
. ,' .. • 1 

.. LOUGHBOROUGH 

UNIVERSITY OF TECHNOLOGY 

LIBRARY 

Io,UTHOR 

........................ .J2.aV.!..I2S ............. & ......... B.. ......................................................... . 

:·?·~·:.··~?·:··········g·g···,···;, .. ··.9.··?··I·~···I ........................................................... ... 
VOL NO. CLASS MARK 

FeR REFERENC~ ONLY 



BANDWIDTH COMPRESSION OF SONAR DISPLAYS 

BY 

RAE ANTHONY DAVIES, H.Sc. 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements 

for the award of 

Doctor of Philosophy of Loughborough University of 

Technology 

Supervisor: 

August 1972 

A.J. Spencer, H.A., M.I.E.E. 

Department of Electrical and 

Electronic Engineering. 

® by Rae Anthony D·avies 



lO!..JghbofO'.Jg;") University 
of Tc~hnc.'",r-;'.I L':)r<Jry 

D". : 18 DEe 1973 

J 

j 
j 

j 
j 
j 
j 
j 

j 
j 
j 
j 
j 
j 
j 
j 
j 

j 
j 
j 
j 
j 
j 
j 
j 
j 

j 
j 
j 
j 
j 

j 

j 
j 
j 

I 

j 



To Melrose and Pippa 

who made it all worthwhile. 



ACKNOWLEDGEMENTS 

The author would like to thank the various individuals who 

contributed in some way to the completion of this project. In 

particular Professor J.W.R. Griffiths who offered many valuable 

suggestions at various stages of the project; to my supervisor 

Mr. A.J. Spencer for his guidance throughout this project; 

Professor Chakrabarti for his assistance in understanding the 

queueing aspects of the system; Mr. John Rippon for designing 

and constructing part of the experimental system and for his assist-

ance with the photographic work; Mr. John Branson for permission 

to use his synthetic displays and for the useful discussions through­

out the project; and Mr. K. Topley for assistance with the photo­

graphic work. 

This project was sponsored by the Science Research Council; many 

thanks to the members of this organisation. 

Special thanks are also due to Jeanne Preston for typing the 

script and to Mick Preston for his understanding. 



SUMMARY 

A major problem affecting the design of data compression systems 

is that of employing a buffer of limited size and at the same time 

prevent uncontrollable loss of data due to overflow. One method of 

alleviating this problem is to employ an adaptive compression algorithm. 

With this design approach when overflow is imminent the compression 

algorithm is-degraded which effectively reduces the input rate to the 

buffer. 

A method is proposed here, where by using a recircu1ating register 

as the buffer the recircu1ating data controls the input rate and hence 

the performance of the system. 

The system has been analysed for a Poisson input process, and 

simulated using synthetic patterns similar to that encountered on sonar 

displays. The results -indicate that this form of storage is quantitat­

ively similar to random-access storage but qualitatively superior due 

to the random nature of the losses. 

An experimental system has been built using dynamic MOS shift 

registers for the store and a simple run-length coding procedure. 
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INTRODUCTION 

Previous analysis has shown that the average information content 

of radar and sonar displays is much less than the maximum information 

rate of the system. However, any ~ystem which attempts to transmit 

information directly must provide sufficient bandwidth to accommodate 

the higher information rate. 

For a conventional P.P.I. display there is a fast radial range 

scan, repeating every pulse repetition period, and a slower rotating 

bearing scan, synchronised with the antenna rotation. A typical air­

craft surveillance radar has a scan period of 9 seconds and a sweep 

period of 3000 microseconds. If each sweep consists of 490 6-micro­

second range bins, then the maximum information rate is of the order 

of 150KHz. 

In the B-scan presentation, range and bearing are presented as 

orthogonai "X-Y" coordinates. In radar systems the range, or "X" scan, 

is normally a fast time base, while the bearing or "y" scan is slower. 

In systems using within-pulse scanning, such as the electronic 

sector-scanning sonar!, the bearing is the faster of the two time bases. 

For the sonar model, the bearing scan time is of the order of 100 

microseconds. The normal resolution requirements suggest a 3 micro­

second bearing resolution cell; hence the maximum information rate is 

of the order of 350KHz. 

The accepted methods of t~ansmitting information about target 

posi tions at a low information rate follO\~ a general pattern. Firs tly, 

some form of processing is done to remove redundant information. A 
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queueing buffer is then provided between the processor and the narrow 

bandwidth iink. The buffer accepts information at a random rate, stores 

this information until it is removed for transmission. Figure (1.1) 

shows in schematic form the principal components of such a system. 

The design of the output buffp.r is one of the most important 

tasks to be faced in implementing any bandwidth reduction system. The 

overflow of the buffer, usually occurring during periods of peak data 

activity, causes the loss of data samples. These losses are now even 

more critical since the 'removal of redundant information has already 

taken place. 

The general method of overflow curtailment is to 

(1) monitor the queue length of samples within the buffer, and 

(2) use this information to control the redundancy removal 

algorithm. 

Hence, if buffer overflow is imminent, the accuracy requirements can 

be relaxed thus reducing the input rate to the buffer. 

This project is concerned with a remotely positioned sector­

scanning sonar system; the video signals from the display are to be 

transferred over as narrow a bandwidth as possible to enable the sonar 

pictures to be reproduced on a single or on multiple displays. 

A system has been designed2 using analogue storage for the range 

and bearing coordinates of each target. This system, although very 

simple in implementation lacks flexibility due to its analogue nature. 

A study of fish behaviour shows that fish usually travel in shoals of 

random size and shape. These'shoal distributions do not conform to 

any random discrete distribution; hence this system would fail in 

shoals when the overflow situation is most likely to occur. 
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It is proposed to use a digital system in order to minimise this 

effect. A survey of several storage media was made 3,4 and it was 

decided to use semiconductor shift registers. This decision was based 

on the fact that it would fit in well in a clocked system, the size and 

power requirements are low, also with the improvement in fabrication 

techniques the prices of integrated circuits have been falling rapidly; 

while those of the other storage media have remained fairly constant. 

In addition, it is proposed to use a serial access store as the 

buffer. Most bandw1dth compression systems to date use a "step-down" 

type storage device. In these systems information enters the store 

filling the ,firs t vacant posi tion closes t to the transmission end. 

Information is removed at regular intervals from the head of the store, 

all data in store being shifted down. Hence, with this method parallel­

in-parallel out facilities are necessary. 

The use of a serial access store would be advantageous since these 

devices are cheaper than the random access types. However, the 

main reason for this choice is due to the loss mechanism of such a 

storage method. Information has to be recirculated between trans­

mitting intervals. Losses will occur when recirculating information 

and new information seek entry to the store' at the same time. A 

priority scheme built into the system will discard one set of information. 

These losses could be of some advantage due to the randonmess of the 

coincidence- phenomena. It is hoped that these coincidence losses will 

provide an inherent queue control mechanism. During periods of high 

data activity the coincidence losses will limit the input rate to the 

system, but these losses being evenly distributed would produce a more 
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tolerable effect at the receiving end than with the normal overflow 

losses. 

This project therefore sets out to investigate the performance of 

this storage mechanism both analytically and practically. Due to the 

complex nature of the system and the lack of knowledge of the distribution 

of shoals, a Monte Carlo simulation is done to investigate its 

performance under near-realistic conditions. 
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Figure I.l: Block Diagram of a typical Bandwith Compression System. 
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CHAPTER 1 

REVIEH OF BANDHIDTH COMPRESSION SCHEMES 

1.1 Introduction 

Data compression techniques have been used in many areas of 

communications such as voice, video, facsimile and telemetry trans-. 

mission. These techniques have acquired added significance with the 

growth in use 'of digital computers for information processing, control 

and transmission. Previous schemes "hich transmitted analogue data are 

now converting their transmission processes to digital methods. These 

neW schemes however, result in the need for additional bandwidths due 

to the high bandwidth requirements for digital transmission techniques. 

For example, a 3~lz voice signal is normally converted to a 64KHz PCM bit 

stream (8 bit samples at an 8KHz rate) for digital transmission. 

Hence, the need for bandwidth reduction in these schemes is 

obvious. Several attempts have been made to apply these techniques 

to a number of systems. A summary of some of these schemes is 

reproduced below. 

1.2 Bandwidth Reduction of Television Signals 

Cherry and co-workers 1 ,2,3 have done extensive work on the com­

pression of television signals. They have developed an experimental 

system and have. been able to achieve a bandwidth reduction of 6:1. 

In this method use is made of the correlation between successive 
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picture elements along a scan line; hence a system of run-length coding 

is used bet'ore feeding the data into the buffer. Two sets of data are 

then transmitted, the brightness data and the run-length data. 

The Picturephone ® system4 developed at the Bell laboratories 

represents one of the few commercial applications of a bandwidth 

reduction scheme. This is the video-telephone system whereby visual 

and aural communication is achieved over a 2-megabit/second channel. 

In this system use is made of the frame-to-frame correlation of the 

video signals .first observed by KretzmerS• By using a 67,OOO-bit 

buffer they have been able to transmit this information at the reduced 

bandwidth. The direct transmission method would have required a l6MB/ 

second channel, hence a 8:1 reduction was achieved. 

1.3 Telemetry Systems 

Bandwidth compression techniques have been applied to aerospace 

systems used in the transmission of telemetry data from outer space. 

Compression is achieved in the conventional manner, by a redundancy 

removal processor followed by .. a queueing buffer. 

One process used to decide which data samples to transmit and which 

were redundant was the "first-order interpolation" method. In general, 

interpolation methods consider data samples over a predetermined interval 

which do not exceed a prescribed tolerance level. The interpolator 

then computes the average value of the set and transmits this value to 

represent all samples within the set. All samples within the set are 

therefore within the prescribed peak error tolerance of the transmitted 

sample. If a sample value is found within the set which exceeds this 
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limit, the processor considers only values before this sample. Several 

orders of interpolation are possible, whereby higher orders are given 

more freedom in the selection of the starti~and end points of the 

straight line. In the zero-order interpolator the transmitted value 

is Rimply the average between the most positive and most negative 

samples within a set. Each straight line starts from the end of the 

preceding line. 

Another processing method used in telemetry systems involves a 

predictor algorithm. In this method the processor estimates the value 

of each new data sample based on past performance of the data. If the 

new value falls within the tolerance range about the previous value, 

it is rejected as redundant since it is known that the data value can 

be reconstructed within the specified tolerance. Several variations of 

this method are also possible; these are discussed in detail by 

Kortman6• 

After processing, data samples are fed into a buffer. The problem 

of buffer overflow is avoided by using an adaptive prediction or inter­

polation technique. Hence the tolerance limits are relaxed during 

periods of high buffer activity, thus reducing the input rate to the 

buffer. 

In a series of experiments conducted with real time data, compression 

ratios of up to 20 have been achieved and reported by Medlin7• 

1.4 Radar Systems 

With the increased activity at most large airports, the limitations 

of the human controller have resulted in a reduction in efficiency of 
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air traffic control. This has led to increased interest in the 

automation of radar target detection process. Eventually it is hoped 

that these automation processes will extend to air defence surveillance 

systems so that track-while-scan, aircraft identification, flight 

control and collision avoidance functions can be accomplished more 

efficiently by human op"erators aided by electronic computers. The 

peak data rate from the radar video processor can be as high as 'I MB/s 

hence the need for some form of bandwidth reduction. 

Hinckley8 has reported a system which digitally encodes the 

coordinates data from a radar, feeds this information into a queueing 

buffer and transmits the encoded data over a single telephone circuit. 

This system provides a bandwidth reduction of about 500 but with buffer 

capacity for 650 words. 

In the previous system no analysis of the buffer requirements 

waS conducted hence a large store t'as provided to minimise data loss 

due to overflow. A series of simulation runs by Bussard and Wilmot9 

examined the buffer requirements for automatic radar target detecti~n 

systems. By simulating different aircraft flight patterns such as 

random targets, targets in formation or groups and targets in radial 

corridors, they have investigated the behaviour of the buffer under 

various conditions. The main conclusion of their study was that for the 

complex target formations larger buffers would be required than for 

randomly distributed targets. 

1. 5 Facs imi le Srs terns 

Digital coded facsimile systems have been developed employing 
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bandwidth reduction techniques. Such systems include the transmission 

of weather maps, newspapers and other typewritten documents. 

A typical system consists of a flying-spot scanner which scans 

the document. A photomultiplier receives a modulated signal which 

triggers a position encoder. 

Redundancy reduction techniques are applicable here since examination 

of most black-and-white graphics such as drawings and weather maps 

reveals that the number of black-and-white changes on a single scan 

line are but a small fraction of the total number of resolvable 

elements along the line. Run length coding as part of the encoding 

process followed by a queueing buffer results in bandwidth savings of 

up to 14: 1. 

One system reported by Rosenheck10 is capable of transmitting a 

typical 8j by ll-inch document at a resolution of 135 lines per inch 

in 7 seconds over a 50KB/second group channel. This represents a 

reduction of 5:1. In. his method, use is made of the document as the 

storage medium. A variable velocity scanner is used which changes its 

speed according to the amount of information present. This pro~ess 

eliminates the electronic storage requirements entirely. 

1.6 Sonar Systems 

The need has arisen in the fisheries field for a system capable 

of transmitting target information from remote sonar systems with a 

reasonab le degree of accuracy. Acous tic telen:2try systems ·suffer from 

the fact that the maximum data rate possible is of the order of 10 K Bits/ 

second. Direct transmission by other methods would require bandwidths 
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of the order of 150KHz. 

~he requirements here are not as stringent as with the previous. 

systems, as the targets being observed would be mainly shoals of fish. 

Barr~ttll has designed a system whereby analogue signals representing 

range and bearing are stored, then transmitted at a lower rate. His 

storage device waS a capacitor which was charged to a value proportional 

to the analogue signal. His system was designed to operate with a 40KHz 

bandwidth channel. This suggests a bandwidth reduction of about 4:1. 
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CHAPTER 2 

INFORMATION CONTENT OF SONAR PICTURES 

2.1 Introduction 

The system under study is the electronic sector scanning sonar 

system where information is presented on a B-scan display. The 

bearing scan is the faster of the two time bases. Since the system 

will be a digital one, range and bearing information will be digitally 

encoded. One system uses a pulse width of 100 microseconds which 

corresponds to a range resolution of about 6 inches. Previous work 

suggests that 32 bearing cells would provide sufficient bearing 

resolutionl h,ence each bearing coordinate is a 5-bit word. The word , 

length for range coordinates will depend on the maximum, range covered. 

For a range of 40 metres a 9 bit word is sufficient to represent range 

data. 

2.2 Evaluation of information content of sonar pictures 

Let the fast time-base be of duration T seconds, and the slow 
y 

(range) sawtooth be of T seconds. Also let there be n resolution x y 

cells along the fast timebase and n along the slow timebase. x 

Now 

n x = (2.1) 

assuming the flyback times are small. If the signal has Q equally 

probable brightness quanta and there are m significant changes o'f 

brightness, then the total brightness information is given by 
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= m log2 Q bits per frame 

The total information also contains information of the position. 

of these brightness changes. Now the total number of resolvable elements 

per frame is Nt,where 

n n y x (2.3) 

Hence the number of possible independent positions of the m brightness 

changes is given by 

= 

The amount of information is given by log2 of this quantity. It can 

be shown that this expression reduces to 

(2.4) 

Hence the total information per frame is 

In order to find the maximum information capacity we assume complete 

independence of picture elements, hence the number of significant. 

br~ghtness changes is the maximum possible, that is Ntl. Equation 2.5 

then reduces to 

H tot 
= 

This indicates that no position information is required since all 

resolution cells are being described. 

(2.6) 

From Equat~on2.5 it is also possible to obtain an expression for 

the average information content of the picture. If we consider the 

extreme case of only one significant brightness transition per frame, 
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H = tot 
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(2.7) 

For large N, 10g2(NEl) and 10g2(NE2) may each be taken as 10g2Nt,thus 

\'le get 

(2.8) 

The first term on the right is the information contained in the 

single change of brightness out of the Q possible brightness levels, 

whilst the second term is the information of a single position out of 

Ntpossible positions • 

. To find the total information content we define each of the. m 

positions independently, hence we obtain for the average information 

content· 

= m(log2Q +,log2N) bits per frame t . (2.9) 

Comparing the maximum channel capacities for the two cases we find 

that by sending information only when occupied positions are found 

and sending none about the blank areas, a compression k is realisable 

where 

k = Nt.log2 (Q+l) / (m 10g2 (Q+l) x NJ (2.10) 

If we are only interested in the presence or absence of targets then 

there is no need to specify the brightness levels, hence Q = 1 and 

k = N/m log2Nt 
t 

(2.11) 

In the system under study it is proposed to use a 9-bit word for 

range and a 5-bi t word for bearing coordinates; 
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Hence, = 16,384. 

On a particular display studied by Barrett1 an· estimated 250 targets per 

frame were. found. Thus 

k = 
16,384 4.5 250 x 10g216,384 

This suggests that if the channel capacity is equal to the average 

information rate from the display, then a bandwidth reduction of 4.5· 

is possible. 

It is of interest to evaluate the channel capacity required for 

direct transmission. Shannon's formula states 

C = 2W log (1 + pIn) (2.12) 

where C = information capacity of channel in bits/second 

W = bandwidth of channel in Hertz 

p = mean signal power in channel 

n = mean noise power in channel 

The bandwidth of the channel should be such that adjacent elements 

along the fast scan line are resolvable. Hence, for direct transmission 

of the video signal the minimum bandwidth required is Hny/Ty) IIz, since 
bandwidth of 

from lhe sampling theorem a/2W Hz is sufficient to transmit W 

independent samples per second. If the signal has Q distinctive levels 

of brightness, a signa1-to-noise ratio of Q is required to distinguish 

between them in the channel. Hence from Equation 2.12 

C = 2 n 10g2(Q+l)/2T y y (2.13) 

n 
= -Z 10g2(Q+1) bits per second. 

Ty 
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Since there are lIT frames per second, the channel capacity is given by x 

c = bits per frame period 

= bits per frame period (2.14) 

This is similar to the expression obtained by considering the 

information content of the picture. The significance of this is that 

if all the elements of the display are statistically independent,and 

all levels equally likely, then the maximum channel capacity is 

necessary and direct transmission is as efficient as possible. 

2.3 Number of targets on typical displays 

In an attempt to estimate the average number of targets on a 

typical display, Barr.ett 1 found that permanent echoes accounted for a 

high percentage of the targets detected. In the situation he considered 

the sector-scanning sonar was being used to observe the behaviour of 

fish in the River Forth. The system was placed in front of the cooling 

water intakes at Kincardine Power Station. He found that of the 250 

targets per frame, only 100 were due to moving targets. The permanent 

echoes in this case ,,,ere due to bottom echoes, the intake piers, and 

transmission interference. An increase in compression factor would 

therefore be possible if these permanent echoes were removed from the 

display. An attempt is being made e1se",here to apply frame subtraction 

techniques to this problem in order to remove these unwanted echoes 2,3 

However, the situation described cannot be taken as a true 

reflection of the number of fish likely in any other situation. The 
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only deterministic criterion that can be applied to fish behaviour 

is that they usually travel in shoals, with a random number of fish 

leaving the main shoal occasionally. The permanent echoes found on 

a display would again depend on the environment. Some echoe~ like 

bottom echoes, reverberation echoes, aqd transmission interference, 

are usually present, although not all these will be absolutely permanent. 

In a series of sea trials using a sector-scanning sonar, Voglis 
4,5 

and Cook observed shoals of varying sizes and shapes during search 

runs. Some shoals displayed a long thin ribbon-like structure while 

others showed an elliptical shape. Also, in contrast to the compact 

formations of these two types, there were others showing a distinctly 

diffuse structure. These in fact oc'cupied a sizeable por.tion of the 

display. 

. ~ 

In an attempt to arr~ve at an average number the author also 

conducted several subsidiary experiments on stills of actual displays. 

This was done by scanning films. of a variety of situations. The number 

of targets recorded· varied from SOOfor the thin shoals to 3000 for the 

extended shoals. 

Since no definite statistical model for shoal distributions can· 

be inferred from these investigations, the only alternative is to apply 

some form of adaptive coding to the system. The selected method could 

be similar to one of those described in C.hapter 1. The system can 

then be designed to handle a certain target density and the design 

specifications relaxed during areas of high data activity. 
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2.4 possibilities for Run-Length Co~ing 

In Section 2.2, the average information content. of the sonar picture 

waS evaluated by defining the position of each of the m targets 

independently.· However, in sonar as in television displays there is a 

certain amount of element to element correlation along a scan line. It· 

is therefore not .necessary to define each position independently; rather , 
it is possible to define runs of target positions. Cherry and co­

G 
workers have applied run-length coding to their experimental TV band-

width compression system. In practice the number of possible run lengths 

is very large; however, to utilise this to the full capability would 

create instrumentation problems. In addition, this information has to 

be buffered before transmission, hence in the case of data loss due to 

overflow, this may result in the distortion of the output if a long 

run is lost. 
7 

Vieri and others have measured the run-length probability 

distribution of data from television pictures and have found that these 

signals have an exponential distribution with negative exponent, so 

that an upper limit on the maximum permissible run length is possible. 

In Cherry's system the method of run-coding is modified such that 

permissable run lengths is restricted to a small subset of the original 

distribution. Hence all other run lengths are broken up into suitable 

combinations of these standard runs by insertion of additional· redundant 

samples. 

2.4.1 ProbabiZistia ModeZ [or Run-Length Coding 

Although several workers in the data-compression field have applied 



- 22 -

run-length coding to their particular 
6,7,8 

systems no generalised 

. ........le. 
theoret1ca1'approach' has been done. Run-length 

readily to optimum codes of the Shannon-Fano or 

coding lends itself 
9 

Huffman types ; 

however, since the efficiency of these codes is sensitive to the 

probability distribution of the run-lengths, an empirical approach is 

usually preferred to the theoretical approach. 
10 

Capon has attempted an analysis of run-length coding systems with 

the aim of predicting more generally the bandwidth reduction possibte. 

He considers only black and white pictures and a binary digital trans-

mission channel. Since the process of scanning reduces a picture from 

a two-dimensional array of cells to a one-dimensional sequence of cells; 

a first-order Markoff process representation for pictures is 

• 
used. His treatment also depends to some extent on an a priori knowledge 

of the probability distribution of the run-lengths; however, some 

general guidelines have emerged from his investigation. He has shown 

among other things that: 

1. for pictures which are equivalent to random patterns there is no 

point in using run-length coding, as there is very little to be 

gained; 

2. for pictures with long white runs (targets) very large savings can 

be obtained; 

3. for pictures which are either completely black or completely white 

large savings can again be obtained. 

Most of these results could be arrived at intuitively, but by determining 

the several probabilities a quantitative insight is possible. 
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2.4.2 possibilities for Run-Length Coding of Sonar Pictures 

Pictures from a fish detecting sonar display should lend them-

selves to run-length coding. Since the display will consist mainly 

of shoals, this represents condition 2 in Capon's results described in 
encoding 

Section 2.4.1, that is, ·long target ruIl'S. Hence, instead.c·of/each tar-

get position independently, one could encode runs of target positions. 

One simple method of implementation would be to encode the first 
the 

position and/length of the run. 

Once again a knowledge of the probability distribution is 

necessary to select the optimum code. In the absence of such data a 

fixed length code can sti11 be used. 

In a subsequent chapter the results of simulations involving a 

simple run-length coding method are given. 
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CHAPTER 3 

BUFFER DESIGN FOR BANDlHDTH CO}lPRESSION SYSTEHS 

3.1 Introduction 

The design of the output buffer is one of the most important tasks 

to be faced if an efficient system is to be implemented. After the 

redunda~cy removal techniques have been implemented, data from the system 

will still arrive at a variable rate. The buffer accepts these data 

samples, stores them to permit transmission at a constant rate. The 

efficiency of the buffer, as well as the effectiveness of the redundancy 

removal techniqu~ thus determine the amount of compression obtainable. 

The main problem in designing this buffer is that of determining 

the buffer size required to ensure a tolerable loss of'data due to overflow. 

