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SUMMARY
Experimental and Computational Study of Hybrid Diffusers For Gas Turbine 

Combustors

Diffusers are essential in gas turbine combustors, decelerating the compressor efflux

prior to the combustion chamber to reduce total pressure losses. Modern, low emission,

radially staged combustors require even more diffusion due to the increased flame tube

depth of this type of combustor. Furthermore, these high rates of deceleration are accom-

panied by large adverse pressure gradients and an associated risk of flow separation. Pre-

vious studies have shown that hybrid diffusers can achieve high rates of efficient

diffusion in far shorter lengths than conventional faired diffusers or dump diffuser sys-

tems, representing a potential performance gain and weight saving. Hybrid diffusers con-

sist of a wide angle diffuser immediately downstream of a sudden expansion, with flow

separation prevented by bleeding off a small amount of the mainstream flow. However,

previous studies have not provided a conclusive understanding of the associated flow

mechanisms leading to hybrid diffusers currently being considered high risk. Addition-

ally definitive data does not exist on the influence of bleed gap geometry and therefore

hybrid diffusers cannot, currently, be optimised for use in a modern gas turbine. Further

issues also not addressed by earlier studies, but concerning the use of hybrid diffuser in

gas turbine combustors, are the effect of representative inlet conditions incorporating

vane wakes at diffuser inlet, the quality of the bleed air and its potential for use for com-

ponent cooling, the effect of radial struts within a hybrid diffuser and the quality of the

flow delivered to the combustor feed annuli (total pressure losses). Therefore, a predom-

inately experimental study, coupled with CFD predictions, was undertaken to investigate

the controlling flow mechanisms of hybrid diffusers and address the questions necessary

to evaluate the suitability of hybrid diffusers for use in modern, low emission, radially

staged combustion systems.

An existing isothermal test facility was used comprising a fully annular, staged combus-

tor downstream of a single stage axial compressor incorporating engine representative

outlet guide vanes. Initial experimental work led to rig modifications which allowed a

range of hybrid diffusers to be studied. To act as a benchmark the performance of a con-

ventional single-passage, dump diffuser system was first studied. A hybrid diffuser dem-

onstrated a 53% increase in area ratio within the same axial length as the conventional
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diffuser. Results showed that this hybrid diffuser achieved a 13% increase in static pres-

sure recovery which, in turn, improved the feed to the combustor feed annuli and

decreased total pressure loses by 25%. Notably this brought the annulus losses within

accepted target values; something the conventional diffuser system was unable to do.

Additionally, it was clearly shown, in contradiction to previous studies, that bleeding air

via a vortex chamber was not necessary. Bleeding air via a simple duct arrangement

achieved the same results without altering the governing flow mechanisms. 

To provide a better understanding of these flow mechanisms, a computational investiga-

tion was also undertaken. A commercial CFD code, Fluent, was used to solve the Rey-

nolds averaged Navier-Stokes equations for an incompressible flow regime, employing a

blended second order upwind/central differencing scheme and the SIMPLE pressure cor-

rection algorithm. The turbulence was modelled using the k-ε model in conjunction with

a standard wall function. Several generic two-dimensional hybrid diffusers were studied

in order to reveal the controlling flow mechanisms and enable optimisation of the bleed

gap geometry. Importantly, this revealed that many features previously thought to con-

tribute to the flow mechanisms were, in fact, unnecessary. A detailed examination of the

flow field, including an analysis of the terms within the momentum equation, demon-

strated that the controlling flow mechanisms were not simply a boundary layer bleed but

involve a much more complex interaction between the accelerating bleed flow and the

diffusing mainstream flow. Firstly, momentum is transferred from the accelerating bleed

flow to the diffusing mainstream flow, enabling a fresh boundary layer to be formed on

the diffuser wall which is sufficiently energetic to overcome the high rates of diffusion

and high adverse pressure gradient. Secondly, the radial pressure gradient created by the

bleed causes deflection of the mainstream flow which also transports higher momentum

fluid into the boundary layer. Understanding this resulted in a greatly simplified design

for the hybrid diffuser not only potentially reducing weight but also reducing bleed flow

total pressure losses.

Predictions for a three-dimensional representation of the experimental facility displayed

many similarities in the flow field and similar performance trends to the experimental

data. However, predicted values of total pressure loss and static pressure recovery dif-

fered from experimental data and it was thought that this was due to an incomplete
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description of the turbulence (k and ε) at inlet and/or known problems the k-ε turbulence

model has with predicting some unconfined flows. Nonetheless, three-dimensional pre-

dictions revealed an interaction between the OGV wake fluid and bleed flow causing

localised, but small, modification of the flow mechanisms. Furthermore, it was shown

that without the levels of turbulence produced downstream of an axial compressor the

hybrid diffuser under study would, in fact, stall. 

Overall, experimental and computational results obtained in the current research suggest

that the performance of hybrid diffusers is more than satisfactory for use within low-

emission, staged, gas turbine combustion systems. An understanding of the governing

flow mechanisms and the effect of features such as OGV wakes or radial struts has lead

to a more practical design of hybrid diffuser, simplifying the geometry and reducing

bleed flow total pressure losses (increasing the possibility of this air being used for com-

ponent cooling).
                                                                                (iii)
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1.0 INTRODUCTION
1.0 INTRODUCTION

1.1 Emission Concerns and Regulations

In order to discuss the major focus of this thesis - hybrid diffusers for gas turbine com-

bustion - it is important to understand the reasons why, and the direction in which, this

technology is being driven. Traditionally, for aeronautical gas turbines it has been the

desire for better fuel efficiency and reduced weight which has forced development of the

combustion system. More recently, however, strict legislation has meant that the emis-

sion of pollutants is now a major factor behind the design of combustion chambers. The

reduction of emissions is not only important from an environmental view point but it has

also become a significant issue for engine manufacturers in an increasingly competitive

market.

The exhaust from an aircraft gas turbine is composed of carbon monoxide (CO), carbon

dioxide (CO2), oxides of nitrogen (NOx), unburned hydrocarbons (UHC), water vapour

(H20) and particulate matter or smoke. The two main areas of concern are, according to

Lefebvre[1983], urban pollution in the vicinity of airports and pollution of the strato-

sphere at aircraft cruise altitudes. Lefebvre[1995] comments that carbon dioxide and

water vapour have not, traditionally, been considered as pollutants as they are natural

products of the complete combustion of a hydrocarbon fuel. However, they both contrib-

ute to global warming and can only be reduced by burning less fuel. Conversely, carbon

monoxide is a toxin and reduces the blood’s capacity to absorb oxygen and, in high con-

centrations, can even be fatal. Unburned hydrocarbons are also toxic but in addition to

this they can combine with oxides of nitrogen to form photochemical smog. Smoke

emissions are undesirable as they contain carcinogens and very fine particulates have

been associated (Seaton et al[1995]) with asthma and other respiratory diseases. At

ground level, oxides of nitrogen not only contribute to the formation of smog but also

add to the problem of acid rain. Furthermore, at altitudes of less than 3km a major con-

cern of NOx emissions is the resulting formation of low level ozone. Bahr[1991,2] reports

that in Western Europe low level ozone concentrations are approaching 50 parts per bil-

lion (ppb). At concentrations around 100ppb prolonged exposure to ozone can be detri-
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mental to health causing impaired vision and headaches. In addition to this, at higher

altitudes, typical of aircraft cruise, NOx reacts with and causes depletion of the strat-

ospheric ozone layer. Reduction of the ozone layer increases ground level ultraviolet

radiation which, in turn, leads to an increase in the incidence of skin cancer. Thus, the

effect of NOx emissions is serious and far-reaching and has become a major concern for

aircraft engine designers.

Aircraft gas turbine emissions are, relative to other sources, only a minor contributor to

global emissions. A 1999 report by the Intergovernmental Panel on Climate Change

(IPCC) entitled “Aviation and the Global Atmosphere” summarised that:

• in 1992 aviation contributed 3-5% of the total man-made pollutants that add to the 

greenhouse effect.

• in 1999 aircraft will produce approximately 2% of all CO2 emissions (or 13% from all 

transport sources).

• emissions of NOx from subsonic aircraft are estimated to have increased ozone con-

centrations at cruise altitude by 6% since 1992 and this is projected to increase to 

about 13% by 2050.

