

Similarly, the relationships between components and interfaces may be calculated by:

RCI = RCSRSI (5.24)

The process of composition relies on the transitivity of the combined relations. It

should be noted that (with reference to the graph of the composition) there are two

possible walks between interfaces and tasks: RIQ
(1) = RINRNQ and RIQ

(2) = RIPRPQ.

The two paths do not produce the same result but reveal different information about the

system. RIQ
(1) reveals the tasks that could no longer be performed if a certain node fails

and RIQ
(2) reveals those tasks that could not be performed if the necessary parameter

were unavailable - such an occurrence may be due to network or node failure. The

new relation and the implications of the corresponding relationships are not necessarily

equivalent. Multiple walks or paths are an inherent limitation of the adjacency matrix

as presented in figure 5.5.2 and a justification for using the computationally expensive

matrix multiplication to derive relations rather than the Floyd-Warshall algorithm. The

Floyd-Warshall algorithm would find the ‘shortest’ walk between the two vertices. If

two (or more) walks between the vertices were of equivalent length, the algorithm would

retain the first walk encountered.

The composition process may require inverse relations if walks through the graph move,

‘backwards’. In most cases, the relations used in this application are symmetric. The

inverse relation is the transpose of the relational matrix.

RBA = RAB
T if the relation R(AB) is symmetric (5.25)

It should be noted that the lexical translation of a symmetric relation may not itself

be symmetric. For example, the relation [one] node performs [one to many] tasks is

nonsensical if read as [one to many] tasks performs [one] node. The inverse relation is

commuted to are performed by to preserve the logic.

These relations are referred to during the discussion on architecture composition and

evaluation which follows. Those relations that are not derived by composition are stored

in the relational database.

94

Architecture Construction Research Method

5.6 Architecture Construction

Each of the GA’s chromosomes provides a coded representation of a DCS architecture.

The architecture construction processes (see figure 5.6.1) translates this chromosome into

a architectural blueprint which defines the attributes of a metaphysical DCS. This model

may be evaluated and visualised. The blueprint is an instance of the adjacency matrix

Asys for the specific DCS. The operation is repeated for every member of the current

population, (P) and performed in two stages: the chromosome is decoded to reveal a

blueprint and subsequently, that blueprint is used as the basis for building a metaphysical

DCS. The process is illustrated below:

Figure 5.6.1: Process of moving between the chromosome and architecture

The metaphysical model has a defined object-oriented structure based on the architec-

ture frameworks. The structure of the chromosome, blueprint and metaphysical model

are discussed in subsequent sections. Each exist only as a software construct.

Intuitively, the ‘decode’, ‘construct’ and ‘evaluate’ functions of the GA are contiguous

in time - the process of constructing an architecture cannot commence before its respective

chromosome is decoded. However, this linearity is obfuscated by the object-oriented

implementation of the metaphysical model. Each major element is represented within

the model as the instantiation of a pre-defined class. Each instantiated object has associ-

ated operations to decode, construct and evaluate that particular element of the model.

Therefore, the model is constructed in a ‘parallel’ fashion and evaluated sequentially.

5.7 The Chromosome

The chromosome codes the various parameters listed in section 5.3. The string’s size

changes depending on the number of nodes but remains constant for the duration of a

single pass. A diagram of the chromosome is given in figure 5.7.1 below. Each box in the

diagram represents a single bit:

95

The Chromosome Research Method

Figure 5.7.1: The chromosome used to specify a DCS. The contents of the chromosome
determine the location of the nodes, the tasks performed by each node, the location of the

hardware and the power and network topology.

In many applications, the chromosome is a binary representation of a number or

solution. In this application the chromosome stores mainly integer values. Although not

technically precise, we refer to the chromosome as a string and to each location as a ‘bit’.

The string is divided into four substrings and is designed to prevent the creation of

infeasible solutions.

The first substring encodes the node positions. Each node is allocated a pair of bits

which reference engine chassis stations using cartesian coordinates. The first bit contains

an integer value for the x-coordinate and the second bit, an integer value for the y-

coordinate. The coordinates reference the elements L(x,y) of the chassis station matrix L

and correspond to a particular chassis station. The length of the substring bN is dependant

on the number of nodes under consideration: bN = 2|N |. The value of these bits cannot

exceed the number chassis stations in the x and y direction respectively.

The second substring string allocates system tasks to specific nodes. The integer value

stored in a bit dictates the node to which that task is allocated. Therefore, if the 5th bit

of the second substring has the value 3, then task 5 is allocated to node 3. The number

of bits in the second substring bQ equals |Q|. The value associated with a bit must be a

node identifier i.e. bit value ∈ N .

Allocating interfaces (CCBs) to nodes is performed exactly as for tasks - each interface

is assigned a node number within the third substring. The number of bits required for

the interface allocation, bI is |I|.

The fourth substring contains 8 bits and determines the network and power topology.

Each bit is populated by an integer value (1..4) which infers a certain data network and

power topology. Data networks and power system topologies are described in section 5.12.

96

The Blueprint - Decoding the chromosome Research Method

Therefore, the total length of the chromosome is given by:

bl = bN + bQ + bI + 8 (5.26)

For a system with 5 nodes, 65 interfaces and 94 tasks, the chromosome is 178 bits long.

One binary string is required for each member of the GA’s population.

5.8 The Blueprint - Decoding the chromosome

The decoded the binary string provides the blueprint for the architecture of a DCS. The

blueprint does not specify the complete architecture but provides a basis from which

the full architecture may be derived. For example, the blueprint specifies the location

of the nodes but does not consider node size or harness lengths and routing. The node

size and harness routes are, ‘derived’ by independent algorithms during the architecture

construction process. The blueprint itself contains no derived information; it simply

represents the information coded in the chromosome:

• Location of each node

• Interface circuitry hosted by each node

• Tasks performed by each node

• Power network topology

• Data network topology

Each of the first three substrings may be expressed as a relational set and an equivalent

matrix. Each ordered pair relates one element of the system to another, eg. a task to a

node or a node to a specific engine location. The relationship between nodes and engine

chassis locations indicates the position of nodes on the engine. The node location (as a

chassis station number) is determined using the Matlab R© function l = sub2ind(L,

y, x) which returns a chassis station number from the x and y coordinates given in

the first substring.

R = { (n, l) | n ∈ N, l ∈ L } (5.27)

nRl : n is placed at location l (5.28)

Where N = { n1, n2, . . . , nη } is a set of nodes in the current system and L is a set of

all chassis stations on the engine {1, 2, . . . , xy}.

97

The Blueprint - Decoding the chromosome Research Method

An instance of the relation is created for every node.

The relationships between interfaces and nodes are populated from the second substring.

R = { (i, n) | i ∈ I, n ∈ N } (5.29)

iRn : i is hosted on n (5.30)

where N = { n1, n2, . . . , nη } is a set of nodes in the current system and I is a set of

interfaces required by the control system I = { i1, i2, . . . , i|I|}.

An instance of the relation exists for every interface in the system. The node number

for the i-th interface is the value in the i-th bit of the second substring.

Similarly, the third substring is related to the the allocation of tasks to nodes. This

relationship is given by equation 5.32:

R = { (q, n) | q ∈ Q, n ∈ N } (5.31)

qRn : q is performed by n (5.32)

Where Q = { q1, q2, . . . , q|Q| } is a set of tasks which are required for the given engine.

As for interfaces, an instance of the relation is created for every task in the system. The

node allocation for the q-th interface is the value found in the q-th bit of the second

substring.

The values associated with network and power topologies are written directly to

variables of the solution class.

5.8.1 Matrix form and Relation Composition

The second stage of decoding the chromosome is to translate these relations into their

matrix form - That is, to place a ‘1’ in the corresponding elements of the relationship

matrices where an instance of the relation occurs.

For example, if there is a relationship between interface 1 and node 2 and a further

relationship between interface 3 and node 1, the interface-node relationship matrix, RIN

is populated as follows (assuming that the system has three nodes and the product family

contains three interfaces:

98

Redundancy Scheme Research Method

TIN =


i1Rn1 i1Rn2 i1Rn3

i2Rn1 i2Rn2 i2Rn3

i3Rn1 i3Rn2 i3Rn3

 (5.33) RSI =


0 1 0

0 0 0

1 0 0

 (5.34)

Similarly, the relationships between nodes and tasks and nodes and locations are

entered into the matrices RQN and RNL..

Once the relations are expressed as matrices, these matrices become part of the system

adjacency matrix (figure 5.5.2). The relation composition process (section 5.5.1) is used to

calculate other relationships used during construction and evaluation of the architectures.

For example, the relation between signals and nodes, RSN is used for harness routing:

RSN = RSIRIN (5.35)

The relation between parameters and nodes, RPN is used by the architectural evalua-

tion to determine the number of parameters that are placed on the databus:

RPN = RPIRIN (5.36)

Similarly, the relations RSQ and RIQ are used by the lifecycle evaluation to determine

how the system performs to component failures during its service life.

Although not used in this implementation, the relationship between interfaces and

locations, RIL = RINRNL could be used as a reference for quickly setting a component’s

reliability according to its temperature and vibration environment. Other derived rela-

tionships such as components-tasks and signals-parameters could be used to analyse the

level of redundancy in the the system and the response to component failures.

These new relations become part of the adjacency matrix Asys.

At this point, the blueprint is complete and exists as the system adjacency matrix

Asys. The blueprint is used as a basis for constructing the distributed control systems.

5.9 Redundancy Scheme

It would be almost impossible to achieve the required standards for safety and reliability

without applying some level of redundancy in the engine control system. Further to

99

Redundancy Scheme Research Method

safety requirements, Time Limited Despatch (TLD) (see section 7.5) relies on redundant

elements to minimise service disruption and operating costs. Conventionally, EECs

have two redundant channels - if one channel experiences a component failure (or set of

component failures) then the second channel takes control of the engine. Sensors and

actuators are associated with a single channel. Some critical components such as shaft

speed probes are dual redundant to both channels meaning the engine carries four identical

sensors for one measurement (this may constitute two dual wound devices).

A notable benefit of Distributed Control Systems is the potential for novel redundancy

schemes which reduce the number of components required and increase the number of

redundant configurations. Whilst the possibilities are largely intuitive, the area requires

a substantial amount of research and development to analyse and improve on the basic

postulates.

The basic premise of distributed redundancy is that control system elements become

redundant to the network rather than the channel. Rather than a distinct ‘A’ and ‘B’

channels, there are ‘A’ and ‘B’ instances of sensors, actuators, tasks and computational

hardware. If the ‘A’ instance fails then the ‘B’ instance takes over. Neither instance need

belong to a distinct channel. The two schemes are compared in the figures below:

Figure 5.9.1: Centralised system using conventional ap-
proach to redundancy. All tasks are performed on the cen-

tralised controller

Figure 5.9.2: New redundancy approach using a distributed
system. Control system tasks are shared amongst nodes

Under the distributed scheme, some the components that are dual redundant to a

channel can be removed allowing three devices to provide a similar availability to four. eg.

S3A2 could be removed. The two networks may operate as separate channels or become

a single network linked by the gateway. This research assumes use of the redundancy

scheme in figure 5.9.2. The ‘A’ and ‘B’ instances of control system tasks may be performed

on different nodes. The ‘A’ and ‘B’ networks for power and data need not be identical.

A more sophisticated network architecture would use two dissimilar networks to form

100

Node Construction Research Method

a dual-channel surviving-element network where the networks combine to form a new

topology should a branch break or fail.

5.10 Node Construction

As defined by the architecture framework, nodes are deemed to be the physical aggregation

of a Central Processing Unit (CPU), power conditioning, signal and data bus connectors,

a case, mountings and a number of circuit blocks.

The significant tasks of node construction are:

1. Selecting and assembling of the CCBs

2. Adding Signal Connectors

3. Adding data, power connectors and case.

4. Dimensioning the node (to establish height, width, floor area, weight etc)

Stage 1: Selection and assembly of Common Circuit Blocks

The first phase of node construction (figure 5.10.1) is to assemble the CCBs. The interfaces

allocated to each node are determined from the matrix RIN. Each mark in the column

corresponding to the current node represents a relationship between that node and a

given circuit block. The circuit blocks allocated to each node are determined using the

Matlab R© command index = find(R in(n,:) > 0) where the returned variable

index is the subset of interfaces (referenced by their primary key - see appendix A)

pertaining to the node n.

All nodes have two channels and two instances of every interface must be present in

the system (see section 5.9 on redundancy schemes). Nominally, every interface allocated

Figure 5.10.1: Stage 1: Assemble CCBs Figure 5.10.2: Stage 2: Add signal connectors

101

Node Construction Research Method

to a node is placed in the ‘A’ channel. If both instances of an interface are allocated to

the same node, then the first is allocated to the ‘A’ channel and the second to the ‘B’

channel. i.e. if all the interfaces on a node are unique, the node has no ‘B’ channel.

Each circuit block has a, depth, weight, cost and parameters to define its reliability

(discussed later in section 7.7.1).

The width of a node is largely determined by the dimensions of the circuit blocks

and the node depth and height by the circuit blocks or connectors depending on which

is larger. Each CCB has an associated area. The internal height and width of a node

nh, nw are approximated to the square root of the sum of circuit block areas. This is a

crude approximation but avoids the need for complex tessellation algorithms to optimise

the arrangement of circuit blocks within a node. Therefore, the nh and nw are given by

equation 5.37:

nh = nw =

√√√√index(|index|)∑
k=index(1)

interface[k].area (5.37)

This height and width may be thought of as the height and width of the node’s circuit

board which is always square.

The reliability of a CCB changes with temperature which is a function of the node’s

location. Obtaining reliability data for high-temperature components is very difficult.

This research assumes that all electronic devices are able to work at all temperatures on

the engine case. The penalty for using high temperature components is reduced reliability

and higher cost. In reality, no such set of components is available and the immaturity of

many high-temperature devices means that component manufactures are both secretive

and pessimistic about reliability. As with the engine temperature profiles, this research

uses tangible reliability profiles that are guided by but not aligned to real-world values.

If real data were available, it could be used within the models. Furthermore, reliability

data on component datasheets is usually presented over a narrow temperature bands on a

primitive log-scale graphs and consequentially, difficult to read and reproduce accurately.

Reliability characteristics are established by extending the straight-line characteristic

from component datasheets over a wider temperature range. The figure below (5.10.3)

shows the original data points taken from a datasheet for a high-temperature operational

amplifier. A straight line approximation is used to extend the reliability profile.

102

Node Construction Research Method

Figure 5.10.3: Extension of component reliability data to cover broader temperature range

The Mean Time To Failure (MTTF) read from the graph is used to determine the

reliability characteristic of each interface and hence the node.

Stage 2: Add Signal Connectors

The second stage of node construction (figure 5.10.2) is to add the signal connectors. The

connector size and weight are an important considerations in node design. Connectors are

specified for the number of signals and the addition of guard pins and spares. Connectors

suitable for the engine environment tend to be heavy and space consuming as they are

required to be scoop-proof, thread-proof and useable whilst wearing gloves. Therefore,

both connector weight and size are likely to dominate the node dimensions. It is assumed

that all node connectors are flange-mounted bulkhead connectors.

Weight is not generally specified in connector data sheets as it varies from part-to-part,

depending on the number of pins, the materials used and the presence of passive filters

within the connector assembly. The optimisation processes ascertains how many connector

pins are required by counting the number of cores in a harness and adding 10%. Typically

an LVDT may require an eight-wire connection and a thermocouple a two-wire connection.

Rather than using a lookup table to find the nearest suitable connector, the weight is

taken from a second order polynomial fitted to weight data held by Aero Engine Controls.

The curve is fitted to the data using the Matlab R© command p = polyfit(x,y,N)

which uses least squares method to return the coefficients of a polynomial, p of order

103

Node Construction Research Method

N fitted to the data contained in the vectors x and y - a second order polynomial is

considered sufficient. Therefore, the connector weight, cψ as a function of the number of

pins σ is given by equation 5.38.

cψ(σ) = p1σ
2 + p2σ + p3 (5.38)

The maximum connector size is 61 pins. The fitted curve and original data points are

shown in figure 5.10.4.

Figure 5.10.4: Connector weight vs number of pins showing original data and second order
fitted polynomial

If more than 61 pins are required for a single channel, further connectors are added.

The node always uses the smallest possible connectors and assumes that connectors of all

sizes are available (up to 61 pins). A similar curve is used to determine the weight of

harness connectors.

The number of pins required for the signal connector is determined by summing the

number of signals associated with each of the node’s interfaces. This information can

be derived from the matrix RSN. Therefore, the number of pins σ required for a given

connector may be found using the Matlab R© command sigma = sum(find(R sn(:,n)

> 0)).

The diameter of the connector is also dependent on the number of pins. It is probable

that the size of the connectors will dictate the size of the node itself. Pins in industrial

connectors are generally arranged in concentric circles from a single pin in the centre to

perhaps 30 or 40 pins in the outer layers. For the purposes of this work, the concentric

104

Node Construction Research Method

circles are approximated to concentric hexagons and hexagonal numbers are used to find

the number of pin layers and hence the connector dimensions (figure 5.10.5).

Figure 5.10.5: A bulkhead connector showing dimensions and the hexagonal approximation
to concentric circles

Equation 5.39 uses hexagonal numbers to calculate the number of concentric pin layers

σl as a function of the number of pins σ.