Overflow is even more undesirable in bandwidth reduction systems since 

redundant samples have already been removed. 

One important requirement for proper design is a knowledge of the 

prcbability distribution of the input data. This varies from so~rce to 

source and only empirical data can provide this information for a 

partieular system. A variety of sys terns ha'le Poisson, dis tributed input 

sources, hence for ense in comparison this distribution will be used 

in 'Ill analyses. However, where the distribution of the input is 

un:'OUmffi or has been ,shown to be unlike any known distribution, a }lonte 

Carlo simulation has to be done. The approach is described in Chapter 4. 
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3.2 Elements of Queueing Systems 

Since the design of buffers for' bandwidth compression systems is 

similar to that for any queueing system it is worthwhile examining the 

elements of a queueing system. 

The basic system consists of an input source, a queue, and one or 

more channels or servers. 

. sqUl;ce . 
The 1nput/g1ves r1se'to inputs and is characterised by the time 

distribution with which it gives rise to these inputs. Of the dist-

ributed sources the easiest t'o handle is the Poisson process, which 

is considered the most random of all discrete processes. 

While in the queue the input quanti.ty is usually referred to as 

a customer. A customer in a traffic queue would be a motor vehicle; 

in a bandwidth compression buffer, a customer would be a digital word •. 

Queues may be infinite, whereby all customers can be accepted, but suffer 

a waiting time. Congestion may occur in this situation but no customers 

are lost. If the queue length is finite, customers arriving to find 

the queue filled will in most cases leave the system and be lost. This 

is the overflow situation, and the main reason for this analysis is to 

examine the parameters at one's disposal which will help to minimise 

the probability of overflow. Special queues may be found where 

customers return to test the system occasionally to see if space is 

available. 

The output channels or servers are placed at the head of the queue. 

The amount of time the customer spends in the channel is called the 

holding time or the service time. Holding times may be constant or 

distributed. The server is responsible for implementing the "queue 
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discipline", which is the order in which customers are served. Usually 

the "first-come-first-served" discipline is used, but situations 

occur where priority systems are introduced. 

3.3 Queueing aspects of Bandwidth Compression Systems 

In most bandwidth compression schemes the elements of the system 

involve a distributed input source, a finite capacity store, and a 

constant service mechanism operating on a "first-come-first-served" 

basis. 

The input will be a digital word encoded to represent some position 

or amplitude information. 

The storage device is usually one of the accepted electronic storage 

devices, that is, m<.gnetic core, semiconductor shift-registers, etc. 

The storage scheme may be of the step-down type where each bit enters 

the store in parallel filling the first vac84t position c10~est to the 

service end. Information is removed at regular intervals from the 

head of the queue, all words in store being shifted down accordingly. 

If a serial access device is used as a buffer, the words in store 

are recircu1ated until service is offered. A word is entered into 

store as soon as a word space becomes available, and removed when 

possible during a service interval. The queue discipline may be 

described as pseudo- "t"irst-come-first-served", since the channel 

will accept the first word that appears when service is offered. However, 

due to the re circulation of data the first word out may not be the first 

one in. 

In addition, with the recircu1ating store there may be loss of 
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data due to a new customer and a re circulating customer seeking entry 

to. the store at the same time. This is the coincidence phenomenon, 

and a priority system has to be implemented. 

The server in bandwidth compression systems is usually a digital 

clock operating at a frequency determined by the channel capacity. 

Synchronous transmission is usually applied; that is, data are removed 

from the buffer at each discrete clock time. Data arriving at the head 

of the queue during periods between clock times have to wait to begin 

service at the next clock time, even if the service facility is idle 

at the time of arrival. 

3.4 Input Source Statistics of Bandwidth Compression Systems 

The first step in any analysis is to establish a valid statistical 

description of the input· source. Although general formulae can be 

developed for the design of the system as a whole, 'only tests on the 

actual data input can produce any meaningful information concerning the 

input distribution of any particular system. 

For telemetry data compression systems used on space vehicles, 

buffera have been designed by assuming that the occurrence of the data 

samples entering the buffer is random and the time intervals between 

successi ve events are independent. This would produce ei ther a Poisson 

or Binomial input distribution. Simulation tests with actual telemetry 

data indicate that the buffer input statistics agree very closely with 
1 

the Poisson distribution • 

In a television bandwidth compression scheme where run-length 
2 

coding is used, it has been shown that successive. run lengths along a 
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television scan line are independent. Buffer design has been carried 

out by considering the input as Binomially distributed. In addition 

it was reported that these run coded signals exhibit "short-term" 

stationarity, that is, the mean input rate undergoes "long-term" 

variations only. 
3 

Bussard and Wilmot have investigated the queueing requirements 

in an automatic radar target detection system used in air traffic 

control. Their systems models,which were described in Section 1.4, 

covered the usual target patterns found in aircraft flights. Their 

results indicated that the complex target models created queues whose 

mean and variance were significantly larger than that created by the 

simplified model with all targets randomly located. Their conclusion 
, . '~'_Iv._ 

therefore was that the assumption of Poisson target arrival rates can 

cause an'appreciable error~in modelling radar target detection 

queueing systems. 
It 

Barrett's system for the bandwidth compression of sonar displays 

was designed on the assumption that the input was Poisson distributed. 

However, since the targets are usually fish shoals, a situation 

similar to Bussard and Wilmot's close formation clusters is more likely 

to exist. The author has simulated a queueing system by generating 
5 

synthetic inputs typical of the shoaling situation. It was found that 

losses were gr"ater when using the shoal-like inputs than with the 

Poisson distributed inputs. The results of this investigation will be 

discussed fully in Chapter 4. 
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3.5 Analysis of the Step-Down Buffer 

3.5.1 Expected Queue Length 

Following a method due to Kendall, it is possible to obtain an 

expression for the mean queue length without specifying anything about 

the nature of the input distribution, or the distribution of the holding 

time. 6 This method is described in detail by Goode and Machol and the 

analysis is reproduced in Appendix 1. 

By examining the expected queue length at an instant of time 

immediately after a word removal attempt, it can be shown that the 

expected queue length is 

E(n) = p + 2(1 p < 1 (3.1) 

where n represents the number in store, r the number of words clocked 

into the buffer during T,and p the traffic intensity of the system. 

Equation 3.1 holds for arbitrary input distributions and holding times 

provided these distributions are independent of n, and that statistical 

equilibrium exists. 

For a Poisson distributed input and constant holding time, Equation 

3.1 reduces to 

E(n) = 
p(2 
2(1 

p) p -< 1 (3.2) p) , 

It is obvi0us from Equations 3.1 and 3.2 that for equilibrium to exist, 

p, the traffic intensity must be less than 1. In other words, the 

output rate must be greater than the mean input rate. Figure 3.1 

shows graphically the variation of E(n) with p, and indicates the rapid 

variation as p approaches unity. Hence, to reduce E(n), p should be as 

small as possible. However, since the output clock rate varies inversely 
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as p, a compromise must be reached since the eventual aim of the 

system is to use the smallest bandwidth possible. 

3.5.2 'Queue Zength Statistias [or Poisson Input and Constant Output Rat:e 

In this section we consider the buffer behaviout for a Poisson 

input process with constant removal rate. The problem here is that 

given a finite capacity buffer and known mean input and output rates a 

knowledge of the fractional. word loss due to overflow is required •. 

This is a particular case of the MIDIs queueing system, where 

M indicates a Poisson input, D a deterministic service mechanism and 
7 

s the number of servers. Prabhu derives expressions for the case of 

the infinite length buffer with multiple serv~rs. Several workers, 
8 1 9 

. including Dor ,Medlin and $chwarz , have investigated the case of 

the finite length buffer with one server. The essential' aspects of 

the derivations f'or the sirigr" server case are given below. 

Le t Q (t) be. the number of words· present in the queue at time t; 

hence 

= (n ~ 0) (3.3) 

Now we can consider Q(t) over consecutive intervals (O,t), (t+T) , 

by examining the state of the queue just before or just after a 

sampling instant. Both approaches produce similar results. since 

Probability of n words in queue just before a sampling instant = 

Probability of n-1 words just after. 

If we examine the. queue just before each sampling instant then, 



P (t+T) 
n 

= 
I 

L 
i=o 

P. (t) k (T) 
1. n 
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n+l 
+ L ,P.(t).k 1·(T) . 2 1 n+ -1 
1= 

(3.4) 

where P (t+T) = Probability of n words in queue just before a n 

sampling instant 

P. (t) = Probability of i words in queue at time t 
1 

k (T) = Prob ab i 1i ty of n arrivals during time T. n 

The first part of the right-hand side of this expression accounts 

for the combined probability of there being i ~ I words in the queue at 

time t and n arrivals during time T. Hence one customer is served 

and n enter the queue. The second part of the expression accounts for 
words 

the case where i 3 2/are in the queue at time t; one will be served 

leaving i-I, hence n-i+l words must enter to give the probability P • 
n 

We shall assume that statistical equilibrium exists, that is, 

Pn (t) = Pn (UT) = P 
n 

(3.5) 

n+l 
p = (P 0 + PI)kn + L P. k I' n 

i=2 
1 n+ -1 

(3.6) 

for I ~ n ~ N 

Since the buffer is of length N, then clearly the followin& 

condi tions 'exis t, 

PN+I = 0 (3.7) 

and 
N 
L P. = 

i=o 1 
1 (3.8) 

Equations 3.6,3.7 and 3.8 describe the conditions which govern 

the buffer behaviour under the constraints mentioned. 
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3.5.3 Derivation of Probability of Overflow 

To find the probability of overflow ~, we note that the buffer 

input rate is lower than the rate of word removal attempts by the 

factor p. Hence, for an infinite length buffer with no overflow the 

probability that on any given removal attempt a word would be removed 

from the queue would be p. For a finite length buffer, however, the 

probability that a fraction will be lost due to overflow will reduce 

this probability. Hence, for a finite length buffer, 

Pr' {Removing a word} = p(l - ~) (3.9) 

Thus 

Pr' {Not removing a word} = 1 - p(l - ~) 0.10) 

Now a word will not be removed from the buffer at time t + T if andonly 

if at time t, n = 0 or 1, and there are no new entries during the inter-

val T. 

Hence, 

P k + Plk o 0 0 = 1 

Lut from Equation 3.4 

= 

Thus 

or 

P (t)k + Pl(t)k 
000 

P 
o 

= 

= 

1 - p(l - ~) 

Po + P - 1 

P 

p(l - ~), 0.11) 

(3.12) 

(3.13) 

(3.14) 

To determine P for each N use is made of the equations derived in -the 
o 

previous .sec ticn. Equation 3.6 can be expressed in recursive form as 

p 
n + 1 

= {p - (P + P ) k -
.. n 0 1 n 

For the Poisson distributed input, 

n 

L Pi kn_i+l} / ko 
i"'2 

k
n 

= e-P pn / n! 

(3.15) 

0.16 ) 
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Equation; 3.15' and 3.16 can be used to find P in terms of P by 
, n 0 

iteration. Equation 3.8 can then be used to find P solely in terms 
, 0 

of k. 

Hence given N, values of ~ can be calculated for various values 

of p. Figure 3.2 shows a plot of ~ against N for several values of p. 

3.5.4 Discussion of resuZts 

Th,~ parameters at the disposal of the designer are the mean 

input rate, output rate, and buffer size. The choice of adjustable 

parameters will depend on the peculiarities of the system under 

consideration. 

For bandwidth compression systems the output rate is usually 

fixed, its value being determined by the bandwidth of the channel. In 

addition, varying this parameter would cause difficult synchronising 

problems at the receiver. 

The usual approach is to select a value of ~ which would present 

a tolerable reproduction at the receiving end. Once this value is 

chosen there is a choice between selecting the store size for a given 

value of p or vice ,versa. Assuming the channel capacity is given, and 

the input rate is known, one chooses N by consulting Figure 3.2 to 

satisfy the selected value of ~. 

The choice of RN again depends on the pecu1arities of the system. 

For transmission of television pictures, loss of data samples, especially 

during movement, produce,distorted pictures, hence a low value of ~ 

is necessary. Transmitting information from a sonar display would 
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not suffer from the same sensitivities, since the loss of an occasional 
2 

fish would not be very critical. Cherry and co-workers found 

that a 1% overload probability was sufficient. In both these cases 

which involve human observers the choice of ~ has to be a subjecti~e 

one. 

On close examinat~on of Figure 3.2, it can be seen that increasing 

the buffer size indefinitely does not produce a proportional decrease 

in the overflow probability. As N approaches infinity, the probability 

mf overflow does decrease, however, the mean waiting time increases. 

Philopyprou' and Tzafestas lO have studied the buffer .behaviour in terms' 

of waiting times and have derived an ~xpression for mean waiting time 

as a function of p, RN and N. They have shown that 

= (N - 1) ~ (p - p~») - 1 

where Tw is the mean waiting time. 

For example, for p = 0.9, (T ) = 25T. The implication here is that 
W max 

for practical purposes there is an optimum value for N for a given value 

of p. 

Also, in deriving this expression for ~, statistical equilibriu~ 

was assumed. However, in all these systems data burs~may occur which 

would temporarily overload the system. Once the buffer size is fixed, 

with the output rate fixed, the only aQjustable parameter is the input 

rate. The floating aperture redundancy removal technique overcomes 

this effect by degrading the compression algorithm when overflow seems 

imminent. One possible method of implementation is to use an up-down 

counter as buffer load detector; this could be used to trigger a change 
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in the compression a1go:ithm when the overload situation is being approached. 

3.6 The recircu1ating register as a buffer 

3.6.1 Introduction 

Input 

~i 
Output New [--Data N. - stage Buffer 

Circuits Circuits 

Recircu1ating Data 

Figure 3.3 The recirculating storage system 

Figure 3.3 show~ in schematic form the basic elements of the 

system. The buffer consists of an N-stage register being clocked at 

a rate of lit Hertz. 
s 

The Output Circuits contain s parallel registers 

each capable of receiving one word at the recirculating clock rate. 

th· 
The output circuits also consist of logic circuits which examine. the N . 

storage location at the end of every wt seconds. 
s 

If a word is 

present and one of the s output registers is vacant, then that word is 

Output 
Data 

shifted into the vacant output register at the fast clock rate. The output 

clock operates in a similar fashion to the clock system used in the step-
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down stores. It opens a gate every T seconds and shifts data from the 

first occupied output register at a rate of, 1/wT Hertz if serial trans­

mission is used or lIT Hertz if parallel transmission is used. When 

all s registers are filled all words are recircu1ated until the next 

service period. 

The Input Circuit controls the entry of data to the main register. 

Data arrive from the source at a maximum rate of 1/tdHertz. Each 

word is transferred in parallel to an input buffer which is identical 

in design to each output register. The Input Circuit examines the 

recircu1ating train and the input buffer at the end of every wts seconds. 

If new and re circulating data seek entry to the store at the same time 

one word will be selected in preference to the other. It is immaterial 

which word is accepted since the input buffer could be used to hold the 

recircu1ating word. 

3.6.2 Analysis for a Poisson input and a single output registe'r 

The main loss phenomenon in this system is that due to coincidence 

b'Hween the input and recircu1ating trains. As with the step-down 

system overflow losses are also possible; however, when this situation 

exists there ¥i11 be'a word in each of the recircu1ating word spaces, 

thus coincidence always occurs. Hence, analytically there will be no 

difference between the two loss phenomena. 

other circl'mstances should be more random. 

However, coincidence under 

The effects of these two 

losses will be demonstrated in the simulation experiments to be discussed 

in Chapter 4. 
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The system can be analysed by considering it as three queues 

operating in series. Data are accepted by the input buffer and are 

either fed directly into the main register or removed in a distributed 

manner whenever an empty word space occurs in the recirculating train. 

The output of the Input Circuit forms the input to the N-stage recirc­

ulating register; its output in turn forms the input to the output 

buffer. The output buffer is in fact a simple step-down store; data 

being removed at the output clock rate. The overflow of the output 

buffer determines the amount of data recirculated. 

It is convenient to examine the state of the system at the 

beginning or end of eve~y output interval. During this time a 

maximum of S words can be shifted out of the main store. Hence there 

are S word spaces in the recirculating data train. Since the input 

buffer synchronizes the input data with these word spaces then to 

evaluate the probability of coincidence we need to consider the 

distribution of data over the S word spaces. 

It is obvious from the nature of the recirculating system that 

the probability of coincidence will be a function of the statistical 

behaviour of data in both input and recirculating trains. Sin~e a 

random input process has been assumed, then the behaviour of data in 

the input train can be easily analysed. However, tha distribution of 

data in the recirculating train would be of a complex nature due to 

the feedback in the system. It is felt that there will be· SOme 

correlation between successive data samples in this train, hence the 

suggested complexity. Attempts to produce a rigorous solution proved 

futile; however, since the aim of the investigation was ·to gain insight 

into the performance of the system it was decided to use the following 

approach which should produce an approximate solution. 
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The first assumption is to consider the probability or coincidence 

as a function of PI and PR; that is 

PI = F(PI,PR), (3.18 ) 

where Pc = Probability of coincidence 

PI = Probability of occurrence of one or more data 

samples in the input train 

and PR = Probability of occurrence of one or more 

data samples in the recirculating train. 

We further assume that this function is of a product type, hence we 

write, 

= (3.19) 

where K is some constant whic~ would depend on the other parameters 

in the system. If we make the simplifying assumption that K = 1, 

which can only ~e justified in the light of agreement finally found 

between theoretical and simulated results, then we can write, 

(3.20) 

This equation, although derived by making gross assumptions, produces 

the expected result for Pr or PR equal to zero. Also it gives roughly 

the right kind of behaviour as either PR or PI varies. 

Thus, if the amount of data in the recirculating train increases, one 

would expect the probability of coincidence to increase and Equation 

3.20 gives a variation. of this kind. 
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In order to calculate PI' we note that, 

= 1 - Probability of occurrence of no data in the input 

Now 

train. 

s 
= L P 

j=l j, (3.21) 

where P
j 

is the probability of finding j words in the input train, and 

= (3.22) 

wheIe Pi = Probability of occurrence of data in an input word 

space. 

Since Pr = 1 - Pc ) (3.23 ) 
J=o 

then (1 -
S (3.24) Pr = 1 - Pi) , 

2 (3.25) = SPi - S(S - 1)Pi + ...... 
Since a random input process has been assumen, then Pi can be evaluated 

using the expression 

= 
mean number of inputs during T 
maximum number of iaputs during T 

= A T/s 

.(3.26) 

(3.27) 

This expression is valid for T/s small and is applicable here since 

the recircu1ating rate will be much higher than the output rate. 

Substituting for Pi in Equation 3.25,we get, 

. 2 
= A T - (S - q (A T) 12S + .••.• (3.28 ) 

For AT« 1, we can ignore all but the first term on the right-hand 

side of Equation 3.28. Since we do not propose to consider cases 
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for AT> 1, we therefore use the approximation, 

(3.29 ) 

3.6.2.1 Distribution of data in the recircu1ating train 

The distribution of data shifted out of the store will be 

difficult to analyse due to the problems outlined in the previous 

section. However, if we assume randomness of data in the recircu1-

ating train and use a technique similar to that employed for obtaining 

PI we can obtain an expression for PR' 

In ~rder to calculate PR ' we examine the mean number of words 

shifted out during T. If E(n) represents this mean; then the mean 

number recircu1ated l,ou1d be given by R E(n), where R is the prob-
s s 

ability of overflow of the s-stage output buffer. He define a prob-

ability Pr which is the prob~bility of finding a word in a recircu1-

ating word space. 

= E(n)R Is 
s 

Using Equation 3.26 we can write, 

subject to the same restrictions as before. 

Hence we arrive at the expression for PR ~ 

= E(n)R 
s 

We can therefore write for Pc ' 

= A TE(n)R . 
s 

(3.30) 

(3.31) 

(3.32) 

Hence we will take as the probability of coincidence for an N-stage 

registe~with a single input buffer, s-output registers and a system 

traffic intensity p, th~expression, 

= pE(n)R 
s 

(3.33) 



3.6.2.2 Derivation of E(n) and R s 

- 45 -

The values of E(n) will depend on the relationship between the 

recirculating rate and the store size. Now depending on the recir-

culating rate, the time T may be less than, equal to, or greater than 

the major cycle of the store. The major cycle or recirculation time 

is given by the expression, 

t = wNt r s 
(3.34) 

for a w-bit word. If T is greater than t , then during the output 
r 

period all N possible words in store can be shifted out. If T is 

less than t , then only S of the N possible words in store can be 
r 

shifted out. We therefore have to treat these two cases separately. 

3.6.2.3 Case 1: S '> N 

TIlis means that the ratio S:N is such that the data in store may 

be recirculated several times during the output interval. Now S may 

or may not be an integral multiple of N, hence we can write 

S = (j - 1 + z) N (3.35 ) 

where j = 1, 2, 3, •••..•. , and z can take on values from 0 to 1. 

If S is an integral multiple of N then z = 1. In any case we examine 

the system every T/j seconds; hence, after the first interval we can 

write 

= r/j + (1 - PI) n R o s 
(3.36) 

where nl represents the number in store at the end of the first interval, 

r new words are generated 'during T, hence r/j are fed into store, no 

words were in store at the end of the previous interval hence n R 
o s 
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words are recircu1ated. Only (1 - PI) of these can be accepted, 

hence the expression for n
1

• We can continue this procedure over 

successive intervals; however, if we assume that statistical equi1-

ibrium exists then we can write 

(3.37) 

If we return to Equation 3.36 and take the expected value of 

both sides of the equation then we can write 

But from Equation 3.33 we can write 

= 

Hence Equation 3.38 becomes 

since PI = P 

E(nj ) = p/j + (1 PI)PC/jp 

= p/j + (1 p)PC/jp 

? 
= p- +. (1 - p)P C 

JP 

(3.38) 

(3.39 ) 

(3.40) 

(3.41) 

(3.42 ) 

Now Equation 3.42 gives the mean number shifted out after one of 

j + z - 1 possible intervals. Hence to find the total number shifted 

out during the time T, we "write 

E(n) ( i + z - 1) p2 + (1 p)P
C = 

j p 
(3.43 ) 

Hence if z = 1, and S " jN and 

2 + (1 - p)ic E(n) = p 
p 

(3.44) 
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3.6.2.4 Case 2: S < N 

This means that only S of the N possible words in store can be 

shifted out during time T. A similar treatment can be undertaken 

by expressing N in terms of S by the expression 

N = (j + z - 1)S (3.45 ) 

where j and z have the same values as before. 

If we examine the system after every T seconds, then we can 'Nrite 

= r + (1 - PI)n R + gn + (z - l)n o s 0 0 
(3.46 ) 

where nl = number in store at time t + T 

r ~'= number of new words generated in time T 

n " number of words 
0 

in S word spaces at time t. 

The extra factors gn and (z - 1)n account for those words which o. 0 

suffer shifts within the store but are not shifted out. The factor 

g is given by the expression 

g = j - 1 (3.47) 

Figure 3.4 shows diagrammatically the word arrangement for this 

case. 

r I Input 
inputs, -1 Buffer 

. Figure 3.4: 

n R words 
o s 

Distribution of data in store for S < N (z if' 1) 
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If we again assume that -equilibrium exists then by taking the 

expected value of both sides of Equation 3.46 we can write 

where E(n
j

) = mean number in store after any shift, 

and E(nj) = mean number in any S word spaces. 

Now the number shifted into the first S word spaces represents the 

mean value of nj when equilibrIum exists. Hence we can write, 

(3.49 ) 

and from Equation 3.48 we obtain 

E(n
j

) = (g + z)(E(r) + (l-PI )E(nj)Rs ) , (3.50) 

= (g + z) (p + (1 p)Pc/p) (3.51) 

since E(nj)Rs = pc/p, E(r) = p and Pr = p. 

Also since g = j - 1, Equation 3.51 becomes 

2 
E(n.) = (j + z _ l)(P + (1 - p)PC ) 

J P 
(3.52) 

This expression is for the mean number in store after each T second 

interval. To find the mean number shifted out of store, we take a 

fraction l/j of this. 