For many years aircraft gas turbines have operated within the limits prescribed by the

International Civil Aviation Organisation (ICAO). These regulations define acceptable

limits for the emission of unburned hydrocarbons, smoke, carbon monoxide and oxides

of nitrogen. However, due to an increased awareness of the environmental impact of air-

craft emissions the ICAO’s Committee on Aviation Environmental Protection (CAEP)

was asked to recommend a more stringent set of regulations. In 1993 the ICAO accepted

the CAEP/2 proposals (ICAO Annex 16 Vol.2) which, in essence, represent a two tier

system whereby the emissions legislation is linked to the date an engine type is certified

or an engine unit is manufactured. For example ICAO Annex 16, Vol. 2 gives the NOx

limits as:

• new engine types certified before the end of 1995 or engine units manufactured before 

the end of 1999:                   
Dp
Foo
-------- 40 2πoo+=
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• and for new engine types certified after January 1996 or engine units manufactured 

after January 2000:              

where Dp is the mass in grams of pollutant, Foo is the rated thrust (kN) of the engine and

πoo is the engine pressure ratio at takeoff.

Mortimer[1998] reports that in 1995 CAEP revised their legislation and issued the CAEP/

3 guidelines which recommended further reductions in NOx. However, these new limits

were not imposed as engine manufacturers argued they were too stringent. In April 1998

CAEP reworked their proposals and slightly relaxed the NOx limit for high engine pres-

sure ratios. These CAEP/4 proposals have since been approved and are due to come into

force in 2004 and therefore represent the standard to which engine manufacturers are

currently designing.

With reference to Figure 1.1 the mechanisms for the production of pollutants are such

that levels of CO and UHC are at a maximum at low power levels whereas the levels of

NOx and smoke are highest at full power. Lefebvre[1995] states that, for modern gas tur-

bine engines, levels of CO and UHC have been greatly reduced at all low power condi-

tions and therefore it is the level of NOx emissions which is of paramount importance.

Thus to remain competitive within the market place engine manufacturers must produce

combustion systems which minimise the formation of NOx. Figure 1.2 graphically illus-

trates the current CAEP/2 and future CAEP/4 NOx limits with respect to engine pressure

ratio. Of interest are the shaded areas which represent the performance of old, current

and future combustor technologies. Figure 1.2 indicates that in order to meet the CAEP/2

requirements older single annular combustion technology had to be refined and devel-

oped. At the upper limit of development this technology may satisfy CAEP/4 but it is

clear that to meet future and more stringent emissions regulations engine manufacturers

must look towards new technology such as staged double annular combustors or even

more radical designs. However, the development and implementation of new technology

is an expensive process and far from risk free.

Dp
Foo
-------- 32 1.6πoo+=
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1.2 Reducing NOx and Low-NOx Combustion Systems

The primary mechanism, according to Lefebvre[1995], for the formation of NOx is by the

oxidation of atmospheric nitrogen in the high temperature regions of the flame. Above

temperatures of 1850K this reaction is significantly rapid and therefore the prime objec-

tive in reducing NOx is to reduce the reaction temperature or decrease residence time at

high temperature. Included in this aim is the elimination of “hot-spots” as these will

result in localised NOx production. Adding more air to the primary zone (refer to Figure

1.3) will lower the reaction temperature or an increase in liner pressure drop will enhance

mixing and eliminate hot-spots. One further method of lowering the flame temperature is

to inject water into the flame tube and Hung[1974,85] claimed to achieve NOx reductions

of 80%. However, White et al[1982] report this method has many drawbacks such as

increased capital cost, increased fuel consumption and the impracticality, for aero appli-

cations, of physically carrying the required water. Furthermore, another drawback of

reducing NOx emissions by lowering the flame temperature is that it will inevitably lead

to increased levels of UHC and CO. Figure 1.4 shows that for a conventional combustor

an optimum temperature range of 1670-1900K exists for which NOx and CO emissions

can be kept below 15 and 25ppm respectively. Thus the underlying principle in the

design of low emission, specifically low NOx, combustion systems is to ensure that the

reaction temperature remains within this range from engine idle to full power. 

1.2.1  Variable Geometry Combustors

Variable geometry combustion, as a concept, is not new but designers have been reluc-

tant to employ this type of combustor due to the mechanical complications involved.

However, it is a measure of the magnitude of the emissions issue that variable geometry

is again being considered, especially for non-aeronautical applications. The concept is

simple; at full-power the geometry is varied such that large quantities of air are admitted

into the primary zone thus reducing the temperature. And, as engine power is reduced air

is diverted into the dilution zone, hence maintaining the primary zone temperature within

the low-emissions band illustrated in Figure 1.4. To achieve this variation in airflow

Bayle-Labouré[1991] used variable-area swirlers and Roberts et al[1982] and Sasaki et
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al[1991] used variable air openings into the dilution zone. The main drawback with varia-

ble geometry is the complex mechanical control and feedback systems which add to

weight, reduce reliability and make this type of low-emission combustion chamber

impractical for aeronautical applications.

1.2.2  Lean Premix Prevaporised Combustion

In a conventional combustion chamber fuel is injected into the primary zone with little or

no premixing with air. The result of this is that combustion occurs in localised stoichio-

metric pockets producing high temperatures and thus high amounts of NOx. The under-

lying principle behind lean, premix, prevaporisation (LPP) is elimination of these

pockets by mixing the fuel and air prior to injection and then operating the primary zone

at a low fuel/air ratio or ideally an equivalence ratio very close to the lean extinction

limit. Essentially LPP systems require a fuel injector which can achieve the complete

evaporation and mixing of the fuel and air. Combustion of this mixture can then take

place at a fairly low and uniform temperature thus minimising NOx production. Poeschl

et al[1994] reported NOx concentrations as low as 10ppm. Furthermore, Leonard and

Stegmaier[1994] note that the flame temperature never exceeds 1900K and as such the

amount of NOx formed does not increase with residence time. Therefore, LPP systems

can utilise a relatively long residence time in order to reduce production of CO and UHC

whilst still maintaining low NOx. Nonetheless, LPP is not without its problems. For

example there is a danger of autoignition or flashback at high power settings due to

premixing of the fuel with air at a high inlet temperature. Also the high quantity of air

required at maximum power to produce lean conditions may result in a flame blow out at

low power conditions.

1.2.3  Rich-Burn, Quick-Quench, Lean-Burn Combustor

Rich-burn, quick-quench, lean-burn (RQL) as proposed by Mosier and Pierce[1980] and

Pierce el al[1980] utilises a staged burning concept. Initially a fuel-rich primary zone

(equivalence ratio 1.2-1.6) is used to reduce NOx by lowering the flame temperature and

lowering the available oxygen. Immediately after this the fuel-rich combustion products
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are exposed to jets of air which rapidly cool them to a level where NOx production is

negligible. This is the quick-quench stage and must be almost immediate to prevent for-

mation of local regions of near-stoichiometric fuel/air ratios as this will result in high

NOx production. It is this area where most of the problems associated with RQL lie but

the concept has enough potential for the Pratt and Whitney Company (Lefebvre[1995]) to

be actively pursuing it.

1.2.4  Staged Combustion

The aim of staged combustion is to switch the fuel flow between two or more primary

zones in order to maintain an overall combustion temperature within the low emissions

band. A commonly used technique to achieve this is “selective fuel injection”

(Bahr[1987]) in which at low power settings only a limited number of the available fuel

injectors are employed and the full complement of injectors is only used at maximum

power. A disadvantage of this method is that it results in “chilled” regions downstream of

the injectors not in use. This reduces combustion efficiency, increases CO and UHC pro-

duction and is detrimental to turbine performance and life due to a non-uniform combus-

tor exit temperature distribution. The search to overcome these problems has led to the

development of the true “staged” combustor in which one annular combustion zone is

replaced by two or more annular zones. This principle is illustrated in Figure 1.5 and Fig-

ure 1.6. For a conventional single annular combustor, as more power is required the fuel/

air ratio is increased and thus the flame temperature and NOx production also increase.

However in a staged system, before NOx emissions become excessive fuel is diverted to

a separate primary zone. Now both primary zones (usually termed pilot and main) oper-

ate but at fuel/air ratios low enough to prevent high flame temperatures and high NOx.

These primary zones can be arranged axially as in the Pratt and Whitney combustor

shown in Figure 1.7 or radially as in the General Electric dual-annular combustor (Figure

1.8). In the latter case the outer primary zone is designated the pilot zone and provides

the combustion at low engine power levels such as start up and idle. At higher power lev-

els fuel is added to the main zone which is optimised for higher fuel flow rates with a

short residence time and low equivalence ratio thus limiting the formation of NOx and

smoke. The General Electric combustor is currently an option for the CFM56-5B engine
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used on the Airbus Industrie A320 and A321 aircraft. Lefebvre[1995] reports that it

achieves around 35% reduction in CO and UHC, and 45% reduction in NOx over a cor-

responding single annular combustor fitted in the same engine type. Disadvantages of the

staged combustion systems are added weight and mechanical complexity plus the need

for more cooling air as the combustion chamber liners comprise more surface area. Axial

staging does have certain advantages over radial staging due to the main stage being

downstream of the pilot which ensures ignition of the main stage is rapid and reliable.