σl =

⌈√
8σ + 1 + 1

4

⌋
(5.39)

It is assumed that the connector and bulkhead are square and that connector width cw

and height ch are equal. Assuming that there is a 3mm section of the flange plate on both

sides of the connector barrel and that the distance between layers of pins δσ is known,

the width of the connector is found using equation 5.40.

cw = ch = 0.06 + δσ(2σl + 1) [metres] (5.40)

Having added the signal connectors, an instance of the harness class (section 5.11) is

created for each connector. This instance is built into a full harness at the end of the

node construction process. At this stage, each harness is seeded with the source (node

location) and a vector of destination (engine component) locations. This information is

derived from the signal-node and signal-location matrices RSN and RSL.

105

Node Construction Research Method

Stage 3: Add data, power connectors and case

The third stage of node construction involves the addition of data connectors, power

connectors and a case.

Each node channel has an independent power and data connector. Both are 2 pin

connectors unless the node is a designated hub for a star network (see section 5.12).

Having added these connectors, the width of all the connectors is summed. This value is

augmented with a connector spacing (to ensure that sufficient gap is left between each

connector) to give a value for the total connector width. If the panel width is greater than

the internal height of the CCBs, then the internal node height is set to the connector

width. The internal node width is set to the width of the circuit blocks as determined

by equation 5.37. The internal node depth is either the greatest connector depth or the

depth of the largest circuit block depending on which is larger. The internal height, width

and depth are incremented by 1cm to allow a 0.5cm gap to be maintained between the

circuit board and case.

Having established the internal dimensions, the node case is added. The node case is

assumed to be a hollow box whose inner volume contains the circuitry. At this stage,

only the case volume is required. The case volume is found using equation 5.41 and is the

difference between the internal and external node dimensions as separated by the node

case thickness.

ncase vol = (nw + 2ϑ)(nh + 2ϑ)(nd + 2ϑ)− nwnhnd (5.41)

Where ϑ, is the thickness of the case wall (typically 5mm). All other parameters were

defined previously.

Stage 4: Dimension the node

The node weight comprises the collective weight of the case, the CCBs and the signal,

power and data connectors. The mass of the case may be found using the equation

mass = density(ρ)× volume(ncase vol). The density used is representative of the material

densities used in present day casing.

The node’s height, width and depth are equal to the internal height width and depth

plus twice the case thickness.

106

Harnesses Research Method

Figure 5.10.6: Stage 3: Add power connector, data con-
nector and case

Figure 5.10.7: Stage 4: Weigh and Dimension node

At this stage the weight of the mounting feet and a bond strap are added. A floor plan

area for the node is calculated. The floorplan area is the area occupied by the node plus

an additional margin for component separation and handling.

The signal harnesses are built and the node is complete.

5.11 Harnesses

Each node has a harness for every signal connector and a set of harnesses are associated

with both the data and power networks. The signal harnesses are independent of the data

and power harnesses. The harnesses in the metaphysical model reflect the structure of

real engines harnesses as closely as possible. It can be assumed that a single node has a

separate set of harnesses for both channels although it is unnecessary to distinguish between

channels when creating harnesses. The terminology used to describe the construction of

the harness has been assumed for this project and is not aligned to industrial terminology.

A harness is composed from branches, clusters, connectors and ties (see figure 5.11.1).

Each branch connects to a single sensor, actuator or engine component. A branch carries

a number of signal connections in groups known as clusters (see figure 5.11.3). The

clusters and branches are bound together using synthetic hemp ties. The ties occur at

intervals of approximately 5cm along the harness’s length. The whole harness is covered

in a protective sleeve designed to protect against fire and debris.

107

Harnesses Research Method

Figure 5.11.1: The structure of a harness as used in the metaphysical model showing the
connectors, branches and clusters.

A cluster carries a set of wires within a protective sleeve (see figure 5.11.2). Clusters

have a finite capacity of two signal wires. Therefore, if a branch requires 5 signal wires,

three clusters are required - the first carries two cores, the second two and the third one;

signal wires are usually bound as twisted pairs. The two signal wires contained within

the cluster are each coated in an insulating sleeve.

Figure 5.11.2: Cross-section of a harness cluster Figure 5.11.3: Cross-section of a harness branch

Like other elements in the metaphysical model, a harness is represented as the instan-

tiation of a software class. The harness class is shown in figure 5.11.4 below:

108

Harnesses Research Method

Figure 5.11.4: The harness class

The Harness() constructor function initiates the class and calculates the weights per

metre for the copper wire, wire sleeve and cluster sleeve. The weight per mete of the

copper signal wire is calculated using the following equation:

ψσ =

(
θc
2

)2

πρcu [kgm−1] (5.42)

Where ψσ the mass per meter of signal wire, θc is the diameter of the harness core

in metres and ρcu is the density of copper in kilograms per cubic metre. The density of

copper is taken to be 8700kgm−3.

The weight per metre of the core sleeve ψs and cluster sleeve weight ψc may be obtained

using similar equations. Both the core sleeve and cluster sleeve are considered to be

made of a plastic with a density of 900kgm−3. The figures calculated above are assigned

to the object attributes Core weight per metre, Core sleeve weight per metre and

Cluster sleeve weight per metre. The attribute Cluster capacity holds the number

of cores per cluster - the default value is 2. The various densities, sleeve thicknesses and

radii are hard-coded into the class.

The public function Create() uses the source of the harness, the branch destinations

and the number of signal cores per branch to determine the the length and weight of

the harness. The source and branch destinations are passed to the Create function as a

109

Data and Power Network Topologies Research Method

vector of engine station numbers.

The length of each branch is determined using the matrix D (see section 5.4.4) as a

look-up table. Once the length of the branch has been established, the number of cores

on the branch is taken from the input vector and divided by two to calculate the number

of clusters required for the branch. The wire and sleeve weights for a single branch are

calculated using these parameters. All branches are extended by 30cm to allow slack for

handling and connection. The weight of the harness connector is taken from a fitted curve

(see section 5.10) and added to the total weight of the branch.

Once all the branches have been created, the total harness length and weight is

calculated. The weight of the ties is assumed to be negligible and therefore ignored.

By assuming that the harness will always take the shortest possible route, the weight

and length may be calculated without knowing the path taken. The distance is read from

the D matrix. The route itself can be determined using the Floyd-Warshall Algorithm.

The Route() function of the harness uses Floyd-Warshall algorithm to determine the

route and returns a vector of engine stations denoting the path taken. The routing

process is described in section 5.11. This algorithm is computationally expensive and only

necessary for visualising the final design.

Harness Routing

Harness routing is achieved using the ‘Next’ matrix N which is generated at the same

time as the distance matrix D. The Next matrix acts as a look up table for finding

harness routes. For example, if we wish to route a harness from chassis station 2 to

chassis station 10, then the element N(2,10) holds the next chassis station on the route.

i.e. If N(2,10) = 7 then the next station on the route is the value of N(7,10). The process

is repeated until the index matches the destination.

5.12 Data and Power Network Topologies

The final eight bits of the chromosome encode the topology for the power and data

networks. Each DCS has two power networks and two data networks; all four networks

have their own topology. The topology of each network is determined by two bits; both

hold integer values of 1 to 4.

110

Data and Power Network Topologies Research Method

The first of the two bits determines the topology of the network and the second the

configuration of that topology. If the chosen network topology requires a network hub,

then the second bit determines where that hub is placed:

1. Star

2. Ring

3. Bus

4. Direct Feed

1. Hub at Jordan centre

2. Data Over Power (DOP)

3. Node closest to the pylon

4. Hub in the airframe pylon

All data networks are required to interface to the data connection at the pylon. The

node selected as a hub provides that interface. The hub node requires a larger connector

and carries the additional weight of the hub circuitry. The hub may be located in the

pylon although this incurs a high difficulty score. The four basic network topologies are

illustrated below:

The Data Over Power (DOP) option signifies that the data network is neglected and

all data is sent between nodes by modulating the power supply voltage. This arrangement

adds to the difficulty factor but saves weight by removing harness and connectors. Data

over power is an important consideration for DCS architects and has been the focus of

industrial research projects.

The same topologies apply to the power network although a further configuration

option is available. Option 2 in the configuration bit determines that the power hub will

be placed in the node nearest to the Permanent Magnet Alternator (PMA). The control

system requires power feeds from the pylon and the PMA. This power may be distributed

directly to each node or be managed and distributed by a power hub located in a single

node. The node containing the power hub must connect to both the airframe and PMA

power supplies. The various network configurations are shown in figure 5.12.2:

Various graph theory algorithms are used to determine the hub location and arrange-

ment of harness connections. The configuration bit determines which node will host

the hub for the star, ring and bus topologies and hence how the harnesses are routed.

Configuration parameter = 1 places the hub at the Jordan centre of the graph formed by

the nodes, pylon and PMA. The Jordan centre is the most ‘central’ of the nodes with

respect to the set of nodes.

The algorithms which determine the hub position use a subset of the distance matrix D

111

Data and Power Network Topologies Research Method

Figure 5.12.1: Data network topologies

Figure 5.12.2: Power network hub configurations. The nodes marked with an ‘H’ contain
the hub circuitry and connectors. The configurations also apply to data networks although

no connection to the PMA is required

112

Data and Power Network Topologies Research Method

(see section 5.4.4) where the rows and columns correspond to the nodes {n1, n2, . . . , nn},

airframe a and the PMA p. The edge lengths are the shortest distance between each

vertex as defined in the distance matrix D. The distance matrix for the power networks

Dp takes the following form:

Dp ,



n1 n2 . . . nn a p

n1 0 D(n1,n2) . . . D(n1,nn) D(n1,a) D(n1,p)

n2 D(n2,n1) 0 . . . D(n1,nn) D(n2,a) D(n1,p)

...
...

...
. . .

...
...

...

nn D(nn,n1) D(nn,n2) . . . 0 D(nn,a) D(nn,p)

a D(a,n1) D(a,n2) . . . D(a,nn) 0 D(a,p)

p D(p,n1) D(p,n2) . . . D(p,nn) D(p,a) 0


(5.43)

A distance of zero dentes that there is no connectivity between vertices. The distance

matrix for the data network Dd is similar to Dp but does not require the additional

vertex p for the PMA.

The closest node to the airframe connection or PMA is simply the node which cor-

responds to the minmum value in the column a or p in Dp. The Jordan Centre is

found using the ‘‘all-pairs shortest path’’ algorithm (Seidel, 1992). Once determined, the

appropriate node is augmented with the necessary hardware and connectors to add the

hub functionality.

The connectivity of the network harnesses is found using the FANI algorithm (Raviku-

mar et al., 1998). FANI is a graph insertion algorithm capable of finding the shortest

possible walk between a set of vertices. The algorithm can be used to determine the

arrangement of harnesses for both the ring and bus networks and is commonly associated

with the travelling salesman problem. The star topology simply connects the hub node to

every other node and does not require an algorithm to determine connectivity.

The FANI algorithm returns a network adjacency matrix An. For example:

113

Visualisation Research Method

An =



n1 n2 . . . nn a p

n1 0 1 . . . 1 0 1

n2 1 0 . . . 1 0 1
...

...
...

. . .
...

...
...

nn 1 1 . . . 0 1 0

a 0 0 . . . 1 0 1

p 1 1 . . . 0 1 0


(5.44)

A ‘1’ indicates that the vertices should be jointed by data or power harness depending

on which network is being routed. The matrix is symmetrical across the diagonal. An

instance of the harness class is created for every ‘1’ in the upper diagonal. As with signal

harnesses, the harnesses have a weight. Once the topology is established, the harnesses

are routed in the same manner as signal harnesses.

At this stage, the architectural is complete.

5.13 Visualisation

A basic software application allows the metaphysical architectures to be visualised.

Visualisation is important for validation and maintaining industrial interest. The software

allows the following items to be visualised:

• Engine case and outline

• Location of sensors and actuators

• Location and size of engine subsystems

• Distributed node locations

• Wiring harnesses between nodes and components

• Databus harness between nodes

• Temperature profiles

• Accessibility profile

• Keepout zones

• Vibration profiles

• Engine station locations

• Power Harnesses

The tool offers a 3D view of the control system as it would look on engine. The user

may rotate the engine and zoom in and out using keyboard commands. Each of the items

114

Visualisation Research Method

listed above is a layer in the tool; as with professional Computer Aided Design (CAD)

tools, the user may turn various layers on and off to improve clarity.

Figure 5.13.1: High level functionality of the visualisation tool

Once the metaphysical architecture has been composed by the GA, data files containing

positional, dimensional and environmental profile data are created in Matlab R©. The

visualisation tool reads and interprets the information in these files to construct a graphical

representation of the architecture as shown in figure 5.13.1.

Figure 5.13.2: 3D Engine view Figure 5.13.3: A 4-node distributed system on engine

The software is written in object-oriented C++ and uses OpenGL R©. OpenGL R© is a

widely used graphical programming Advanced Peripheral Interface (API) allowing custom

graphics to be displayed to the screen. The visualisation tool has many intricacies and

design challenges of it’s own. Coordinate transforms and vector calculations are required

to located the vertices and gradients required for drawing and colouring. The software is

implemented using a variety of object-oriented constructs.

Examples of the visualisation tool output are shown in figures 5.13.2 and 5.13.3.

115

Implementation with Matlab Research Method

5.14 Implementation with Matlab

The GA, architecture construction and architecture evaluation were all implemented in

object-oriented Matlab R©. In spite of the slow execution speed, Matlab R© provides

easy access to many of the mathematical functions required to implement the algorithms

and a suit of plotting functions for easy data analysis. Array manipulation and matrix

algebra are simple and despite the lack of functions for set algebra and graph presentation,

Matlab R© was the most obvious candidate tool. However, Matlab R© code is slow to

execute and when compared to languages such as C++, offers only a limited range of

object-oriented constructs. Object-oriented Matlab R© (edition 2008a) and its debugger

are finicky and hampered by software bugs which make implementation trying. A full

implementation in C++ would have required significantly more programming effort: data

visualisation would have been very difficult and the code harder to structure and debug.

The optimisation routine used in this research is eminently suited to parallel implemen-

tation - the architecture construction and evaluation functions for individual population

members are mutually independent and the algorithm is calculation rather than data

intensive. Parallelising the optimisation routine is likely to yield significant time savings

and permit an increased number of DCS configurations and improved harness routing algo-

rithms. Opportunities and methods for parallel implementation is discussed in Appendix

B.

5.15 Evaluation Functions

This chapter has shown how the metaphysical models of the DCS architectures are

constructed to realise a software model of the system. The proceeding chapters detail

how these models are evaluated by the GA. The evaluation functions use predicate logic,

mathematical functions and meta-heuristic methods to determine the architectural quality,

lifecycle performance and business performance of each candidate architecture. At a

functional level, the evaluation functions are independent although parameters passed

from one to the other require that they be executed in the order architecture, lifecycle,

business. Each of the functions aims to derive a number of, ‘‘key performance indicators’’

for each of the DCSs. The scheme is illustrated on the adjacent page (figure 5.15.1) with

116

Evaluation Functions Research Method

the various evaluation parameters and pre-requisite information shown. The figure shows

the various input and output parameters for the three evaluation functions.

The evaluation functions produce a large number of output parameters. It is not

intended that all these parameters are used by the GA - all the parameters produced

are of interest to system architects. The more fundamental parameters such as harness

length and Net Present Value (NPV) could be used during optimisation and the remaining

metrics for differentiation between architectures on the pareto optimal front.

117

Evaluation Functions Research Method

Figure 5.15.1: The chain of evaluation functions showing the pre-requisite information
and results parameters used by each of the three evaluation functions. The diagram may be
considered as a lower level view of the ‘‘Evaluate Solutions’’ block in the synoptic diagram

of the overall optimisation scheme (figure 5.2.1)

118

Architectural Evaluation

Chapter 6

Architectural Evaluation

6.1 Introduction

Having built the DCSs, the architectural evaluation considers the physical qualities of

the proposed systems. For the most part, the evaluation function is a simple set of

summations that combine the weight and size of the nodes and harnesses to find the

total system weight and dimensions. The individual node and harness dimensions are

calculated during the construction process.

6.2 Calculating the Architectural Measures

In the following section, the variable W (∗) signifies a weight, L(∗) a length, D(∗) a

difficulty factor, V (∗) a volume, A(∗) an area and T (∗) an access time. N is the number

of nodes and Hs, Hd(1|2) and Hp(1|2) the number of signal, data and power harnesses

respectively.

The system weight is the combined weight of the nodes, signal harness, data harnesses

and power harnesses. The signal harnesses are considered to contribute to the total node

weight:

W (nodes) =
N∑
n=1

[
W (Node[n]) +

Hs∑
h=1

W (node[n].Signal harness[h])

]
(6.1)

119

Calculating the Architectural Measures Architectural Evaluation

W (data network) =

Hd1∑
h=1

W (data network 1.harness[h])

+

Hd2∑
h=1

W (data network 2.harness[h])

(6.2)

W (power network) =

Hp1∑
h=1

W (power network 1.harness[h])

+

Hp2∑
h=1

W (power network 2.harness[h])

(6.3)

Therefore, the total system weight is:

W = W (nodes) +W (data network) +W (power network) (6.4)

Similarly, the total harness length is found by:

L(signal) =
N∑
n=1

[
Hs∑
h=1

L(node[n].Signal harness[h])

]
(6.5)

L(data network) =

Hd1∑
h=1

L(data network 1.harness[h])

+

Hd2∑
h=1

L(data network 2.harness[h])

(6.6)

L(power network) =

Hp1∑
h=1

L(power network 1.harness[h])

+

Hp2∑
h=1

L(power network 2.harness[h])

(6.7)

The total harness length L is:

L = L(signal) + L(data network) + L(power network) (6.8)

The total area of the system is the sum of node footprint areas. The area does not

include the area occupied by harnesses:

120

Calculating the Architectural Measures Architectural Evaluation

A =
N∑
n=1

A(node[n]) (6.9)

Likewise, the system volume comprises for the node volumes alone.