E(n) = 
(j + z -

j 

Therefore we-can now write for E(n), 

1)(p2 + (1 - P)P
C

) 
p 

This equation is identical to Equation 3.47 

(3.53) 
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3.6.2.5 Derivation of probability of overflow 

In order to calculate the probability of overf1o'~, use is made 

of some of the expressions derived in Section 3.5.3. Equation 3.13 

gives as the probability of not removing a word the expression, 

1 - p(l - ~). 

In this situation the probability of not removing a word from the 

output buffer is, 

1 - E(n) (1 - R ) s (3.54) 

since E(n) represents the traffic intensity'of the output buffer. 

Again this condition exists only if the store is empty just before 

service begins. Hence 

P(O) = 1 - E(n) (1 R ) 

or R 
s = 

p(O) + E(n) - 1 
E(n) 

s 

We can therefore write the' complete expression for Pc ~s, 

= pE(n)R s 

= pr p(O) + E(n) - I} 

Equation 3.57 gives the probability of coincidence for s output 

(3.55 ) 

(3.56) 

(3.57) 

registers. To find the value for a particular case we need to find 

that particular value of P(O). 
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3.6.2.6 Single output register 

From Section 3.5.3 we make use of Equations 3.7 and 3.8 and write, 

p(s + 1) = 0 (3.58 ) 

s 
and 1: p(i) = 1 (3.59) 

i=o 

If the output buffer consists of one register then s = land 

Equation 3.59 becomes 

P(O) + P(l) = 1 (3.60) 

Also if we examine this register at the beginning of every output 

interval then we can Write for p(O), 

P(O) = P(O)k(O) + P(l)k(O) (3.61) 

where k(n) gives the probability of n arrivals during the previous 

interval. 
, 

Substituting for P(l) in Equation 3.61, we get 

p(C) = P(O)k(O) + k(O)(l - p(O» 

= k(O) (3.62 ) 

Hence, for a single output register P(O) is simply th~ probability 

that no words entered during the previous interval. 

Having assumed that the occurrence of data from the main store 

represents independent events, then the distribution of data follows 

a Binomial distribution. . This is due to the synchronous nature of 

the system. Hence 

k(i) = (3.63 ) 

where B = probabi 11 ty of occurrence of data in a word space. The 
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probability of occurrence of data in a word space can be evaluated 

by using the relationship, 

B = 

= 

= 

since S = 

Fraction of time during which data occur 
Total time 

E(n).w.t 
T s 

E(n)/S 

T/wt • s 

Hence k(O) = (1 _ E(n)/S)S , 

1 _ E(n) + S(S ; 
2S 

or k(O) = 
1) 2 

E (n) - •••••. 

(3.64) 

(3.65 ) 

(3.66 ) 

For large values of S this expression would be difficult to simplify; 

however, by making approximations a fair estimate can be obtained. 

Thus Equation 3.57 becomes, 

= 

= 

P fl - E(n) + S2~ 1 E(n)2 + E(n) 

(S· - 1). E(n)2 
p 2S 

3.6.2.7. Results for a single output register 

l} (3.67) 

(3.68 ) 

Using the approximate relationship of Equation 3.68, values for 

Pc are computed for various values of p, Sand N. Figure 3.5 shows a 

plot of Pc against N for several values of p and a fixed value of S. 

The first point of interest is the "beat-effect" which occurs 

between Sand N. When S = jN and N = jS the value of Pc increases 

above neighbouring values. This is due to Equations 3.44 and 3.53 

being identical for z = 1. The physical explanation for this 



- 52 -

phenomenon could be due to the fact that at these points the· maximum 

number of words' are shifted out of store. This therefore increases 

the probability of coincidence between the two data trains. Figure 

3.6 shows a plot of E(n) against p, and Figure 3.7 a plot of Pc against 

S for a fixed value of N and for p = 0.5. 

Due to the unique nature of this queueing system and due to the 

simplifying assumptions made, a direct comparison between this system 

and the step-down storage system is not feasible at this stage. How-

ever, it is apparent that even for large values of S ,and parameters 

away from the "beat-point", the losses in this system are much higher 

than for the previa ius system. For example, for p = 0.5 and a store 

size of la, the step-down system has a value 

while a low value of Pc is of the order of 3 

of ~ of 
-1 . 

x 10 • 

about 3 x 10-6 , 
There is also a 

marked difference in the sensitivities of the systems to changes in 

traffic intensity. For the recirculating system a change in p from 

0.5 to 0.9 results in a tenfold increase in PC' while the correspond­

ing change in the step-down system produces an increase in ~ of 104 • 

This apparent insensitivity of the recirculating store tends to support 

the original assumption that this storage system w~uld be self-

adaptive. This suggests that should there be a data burst from the 

input source the average losses would not deviate extensively from the 

design values. 
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3.6.2.8 Coincidence losses with two output registers 

In order to evaluate Pc for two output registers we need to 

calculate P(O) for s = 2. Equation 3.59 then becomes 

P(O) + P(l) + P(2) = 1 (3.69 ) 

Also if we put n = 1 in Equation 3.6, we get 

p(1) = {P(O) + p(1) k(1) + P(2)k(0)} (3.70 ) 

Along with Equation 3.61 which states 

p(O) = P(O)k(O) + P(l)k(O) 

we can obtain an expression for P(O). Hence we can \vri te 

p(O) = 
k(0)2 
l-k(1) (3.71) 

where k(l) = probability of one input to the output buffer during T. 

Now k(l) 

= E(n) { 1 _ E(n) } S-l 
S 

Pc then becomes, 

J k(0)2 
= ~l l-k(1) + E (n) ..; I} 

(3.72) 

(3.73 ) 

By sub:3tituting for k(O) and k(1) and making similar approximations, 

estimates of Pc can be obtained. 

Figure 3.8 shows a plot of Pc against N for several values of 

p and for S fixed. The "beat-effect" is again present, however, there 

is nOw a greater dependence on store size as there is a gradual decrease 
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in Pc as N is increased. There is now a favourable comparison 

between this system and the step-down system. For p = 0.9 and 

N = 10, Pc is about 
'-2 -2 

10 while RN is also approximately 10 • How-

ever, ~ is again more sensitive to variations in Nand p. 

3.6.3 Discussion of Results 

The preceding analysis suggests that this type of storage is at 

least as good as the parallel entry type. Owing to the assumption 

of independence of events at the output of the recircu1ating store 

the results presented can only be used to gain an insight into the 

performance of the system. 

It seems obvious that further improvement is possible as the 

number of output registers is increased. From the trend of the 

decrease a maximum of three registers would be sufficient for our 
, 

purposes. The calculations then become laborious, hence no value of 

Pc for s = 3 have been computed. 

The "beat-effect" which has been uncovered appears to be inhert!nt 

in the system. However, th~ effect is less noticeable for s = 2. 

The cyclic nature of the system could be the main contributor to this 

effect, hence at the beat points the system would effectively be in 

the same state at the end of every output period. The effect of 

increasing the store size or recircu1ating rate is therefore negated. 

By increasing the number of output registers the cycle would be 

disturbed thus resulting in a decrease ill the "beat-effect". 

Also, this analysis does not distinguish between coincidence and 

overflow losses. The simulation experiments to be discussed in 

Chapter 4 examine this aspect of the system as well as simulating 

the three output register system. 
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CHAPTER 4 

SIMULATIONS 

4.1 Introduction 

The analysis undertaken in Chapter 3 suggests that a recirculating 

store with mUltiple output registers and a single input register would 

produce results comparable to the random access store •. The analysis, 

although general in form, becomes laborious as the number of output 

buffers is increased. No recursive relationship could be found between 

succeeding ,(alues hence approximate results were produced. 

However, by generating Poisson distributed numbers it is possible 

to simulate the entire system on a digital computer; by suitable 

programming the parameters of the system can be easily changed. 

Simulation runs would also be able to distinguish between overflow 

and coincidence losses. 

In addition, a Poisson distributed data source has been used 

throughout the analysis. However, the nature of·the target distributions 

encountered on fish detecting sonar displays suggests a more complex 

distr!.bution. It is doubtfulwhet:her these distributions would conform 

to any of the known random distributions hence it was decided to 

generate on the computer synthetic displays resembling the real 

situation. A more realistic appraisal can then be made, also a better 

comparison be t\{een the two storage sys terns. 

Finally, in Chapter 2 it was suggested that due to the normal 
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shoal formations of fish behaviour, the information from the display 

would lend itself readily to some form of run-length coding. It is 

proposed therefore to test the effectiveness of some simple run-length 

coding schemes. The codes proposed are fixed length binary codes 

with the maximum run-length being chosen after examining the simulation 

results. It is appreciated that more efficient coding would be possible 

wi th the use of variab le length codes. However, due to the lack of 

sufficient knowledge of the information source, and since the eventual 

aim of the project is to produce an experimental model it was decided 

to test the system by using the simpler approach. 

4.2 Monte Carlo Simulations 

The simulation models ~o be developed will be based on the Monte 
1,2,3 

Carlo approach This branch of experimental mathematics is 

concerned with experiments whose behaviour is controlled by random 

numbers. Problems handled by Monte Carlo methods are of two types 

called probabilistic or deterministic according to whether or not 

they are directly concerned with the behaviour and outcome of random 

processes. In the case of a probabilistic problem the simplest Monte 

Carlo approach is to observe the behaviour of random numbers; these 

numbers are chosen in such a way that they directly simulate the 

physical processes of the.original problem. The desired solution can 

then be inferred from the results of the simulations. The application 

of Monte Carlo methods to deterministic problems involves those 

problems which can be formulated in theoretical language but cannot 

be solved by theoretical means. Being deterministic, these problems 
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have no direct association with random processes, but when the theory 

has exposed 'its underlying structure, it may be recognised that the 

expressions derived also describe some apparently unrelated random 

process. Hence Monte Carlo simulation methods can be used to solve 

such prob 1ems. 

Queueing systems fall within the first category. The source 

and service mechanisms in general follow some random process; hence 

the appropriate random numbers are used to control these two aspects 

of the system. For our purposes the situation is simple as our holding 

times are non-distributed. With the recircu1ating store the randomness 

of the coincidence phenomenon is self-generating and no externally 

) 
generated numbers are necessary. 

It should be appreciated that simulation models can only result 

in inferences and exact solutions to problems are not possible. This 

constitutes one disadvantage of simulating 10" probability events, 

since it is the nature of probability that very large numbers of 

simulation runs must be made if any confidence is to be put in the 

resulting small probabilities. The number of runs required to produce 

a result "ithin a specified tolerance may be estimated by applying 

the accepted confidence-limit techniques (4, Chapter 23), (3, Chapter 

11). For ~xamp1e, it is shown in (4) that if a certain event has 

probability of the order of 0.001, and "e wish to determine this 

probability "ith a high confidence that the result is not in error 

by more than ±10%, then approximately one million runs are required. 

With the high cost of'computer time this "ou1d be an uneconomic 

course of action. 
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Hence, in this chapter, the models developed are intended to 

provide a framework on which an intuitive approach can be developed 

concerning the basic relationship between the variables. 

4.3 Generation of Random Numbers 

Monte Carlo simu1ations require sequences of random numbers drawn 

from a distribution that in general is not uniform. Methods for 

directly generating random numbers with a particular discrete distribution 

are not usually available. Methods do hm.ever exist for generating 

random numbers with a uniform distribution. Almost all methods 

used for generating non-uniform distributions are based on the principle 
( 

of transforming a uniformly distributed sequence of random numbers 

into the required sequence. 

4.3.1 Continuous UniformZy Distributed Random Numbers 

By a continuous uniform distribution we mean that the probability 

of a variable x falling in any interval within a certain range of 

values is proportional to the ratio of the interval size to the 

maximum range. Hence for equal intervals throughout the range the 

probabilities are equal. 

Generation of uniformly distributed random numbers by computer 
5 

is a well-documented technique. The random numbers used in this 

simulation were generated by the University's ICL 1904A computer. 

The random number generator is in the form of a FUNCTION, (FUNCTION 

UTR1(I,J,K)) and uses the linear feedback shift register technique. 
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Approximately 8 x 106 numbers are generated before the sequence 

repeats. By setting the arguments of the FUNCTION, the random numbers 

can have a uniform probability distribution in the range 0 to 1.0. 

4.3.2 Generation of Po is son Distributed Random Numbers 

Poisson distributed numbers may be generated through a process 

of analytic inversion. In this method use is made of the relationship 

between the Poisson and Exponential distributions. It can be shown 

that if the intervals between events are exponentially distributed, 

then the number of events in a fixed period of time has a Poisson 

dis tribution. 

Hence, in order to generate Poisson distributed numbers by the 

inversion method, we need t~ first of all generate exponentially 

distributed random variables. 

4.3.2.1 Generation of Exponentially Distributed Random Variables 

The exponential distribution can be generated from the uniform 

distribution by an inversion technique. Hence, if we require a 

variable x with probability density function f(x) and cumulative 

density function F(x) , the transformation 

r = F(x) (4.1) 

is performed, where r is a uniformly distributed random variable such 

that 0 < r < 1, and F(x) is the cumulative density function of the 

variate x and is defined by 
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= Probability that the value X is less than or 
·equal to x 

= Pr{X ~ x}. 

Now the density and cumulative density functions of exponential 

random variables with parameter A ere given by 

f(x) = exp(-h) (4.2) 

and x 

F(x) = f A exp(-At)dt (4.3) 

0 

= 1 - exp(-h) 

Hence exp(-Ax) = 1 - F(x) (4.4) 

Now applying the transformation r = F(x) we get 

exp (-AX) = 1 - r (4.5) 

or 

1 - r) x = - -~n(l A . (4.6) 

Hence to generate exponentially distributed random variables we 

generate a uniformly distributed random number r, between 0 and 1 

and solve Equation 4.6 for x. In Equation 4.6, l-r may ·be replaced 

by r uince both are identically dis tributed. 

4.3.2.2 The Poisson Proaess Generator 

As stated in Section 4.3.2, the relationship between Poisson 

and Exponential random variables leads to a simple method of generating 

Poisson distributed numbers. 
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If n events occurred in time t, then 

between the n events must be less than or 

the time between the (i - st • th 1) and the 1 

n 
L xi:; t 

i=l 

the sum of the times 

equal to t. Let xi 

events, (xo = 0); 

It is known that for the Poisson process x. is exponentially 
1 

be 

then 

(4.7) 

distributed with mean l/A for all i; hence to generate the value of 

n with mean A 'successive values of xi are generated until the sum of 

the successive values is just greater than t, that is, until 

k 
L xi > t 

i=l 
(4.8) 

Hence k-l event occurred in time t, but the kth event did not. The 

Poisson number n is therefore k-l. 

4.3.2.3 Poisson Generator for Queue Simulation 

The value of t for bandwidth compression queueing systems is T 

the output period. We therefore require the mean number of events 

during this time which is AT. But this is also the traffic intensity 

of the system since 

P = AT 

Hence, if we put A = 1, then T = P and Equation 4.8 becomes 

k 
L xi > P 

i=l 
shown in 

The flowchart for implementing this process is/Figure A.I, 

(4.9) 

Appendix 2; programming was done using FORTRAN IV. The program was 
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designed such that values of p from 0.1 to 0.9 could be generated. 

Table 1 shows a comparison of the theoretical and simulated values 

for three values of p. The results indicate reasonable correspondence 

for only 1000 runs. 

4.4 Generation of Synthetic Test Pattern 

This pattern is intended to simulate the systems' response to 

a "shoal-like" input distribution. Also, since the system under 

study involves the human observer as part of the receiver, subjective 

decision making takes palce. The use of numbers to estimate data loss, 

although instructive would not be readily related to the actual 

situation. 

For a sector scanning sonar with a B-scan display the relevant 

parameters indicate a frame rate of 5 to 10 frames per second. 

Integration from frame to frame due to subjective effects could easily 

conceal slight imperfections. In order to gain an insight into the 

distribution of the losses it was decided to produce the Test Pattern 

in a display fashion. 

The Test Pattern was formed by first generating Poisson 

distributed numbers with a particular value of p. In this caSe 

p = 0.96 was used. It was decided to use 5000 runs throughout the 

simulations. This figure was a compromise between a long run which 

results in better accuracy, and a reasonable run due to the maximum 

computer time 2.vailable. Two 120 x 186 elements array (120 columns 

and 186 rows) were used to hold the displays, one for the output display. 

Each run is allocated 5 elements along a row; when a Poisson number 
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TABLE 1 

Comparison of Theoretical and Simulated Probabilities 

p = 0.1 

Nwnber Frequency Simulated Theoretical 
Probabi Zi ty Probabi Zi ty 

0 919 0.919 0.905 

1 79 0.079 0.091 

2 2 0.002 0.004 

1000 1.000 1.000 

p = 0.2 

0 825 0.825 0.819 

1 160 0.160 0.164 ,-, 

2 15 0.015 0.016 

1000 1.000 1.000' 

p = 0.6 

0 564 0.564 0.549 

1 313 0.313 0.329 

2 100 0.100 0.099 

3 21 0.021 0.020 

4 2 0.002 0.003 

1000 1.000 1.000. 
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n is generated, n asterisks (*) are placed along the line. If the 

number is greater than 5, the excess is carried over into the next 

run's space allocation. To indicate the shoal patterns, pre-se1ected 

blocks were filled in with targets. A check of the number added 

. was made and approximately the same number of Poisson numbers "ere 

subtracted such that the total numbers on the display was the same as 

with Poisson numbers only. The aim is to compare the performance 

of the systems using Poisson inputs of a particular traffic intensity 

and the synthe·tic input of equal load factor. The load factor (L) of 

the system is defined as 

L = total number of inputs for t runs 

t 

According to this presentation, 24 output periods are represented 

along a scan line. This situation, although not pictorially realistic, 

does not affect the simulation process as the buffer views the input 

process as a sequential 

operation with one line continuing into the other. In addition, this 

presentation has the advantage of allowing one to examine the nature 

of the loss phenomena in the systems. 

The input display was held in a subroutine DISPLAY; the flowchart 

for generating this process is shown in Figure A.2, Appendix 2. 
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4.5 Simulation of a system with a single-channel step-down store 

4.5.1 Program Struature 

This follows the conventional simulation pattern for this type 

of storage. The system is simulated for several values of store size. 

A count is made of the number of inputs generated and the number 

removed. An independent count is made of the overflow losses. 

4.5.1.1 SimuZation using Poisson distributed numbers 

These runs are conducted to compare the results from the 

simulation model with the analytical results quoted in Chapter 3. 

After 20,000 runS for each value of p and store size, results 

were obtained only for high ,values of p and small store sizes. This 

was due to the low probability of overflow for other values. Figure 

4.1 shows graphically a comparison between the theoretical and 

simulated results. Figure A.3, Appendix 2, shows the flow-chart 

used for this simulation. 

4.5.1.2 SimuZation using Test Pattern 

The response of this system to the Test Pattern was investigated 

for store sizes from 10 to 30 in steps of 5. Since each input on 

the input display has a unique position an encoding/decoding procedure 

was included in the program. 

Each position is encoded in decimal form by using its row/ 

column number; hence the first point on the display is (1,1) and is 
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encoded as IN = 1001, and for the last position. (186,120) IN = 186120. 

This number IN is then entered into the basic program. To decode,the 

inverse process is done and the corresponding element of the output 

display receives the symbol. Again a check is made of the overflow 

losses. 

The flow-chart for simulating this system is shown in Figure A.4 

Appendix 2. Figure 4.2 shows a graphical comparison of data losses 

between this run and the equivalent run using pure Poisson numbers. 

It is obvious from these results that losses are greater with the 

Test Pattern; for N = 10 and p = 0.96, ~, the probability of overflow, 

is approximately 0.025, while for a load factor of 0.96, ~ = 0.3. 

Also, increasing the store size has only a slight effect on the losses. 

Figure 4.3 shows the computer print-out of the input Test Pattern 
, 

and the output displays for two values of store size. The occurrence 

of overflow is obvious and the "one-in-one-out" si tuation is seen 

clearly especially within the data clusters. 

4.6 Simulation of systems using a recirculating store 

4.6.1 Program Structure 

These systems involve an extra variable, the recirculating rate 

of the store. Each run, which is equivalent to an output period, is 

subdivided into subsidiary runs corresponding to the recirculating 

rate. The factor S~ which was introduced in Chapter 3 determines the 

number of shifts the stores undergo during each output period. The 

programs therefore simulate varying values of traffic intensity p, store 
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Figure 4.3' Computer print-out of input and output patterns 
using step-down store. 
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size N, recirculation rate ~. as well as the number of registers. For 

high probability losses 5000 runs were done, but 20,000 runs were done 

for some low probability values. 

4.6.2 Single output register with PoissGn input 

This system was analysed in some detail in Chapter 3. A check 

is made of the losses in the system in order to compare those due to 

overflow with those due to coincidence. 

The flowchart for this ·system is shown in Figure A.5, Appendix 2. 

Table 2 shows the nature of the losses with 5000 runs, for two 

values of p and varying store sizes. Figure 4.4 shows graphically 

a comparison between these values and the analytical values. 

The main observations to be made are: 

(1) There is reasonable correspondence between the theoretical and 

simulated values for total data loss for higher values of p. 

(2) The "beat-effect" uncovered in the analysis again appears in all 

simulation runs. 

(3) As expected, overflow is predominant for the lower values of 

store size. There· is a gradual decrease in overflow losses as 

the store size is increased. 
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TABLE 2 

Data losses for recircu1ating store· with Poisson input - single 

output regis ter 

p = 0.3 

. $ = 10 • 

Nwnb I Nwnb 0 t 
Fraotional Losses 

Store size er n er U Coinoidenoe OVerflow Total 

5 1484 1301 0.12 0.120 

10 1510 1322 0.09 0.091 

15 1480 1418 0.035 0.007 0.042 

20 1497 1337 0.106 0.106 

25 1475 1420 0.032 0.032 

p = 0.9 ~ 

5 4429 2880 0.346 0.346 

10 4495 2991 0.320 0.320 

15 4506 3468 0.229 0.229 

20 4364 2960 0.126 0.194 0.320 

25 4442 3462 0.220 0.220 
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4.6.3 Multiple Output Registers with Poisson Input 

The progrannning changes necessary only involve the. recircu1ation 

and output loops of the single channel simulation. 

The flow-charts of Figures A.6 and A.7, Appendix 2, show the 

additional progrannning"necessary for this simulation. Simu1ations 

are done for 2 and 3 output registers. It should be noted that the 

effective store size is increased with the addition of the extra 

registers. Hence, with 2 output registers, there is an extra storage 

location which will have to be considered when sunnning overflow losses. 

Figure 4.4ashows graphically a comparison of the losses for 1, 2 

and 3 output registers for p = 0.9. As expected, increasing the 

number of registers results in a decrease in data loss. Due to the 101~ 

probability of the losses, results were obtained for p = 0.9 and 0.8 only 

in both cases. The "beat-effect" is present but its effect appears to 

be dimini"shing as the number of output registers is increased. Figure 

4.5 shows the variation of losses as the recirculation rate is varied. 

The system is more sensitive to the recircu1ation rate but again the 

insensitivity to increase in buffer size is apparent. With 3 output 

registers the system has now surpassed the random access system. For 

example, for p = 0.9,store size 15, and 3 output registers Pc is 

0.0013, while the corresponding ~ is 0.004. 

4.6.4 Multiple Output Registers with Synthetia Input 

Simu1ations are done with 2 and 3 output registers and varying 

store sizes and recircu1ating rates. The encoding/decoding procedure 



• 
• 
7 

• 

- 79 -

'-~.~- .. ~. '.'= ... _. - .. ,.., . 

3 

, 

0.1 
• 
• 

1==: , , 

'" '" 4 o ..., 

.01 

• 
• 
7 

• 

4 

3 

, 

N = 

:,c 

,. 