Furthermore, the hot gases from the pilot zone ensure that the main zone has a high com-

bustion efficiency. However, in addition to having many of the same disadvantages as

radial staging, axially staged combustion also suffers from an extra length and weight

penalty.

A further development of staged combustors, suggested by Lefebvre[1995], is to include

an LPP unit in place of the main zone fuel injector, thus taking advantage of the low

emission properties of both staged and LPP combustion. 

However, a major drawback of staged combustion is that, relative to conventional single

annular technology, staged systems have an extremely deep flame tube. This presents a

problem as compressor delivery air must be supplied as efficiently as possible (i.e. with

minimum total pressure loss) to the various features of the combustor. This implies that

very high rates of diffusion and turning must be achieved in a short length. Conventional

diffuser technology can only achieve a limited amount of diffusion and turning in any

given length and only then with the penalty of increasing total pressure loss (Sections 1.3

and 2.0). Thus it is clear that if staged combustion is to be used to meet future emissions

legislation then diffuser technology must also be developed. However, the fact that Gen-

eral Electric and Pratt and Whitney have already invested in staged combustion technol-

ogy suggests that they believe this could provide a solution to the emissions problem.

Furthermore, General Electric have recognised the fact that diffuser technology must

also be advanced and employ a split, twin passage pre-diffuser in their dual-annular com-

bustor (see Figure 1.8). 
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1.3 Combustor System Total Pressure Loss

Any loss in total pressure between inlet and outlet of a combustor system leads (Cohen at

al[1996]) to both an increase in specific fuel consumption and a reduction in specific

power. These losses arise from two causes;

          (i) skin friction and turbulence, and

          (ii) a rise in temperature due to combustion.

The latter of these is termed the ‘fundamental’ loss; the combustion process increases the

temperature of the air, its density drops, its velocity increases and this results in a total

pressure loss. However, Cohen et al[1996] comment that the fundamental loss is typically

1-2% of the inlet dynamic pressure which is small compared to the loss due to skin fric-

tion and turbulence. It is therefore imperative that this aerodynamic loss is minimised in

order to maximise the fuel efficiency of an engine.

Overall combustor total pressure loss is non-dimensionalised by the mean total pressure

at compressor exit to give a pressure loss parameter. In any given configuration this

increases proportionally to the square of the compressor exit velocity (Klein[1959]). A

typical value for this parameter is, according to Kaiser and McDonald[1980], 6% (not

including the fundamental loss) and Oates[1985] reports that an increase of 1% will result

in a drop in thrust of 1% and a rise in specific fuel consumption of 0.5-0.75%.

Lefebvre[1983] states that the aerodynamic pressure loss can be divided into two main

components; total pressure drop in the diffuser and total pressure drop across the flame

tube liner. It is essential that all the elements of a gas turbine combustion system are ade-

quately fed, via the diffuser, with air from the compressor exit. If the fuel injectors, swirl-

ers (especially LPP units) or feed annuli are not correctly fed then even the best design of

low emission combustion chamber will ultimately fail in its goal. For example, the con-

dition of the flow within the combustor feed annulus will effect the delivery of air into

the flame tube via the primary and dilution ports. A high velocity will be beneficial for

convective cooling of the liner walls but generally lower velocities are preferred because
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this leads to:

     (i) lower losses (skin friction and ‘sudden expansion’ losses downstream of liner

          holes),

     (ii) steeper angles of jet penetration, and

     (iii) lower circumferential variations in annulus velocity and static pressure which 

           ensures all liner holes in the same row pass the same airflow.

It is the task of the pre-diffuser to slow the compressor efflux, turning the airflow and

directing it towards the downstream components of the combustion system. Diffusers

must achieve this in a short axial length to minimise weight and with the minimum of

total pressure loss to maximise specific fuel consumption. Carrotte and Bailey[1994] and

Carrotte and Barker[1994] produced data (Figure 1.9) which demonstrated that as the ratio

of flame tube depth to combustor length increases, inevitable for staged combustion, the

aerodynamic losses to the combustor feed annuli rapidly rise. To overcome this the dif-

fuser must further reduce the velocity of the airflow (i.e. increase area ratio) and produce

a higher degree of turning. However, conventional diffusers have performance limits and

simply increasing area ratio will eventually result in flow separation (Sovran and

Klomp[1967], Figure 1.10). Additionally, the introduction of curvature will further reduce

the area ratio at which this occurs (Sagi and Johnston[1967], Figure 1.11). In simple terms

these performance limits mean that conventional diffusers will struggle to meet the nec-

essary performance required for staged combustion. Thus there is a need to study and

develop an understanding of more advanced and unconventional diffuser technology.
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1.4 Summary

In the space of the last two decades the need to reduce the emissions of pollutants, in par-

ticular NOx, from aero gas turbines has become perhaps the most important driving force

behind the design of combustion chambers. Furthermore, in order to meet the emissions

legislation designers are having to consider new and unconventional designs. According

to Lefebvre[1995] one of the most attractive options is the combination of staged combus-

tion with lean, premixed, prevaporised fuel injection. However, for this combination to

reach its full potential diffuser technology needs to be developed. Thus the specifics of

conventional diffuser performance and a review of the relevant literature is presented in

Section 2.0. Furthermore, Section 2.0 also reviews the methods, both conventional and

unconventional, by which diffusers have been developed to achieve higher area ratios

and controlled turning without incurring excessively high total pressure losses. Addition-

ally Section 2.0 identifies the “Hybrid diffuser” as a attractive alternative to conventional

pre-diffuser designs due to its ability to achieve high rates of diffusion in a short length.

The detailed aims and objectives of this study are presented in Section 2.8 but can be

summarised as:

• identification of an advanced diffuser concept (hybrid diffuser) which has the poten-

tial to acheive the necessary performance for use with low emission, staged comus-

tion systems,

• investigation of the effect on hybrid diffuser and system performance of, for example,

various geometric partameters, diffuser radial struts and OGV wakes,

• identification of the pertenent aerodynamic mechanisms in order to design an opti-

mised hybrid diffuser,

• finally, to determine if hybrid diffusers offer a solution to the requirements of modern,

low emission, staged combustion systems.
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Figure 1.1 Emissions Characteristics of a Gas Turbine, Lefebvre[1995]

Figure 1.2 Variation of NOx Characteristics with Engine Pressure Ratio, Birch[2000]
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Figure 1.3 Main Components of a Gas Turbine Combustor, Lefebvre[1995]

Figure 1.4 Influence of Primary Zone Temperature on CO and NOx Emissions, 

Lefebvre[1995]
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Figure 1.5 Relationship between Primary Zone and Overall Stoichiometries for 

Fixed Combustor Geometries, Wray[1995]

Figure 1.6 Relationship between Primary Zone and Overall Stoichiometries for a 

Staged Combustor, Wray[1995]
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Figure 1.7 Pratt and Whitney Axially Staged Combustor, Koff[1993]

Figure 1.8 General Electric Radially Staged Combustor, Lefebvre[1995]
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Figure 1.9 Variation of Total Pressure Loss to the Feed Annuli with Mean Deflec-

tion Ratio, Carrotte and Bailey[1994]

Figure 1.10 A Comparison of Diffuser Performance with the Nominal Design 

Curve, Sovran and Klomp[1967]
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Figure 1.11 Typical Flow Regime Chart for Curved Diffusers, Sagi and John-

ston[1967]
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2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY

Chapter 1.0 has highlighted the fact that staged combustion systems represent an attrac-

tive option to meet projected NOx emission regulations. However, evidence has also

been presented which suggests that conventional diffusers will have difficulty in meeting

the performance requirements imposed by the deep flame tubes associated with this type

of combustor. Current conventional diffusers cannot achieve the required area ratios and

degree of flow turning within the axial length permitted without incurring unacceptable

levels of loss. To understand why this is the case and how diffusers might be developed

to meet these requirements a discussion of diffuser technology is presented next. The

data discussed comes solely from experimental sources. There are several reasons why

computational data are not presented; the main one being that much of the work dis-

cussed was conducted before computational methods were available. Additionally the

experimental techniques have been well established whereas much of the available com-

putational data is concerned with using experimental data to validate computational

methodology. Although computational techniques are now well established much of the

later work discussed comprises complex systems incorporating, for example, representa-

tive combustion systems and inlet conditions including vane wakes. Computational stud-

ies have not, as yet, reached this level of complexity.