V =
N∑
n=1

V (node[n]) (6.10)

The power consumption of the nodes may be summed in the same way. The accessibility

times are used principally by the lifecycle evaluation function to adjust the duration of

maintenance actions. The architectural evaluation provides a crude measure of accessibility

time by summing the access time for every node:

T =
N∑
n=1

T (node[n]) (6.11)

Difficulty Factors

Each node, harness, power and data network has an associated difficulty factor. The

difficulty factor is a crude but important, ‘‘catch all’’ metric intended to account for

factors which are not in themselves design drivers but important secondary considerations.

A prominent example is the number of harnesses crossing between the fancase and core.

Within sensible limits, engineers are unlikely to use the number of core-fancase harnesses

as a basis for choosing between two systems; control system performance, reliability, power

consumption would normally take precedence. However, routing harnesses between the

fancase and core complicates harness design and increases the complexity of manufacture

and maintenance. If all other factors were equal, the number of core-to-fancase harnesses

could be used to distinguish between two designs.

Each network topology has an associated difficulty factor depending on the robustness

and redundancy inherent in the network. For example, the ring topology is more robust

than the bus topology as communication is possible in the presence of broken links; the

bus network carries a higher difficulty score. However, the bus topology requires less

wiring and would provide a payback in terms of harness length and weight.

Some qualities have negative difficulty factors meaning that they ease the design

problem. Each architecture has two data networks - if both share the same topology,

121

Calculating the Architectural Measures Architectural Evaluation

negative difficulty points are scored. This represents the savings in software complexity,

hardware and harnesses design.

The table 6.2.1 below shows how difficulty points are accrued:

Criteria Difficulty +/-

Core-fancase harness crossing 1

Common network topology -3

Bus Network topology 5

Direct feed network topology 3

Star network topology 2

Ring network topology -2

Table 6.2.1: Difficulty scores associated with various design features. The difficulty factors
for networks apply to both power and data networks.

The difficulty factor for each architecture is calculated as the sum of the difficulty

factors for each harness and network.

D(node) =
N∑
n=1

[
D(node[n]) +

Hs∑
h=1

D(node[n].Signal harness[h])

]
(6.12)

D(data) =

[
D(data network 1) +

Hd1∑
h=1

D(data network 1.harness[h])

]

+

[
D(data network 2) +

Hd2∑
h=1

D(data network 2.harness[h])

] (6.13)

D(power) =

[
D(power network 1) +

Hp1∑
h=1

D(power network 1.harness[h])

]

+

[
D(power network 2) +

Hp2∑
h=1

D(power network 2.harness[h])

]
(6.14)

D = D(node) +D(data) +D(power) (6.15)

It is accepted that the difficulty factor is a crude and unedifying metric. An improved

implementation would associate each of the factors in table 6.2.1 with a time or cost that

could be accounted for in the business or lifecycle evaluation. For example, the extra

122

Calculating the Architectural Measures Architectural Evaluation

development effort required to realise a system with different network topologies could be

lead to an increase in development time. This in turn would be translated into a cost by

the business evaluation. The number of core-to-fancase harness crossings may be used as

a stand-alone design metric.

An alternative improvement would involve attributing qualitative levels of difficulty

based on the magnitude of the score. eg. high, medium and low. This would prevent the

difficulty score from having an overbearing influence on architectural decision making.

Communications Load

The final architectural parameter is the communications load. This is the number of

parameters (expressed as a percentage) that are required to be broadcast on the databus.

This arises because tasks performed on different nodes require the same parameters.

The relational matrix Rpn shows which nodes require which parameters. If the row

corresponding to a particular parameter is populated more than once, the parameter is

required to be broadcast. For example:

Rpn =



n1 n2 n3

p1 0 0 1

p2 1 0 1

p3 0 1 0

p4 1 1 0

 (6.16)

Parameters 2 and 4 are required to be broadcast on the databus.

6.2.1 Output

The calculations given above are implemented as functions of a matlab class. The output

of the evaluation function is a structure containing all the parameters listed in this chapter.

An example output is shown below:

123

Testing the architectural evaluation: A case study Architectural Evaluation

Figure 6.2.1: Typical output from the architecture evaluation function

6.3 Testing the architectural evaluation: A case study

In order to test the architectural evaluation function, a test case was defined. The SPEA2

algorithm was used to optimise distributed control system architectures based on the

parameters calculated by the architectural evaluation alone.

The target was a typical, large, civil jet engine with dimensions and functionality

similar to that of the Rolls-Royce Trent 1000. The optimiser was configured to consider

systems with 2 to 29 nodes. There are twenty-nine distinguishable components on the

engine - this allowed the optimiser to allocate one node to every component and provide

the highest practical level of distribution. A baseline system with a centralised EEC was

used as a benchmark for assessing the quality of the distributed solutions.

Both the centralised baseline and the distributed systems were realised using the

construction processes presented in the previous chapter.

6.3.1 The Baseline System

As stated above, the baseline centralised system was based on the Rolls-Royce Trent 1000

Engine. The model engine has similar dimensions and control system functionality. The

124

Testing the architectural evaluation: A case study Architectural Evaluation

locations of sensors and actuators on the engine chassis are approximate. The functional

flow diagram of the engine control system is given in Appendix C. This model is recorded

in the relational matrices associated with the Control System Architecture Framework

(section 5.4.2).

Keepout zones were neglected from the engine model to prevent the computationally

expensive process of recalculating the graph routing matrices. Therefore, harnesses may

be routed without constraint. The decision space variables were total system weight, total

harness length and system difficulty factor.

The engine environment was defined using the functions for temperature, vibration

and access times described in the previous chapter. The SAT of the fancase was 85◦C

and the turbine around 500◦C. Vibration varied linearly along the engine from high-levels

at the fancase to a low-level at the core.

The baseline system was created using a pre-determined binary string. In essence, a

contrived chromosome was created to place a single node at a location consistent with

the present day centralised EEC. This system was built using the processes presented in

Chapter 5. Accordingly, all tasks and interfaces reside on a single node and thus the two

channels are identical. The visualisation of the baseline system in shown in figure 6.3.1:

Figure 6.3.1: Baseline centralised architecture

The magenta block is the centralised EEC, the green blocks are the engine subsystems

and the blue circles the sensor interfaces. Signal, data and power harnesses are shown in

yellow, cyan and red respectively.

125

Optimisation for 2 to 29 Nodes Architectural Evaluation

Once built, the architectural evaluation function was run on the centralised architecture.

The results for each of the metrics are shown in the first column of table 6.3.1.

Attribute Baseline Two Node Optimal

Node weight (kg) 17.97 19.25

Signal harness weight (kg) 16.06 11.06

Data harness weight (kg) 0 0.6

Power harness weight (kg) 1.15 0.78

Footprint area (m2) 0.25 0.25

Footprint volume (m3) 0.02 0.02

Signal harness length (m) 216.13 106.07

Data harness length (m) 0 5.25

Power harness length (m) 19.44 13.75

Communications load (%) 0 53

Accessibility (hours) 1 0.7

Node difficulty 0 0

Power difficulty 4 -4

Data difficulty 0 -2

Harness difficulty 8 1

Total weight (kg) 35.19 31.7

Total harness wire length (m) 1364 754.6

Total difficulty factor 12 -5

Table 6.3.1: Comparison of architectural evaluation results for the centralised (baseline)
system and the optimal two node architecture

Parameters relating to the data harnesses are all zero as no data network is required

for a single node. Similarly, the communications load is zero. The node weight and total

wire length are comparable to a modern EEC; this provides a primitive verification of

the construction and evaluation processes. It should be noted that the centralised system

presented is built using the same input data and circuit blocks as for the distributed

systems which follow.

6.4 Optimisation for 2 to 29 Nodes

The GA was set to run for 1000 iterations with a crossover probability of 99%, a mutation

probability of 3% and 3 dynamic crossover points. The algorithm was executed as shown

126

Optimisation for 2 to 29 Nodes Architectural Evaluation

in figure 5.3.2 of the previous chapter and optimised the DCSs system weight, combined

harness length and difficulty factor. Both the current and archive populations contained

100 members. In practice, only the solutions for 2 to 5 nodes converged in the given

number of iterations and the results for 6 or more nodes may be neglected.

Figure 6.4.1 shows the progress of the two node optimisation. The values shown are

the averages for all solutions in the pareto optimal front at the end of each iteration.

Figure 6.4.1: Average value of system weight, harness length and difficulty factor for
architectures in the pareto optimal front of the two node optimisation. The dotted lines

represent the values from the baseline system

There is a notable step change at around 700 iterations. This was probably caused

by the movement of one of the two nodes form the core to the fancase or the fancase

to the core. This would explain the step change in weight and difficulty factor as fewer

harnesses are required to cross the fancase-core interface.

After 1000 iterations, the optimiser has produced a two-node DCS that is considerably

better than the baseline solution in all three objective functions. A numerical comparison

of the baseline and two node system is presented in table 6.3.1. The most notable reduction

is the harness length from 250m to 130m. This represents a considerable cost saving and

contributes to the 5kg saving in the overall system weight. The two nodes are located on

the underside of the engine with one on the fancase and the other on the core. The engine

components on the fancase are connected to the fancase node and the core components to

the core node. The visualisation of the architecture is shown in figure 6.4.2 below. The

solution shown is one of the 7 solutions in the global pareto optimal front. The pareto

optimal solutions are found by combining the optimal solutions for every number of nodes

and subjecting the resulting set to non-dominated sorting.

127

Optimisation for 2 to 29 Nodes Architectural Evaluation

Figure 6.4.2: The two node optimal architecture
Figure 6.4.3: Two node optimal solution from underside

of engine and showing temperature profile

Figure 6.4.3 shows the same system from the underside of the engine and includes the

engine temperature profile.

The two node solution presented above is the, ‘‘best rounded’’ of those in the pareto

optimal front - in this case, parameters other than those used by the GA have been

used to select it. This approach allows the GA to handle the fundamental architectural

decisions whilst the designer is free to choose between solutions to meet the needs of a

particular application.

Interestingly, many of the three and four node solutions approximate to the architectures

of the two node solutions. As shown in figure 6.4.4, a three node solution from the global

pareto optimal set has two nodes closely located on the fancase - in effect, one core node

connects to components on the port side of the core and the other to components on the

starboard side. This trend contradicts the commonly held view that two core nodes would

be arranged as a compressor and turbine data concentrator.

Although the results are influenced by the architectural evaluation alone, they serve to

challenge and reinforce some of the commonly held notions on DCS design:

• The 2, 3 and 4 node solutions have not allocated a node to either the solenoid

banks, oil system, FMU or Turbine Gas Temperature (TGT) thermocouples -

these are seen as obvious targets for distributed nodes.

• The system weight has not decreased sufficiently to justify the risk of moving

from centralised to distributed architectures.

• The move to a distributed architecture may have a greater impact on dressing

time than system weight. This is something not considered by the architectural

evaluation function.

128

Validation Architectural Evaluation

• The importance of locating EEC and other FADEC components on the engine

core is emphasised.

Figure 6.4.4: Three node solution approximating to the two node solution

It is anticipated that the optimal architecture would be very different if the lifecycle

and business evaluation functions were able to influence the outcome. In the arrangement

presented, the optimiser has no notion of function or redundancy. Therefore, node locations

are optimised purely on physical qualities. The inclination of the human designer is to

allocate related functionality to nodes rather than consider than asses system architecture

from a purely physical perspective. Components such as the TGT thermocouples, oil

system and solenoid banks are seen as obvious candidates for distributed nodes yet non of

the 3, 4 or 5 node architectures has erred towards either of these configurations.

There is perhaps little sense in considering all configurations from 2 to 29 nodes. It is

likely that better distributed solutions will be found where the number of nodes is either

low or high. It is suggested that distributed architectures with 7 to 20 nodes need not

have been considered.

6.5 Validation

There are no precedent distributed architectures against which to judge designs and the

properties of ‘good’ distributed architecture are principally unknown. Identifying poor

architecture is perhaps easier than recognising that which is good. Moreover, Aero Engine

129

Conclusion Architectural Evaluation

Controls has no immediate intention to build DCSs for commercial use and fabricating

prototype systems lies beyond the scope of this project. The outcomes of the research

will be evaluated using not only the hard data produced but against conjecture and

discrepancies in rational opinion.

The two node solution presented in this chapter represents a, ’plausible’ solution to

the DCS design problem. The result cannot be shown to be optimal in itself but could be

validated against other similar solutions or real life systems if the data were available.

6.6 Conclusion

The method presented in chapter 5 showed how the metaphysical DCSs were constructed

from the GA’s chromosomes. This chapter has shown how these architectures are evaluated

at an architectural level - this process is necessary to verify the architectural evaluation

and the performance of the GA on a representative test problem.

Whilst there is no way to formerly verify the architectures are ‘optimal’, the results

obtained appear to provide ‘rational’ solutions. Despite the simplicity of the results, the

disconnection from functional considerations and redundancy engenders architectures

which contradict some of the commonly held notions on DCS architecture.

Whilst the constituent parts and procedures are based on elementary methods, this

level of architectural optimisation for distributed systems has not been demonstrated

previously.

130

Lifecycle evaluation

Chapter 7

Lifecycle evaluation

7.1 Introduction

Contractual agreements mandate engine manufacturers to support their product through-

out its service life. Engines for large civil aircraft are sold to the airline (in a deal largely

independent of the airframer) at a fraction of their advertised price. To recoup the

difference, the airline pays a fee to the engine manufacturer for every hour that the

engine is operational. The payment is known as the, ‘‘Flight-hour Fee’’ or ‘‘Fleet hour

rate’’. It is expected that the engine manufacturer compensate the airline for any delay

& cancelation (D&C)1 caused by their component and perform or contribute towards

the costs of unscheduled maintenance (USM). The arrangement implores the engine

manufacturer to supply a reliable and robust product whilst working closely with the

airline to ascertain usage, reliability and maintenance patterns. The arrangement is known

as, ‘‘Through-life Support’’ or more colloquially as, ‘‘Power-by-the-hour’’.

Inevitably, the engine manufacturers choose to pass the costs of D&C compensation

and USM actions to their subsystem suppliers, if it can be shown that their product

was at fault. In return, subsystem suppliers such as Aero Engine Controls recoup their

investment as a percentage of the Flight-Hour (FH) fee. The percentage received is

known as the, ‘‘programme share’’ and is dependent on commercial negotiations normally

undertaken prior to product development. Consequentially, subsystem suppliers must

consider the lifecycle implications of their design - their major concerns include reliability,

1A flight is considered delayed if it is despatched more than twenty minutes following the end of the intended despatch

slot. This is not necessarily the same measure used by airlines for evaluation of passenger services.

131

Lifecycle Modelling - Literature review Lifecycle evaluation

improving fault isolation and ensuring that component obsolescence does not hinder their

long-term ability to support the product.

Traditionally, engine and subsystem suppliers report the lifecycle performance of

their products using statistical measures such as MTTF, availability and Mean Time to

Unscheduled Removal (MTTUR). These statistics are important for product comparisons,

analysis of new and emerging technologies and product promotion. By contrast, the

airline’s primary measures of lifecycle performance are impact on operational efficiency

and public reputation. Airlines are concerned with the number and cost of delays, the

fastest and cheapest methods of repair and conserving or improving their public reputation.

If a lifecycle evaluation is to hold industrial credence, it must address both statistical

measures and the day-to-day impact of product failure.

This chapter details the evaluation function used by the GA to establish the lifecycle

performance data of each candidate DCS. Sections 7.3 to 7.6 describe the nature of the

engine lifecycle and the various operational actions and behaviours performed whilst in

service. A brief literature survey (section 7.2) considers various methods of lifecycle

modelling presented in relevant publications before section 7.7 details the techniques

and algorithms used in the Monte Carlo simulation. Simulation results and analysis are

presented in sections 7.9.1 and 7.9.2.

7.2 Lifecycle Modelling - Literature review

Product lifecycle analysis and modelling has attracted a great deal of interest within

many different disciplines. System lifecycle models may be realised using many different

methods. References to lifecycle evaluation and modelling may be found in academic

texts referring to disciplines as disparate as environmental impact assessment for motor

vehicles, to modelling family spending habits in response to changing incomes.

If the lifecycle evaluation is to account for the nuances aircraft operation and main-

tenance, then Monte Carlo simulation (Kochanski, 2005) is perhaps the only feasible

method. Deterministic methods are unable to cope with the logical decisions taken whilst

undertaking maintenance actions and determining the implications disruption. Methods

based probability theory alone cannot account for many of the considerations most im-

portant to the airlines. The suitability of the Monte Carlo approach is reinforced by the

132

The Engine Lifecycle Lifecycle evaluation

work of Schmitt & Singh (2010) on supply chain modelling, Crk (2002) on component

level performance simulation and Marquez & Iung (2007) on using MCS to determine

reliability and availability data. Whilst none of these papers is directly relevant the field

of aerospace systems, the problems considered have many associating features.