5 

~ .... 
."'::=::==1.='.0':="='(, 

-i--

10 

I , 

~. 
. le, 

I '=i='-i 

I 

15 20 

.~ 

"'I 

~ 

I 

25 

• 
• 
7 

• 
, 

• 
s , 

• 
• 
7 

• 
, 

• 

, 

• 
• 
7 

• 
, 

• 

• 
s 

• 

I 
30 

Figure 4,4a: Comparison of losses for 1, 2 and 3 registers with Poisson 
Input (P= 0.9) 

= 1 

= 3 



Fractional Loss 0 

N '" .... UlCJI...,CD-=>g N c.o :.. UI .. ..." .. ~..... N!Iot .. "' ..... CIt .. _ 

~
t-' M 'I J * IW1rl )!I' ,p! :IEI'I.!;'l.i r': 11i! ~:, !!!WI'!i: _LLl_.' I+T~J··ffi'~I'. '11'!iIIIII; I, il.!ll+Hl' 11T' 111'lIiW I. ri' I Ill! Hrli IH,'! "j!ll! 

• Cl) I ! I! It+-JH Ljj L;j; ;~;;p::. ~-~ 11'1-1 :!U ~! ::;' ! ! ! .-- l' l' J. t lL!;] j!;. 11-'- ! I' H,l lL! l:j: fH- . 4 j -.4 I 1; d! ,:i: 
c I - H- - r+ . Ii" ~P fH: ;iUH!! -Hi-I·l- q !ill ;H~ iip I ~--t -f-,i .1 I ! Ht! ~ir ii lH: f-Il Uh 'Hi MU ~ii! rr' Hf lw ill! !j!! 
'"'liT Ti' T, --1/ to" '.'"1·''' 1, •• ·.1, i-' .,., .. " .. ,-rr::\- J. III -. ' l'li,·""" I·" ,1 . fill' 1'1' .,11 "'.' ltt" "" ""1" 
(i) I t 11 Il,!II:"",I'i" Ili'I!I",,',,!:II.--r-rr-, •• Illi!'!1 .,,~,I !.!: .. II' ':::'~",III '111''i1iffi1u!..l: " HI i , I' )1,1 7":"1Gi' I t' I Ilil , 1I "I' I!i, -tR1 . j 'ttt ~ 11 ~, , i:' . I :i.i Ht' 1ft· f' i 1,11'1'1 IfH- Hi! '!'TI . "I'''' ~ 11 " '1"·' _,.ll·'!.·[ ., T" L •• -.' '."'. . .ri-. .mt" "'-." ,. '-"I" ,.+ •. , ',I ""1 .. . lH '11 "I .,..- ,I , !, I :q: 111:':j! ,! .111 II!' :", ,,' I lit· i:!J-! !. 'I.' :11' ,I: I", 1, ' 11 i " I" :j: I , till' 'JI!' ,I;; 
a !11n, rfT'~:lii;i ~;;I;:;' ttJ~ ~lT~d:j: :t~; :.;, 1 (I'-j !iT,! -;J , ljrJ fT/;I! 1;!!lTn-; fin i!P If;' ifi[ T tt I I ! Iln :i~I'ii:: 
Ut . -t-ti+h ,lnll. ,."1,,,. "I. 1+, ","1"1 "" ,1" ,--+-+-+-.,- ··,t+I ' ,,',4 ""., ,,,'.JH+ j i\l JP' Cil: iil: i-11 ·If r "Iir '11 till 'iJ' 

r\\ -dlt !HI jr: ::i~ , t T 1- 1 I I f! ~ JjI,. nr; r,1 

Ln : I I I -{ -H+-HHtt iHlliHi ;fi~iHi H1'1 Hi! iiHI'!!HI:~H- r+±~ IWt- Ht]1 PH ~~i ~Ll' ii!i l'IH I\H Hii!ill Jli: 1- 1 I +1 TH~ :;jl PHfilHl 
<: .,. ·rH.'+ 1ffil "j' ",. 11".1"·1' , 'H' " .. ,.,., '.'." . >fl+i 11) ']1·1 "" .. 1., ," ~. H. lIt· M. ". "." •••• 1". .t. U.l >iHI I,. "./111"." Pl I; Tjt' ,I .... Ij 1 It'·11 ,;I; ;1:: Lt; ~u~ ,I!J; ~ll;jl; !~t! +m w'i' I'~. Il lU I';.i d~: 11 U'~ It!; l:!~ I!',! _. I it !_II • tll; 'I 'I: !jll' ~ H- I' H- It " 'r'l; i'!I,,'1 1· i 1II1 II'PI;!I" , I' Il i Ilr,:;II'" ~ 1,111:';l i :' ~ iHl11" ,.;" ., "t +! t "", ". ,I '."'1"1" ," '"~ I" ._1. e'· . . . . ; r ' ". , . ., .. "." 1 ., ill'. ,- 11" 'r" 1" 'I" ,. t-'. i ,I !'jljl,::,I',!, 11;11'<1 .. 1,,"1, ' I I'I.':'II-;~I'"",I,I,:! ,11,)' _ 1 __ , _l! .. I!!'l.!l!:t 

~ I 1 •. , - ' .WmjJj.l'W.i14'1!i' ;P,:':lI::, ill: ,"1" :ill in'II!'I' , , -1' IT'·~i' ·1-':["il Hi',!)I; ;i·I' I!li ]..1" I"lil' '""" I--~~ 11 If.-- +H" !.1!;J,u~::l::,i!.l!:~J~~.l,!JI1::j!::.,:_· l.!1 ~il ~L-.Wljr':I!.j;,!!~;l.lll,ll~II;~"ijTI:!':.+·· 1-1+ IT,J1Jf'-'I'·lIi:t'i;'. !tiT"T"# I, " fi ltl"'~ d'! ",' "i H ' 11" "~- '!I'I"'~ S:tt' + 'I t 1)11 iJ'l ~, , ;1, '-" 'f' 'j' .;' i'I' ,I" rn11~ "'~I" ""'1'1'1 o R= . +. ~l - ~- I '-ll l1 :r1; ;!I:t;;;; -ill-lit; r~j; hi: :l\i'-po '-t!= -tt .- t f" nil il1i!i 1PIi!;: i H !l! ti'i iti! if!; 'fI I Ij·tl! 'I !q:I;I':~ 
;:J - . .1 I' '. J, '. 1·1'·i:,1! .I,.!.".!, H. '1'1' ', .. ". - .. t __ ".ill '"1 ·Jt· "".1"" , ".IF··'· .11 ...... 1.1'. . ,. ,,I. '11"".'.1. I--' I, I I ! I ,I,,!: , ' , I i! ' i I: 0: ~, ,,'; ! i I I :' I'," I ! I! i I .: + I;; , I r • : I : ' , :' ! 1 ~, ! " : I , I ',i' I I' I I 1 I I1 . I ,,:..:..u 11 

~ g, 0 ~I '+ if' 'L #1 111i .i'iliiiiil:· 'H";' ffii jrri I;;i~'.ii; '.' I ' ' '.' ~lJ' H'it!lilii 'flrii'!' fW HI'I 'il: 'H' 'Iil· - ,j. IlllH jF; i11'illll:!'ll +- .~ I'·t Hr" !t-i! ;t:h:i~~ - 1 n~ 'j;' ,;1' .;): j j~ lid :"ltll~;. 'ffiil .<~) I'I~ II'!; L I-+T H+++ :!i 11 Ill,;! \) "'" + '·t ·nl : ili!Ii!!l i!,"I'i!:: LT t :; !t;! ,", i:i: ! ; ;,'U·jIW '!:: !!i: I '11 
J dl'l 'II! ,iI;; T' HJ!;i ;.1: r:I;: 'I '"' . j_ 1-+ I , '11' '11' I!! '.I, I' ,11' " .• H': ,I,' I I I 1" 'III!'I' ,I:; , !,' I t' I'! 11 r H :-111111,: · 'r , ' 'I' ". "",''', . , I· , ' I ... , ..... .~ .. "p." ,I" ,. cc I'" '.1 11" I' . .. It! 'j'" I\W.·' ru I, I .' ,I,!" tll, :1,: "! :1 I;: i" '",I:!, i 11'1 I ::;! 'I', i'i: !~ III ,I: ,I i,' I llJ ': '7fr,ll~ 

o !::. "-Lr.lli-tH~ ·mlffij~Ii·!.' i''''I''.[I·'. till' qUI/;. !'I'."I: "', "1 Lt't' IT'II' 'i! '·1'; ,u, 'Ill !'Il! I· 11'1'. il'! iil'· -t· 1 l' III 1"/'11 :1:, '1"1: '1IIItI1'111,"I';lII,[I'1 00 " I I I11 "I::,ill'IHI liI' 11i"I::II' [TIJ'jTl liil:!IIoI:I!IJI'l "'11';' I ~"II,qi'il I '11"'1 1 
'" t-" ill·· ·t' . 'Ij'""Ili'bj '.'ffij." .. , .......... ,. , ., "11'""'''"'"[' "I"'I"!I' .. """''''-'' .. ' """",, 0 o r=j=#'--!- ,. ·t' ~r4 I ~ ~~I ·I!: :1!,,;;): t·!J 111 - ;'1:1 ;~;: ::;: rn'l l' . " 11 ;i!l :Ili ;111: i jl: l.J 1 l; ,; 1: ;.j: I ;i-i.i Ild~ ;11", 11,1; " .. ,,',' ~ t--L 1nl I! 11 I,:' 1,':,::1, f" 'i III d'! li.: I 11·1 I!'" 11' II! 111 , 11 1:1,1,' -It 1 11 ill: I ,,' ~ --,- .. 1 "t .'" ""I"r . 11 ". "11 "'''',., I· I 1I '" "1','1' t· I ·)1" 11"'" t· 'I" '1 "'" III I-' , I " ":'; I ! " 'i" !,' I',:, I', !'t! ;, I I I I I ' ! I; 11 I.;, t ,1 i I" I\!: I 'I! I ' <I '. 

~: Ut , "ID"· l·m1·tWt'" 1 'jfli El; iiiili::!lttit'f: Hi1,i!li~it.)Uj!i: ' , , , I+t~ 'i+1) tm:~t: I'ul !llllil~j; ml'J il' Hj'lfrilll !n!I:I'I'I:! H +ll±I1Irlllll! 'I'ill! i'IUlj'I,ili If+Htjl++j'IIII'lljil~i;I:;l1 o t !llii"i~I!lj!'::I' I,i!·,j'!:'~:'l: LL d il,'lbl liii,ldli!!·,1 I IJ!t1~11 m;! I!I: HiM ,'I!!I,I 

+ t 
-I i 1'1 i 1 I; !;t; 1 ,rr;'i' IT r;'[, ijli 71;; ;;;. t I I . I P '11i ;ii11i['T' I I1 1~111 

.... {Jl + eW·"j ,.,.. 1'''1 ,," ,f', .. ··, ;; tH, '1'.""1"., . I ,,"' ,.,. r·II'I"·I' ; I "I o Cf.I !, I I I ill 11 11 I' ,11' I~!, '1'11: 1,. I :! I I I\,! \!II,"~I I I ~ t 11 !I, '; ',,1<',)1, I : 1 

~ ~ f---i--'--l+' I -i-H." ~ll1~, pi2f;U: :.:;;l'i!:!~..l ,114 il:]:I: !l;:I"~.: JJ.ll ~I "'I: 
<.0 I I I I .lLlllIH!~ lJ ~Il!!:jl '11,;1'1:[111 1'; I'j! 1,1:!11" I t!-Lu~T UJI ~m, 
~. U.lU_ ,il' 1[11 Ifll ITli",:r i,]i[1!illTT ill' '1,1 ~!!,:II!L i·, ! 1'1 WJJ 11" li!I ' 
;T 

.. 14 ~ ~ittt~.j: '~iHmt'H j'.I#~jtiliil:lijiIHI·il:;:iltFIII't'I"'·I''''II'''r-m+-j-;:m:rrm:l·tiiiirn· ·11'1~'. ++ I1 "/'1.111 r"III' 'J 1" I':: "i'I':' -----.-----:...1 I I 11I11 
i"'TI I I ,t I -./ t711 :!-:j nr:.:;;i-!~Illit': nil ;r~ r;;i ! I I -I • , - I I tthl' 

g 8=1=1 'nBl ' 'if iH' ill"".'. "t':;"" TIll"'.'. ,'I' iI,' 'i'''''i.['''.' '-r I I i lIi'I' ffili ".HI'.' .i'i'I"'I'·'~·ti"j''''I'''II''·j·''H=· H=jl 11' 'lllllitljJj'j""llllj·I"'·j'I"·lttl'j'j·ll·j - . #1' I ;1 'I'TI': rri; Pil It;'-i tI,; 1:1; liii '" 11 im "H" 'Ii' :!F 11111'; Ijl' 1][, "l . ·1· '. I :I~[II "IT': ii 1 { : W R+J: ·r· T '~" ',' '.," 'I" ·n·lj~ 'U"I' "j"" - "I' I' J '-"UI'," ··lM " '1 " '11 '," 'I", . 1I 11" '11'1' . ·11 1 , I " ,!, I, ' i' ! I "i: " , " "I ,. 1, ' : I, ',I : i" . - r --1-. I ~i-! :t-:, ':111 •. liT; ~ ! 1..:.",' T· T l.J.J!,' .,.' .L..;, ~ • I:J..:., - q ut. .•... + - i--H . 

g I ! ,-1- ~ ~+H- I : :d~ Hi: ~WHH: 1Ti+ tth Ht\ H~;, Hu ! 1- T ' , I- t-lit J,1HlTl 
~ I'" I' '". ,w: :li.UiL.' :1'.'.1:.:" 'J 'J I~J it .. !! it:: ;,i; '; I lltl!!'i.!!!i"!!:! U i! '1'11 ",ll!lI'I':" "rrrrtnl1Tii1}lmI41HIlII:lli1!:!~. U.

I ill' ~"W.'I': 
"Cl r--~--l-L!--...u-U TT 'I'tlt lli' 'f',. 'l,pi: liT' Ill! i.i'Hi.'IICllI W+Jlr.I'i !""'';'iJfTl1m J 'till. :1:;:;.: IU1Ll!+ I tlfflli' ilill[fi\ili I ' '1,~! ; Ll_LL "Tiil T lil[ !nl !fi'jI',liftT J11 1111 :If: i!i~ 1 i+++jI:II:i tpn1 I Hlli ::i' 1"1: ijl] ---t- Irnnt .. ' ,iJi' il;~lill' 'Ill 

11Itt "_ _I w.T in, tJ;;I;rl,!I:!!; toll 11'1: ;:1:'i~: ~tt I iI l~'i l:ff :r!;!i~, ~1!._ 1,1 . .';.l.L f:!t:i;:~!I:jli --4-L- -t! i 1!1! 111 i!J; I L1, fJ 
t1 'I ' I \ i \' i rn~.un I,IW", "I '.11l,- I 1," ",I, ',,': ",,'. \., nm' Idlum ,1f;,lirl: 111\ 11\1 '!Idll;il:,\, 
I'D l'I"~~:2l!l!!iiij:i; iil_I;..;.';':!!..;.:;:;;; II1 I I i";!i'IW-!Jl~j;i1jlt:*Il~!l:~!:W::1-

OQ ." n.il.~'.::~'"fl~i!llil:Li.rm". ffij" in: '.1:: "'.' , I rrr: ii111T"'. ',[:IW' ." {!iltiill!t"1-~ iTI: lJ4!,lIi lit; .!I Lll! L!l~ ::1 1 11 I I TiITTTffi Ill1jjlj! I I 'tlllil111: : 
rt TTI} :::: ,tTI t,'! I !J !iJ.:l:ll~: I, lii"t ! i I' I p~ I I I II! 'HI id 
(t) H I!\~ IP .8 111 I rLIIf\T7II;,: t I I! iI \ I', I'll 

~ ....... ut ......... _ N Cot ......... _ N Cot .. ut ."" .... 



"l ,.., 

" ,., 
Cl) 

o 
~' 

z 

: len 

b 
CJl 
CJl 
Cl) 
CJl 

,.., 
o ,., 

if ..... 
rr ,.., 
'0 ..... 
Cl) 

'" (\) 
OQ ,.., 

CJl 
rr 

~ 
.: ,.., 
rr 
::r 
>-.J 
(\) 
co 
rr 
>d 

'" rr 
rr 
(\) ,., 
::> 

..... 
o 

..... en 

N 
o 

N en 

w 
o 

N 

N 

w • ~ 

H',i!,'i' 'Tj ,I 
Pi'l:l ., , I r~ i; 

~'lt,; nl • ' 

"I', 

ttHli IHi i 
'VIi' 11 J 

H, 
.:f: 

w 

i!:t 

:1 1;1, 

;'1'1'" "11"1'1; .1 ,., 

" '1": ' 

• w 

010..1.0·, 

~!!; /ii i 
~g1llil 
i I.: I" :It-I~:i ,I 
I I : : ti 

"j;'I' :; i-l: 
it 
U, ,*; ... 1'1' .. ,if:? :i 
IT!!; h 

..... 

....... Of • -

"', lTf 

J}J 

N 

N 

Fractional Loss 

~ I('" : 

w • ~ 

I
""""" :1H"1",;J ,"11';1 

I! 1'; 1; :1ti ,iii 
-'il,'I't'jl I" ',I 
rlH 1,:; 

w 

f ~i 

!iJ: 'Ii' 
1';j!'1' 
Jl! !!!: 

Pill/I't! 
~Lj ~1'+ 

~""'''' I I ' ~ i : iI ; 
,: ~:! ~ ... 

pilllll': 
.@~:l~ 
:mlij" I !:;I !Ii 
; .1:;:1 i~::J 

.1,ijf nr ;:"'~"" 

~!ijil!ir 
l.!JLi! 

• w 

0\ ..... CD <Cl _ 

"1"1'1'" ' tit' " , "'\"1' : , 11, ',t,; I',': 

• 

1
111'" ;:[1 

1
!lhj" ;!l ~ i: 

l ifi;ln,lj,,~ lp! ~. ; 
1'1" "I" '.I' j, 

... CD .. _ 

N 

N 

w 

mtti 
t!!!t 

• w 

tlliill!!: ,,~ ~q: jl: 

• w 

. ~ . 

!l:l!il 

ntH! 

I ii\1l1 ' , 'I -\H h, 

E'n"I'1 

.. ... .. -

00 ..... 



- 82 -

•••••••••••••••••••••••••• #.- •••••••••••••••••••••••••••••••••••••• 

',','1
11
:1"1 "'11' fll' "1'" .. , .• '0. 'J I 1""11'1 ".}i '11 III I I" I" I ' I 'Ill ... I'" I .". I It· .1'..... ".,.It 'I' • .. '" 

0' '0 '11' ". 'I" ••••••• I '" I ••••• 0 I' I"I'U" I 'I, •• 0'. I ..... 'r ,'s'l 11"1 • I .0 '1"'. 'I' I • ,00 '0'. 'IIIIU" I" "1' " ... 
I I • '11

" .0. I '0 '.' '··· .. 11'·· .. 11' • ". "r I ,I" II J'o, ")11"'·0 '0' ... I • 'I •• , ••.•• 1.' 11" 
I • '0 'I • 11' I' I I'" '1'1' • • •••• .... '0 •• 'I"~ .... "1'1 I " 11)' '0 ••••••• I" ••• ..1.1" •••• '0' • 

11
'" I I I •• 0 .0. • ... 111· '0 .0 H'''','' '0' , • "I' ',··,,1 '0 .. eo ...... " ""I" • "0 11 I • I I" I '1'1'" n U' .,' I· ... ··'·. 'I ••• ". "'IJI' • 

, ... , .. :.;:',': .;' •. , ••. ,.. ..:: '.'.::: ....... IIIII'II1I!11 III I 
'I'" 't ..... ····: •• :·"1 • "'" J" .,' 'I' :~'J::" I'! ;IIIII!II 

.... :: ~·i:i::::; . :.~~:::~;:~: ::!::::: 111111111111 
••••• '11 I" 1" .. 'UI •••••• 'U'I'" • 1'1 • ~ ••• 00, • 
, •• ,. ,.. I" , • 1'· .. ·ul '1',·' ..... 11 1'1'" I "'1 1 'UI" 

..... 
I" ,.,. I' I" ""~: ,~. ::' I • 11' I' "1""" .. , .... , ..... 00"1 .... I ... r_ 

•• , ' 0" I' 11· .... •• Ill' • '. ,0 , •• ,.. 11"" ,., 
"'.' '1' II' I"'" .,' ••• , • "I ... ,' .. ,...... • ..... ,.. • ' .... "1 ." ,. Ill',' .," '.. I'· .. ·". 

• ." ... "'I' '1" • '" " •• ," 0"'1' .. '11'" ,.,' '1'1' 1 0 I' ' .... ,.,. .. .............. '. '1 ' ...... " I""'" 11',,, .. " • 
... " f , ... "'''11 ' .... I· ., ' •• I "1'" , ••• "1' ,,, 1 .,., , .. , It' 1" , ... ,..... , ............ "1" ,',I"'" ...... I' ... I' 

1III
'III'IIII!I!lIIIIPlIIII,IIIIIIII' .............. ,., ..... , •.. · .. ··1 ... , •• " ...... " ............. , ." .••.•.•.•• ,. ..·to ... ,· 
1

'1,11,1,1 11"'1,, 1",,"1 • ,. I'" .. , .... " ..................... , 
: '1"111,'1111'1' '1"I"I'lllIf 1'11 ., ... , .... , ... , , .,.. . ... ,. ,.., .• '"11' • ,." "'," •• ,' " .... , "' •••• 

I 
I ...... , .. , ... ,' •• , u, n. ,., .,' .' ... , ..... ,. 

11 !I 1,11111 IL 1 I: ., ... I '1'''1 1 ., 'I' •• ,.... "11' ... " ... , .. , ....... , ,., '1'" • , .. I· .. ·'·r· •• 1'11'11 .,', •••• 

. . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
, •• ' ••• ' •••••••••••• o ••••••• 0 ••••••••••••••••• 0 ••••••••••••••••••••• 

$::::1':11' • 
'11'''"''11 
............ 0 ............ , .. , .. , . .......... 

". "t .. , ........ . ... ~ 
.' 

, ., 

,I'''' " .. ··1 I , "'11', .. 11'10 ". t I" ,.,." 'U, ... I'"~ I 't·, I It· '1'''''' ,·.··u .,. I 
,.. • ...... 1 .,. , ..... , I' '''. 00. I "11 ..... 11'" .,. ""1"'" .... ', .•••• ,' I • I" •••• '1111"" I I',' ,. '''I 
I ..... ' .. · .. 11'· .. ·11' .... "1 ... ' 'I I" '·1·'·'·.. ... ,. 0 • , '1 •• " ...... , "" 

• I'" ' •• ,. • • ........ .. , , '1" . "... , •• I'r ... I'"~ •• III ••• "rJ"'" ',. .. ,'. 
11" •••• 11 ''''1'' ". I' tip ....... .. •• , ..... ., .,...... .. .f. t 

• 11 11' •• , '1:11111 ' ...... 1.1 • '1 • ". ',"," I, 

, ..... , ••• ,,"" ... , n' •• "'!'II!II'i!!II!I!IIII' 
• " ...... "'11'111 ..... I'"~ '1' .. 1111f'111 'I ' 
• ..... I" :":':i ". '1' • ,'" .. :111,i 'id .,:;, ! 
I 'I' '''::'':i ",'UI r ..................... I 

..•• '.;. :1. II:'::::::! : ~::I ~:. • :.!.:,'. ~!~~!~~:~~:~~:::;! 
• • '0'1" ••• :,:::: 'U ,... .., ........... 00'1 , 

.... "11' ....... , •• , , .... 'U' •••••• ''''1' .. • I • ... • ! t·· I· .. • .. ' ....... I" • • 1' .... 111 .,., ....... 11 "1' • 
•• "'11 '1 I ....... 

I'" • ' ... . .. , .. " 
11 "'I 

,I' I' .1 ..... • .. , .... , .... , ""1 1 0 

I ... , ........ ,' Ill' •. , .' .. ' • 
• 'U" .,' .,. ,. '11', ... ,. 0, 

, ..... , ,... .. ........... ····1 '11 ...... " I·'· ... · 11',' 
11' (" , ••• ,..... , ........ , ... "1" "1""" ...... " • 
• I" 11' .... , t' .. • ,., ... "'I 'n'" .,.. ·t· . 