2.1 Basic Diffuser Considerations

At the exit from a high pressure compressor in a modern gas turbine the axial velocity of

the flow is typically 150ms-1 (Mach 0.2 - 0.3) or higher. The pressure rise in an axial

compressor is directly related to the velocity and as such high exit velocities are unavoid-

able. Unfortunately it is not practical to burn aviation fuel in air flowing at such high

velocities and therefore, before steady-state combustion can be achieved, the axial veloc-

ity of the airflow must be significantly reduced. To accomplish this a diffuser system is

employed to slow the compressor efflux to about 20% of its original value.

In essence a diffuser is a duct along which the kinetic energy of the flow is reduced and

the static pressure increased. For subsonic flow a diffuser is a diverging passage (Figure

2.1) in which the cross-sectional area increases with axial length. Conservation of mass
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dictates that the higher the area ratio, the greater the reduction in velocity and hence

increase in dynamic pressure. For high efficiency, the diffusion process must be accom-

plished with the maximum recovery of static pressure and a minimum total pressure loss.

High losses have a detrimental effect on the engine cycle efficiency and thus increase

specific fuel consumption (Oates[1985]). In addition to recovering static pressure a com-

bustor diffuser system must also efficiently turn the air flow such that it is distributed

correctly around the various components of the combustion system. This latter function

must also be accomplished with the minimum total pressure loss, because both the total

and static pressures upstream of fuel injectors, combustor liners and air admission holes

are important for the efficient operation of these components (e.g. distribution of cooling

air and control of internal combustor flow patterns).

Traditionally there are two main methods of diffusing the flow in a gas turbine combus-

tion system. The first is to employ an aerodynamic or ‘faired’ diffuser (Figure 2.2a)

which will achieve the maximum static pressure recovery but will incur a high skin fric-

tion loss due to its length. The second method is to use a short ‘pre’-diffuser and then

‘dump’ the flow into a region of sudden expansion (Figure 2.2b). Carrotte et al[1994] con-

ducted a detailed performance comparison of dump and faired diffuser systems within an

isothermal representation of a gas turbine combustion system. The dump pre-diffuser

reduced the overall system length by 14%, which would represent a significant weight

reduction in any final engine design. However, total pressure losses to the inner and outer

feed annuli were found to increase by 40% and 30% respectively. Carrotte et al[1994]

commented that, although dump systems incur higher losses, they are favoured in most

modern gas turbines due to their short length, inherent flow stability and insensitivity to

manufacturing tolerances and thermal expansions.
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2.2 Expressions for Diffuser Performance

2.2.1  One-Dimensional Flow Analysis

The task of a diffuser is to reduce the inlet kinetic energy of the flow with maximum effi-

ciency. Or, in terms of pressure; to increase the static pressure as much as possible but

with minimum loss in total pressure. To measure the performance of a simple diffuser

(Figure 2.1) the static pressure recovery and total pressure losses are non-dimensional-

ised by the inlet dynamic pressure. This gives rise to the two most important parameters

describing diffuser performance. For an incompressible, one-dimensional uniform flow,

the static pressure recovery coefficient, Cp, between inlet (1) and exit (2) is defined as:

2.1

and the total pressure loss coefficient, λλλλ, as:

2.2

Where q1 is the dynamic pressure at inlet ( )

Further, if the flow is assumed incompressible (M1<0.3) a simple relationship between

these two parameters follows from Bernouilli’s equation:

2.3

where ∆P1-2 is the total pressure loss. Therefore:

 2.4

and if the mass flow is given by:

 2.5

then assuming constant density:

2.6

where AR is the area ratio of the diffuser, giving:
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2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
2.7

or an ideal (zero loss) pressure recovery can be defined as:

2.8

Furthermore, an overall effectiveness, ηηηη, can now be defined as the ratio of actual to

ideal pressure recovery, i.e.

2.9

or, 

2.10

2.2.2  Non-Uniform Flows and Suitable Mean Values

Equations 2.1 to 2.10 are valid for one-dimensional flow, but it is clear that diffuser

flows will posses non-uniform profiles of velocity and pressure over the duct cross-sec-

tion, particularly downstream of a compressor and its OGVs where spatial variations will

occur. However, provided valid and suitable average values are used the above defini-

tions may remain valid. Livesey and Hugh[1966] stress the importance of adopting a con-

sistent system such that the average values for a flow field still satisfy the relevant aero-

thermal relationships in the same manner as the non-uniform flow field. In a duct flow,

the total pressure will fall without the presence of external work or heat exchange due to

work done against internal friction stresses and as such the total pressure loss is used

almost universally in assessing duct performance. Thus, Livesey and Hugh[1966] con-

sider the suitable definition of an average total pressure to be of fundamental importance.

For example an area-weighted average (given the symbol “-”) can be defined as:

2.11

However, in real flows a boundary layer exists at the wall and the mass flow in this

region is small compared to the central portion of the duct. Equation 2.11 does not

account for this, giving equal weighting to the low mass flow and high mass flow

regions. This is inconsistent and dictates that the area-weighted mean total pressure is
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biased towards the low total pressure close to the wall.

(i) Mass-Weighted Mean Values

Ferguson[1962] states that, for incompressible flow, “the true average total pressure for

loss assessment in a flow passage is a mass flow averaged pressure”. 

The mass-weighted mean total pressure (given the symbol “~”) properly accounts for the

low mass flow regions in the boundary layer and is defined as:

2.12

In addition a kinetic energy flux coefficient (α) can be defined which compares the

kinetic energy flux of the real profile with a uniform profile of identical mass flow

(i.e. α = 1 represents a flat profile). For a uniform flat profile the kinetic energy flux is

given by:

2.13

and for a general non-uniform profile:

2.14

therefore:

2.15

such that:

2.16

The definition of a kinetic energy flux coefficient provides a method by which the distor-

tion of the profile can be assessed; increasing from a value of unity as the profile distorts

from uniformity. However, a mass-weighted mean total pressure does not include losses

which are ‘locked’ into this distorted profile. These are losses which would be incurred

by mixing out the actual flow distribution to a uniform profile in a duct of constant area
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in the absence of heat transfer.

(ii) Momentum Mix Mean Values

Mean values of total pressure calculated by this method include the loss described above

which is ‘locked’ into the profile non-uniformities. Hence, a momentum mix total pres-

sure (here given the symbol “^”) will be less than a mass-weighted value since it includes

the mixing loss.

Momentum mean values by definition, pertain to the totally uniform flow (i.e. all fluid

properties constant over the flow area) which has the same energy, mass and momentum

flow rates as the real flow (Livesey and Hugh[1966]) and therefore, must satisfy the fol-

lowing conservation equations:

Energy Flux:

2.17

Mass:

2.18

Momentum:

2.19

The unknowns ( ) are found using the above equations and the momentum mix

total pressure is then given by:

2.20

Care must be taken when using momentum mix values to calculate diffuser total pressure

loss downstream of an axial compressor. Inlet and exit values of total pressure will

include the losses associated with mixing to a uniform profile. Thus at diffuser exit the

momentum mix value of total pressure will include the mixing losses associated with
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2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
non-uniform velocity profile at diffuser exit. However, at entry the extra mixing losses

are caused by non-uniformities generated by the compressor (i.e. not a function of the

diffuser).

Other methods of obtaining consistent mean values have been developed (Livesey and

Hugh[1966] and Livesey[1972]) but Klein[1995] comments that they have not been applied

to experimental studies of diffusers and combustion chamber aerodynamics. Both mass-

weighted and momentum mix methods are valid but on review of the general literature it

is clear the mass-weighting is by far the most popular method. This is because when

using mass-weighted average pressures to calculate a total pressure difference across a

component then only the losses associated with that component are included.

2.3 Annular Diffuser Performance

2.3.1  Influence of Geometrical Parameters

The main geometrical parameters (Figure 2.1) which are of prime importance when con-

sidering the efficiency of the diffusion process are the divergence angle, θ θ θ θ, the non-

dimensional length, L/h1, the area ratio, AR, the angle of curvature or cant, ββββ, (i.e.

the inclination of the diffuser to/from the axial direction). 

The static pressure recovery of a diffuser is a function of the area ratio and the effective-

ness of the diffusion process. However, for practical diffusers, reduction in effectiveness

or total pressure losses are caused by:

a) skin friction losses at the wall,

b) turbulence, and

c) boundary layer separation losses (stall).