Several authors have considered Monte Carlo methods for the simulation of aircraft

fleet performance eg. Yang et al. (2002). Such simulations do not operate at a component

level and do not account for many real-word nuances. There is vast amount of academic

literature regarding flight-scheduling and the efficient response of flight-schedules to dis-

ruption caused by weather, mechanical failures and air-traffic control problems. Examples

include, Lee et al. (2007) who use a genetic algorithm to develop a flight schedule which

is considered robust to disruption.

Prescott & Andrews present a Monte Carlo based method of modelling time limited

despatch for a jet engine EEC. The their work (Prescott & Andrews, 2005, 2006a,b)

compares the Monte Carlo method against a time-weighted fault tree approach and a

Markov analysis. The EEC architecture considered in their work is comparatively trivial

and components fail according to exponential failure functions. Prescott and Andrew’s

work focuses on the TLD process rather than the performance of the EEC. Their work

does not consider the impact of disruption. The author has found no evidence of other

component level reliability analyses focusing on the despatchability of aircraft.

Although not implemented in their published form, the MCS algorithm used here

incorporates techniques inspired by the work of Yang et al. (2009) and Durga Rao et al.

(2009) on dynamic fault tree synthesis and analysis.

7.3 The Engine Lifecycle

The product support life of a large civil engine may extend to 45 years and consists of three

distinct phases: product development, manufacture and in-service support. Typically,

large engines take five to eight years to design, develop and deploy; most are expected

to remain in service for thirty years. The manufacturing phase runs concurrently with

the in-service phase although a small number of manufactured units are required to

support test, integration and validation. Generally, the product is manufactured and

sold over a ten year period with a peak production output during the fifth or sixth year.

133

The Engine Lifecycle Lifecycle evaluation

Consequentially, engine and subsystem suppliers consider the product to be a going

concern for around forty-five years1. The lifecycle of an engine is depicted in figure 7.3.1

below:

Figure 7.3.1: The engine lifecycle

Once in service, the airframe and engines enter a pattern of service cycles whereby

the plane flies for a fixed period before being taken out of service for inspection, repair

and overhaul. This cycle usually extends over 4-5 years although the duration is formally

measured in flight hours or aircraft cycles. Throughout the in-service portion of the cycle,

the aircraft is subject to mandated checks and scheduled maintenance. If component

replacement or repair is required outside of these stipulated service times then Unscheduled

Maintenance (USM) is performed at cost and inconvenience to the airline. The airlines seek

to control, mitigate and recoup the costs of both scheduled and unscheduled maintenance

via the through-life service agreement. Support agreements vary from airframe to airframe

and airline to airline but most oblige the engine supplier to provide spare parts, perform

maintenance and compensate for loss of earnings due to engine-related disruption.

At roughly 15-20 years service (or FH equivalent) most aircraft are subject to a Mid-life

Overhaul (MLO). MLO provides an opportunity for more capable subsystems to be

installed or for the re-design of recently obsolescent or unreliable parts. Following MLO,

the aircraft resumes the pattern of flight and service cycles until retirement.

By the time the airframe retires, it is likely to have been sold to another airline and/or

performing a reduced service. Once the through-life service agreement expires, the engine

manufacturer ceases responsibility for support of the product and the airframe’s owner

assumes responsibility for proper disposal.

1The service lives of many engines extend beyond thirty years. However, once this period has elapsed and the airframe

sold on, the suppliers are rarely accountable for operational support

134

Engine Maintenance Lifecycle evaluation

7.4 Engine Maintenance

7.4.1 Repair and Overhaul (R&O)

As previously described, the airframe and engines are subject to regular checks mandated

by various air-worthiness authorities. The checks are referred to as ‘A’, ‘B’, ‘C’ and ‘D’

checks. Each check is performed at a different interval and removes the airframe from

service for a different duration. Each is described presently; the figures given are typical

but vary from airframe to airframe and airline to airline:

A-Check - Interval 500FH (approx 25 days). Removal from service: Overnight

The check is usually performed at the airport gate. The operability of the aircraft

subsystems is ascertained and the airframe checked for superficial damage. Fault and

diagnostic logs may be read from aircraft subsystems. Failed components may be replaced

although the limited duration of the check may not permit more demanding repairs.

B-Check - Interval 1500FH (approx 3 months). Removal from service: 1 day

A more comprehensive version of the A-check usually performed in an aircraft hanger.

B-checks may be satisfied by a series of A-checks if it can be shown that every element of

the B-check has been addressed within a suitable period.

C-Check - Interval 7500FH(approx 15 months). Removal from service: 3

days

C-Checks are usually performed in maintenance hangers. The nature of the check differs

with the type of aircraft and flight schedule but generally comprises a more thorough

inspection of the airframe, engines and subsystems. Some components are likely to be

disassembled to allow for more detailed inspection. The check allows for expendable

items to be replaced and provides opportunity for more resource demanding maintenance

actions.

D-Check - Interval 22500FH (approx 5 years). Removal from service: 5 weeks

Substantial parts of the airframe and engines are disassembled to allow comprehensive

inspection and maintenance. The check is very expensive to perform both in terms of

maintenance cost and lost flying hours. A MLO would usually be undertaken in place of

a D-Check. Aircraft are usually retired at the time a D-check is due.

In order to simulate the matters described above, the algorithm requires the number

of flight-hours flown over the 30 year life-cycle to be calculated. The calculation factors

135

Engine Maintenance Lifecycle evaluation

in the removal from service for maintenance actions. The number of flying hours flown

over the lifetime of the aircraft, fl may be calculated using equation 7.1:

fl =

⌈
l × 365× fday

ID

⌋
ID (7.1)

Where l is the life of the aircraft in years, fday is the number of flying hours per day (16

in this case), 365 is the number of days in a year and ID is the interval between D-checks

in flying hours.

Using this figure, the number of A, B, C and D checks performed over the life of the

aircraft may be calculated. The number of D-checks, ND is:

ND =
fl
ID

(7.2)

The number of C-checks performed during the life of the aircraft Nc is then:

NC =
fl
IC
−ND (7.3)

Similarly, the number of B and A checks performed (NB and NA) are found by:

NB =
fl
IB
− (ND +NC) (7.4) NA =

fl
IA
− (ND +NC +NB) (7.5)

The total number of flying hours lost to scheduled maintenance actions, fm is:

fm = NADA +NBDB +NCDC + (ND − 1)DD +DMLO (7.6)

where DA, DB, DC and DD are the duration of the A, B, C and D-checks in flying

hours and DMLO is the duration of an MLO in flying hours. One D-check is replaced by

an MLO hence (ND − 1) in the fourth clause of equation 7.6.

Therefore, the actual number of scheduled flying hours over the lifetime of engine, fh

is:

fh = fl − fm (7.7)

136

Engine Maintenance Lifecycle evaluation

Scheduled Maintenance

Mechanical, hydraulic and fueldraulic subsystems often require scheduled maintenance

to replace worn or expendable parts. It is usual that such subsystems are designed to

survive the interval between D-checks without requiring maintenance, although this is

not always possible.

Electronic subsystems such as the EEC are usually considered, ‘‘fit-and-forget’’ items

intended to survive the service duration without requiring attention. In practice, the EEC

has mechanical failure modes associated with the temperature and vibration of the hostile

engine environment. Common failures include dry solder joints, component and software

failure. These failures are considered to be random and are not protected against during

Repair & Overhaul (R&O) unless a specific threat or failure mode has been identified.

Although software failures are not ‘random’, it is assumed that the software design process

required for certification is robust enough that they may be treated as such. Failed EECs

are removed during service phases, replaced with spares and the faulty EEC returned to

the manufacturer for repair. Once returned, the EEC is tested and any fault repaired. In

some instances, the returned unit is ‘patched’ to protect against failures seen in similar

units or re-programmed with the latest version of software. Once the maintenance action

is complete, the unit is returned to the airline. The cost of these repair and protection

actions is owned by the EEC developer and absorbed as a cost of doing business.

All these checks provide opportunity for different levels of USM to be undertaken. The

complete set of checks, scheduled and unscheduled maintenance are generally referred to

as Repair & Overhaul (R&O) actions.

7.4.2 Uncertainty in Maintenance Actions

The EEC is particularly vulnerable to removal in the event of an engine failure. The EEC

interfaces to nearly every other engine sub-system, meaning the unit is under suspicion

during the investigation of almost any engine fault. The error codes and messages originate

from the EEC and maintenance staff often question the integrity of the diagnosis which

prompted the message. Sensor and actuator failures are notoriously hard to detect and

invariably transient or intermittent. Therefore, the EEC may correctly diagnose a fault

which does not re-assert itself if a new EEC is swapped in. Faults in the harnessing and

137

Time Limited Despatch (TLD) Lifecycle evaluation

connectors such as broken pins, shorts or impedance variations often appear similar to

internal EEC or sensor faults. Additionally, the electrical connectors make the EEC far

easier to remove than hydraulic components which require the draining and bleeding of

fuel and oil systems. Sensors are often located deep in the engine chassis and subsequently

more difficult to remove. The combination of these factors leads to a disproportionate

number of EEC removals over other engine components, many of which are later found

to have no fault.

No Fault Found (NFF) rates are a key operational metric for the EEC developer

and illustrate the stochastic nature of diagnosis and maintenance actions. Reducing the

rate of NFF removal requires a multifaced approach including improving fault diagnosis,

better defined lexigraphy in error messages and improved training of maintenance staff.

The difficulty of the latter is exacerbated by the high staff turnover, costs and deferred

responsibility.

The MCS determines that 40% of node removals will result in a NFF. The current

figure is around 50-60%; the lower figure used here reflects the likely improvement in

fault isolation associated with distributed systems. The business evaluation function uses

these figures to determine the costs of USM to the subsystem provider.

7.5 Time Limited Despatch (TLD)

Commercial Aircraft are permitted to fly in the presence of failures amongst airframe and

engine systems under an arrangement known as Time Limited Despatch (TLD). TLD

was developed on the premise that modern FADEC systems contain sufficient redundancy

and ability to switch between redundant elements, that the risk of hazardous failure in

the presence of existing faults is sufficiently small that the airframe may fly for a limited

period prior to repair. Depending on the likelihood of further component failures causing

a Loss of Thrust Control (LOTC) event, an aircraft acquires one of five despatch statuses:

Full Up Despatch (FUD), Short Term Despatch (STD), Long Term Despatch (LTD), Do

Not Despatch (DND) or Manufacturer Defined Despatch (MDD). The despatch status

determines how long the aircraft may fly for before the fault requires attention. Under

MDD the operator consults the manufacturer of the failed part or subsystem to determine

the appropriate action. In practice, MDD will result in the fault being recategorised to

138

Time Limited Despatch (TLD) Lifecycle evaluation

one of the other four statuses and need not be handled separately in the lifecycle model

(FAA, 2001).

The despatch status is effectively defined using a fault tree where the top event is

LOTC. The despatch status of the engine and (and therefore effective on the aircraft) is

dependent on the top event probability when calculated in the presence known component

failures.

• Full Up Despatch: < 10 LOTC events per 106FH. Implies no known fault1

• Long Term Despatch: <75 LOTC events per 106FH in the presence of a

discovered fault

• Short Term Despatch: 75-100 LOTC events per 106FH

• Do Not Despatch: >100 LOTC events per 106FH

By necessity, the despatch status is dependent on discovered faults only. Accordingly,

an engine in FUD configuration need not be fault free and the TLD status is likely to be

an under-estimate of the top event probability. In practice, airlines determine a set of,

‘despatch configurations’ whereby pilots may determine the despatch status of the aircraft

based on known component failures. It is assumed that the EEC software is capable

of detecting all faults which gives rise to STD and report the error to the cockpit as a

maintenance message.

It is assumed that the despatch status of a single engine is effective on the whole

aircraft. Therefore, if an engine fault results in STD status, that condition applies to the

whole airframe.

7.5.1 Maintenance strategies for TLD

There are two maintenance strategies for TLD: Minimum Equipment List (MEL) and

Periodic Inspection/Repair (PIR). MEL assumes that despatchability is dependent on a

minimum subset of components which must be in working order for airframe to fly. MEL

is generally associated with STD faults and assumes that the time of failure is known.

110 LOTC events per 106FH is the reliability necessary to gain flight-worthiness and refers to the fault-free state.

Therefore, if the probability of a LOTC event in the presence of a discovered fault(s) is less than 10 per 106FH, the aircraft

assumes LTD, not FUD status.

139

Measures of Lifecycle performance Lifecycle evaluation

Figure 7.5.1: MEL Maintenance usually applied to STD
faults

Figure 7.5.2: PIR maintenance usually applied to LTD
faults. ‘I’ denotes an inspection.

DND status requires that corrective maintenance be performed before the airframe is

permitted to fly. Typically, STD faults require resolution within a period of 125-150FH

and LTD faults within 500FH. All LTD faults are assumed to occur half way between the

current and previous inspection. The 500 hour despatch interval is often 250FH from the

point of discovery. In FUD, the aircraft is considered free of faults, although undiscovered

faults may be present in the system.

7.6 Measures of Lifecycle performance

The principle measure of lifecycle performance is despatch reliability. Despatch reliability

is an industry standard measure combing both availability and reliability - it is the

ratio of actual despatches to scheduled despatches. Typically, engine manufacturers

will maintain records of the despatch reliability with respect to engine failures alone.

Subsystem suppliers tend to measure their service life performance by the MTTUR of

their component. Important measures of lifecycle performance include:

• Despatch reliability

• Mean Time to Unscheduled Removal (MTTUR) (for subsystems and compo-

nents)

• Number of flights cancelled

• Number and duration of delayed flights

• Number of missed flights

• Number of components replaced throughout the lifecycle

• Cost of replacement components

• Number of USM actions

• Cost of USM actions

140

The Lifecycle Evaluation Function Lifecycle evaluation

7.7 The Lifecycle Evaluation Function

The lifecycle evaluation function uses a Monte Carlo simulation to model the engine

controller’s performance throughout its 30 year life. The simulation incorporates flying

time, un-scheduled and scheduled maintenance as well as MLO. The simulation ascertains

all the parameters listed in section 7.6 for a given architecture. If the lifecycle evaluation

were not detached from the architectural evaluation, the parameters would change from

architecture to architecture as the GA locates the dual redundant elements of the system

to achieve the best architectural configuration. Electronic components in cooler parts of

the engine have better reliability and dual redundant elements located on different nodes

are likely to increase the system availability.

The simulation mimics the lifecycle of a typical long-haul, large, civil aircraft operated

by an established airline1. The aircraft flies between three destinations: ‘A’. ‘B’ and ‘C’

as shown in figure 7.7.1 below:

Figure 7.7.1: Flight paths used in the lifecycle simulation. The three destinations offer
different levels of maintenance

Four routes are flown over a 48 hour period with breaks between flights and a 7 hour

overnight stop at destination A. The 32 hour flying time represents a 66% utilisation of

the aircraft which is typical for a long-haul carrier. The timeline for the flight schedule is

shown in figure 7.7.2 below:

1All values used in this simulation are typical and have not been based on any particular airline’s, airframer’s or engine’s

data

141

The Lifecycle Evaluation Function Lifecycle evaluation

Figure 7.7.2: The 48 hour timeline of flights between destinations A, B and C. Times in
between flights are shaded.

Destination A is the airline’s home base and thus the preferred location for all main-

tenance. It is assumed to have the most comprehensive stock of spare parts and is the

destination where maintenance is most readily performed. All scheduled maintenance

is performed at destination A as well as all USM where possible. Destination B is a

secondary base and possess a more limited stock of parts. If a part is unavailable at B,

it must be scrambled from another airline or put on a flight from the airline or engine

manufacturer’s home base. This process is deemed to take 24 hours and has the effect of

cancelling one flight and missing three others. Destination C is a tertiary base, carries

few spare parts and maintenance actions are difficult to schedule. Like destination B, a

part which is not immediately available will have to be scrambled; a process which incurs

a 24 hour removal from service.

Each of the inter-flight breaks offers an opportunity for USM, although the time

available is considered to be one hour less than the break duration. This time would allow

for cleaning, refueling and replenishment of the aircraft. It is important to note that the

simulation mimics the performance of the engine’s lifecycle with respect to the DCS, not

the entirety of the engine, or the service offered by the airline. If a flight is cancelled

due to an engine failure, the airline may choose to use a substitute aircraft in it’s place.

Furthermore, elements of the engine beyond the EEC have their own failure modes not

considered by the simulation.

The aircraft is assumed to enter service for 30 years. Based on the 66% flight utilisation,

the airframe flies for approximately 5,800 hours per anum excluding time out of service

for R&O. The total service life is approximately 175,000FH. It is assumed that MLO is

performed at year 15.

As the simulation progresses, it mimics the real-world response to a set of component

142

The Lifecycle Evaluation Function Lifecycle evaluation

failures. These failure events are captured in a software class. The lifecycle simulation

works entirely on a set of failure events and does not make direct reference to the

metaphysical DCS. The events are derived from the metaphysical model and passed to

the evaluation function upon initialisation. Depending on the time and consequences of

the failure, the aircraft will undergo scheduled or unscheduled maintenance. Delayed or

cancelled flights may result as a consequence of unscheduled maintenance.

7.7.1 Component Failure Models

The despatch status of the DCS is dependent on the likelihood of further hazardous or

catastrophic failures during the interval from the time a failure is detected or discovered

to a scheduled or hypothetical unscheduled maintenance action. In order to calculate this

failure, we require failure distributions for all the components in the system.