• , 
," ... , I" 

.. 11111' • , •• , ,., '1 "1.' ..... " 
.......... , .... , I' f III t.. t·· '1' 
........ , r' ."., • , .. , .... ,., .. I, I' "'11 ,,0 

..... 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• 
. , ••. ~ ••••••••• 0 ••••••••••••••••••••••••• 0 •• ~ •••••• C ••• 0 •••• 0 ••••••• 

.. .. , ... I'''' .• ..··1 1 , '''11', .. 11 'I. ". I I" "'. t "U' ,.. .... , • , .•• 11' '1'''''' ", .... ',. • • 0 '.' I 
,i "'1" ... ,.. • ..... "f' , ...... t· , .'.,. 1'11' .... '11" '1' 1"'1"'" .... '1"" '.' I • I" ",. ·.,.111 ... 0 '11' '''1 !1!:!J,hH., ' •. '. ... , ... , .. ·· .. ·' ...... JlI I", "(' .,00 'I .". "1""'" ... ... • 1'1" ... '1" '"' 

. ............ '1' 11' ,. I , ... '1'" " • ........ .. •• '1" ., • ",., , •• 1'1' ., '''' •• I" '" "'Ill" • •.•• ,., 
,."t .......... I ... " .... 11· .... U '·"1" .. ' I' "I' ,'11' •• . .. '" ..... ., ·1 ...... ' .. 11 I' I 
............... " • '. • • It u'''' '"'"'1 '·1· .. ·.·' " .... t' ., '," '. 

o ,':.... .. . , ..... II··:F:!! ... ,... • ..• "'II!II:!!'!I!!!!"!!II 
N •• , ••••.• ••• ...... ·1 .... • .... '.'. I 111'1111111 

.;.~.. • .,". ". ::,:·il ". '1' • " I"" :,:i":'I:J,:j::I:II! 

"" N 
H 

'" 

'.' . 

• -I, I 0 I • • "11":1 ""Il, ,. .. ... ,·U ....... II· .. I f 
• '1 o. •• 11· .... 1·11 • , .. I' , •• , •• ~:~:I:~:ii'ill!::111 

, , ') 'I' • • ":::Ii:, 0 .". ". •• .. ·1 • ia:::I::W:"lill ; 
: :.:,.~ ::. ::.::::::: .::' .. :' ::',"' ..... , 'WI':: ':'.. ,.. . ! , ..•. t" .'...... ....... ,.. , • " .... ,,' ·1· ........ 11 I','" ••• ,. , .. ' , 
11 1"11 " I ....... 11' I' .... "., ... , ......... , ''''1' .. " 

,.. "J' ,., .. ", .. , •• ,. ,. , •• , .. 
'. ··'i· ••• 'J' II' -,.,,,, ......... " ... ,. • .,...... ... .... . 
~ ., ..... "'1"1 ' ,., 'I' .," .".,." ... ". •• 

'." .... I .... f' I '" , .... , •• , • • I •• , ... " •• '11'''' I • 

!~::~~:~~~!lllrlflfIfl!IW!I!I' .. ,.'" ....... 1'1· .. •• t' • 
11111111111 lit 1',11 .q;!q! .•. , .......... ,. '1 ... " .... . 

ii::i:;;;;;llIliui:;;iddlilll' , ... " ....... t I '.. • .. , 
'HIIII:IIIl1:IIII1::I:lJlllliil"'" • '1'"1' •• 11' I"",' ... 

I ... ,. U'" ••• , Ill' •• , ,. ..., 
, ... " '.. 'I' ,. Ill" ....... . 

I'.' t' I· .. ••• ..,. • ............... '1 ., ' , ..... " ,., •• " ... 0 

..., 11' 1" I" ....... • ............ 1'1" "1""" ....... , 

..".". , •• 11' .. ,., 1 I'" ....... "'1 'U',' .. ". "" . 
11 "'1 • .. 11111' • , •• , • ,.,., 1'1 .... , , ., '1 II .' • , 

o . .. I •• .. ..... , .... , 1 I • "' 11. I" .,. • :., ...... 
'''. "' ... I ......... ~., 1"1' I ....... ,., .. " I' U'" •••• '. 

.. "' ............... -

Figure 4.7: Computer print-out of input and output patterns 
using recircu1ating store - 1, = 14. 
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is as outlined in Section 4.5.1.2 and the re circulating system is as 

before. 

Figure 4.6 shows graphically the variation of Pc for various 

store sizes and recircu1ating rates. Figure 4.7 shows the computer 

print-outs of the input pattern and the outputs for two values of 

store size. 

The main observations are: 

.(1) Th" losses are again comparab le wi th those obtained when using 

the random access store. The results suggest a slight improvement 

with the re circulating system but with only 5000 runs little 

emphasis can be placed on such small variations. 

(2) The nature of coincidence losses can now be observed by examining 

the output patterns. The effect of these losses is to distribute 

the losses over the whole display. On the other hand, when over­

flow losses occur especially in some clusters, there is the 

distinct "one-in-one-out" effect which the observer is better able 

to detect. 

(3) The "beat-effect" again is noticeable. 

(4) The effect of incrp.asing the number of input registers is negligible. 

4.6.5 Comments on SimuUltion ResuZts 

Due to the restriction on the number of runs, high accuracy had 

to be sacrificed in some cases. However, for the higher values of 

traffic intensity, the confidence limit ca1cu1ation~ suggest that 

the results should be within acceptable limits. F'lr example, for 

p = 0.9 the results should not be more than 5% in erroc; however, 
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for p = 0.1 they could be anything up to 50% in error. The compar-

ison graphs of Figure 4.4 suggest 'close correspondence between the 

larger values of p; however, on account of the assumptions made in 

arriving at the theoretical curves, little emphasis can be placed on 

these magnitudes. However, the location of the beat-points are ' 

similar and hence the theory would appear to be reasonably acceptable, 

particularly for high values of p. 

4.7 Simulation of simple Run-Length Coding Methods 

The Test Patterns used in the previous simu1ations would'not 

be suitable for these simu1ations since, in order to accommodate the 

required number of runs, the range cells were compressed. In the 

real situation there are 32 bearing cells on each bearing scan line 

and the coding method usually operates on a line by line basis'. For 

a digital syst~m it would be convenient to consider maximum runs of 

2, 4, 8 or 16 cells. 

4.7.1 P1'eparation of Test Pattern 

The input patterns are held in 32 x 120 element arrays (32 bearing 

and 120 range cells). The target patterns were chosen to resemble 

likely situations. Two patterns were produced consisting 6f 305 

and 662 occupied cells. These numbers were selected in order to test 

the coding methods over a wide range of input rates. 

These patterns were prepared by Branson and the program structure 
6 

is described fully elsewhere • 
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Figures 4.8 and 4.9 show· the computer prints of the two input 

patterns. 

4.7.2 System Parameters 

In the sector-scanning sonar system proposed a·minimum pulse 

width of 100 micro-seconds is envisaged. Hence 120 range cells 

would simulate a range of 20 metres. Considering the display with 

305 targets per frame the mean input rate can be calculated. 

Now from queueing theory fundamentals it has been shown that in 

order to maintain equilibrium p should be less than 1. For the 

recirculating system the analysis also suggests that a value of p 

less than one maintains better equilibrium. Also, in order to use as 

small a bandwidth as possible, the system designer aims for a high 

value of p. 

For p = 0.9 targets have to be removed from the buffer at a rate 

of 340 per frame. This is equivalent to removing 1 target every 

ll.bearing cells, or an output clock·rate of about 30 KHz. If the 

same removal rate is used on the 660 targets pattern, then this would 

be equivalent to a traffic intensity of about 1.8. 

4.7.3 Coding Methods 

Each cell on the display has a unique position and for the purposes 

of this simulation the encoding/decoding method outlined· in Section 

4.5.1.2 is used. The· maximum run-lengths simulated are 4 and 8 cells. 

Two coding methods are simulated. 

In Method 1, each range cell is subdivided into 4 or 8 runs 
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depending on the maximum run-length used. The number of targets 

within the run is counted and this number is attached to the coordinate 

of the last target position in the run. Hence, in binary form, each 

word is now 16 or 17 bits, depending on the maximum run length. This 

method has one drawback in that th~re is no indication of the distribution 

of targets within the run, hence a slight distortion is to be expected. 

However, it is hoped this effect will not be noticeable. 

In Method 2 a maximum run is also selected; however, if a 

break in the run is encountered before the maximum is reached, the 

run counter stops and the run-length and last target position are 

encoded. This method overcomes the distortion effect of the previous 

method but should result in an increase in the number of runs required 

to encode the same number of targets. 

The decoder separates the run length number from the coordinate 

position and simply fills in successive cells until the end of the 

run count. 

4.7.4 Program Structure 

The program structure is similar to those used in Section 4.5. 

Bearing is represented columnwise on the displays. The Test Patterns 

are held in SUBROUTINES and the main program reads the displays 

co1umnwise. The output period is synchronised to the bearing cells 

with one target being removed every k bearing cells. The value of k 

depends on the output rate desired. In the simu1ations k varied from 

9 to 16 which simulates high traffic intensities. The output patterns 

are again displayed on computer print-outs. 
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The following simulations are done: 

(1) Examination of the distribution of runs on the two displays for 

(a) an unlimited maximum run length, 

(b) maximum run lengths of 4 and 8 runs with coding methods 1 

and 2. 

(2) Comparison of the two coding methods and comparison of both 

coding methods with the previous un-coded method. 

The flowcharts'for the coding/decoding processes are shown in 

Figures A8, A9 and AID, Appendix 2. 

Three output registers are used in all simulations. 

4.7.5 Discussion of Results 

-Table 3 shows the distribution of run-lengths obtained with the 

two coding methods as well as for an unlimited run. The figures 

suggest that for these patterns a maximum of 6· to 8 runs would be 

adequate. There is very little difference in the number of runs for 

either coding method but the decrease in runs as the maximum run length 

is increased is noticeable. It is of interest to note that although 

,the shapes and sizes of the targets were arbitrarily chosen, the' 

proportions of runs remain approximately the same on both Test Patterne. 

Table 4 compares the performance of the several coding methods 

on the 305 targets input pattern for a store, size of 14 words, 3 

output registers and a recirculating rate factor of 5. The first 

column indicates the intervals at which targets are removed. Table 5 

shows the corresponding figures for the 660 targets display. 
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The figures indicate the vast improvement obtained with run­

length coding. When using the higher input rate the fractional data 

loss is of the order of 50%. This figure is reduced considerably 

when run-length coding is used. There is very little difference 

quantitatively between the two coding methods; however, with an 8. 

run maximum better results are always obtained. 

Figures 4.10 to 4.15 show the computer prints of various 

situations. Those for code method 1 (Figures 4 .l~ and ,4.l£) 

demonstrate the distortion effect mentioned before. It is interesting 

to note that even for the non-coded method the shapes 

of most of the patterns have been retained. Also, the fractional 

data loss for this case is of the same percentage as those encountered 

in the previous simulation runs. 
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TABLE 3 

Run-Length Distribution 

305 TARGETS 662 TARGETS 

1. MAXIMUM RUN-LENGTH MAXIMUM RUN-LENGTH 

Unlimited Run Unlimited 8 4 8 4 

Length Code Code Code Code Code Code Code Cork 
1 2 1 2 1 2 1 2 

1 44 48 48 67 54 122 77 127 150 135 

2 12 12 24 . 42 25 20 55 23 83 40 .. 

3 13 15 7 17 15 37 28 41 41 45 

4 11 11 7 26 40 23 26 23 56 78 
, 

5 6 6 10 \.. 8 13 8 

6 11 11 11 17 21 17 

7 0 0 3 3 7 4 

8 0 6 3 0 6 13 

9 4 5 

10 0 3 

11 2 4 

12 0 0 

13 0 1 

rota1 
= 103 109 113 152 134 248 233 . 256 330 298 

runs 
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TABLE 4 

Comparison of Coding Methods 

305 Targets 

NwrifJers Out 

Output No Code Code 1 Code 2 
IntervaZs 8 run 4 run 8 run 4 run 

max max max max 

9 270 305 305 305 305 

10 250 305 305 305 305 

11 240 305 305 305 305 

12 225 305 305 305 297 

13 201 
r 
I, 305 303 305 289 

14 192 305 297 305 279 

15 183 305 280 305 270 

16 176 305 270 305 260 

TABLE 5 

66 2 Targets 

9 397 662 649 662 646 

10 384 662 630 662 627 

11 340 662 620 662 620 

12 320 662 601 662 587 
I 

13 295 657 581 662 581 

14 274 657 535 653 520 

15 256 640 501 648 500 

16 240 635 475 628 480 
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CHAPTER 5 

DESIGN AND CONSTRUCTION OF THE EXPERIMENTAL SYSTEM 

5.1 Introduction 

The resu1 ts of the s"imu1ation runs suggest that for sui tab1y chosen 

system parameters the recircu1ating storage system could produce 

compression ratios comparable with those of the random access store. 

The purpose of the experimental system is to test the practicality of 

the method in terms of hardware utilization. 

Figure 5.1 shows in schematic form the main features of the proposed 

system. In an operational system the design would have to consider 

transmission through a communication channel. This would involve the 

design of modulation and demodulation systems. However, this project 

has concerned itself with processing the signal before modulation and 

after demodulation of the R.F carrier. The choice of the transmission 

media will depend eventually on the location of the system, but since 

these details are standard for such systems no thorough research was 

conducted into this aspect of the system. In any calculations to 

establish bandwidth requirements a typical value for Signa1-to-Noise 

ratio l,i11 be assumed. 

The Target Simulator (Figure 5.2) provides the system with video 

signals representing targets, and range and bearing pulses for line 

and frame synchronization of the B-scan display. 
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The Input Circuitry includes a Display Clock a Target Detector and 

Time Q.1antizer and the Encoding Circuits. The Target Detector clips 

the video signal and the Time Quantizer synchronizes the clipped signal 

to the Display Clock. The encoder is also synchronized to the display 

clock as well as to the range and bearing pulses. When the Target 

Detector produces a pulse, the encoder contains a 14-bit word which 

indicates the position of this target. This information may be 

transferred in parallel directly to the Input Buffer to await acceptance 

by the store. Alternatively, if the Run Length Coder is used, transfer 

may be delayed until the end of a run; then a l7-bit word indicating 

the length of the run and the co-ordinate of the last position of the 

run is transferred to the Input Buffer. A manual switch is included 

in the design to include the Run-Length Coder when required. 

The Input Decision Circuit~ examines the recirculating data train 

for empty word spaces. It controls the transfer of data from the 

encoders to the Input Buffer and from the Input Buffer to the Main 

Store. If a new word arrives from the encoder while the previous word 

is still in the Input Buffer, the Input Decision Circuit causes the new 

word to be discarded. 

The Main Store unit consists of the recirculating store and clocks. 

The store is built from Metal Oxide Semiconductor Shift Registers, hence 

clock drivers are necessary to provide the level translation to MOS 

levels. The Main Clock, which recirculates data also shifts information 

from the Input Buffer to the store and from the store into the Output 

Buffers. 
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The Output Circuits consist of the Output Decision Circuits, the 

Output Buffers, the Output Clock, the Transfer Circuits and the Decoder. 

The Output Decision Circuit examines the last position of the Main 

Store and the Output Buffers, after every word shift. If a word is 

present and a register is empty, this word is transferred serially at 

the recirculating clock rate to the vacant register. If all registers 

are filled then all words are diverted to the Input Decision Circuit. 

The Output Buffers are simply three sets of registers capable of 

receiving one word at the recirculating clock rate. 

The Output Clock is obtained from the Main Clock by division. 

Several stages of division are taken to test the system's performance 

over a range of output rates. 

The Transfer Circuits examine the Output Buffers at the end of 

every output period. Data are transferred from the first occupied 

register located to the Decoder. 

The Decoder separates run-length information from co-ordinate 

information and provides the Digital-to-Analog converters with a 9-bit 

and 5-bit word indicating range and bearing. The Decoder is used only 

if the Run Length Coder is used and is engaged automatically by the run-

length code. If no run coding is done the single co-ordinate word is 

transferred directly to the D-to-A converters. 

The Digital-to-Analog converters produce analog signals proportional 

to co-ordinate positions; these are applied to the "X" and "Y" plates 

of a cathode ray tube. Bright-up pulses are applied to the "z" 
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modulation terminal to prevent the transition of the spot from one 

co-ordinate to the next from being visible on the screen. 

Since M.O.S. shift registers are used for the Main Store and RTL 

and TTL logic circuits are used elsewhere, interface circuits between. 

the two sets of devices are provided. 

A detailed description of the complete system is given in the 

following sections. 

5.2 The Target Simulator 

In the absence of signals from a sonar system it was decided to 

incorporate into the system a target simulator. 

Figure 5.2 shows in schematic form the main features of this systehl. 
~ 

This method uses the flying spot scanning technique and is similar to 

one designed and built before in this department (1). This system is 

capable of producing real time signals by scanning a moving film taken 

from a sonar display. However, this would require complicated mech-

anica1 designs as the film is only moved during the flyback period at 

the end of the scanning frame. These refinements have been achieved 

in television scanning systems; however, for the purposes of this project, 

only the static system is used. 

The cathode ray tube used had a P·15 phosphor which has a decay 

time of about 2 microseconds. The bearing resolution time is of the 

order of 3 microseconds hence the phosphor resolution requirements are 

just satisfied. Ideally a larger separation would be preferred in 
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order to accommodate the capacative effects of the coaxial cable used 

to conduct the video signal. However the P 15 phosphor produced 

reasonable signals hence this system was accepted. An alternative 

scheme using a vidicon system is being investigated elsewhere (2). 

This system overcomes the resolution problems of the flying-spot 

scanning system. 

The Raster Generator consist of two sawtooth generators whose 

sweep times are designed to simulate the required range and bearing 

times. The range sawtooth is made variable such that different range 

scans can be simulated. The bearing sweep is a constant 100 microsecond 

sweep. The circuit for the sawtooth generators is described 

Appendix 3. The slow sawtooth is applied to the "y" deflection plates 

and the fast sawtooth to the "X" plates of the raster generating 

oscilloscope. 

The pulses produced during the flyback of the sweep waveforms 

are used as the range and bearing pulses. 

'The raster is projected on to the film by a system of lenses, and 

the modulated light is received by a photomultiplier. The photomultiplier 

tube used is an ReA 93lA tube. 

The vid~o signal from the photo tube is first fed into a head 

amplifier which serves as the input stage of the video amplifier. This 

head amplifier is simply a field effect transistor circuit in the 

common drain mode. This amplifier, which has unity gain serves as an 

impedance matching transformer for the output of the photomultiplier 

and the input of the video amplifier stage. 
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The video amplifier is designed to have a gain of 20 with a band-

width of 1 MHz. Since the target resolution is of the order of 3 micro-

second, the video amplifier should have a bandwidth of at least 330 KHz, 

hence this requirement is easily accommodated. The output of the video 

amplifier will be fed to a threshold detector; with the signal from the 

photomu1tiplier of the order of 300 mil1~vo1ts, this gain produces an 

output voltage of sufficient magnitude to trigger the threshold detector" 

The design of the video and head amplifiers is discussed in Appendix 3. 

5.3 The Target Detector 

The target detector is required to produce a pulse whenever the 

video signal exceeds a predetermined level. This level has to be 

determined by examining the video signal from known target patterns • . 
A potentiometer is included in the design which allows adjustment of 

this switching level. The design of the threshold detector is discussed 

in Appendix 3. Since these pulses are required to switch R.T.L. and 

T.T.L. logic circuits, the design of the threshold detector also includes 

provision for translating these pulses to the required level. 

5.4 The Display Clock 

This clock is required to synchronize the video pulses to the rest 

of the system. It is also used to digitize the bearing time into 32 

resolution cells. 

The clock is built around a TTL Schmitt trigger and is designed to 

operate at 330 KHz. The circuit used is shown in Figure 5.3. The 

mark-space ratio of the clock is adjusted so that the clock pulse is 

"ON" for 0.5 microsecond. 
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5.5 Blanking ·and ·Quantization Circuits 

5.5.1 Blanking Cir~uit 

No provisions are made for suppressing the range and bearing sweeps 

during their fly-back periods. This of course produces unwanted signal. 

This was intentional since with a digita~ system it is just as eaEY to 

use the flyback pulses to inhibit the unwanted pulses. 

The logic requirements are therefore to reject all video pulses if 

range or bearing flyback.pulses are present. Hence, 

TD = VP . RP . BP 

where TD = Target Detected Pulse 

VP = Video Pulse 

RP = Range Pulse 

BP = Bearing Pulse 

Figure 5.4A shows the implementation of this circuit using TTL 

gates, and Figure 5.4B shows the resul ting \vaveform diagram. 

5.5.2 . Quantization Circuit 

Target pulses from the threshold detector are produced whenever 

the video signal exceeds the preset level. The position of these 

pulses on the bearing scan line must be related to one of the thirty-

two co-ordinate cells on the scan line. The clock discussed in Section 

5.4 is synchronized to the co-ordinates digitizer; hence, if each 

target pulse is synchronized to a clock pulse, then it is automatically 

synchronized to a co-ordinate. 
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Figure S.4A: Flyback blanking circuit. 

__ rl~ ____ ~n~· ____ ~fl~ __ _ Bearing flyback 
pulses 

-lL ____ Range flyback 
. pulse 

I L-__________________ .~Video Pulses 

--______________ ~Il True Video Pulse 

Figure S.4B: Waveform diagram for flyback blanking. 
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Figure 5.5A shows the method used to time quantize these target 

pulses. The Target Detected pulse (TO) is fed to a monostab1e with 

a time constant of 3 microseconds. This pulse is fed to the J input 

and its inverse to the K input of a J-K Master Slave Flip Flop. This 

Flip-Flop is triggered by the display clock; hence its output is the 

time quantized version of TO. Figure 5.5B shows the waveforms represent­

ing this action. It should be noted that all pulses of length ~ 3 

microseconds will be time quantized without the monostab1e. However, 

it is possible for pulses of length less than 3 microseconds to be 

ignored with this monos table. If two pulses are less than 3 micro-

seconds apart then the second pulse is ignored since the bearing 

resolution is set at 3 microseconds. 

It is appreciated that this method of target detection and time 

quantization is prone to noise pulses co~~on to all sonar systems. 

However, it is assumed that the signal processing of the signal would 

have been done within the sonar receiver itself. In addition, it is 

proposed that the final system will include a moving-target indicator 

which provides signals for the compression system. This fixed-target 

removal system is being considered elsewhere and it is intended that 

this system will contain more complicated noise-combatting circuitry. 

5.6 Co-ordinates Encoder 

The sector scanning sonar system, on whose specification this model 

is being designed', has a minimum pulse width of 100 microseconds with 

a 32-e1ement receiving array. The co-ordinates encoder is therefore 

required to digitize this 100 microsecond interval into 32 (25 ) equal 
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intervals. The range intervals are automatically produced by the 

bearing scan pulses. This system is designed to simulate 512 (29 ) 

range resolution cells. 

The range encoder is simply a 9-stage binary counter triggered by . 

the bearing scan flyback pulses and cleared by the range flyback pulses, 

Figure 5. 6A. 

The bearing digitizer is built around a 5-stage binary counter. 

If the simulator is accurately designed such that the bearing sweep time 

is exactly 32 clock pulses in duration, then triggering the 5-bit counter 

with the display clock would provide accurate encoding. However, in 

order to obtain accurate synchronization it is necessary to ensure that 

counting begins at the start of the bearing sweep. The count should 

cease after the 31st count when the counter is in the all one's state; 

also counting should be inhibited during the range sweep flyback times. 

Figure 5.6B shows the circuit used to implement these requirement~. 

The counter :ts cleared by each active bearing pulse; this ensures that 

the c'ounter is in the all zero's state at the start of the sweep. 

Clocking then begins on the ne~t clock pulse. When the counter is in 

the all one's state the monitor signal M inhibits further counting. 