(i) Length and Divergence Angle (Area Ratio)

Figure 2.3 shows the relationship between total pressure loss and the diffuser divergence

angle for a fixed area ratio. For a given area ratio a diffuser with a small divergence angle
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will be long and suffer from high skin friction losses. Conversely a diffuser with a larger

divergence angle will be shorter and suffer less from frictional losses but will have high

stall losses due to breakdown of the flow at the walls. The wall angle for minimum com-

bined loss is found to be about 7 degrees for simple geometries with thin inlet boundary

layers and low turbulence conditions. However, in a gas turbine the inlet conditions,

downstream of an axial compressor, are very different and incorporate OGV wakes and

high levels of turbulence. Section 2.3.2 explains how these features delay the onset of

separation with the result that in practice a wall angle of 11 degrees is more typical. This

gives a significant saving in weight and length with only a small penalty in increased

total pressure loss.

Many authors have investigated the effect of divergence angle and length on diffuser per-

formance. For example, McDonald and Fox[1966] and Sovran and Klomp[1967] have pro-

duced extensive performance maps cataloguing the static pressure recovery, total

pressure loss and effectiveness for a wide range of conical diffusers with varying lengths

and area ratios. Similar maps for annular diffusers, as used in gas turbines, have also

been produced by Sovran and Klomp[1967] and Howard et al[1967]. Figure 2.4 is an exam-

ple performance map from Sovran and Klomp[1967] and shows lines of constant diffuser

effectiveness on a plot of area ratio versus non-dimensional length. Essentially Figure

2.4 shows that the data from Sovran and Klomp[1967] confirm the relationship shown in

Figure 2.3. A short length coupled with a high area ratio incurs a high loss (low effec-

tiveness) due to flow breakdown near the high angle walls. Alternatively, longer diffus-

ers also have poor effectiveness due to increased skin friction losses.

The rise in static pressure within a diffuser dictates that, on the diffuser walls, the bound-

ary layers develop rapidly under the action of a strong adverse pressure gradient. As the

area ratio of a diffuser increases the adverse pressure gradient also increases. At a certain

level this gradient will become too high, the boundary layer will thicken rapidly and sep-

arate. Kline et al[1959] studied two-dimensional diffusers and found that if the divergence

angle is continually increased, while the inlet conditions and wall length remain con-

stant, four distinct flow regimes can be observed. These regimes are illustrated schemat-

ically in Figure 2.5 and as a function of area ratio or divergence angle and non-
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dimensional length in Figure 2.6. Kline et al[1959] described them as follows:

1. No “appreciable” stall, with the main flow well behaved and apparently unseparated.

2. Large transitory stall, in which the separation varies in size, position and intensity with

time.

3. Fully developed stall, where the major portion of the diffuser is filled with a large

recirculation region, extending along the majority of the diffuser. The main flow fol-

lows along one wall continuously and relatively smoothly.

4. Jet flow, in which the main flow is separated from both walls. The separation begins

almost immediately and the flow does not reattach until well downstream of the dif-

fuser. This flow regime is only observed at high angles of divergence.

(ii) Curvature

In a review of diffuser characteristics Klein[1995] comments that wall curvature is also an

important parameter when considering the performance of diffusers. Curvature of the

wall affects the production of turbulence, which in turn will affect boundary layer devel-

opment. Bradshaw[1973] reported that boundary layers grow more quickly on a convex

surface, compared to a flat surface while, conversely, boundary layers grow more slowly

on a concave surface. This can be explained with reference to Figure 2.7. The trajectory

of a fluid element (with velocity U1 at radius r1) is maintained through a balance of the

centripetal force and the pressure gradient.

2.21

If the fluid element is then displaced, by some external force, to a new radius (r2) its new

velocity (U’) can be calculated by assuming constant angular momentum (i.e. U.r = con-

stant and U’ = U1r1/r2). However, there may now exist a imbalance between the centrip-

etal force and the pressure gradient which is required to maintain the trajectory of the

mean flow with velocity U2 at radius r2 as:

2.22
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Thus, if the angular momentum of the mean flow increases with radius (as in a boundary

layer on a convex surface) the element will be forced back to its original position. Con-

versely, if the angular momentum of the mean flow decreases with radius (as in a bound-

ary layer on a concave surface) the fluid element will be forced further from its original

course. Hence on a convex wall turbulence production is suppressed causing the bound-

ary layer to develop more quickly. Whereas on a concave wall turbulence is enhanced

reducing boundary layer growth.

In general, curvature has a negative effect on the performance of annular diffusers due to

the presence of a convex surface and the earlier onset of separation. Sagi and John-

ston[1967] investigated a range of diffusers with varying degrees of curvature (β). From

their data, lines of first stall are plotted on a flow regime chart (Figure 1.11) and these

clearly show that as the angle of curvature increases the onset of stall will occur, for a

given non-dimensional length, at a lower area ratio. 

(iii) Diffuser Cant

Cant is defined as the inclination of the diffuser towards or from the axial direction. In

gas turbines the mean radius at compressor exit is often different from that at turbine

entry. Thus it is often necessary to cant the combustion chamber and/or diffuser. Cant

generates an implied flow curvature at diffuser inlet. For example, most common is out-

ward cant which results in a biased mass flow distribution with a hub-peaked velocity

profile. Furthermore for an outwardly canted diffuser the outer wall has, in general, a rel-

atively high divergence angle and in conjunction with the velocity deficit just described

will incur a higher total pressure loss and be prone to early separation. Thus, although

often necessary, diffuser cant can introduce penalties to diffuser performance.
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2.3.2  Effect of Inlet Conditions on Diffuser Performance

The performance of a given diffuser geometry is, to a large extent, dependant on the con-

dition of the inlet flow. Changes in many of the flow parameters can, some more than

others, alter the performance of a diffuser in a positive or negative manner. Therefore, in

any investigation into the performance of diffusers in a specific role it is important to

generate the correct inlet conditions. For example, in a gas turbine the diffuser inlet con-

ditions are generated by an axial flow compressor and will be characterised by high tur-

bulence, radial and circumferential variations in pressure/velocity, swirl and OGV wakes

(large scale turbulence). This represents substantially different conditions to a fully

developed flow and thus great care and attention must be paid to the condition of the

flow at diffuser inlet otherwise is it possible that the results could be misleading. 

(i) Reynolds Number

Klein[1981] reported that the Reynolds number has no effect on the performance of a con-

ical diffuser if the flow at inlet is fully turbulent. Japikse[1984] also indicates that the Rey-

nolds number is a relatively weak parameter provided that flow is fully turbulent.

Furthermore, at Reynolds numbers greater than 8 x 104 at diffuser inlet McDonald and

Fox[1966] found that performance and flow regime become independent of the Reynolds

number. The operational Reynolds number of aero gas turbine combustion systems at

diffuser inlet it is typically in excess of 105 and therefore does not play a major role in

diffuser performance.

(ii) Mach Number

Japikse[1984] states that the static pressure recovery is insensitive to Mach numbers

below 0.25 and has almost negligible influence up to Mach numbers of 0.60. Above this

the pressure gradient near the inlet of a straight walled diffuser becomes excessive and

the performance begins to deteriorate. For Mach numbers above 0.70 large scale recircu-

lation can occur resulting in a dramatic reduction in performance. However, a Mach

number of around 0.2-0.3 is more typical at inlet to a modern combustion chamber.
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(iii) Inlet Boundary Layer

The action of a diffuser imposes an adverse pressure gradient on the flow. Thus a bound-

ary layer will grow more rapidly than in a non-diverging passage. A reasonably highly

loaded diffuser which initially shows no sign of separation will, as the inlet boundary

layer thickness increases, eventually stall. An already thick and well developed boundary

layer exposed to an adverse pressure gradient will separate in a shorter length than a thin,

less developed boundary layer. Thus the boundary layer at inlet to a diffuser can, depend-

ing upon its condition, have a large effect on the performance of the diffuser.

Klein[1995] reports that the main fluid dynamic boundary layer parameter which affects

diffuser performance is the area fraction blocked by the boundary layer displacement

thickness. Sovran and Klomp[1967] define a blockage factor, B, for low Mach Numbers,

as:

2.23

where U is the mean velocity.