The failure processes (cumulative density function) F (t) for each of the components is

described by a mixed Weibull distribution in the form:

F (t, tc;λ, β1, η1, β2, η2) = λ

(
1− exp

[
−
(
t− tc
η1

)β1])
+

(1− λ)

(
1− exp

[
−
(
t− tc
η2

)β2])
for t > 0

(7.8)

Where λ is the mixing parameter, β1 and β2 are the shape parameters and η1 and η2

are the scale parameters. F (∗) is the probability that the component fails in the interval

(0, t]. tc is the location parameter and is set to the time at which the component was last

replaced. tc is zero for every component at the start of the simulation. Other parameters

may be calculated as follows:

The survival rate:

R(t, tc; ∗) = 1− F (t, tc, ∗) (7.9)

The probability density function:

P (t, tc; ∗) =
d

dt
F (t, tc, ∗) (7.10)

The hazard rate:

h(t, tc; ∗) =
F (t, tc, ∗)
R(t, tc, ∗)

=

[
F (t, tc, ∗)

1− F (t, tc, ∗)

]
(7.11)

143

The Lifecycle Evaluation Function Lifecycle evaluation

An exponential distribution is too simplistic to provide a plausible representation

of real-world electronic component failures. Papers such as Jensen (1989) assert that

components such as microprocessors tend to become more reliable throughout their service

life given that failures are often associated with flaws in the manufacturing process rather

than wear-out. High temperatures and chassis vibration induce wear-out mechanisms

such as solder joint failure and package damage. The mixed Weibull distribution allows

a single component to have both burn-in and wear-out failure mechanisms and hence

a hazard function in the form of a bathtub curve. The flat portion of the curve with a

constant failure rate is the, ‘‘useful life period’’. Crudely, the scale parameters η(1,2) may

be thought of as µ(1,2) = MTTF(1,2)
−1 for the primary and secondary failure mode of the

device. The units of MTTF used in the simulation are Flight-Hour (FH). β(1,2) determine

the kurtosis of the failure function and hence the rate at which failures occur prior to or

after the useful life period. Setting β values to zero removes either the burn-in or wear-out

mechanism from the function. With both values set to zero, the component will have

a constant failure probability for all time. These parameters could be estimated from

actual reliability data using techniques outlined in papers from Falls (1970); Cheng & Fu

(1982); Cacciari et al. (1995). In this simulation, real-world failure trends are represented

by arbitrary parameters.

Component failure times are found using the inverse of the mixed Weibull function.

The secant method is used to provide a numerical solution in order that component failure

times are set according to a random number.

7.7.2 The Failure Event Class

The failure event class contains all the necessary operations and attributes for the Monte

Carlo simulation to operate. The class is inherited by the component to which a failure

event is associated. This may be a circuit block, node, or harness. A class diagram is

given in figure 7.7.4:

144

The Lifecycle Evaluation Function Lifecycle evaluation

Figure 7.7.3: Mixed Weibull distribution: Failure function, probability density function
and hazard rate. The parameters used to generate these example distributions are based on
typical failure characteristics of jet engine components. The parameters do not relate to any

particular component or failure mode

145

The Lifecycle Evaluation Function Lifecycle evaluation

Figure 7.7.4: The FailureEvent class

The constructor function generates a random failure time for the event using the mixed

Weibull function as described in (section 7.7.1). The failure time becomes an attribute of

the class:

The Fail() function is called from the Monte Carlo simulation (MCS) to set the

flag Failed to true. This indicates that the component has failed but depending on

circumstances, that failure may not have been detected. Detect() sets the Detected

flag to true and indicates that not only has the component failed, but that the failure

has been detected either by a maintenance technician or automatically by the EEC. This

function would usually be called during a USM action where a fault may detected but

not necessarily fixed. The HasBeenDetected function returns the value of the Detected

flag. The Fix function imitates the replacement of the component and is called during

maintenance actions. The function increments the Replaced counter, generates a new

failure time relative to the current simulation time and sets both the Discovered and

Failed flags to false. The function returns the cost of the replacement part(s). The

Fix time attribute stores the number of hours that the component will take to change in

the event that it requires replacement.

The MCS requires only the set of FailureEvent objects and works at a level of

abstraction above the architecture of the underlying distributed control system (DCS).

Accordingly, the simulation has no direct reference to the metaphysical model or its

146

The Lifecycle Evaluation Function Lifecycle evaluation

parameters.

7.7.3 TLD Maintenance Strategy

An airline will adjust the level and timing of maintenance to avoid service disruption. These

behaviours are reflected in the MCS. The following subsections outline the maintenance

strategy employed:

R&O Strategy

All scheduled repair & overhaul (R&O) actions will attempt to return the engine to

FUD configuration by fixing every known or discovered fault. This will involve replacing

all knowingly faulty parts. However, to reflect reality, the probability of discovering

previously undiscovered fault changes with the duration of the check being performed. i.e.

a fault is much more likely to be discovered at a D-check than an A-check. The algorithm

for R&O is given in algorithm 7.7.1:

Algorithm 7.7.1: PerformR&O(Components)

for each component ∈ Components

if component.Failed and component.Detected

then cost+ = Component.F ix()

else if component.Failed and component.Detected = false

then if (rand < A check detection probability)

then cost+ = component.F ix()

sim results.cost of components+ = cost

The ‘Fix()’ method of the FailureEvent class returns the cost of the replacement

component. This is added to the total cost of components in the simulation results. The

function presented above is exactly the same for B, C and D checks although the likelihood

of fault detection is greater.

147

The Lifecycle Evaluation Function Lifecycle evaluation

USM strategy

USM actions involve the minimum amount of maintenance required to ensure that the

aircraft can fly up until its next scheduled check. In doing so, the airline is gambling that

no further failures will occur which necessitate USM prior to scheduled R&O. In the past,

airlines would fix all known faults and the engine would leave USM in FUD configuration.

However, mindful of the costs of delays and acknowledging improvements in component

reliability, airlines increasingly choose the minimum fix approach; this is reflected in the

simulation.

In order to determine the minimum maintenance actions required at USM, a brute-force

algorithm is used to assess every permutation of fixes. Their cost and their potential for

seeing the aircraft through to the next scheduled R&O action is assessed and compared.

Whilst this could prove computationally expensive, it is unlikely that the number of

concurrent failures will be high and hence the number of permutations should remain low

(i.e. 2-3).

7.7.4 Algorithm

Despite the appearance of the flight pattern timeline, the MCS works entirely in flight

hours; this is consistent with industrial measures of lifecycle performance. A notion

neglected by the simulation is that of aircraft cycles. A cycle is considered to be one take

off and landing, i.e. a single full stress of the airframe and engines. This measure is more

important to short-haul operators given the increased burden imposed by many take off

and landing events. The delays and cancellations which occur in natural time are derived

and only an ostensible part simulation’s progress.

The algorithm starts with a vector of components each with a predetermined failure

characteristic, replacement cost and fix time. The algorithm is most easily explained by

the flow diagram given in figure 7.7.5 below although a brief description is given presently.

148

The Lifecycle Evaluation Function Lifecycle evaluation

Figure 7.7.5: Top level flow diagram showing the algorithm of the Monte Carlo lifecycle
simulation.

Having sorted the events into chronological order, the simulation time is set to the

first event failure time and the previous event time to zero. If a scheduled maintenance

action was required in the interval between the current failure event and the previous

event, the maintenance action is performed. This is achieved by first identifying which

of the checks should have been performed and the executing a function to perform the

149

The Lifecycle Evaluation Function Lifecycle evaluation

required action. If no scheduled maintenance is due, the algorithm checks to see that a

despatch deadline has not been passed; if it has, the simulation time is put back to the

time of the deadline and the unscheduled maintenance performed. If a despatch deadline

has not been passed, then the simulation time becomes equal to the component failure

time (in FH), the component has its status set to failed and hypothetical despatch status

calculated. The hypothetical status allows for components to fail without detection - ie

those faults that lead to LTD and are discovered during scheduled R&O actions and those

which lead to STD status are discovered immediately.

If the hypothetical despatch status is FUD or LTD (theoretically it should never be

FUD in the presence of failure), then the failure event is removed from the array of live

failure events and the next failure event loaded into the algorithm. If the hypothetical

status is STD then the actual despatch status is set to STD and the STD deadline set

appropriately with respect to the current simulation time. If the hypothetical despatch

status is DND, maintenance is performed at the next destination.

Delays and Cancellations (D&Cs)

The availability of parts, ability to schedule work and the time taken to perform USM

actions determines whether a flight is delayed or cancelled. Flights are considered delayed

if the time taken to perform the necessary maintenance would permits flight to depart

without compromising the departure of those which follow. A flight is cancelled, if the

time taken to complete USM would impinge on future flights. This measure does not

necessarily reflect real operational practice.

For example, (w.r.t figure 7.7.2) if an aircraft were to arrive at B with a DND fault

and the necessary maintenance takes 4 hours, then the flight from B back to A could still

return to A within one hour of the flight due to depart from A→C and hence the flight

B→A is delayed. If the fix time were 7 hours, the A→C flight would be affected and so

the flight between B and A is cancelled. The same would apply if a part were unavailable

or the work could not be scheduled. Missed flights are those which the plane does not fly

because it is waiting to synchronise with and rejoin the flight schedule. For the previous

example, if the flight from B→A were cancelled, then the plane cannot rejoin the schedule

until the flight pattern returns to B and the three flights subsequent to the cancellation

(A→C,C→A,A→B) are missed. The distinction between cancelled and missed flights is

150

The Lifecycle Evaluation Function Lifecycle evaluation

important for calculating despatch reliability (see section 7.7.6).

7.7.5 Determining the Despatch Status

During the simulation, a two-tier fault tree is used to determine the despatch status of

the aircraft at any given time. The top event is the occurrence of a hazardous or major

failure of the engine owing to the malfunction of the distributed control system. Although

not the formal definition, the top event is referred to as a Loss of Thrust Control (LOTC)

event. The probability of this event occurring determines the despatch status and hence

the nature of the ensuing maintenance action within the simulation.

The ‘top’ tier of the fault tree relates to the functional part of the DCS and the ‘lower’

tier, to the components which comprise the distributed system under evaluation. The

failure events in the top tier relate entirely to control system tasks and are independent of

the underlying control system. Each of the top tier events is an intermediate event when

the two trees are combined. . Events in the top tier include the failure of the control

system to provide the correct fuel flow and the failure of the over-threat tasks to recognise

the exceedances and shutdown the engine. Obviously, these tasks depend on the system

hardware to measure and condition engine parameters. The failure of this hardware is

considered in the lower portion of the fault tree.

The bottom tier of the fault tree relates to the components which allow the tasks of the

top tier to be performed. Based on the logical model given in (section 5.4.8), we derive a

general fault tree for the failure of any given task. For every event in the top tier of the

fault tree, there exists an instance of the general form showing how the task failure is

dependent on the system hardware. The general form of a task failure is given in figure

7.7.6 below:

151

The Lifecycle Evaluation Function Lifecycle evaluation

Figure 7.7.6: General model of a fault tree for individual task failure

A textual interpretation of the task failure tree states that, ‘‘A task will fail if the node

hosting the task fails, or any of the parameters necessary to complete the task become

unavailable’’. Given that the provision of parameters is dependent on the electrical signals

from sensors and actuators and the interface circuitry to which they connect, it may also

me stated that, ‘‘A parameter becomes unavailable if either the interface providing that

parameter or any of the signals connected to the respective interface fail’’. A node failure

arises from failure of either the processing platform or power supply. These failure modes

many be due to wear-out induced by vibration and temperature or a random failure

caused by a design error or software bug. Interface failure modes are the same as for

nodes whilst a signal failure is caused by failures of a harness pin or connector. A boolean

expression for the failure of a task T performed by node N which is dependent on a single

parameter derived form a single interface I, with connection to a single signal S is given

as:

T = N + (I + S) (7.12)

As stated above, node failure is dependent on failure of either the power supply Npsu or

processing platform Nµ. Furthermore, an interface need not be located on the same node

as the task is performed and so the failure of an interface is dependent on the interface

152

The Lifecycle Evaluation Function Lifecycle evaluation

itself I, and the node on which it is hosted In. Therefore the expression may be rewritten

as:

T = (Npsu +Nµ) + (I + Ipsu + Iµ + S) (7.13)

Where the failure of the node hosting the interface is In = Ipsu + Iµ. In practice a task

will require many parameters, each with their own interfaces and signals. Equation 7.13

may be rewritten in general form as:

T = (Npsu +Nµ) +

|I|⊎
i=1

(I i + I ipsu + I iµ)

|S|⊎
s=1

Ss

 (7.14)

Where] denotes the cumulative logical ‘OR’ of all interfaces and signals associated

with the task. |I| and |S| are the number of interfaces associated with the task and

number of signals associated with the interface respectively.

The expression given in equation 7.14 is independent of components and consists of

independent failure modes - there are no logical ‘ANDs’ relating the failure modes. In

essence, the probability of a task failure is simply the OR-ing together of all the component

failure probabilities for that task, whether they be nodes, interfaces or signals.

In order calculate the probability of failure for each task, the relationships between tasks

and nodes, tasks and interfaces and tasks and signals and their multiplicities are required.

This information is provided in the matrices RQN, RQI and RQS (section 5.5). (The

terms Ipsu and Iµ may be neglected from equation 7.14 as the matrix RQN = RNIRIPRPQ

includes the relationship between interfaces and nodes in its calculation).

Component Failure

The relationships between signals, circuit blocks, nodes and the tasks they support are

recorded in the matrix RFUD where:

RFUD ,


RSQ

RIQ

RT
QN

 (7.15)

153

The Lifecycle Evaluation Function Lifecycle evaluation

RFUD represents the relationships between components and tasks when every compo-

nent is working and the engine is in FUD configuration. For the system described in the

previous section: RFUD

RFUD =



Task 1 Task 2 Task 3

Signal 1 1 1 0

Signal 2 1 0 1

Signal 3 1 0 1

Interface 1 1 0 1

Interface 2 1 1 0

Node 1 0 0 1

Node 2 1 0 1


(7.16)

As described above, the failure probability of a task is the probability that any of the

hardware components allowing that task to be performed fails. This is representative of

industrial practice where the possibility of software and functional errors is considered to

be zero given that the design process is assumed to be robust enough to eliminate them.

This of course, is an unrealised ideal.

It is assumed that components (the union set of nodes, signals and circuit blocks) will

each fail according to the mixed Weibull distribution presented given in (section 7.7.1).

Therefore, the probability of component failure in the interval (0, t] is calculated using

the function Pc(∗) equation 7.17:

Pc(t, tc;λ,β1,η1,β2,η2) = λ

(
1− exp

[
−
(
t− tc
η1

)β1
])

+

(1− λ)

(
1− exp

[
−
(
t− tc
η2

)β2
])

for t > 0

(7.17)

This is the vector form of the mixed Weibull function described in section 7.7.1. λ,

β(1,2), η(1,2) and tc are vectors containing the mixing, shape, scale and location parameters

for each of the components. t is the simulation time. The location parameter tc is non-zero

where a component has been replaced prior to the current simulation time:

λT ,
[
λS1 . . . λS|S| , λC1 . . . λC|C| , λN1 . . . λ|N |

]
(7.18)

154

The Lifecycle Evaluation Function Lifecycle evaluation

βT1 ,
[
β1S1 . . . β1S|S| , β1C1 . . . β1C|C| , β1N1 . . . β1|N |

]
(7.19)

βT2 ,
[
β2S1 . . . β2S|S| , β2C1 . . . β2C|C| , β2N1 . . . β2|N |

]
(7.20)

η1
T ,

[
η1S1 . . . η1S|S| , η1C1 . . . η1C|C| , η1N1 . . . η1|N |

]
(7.21)

ηT2 ,
[
η2S1 . . . η2S|S| , η2C1 . . . η2C|C| , η2N1 . . . η2|N |

]
(7.22)

In a full implementation, the mixing and shape parameters would be determined by

the component’s specification and the scale parameters by the components temperature

on the engine (see section 5.10). The simulation requires the probability of component

failure over the duration of the next despatch interval dt. This is found using the function

Pci:

Pci(t, dt, tc; ∗) = Pc(t+ dt, tc; ∗)− Pc(t, tc; ∗) (7.23)

Where t is the simulation time. The function Pci returns a vector of length |C| where

the column values are the probability of the c-th component failing in the interval (t, t+dt].

The matrix PT is defined as a |C| × |Q| matrix that replicates this vector for all |Q| tasks

multiplied by RFUD

PT ,
[
Pci(t, dt, tc; ∗)1, . . . , Pci(t, dt, tc; ∗)|Q|

]
•RFUD (7.24)

Where • denotes element wise matrix multiplication. For the system presented in

equation 7.16, PT may be:

PT =



0.262 0.262 0

0.01 0 0.01

0.0245 0 0.0245

0.176 0 0.176

0.845 0.845 0

0 0 0.143

0.167 0 0.167


(7.25)

155

The Lifecycle Evaluation Function Lifecycle evaluation

The probability of each task failing in the interval (t, t+ dt] is found by applying the

inclusion-exclusion principle (equation 7.26) to every column of PT

∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣ =
n∑
i=1

|Ai| −
∑

i,j : 1≤i<j≤n

|Ai ∩ Aj|

+
∑

i,j,k : 1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n−1 |A1 ∩ · · · ∩ An|
(7.26)

PT represents the system in the initial state when no faults are present. If a component

c fails, the matrix PT is calculated using the function Pci. The c-th row of PT is set equal

to RFUD(c,∗). This sets the failure probability of the corresponding component to ‘1’

for every task dependent on the component. The inclusion-exclusion principle is applied

to PT to determine the task failure probability and those probabilities are used as the

event probabilities for the top-level fault tree. The top event probability determines the

despatch status.