The clock is therefore gated with a control pulse formed by performing 

the func tion, 

Control Pulse = RP. BP. M, 

in the 1 1 1 1 1 state. 

where M = 1 when the counter is 

Figure 5.6C shows the waveform diagramsof the process. 
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The Q and Q outputs of all fourteen Flip-Flops are taken to 

external pins to be used for setting the Flip-Flops of the Input Buffer. 

5.7 Run Length Encoder 

The purpose of the Run Length Encoder (RLE) is to restrict the 

transfer of information to the Input Buffer until either there is a 

break in the run of targets, or the target run has reached a predetermined 

maximum value. In either case, the RLE transfers a word indicating 

the length of the run and the co-ordinate of the last point in the run. 

The maximum run-length selected for this system is a run of 8; hence 

each word is now a 17-bit word. The system also contains a manual 

control which can inhibit the RLE's operation. The word length is 

stiII17-bits, but entry is attempted at every Target Detected signal, 

and the run-length word is always 000. 

Figure 5.7A shows in schematic form the principle of operation of 

the RLE circuit. If the code switch is in the ON position the Run 

Length Decision (RLD) circuit examines the Target Detected pulses and 

controls the clocking of the Run Length Counter (RLC). It also examines 

the state of the counter; when a count of eight is recorded or a break 

in the target run is detected the RLD circuit produces a Transfer Pulse 

(TP), which is used to control the transfer of the 3-bit word from the 

RLC and the 14-bit word from the co-ordinates encoder. If the code 

switch is in the OFF position the RLD circuit keeps the RLC in the 000 

state and allows all TD pulses to become Transfer Pulses. 
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5.7.1 The Run Length Decision Circuit 

The performance of this circuit can best be examined by referring 

to the waveform diagram in Figure s.7B. 

l~aveform TD represents a run of targets on a scan line which 

contains examples of possible run distributions. Waveform TDD represents 

a delayed version of TD, the delay time being one clock pulse. From the 

waveform diagram it is seen that by the coding algorithm selected, 

transfer is possible at points A, Band C. 

the logic function 

TP = TDD. TD + F, 

where F = 1 when the RLC is in the 111 state. 

Hence, TP is formed by 

Now to ensure that the· 

counter is ready for the next run it is cleared by a pulse formed by 

the function, 

J = TD. TDD; 

there is no need to perform the clear operation after a run of eight. 

The above operation means that before every run, the counter is always 

in· the 000 state; hence for a single target run there is no need to 

clock the counter, for two targets in a run one clock pulse is neede~, 

and so on. Hence, the function K = J. TD. TDD, produces the 

clock waveform for the run counter. 

5.7.2 Code - No Code Circuit 

This.circuit is controlled by a manual switch (S) which is in 

~ither logical state.· When S = 0, the coding operation is inhibited; 

hence all co-ordinates are transferable and the run count is always 

000. When S = 1 coding occurs as described above. 
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Hence two sets of pulses are modified when S ~ 0, that is the 

clear pulse and the Transfer Pulse. 

where 

The clear pulse now becomes J', 

J' ~ S.J, 

and the Transfer Pulse becomes TP', where 

TP ~ ~ S. TD + S • TP • 

5.7.3 Circuit Implementation 

Figure 5.7C shows the circuit implementation of the RLE using TTL 

gates and Flip-Flops. The RLC is a simple 3-stage binary counter. 

The Q and Q outputs of the 3 counter stages are taken to external pins 

for setting and clearing the Run Length registers in the Input Buffer._ 

5.8 The Recirculating Store 

5.8.1 Store Organization 

The store was built from 2 dual 64 bits MOS dynamic shift registers 

(MMSlO). Hence, each chip consists of 128 Flip-Flops. Figure 5.8A 

shows the connection diagram of the device. With the recirculate 

control line at a logic "0" state the device functions as an accumulator. 

A logi.c "1" state at this line allows external information to enter the 

register serially. 

Appendix 4. 

The manufacturer's data sheet is included in 

The maximum frequency of operation of this device is given as 4MHz, 

with a power consumption of 0.8 mw/bit/MHz. Now it has been decided 

to employ a 20-bit word, with 14 bits for co-ordinate information, 
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3 bits for run length information and 3 extra bits for synchronization 

purposes. Hence, at the maximum clock rate the word time for a 20-bit 

word would be 5 microseconds. Since the target resolution time is 

3 microseconds it would not be possible to shift in one target before 

the next target arrived. 

Figure 5.8B shows in schematic form the organization of the store 

which overcomes the difficulties mentioned above. Each 64 bit register 

is used as a single recircu1ating register accepting 5 bits of the 

20-bit word. In addition, in order to obtain a 13-word store a single 

bipolar Flip-Flop is attached to each register. 

data word is as follows:-

The breakdown of the 

Register 1 5 bits of range data 

Register 2 4 bits of range data + 1 Flag bit 

Register 3 5 bits of , bearing data 

Register 4 3 bits of run length data + 2 extra bits. 

The word time at the maximum clock rate is now 1.25 microseconds. 

5.8.2 Interface Units 

The logic levels for this MOS device are, 

Logic "1", 

Logic "0", 

-7.0V Minimum, -18V Typical 

-2.5V Maximum. 

Hence, interface units are required to translate these levels to bipolar 

levels and vice-versa. Figure 5.8C shows the interface units used. 
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5.8.3 Clock Drivers 

In all MOS applications, it is necessary to employ clock drivers 

capable of driving the high capacitive clock inputs. In addition since 

the shift registers are·of the dynamic types a two-phase clock is needed. 

The clock input capacitance of the MM510 is of the order of qOpF 

at a clock. frequency of 1 MHz. An integrated circuit clock driver is 

used to' provide both the level translation from standard logic levels 

to MOS levels, as well as sufficient current and voltage drive capability 

for clocking the shift registers. 

Figure 5.8D shows the circuit diagram of the device (NH0007 ), and 

Figure 5.8E shows the scheme used to generate the required two phase 

clock. Figure 5.8F shows the waveforms diagrams of the clock generating 

process. ~ 

5.9 The Input Buffer 

The Input Buffer consists of 4 - 5 stage shift registers. The 

purpose of these registers is to accept data from the encoders in 

parallel. The registers retain this data until a shift command is 

received; the shift register clock then shifts the data serially into 

the four recircu1ating registers. The Transfer Pulse (TP) controls 

the transfer of data in conjunction with a control pulse from the' Input 

Decision circuit. This control pulse inhibits TP if data are being 

shifted out or if old data are still in the buffer. 

Figure 5.9' shows the schematic diagram of one shift register with 

its loading gates. 
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5.10 Main System Clocks 

5.10.1 Main Clock 

The main clock should operate at twice the recirculating clock 

frequency. It was decided to clock the registers at 3 MHz, hence the 

main clock is designed to operate at 6 MHz. 

This multivibrator is built around two RTL inverters in the 

conventional manner. 

5.10.2 Shift Clock 

This clock is responsible for shifting data from the input buffer 

to the store and from the store into the output buffers. 

from the main clock by a single dividing stage. 

5.10.3 Synchronizing Clock 

It is obtained 

Since the word length is 5-bits there is a requirement for a 

synchronizing pulse to indicate the beginning and end of a word space. 

This is obtained by dividing the shift clock by five. 

The complete clock system is shown in schematic form in Figure 5.l0A 

and the r~su1ting waveforms are shown in Figure 5.l0B. 

5.11 Input and Output Decision Circuits 

5.11.1 Control Signal~ 

The purpose of these circuits is to control the transfer of data 

in and out of the store. The Input Decision circuit contains the priority 
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system which determines which target is to be discarded in the event 

of coincidence. 

The circuits examine the output registers, the last position in the 

main store and the input.registers. If there is a vacant output register 

and an occupied word space then that word is shifted out and any word 

in the input register is·shifted in. Each word contains a Flag bit 

which is the fifth bit of the second range register. Hence examining 

this position at the synchronizing intervals will indicate the presence 

of a word. 

If all registers are filled, then that word is recirculated and 

any word in the input register is held until the next word space. 

If a new target arrives while the old target is still in the input 

registers or is being shifted out, then the new target is discarded. 

By examining the TRUTH-TABLE of the system the requirements of this 

circuit can be clearly seen. 

meanings:-

The symbols used have the following 

FLAG 

SYNC 

MONITOR 

MARKER 

Single bit at the end of every word 

FL = 1 implies word follows, 

Synchronizing pulse indicating the beginning of a word space, 

SYNC = 1 implies beginning of word space, 

Signal which indicates whether an output register is empty, 

MO = 1 implies a vacant output register, 

Monitor which indicates whether the Input Buffer is occupied, 

MA = 1 implies an occupied input register, 
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ACTIONS OUT = 1 allows data to be shifted out of store 

IN = 1 allows data to be shifted from Input Buffer into 

store 

REC = 1 allows data to be put back into store 

TRANS = 1 allows new data to be put into the Input Buffer. 

TRUTH TABLE 

SYNC FLAG MONITOR MARKER OUT IN REC TRANS 

0 X X 0 1 

0 X X 1 0 

1 0 0 0 X 0 X 1 

1 0 0 1 X 1 0 0 

1 0 1 0 X 0 X 1 

1 0 1 1 X 1 0 0 

1 1 0 0 0 0 1 1 

1 1 0 1 0 0 1 0 

1 1 1 
" 

0 1 0 0 1 

1 1 1 1 1 1 0 0 

By using a Karnaugh Map the minimized expressions become, 

OUT = FL. SYNC. MO 

IN = SYNC. MA (MO.FL + FL) 

= SYNC. MA (OUT + FL) 

REC = SYNC. FL. MO 

TRANS = IN + SYNC. MA 

The control signals OUT, IN and REC must be maintained for five or multiples 

of five shift pulses. To achieve this the control pulses are used to set 

individual Flip-Flops. The bistable is cleared by the next synchronizing 

pulse if the control conditions no longer exist. Hence the following 

pulses clear the bistables, 
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INC = IN. SYNC 

OUTC = OUT. SYNC 

RECC = REC. SYNC 

TRANS is obtained from the Q output of the IN Flip-Flop. Figure 5.llA 

shows the waveforms for a typical situation, and Figure 5.1lB the circuit 

i.mp1ementation. 

5.11.2 Steering Circuits 

These circuits, one for each register use the control signals 

derived above to steer the data. from the store along the required path. 

Figure 5.l1C shows the circuit implementation. 

5.12 The Output Buffer 

These registers accept data from the main store at the recircu1ating 

clock rate. In this system three output registers are used, hence the 

complete bank of registers consists of 12 - 5 stage shift registers. 

5.12.1 The Monitors 

The state monitors inform the Input-Output Decision circuits when 

an output register is vacant. Each monitor detects the all zero states; 

the pulse MO is obtained by the function 

MO = M1 + M2 + M3 

where Ml = 1 when the first register is empty. 

consider all 20 Flip-Flops as one register. 

The monitor circuits 

Figure 5.12 shows the implementation of one monitor using standard 

RTL gates. 
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5.13 The Output Shift Circuit 

5.13.1 Principle 'of Operation 

This circuit examines all three output registers and decides which 

register will receive the data being shifted out. When the vacant 

register is selected, 5 shift pulses are produced which are applied to 

the selected register only. Hence although the information reaches all 

the output registers only one register receives the clock. 

5.13.2 Logic Design, 

Each buffer is given a priority state and the shift action is 

determined in part by the priority state of the buffer. Here Regis ter 1 

is the highest priority buffer and Register 3 the low priority buffer. 

The TRUTH-TABLE of the operation is shOlm overleaf. The symbols used 

have the following meanings; 

FLAG = Single bit at the end of every word 

FL = 1 indicates presence of data. 

Ml = 1 indicates that Register 1 is empty 

M2 - 1 indicates that Register 2 is empty 

M3 = 1 indicates that Register 3 is empty 

The symbols in the ACTION column indicate which register will receive 

the data. 
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TRUTH TABLE 

FLAG Ml M2 M3 ACTION 

0 X X X ' .. -
1 1 1 1 CLOCK 1 

1 1 1 0 CLOCK 1 

1 1 0 1 CLOCK 1 

1 1 0 0 CLOCK 1 

1 0 r 1 CLOCK 2 

1 0 1 0 CLOCK 2 

1 0' 0 1 CLOCK 3 

From the Truth Table it is seen that the following control signals 

would initiate the required shift action. 

CLOCK 1 = FL. Ml 

CLOCK 2 = FL. M2. Ml 

CLOCK 3 = FL. M3. M2. Ml 

Now these control pulses must be maintained for five shift pulses. 

Figure 5.13A shows the method used for obtaining these shift pulses and 

Figure 5.13B shows the resulting waveforms. It should be noted that 

these shift pulses are a delayed version of the input shift pulses. 

This modification is introduced to ensure synchronism between the two 

sets of shift pulses. During circuit tests it was found that due to 

propagation delays through the RTL and interface circuits the signals 

CLOCK 1, 2 and 3 were not coincident with the synchronization pulse. 

The data are therefore subjected to a further one bit delay to restore 

synchronism with the output shift pulses. Figure 5.13B shows the 

waveforms of the complete process. 
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5.14 The Output Clock 

The Output Clock controls the transfer of data from the output 

registers to the transmission channel. In this system the channel 

is assumed, hence transfer is made directly to the decoding circuit 

in parallel. 

The output clock is obtained by dividing down the main clock. 

Several stages of division are done to test the systems performance 

over a range of output rates. 

The circuits are of the conventional form and are built from TTL 

JK Master Slave Flip-Flops (SN 7473). 

5.15 Output Transfer Circuit 

5.15.1 Principle of Operation 

This circuit controls the transfer of data from the output registers 

to the decoder. The same priority system is used as with the Output 

Shift circuit. Hence, Register 1 is first examined. If this register 
next 

is filled then theO joutput clock pulse will transfer the l7-bit word to 

the Decoder. In order to simulate the entire output interval the 

data are kept in the buffer until just before the next service interval. 

In the operational system the data would most likely be shifted out 

serially into a single channel. The output registers would therefore 

be cleared automatically at the end of the last shift pulse. In this 

system a pulse is generated at this time to clear that channel only. 

If Register 1 is empty control is passed to Register 2 and a similar 

process occurs. 
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5.15.2 Logic Design 

5.15.2.1 Transfer Pulses 

The output registers accept the 20 bits in the original encoded 

pattern. Hence the v1ag bit is always the last bit in the second 

range register. The presence of the F.1ag in this Flip-Flop therefore 

signifies the occupancy of the-entire register. Since the Flag bit 

is the last bit to be received in its train of five bits then there 

can be no false indication. 

The Truth Table of the process shows the action taken under the 

various conditions. The symbols have the following meanings:-

FL1 = 1 indicates the presence of the flag in Register 1 

and so on. 

OC 1 indicates the presence of the output clock pulse. 

Action T1 indicates that the transfer pulse is applied to Register 1. 

OC FLl 

0 X 

1 0 

1 0 

1 0 

1 0 

1 1 

1 1 

1 1 

1 1 

TRUTH TABLE 

FL2 

X 

0 

0 

1 
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0 

0 

1 

1 

FL3 

X 

0 

1 

0 

1 

0 

1 

0 

1 
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T3 

T2 

T2 

T1 

T1 

T1 

Tt 
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The following control pulses will satisfy the system requirements. 

Tl = OC. FLl 

T2 = QC. FL2.· FLl 

T3 = OC. FL3. FL2. FLl 

Figure 5.l4A shows the implementation of this circuit using RTL 

gates. Seventeen such circuits are needed for each bit of data. 

5.15.2.2 Clear Pulses 

In order to clear the output registers at sometime just after the 

negative going edge of the twentieth output shift pulse, a pulse must 

be produced just before the pulse OC. 

clear only the register just emptied. 

In addition, this pulse should 

Figure 5.l4B shows the waveforms illustrating this process. The 

clear pulses are obtained fro~the pulses Tl, T2 and T3. This ensures 

that only the register just transferred is cleared. The relevant pulse 

is delayed by one output clock period. By gating the resulting wave-

form with a pulse Al obtained from the output clock the clear pulseis 

obtained. Since data are shifted in at the recirculating clock rate, 

the clear line is activated for a maximum of one recirculating clock 

pulse only. 

Figure 5.l4C shows the circuit implementation using RTL gates and 

Flip-Flops. 
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5.15.2.3 Manual Clear 

When the system is first switched on the bistables in the output 

registers can be in any state. Since the operation of the automatic 

removal system depends on the presence of the flag bit in the expected 

position a manual starting pulse is needed. To ensure proper operation 

a manual "push-to-make" switch is included to clear all the output 

buffers. This can also be used to restart the system in the event of 

momentary failures. 

signal. 

The Decoder 

The manual signal is "0 Red" with automatic clear 

5.16.1 Principle of Operation 

The decoder accepts a l7-bit word from one of the output register. 

The three bits representing the run length are separated from the 

co-ordinates information. This co-ordinate represents the last position 

in a run and·is first stored in a l4-stage down-counter. If the run 

length word is 000, indicating a single run, then this coer1inate is 

transferred directly to the Digital-to-Analog Converter (D-to-A) and 

no further decoding is necessary. If the run length word is 001 

indic.ting two targets in the run, then the first co-ordinate is 

displayed and one shift pulse is produced which clocks the co-ordinate 

down counter. Hence for a run of n targets n-l shift pulses are 

produced. These pulses are obtained from the output clock and the 

number of pulses produced is determined by the Run Length Decoder (RLD) 

circuit. 

Figure 5.l5A shows in schematic form the main elements of the Decoder. 
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5.16.2 Decoder Shift Pulses 

Since the maximum number of runs per output period is eight, the 

output period is divided into eight equal intervals. The main output 

clock is designed to shift a 20-bit word during the output period, 

Hence, to produce 8 shift pulses within the output period necessitates 

dividing the main output clock by 2~. 

This division process is achieved by manipulating the outputs of a 

divide-by-ten counter used in producing the output pulses. This device, 

<the SN7490 divide-by-ten counter) produces the waveforms shown in 

Figure 5.l5B at its output pins. By forming the functions 

x = A. B. Clock, 

and Y = C. Clock, 

the divide by 2~ waveform is obtained by the expression Z = X + Y as 

shown in Figure 5.15B. 

5.16.3 The Run Length Decoder 

This section of the circuit controls the clocking of the co-ordinates 

down-counter and hence the number of targets displayed. The three bits 

of information are stored in a 3-stage register. At the moment of 

transfer a 3-stage binary counter is cleared. The comparison circuit 

consists of three EXCLUSIVE - OR gates plus additional gates which 

combine to give a control signal whenever the contents of both the 

run length store and 3-stage counter are similar. Hence, if the target 

run is of length one, at the moment of transfer the comparison would be 

complete and the control pulse would be produced. This pulse is used 
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to inhibit the shift pulses, hence the requirement is satisfied in 

that for a run of n only n-1 shift pulses are produced. 

Figure 5.15C shows the waveform diagram for a run of three targets 

and Figure 5.15D shows the circuit implementation using TTL devices. 

5.16.4 The Co-ordinate Counter 

5.17 

This counter is a 14-stage down-counter whose Preset and Clear 

inputs are connected to the corresponding outputs of the output registers. 

A down counter is necessary since this co-ordinate is the last position 

of a run. The Q outputscr the counter are taken directly to the D-to-A 

converter as shown in Figure 5.15E. 

The Digita1-to-Ana1og Converter 

This D-to-A converter transforms the co-ordinate data to analog 

vo1tages which are used to deflect the spot of a cathode ray tube. The 

only constraint on its design is that it should be able to do eight 

conversions within the output period. It is anticipated that this 

system will be operable with an output period of about 50 microseconds. 

This would mean an available conversion time of about 6 microseconds. 

This figure is well above the conversion time of even low accuracy 

converters. 

Figure 5.16. shows the converter for the Most Significant Bit (MSB) 

of bearing data and the two MSB's of range data. 

The design approach is discussed in Appendix 5. 
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5.18 The Display 

The sp~cifications of the Display are fairly standard. A Solatron 

oscilloscope fitted with a long persistence tube was used throughout 

all experiments. 

5.19 Auxi11ary Circuits 

5.19.1 Output Registers Selector 

In order. to investigate the effect of varying the number of output 

registers a manual switch is included in the system. 

the number of registers used dUring experiments. 

Figure 5.17A shows the circuit used. 

5.19.2 Bright-up Pulses 

This switch selects 

These, pulses are required to modulate the spot on the cathode ray 

tube such that the transitions to and from co~ordinates.are not visible. 

The bright-up pulse for each position is obtained just after the 

D-to-A converter has settled. An appropriate time is just after the 

counter shift pulses have been applied;' in the case of the single target 

just after the output transfer pulse is applied. Figure 5.17B shows 

the waveforms diagrams for this process and Figure 5.17C the circuit 

implementation. 
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5.19.3 Target Count - In 

These pulse are required to indicate the number of targets originating 

from the source. They are taken from the Target Detected circuit and 

gated with display clocks for counting purposes. 

5.19.4 Target Count - Out 

Since a bright-up pulse is generated for every D-to7A operation these 

pulses provide a convenient count of the number of targets displayed. 
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CHAPTER 6 

SYSTEM PERFORMANCE 

6.1 Introduction 

The performance of the complete system was investigated with the 

video signals provided by the simulator. The success of such a system 

depends eventually on the response of the human observer; however, a· 

quantitative appraisal is necessary for the purposes of comparison. 

The experiments conducted tested the system's performance when 

simple shapes are scanned, then tests on more complex shoal-like 

shapes were processed. For all tests the number of output registers, 

the output rates and the coding methods were varied. 

Photographs of selected patterns are also included in this report. 

6.2 Output Clock Frequencies 

The output clock rate will be determined mainly by the channel capacity 

available. The method of transmission is immaterial as far as this system 

is concerned since the signal from the D-to-A converters could be filtered 

and transmitted as analog signals. Alternatively the signal could be 

transmitted by digital means. 

This system has been tested with clock rates from 8KHz to 550 KHz, 

which is equivalent to target removal rates of 70 to about 5000 targets 

per frame. IH th mOS t frames having in the region of 1200 targets, the 

lower removal rate produces a very high traffic intensity. The higher 
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rate produces a traffic intensity of about 0.2. In most designs a 

value very close to 1 is preferred, hence a target removal rate of the 

order of 1500 per frame should be catered for. 

This aspect of the system has been left open until the method of 

transmission is selected. 

6.3 Preliminary Tests - Simple Shapes 

The system was first tested by simulating the "all ones" situation, 

that is the occurrence of a target in every cell. This served as a 

convenient means of checking the key sections of the system. This 

test produced signals which covered the entire display. The tests 

confirmed the proper operation of the system. 

Simple shapes processed inc.luded a "T" and an "X". , The displays 

produced by scanning the figure "X" are reproduced in Figures 6.1 to 

6.4. These displays represent both run-length coded and non-coded 

operations. 

The photographs were recorded with a Polaroid Land Camera operating 

at f8 for 1!60th of a second. The pictures recorded do not represent 

accurately the observations made as the limitations of the camera doES 

not allow it to record the integrating effect due to visual perception 

and phosphor persistence. In fact the displays produced recognizable 

shapes even at the lowest output rate. 

The main observation is that the run length coding procedure has little 

effect on the display. This is to be expected since the target distri-

bution is such that the non-coded method is just as effective. 
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6.4 Complex Shapes 

Several experiments were conducted on more complex shapes. The 

effect of the run-length coder was more apparent in these experiments. 

Figures 6.5 to 6.8, show photographs of a typical pattern processed, 

Again the photographic recording technique underates the true performance 

of the system especially at the lower output rates. However, even 

though the loss of data waS apparent to observers a fairly accurate 

estimate of the shapes, could be made w{thout any prior knOl<ledge of 

the original patter n • 

Only a section of the original pattern is displayed due to the resol-

ution restrictions of the simulator lens system. However, by adjusting 

the position of the film,different sections could be scanned and the 

entire shape estimated. 

6.5 Data Losses in Experimental System 

By counting the number of targets generated during each frame interval 

and' counting the number of target displayed in the same interval a quant­

itative estimate of data losses was made. 