Stevens and Williams[1980] conducted experiments on two diffusers (both AR 2.0 but L/

h1 = 5.0 and 7.5) altering the inlet boundary layer by using approach sections of varying

length. Static pressure recovery data from these experiments was summarised by

Klein[1995] and is shown in Figure 2.8. The plot of static pressure recovery coefficient

(Cp) versus inlet blockage factor (B1, where ‘1’ indicates that the measurement is taken

at diffuser inlet) shows that, for approach flows with very thin boundary layers the pres-

sure recovery falls rapidly as the inlet blockage increases from 0 ~ 0.05. As the blockage

increases the opposing boundary layers become thicker and begin to interact. The shear

stress in the core flow is then re-distributed as the boundary layers merge creating a

higher turbulence intensity and a slightly increased static pressure recovery.
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(iv) Turbulence

Stevens and Williams[1980] found that the turbulence produced in a long approach duct

has a beneficial effect on diffuser performance as it reduces the distortions in the flow.

Additionally they found that introducing a grid to generate an increased turbulence inten-

sity could increase diffuser static pressure recovery by up to 20% (Figure 2.8) with only

a small penalty in total pressure loss. This was due to the increased turbulence enhancing

mixing and producing a drastic decrease in the flow distortion. Combining Equations

2.6, 2.7 and 2.16 the following expression for pressure recovery can be written:

2.24

From this expression it can be seen that any reduction in distortion of the profile at dif-

fuser exit (i.e. reduction in the term α2/α1) will potentially increase the static pressure

recovery, providing the loss does not also increase greatly.

Hoffman[1981] and Hoffman and Gonzalez[1983,84] investigated the effect of varying the

turbulence intensity and character on the performance of two-dimensional diffusers by

placing various rods in the flow upstream of the diffuser. The turbulence intensity was

increased from less than 1% to 3-4% and this had the effect of reducing profile distor-

tions and delaying separation. For divergence angles (2θ) of 9o and 20o the pressure

recovery was seen to increase by 10% and 22% respectively. Furthermore, in the latter

case the diffuser was in a state of transitory stall for the low turbulence inlet condition

but remained fully attached at the high inlet turbulence levels.

In a gas turbine combustion system the diffuser generally sits downstream of an axial

flow compressor. The turbulence structure of the compressor efflux is characterised by

relatively high turbulence intensities in the region of 5%. Furthermore, the presence of

outlet guide vane wakes introduces relatively large scales of turbulence. Authors such as

Stevens et al[1978] and Stevens and Williams[1980] have investigated the effect compres-

sor exit conditions have on diffuser performance and in summary Klein[1995] states that

the turbulence associated with the flow field downstream of an axial compressor has a

beneficial effect on diffuser performance. The onset of separation is delayed thus allow-
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ing larger area ratios than those suggested by the classical performance charts. 

(v) Swirl

A compressor efflux usually contains some degree of swirl. In general, in an annular dif-

fuser, this will have a similar effect on the boundary layer as wall curvature because, tan-

gentially, the inner and outer wall represent a convex and concave surface. Thus the

outer wall boundary layer flow will be enhanced due to transfer of high momentum fluid

towards the wall. However, the opposite is true of the inner wall boundary layer making

it prone to early separation. Liepe[1963] reported that inlet swirl can, therefore, some-

times prevent flow separation on diffusers with high angle outer walls. However, Lohm-

ann et al[1976] showed that for swirling flows in annular diffusers the onset of flow

separation at the hub occurs earlier than for axial flow.

Elkersh et al[1985] studied the effect of inlet swirl of up to 45o on the performance of an

outwardly canted annular diffuser. Figure 2.9 shows normalised velocity profiles at inlet

to, and several stations along, one of the diffusers studied by Elkersh et al[1985]. The

effect of inlet swirl on the condition of the boundary layers is clearly demonstrated. As

the flow develops along the diffuser the inner wall boundary layer grows much more rap-

idly at higher levels of inlet swirl. Conversely the condition of the outer wall boundary

layer is seen to improve. Elkersh et al[1985] report that the pressure recovery increased

and the total pressure loss decreased as inlet swirl was increased up to 30 degrees. How-

ever, as illustrated in Figure 2.10 diffuser performance then begins to fall as swirl is fur-

ther increased and the inner wall boundary layer becomes close to stall.

Compressor outlet guide vanes are generally designed to provide an efflux with zero

swirl but this is only true when the compressor is operating on its design condition. At

off-design conditions swirl angles as high as 30-40 degrees occur and as such the impact

diffuser on performance will vary with the compressor operating conditions.
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(vi) Outlet Guide Vanes (OGV) Wakes

In a gas turbine combustion system wakes from the compressor outlet guide vanes will

be present at diffuser inlet and therefore many authors have studied the effect of OGV

wakes on diffuser performance. For example, Stevens et al[1978] studied the flow in dif-

fusers downstream of both a multi stage axial compressor and a tandem cascade. They

found no significant penalty on overall performance when the outlet guide vanes were

situated close to the pre-diffuser inlet. Using mass-weighted mean values they used a re-

worked version of Equation 2.24 and defined the pressure recovery as:

2.25

where ‘1’ and ‘2’ represent diffuser inlet and exit.

Equation 2.25 shows that potentially the pressure recovery will be reduced by an increas-

ing velocity profile distortion (α2/α1>1) and by total pressure losses (λ1-2>0). Stevens et

al[1978] comment that with blade wakes present the extra turbulent mixing can enhance

the pressure recovery through improvement of the diffuser exit velocity profile. Figure

2.11 summarises some of their results and clearly shows that as α2 decreases static pres-

sure recovery (Cp) increases. 

Klein et al[1980] also investigated the effect of flow wakes, generated by a tandem cas-

cade, on the performance of a dump diffuser. However, their findings seemed to contra-

dict those of Stevens et al[1978]. Klein et al[1980] found that the losses increased

substantially when the cascade was close to the diffuser inlet. The losses were found to

be a minimum when the cascade was at a distance of about two chord lengths from the

inlet. In a later study Stevens et al[1984] tested several diffusers downstream of a single

stage axial compressor. They commented that Klein et al[1980] had reported blade wakes

still present in the flame tube feed annuli. This suggests that the wakes have grown rather

than decayed and this would clearly lead to an increased overall loss. Furthermore, Ste-

vens et al[1984] expressed doubts concerning the use of an annular tandem cascade to

simulate compressor exit flows, since they do not recreate the unsteadiness associated

with the flow downstream of a rotor. Nor do they generate the same turbulence structure
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which will contribute to the decay of the wakes by promoting vigorous mixing.

2.4 Influence of Combustor Characteristics on Dump Diffusers

The performance of a dump diffuser within a gas turbine combustion system is not only

influenced by its geometry and inlet conditions but also by the presence, downstream, of

a combustion chamber. Not only does this effect the diffuser exit characteristics but these

characteristics must be tailored to suit the combustion chamber. The two requirements

are interdependent as one is influenced by the other. The main downstream considera-

tions which effect a combustor dump diffuser are discussed below.

2.4.1  Dump Gap

The distance (d) from the pre-diffuser exit plane to the flame tube, namely the dump gap,

is an influential parameter in terms of diffuser and system performance. Expressed as a

fraction of diffuser exit height (d/h2) the effect of the dump gap ratio was investigated by

Hestermann et al[1991] within the configuration shown in Figure 2.12. As the ratio is

reduced the presence of the flame tube induces flow curvature at the diffuser exit plane

resulting in a migration of mass flow towards the diffuser walls. Hestermann et al[1991]

showed that this results in a more uniform diffuser exit velocity profile and suppresses

flow separation due to the introduction of higher momentum flow to the boundary layer.

This is graphically illustrated in Figure 2.13 showing flatter, more uniform profiles; the

results also show that a diffuser (Figure 2.13c) which would normally be in a state of

transient stall becomes fully attached.

Fishenden and Stevens[1977] also investigated the effect of altering the dump gap ratio in

the annular configuration illustrated in Figure 2.14. The reduction in flow distortion

caused by the proximity of the flame tube was seen to increase diffuser pressure recov-

ery. However, it does not directly follow that a higher diffuser pressure recovery will

result in lower losses to the feed annuli. Figure 2.15 shows that Fishenden and Ste-

vens[1977] observed that as the dump gap ratio reduces beyond a certain point the annulus

losses begin to rapidly increase. This is because on exiting the diffuser the flow must turn

in a much shorter space before entering the annuli and, in doing so, incurs high turning
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losses. Figure 2.16 shows a typical flow pattern downstream of a dump diffuser where it

enters a region of free expansion. The flow close to the flame tube generally accelerates

while a vortex is produced in the dump region. A dividing streamline exists in the time

averaged flow field between these two areas across which there are high levels of turbu-

lence and a steep velocity gradient. As the flow progresses towards the outer annuli the

velocity profile is highly sheared but will eventually become more uniform as it passes

down the annuli. Fishenden and Stevens[1977] note that it is the amount of turning and

diffusion attempted within the dump region that is the main cause of loss to the annuli.