7.7.6 The Results Array

Each pass of the MCS simulates one engine lifecycle and returns an array containing

various performance measures. The array is named lifecycle results and pertains

to one run of the monte-carlo simulation. Testing has shown that tens or hundreds of

iterations may pass before the despatch reliability converges to a sufficient accuracy.

The list below details various elements of the results array. Default values are given in

parentheses and array sizes in square brackets:

lifecycle results.

despatch reliability*

MTTUR*

total service life*

availability*

average delay*

cancellations [1:year](0)

missed flights [1:year](0)

USM actions [1:year](0)

USM cost [1:year](0)

USM duration [1:year](0)

components replaced [1:year](0)

156

The Lifecycle Evaluation Function Lifecycle evaluation

delays [1:year](0)

delay duration [1:year](0)

cost of components [1:year](0)

standing time [1:year](0)

Where, year is the number of years that each DCS remains in service.

Most of the parameters (all those with default values of zero) are simply incremented

as the simulation progresses. For example, if a flight is delayed the value of delays is

lifecycle results.delays += 1. These results are divided by the number of iterations

to give an average value over all iterations. The items marked with an asterisk are

calculated either prior to or following convergence of the simulation. The remaining

parameters are discussed presently.

Simulation Results

At the end of the simulation, a single instance of the lifecycle results array is returned

to the genetic algorithm (GA). Aside from those parameters marked with an asterisk in

the list above, the final results array contains averages of all other results parameters

from every pass of the simulation. For example:

final lifecycle results.cancellations =

⌈
1

p

p∑
n=1

lifecycle results[n].cancellations

⌋
(7.27)

Where p is the number of passes taken for the simulation to converge.

Despatch Reliability

Despatch reliability is simply the percentage of scheduled flights that depart on time. In

this simulation, the measure equates to the percentage of flights which are not delayed

or cancelled from those which the aircraft is scheduled to fly. The despatch reliability

calculation excludes missed flights, as from the time of initial cancellation, the airframe is

not expected to undertake these flights. Given the 32FH, 4 despatch flight cycle shown

in figure 7.7.2, the total number of scheduled despatches fd may be calculated by 4fh/32

and hence the despatch reliability by:

157

The Lifecycle Evaluation Function Lifecycle evaluation

despatch reliability =

[
fd − missed flights− cancellations− delays

fd − missed flights

]
%

(7.28)

Mean Time to Unscheduled Removal

MTTUR is the average time between replacement of any component comprising the

distributed EEC, be it a node or harness. It is assumed that circuit blocks are structurally

incorporated into the node and cannot be replaced in isolation. If a circuit block fails, the

whole node is replaced.

Therefore, MTTUR (w.r.t flying hours) is calculated by equation equation 7.29:

MTTUR(system) =

[
fh

USM actions

]
[hours] (7.29)

Given that the EEC is intended as a, ‘‘fit and forget’’ subsystem, all necessary mainte-

nance is considered unscheduled regardless of whether flights are delayed or cancelled.

The MTTUR for a single component (n) may be calculated by:

MTTUR(component[n]) =

[
fh

FailureEvent[n].Replaced

]
[hours] (7.30)

Comparison of component removal rates indicates which technologies need to improve

to allow the system to become viable.

Availability

Availability is a time-based rather than despatch-based measure. It is the ratio (expressed

as a percentage) of the total time that the engine actually spends in service to the time it

is intended to spend in service. In this analysis, this is expressed in natural time rather

than flying hours. Availability is the percentage time that the airline may use the airframe

at will and therefore, the duration of all USM actions, missed and cancelled flights are

set against the availability. The standing time parameter in the results array maintains

a record of the total time that the aircraft is stood due to cancelled or missed flights.

Therefore,the availability of the engine may be calculated using equation 7.31:

158

Verification and Validation Lifecycle evaluation

availability = 1−
[
standing time + USM duration

total life in natural hours

]
% (7.31)

Where USM duration is the total number of hours that the engine has spent undergoing

USM.

Average Delay

The average delay is simply the total delay duration divided by the number of delays:

average delay =
dealay duration

delays
(7.32)

These parameters are either used by the GA or the subsequent business evaluation

function.

7.7.7 Implementation

In order to minimise the execution time of the Matlab R© implementation, the Monte Carlo

simulation is structured in a unconventional way. A conceptually simple implementation

would use a linked-list of failure events into which new events could be inserted. These

events would include the component failures, despatch deadlines and maintenance actions.

However, this approach requires the computational burden of searching, sorting and

inserting into the list. To reduce this burden, a logic-based implementation was designed.

Rather than insert maintenance actions and TLD deadlines into the list of events, they

are ‘inserted’ into the algorithm by logical decisions which determine whether R&O

action should have taken place between the time of the previous and current failures.

This approach requires failure events to be sorted following maintenance actions rather

than after every event or inspection. This gain is realised at the expense of algorithmic

complexity, the consequential likelyhood of programming ‘bugs’ and reduced scope for

modification.

7.8 Verification and Validation

The stochastic nature of the Monte Carlo Algorithm makes it very difficult to verify.

Verification is difficult because:

159

Simulation Test and Results Lifecycle evaluation

• The algorithm is driven by random numbers and producing repeatable results

is impossible.

• The response to failure events is highly dependant on previous events which in

turn, were a consequence of randomness i.e. the response to the second failure

event is heavily dependent on the response to and outcomes of the first.

• There are perhaps millions of basis paths

• Contriving inputs to produce definite, repeatable outcomes would mean re-

writing the algorithm to the extent that is would not be representative of the

of the algorithm under test.

• The algorithm is application specific enough that there are no canonical test

problems.

• Due to the unavailability of reliability data for real engine control systems, the

algorithm is limited, (by implementation, not design) to using small sets of

data that allude to, rather than accurately reproduce reality. Real component

failure data would permit validation against real engine performance.

The easiest way to verify the algorithm is through the use of the debugging tools

provided with Matlab R©. By stepping through line by line, the algorithm’s response

to various events, inputs and random numbers can be checked. However, this manual

verification technique is inherently non-formal and cannot easily be recorded in a thesis

such as this.

7.9 Simulation Test and Results

As stated in the thesis introduction, computational constraints mean that the lifecycle

and business evaluation functions have been executed in isolation from the architectural

optimisation. In order to verify the algorithm and demonstrate the effect of reliability on

lifecycle performance, the algorithms has been exercised on a small but representative set

of test data. The data comprises a system of fourteen components which are required for

the proper execution of six (three dual redundant) control system tasks. The data used

does not approximate to a full scale engine control system but is built on representative

structures. Amongst the components are six signals, four interfaces and four nodes. The

matrix RFUD for the system is shown in figure 7.9.1.

The simulation is executed for three systems with different component radiabilities.

160

Simulation Test and Results Lifecycle evaluation

The component failure functions used for the most reliable case are presented in figure

7.9.3. Data for two less reliable cases was derived by dividing the scale parameters of the

most reliable case by three and five respectively - accordingly the test cases are refereed

to as ‘R’, ‘R/3’ and ‘R/5’. In crude terms, the division of the scale factors reduces the

MTTF and consequentially increases the likelihood of failure. The outputs from the three

simulations is used by the business evaluation (chapter 8). RFUD for the test case is

shown below:

Figure 7.9.1: Full-Up Despatch Matrix for the Monte Carlo Simulation test case

As for classical dual-redundant systems, a LOTC will occur if both the ‘A’ and ’B’

instance of any task (here T1, T2, T3) has failed. The LOTC fault tree for the test case

is shown in figure 7.9.2. The Monte Carlo simulation uses this fault tree to determine the

despatch status.

161

Simulation Test and Results Lifecycle evaluation

Figure 7.9.2: LOTC fault tree used in Monte Carlo Simulation test case

As described above, each component has a burn-in and wear-out characteristic de-

termined by the shape and scale parameters of the mixed Weibull distribution. The

parameters used in the test cases were chosen to be representative of real components

and not matched to real reliability data. The failure functions for the first test case are

shown in figure 7.9.3.

Figure 7.9.3: Component failure functions for the most reliable of three test cases

7.9.1 Test Results

The simulation ‘flies’ a single system for a 30 year service life (circa 180,000 flight hours)

but neglects MLO. In each case, the simulation ceases when the despatch reliability of

the system has converged to an accuracy of two decimal places. The graph in figure 7.9.4

162

Simulation Test and Results Lifecycle evaluation

shows the number of iterations taken for each of the three test cases to convergence.

Figure 7.9.4: Convergence of the three lifecycle evaluation function test cases

As the simulation progresses, a cumulative year-by-year record of various performance

parameters including the number of cancellations, delays and in-flight shutdowns is

maintained. At the end of the simulation, these parameters are divided by the number

of iterations to give an average value for each parameter in each service year. Figures

7.9.5 to 7.9.9 show the number of cancellations, delays, the components replaced and the

number of USM actions for each of the three test cases.

Figure 7.9.5: Annualised cancellations due to control sys-
tem unreliability and maintenance

Figure 7.9.6: Annualised delays due to control system
unreliability and maintainable

163

Simulation Test and Results Lifecycle evaluation

Figure 7.9.7: Average number of components replaced in
a given service year

Figure 7.9.8: Average number of in-flight shutdowns due
to control system unreliability

Figure 7.9.9: Average number of USMs in a given service year

We define a vector E(∗) where ∗ is the metric name, for each of the metrics shown in

the graphs above eg. E(cancellations). The vector contains the number of cancellations

during each service year. The vectors are used by the business evaluation function (chapter

8) to attribute costs to each of the metrics.

The summation of the annualised data gives the total number of events over the

lifecycle and may be used to calculate key performance metrics such as the MTTUR

and the MTTF. In this instance, there is no MLO and all components are regarded as

‘‘fit-and-forget’’, so the MTTUR is equal to the MTTF. Results are presented in table

7.9.1 below:

Project Despatch Reliability (%) MTTUR(FH) Flying hours(FH) Components Replaced

R 99.995 95,220 169,270 22

R/3 99.822 5,663 168,886 104

R/5 99.72 3965 168,865 132

Table 7.9.1: Monte-carlo simulation results for the three candidate systems

164

Simulation Test and Results Lifecycle evaluation

Furthermore, it is possible to isolate unreliable components by considering the number

of times they are replaced (figure 7.9.10). This data is useful when isolating technological

constraints.

Figure 7.9.10: Number of failures of each component over the service life

In this instance, ‘Interface 4’, ‘Node 2’ and ‘Node 4’ have proven to be particularly

unreliable. The MTTUR for each component could be calculated by dividing the number

of replacements required by the total number of flight hours.

7.9.2 Analysis

The results presented above show the clear correlation between component reliability

and lifecycle performance. Decreasing component reliability has a detrimental effect on

performance. Given the arbitrary input data and the non-representative system under test,

it is difficult to provide a comprehensive analysis of the results. Principally, these results

and the finding of manual verification give confidence that the monte-carlo simulation

provides a, ‘plausible’ analysis of system reliability and lifecycle performance.

Despite the limitations, some features in the output data are typical of characteristics

observed in real in-service systems. For example, the number of components replaced each

year (figure 7.9.7) has a notable ‘frequency’ content with equally spaced peaks evident

in all three cases. The peaks at year 4, 8, 12 and 15-16 in test case R and years 6,

12, 18 and 24 in test case R/5 are witnessed, if not formerly recorded by airlines. The

number of un-scheduled maintenance actions (figure 7.9.9) for case R gradually increases

165

Conclusion Lifecycle evaluation

in the second half the service life whilst the more unreliable cases of R/3 and R/5 require

constant maintenance from early on in the lifecycle. Whilst neither of these observations

validate the lifecycle evaluation, they give confidence that the monte-carlo simulation

provides sufficiently accurate results and considers pertinent metrics.

7.10 Conclusion

This chapter has shown how a Monte Carlo simulation is used to determine the in-service

performance of the engine control systems proposed by the GA. The evaluation function

‘flies’ the distributed system through a 30-year lifecycle operating under Time Limited

Despatch. The simulation mimics the actions, behaviours and constraints incumbent

on airlines and maintenance technicians. Computational limitations render integration

with the main optimisation algorithm impractical. Despite this constraint and the lack of

real data for proper validation, the results presented are sufficient to suggest that the

algorithm provides a realistic analysis of system reliability. The results and metrics from

the lifecycle evaluation are used by the business evaluation function to determine the

costs of operating the control system.

7.10.1 Strengths and Weaknesses of the Simulation

The concept of the lifecycle simulation is extensible and could be used to model other

aspects of aircraft maintenance strategy were the knowledge and time available. The major

benefit of the method is that it reveals ‘‘impact data’’ such as delays, cancellations and

the number of parts replaced, as well as statistical measures such as despatch reliability

and MTTUR. This approach conveys the business concerns of both the airlines and the

component manufacturers. Although the structure of the simulation has been heavily

contrived to save computation, the basic simulation parameters may be changed to reflect

new or emerging operational strategies and constraints. This flexibility is a valuable asset

of the method.

Naturally, the algorithm has drawbacks. The following assumptions limit the validity

of the simulation:

• All faults occur during flight hours - this is not necessarily the case for real

components

166

Conclusion Lifecycle evaluation

• The simulation does not consider the effects of aircraft cycles on reliability

• All components are considered, ‘‘fit-and-forget’’. Although this is the intention

of the EEC supplier, this is not necessarily the a reality - an item which is

known to be fault prone may undergo preventative maintenance or replacement

during scheduled maintenance. This action is not replicated in the simulation.

• All faults are attributable and none are misdiagnosed. Whilst the MCS

accounts for the possibility that a fault is not discovered, it does not consider

that faults may be misattributed to other components.

• The cost of replacement parts stays constant for the duration of the simulation

• It is assumed that all replacement parts are purchased form the supplier - in

practice airlines trade and exchange parts amongst themselves

• The simulation does not consider route-switching or possibility of the plane

being used to perform flights in place of other failed aircraft.

Removing many of these limitation would require complex system modelling extending

to areas considered beyond the scope of this research. Such areas include supply chain

dynamics and aircraft fleet-scheduling.

Whilst the results presented here do not quantitatively validate the MCS, they do

provide a qualitative verification of the algorithm’s function. The author contends that

this verification is sufficient given the scope of this study. The algorithm presented

constitutes a significant improvement over the existing algorithms found in both academic

literature and industrial use.

167

Business Evaluation

Chapter 8

Business Evaluation

The final evaluation function, considers the commercial consequences of the proposed

DCS designs. The long product lifecycles and costs of New Product Development (NPD)

make the financial returns highly sensitive to in-service performance. In this chapter, it

is shown how the metrics from the lifecycle evaluation are transposed to represent the

performance of an entire in-service fleet. The business evaluation function is concerned

with attributing costs to performance and calculating metrics to establish the quality of

investment for each DCS.

The Business view provides an analysis of the operability and viability of the system

to both the system developer and the operator (airline). The accounting techniques used

to determine the quality of investment are familiar to Aero Engine Controls.

8.0.2 Investment

The commercial model considered herein supposes that the product development and

in-service operation are financially indivisible - the money recouped through the flight-hour

fee directly covers the investment that funded the design, development and test of the

DCS in question. In practice, the company undertaking the project may choose to reinvest

income to minimise the value of unfulfilled investments, yet the financial assessment of

NPD proposals often follows this assumption. Furthermore, the model assumes that the

same company both develops the and supports the product throughout its service life -

in the case of Aero Engine Controls, this assumption remains applicable despite being

obfuscated by the structure of the joint venture.

168

Business Evaluation

The model assumes that the investment necessary to fund NPD is derived from share

capital at an annual-effective hurdle rate (discount) of 10%. The hurdle rate accounts

for anticipated return on an equivalently sized financial investment, risk and the costs of

maintaining non-value added business activities. It would be expected that a prudent

investment show an Internal Rate of Return (IRR) of greater than 15% although this

is not prerequisite. The investment covers the cost of product design, development,

project management, testing, qualification and prototype manufacture. The value of

the investment required is equal to the expected cost of the NPD once augmented with

inflation and a 20% contingency. In order to maximise returns, the model assumes that

the investment is made available annually over the course of the NPD eg. a £30m project

developed over 5 years is funded by 5 annual payments of £6m.

The predicted value of the investment to the system developer is measured using NPV.

8.0.3 Fleet Profile

All financial calculations are made with respect to the, ‘‘through-life support’’ contracts

offered by the system provider. Through-life support starts when the product begins

development and ends when the last unit is withdrawn from service.

Typically, a control system for a large, civil engine would take between five and eight

years to develop and be in production for around ten years. The production volumes rise

to a peak at around year 5 and subsequently ramps down (see figure 8.0.1). Some EECs

are manufactured for longer periods although this is atypical. It is assumed that all units

enter service in the year that they are sold and therefore, manufacture and Entry Into

Service (EIS) occur at the same time. The first units enter service in the sixth year and

each has a thirty year supported life. Consequentially the first units are withdrawn from

service in year 35 with the entire fleet being withdrawn by the end of the 45th year. All

distributed control systems are evaluated against the same fleet model.