Table 3 shows the figures obtained when processing a pattern occupying 

630 target cells. The output clock was obtained by a series of 

division stages from the main shift register clock. 

The numbers indi'cated in the table represent the total number of 

targets counted. 

for each value. 

These figures were averages taken of several readings 
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TABLE 3 

NUMBER OF TARGETS DISPLAYED 

1 Register 2 Registers 3 Registers 

Output Period C NC C NC C NC 

2.3ms 60 28 75 32 85 32 

1.15ms 120 52 135 58 145 60 

580.0Ops 150 75 165 80 180 170 

290.0Ops 280 140 300 150 320 140 

145.0Ops 430 220 450 240 460 240 

72.5Ops 540 350 570 370 580 380 

36. 25}ls 580 400 600 440 620 420 

C Run Length coding applied .' ~ 

NC ~ No Run Length coding 

The main observations to be made are:-

1. The effectiveness of the run length coding method is obvious for 

all values. 

2. These figures indicate only a slight improvement in performance as 

the number of output registers is increased. The slight improve-

ment in using 3 registers over that while using 2 confirms the 

results of the simulation tests with the synthetic inputs. Further 

tests ccnducted with more concentrated inputs: showed a greater 

deviation between the single and double register case but still 

only a marginal improvement when the third register is introduced. 

In one test with a 2000 targets pattern, the average output figures 

for the non-coded case were 1100, 1350, 1370 respectively. 
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3. The fractional data loss is very high for the lower output rates. 

However, only the last two output rates need to be considered as 

these values provide the only realistic traffic intensities from 

which comparisons can be made. For an output period of 72.5 micro-

seconds the target removal rate is approximately 640 targets per 

frame and for 36.25 microsecond~, 1280 targets per frame. The 

respective traffic intensities are approximately 1 and 0.5. The 

fractional data losses ar.e 0.38 and 0.30; the equivalent figures 

from the simulations are 0.48 and 0.22. Subsequent tests with 

other input distributions produced figures of the same order of 

magnitude. With run length coding the fractional data losses 

are 0.08 and 0.16, however, the tests indicated that the observers­

could not distinguish between these two situations. 

6.6 Conclusion 

6.6.1 Performance of Recirculating Store 

All phases of the project have confirmed the original assumption 

that this method of storage would produce an acceptable display even 

for high data losses. The analysis demonstrated the relative insensit­

ivity of the buffer to data bursts; hence even though the losses are 

comparatively high, the variations are small. for varying traffic 

intensities. Both the simulated and experimental displays demonstrate 

the effects of coincidence losses whereby a recognizable displays is 

evident even for high losses. 

Hence it is suggested that this storage approach provides a cheap 

and effective bandwidth compression buffer for low priority systems 
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such as ours. In addition, the results with the Poisson distributed 

inputs suggests that the recircu1ating store could be used effectively 

as a stand-by store for a main store; the main store would in effect 

be a bank of output registers. The theory suggests that the size of 

the main store could then be reduced considerably. 

Since the "beat-effect" diminishes as the number of output registers 

is increased, high recircu1ation rates can be used which yield even 

bettter performances. At present this rate is restricted by the 

maximum clocking rate of MOS shift registers. However, fabrication 

techniques will no doubt increase this figure considerably. In addition, 

Large Scale Integration techniques are being extended to bipolar devices 

which would provide an even more convenient storage system. This would 

eliminate the need for interface units, dual power supplies and clock 

drivers. 

6.6.2 Coding Methods 

The system responds favourably to the simple run-length coding used. 

As mentioned before, the recommended coding scheme for information sources 

of this type is one of the optimum code types. These coding schemes· 

allot significance to the probability distribution of elements within 

the source. Hence in this situation the more frequent runs would be 

given shorter code lengths. This results in more efficient coding; 

effectively matching the source to the channel. It is felt that target 

distributions on sonar displays follow some distinct run-length pattern 

similar in some respects to the situation encountered in television 

systems. Further research into this aspect of the system could produce 

the information necessary to utilize the above coding schemes. 
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6.6.3 Output Registers 

Both simulations.and tests on the experimental system suggest that 

two output registers would be sufficient for the purposes of this system. 

The apparent sensitivity to the number of registers in the case of 

Poisson distributed inputs can be explained as follows. 

Since the input data is randomly distributed, then the recirculating 

data is to some extent randomly distributed. Hence, in order to ensure 

that a word is removed at every output interval the extra channels are 

needed. In the Case of the non-Poissonian input the targets are more 

compactly distributed hence there is a higher probability that there 

will be a word in the last store position at the beginning of every out-

put interval. The extra registers are therefore not as essential. 

6.6.4 Estimate of Cost 

At the time of writing, the average cost of a 256 bit dynamic MOS 

shift register is in the region of £9.00; the price of the equivalent 

Random Access device being twice as much. The price of a 5 bit TTL 

parallel-in-parllel-out shift register which would be needed for the 

input and output buffers is about £1.80. The implications here are that 

by using the recirculatlng method, the cost of storage is now comparable 

with that of the encoding and decoding circuitry. 

These additional circuits are on the whole similar irrespective of 

the storage method used; hence an estimate of the cost differential of 

the two methods can be made by comparing the costs of the storage 

devices. 
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6.6.5 Communications Channel Requirements 

From the experimental results it would seem that a target removal 

rate of 1000 targets per frame would reproduce recognizable shapes at 

the output, irrespective of target concentration. This is equivalent 

to an output period of about 50 microseconds. 

Assuming a 20-bit word, an estimate of the channel requirements 

can be derived. If a single channel is used, then the 20 bits must be 

shifted out serially in 50 microseconds. This gives a channel capacity 

of about 400 K Bits per second. This figure takes us well into the 

region of current wideband telephone links. The equivalent figure for 

direct transmission would be in the region of 6 M Bits per second. This 

represents a compression ratio of about 15:1. The· figures quoted. 

produced good reproduction on all patterns scanned hence if a lower 
~ 

grade display is tolerable then a lower output rate can be used. In 

addition, when frame subtraction methodsare applied then even lower out-

put rates could be used. 
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APPENDIX 1 

Expected Queue Length of a Buffer 

The following derivation of the expected queue length of a buffer 

has been produced by Kendall. This is reproduced from Goode and Machol 

(1, pp336-339). 

Consider the instant when a word is to be clocked out of the buffer. 

If the buffer content immediately after the removal attempt (which may 

be zero) is n then after the next removal attempt (time T later), the 
o 

buffer content nI' can be expressed as, 

n l = n + r - 1 + d 
o 1 · . . . A.1.l 

where r
l 

is the number of words clocked in· the buffer during T, and 

d = 1, 

= 0, 

n = 0 
o 

n ~ 0 
o 

The quantity d is a number that takes on only the values 0 and 1 and 

has an expected value lying between these two. 

and .that d2 = d. 

We note that n d = 0 
o 

Taking expected value first relative to r
l 

and then relative to 

T, Equation A.l.l reduces to, 

= E(n) + E(d) + AT - 1 
o 

If we assume that stationarity exists then 

= = E (n), hence 

E(d) = 1 - AT 

= 1 - p 

since p the traffic intensity is equal to AT. 

· . . . . A.1.2 

· . . . . A.1.3 
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Squaring both sides of Equation A.l.1 and taking means we obtain 

since d2 = d, and 2n d= 0 o 

Again 

Substitution = p and 

E (d) = I - p we g!;!t 

E(n) = E(r2) - 2p2 + P 

2(1 - p) 

= p + E(r2) - p 

2(1 - p) 

· . . . . 

hence, 

. . . . 

, . . . . 
Poisson Input Distribution and Constant Holding Tim!;! 

For a Poisson distributed input. 

· . . . . 

where r l is the number of inputs during the holding time T
l

• 

and variance of this distribution is ATl • 

Now or l 
2 = E(r1

2) - E (r
l

) 2 • • · • • 

hence E (r 12) = or 2 + E(r
l

) 2· 
1 • · • · • 

= ATl + (AT
l
) 2 · • · · · 

A.l.4 

A.LS 

A.L6 

A.L 7 

A.L8 

A.L9 

A.LIO 
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Taking the .expected value of r
l 

over all T 's 
1 

we obtain 

E(r2) = AE(T) + A2E(T2) • • • • . A.1.ll 

But E(T2) = (] 2 + E (T) 2 , and T 

E(T) = T 

Hence E(r2) = AT + A2«(] 2 + T2) · . • . . A.1.l2. T 

= p + A2(] 2 + p2 
T 

Substituting this expression for E(r2) in Equation A.l.6 we get, 

E(n) =·d+p2+12d 2 

2(1 - p) 

· . . . . A.1.13 

For a constant output rate, the variance of the holding time is 

zero, hence, 

E(n) =p(2 - p) 

2(1 - p) 

· . . . . A.1.l4 

This expression is evaluated for several values of p and is shown 

graphically in Figure 3.1. 
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APPENDIX 2 

FLOWCHARTS FOR COMPUTER PROGRAMS USED FOR SIMULATIONS 

Programming Language - FORTRAN IV 



Figure A .1: 
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Choose r 
number of 

runs-RMAX 

Put 

N = O. >- = 1. 0 

T = P 

Put K = 0 

S = 0 

1 
S = S - ~ ALOG (UTR1(I.J.KU» 

K = K + 1 

NO 
S > T? 

YES 

Poisson number 

PD(N) is K - 1 

N = N + 1 

NO YESD 
V 

Poisson generator. 
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Set up array DISPL (186,120). 

M, I 

Set limits for clusters and 

for blanking 

Select traffic intensity. 

Note:- Target = STAR (*' 
No Target = BLANK 

Blank array. 

Select first point 

I = 1, M = 1 

Set run counter 

to zero: IT=O 

Generate Poisson 

input -IP. 

Add remainder = 
IN = IP + REM 

r<'-'N",O,-<:::;". it hi n c 1 us te ~N",O><-,C IN > O? 

YES 

DISPL(M, I) 
= STAR 

Sum extra 

targets 

ADD = IADD+l 

YES 

DISPL(M,I) = STAR 

Reduce input counter 

by 1: IN = IN - 1 

Shift to next 

'-------.1-----;1 position -I = I+1t-__ ./;'L,. 
Increase run ~- ./ 

counter:IT = IT + 

Figure: A.2(l): Generation of Test Pattern. 



YES . 

NO 

0 0 NO 

YES 

Record 
remainder 
REM = IN 

Figure A.2(2): 
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Star t new ··line 

M=M+ 1 

I = 1 

YES 

Subtract selected 

targets and sum 

-ISUB 

YES 

Print 

DISPL(M, I) 

Write 

IADDl 

ISUB 

NO 

NO 

YES 
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Select Store size - NMAX 

Traffic intensity - EPS. 

r------------~' Generate P.D 
in ut - IP. 

NO 

NO 

Any 
NO targets in 

store? 

YES 

Transmit one -

lOUT = lOUT + 1 

Reduce store 
counter by 1 

NBUF = NBUF 1 

NBUF) NMAX? 

NO 

Add one to 
run counter 

I = I + 1 

End of 
run? 

YES 

YES 

YES 

Add to store 

counter 

NBUF = NBUF + IP 

Sum overflow losses . 
LOS = LOS+NBUF-NMAX 

NBUF = NMAX 

Write: 

Number in e Number out 

Losses 

Figure A.3: Simulation of step-down store with Poisson input. 



Figure A.4(l): 
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( START 

Select store size 

- NMAX 

Clear store 

Blank output array 

Initial Conditions 

Set' to zero -

Input Counter (IREAD), 

Output Counter (lOUT) , 

Overflow Counter (LOS) 

Row Numbe r (M), 

Column Number (r) • 

, 

Select first row: 

M = M + 1 

Select Column: 

I = I + 1 

CALL DISPLAY 

IP = DISPL(M,I) 

YES 

Increase input 
count: 

IREAD = lREAD + 1 

Simulation of a step-down store with Test Pattern 

as input. 
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Is 
f i lie d? ">--Z:!N_O -

YES 

Increase overflow 

counter 

LS=I,.9S+1 

YES 

Increase period 
,-:_--£N!l;<O,--_~ count r< of row? 

K = K + 5 

NO 

YES 

Reset period counter 
K = 5 

Select new row 
M = M + 1 

Select first column 
1=1 

of display? 

YES 

Print output display 

• OUTPT(M, I) 

Encode 
IN = 1000M + I 

Enter in last 

vacant position 
Increase store 

counter 

Transmit one; 

Increase output 

counter; 

Shift; 

Decode; 

Write number in 

- IREAD I---G 
Number out - lOUT 

Losses - LOS 

Figure A.4(2): 



Figure A.50 ): 
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elect store size - NMA 

raffic intensity - EPS 

ecirculation rate- MIS 

lear Store: BUF(N) = ° 
Set counters to zero 

·Input - IN = ° Output - lOUT = ° Overflow - LOS = ° Coincidence-NICT= ° Store NBUF = ° Run I = ° 

... 
G_e_n~e_r_a~te __ p_._D~lf< _______ ~~~ __ __ 
input - IP V 

, 
Increase 
run count 

I = + 1 

store filled? >-_N",O,,-_@ 

YES 
, 

Sum overflow 

losses 

Put IP = ° 

NO 

YES~ ~utput 
7~LOOI 

To Entry loop 

Recirculatior 
Loop 

Simulation of a single channel recirculating store 

with Poisson iriput. 



Figure A.5(2): 
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Reduce input 

counter by 1 

Increase store 

counter by 1 

Increase overflow 
YES counter --._;,.. 

Set input counter 
to zero 

Recircu1ation Loop ~ ____________ --J 

" 

Transfer data from 

end location to 

standby store, 

Shift data, 

Clear position (1) 

Increase recirc. 

counter by 1. 

Transfer data 
from s tandby 
store to 
osition (1) 

Any 
more data 

To Output Loop 

Add remainder 

to coincidence 

counter 

NO~ 

'0' 
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YES 

Decre.ase s tore count 

by 1 

Increase output 

count by 1 

'. 

~ __ N!!'!O_-< 

Figure A.50): 

YES 

IVrite 

Number in 

Number out 

Overflow losses 

Coincidence losses 
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Increase recirc 

counter by 1 

Is 
Channel 1 

empty? 

NO 

"-

NO 

Transfer data 

from standby 

to position 1 

c:-:::::... YES 
~. 

NO 

Entry Loop 

YES 

YES_. 

Transfer data 

from standby 

to Channel 1 

Transfer data 

from standby 

to Channel 2 

Transfer data 

from standby 

to Channel n 

---

Figure A.6: Modifications to recirculation loop for multiple channels. 



Figure A.7: 
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Output Loop 

NO 

I 

iNO 

I 

NO 

Generate 

I 

new input 

YES 

YES 

YES 

Clear Channe I I 

Clear Channel 2 

Clear Channel n 

Reduce store 

counter by I 

Increase output 

counter by I 

Modifications to output loop for Multiple Channels. 



Figure A.8: 
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NO 
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Get maximum 

run length. 

Select Display 

IP = DIS (M, I) 

YES 

ENCODE 

IN = 1000M + I 

Increase input count 
Increase run count - IB 

Store co-ordinate 

ABUF = IN 

YES 

RECODE 

IN = 100,000 IB 

+ ABUF 

Input Loop 

,utput Loop--' Select new M,I 

Run Length Coding using Method 1. 
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Set maximum 

run length 

Select Display 

IP = DIS (M, 1) 

YES 

Increase input count 
IREAD = lREAD + 1 

Increase run count 
= 

NO 

YES 

Encode . J' 
IN = 10,000 x IB <;-- . 

+ 1000 x M + I 

Entry 

Recirc. 
Loop 

Select new M, I ~,'----iOutput Loop 

Figure A.9: Run Length Coding using Method 2. 

Re-circ. 
Loop 

YES 
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Eutput Loop 

Recover Run Length 

IRUN = ICH 
100,000 

Compute co-ordinate 

ICO = ICH - 100,000 x IRUN 

MO = ICO 
1000 

IO = ICO - 1000 x MO 

J = MO 

OUTPT(J,IO) :;:: ,'( 

IOUT = lOUT + 1 

IRUN = IRUN + 1 

End of run? YEL" 

NO 

J = J - 1 e 
Figure A.10: Decoding process for run-coded inputs. 
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APPENDIX 3 

THE TARGET SIMULATOR 

A.3.l System Reguirements 

This system is required to simulate the conditions likely to occur 

on the display of an electronic sector scanning sonar system with a 

B-scan display. The main features of the system have been described in 

Section 5.2 and a block diagram of the system is shown in Figure 5.2. 

In theory this method should, by scanning a moving film taken of 

an actual display, reproduce the real situation. However, due to the 

mechanical problems mentioned in Section 5.2, it was decided to construct 

the static system only. 

The system should be 'able to simulate various maximum ranges with 

a fixed bearing scan time of about 100 microseconds. It should be able 

to resolve two targets along the bearing scan line separated in time by 

about 3 microseconds. The video signal should be of sufficient magnitude 

to trigger a threshold detector circuit. In order to synchronize the 

target pulses to the bandwidth compression system the simulator should 

produce end of line and end of frame pulses. 

A.3.2 Sweep Generators 

The time-base circuits are built around a constant-current transistor 

whose current flows into a capacitor of known value. Figure A.ll shows 

the basic circuit used. Transistor Tl whose base voltage is held 

constant forms the constant current source. Transistors T3 and T4 
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are connected as a regenerative switching pair and form the shut-off 

circuit. The base voltage of T3 should be less than the base voltage 

of Tl as its magnitude determines the shut-off point. With the emitter 

of T3 reversed biased, the collector current from Tl produces a ramp by 

the charging of the capacitor. When the ramp voltage becomes sufficient· 

ly positive to forward bias the emitter of T3, the collector current of 

T3 turns on T4 • The capacitor discharges to approximately lV, T3 and T4 

stop conducting and the action repeats. T2 is included to provide an 

extra low conductance path during the discharge. 

A.3.2.l Calculation of Capacitor Values 

A3. 2 .1.1 -Range Simulation 

The sweep time of the slow time base should accommodate the time 

taken for an ultrasonic pulse to travel the maximum range and back. 

Now, the velocity of sound in sea water is approximately 1540 metres! 

second. 

Consider a maximum range of 2.5 metres, then, 

the Scan Time = 2 x 2.5 seconds 
1540 

A.3.l 

For a char.ging current of 10 mA and a voltage sweep of 6v, then 

the capacitor value is given by the expression, 

C = 

= 

i T/V 

10 x 10-3 x 2 x 2.5 x 106 . micro Farads 
6 x 1540 

~ 5 micro Farads 

i = charging current 

T = sweep time 

V = ramp voltage 
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This capacitor value simulates one range only; other range values are 

simulated by switching in other capacitor values. For each capacitor 

value, various ranges can be simulated by varying the charging current 

using a variable resistor in the emitter lead •• 

A3.2.l.2 Bearing Simulation 

The bearing sweep time is held fixed· at· approximate ly ··lOO-micro" 

seconds. The design approach is similar to that used for the range 

capaci tors. 

The design was also extended to produce varying fast sweep times. 

This was needed for subsidiary experiments to investigate the resolution 

properties of cathode ray tube phosphors. 

A3.2 .1.3~ Synchronizing Pulses 

These are taken from the bases of transistor T3 (range) and T3 

(bearing). The.pulse height, which is the same as the sweep voltage 

has to be clipped before being fed to standard logic gates. 

A3.3· Phosphor Resolution 

The high resolution requirements of the system demand in turn high 

resolution characteristics from the cathode ray tube phosphor. 

The medium persistence phosphor supplied with a standard.oscilloscopa 

was found to be unsuitable due to the phosphor decay time. Initial 

experiments using medium persistence P7 and 11 phosphors demonstrated 

the effect of the long decay time. When a narrow slit was scanned 
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VR1 
R1 

T1 sawtooth 

R3 

+ 15v 

R4 

r--+--f Flyback 
Pulses 

'j----4-~-:; VR2 

Cl C2 C3 C4 

111~ ~R5 

Tt, T3 

T2, T4 

Cl 

R1 - 2.2kn 

R2 loOkn 

R3 lOn 

VR1, lOkn pot. 

Figure A.ll: 

T2 

ZTX 502 

ZTX 302 

Capacitors calculated as described ·.in text 

R4 2200 

R5 - 2200 

VR2 1kn potentiometer 

D1 - lOv Zener 

Circuit diagram for Range and Bearing Sawtooth 

Gener ators. 
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with the 100 microsecond sawtooth a decay time of the order of 2 mi11i-

seconds was measured. When these tubes were replaced with a short 

persistence P15 phosphor a decay time of about 3.5 microseconds was 

recorded. The manufacturer's figures quote an average build-up time 

of about 0.035 microseconds and an approximate decay time of 2.5 micro-

seconds. These figures would make this phosphor just sufficient for 

the required resolution. The build-up and decay times quoted are 

between the 10% and 90% levels. 

A.3.4 Head Amplifier for Video Signal 

The purpose of this amplifier is to match the high impedance of 

the photomu1tip1ier tube to the comparatively low impedance of the video 

amplifier. 

The Field Effect Transistor used was a 2N524 N-Channe1 device and 

was connected in the common drain mode as shown in Figure A.12. The 

amplifier is mounted close to the photomu1tip1ier output and its output 

connected to the video amplifier by a short length of coaxial cable. 

+ 25v 

~ 
~ 

~ f-
Video 

R1 = 1 M ohm 

R2 = 1.5 K ohm 

In h Video , 
Out 

• 

! R2 

CND 
• 

Figure A.12: Head amplifier for video signal. 
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A3.5 The video amplifier 

The signal from the phctomultip1ier varied in amplitude from 

O.2V to O.5V. In addition, the signal was negative going as the 

photomu1tiplier anode was biased at OV.' 

The requirements of this amplifier are therefore to provide a 

bandwidth of about 1 MHz, a gain of about 20 and inversion of the 

signal. 

A si?gle stage common emitter amplifier satisfies these conditions 

hence this method of design is used. 

A3.6 The threshold detector 

This circuit is required to produce a pulse whenever the video 

signal exceeds a preset level. The design is a modification of a 

method outlined in (2). The circuit used is shown in Figure A13; 

the modification introduced involves the emitter resistor. In this 

circuft this resistor is made variable; this effectively varies the 

switching level. 

The pulse produced is clipped for processing by standard logic 

circuits. 
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+2Ov 

R2 R4 

R6 

1 [ S1gna 

~ VRl 
~ 

Clipped 
Video 

R5 R7 

Figure A.13: Circuit Diagram of Threshold Detector. 
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APPENDIX 4 

DATA SHEET FOR MOS DEVICES USED FOR MAIN STORE 
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I electrical drive charncteristics (Note 2) I 
t-
I PARAMETER CONDITION MIN TVP MAX UNITS 

I 
Clock Pulse Width 

(\, Clock, '-'I pW 0.100 10 ps 
, 4)1 Clock, \>1 pw 0.100 10 pS 

i 
Clock Pulse Rjs~lime. If~ 4 MHz Operation 0.01 . ps 

Clock Pulse Falltime. tlQ 4 MHz Opct<ttion 0.01 ps 
I Clock Delav. 9d om ps 

I Clock Input Level 
logic "0" -0.5 -1.5 V 
logic "I" 4 MHz Op('ration -17 -18 -20 V , 
logic "I" less than 2 MHz -1~.5 -16 -18 V I 

I 
Data Puhe Width, tdW i 0.115 ps 

I Data Input Vollagc levels 

I 
Logic "0" -2.5 V 
Logic "1" -7.0 V 

I Data SClUp Time. 1"'1 om ps 

-: electrical performance chnracteristics (Note 2) 

i PARAMETER CONDITION MIN TVP MAX UNITS 
; , 

Clock Repetition Rale Falj"out of "onc" om 4.0 Mliz 

0031.1 Output VoltOlgC Levels 
Logic "0" Input (de) -1.5 V 
logic "1" Input (de) -8.0 V 

f" 1 MHzlll 25°C 
. . 