Thus it is important to achieve as much diffusion and turning as possible within the dif-

fuser prior to the dump in order to limit system loss.

The dump gap must be large enough to allow the flow to diffuse around the flame tube

head without incurring excessive losses in total pressure. However, large dump gaps are

not desirable as this increases the system length which is contrary to the aim of using

dump diffusers. Srinivasan et al[1990a,b] attempted to optimise the dump gap ratio and

found that, for an uncanted system, the optimum value for this ratio was about 1.0. At

this value the flame tube is sufficiently close to diffuser exit to provide a beneficial effect

on the diffuser but not too close such that the turning loss in the dump region becomes

excessive.

2.4.2  Flame Tube Depth

The investigation of Fishenden and Stevens[1977] used a flame tube of depth, expressed

as a multiple of pre-diffuser inlet height (i.e. W/h1), of 3.5. They concluded that total

pressure loss to the feed annuli was a function of the amount of diffusion being

attempted and the radius of curvature undertaken as the flow passes around the flame

tube. The amount of flow curvature depends upon the relative depth of the flame tube as

well as the dump gap and this, therefore, is another important parameter. The conclusions

of Fishenden and Stevens were confirmed by the work of Srinivasan et al[1990] who

observed a 60% increase in total pressure loss as the flame tube depth ratio, W/h1, was

increased from 3.1 to 4.1. 
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The current trend in aero gas turbines is for deeper flame tubes especially with emissions

legislation making staged combustion systems more likely. For example, the General

Electric radially staged combustor shown in Figure 1.8 has a flame tube depth ratio in

excess of 8.

Carrotte and Bailey[1994] conducted an extensive series of tests on an annular dump dif-

fuser system downstream of a single stage axial compressor. They employed a conven-

tional pre-diffuser of area ratio 1.35 and non-dimensional length 1.5 as shown in Figure

2.17. The flame tube was relatively deep with a depth ratio of 5.6. They investigated

many of the parameters which affect system performance including the losses generated

as the flow passes around the flame tube. They defined a mean flow deflection ratio as

the ratio of a diffusing length (L) to a flow deflection (W’). The diffusing length is

defined as the axial distance from pre-diffuser inlet to the combustor primary ports

whereas flow deflection was defined as the radial distance between the combustor centre

line and outer feed annulus mean radius. Carrotte and Bailey[1994] altered the ratio L/W’

primarily by changing the dump gap (i.e. changing L). However, the data should still be

applicable to a ratio altered by changing the deflection (W’) as it remains a measurement

of the required flow turning in the dump. Figure 2.18 shows how the total pressure loss

to the feed annuli varied with mean deflection ratio. Clearly as the ratio of length to

deflection decreases the loss increases rapidly. With the current trend towards staged

combustion the mean deflection ratio will be significantly smaller than investigated by

Carrotte and Bailey[1994], potentially as low as 1.5. The data would suggest that a radi-

ally staged combustion system with a mean deflection ratio of 1.5 to 2 would suffer

unacceptably high total pressure losses to the feed annuli. To reduce the losses in this

type of system it would be necessary (Fishenden and Stevens[1977]) to reduce the amount

of diffusion and turning performed within the dump gap. However, the overall require-

ment for diffusion and turning would not change and, therefore, the only option would be

to perform more diffusion and turning of the flow within the pre-diffuser. Unfortunately,

all the available data suggests that conventional pre-diffusers would be unable to achieve

the large area ratios and pressure recoveries required within an acceptable length or with-

out the onset of stall. Thus it is clear that it is necessary to develop pre-diffuser technol-

ogy to increase achievable area ratios in a given length, increasing the pressure recovery

but without incurring excessive extra loss penalties. This is an important area for future
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pre-diffuser development and potential methods for achieving this aim are discussed in

the next section (including presentation of any relevant data).

2.5 High Area Ratio, Wide Angle, Multi-Passage Diffusers

One method of increasing the amount of diffusion and turning within a conventional

combustor pre-diffuser is to introduce a splitter or divider vane (or vanes). This separates

the diffuser into a number of passages each with a lower aerodynamic loading. In Figure

2.19 diffuser (a) represents a conventional single passage diffuser of area ratio 1.45 and

non-dimensional length of 3.5. Performance maps, such as Figure 2.6, indicate that this

geometry sits at the upper limit of the stable flow regime. However, diffuser (b) has the

same overall non-dimensional length but an area ratio of 1.8. Introducing a splitter vane

produces two passages each having twice the effective non-dimensional length thus, with

reference to Figure 2.6, enabling an area ratio increase to 1.8. Furthermore, Figure 2.19

illustrates that a splitter vane can also be used to increase the flow deflection within the

diffuser; both passages now direct the flow outward to a greater degree. These benefits

are, however, not without penalty. First of all the presence of a splitter vane has intro-

duced more surface area and as such losses due to skin friction will increase. Secondly,

as shown in Figure 2.20, a splitter vane can, according to Moore[1976], induce distortions

in the exit profile. Finally, there is a risk of flow separation from the leading edge of the

splitter at off-design conditions. Not only will this increase diffuser loss and reduce static

pressure recovery but will also impact the airflow distribution to the downstream compo-

nents.

The General Electric radially staged combustor shown in Figure 1.8 employs a twin pas-

sage pre-diffuser in an attempt to overcome the problem of an excessively deep flame

tube. The pre-diffuser geometry is shown in Figure 2.21, each passage having an area

ratio of 1.8. This split diffuser (Salba et al[1982]) reduces the length relative to a single

passage diffuser of the same area ratio by some 50% with the added benefit that each

passage directs the flow towards the main and pilot burners.

Shedden[1993] conducted an aerodynamic study of several diffusers within an isothermal

representation of a radially staged combustion system. Using a 48o sector test rig (Figure
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2.22) Shedden[1993] assessed a datum system performance using a conventional single

passage pre-diffuser of area ratio 1.65 and non-dimensional length 4.6. In addition,

Shedden tested two twin-passage pre-diffusers (referred to here as ‘Vane’ and ‘Wedge’)

both with an overall area ratio of 2.0. These two diffusers are shown in Figure 2.23 and

include a thin splitter vane and a thick splitter wedge respectively. Diffuser static pres-

sure recovery was seen to increase for the high area ratio Vane and Wedge diffusers. For

example, the Wedge diffuser achieved a recovery coefficient of 0.49/0.48 (w.r.t. OGV

exit) in the inner and outer branches respectively which represents a 20% increase over

the conventional, single passage diffuser (Cp1-2 = 0.4). However, due to the increased

skin friction and curvature the total pressure loss within the twin passage diffusers also

increases significantly. Shedden[1993] found the conventional diffuser incurred a loss

coefficient of 0.08 and this was almost doubled for the Wedge diffuser which suffered a

loss coefficient in the inner and outer passage of 0.13 and 0.16 respectively. Neverthe-

less, Shedden observed that the increased magnitude of controlled turning and diffusion

within the Vane and Wedge diffusers resulted in lower losses in the dump region and

hence lower losses to the feed annuli. The loss coefficient to the inner feed annuli

reduced from 0.48 with the single passage diffuser to 0.46 and 0.37 for the Vane and

Wedge diffusers. Similarly, outer annulus losses reduced from 0.52 to 0.48 and 0.49

respectively.

Although it is clear that a multi-passage diffuser can increase the area ratio and enhance

system performance, the losses to the feed annuli observed by Shedden[1993] are still

high. Adenubi[1976] comments that the total pressure loss to the combustor feed annuli in

a gas turbine should be no more than 30% to 40% of the OGV exit dynamic pressure (to

ensure the pressure drop across the combustor liners is sufficient to drive flow through

air admission ports or cooling features). However, losses of almost 50% observed by

Shedden[1993] significantly exceed this and would have a detrimental effect on the

engine cycle efficiency increasing specific fuel consumption (Oates[1985]).
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2.6 Bled, Vortex Controlled and Hybrid Diffusers

Under the action of the adverse pressure gradient within a diffuser the boundary layer

will rapidly grow and eventually separate. One method of preventing this, and poten-

tially allowing higher divergence angles to be achieved, is to remove the boundary layer

by suction. This method was originally suggested by Prandtl and the concept is illus-

trated in Figure 2.24 and Figure 2.25 which shows how the exit velocity profile can be

significantly enhanced (Furuya et al[1966]). It must be noted, however, that the boundary

layer may still separate downstream of the suction if the adverse pressure gradient is

strong enough. 