The graph in figure 8.0.2 shows the EIS profile based on the numbers given the in the

paragraph above. Negative values of EIS represent withdrawal from service.

169

Determining Fleet Performance Business Evaluation

Figure 8.0.1: Total fleet sales Figure 8.0.2: Entry into Service

The EIS profile is realised using a Weibull distribution. The integral of the EIS profile

is the total fleet size which reaches a maximum of 2080 units (figure 8.0.3).

The age of in-service units impacts their reliability and so an accurate picture of fleet

performance can only be obtained if consideration is given to the ageing fleet. Figure

8.0.4 shows the fleet age profile over the 45 year support duration. The profile is created

by time shifting the EIS profile.

Figure 8.0.3: Total fleet size Figure 8.0.4: Fleet age profile

8.1 Determining Fleet Performance

The results obtained from the lifecycle evaluation relate to the performance of a single

engine over a thirty year service life. The evaluation function considers that each DCS is a

NPD requiring substantial capital investment. The performance of the fleet is determined

by the matrix multiplication of the single engine parameters with the fleet-age profile

shown in figure 8.0.4. Assuming that the fleet-age profile is expressed as a matrix Fage

where the rows correspond to the set of service years and the columns to the lifecycle years,

the fleet performance of any annualised parameter F (∗) may be found by multiplying

170

Attributing Costs and Incomes Business Evaluation

the single engine result from the lifecycle evaluation E(∗) by the transpose of Fage. i.e.

F (∗) = E(∗)FageT . The parameters once stated over a 30 year service life of a single

engine now span a 45 year fleet-support life.

Figures 8.1.1 to 8.1.4 show performance metrics to which costs may be directly at-

tributed. The process of attributing and aggregating those costs is described presently. The

metrics presented in section 7.9.1 have been scaled up to fleet level using the multiplication

given above.

Figure 8.1.1: Fleet Cancellations Figure 8.1.2: Fleet Delays

Figure 8.1.3: Fleet NFF Figure 8.1.4: Fleet USM time

8.2 Attributing Costs and Incomes

Having ascertained the fleet performance, each metric is attributed to an annualised

cost or income. These costs and incomes are used to calculate the NPV of the initial

investment and from this, the various financial parameters that define its quality.

In the following paragraphs, we assume that the notation F (∗) represents the vector of

fleet performance results for the metric ∗. eg. F (cancellations). Costs are denoted by

C(∗) and incomes by I(∗). The value of the metric in the n-th year is F (∗[n]). Specific

171

Attributing Costs and Incomes Business Evaluation

costs are denoted by £cost.

Incomes

Incomes are generated from unit sales and engine flight-hours. Units are sold at a fixed

cost regardless of the design and manufacturing costs. Therefore, the more cheaply the

unit is produced, the more profit is made from sales.

I(unit) = F (sales)×£unit sell [£] (8.1)

The flight hour income is considered fixed for the duration of the service life. Therefore:

I(flight hour) = F (flight hour)×£fleet hour sell [£] (8.2)

Where £fleet hour sell is the cost of a single flight hour to the operator.

Costs

The fleet hour cost covers the overheads of operating a through-life support operation.

Such overheads include staffing, administration, building maintenance and other non-value

added items. This does not include the cost of performing unscheduled maintenance.

C(flight hour) = F (flight hours)×£fleet hour cost [£] (8.3)

Formerly, the subsystem supplier will pay a fee for every Delay & Cancelation (D&C)

associated with the failure of their component. In practice, the payment is rarely claimed

or honoured and it is assumed that only 5% of D&C claims are successful. The cost of

D&C penalties is calculated by:

C(DandC) = (F (delays) + F (cancellations))× 0.05×£DandC [£] (8.4)

It is assumed that 40% of nodes returned to the subsystem supplier are later found to

have no fault. Each instance of NFF has an associated cost to cover test and adminstration:

C(NFF) = F (NFF)×£NFF [£] (8.5)

172

Present Values, Net Present Value and Rate of Return Business Evaluation

The costs of USM is quoted in £/hour and considered a cost of doing business. The

hourly rate covers the costs of staffing and administering the maintenance operation. The

cost of spare parts is considered separately. Therefore, the cost of USM is:

C(USM) = F (USM hours)×£USM hour rate [£] (8.6)

Materials and labour costs for unit production are owned by the subsystem supplier.

C(unit) = F (sales)×£unit cost [£] (8.7)

The cost of replacement components was calculated during the monte carlo simulation

(section 7.9.1). Therefore, C(componets) = F (components)

Total Incomes and Costs

By summing the incomes and costs stated above, the total costs and incomes C and I

my be calculated on an annualised basis. The total in income is:

I = I(unit) + I(flight hour) [£] (8.8)

And the total costs C:

C = C(investment) +C(flight hour) +C(DandC) +C(USM)

+C(unit) +C(componets) +C(NFF) [£]
(8.9)

8.3 Present Values, Net Present Value and Rate of Return

These incomes and costs are discounted back to their present value using equation 8.10:

P [n] =
I[n]−C[n]

(1 + 0.10)n
for all n (8.10)

Therefore the net present value of the initial investment is:

NPV =
Y∑
n=1

P [n] [£] (8.11)

Where Y is the product support duration in years. Y is equal to the development time

+ manufacturing time + service life. In this case the product support duration is 45 years.

173

Results Business Evaluation

The NPV is the total value added to the company by pursuing the development of the

DCS in question.

The break even year is simply the last year at which the present value rises above zero

pounds.

The NPV is perhaps the most important parameter calculated during the optimisation

process and will ultimately define the worthiness of the project. Any project with a

negative NPV should be discarded.

8.3.1 Rate of Return (IRR and MIRR)

The IRR and Modified Internal Rate of Return (MIRR) are other important measures of

the investment quality relating to the rate of earnings. Both measures are complementary

to NPV. The IRR is the effective interest rate i that makes the NPV equal to zero:

Y∑
n=1

I[n]−C[n]

(1 + i)n
= 0 (8.12)

The secant method is used to find the vale of i that makes the NPV zero. Whilst the

IRR is indicative, it does not account for reinvestment of earnings into other company

projects. This means that IRR projections are generally optimistic and not a real-world

measure of rate of return. The MIRR corrects for this by including a reinvestment rate

in the return values. The MIRR is calculated by:

MIRR =

√√√√√√√√√
Y∑
n=1

I[n]

(1 + i)n

Y∑
n=1

C[n]

(1 + r)n

[%] (8.13)

Where i is the discount rate and r the reinvestment rate. The reinvestment rate is set

1% higher than the discount rate at 11%.

8.4 Results

The results presented here are based on the performance parameters generated by the

lifecycle evaluation in chapter 7. The results show how the most reliable set of components

produces the greatest financial return. As the Monte Carlo simulation is detached from the

174

Results Business Evaluation

architectural evaluation, all projects are deemed to cost £40m over a 5 year development

period. Each system costs the same amount and the sales volume is identical for all

projects.

Figure 8.4.1: Total annualised income Figure 8.4.2: Total annualised costs

The income graph figure 8.4.1 shows the five year development time in which the

company receives no money. The peak between years five and ten is due to income from

unit sales. The remaining income is from the flight-hour fee. The initial £40m investment

is spread across the 5 year development process.

The costs (figure 8.4.2) are more complex. The costs from years five to ten are

associated with unit production. Later in the product support life, costs are due to

component replacement, maintenance time and D&C penalties. The incomes and costs

are used to calculate the NPV of the £40m investment.

Figure 8.4.3: Annualised present values of initial investment

Table 8.4.1 shows the total expenditure and returns for each of the three projects.

175

Table 8.4.1: Total costs and returns associated with the three NPV projects.

Project Maintenance(£m) D&C(£m) NFF(£m) NPV(£m) IRR (%) MIRR(%)

R 4.78 3.47 93.37 149.72 28.61 12.62

R/3 75.49 120.09 434.4 55.04 21.36 11.1

R/5 107.9 186.55 549.9 18.06 15.7 10.69

The break even years are 10, 10 and 11 respectively.

8.5 Conclusion

As anticipated, the three projects are distinguished by every available metric. There is a

clear relationship between reliability and NPV. Given that the dataset and attributed

costs are arbitrary, it is difficult to draw meaningful conclusions from the results, other

than to demonstrate the plausibility of the business evaluation function. The results

presented verify the performance of the evaluation function and could be validated against

real financial records should the reliability data for system components be available.

Part III

Conclusion

177

Conclusions

Chapter 9

Conclusions

This thesis has presented a novel method for the architectural optimisation of Distributed

Control Systems (DCSs) for large, civil jet engines. The method is capable of optimising

DCS architectures as well as comparing candidate solutions from a number of different

viewpoints. The extensibility of the method and the number of design considerations

addressed are significant strengths of the approach. Whilst it has not been possible to

realise a full implementation, the results presented in chapters 6, 7 and 8 demonstrate the

potential of the method and give confidence that a full implementation would produce

the desired outcomes.

Fundamentally, the aims declared in the introductory chapter have been achieved. The

results given in the architecture evaluation chapter show the architectures produced and

the architectural, life-cycle and business evaluation functions ensure that the architectures

are devised using a novel systems engineering approach.

A comprehensive understanding of the DCS design problem has been fundamental

to developing the method. The evaluation functions incorporate a breadth of technical

and commercial considerations that reflect the industrial context of the research. Having

realised the multi-objective nature of the design problem, the Genetic Algorithm (GA)

was considered the most suitable means of addressing the trade space and an appropriate

algorithm was selected. The architecture frameworks provided a solid foundation for

building the metaphysical models and the binary relations an effective means of analysis.

The tools and techniques chosen to construct the models proved very effective - the

application of graph theory approaches to harness routing and network layout meant

178

Contributions Conclusions

that otherwise complex construction tasks could be greatly simplified. The evaluation

functions provided information relevant to both system architects and business leaders.

In these respects, the work presented has realised the objectives stated in chapter 1.

9.1 Contributions

This research has made the following contributions:

• Novel method for the architectural optimisation of distributed control systems.

The method permits multiple design considerations and could be applied to

many different systems.

• The use of binary relations in the composition and analysis of architectures

based on architecture frameworks.

• A Monte Carlo simulation (MCS) for a large-civil jet engine control system

operating under Time Limited Despatch (TLD). The simulation considers

the implications of component failures to both the operator and through-life

support provider.

Chapter 3 and section 7.2 provide literature surveys that clarify these contributions.

9.2 Strengths and Weaknesses of the Method

The principle strengths of the method presented are extensibility and scope. Whilst

the architectural frameworks and evaluation functions presented pertain to DCSs for jet

engines, the principles could easily be applied to other complex systems. The decision

criteria and decision variables could be modified to add or reduce the number of factors

considered.

Despite being computationally expensive, it is shown in Appendix B that the scheme

could be made feasible using only a small array of parallel processors. This is important

for acceptability amongst industrial practitioners.

9.2.1 Potential Improvements

As with all projects, there are many ares where the implementation could be improved

for both accuracy and performance. An enhanced algorithm should aim to:

179

Strengths and Weaknesses of the Method Conclusions

• Use a more realistic and detailed data set

• Apply the optimisation to a larger number of engines

• Define component reliability characteristics using real world data

• Add dynamic models for design considerations such as thermal soak, vibration

analysis and the engine control laws.

• Increase the number of redundancy schemes available

• Improve the harness routing algorithms

• Optimise the location of Full Authority Digital Engine Controller (FADEC)

subsystems beyond the Electronic Engine Controller (EEC)

• Include additional analyses in the evaluation functions:

◦ Redundancy analysis

◦ Better product costing

◦ Fly two or four DCS on an airframe in the monte-carlo simulation

◦ Consider technology maturity and Technology Readiness Levels (TRLs)

• Extend the business evaluation to encompass system re-use across future

products.

• Use a larger number of derived relationships for analysis

...and modifications to refine the implementation and realise a more viable tool:

• An improved software architecture

• Design for implementation on a parallel computing platform

• A structured approach to adding and removing evaluation criteria and model

elements

These additions would engender a more rigourous and, ‘‘industrial strength’’ tool

capable of finding better founded solutions; their absence is indicative of the resources

afforded to this research rather than the inability of the method to accommodate them.

Applying these modifications would not fundamentally change the approach or its underling

premises.

9.2.2 A Modified Approach

There are number of weaknesses in the method itself which undermine its value as an

approach for architectural design. Firstly, the DCS are optimised for a single engine and

not a product family. It is a commercial necessity to formulate architectures that could

be deployed across a wide range of engines.

180

Strengths and Weaknesses of the Method Conclusions

The approach relies heavily on a large and complete data set. The method cannot

cope with ambiguity and results are dependent on the data employed. Furthermore, the

algorithm is computationally expensive.

Most critically, the method does not determine the facets of ‘good’ distributed architec-

ture. Although the algorithm provides a best solution, it is difficult to draw conclusions

from the data produced. Poor solutions are neglected as the optimisation progresses.

These limitations mean little is learned about the facets of good architecture and the

shortcomings of poor architecture. In this respect, the method presented is flawed and

requires modification.

An alternative approach (see figure 9.2.1) would require the optimisation process to

develop a strategy rather than a one off solution. The chromosome may encode strategic

options such as, ‘‘node on every sensor’’ or ‘‘make Fuel Metering Unit (FMU) node’’

rather than freely defining an architecture. This strategy could be evaluated across a

product family of engines with differences in environment, dimensions and control system

functionality. A product family could include engines from the large civil, regional and

business jet sectors as well as fast jet and military transport engines.

Rather than relying on the GA alone, Particle Swarm Optimisation (PSO) could be

used to identify the worthwhile areas of the search space. PSO is widely regarded as

being more computationally efficient and able to cover large areas of the search space

more quickly. The better solutions from the PSO could be used to seed the GA. The GA

would refine the solutions.

Once evaluated on all these engines, the chromosome and fitness values could be stored

in a database or file structure based on a binary tree. Not only would this provide an

efficient method of storing all the solutions (they could all be reconstructed from their

chromosomes) but also a fast access lookup table allowing the GA to avoid evaluating

any solution it or the PSO has encountered previously.

Rather than running the optimisation for every number of nodes and combining the

outputs, the solutions could be built in such a way that if no tasks or interfaces are

allocated to the node, then the node ceases to exist. This approach would add complexity,

but permit the optimiser to consider a range of node values in a single execution.

The most important addition to the scheme is the Bayesian network. The network

could use the data stored in the tree structure to ‘learn’ how the architectural strategy

181

Strengths and Weaknesses of the Method Conclusions

Figure 9.2.1: A modified approach using PSO and a Bayesian network to better understand
the consequences of architectural choice.

182

Related Research Topics Conclusions

affects the fitness of the solution.

The scheme presented above should provide two different results: firstly, an optimised

architecture similar to that produced by this work and secondly, a set of probabilistic

relationships between the strategic options and their lifecycle performance.

9.3 Related Research Topics

Aside from augmenting and improving the algorithm presented here, there are many other

areas where research is required to further both this method and the practice of DCSs

design. Whilst vital to their adoption, research in other contributing disciplines such

as High Temperature Electronic Devices (HiTEDs) and high-temperature polymers is

ignored herein.

It is the author’s opinion that the two most pressing areas of research are concerned

with novel redundancy schemes and surviving element networks. Both are intuitively

simple concepts with complexities that belie their apparent simplicity. Study in these areas

should reveal how best to structure DCS in order to maximise reliability and despatch

configurations whilst reducing the amount of hardware. Knowledge from both areas could

be readily incorporated into the optimisation method presented in this thesis. Research

in both areas would prove valuable in the development of a real time operating system

for deterministic DCSs; a fundamental technology yet to be realised. Surviving element

networks allow working parts of two damaged or dysfunctional networks to combine to

realise a functional system. The effect is readily achieved in switched networks such

as ethernet, but rarely considered for real-time, fully deterministic systems. The two

component networks need not have identical topologies or be in themselves complete.

Research into surviving element networks would need to account for both topology and

network scheduling.

Novel redundancy schemes (briefly covered in section 5.9) are related to surviving

element networks but could be studied separately. Research is required to establish the

failure modes and probabilities for systems without distinct dual or triple redundant

channels.

One of the many stated benefits of distributed systems is their ideality as a platform

for hosting advanced health monitoring and control algorithms. Such schemes include

183

Resume Conclusions

life-extending control, model based fault detection, adaptive control and on-line fault

isolation. General wisdom concludes that such schemes are best implemented on DCSs

where additional processing power is available and components are more naturally isolated.

Researchers studying these techniques for gas turbine applications often take this premise

for granted. However, all these mechanisms require many parameters from many different

sensors and actuators to update the models on which they depended. It is the author’s

opinion that the number of parameters passed across the network and the duplication of

model elements on different nodes may ultimately become a centralising force. A study

addressing the application of these techniques and their influence on decentralisation

would have both technical value and guide future research in the area.

Further to analysis above, the partitioning between control and health monitoring

functionality requires significant research and technical development. The two functions

are linked by implementation. The problem is complicated further by control algorithms

which use health monitoring data to refine their behaviour. Research using methods akin

to those presented in this thesis is under way at the Rolls-Royce University Technology

Centre (UTC) at Sheffield University.

More generally, research into DCSs should focus in areas that distinguish distributed

architectures from their centralised counterparts. At present, there are few reasons to

invest in distributed systems because the proposed designs offer little more than present

day EECs.