Data Input Capacitance 
DV Bias 2.5 3.5 pF 
-10VUias 2.0 2.5 pF 

Clock Input Cllpadtance f" 1 MHz al 25.
o
C 

QV Bias 45 55 pF 
-20V Oiilt 30 40 pF 

Ou!putlmpedance 
Loqic "a .. 2.0 K!l 
LoUic"I" ~ 2.0 KO 

Breakdown Vo!t(l~e 1.0 JlA Test Current TA'" 2S"C 

On Pin t GND ()H pins except pin t -28 V 

On Pin 2 GND <:Ill pins except pin 2 -28 V 

On Pin 4 GND all pins cxcept pin 4 -28 V 

On Pin G GND aH pim except pin 6 -28 V 

On Pin 8 GND all pins exccpt pin 8 -28 V 

On Pin 9 GND oil pins except pin 9 -28 V 

I 
lCilkage Current TA'" 2S"C 

Pin t GND all pins except pin t 0.5 pA 
Bias pin I al -25V 

Pin 2 GNO il1I pins except pin 2 0.5 pA 
Bias pin 2 at -25V 

Pin 4 GNO ,111 pim except pin 4 0.5 pA 
Bias pin 4 at -25V . 

Pin £i GND <Ill pins ('xcept pin G 0.5 pA 
Bias pin 6 at -25V 

Pin 8 GND all pillS except pin a 0.5 pA 
Bias pin 8 at - 25V 

Pin 9 GNO all pins except pin 9 0.5 pA 
Bias pin 9 <It -2SV , 

, Note 1: For operation ilt ctcv<:Iwd temperatures, the device must be dcratp.d based on curves which 
i will be incorporated in tbe final data sheet. '.; 

! Note 2: These specifications apply over the indicated operating tempcrat';re ran!Jes for -20 ~VGG , 
• ~ -li'V at 4 MHz and -18 !: V GG S -14.5V at 2,5 MHz or less. Th~ output is mCilsured with a load 
I of less than 4 pF in parallel with 10 MU 10 ground unless otherwise specified. , 

I 

r~~ 
I 

Nation81 Semiconductor Corporation 

2975 San Ysidro Way, Sanla Cloro, Californio 95051 D\ 'ILl ._.1 (408) 245-4320/TWX (910) 339-9240 ';, -'~L ~":'l'!"'",",'.!"~ , . " .' '; ~~, .. 

L --
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APPENDIX 5 

THE DIGITAL-TO-ANALOG CONVERTERS 

A.5.l System Reguirements 

Two converters are required, one for decoding the 5 bits of bearing 

data and one to decode the 9 bits of range data. The system need not 

be of high accuracy hence a medium accuracy design would be sufficient.· 

Since in this system the decoder outputs are to be fed directly to 

the "X" and "Y" inputs of an oscilloscope the final summing amplifier 

is ignored; the amplifiers of the oscilloscope being of sufficient gain 

and bandwidth. 

The speed of decoding will vary with the output rate used. However, 

the maximum output rate envisaged would be of the order of 50 KHz. If 

run-length coding is used then a maximum of 8 conversions must be done 

in 20 microseconds. 

A.5.2 Circuit Design 

The circuit used follows a design outlined in (3). This circuit, 

shown in Figure A.14achieves conversion by the weighted current technique; 

with n current sources for n bits. The value of the current for each 

bit depends on the significance of the bit in the digital word, and is 

determined by the resistor R3. 

Diode D-4 is the decoder switch; when a digital "1" is applied to 

this diode, current from the current source flows into the summing 



- 197 -

resistor. If the input is at OV, then D-4 is forward biased and the 

current is ze,ro except for leakage currents. Diodes D1 and D2 are 

temperature compensating diodes and D3 holds the base of T1 at a fixed 

voltage. Two transistors are used for the M.S.B. and N.M.S.B. of 

each decoder; for the less significant bits, only one transistor is 

used since the output current and hence tne error capability decreases 

as the significance of the bit decreases •. 

An expression derived in (3) shows that the decoding speed is given 

by, 

4.6 • RO • Cl' . . . " . A.8.1 

where RO = network output resistance 

Ci = capacitive load driven by decoder output. 

Hence a typical value of TD for this circuit would be, 

= 4.6 x (10 Kohffi) x (40pF) 

-"- 2 microseconds 

This derivation assumes that the input resistance is much greater than 

the network output resistance. Typical values for the "y" input of a 

standard oscilloscope is 1 M ohm and 33pF hence this assumption is 

permissible. 

The tolerance of resistor R3 determines the accuracy of the analog 

voltage hence low tolerance resistors are normally used. A simple 

estimate of the error introduced by resistor tolerance can be obtained 

by considering the errors induced by each bit decoder". 
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Hence for the M.S.B. 

El 
1 

£1 = 
22 

for Bit 2, E2 = 22 + 1 e 2 
25 

for Bit n, En = 22(n-l) + •. 24 + 22.+ 1 en' 
23n - 1 

Where En = actual percentage error of the nth bit resistor. These 

resi.I1 ts are taken from (3, Chapter· 6). 

The resistors used in this design were 1% wire wound resistors. 



Dl 

D2 

D3 

RI 

Tl, T2 

Dl 

R3 

D2, D3, D4 

RI 

R2 

RL 

Figure A.14: 
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R2 

+lOv 

To Logic 
:1---( Circuits 

MSB 

'--------t---<- - - To NMSB 

2N1132 

ZF7 

calculated according to bit significance MSB = lOK n 
ls44 

lK n 
2.2K 

lK n 

Transistor weighted - current D/A decoder. 

(1%) 
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APPENDIX 6 

CONSTRUCTIONAL DETAILS 

These notes are added for the convenience of anyone who proposes 

to use the experimental system in the future. 

The system is contained in two Vero-racks clamped together to form 

one unit. The integrated circuits are mounted on 0.1 x 0.1 i~ double 

sided Veroboards with other circuits on the single-sided type. For 

reasons of economy three types of integrated circuits are used in the 

design; the MOS devices used in the main store and RTL and TTL devices 

used in the computing circuits. 

therefore provided; 

The following power supply rails are 

- l8v for MOS devices, 

+ 25v for Target simulator and D-to-A converter, 

+ 3.6v for RTL devices, and 

+ 5.Ov for TTL devices. 

The power supply lines are easily located; however, on the IC boards 

these are connected as follows; . 

Pin 1 + Vcc 
• 

Pin 40 or 32 Ground. 

An attem~t was made to build the system according to the design 

approach, hence each board ·consists of an operational unit. For con-

venience, Board 1 is considered the left-hand board in the lower rack. 



Board 1:-

Board 2:-

Board 3:-
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consists of the range and bearing digitizers. The main 

~in connections are as follows; 

Pin 6 

7 

11. 
Pins 12 - 25 

26 - 39 

Display Clock - Input 

Range Pulses - Input 

Bearing Pulses- Input 

Q's of counters - Output 

Q's of counters - Output 

consists of Run Length Encoding circuits and Code/No-Code 

circuits. 

Pin 12 Target Detected Pulses Input 

15 Inverse of above Input 

19 Display Clock Input 

Pins 26 - 28 - Q's of counter Output 

30 Transfer Pulse Output 

33 - 35 - Q's of counter Output 

39 Code/No-Code Switch Input 
~ 

consists of a section of the Input Buffer. This section 

contains the register for 9 bits of range data and 5 bits of 

bearing data. 

Pin 5 Shift Control Signal Input 

6 Q5 of First Range Register - Output 

7 Target Detected Pulses Input 

8 Q5 of Bearing Register Output 

9 Q4 of Second Range Register - Output 

10 Q4 of Second Range Register - Output 

11 Shift Pulses - Input 

Pins 12 - 25 - Q's (1-14) of Encoder - Input 

26 - 39 - Q's (1-14 ) of Encoder - Input 



Board 4:-

Pin 

Board 5:-

Pin 

37 -

2 

3 

4 

11 

12 

13 

14 

15 

16 

23 

26 
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consists of the Input-Output Decision Circuits, and Output 

Registers Shift circuits. 

Marker Bit - Input 

Recirculation Control - Output 

Data containing flag - Input 

Output Shift Pulses for Register 1 - Output 

Output Shift Pulses for Register 2 - Output 

Output Shift Pulses for Register 3 - Output 

Output Register 1 Monitor Signal - Input 

Output Register 2 Monitor Signal - Input 

Output Register 3 Monitor Signal - Input 

Output Control Signal - Output 

Input Control Signal - Output 

30 Synchronizing Pulses - Input 

39 Shift Clock - Input 

consists of the Main Store with Clock Drivers and Interface 

" Units. 

5 Data from Store (D) - Output 

8 Data from Store (A) - Output 

13 Data from Store (B) - Output 

15 Data from Store (C) - Output 

17 Data from Steering Circuit (A) - Input 

19 Data from Steering Circuit (D) - Input 

21 Data from Steering Circuit (B) - Input 

23 Data from Steering Circuit (C) - Input 

25 Main Clock - Input 

31 + 5v - Input 

38 - l8v - Input 



Board 6:-

Pin 2 

3 

4 

5 

6 

7 

Board 7:-

12 

19 

22 

23 

24 

25 

26 

27 

28 

29 

31 

32 

36 

38 

Pin 7 

8 

9 

10 

11 

19 

21 

25 

31 

33 

35 

37 
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consists of the Steering Circuits and the extra Flip-Flops 

for each Main Store register. 

Data to Output Register A' 

Recircu1ation Control Signal 

Data containing Flag 

Data to Output Register B 

Data to Output Register C 

Data to Output Register D 

Shift Clock 

New Data (C) 

New Data (B) 

Output Control Signal 

New Data (D) 

New Data (A) 

Data to Main Store Register (A) 

Data to Main Store Register (D) 

Data to Main Store Register (B) 

Data to Main Store Register (C) 
,. 

Data from Main Store Register (C) 

Data from Main Store Register (B) 

Data from Main Store Register (A) 

Data from Main Store Register (D) 

- Output 

- Input 

- Output 

- Output 

- Output 

- Output 

Input 

- Input 

- Input 

- Input 

- Input 

- Input 

- Output 

- Output 

- Output 

- Output 

- Input 

- Input 

- Input 

- Input 

consists of the remaining section of the Input Buffer. 

Q1 output of Run Counter 

Q2 output of Run Counter 

Q4 output of Second Range Register 

Q4 output of Second Range Register 

Shift Clock 

Q5 output of Flag F.F. 

Q5 output of Run Length Register 

Marker Bit 

Transfer Pulses 

Q1 output of Run Counter 

Q2 output of Run Counter 

Q3 output of Run Counter 

- Input 

- Input 

- Input 

- Input 

- Input 

- Output 

- Output 

- Output 

- Input 

- Input 

- Input 

- Input 
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Board 8:- consists of the Main Clocks and synchonizing pulses generator. 

Pin 11 Shift Pulses - Output 

16 Synchronizing Pulses - Output 

23 Shift-In Control Signal - Input 

37 6 MHz Clock - Output 

Board 9:- consists of the Video amplif~er, Threshold detector and Time 

Quantization circuits. 

Pin 1 + 25v - Input 

13 Display Clock - Output 

16 Range Pulses - Input 

17 Bearing Pulses - Input 

18 Targets in Count Pulses - Output 

25 + 5v - Input 

27 Target Detected Pulses - Output 

29 Inverse of 27 - Output 

31 Video In - Input 

Board 10:- consists of the Bright-Up Pulses Generators and the Flyback 

Pulses clipping circuits. 

Pin 1 +3.6v - Input 

10 Bearing Flyback Pulses - Input 

13 Clipped Bearing Flyback Pulses - Output 

14 Ground - Input 

15 Clipped Range Flyback Pulses - Output 

18 Range Flyback Pulses - Input 

23 + 25v - Input 

24 Blanking Pulses for Raster - Output 

25 Bright-Up pulses for Display - Input 

28 Bright-Up pulses for Display Output 

31, 32 Ground 
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Board 11:- consists of Sawtooth Generators. 

Pin 1 + 25v - Input 

4 To iOK ohm potentiometer (X) - Output 

6 To 10K ohm potentiometer (y) - Output 

7 To 10K ohm potentiometer (y) - Output 

10 - l8v - Input 

13 To Common of Capacitors wave change 

switch-for Y - Time base - Output 

14 Ground - Input 

15 To lOK ohm potentiometer (X) - Output 

16 Bearing (X) sweep - Output 

18 Bearing Flyback pulses - Output 

19 - 22 To Capacitors wave change switch for 

X - time base - Output 

23 - 26 To Capacitors wave change switch for 

Y - time base - Output 

28 Range Flyback pulses - Output 

29 Range (y) sweep - Output 

Board 12:- (Upper Rack - Right Hand Board), consists of Output Register 1 

with its monitor circuit. 

Pin 3 Shift Pulses - Input 

6 - 14 Q's of Register 1 (1 - 9) Output 

15 Clear Pulses - Input 

16 - 24 Q's of Register 1 (10 - 18) - Output 

25 Moni tor Signal - Output 

26 .. 27 Q's of Register 1 (19 - 20) - Output 

31 Data Word (C) - Input 

32 Data Word (A) - Input 

34 Data l~ord (B) - Input 

38 Data Word (D) Input 
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Board 13:- consists of the Transfer Circuit for Register 1 

Pin 3 

5 - 10 

17 - 23 

27 - 34 

Output Pulses 

Q's from Output 

Q's from Output 

Q's from Output 

- Input 

Register 1 - Input 

Register 1 - Input 

Register 1 - Input 

Due to lack of sufficient pin connections, the board was modified to 

allow connections to be made at the back of the rack. The following 

numbers relate to the Rear Pin connections. 

Pins 9 - 28 Output Data to D-to-A Drivers - Output 

Board 14:- consists of Output Register 2 with monitor circuit. 

Pin connections similar to Board 12. 

Board 15:- consists of the Transfer circuit for Register 2. 

Pins 2 - 21 

30 

38 

Rear connections 

Pins 9 - 28 

Q's of Register 2 

Output Pulse 

Flag bit from Register 1 

Output Data to D-to-A Drivers 

- Input 

- Input 

- Input 

- Output 

Board 16:- consists of Output Register 3 and monitor circuit 

Pin connections similar to Boards 12 and 14. 

Board 17:- consists of Transfer circuit for Register 3. 

Pin 2 

5 

6 

7 - 27 

Rear connections 

Pins 6 - 25 

Output Pulse 

Flag bit from Register 2 

Flag bit from Register 1 

Q's from Register 3. 

Outputs to D-to-A drivers 

- Input 

- Input 

- Input 

- Input 

- Output 
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Board 18:- consists of circuits for driving the set and clear Inputs 

of the Down-Counter and Run-Length Store. 

Rear connections 

Pins 2 - 4 Outputs (1) from Transfer Circuits 

(These outputs are from equivalent positions of the three Registers) 

Pins 5 - 7 Outputs (2) from Transfer Circuits - Input 

8 - 10 Outputs (3) from Transfer Circuits - Input 

11- 13 Outputs (4) from Transfer Circuits - Input 

14 - 16 Outputs (5 ) from Transfer Circuits - Input 

17 - 19 Outputs (6 ) from Transfer Circuits - Input 

20 - 22 Outputs (7) from Transfer Circuits - Input 

23 - 25 Outputs (8 ) from Transfer Circuits - Input 

26 - 28 Outputs (9) from Transfer Circuits - Input 

29 - 31 Outputs (10) from Transfer Circuits - Input 

32 To Clear FF3 of Down Counter - Output 

33 To Clear FF4 of Down Counter - Output 

34 To Clear FF5 of Down Counter - Output 

35 To Clear FF8 of Down Counter - Output 

36 To Clear FF9 of Down Counter - Output 

37· To Clear FF13 of Down Counter - Output 

38 To Clear FF14 of Down Counter - Output 

Front Connections 

Pin 15 To Set FF14 of Down Counter 

19 To Set FF5 of Down Counter 

23 To Set FF4 of Down Counter 

25 To Set FF9 of Down Counter 

27 To Set FF13 of Down Counter 

31 To Set FF3 of Down Counter 

33 To Set FF8 of Down Counter 
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Board 19:- Similar circuits as on Board 18 for driving the remaining 

elements of the Decoder Circuit. 

Rear Connections 

Pins 2 - 4 

5 - 7 

8 - 10 

11 - 13 

14 - 16 

17 - 19 

20 - 22 

23 - 25 

26 - 28 

29 - 31 

Outputs (11) from Transfer Circuits 

" 
" 
" 
" 

" 
" 
" 
" 
" 

(12) " 

(13) 

(14) 

(15) 

" 
" 
" 

(16 ) 

(17) 

(18 ) 

(19 ) 

(20) 

" 
" 
" 
" 
" 

" " 
" " 
n " 
" " 
" " 
" " 
" " 
" " 
" " 

32 To Clear FF11 of Down Counter 

33 11 11 FF6 "" " 

34 

35 

36 

37 

38 

39 

Front Connections 

Pin 15 

16 

19 

21 

23 

" 
" 
" 
" 

" 
" 

" 
" 
" 
" 

" 
" 

FF7 

FFlO 

FF1J 

FFl2 

FF1 

FF2 

" " " 
" " " 
" " " 
" " " 
" " " 
" " " 

To Set FF12 of Down Counter 

To Set FF3 of Run Length Store 

To Set FF2 

" " FF7 

" " FF11 

of Down Counter 

" " " 
" " " 

24 To Set FF2 of Run Length Store 

27 

29 
31 

32 

To Set FFl 

" " FF6 

of Do,;o Counter 

" " " 
" I1 FFIO I1 11 I1 

To Set FF! of Run Length Store 

- Input 



Board 20:-

Pin 2 

5 

6 

8 

10 

12 

14 

15 

19 

24 

25 

27 

28 

31 

33 

35 

36 

38 

Board 21:-

Pin 5 

6 

7 

13 

14 

17 

18 

20 

21 

23 

24 

26 
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consists of automatic and manual clear circuits, output 

register selector and bright-up pulse circuits. 

Register 2 Monitor signal - Input 

10 Output from "Output Clock" board - Input 

. 20 Output from "Output Clock" board - Input 

Tl - Transfer Pulse to Register 1 - Input 

Bright-up pulses - Output 

Output Pulses - Input 

Register 2 Monitor signal - from selector - Output 

Register 1 Clear pulses - Output 

Register 3 Clear pulses - Output 

Register 3 Monitor signal - from selector - Output 

Register 2 Clear pulses 

Selector switch 

Register 3 Monitor signal 

T2 - Transfer Pulse to Register 

T3 - Transfer Pulse to Register 

Fast Clock 

Manual Clear Switch 

Selector Switch 

- Output 

- Input 

- Input 

2 - Input 

3 - Input 

- Input 

- Input 

- Input 

consists of output clocks and part of the run-length decoder 

circuit. 

Fast Clock - Output 

10 Output from counter - Output 

. 20 Output - Output 

Output Pulse - Output 

Shift Pulses for Down Counter - Output 

Ql of run-length counter - Input 

Ql of run-length store - Input 

Output Clock 2 

Q2 of run-length counter - Input 

Common terminal of output clock switch - Output 

Output Clock 1 

Output Clock 3 



- 210 -

Board 21 cent ..... 

27 Output Clock 4 

28 Output Clock 5 

30 Q3 of run-length counter - Input 

31 Output Clock 6 

35 P2 of run-length store - Input 

36 P3 of run-length store - Input 

39 Fast Clock - Input 

Board 22:- consists of the l4-stage Down-Counter, 3-stage run length 

counter, and one stage of the run length store. Rear and 

Front connections are used. 

Rear Connections 

Pin 4 Clear Signal for F/Fl of Down-Counter 

6 " " " F/FlO " " " 
7 " " " F/F9 " " " 
9 " " " F/F2 " " " 

~ 

16 " " " F/Fll " " " 
17 " " " F/F12 " " " 
24 " " " F/F14 " " " 
25 • " " F/F13 " " " 
27 " " " F/F7 " " " 
28 " " " F/F8 " " " 
31 " " " F/F3 " " " 
33 " " " F/F5 " " " 
34 " " " F/F6 " " " 
36 " " " F/F4 " " " 

Front Connections 

Pins 3 - 13 Ql - Qll of Down Counter - Output 

14 Clock for Counters - Input 

15 - 17 Q12 - Q14 od Down Counter - Output 

19 Ql of run length store - Output 

22 - 35 Clear signals for Down Counter - Input 

36 PI of run length store - Input 

37 - 39 Q outputs of run-length counter - Output 
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Board 23 

5-bit Digital-to-Analog Converter 

Pin 14 - Bit 3 to D-to-A - Input 

15 NSMB to D-to-A - Input 

16 MSB to D-to-A - Input 

23 - + 25v 

24 - Bit 2 to D-to-A - Input 

25 L.S.B. to D-to-A - Input 

31 Analog Signal - Output 

Board 24 

9-bit Digital-to-Analog Converter 

Pin 1 + 25v 

11 Bit 4 to D-to-A - Input 

14 - Bit 2 to D-to-A - Input 

15 Bit 5 to D-to-A - Input 

18 Bit 3 to D-to-A - Input 

20 - Bit 7 to D-to-A - Input 

21 L.S.B. to D-to-A - Input 

23 - MSB to D-to-A - Input 

24 - NMSB to D-to-A - Input 

25 Bit 6 to D-to-A - Input 

30 - Analog Signal - Output 
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Decoupling 

On all boards containing digital integrated circuits, supply 

decoupling is performed by using a 47 micro-farad tantalum and several 

0.1 micro-farad ceramic capacitors. The number of 0.1 uF capacitors 

is determined by the number of I.C's per board; on the average one 

capacitor per 6 circuits is used. 

Control Panel 

The control panels for both racks are shown in Figure A.1S. The 

functions of the controls are as follows; 

Upper Panel 

Display Outputs: X, Y and Z are fed to the equivalent inputs of 

the display oscilloscope. 

Manual Clear: Push-to-make switch which clears all the output 

registers. 

Output Registers Selector: Wave-change switch which includes 

either 1, 2 or 3 registers in the system. 

Output Clock selector: Wave-change switch which selects the out-

put clock rate. The main shift clock is divided by 2, 3, 4, 6,.8 

and 12 with the highest frequency on position 1 of the switch. 

Targets Out (Count): BNC socket for connecting to a counter. 

These pulses are produced by the bright-up pulses generator and 

indicate the number of targets displayed. 
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Lower Panel 

Voltage sockets: values as shown. 

Code/No-Code Switch: Miniature two-way switch which enables or 

inhibits the run-length coding operation. On the panel UP 

signifies CODE. 

Video In: BNC socket for receiving video signal from photomu1tip1ier. 

Targets In (Count): BNC socket suitable for connecting to a 

counter. These pulses are produced by the Target Detector Circuit. 

Range Pulses: BNC socket; these are the flyback pulses from the 

range sweep generator and are used as time markers when counting 

the number of targets fed in and shifted out. 

Range Sweep: BNC socket; from the range sawtooth generator to the 

Y input of the Raster Generating oscilloscope. 
~ 

Bearing Sweep: as above. 

Range Selector: a wave change switch, which includes a selected 

capacitor in the sawtooth circuit, and a variable resistor which 

provides fine tuning. 

Bearing Adjuster: as above. 

Z. Mod: BNC socket; flyback blanking pulses. for Raster Generator 

. " O~C~J..l.oscope. This signal is not used normally as the digital 

- blanking is sufficient. HOl1ever, if direct reproduction of the 

scannod pattern is required then this signal is taken to the Z 

terminal of the oscilloscope. 



Display 
Ou\puts 

y 

• X 

• Z 

• + 3.6v 

o CND 

t+ Sv 
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• Manual Clear 

t 2. 
1. "\. 

Output Registers 
Selector 

Output Clock 
Selector 

Control Panel for Upper Rack 

Targets Out 
• Count 

Code/ . 
o No (!lode G Vldeo 

Switch In 
oRange .• Range .Bearing 

Sweep Selector 0 Adjust 

Cl - l8v 

• + 2Sv 

Targets Bearing 
11\ In 
(Count)" Sweep , 

Range 
• Pulses" Z 

Mod. 

Control Panel for Lower Rack 

Figure A.lS: Schematic Diagram of Control Panels. 
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