From a systems engineering perspective, much work is required to better understand

the relationship between architectural decisions and through-life performance. This thesis

provides one such method with many shortcomings. It is the author’s opinion that systems

engineering relies too heavily on process rather than mathematical and technical formalism

to derive its outcomes. This research has shown that graph theory holds a vast potential

for application to architectural design and evaluation.

9.4 Resume

The decisions faced by system architects are becoming increasingly difficult. As the

practice of systems architecting becomes more widely recognised, so greater scrutiny is

placed on architectural decisions and their technical and commercial implications. The

184

Resume Conclusions

growing complexity of modern systems makes the process of defining and validating

architectural designs increasingly difficult. Today’s system architects are charged with

developing effective and viable solutions without the aid of the formalisms and methods

found in more traditional engineering disciplines.

The method presented here goes some way to addressing the difficulties of architectural

design. It is not a complete or universally applicable method but could be tailored to suit

any number of complex systems where contending stakeholder demands complicate the

solution space. As the practice of architectural design becomes ever more demanding, so

systems engineers will require new formalisms and optimisation techniques to approach

many of the considerations addressed in this research. Companies such as Rolls-Royce

recognise that methods akin to this will play an important part in the future of system

design. This thesis does not present an immediate solution to the challenge of designing

value into complex system architectures. However, the approach considered and results

presented yield a modest contribution to furthering the art.

185

Resume Conclusions

Appendices

186

The Data structure and database

APPENDIX A

The Data structure and database

The relational database holds all the information not dynamically created during optimi-

sation. This data includes the engine dimensions, the relationships in the control system

model and the circuit block specifications. The database is designed to work across a

complete product family and therefore permits serval engines and their associated control

systems be stored concurrently. Like the metaphysical models, the database structure is

aligned with the architecture frameworks.

The database comprises a set of tables. Each table is associated with either an entity or

relationship from one of the three architecture frameworks. For example, the ‘Tasks’ table

holds a list of all the tasks performed by the control system and the Interface-Parameter

table holds information associating interfaces with the parameters they provide.

Every instance of an entity is uniquely identified by a primary key. The primary key

is an integer value that, when incorporated into the metaphysical model becomes the

index of the entity within its set. For example, if the primary key of the parameter ‘P50’

is 4, P (4) = P50 - the database is designed in such a way that primary keys cannot be

replicated within a given table. In most instances, the primary key indicates the order

in which the entities were entered into the database. This order is unimportant to the

optimisation process and does not influence outcomes. Entity tables contain information

about the specific entity. For example, the ‘Engine’ table shown in figure A.0.1 holds the

engine dimensions.

Relationships are stored in entity-relationship tables. Each relationship (an instance of

a relation) is identified by a primary key. Relationship tables comprise the primary key,

187

The Data structure and database

Figure A.0.1: Example of database entity table

the primary key of the first entity (known as a foreign key) and the foreign key for the

related entity. An example is given in figure A.0.2.

Figure A.0.2: Example entity relationship

The database is realised using a MySQL R© relational database. MySQL R© is an industrial-

strength open-source database solution adopted by many large enterprises and web

developers.

Data from the database is read into Matlab R© prior to commencement of the GA

using The MathworksTM database connection toolbox. The data is used to populate

the relational matrices associated with the hybrid framework. There is no need to re-read

the data or communicate with the database once the optimisation has started.

The database is relational to 3rd normal form. 1. The database is constructed and

populated using Structured Query Language (SQL) scripts.

1Information stored in relational databases may be normalised to minimise replicated and unstructured data. There

are seven normal forms - third normal ensures that the integrity of the data is maintained whilst maintaining structural

simplicity.

188

Parallel Processing

APPENDIX B

Parallel Processing

B.1 Introduction

The method used to optimise the DCSs is computationally demanding. Nearly every

aspect of the of algorithm is iterative and required to perform a substantial number of

calculations on a moderately-sized data set. Proposed extensions such as the use of Ant

Colony Optimisation (ACO) for harness routing and a broader lifecycle simulation would

increase the demand further. When compared to weather forecasting, seismic monitoring

and medical imaging, the computational power required to realise a full implementation

is trivial. However, the computational resources usually afforded to these problems vastly

surpass those available to this research.

Meta-heuristic methods, computational models and search algorithms are increasingly

implemented on computational clusters. As single-core silicon processors near their

theoretical limits, the accrual of multiple of processor cores, sockets and machines has

become the accepted means of obtaining a more capable computing platform.

This chapter examines future implementation of the optimisation scheme on a parallel

computing platform. Through analysis of the tasks itself and the various methods of

implementation, we determine indicative values for the potential performance gains.

B.2 Steps taken to reduce computational burden

Whilst the monte-carlo simulation is the obvious culprit, there are numerous ‘hidden’

elements of the optimisation routine that require significant computational resource. The

189

Factors Influencing Parallel Computing Performance Parallel Processing

mixed Weibull distribution used in the lifecycle evaluation and the Internal Rate of

Return (IRR) calculation in the business evaluation cannot be solved algebraically; they

require numerical solution using the iterative root-finding secant method. Furthermore,

the Strength Pareto Evolutionary Algorithm (SPEA2) is computationally intensive when

compared to other GAs less suited to the application.

Reducing computational effort has been a principle concern during software develop-

ment. Where possible, code has been written in an efficient manner and the adjacency

and distance matrices used during harness routing are calculated prior to optimisation.

The routine used to calculate the matrices is a core-divisible programme written in C++

and OpenMP
TM

(see section B.4.2). Furthermore, each DCS is evaluated on only one

engine and the resolution of the engine chassis stations is fixed to a 5cm×5cm grid. Such a

coarse grid is obviously inconsistent with the tolerances applied during real engine design.

These efficiencies are realised against significant compromise: The programme code for

the monte-carlo simulation has been contrived to avoid sorting and searching and is unduely

complicated and difficult to modify. Calculating the adjacency and routing matrices prior

to optimisation makes it prohibitively difficult to change the engine dimensions, keepout

zones and routing criteria during and between optimisations.

B.3 Factors Influencing Parallel Computing Performance

Effective use of parallel computing resources is far from simple. There are many factors

which determine how efficiently a large scale computing problem may be parallelised.

They include:

1. The nature of the problem and the potential for parallelisation.

2. The number of serial functions and the extent of data-interchange between

functions

3. Whether the problem is data intensive, computationally expensive or both

(counter-intuitively, problems are rarely both)

4. The efficiency and execution speed of the programme code - dependent on

both programme structure and compiler performance

5. Virtual machines, hypervisors and abstraction layers between application code

and the microprocessor

190

Performance Gains Parallel Processing

6. Parallelisation and memory management strategy

7. The number of cores, sockets and multi-threading capability

8. Bandwidth of cluster backbone or socket to socket to communications

9. Interface and peripheral resource contention

The considerations listed above may be grouped into three ares of consideration: Items

1 to 3 are concerned with parallelising the task itself, items 4 and 6 are concerned with

the software platform and items 7 to 9 relate to the underlying hardware.

B.4 Performance Gains

The following section considers methods of determining approximate performance gains

that could arise from migration to a parallel computing platform. Gains in the task

formulation, software and hardware are considered. In this document, gains are stated

as a reduction factor referenced against the predicted execution time for the present

platform: this platform constitutes a dual core, 1.2GHz processor without significant

cache memory or hyper-threading capability. The hardware executes a programme written

in object-oriented Matlab R© and only capable of using a single core. The system has

1500MB of RAM and the operating systems starts to page memory at around 90% of RAM

utilisation. The hardware executes a programme written in object-oriented Matlab R©

working on a data set of approximately 600MB. Tests suggest that the current platform

would take approximately 2500 hours (15 weeks) to complete the optimisation. The

optimisation requires a data set of around 600MB and is considered to be computationally

intensive and data lite.

B.4.1 Gains from Task Parallelisation

Accurately assessing the performance gains associated with task parallelisation is very

difficult. Consequentially, there are few formalisms or heuristics which relate the available

processing power to gains in execution time. Amdahl’s law (Hill & Marty, 2008) provides

an estimate of the maximum possible speed gain which may arise by parallelising an

algorithm with a parallel portion p:

191

Performance Gains Parallel Processing

GT =
1(

p
nc

)
+ (1− p)

(B.1)

Where GT is the maximum possible gain in task execution speed given a resource of

nc processor cores. The parallel portion p is the percentage of the task which can be

executed in parallel and is very difficult to quantify. Whilst not a foolproof definition, the

parallel portion is a ratio (expressed as a decimal) of the number of executable operations

which require serial implementation to the number of operations that may be executed in

parallel. Alternatively, Amdahl’s law says that if there is a (1− p) serial component in

the programme structure, then the speed increase gained through parallelisation, cannot

exceed 100/(1 − p). Amdhal’s law considers only the structure of the task - it should

not be assumed that exploiting all the opportunities for parallel execution is technically

possible.

The DCS optimisation task maybe readily parallelised at three different levels as

shown in figure B.4.1. The deepest level of parallelisation (level 3) involves executing the

evaluation functions in parallel. Whilst this approach is likely to provide a measurable

reduction in processing time, the business and lifecycle evaluation functions are serial

processes and will take significantly longer to execute than the architectural evaluation.

This approach would make inefficient use of available hardware resources. Alternatively,

the algorithm could be parallelised at the solution level (level 2) meaning that the

GA would have to wait whilst all solutions are evaluated before moving to the next

iteration. This approach is more desirable and would make better use of the hardware

but requires synchronicity between iterations of the genetic algorithm. The highest

level of parallelisation (level 1) is the node level - essentially, each core optimises for a

different number of nodes thus reducing the data passed between tasks and the need for

synchronicity. It is common place to parallelise at the highest level and providing that

the number of processing cores does not exceed the maximum number of nodes, this is

the most readily achieved and computationally efficient of the approaches.

Determining a parallel portion for the DCS optimisation is almost impossible without

experimentation: a plausible value of p = 0.85 is used herein.

Amdahl’s law provides an expression for the potential speed gain associated with task

parallelisation. A corresponding rule for hardware and software performance are required

192

Performance Gains Parallel Processing

Figure B.4.1: Three different levels at which to parallelise the DCS optimisation

to establish the overall speed gain.

B.4.2 Gains from Software and Implementation

By comparison to C or C++, Matlab R© code is slow to execute. Matlab R© is an inter-

preted language running on a Java Virtual Machine that abstracts the programme form

the assembly level instructions. Matlab R© lacks facilities such as pointers and advanced

object-oriented constructs which increase the volume of data passed and replicated been

functions. Object-oriented Matlab R© is necessary for a project of this scale but executes

more slowly than its linear counterpart.

Whilst gains are application dependent, estimates suggest that a programme written in

C++ would execute 10 to 100 times faster than the equivalent Matlab R© code. Compiling

C/C++ programmes using a processor specific compiler would also reduce execution time.

Both Matlab R© and C++ offer the facility to parallelise code. Matlab R© offers paral-

lelisation through the The MathworksTM Distributed Computing Toolbox and C++ via

various Advanced Peripheral Interfaces (APIs) including OpenMP
TM

. OpenMP
TM

offers

193

Performance Gains Parallel Processing

two methods of parallelisation whereby processes or memory blocks may be associated

with parallel threads. Matlab R© offers only loop level parallelisation and would prove

less efficient. No parallelisation will be 100% efficient.

Determining a ‘‘software’’ gain, Gs is largely based on informed assumptions. Assuming

that C++ would execute 50 times faster than equivalent Matlab R© code and that

parallelisation using OpenMP
TM

is 80% efficient, then the execution time will decrease by

a factor of 40. ∴ Gs = 40. The parallelisation efficiency is a measure of the percentage of

the maximum task parallelisation (section B.4.1) that is realisable. Inefficiencies result

form memory contentions, the need for task synchronisation, scheduler inefficiencies and

and software overheads.

B.4.3 Hardware Gains

It cannot be assumed that doubling the number of cores will halve the execution time. The

transfer of information between cores and multi-threading capability mean scaling factors

apply. For parallel computing on a single Central Processing Unit (CPU) with multiple

cores, the effective speed of the secondary cores is reduced by a factor known as the

‘‘core-to-core scaling factor’’. This scheme is illustrated in figure B.4.2. A similar ‘‘socket-

to-socket scaling factor’’ exists between different CPUs sharing the same motherboard

figure B.4.2. As both scaling factors depend on the hyper-threading capability of the

processor and the number of threads available to the scheduler it is impossible to define

an application independent value for either parameter. Articles from computer industry

press suggest values in the range of 0.7 to 0.8 for both core-to-core and socket-to-socket

scaling factors are typical.

By using the models presented above, we can develop an expression for the likely gain

speed gain based on the hardware architecture alone.

GH ≈ ssns(1 + cc(nc − 1)) (B.2)

Where ns is the number of sockets, ss is the socket-to-socket scalability factor, nc is

the number of cores and cc is the core-to-core scalability.

The expression is crude but considered indicative. It does not account for interface

resource contests, data transfer between parallel tasks on different sockets or machines,

194

Scalability of the DCS Design Problem Parallel Processing

Figure B.4.2: Core to Core and Socket to Socket Scaling Factors as applied to a single
motherboard

nor the efficiency of the scheduler. Furthermore, the equation assumes that each processor

has the same number of cores and identical clock speed - this commonplace but cannot

be assumed. Given that the DCS design problem is highly parallelisable, uses a minimal

data set and does not require access to external peripherals, we can assume the expression

to hold reasonable value.

The raw increase in core clock speed Gcore is another important factor in determining

an overall speed gain. It is reasonable to assume that the individual cores in a modern

platform will operate at a higher clock speed than the baseline system. The core gain is

simply a scaling factor:

Gcore ≈
Core speed in alternative parallel platform

Existing core speed = 1.2GHz
(B.3)

The expression assumes that all cores operate at the same clock speed.

B.5 Scalability of the DCS Design Problem

A plausible hardware platform for running the DCS algorithm may comprise a dual socket,

quad-core machine (total 8 cores on one motherboard) with each core running at 2-3GHz

and allocated 1-2GB of RAM (Total 8-16GB). Based on core-to-core and socket-to-socket

scaling factors of 0.7 and 0.8 and a code parallelisation factor of 0.85 we can use the

expression for Gtot, the total reduction in processing time where Gs = 40 and Gcore = 2:

195

Hardware Configurations Considered Parallel Processing

Gtot ≈
GsGcore(

p
GH

)
+ (1− p)

(B.4)

Equation B.4 assumes that the hardware gain, GH is equivalent to the effective number

of processing cores and may be substituted into Amdhal’s law (equation B.1) in place of

nc. For the platform described above:

GH ≈ 0.8× 2(1 + 0.7(4− 1)) = 4.96 (B.5)

Substituting this and other values into equation B.4 and noting that all values are

approximate, the platform described above would reduce execution time by a factor of:

Gtot ≈
40× 2(

0.85
4.96

)
+ (1− 0.85)

≈ 248 (B.6)

The baseline execution time of 2520 hours (15 weeks) is reduced to around 10 hours. In

practice, the change to C/C++ would require substantial effort and would not be feasible.

Re-calculating the figures for a parallel Matlab R© implementation yields a speed gain of

6.2 thus reducing the execution time to two-and-a-half weeks. More reasonably, two of

the machines described above (a total of 16 cores) could be used as a cluster and the total

execution time halved to around 8 days (5 hours if implemented with C++/OpenMP
TM

).

B.6 Hardware Configurations Considered

Various hardware options for parallel implementation were considered but ultimately

rejected owing to cost and convenience. The difficulty of providing a, ‘‘bang-for-buck’’

business case makes hardware and software acquisition difficult to justify.

The first option was to use a desktop machine with multiple multi-core processors

- implementation on Matlab R© would require a licence for the The MathworksTM

parallel processing toolbox. The toolbox initiates a ‘worker’ for every processor core

available (up to 8 cores). Each individual worker runs a separate instance of the Matlab R©

engine occupying approximately 250MB of RAM each; this increases the cost of hardware

significantly. Parallel implementation using C++ and OpenMP on a single machine

would be achievable at lower cost and resource consumption but would require greater

time and add significant technical complexity.

196

Conclusion Parallel Processing

A second option was to build a small computing cluster. This would involved the

purchase of a number of multi-core computers which could be networked and controlled

from a master computer known as the ‘scheduler’. Tasks could be uploaded to the

scheduler and executed independent of the computer on which the code was written. For

the same reasons as described above, this implementation was deemed too expensive for

implementation using Matlab R© and both technically risky and expensive using C/C++.

Finally, the loan or use of a third party’s computing cluster was considered. This

proved impractical as processing time is expensive and few clusters are set up to execute

parallel Matlab R© code. Other significant issues included the refusal of Aero Engine

Controls to permit remote access to external computing resources from company sites.

Having considered and costed these options, it was agreed that the algorithm would

be constrained to a single dual core desktop machine. The practicality of obtaining

Matlab R© parallel computing licences meant that execution would be undertaken on a

single core. This is a significant impediment to both the production of high quality results

and the ease of testing/debugging the algorithm.

B.7 Conclusion

This chapter has shown that despite its complexity, the optimisation scheme does not

necessitate super computing resources. If implemented using the hardware and software

approaches stated above, the execution time could be reduced to a matter of hours. This

makes the approach plausible for the industrial setting for which it was developed.

The values used are approximate and far from scientific. There are may application

specific factors which further impact the execution speed. However, the expressions proved

usefully accurate when used to compare the Matlab R© and C++ implementations of the

algorithm to calculate the harness routing matrices.

197

Control System Functional Model

APPENDIX C

Control System Functional Model

198