Heskestad[1966, 1968] studied the effect of suction on incompressible flow through a step

expansion in a circular pipe, removing air though an annular gap in the convex corner of

the step (Figure 2.26). He found that for a fixed geometry gradual increase in the suction

rate from zero caused progressively more rapid expansion of the flow into the larger

diameter pipe. This process continued rapidly until a ‘critical’ suction rate was reached

and then continued only slowly after that. Heskestad observed that at above the critical

suction rate the system produced a more favourable static pressure recovery than opti-

mised conical diffusers of the same area ratio. Figure 2.27, taken from Heskestad[1968],

illustrates the effect of suction on pressure recovery for various geometries and it is clear

that each set of data exhibits a rapid increase in Cp above a particular suction rate.

Heskestad[1968] further comments that this critical suction rate depends upon the expan-

sion ratio (D2/D1); the required suction increasing as the expansion ratio is increased.

However, no mention is made of any effect the geometry of the bleed gap may have on

the suction rate, reattachment length or static pressure recovery.

When the critical suction rate is reached Heskestad suggests (Figure 2.28) that “the

dividing streamline, d1, and the stagnation streamline, S, contain the suction flow which

proceeds as a jet along the lower wall of the suction passage. The flow exterior to S con-

tinues for a short distance along the downstream leg of the corner and then, in general,

separates at point C. The dividing streamline, d2, represents the boundary of the altered

exterior (main) flow”. 
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Ringleb[1955] studied cross winds flowing over snow covered mountain ridges where the

snow had formed into cusps. Using snow flakes to visualize the flow Ringleb noticed

that the cross winds were rapidly turned by the ridge to a point of re-attachment on the

leeward side of the ridge. He theorized that this was due to the formation of a vortex as

illustrated in Figure 2.29. A streamline starting at A enclosing the vortex ends up at stag-

nation point B where snow is deposited. Snow is also deposited at A. The build up of

snow at A and B form the cusp shape which acts to stabilize the vortex. It is this stabi-

lized standing vortex which now causes the flow to re-attach at B and remain attached as

it flows down the leeward side of the ridge.

Those observations led Ringleb to design a diffuser which became known as Ringleb’s

Cusp Diffuser (Figure 2.30) which consisted of a sudden expansion with cusps in the

walls. Ringleb implemented his diffuser in a closed loop wind tunnel immediately

upstream of a 90° bend. Others were unable to repeat this success as they found that the

eddies were periodically shed resulting in high levels of instability. It was suggested that

the success of Ringleb’s diffuser was due to the bend causing secondary flows which sta-

bilized the eddies.

Adkins[1975] commented that Ringleb’s diffuser relied solely on the aerodynamic design

of the cusps in the diffuser wall to locate vortices as shown in Figure 2.30. Adkins[1975]

suggests that these vortices, rotating preferentially in the direction of the flow, reduce the

boundary layer shear stress experienced by the flow. Furthermore, Adkins[1975] remarks

that the success of Ringleb’s diffuser was limited due to the difficulty in maintaining a

stable vortex system, since energy was lost within the cusp by skin friction. To solve this

problem Adkins designed a vortex controlled diffuser (Figure 2.31) featuring a bleed

directly from within the vortex/cusp region. The reasoning being that the vortex is then

replenished by air of a higher energy level from the mainstream flow.

Beatty[1970] showed that by introducing a fence downstream of the vortex the required

amount of bleed could be reduced to a reasonable level. This configuration introduces a

vortex “chamber” and leads to what Adkins[1975] terms a “vortex controlled” diffuser

(Figure 2.31). 
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The flow mechanisms of this type of vortex controlled diffuser are not fully understood

but Adkins[1975] puts forward the following theory; the application of bleed reduces the

static pressure of the vortex chamber and this causes stream tube a (Figure 2.32), which

is being drawn into the chamber to accelerate. On the other hand, stream tube b, which

flows down the diffuser, is flowing in a region of greater static pressure and therefore

decelerates. A shearing action is produced between the streams resulting in an energy

transfer from a to b. Some of the fluid in stream b which would have been too energy

deficient for diffusion is now able to flow through the vortex controlled diffuser without

stalling. However, Adkins offers no experimental evidence to support his theory.

Adkins[1975] also investigated the relationship between bleed level and diffuser effective-

ness, η. Summarized in Figure 2.33 he found that there are three distinct regions of per-

formance:-

(a) - (b) bleed is insufficient to draw the flow into chamber from upstream but fluid is

drawn in from leeward of the fence resulting in a small increase in pressure recovery.

(b) - (c) static pressure in the vortex chamber is low enough to draw in the mainstream

flow causing a significant increase in diffuser effectiveness.

(c) - (d) the vortex has been stabilized and any further increase in bleed does not greatly

improve performance.

Figure 2.33 shows that there is a Minimum Bleed Requirement for this type of diffuser to

work effectively. Adkins[1975] correlated experimental data to give the following expres-

sion for minimum bleed requirement;

2.26

where η = percentage effectiveness of the diffuser

AR = area ratio of the diffuser, A2/A1

de = equivalent diameter at diffuser inlet,

Bmin %( ) 0.393η 1 AR 2––( ) AR
de

-------- 
  0.5

=

4xCross Sectional Area
Vortex Controlled Perimeter
--------------------------------------------------------------------
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Note that no account of the bleed gap geometry is made here; thus it is questionable as to

whether this is a valid design rule as it is applicable to one specific case only. Further-

more, in this study Adkins[1975] has not considered, in any detail, the effect of bleed gap

geometry. Although he varied the axial and radial bleed gaps (x and y in Figure 2.31)

Adkins made no definite conclusions as to their influence. It would be surprising if

changes to the bleed gap geometry did not significantly effect the required bleed rate,

reattachment length and/or overall performance. 

The minimum bleed requirement is also important when considering the potential use of

hybrid diffusers in an aero gas turbine. Air is required not only for combustion but also

for component cooling and auxiliary services. Thus if the required bleed rate is too high

this type of diffuser may not be practical. Furthermore, the quality of the bleed air is also

an issue if it is to be used in, for example, component cooling.

In his work Adkins[1975] tested various vortex controlled diffusers, both tubular and

annular, with area ratios of 1.9:1 to 3.2:1 and summarised that vortex controlled diffusers

(with respect to conventional diffusers);

• have short length,

• have a low total pressure loss and high static pressure recovery, and

• require a bleed of about 3% of the main stream flow (Adkins[1975] suggested this may

be used for turbine blade cooling).

The logical extension of the vortex controlled diffuser is to place a conventional diffuser

downstream of the vortex controlled step expansion. This type of diffuser was first pro-

posed by Adkins and Yost [1979] and termed a hybrid vortex controlled diffuser (HVCD).

Figure 2.34 and Figure 2.35 illustrate the concept as described by Adkins et al[1980]. In

this design the vortex controlled step expansion accounts for a smaller increase in area

than previously and thus requires only a small amount of bleed. The re-energised turbu-

lent layer generated by the step is then used to inhibit flow separation from a large angled

conventional diffuser which accounts for a larger increase in flow area.
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Adkins and Yost[1979] investigated the use of a three stage hybrid vortex controlled dif-

fuser in a fan test installation as illustrated in Figure 2.36. This three stage diffuser com-

prised of a conventional pre-diffuser (Stage 1) followed by a vortex controlled diffuser

(Stage 2) followed by another conventional diffuser (Stage 3). The Stage 1 diffuser had

an equivalent cone angle of 10.2° and an area ratio of 1.19. The Stage 2 vortex controlled

diffuser had an area ratio of 1.47:1 and the Stage 3 diffuser had an equivalent cone angle

of 16.1° with an area ratio of 1.53. This resulted in the combination having an equivalent

cone angle of 20.06° and an overall area ratio of 2.69. The area ratio of 1.47:1 for the

vortex controlled step expansion was chosen because Adkins[1975] had found that above

1.5:1 there was some risk of stall. Adkins and Yost[1979] tested this configuration with

several different combinations of axial (x) and radial (y) bleed gaps, measuring the static

pressure recovery coefficient (Cp) for various values of bleed. Furthermore, a measure of

the pressure lost by the bleed air was made by comparing the static pressure inside the

vortex with that at diffuser inlet. A vortex chamber depression coefficient, Vc, was

defined:

2.27

Adkins and Yost[1979] concluded that a hybrid vortex controlled diffuser can achieve a

much higher area ratio within a given length than a conventional diffuser. For example,

for the same length constraint a conventional diffuser will be limited to an area ratio of

about 1.7 compared to 2.69 achieved by this HVCD. Consequently, Adkins and

Yost[1979] measured a significantly higher pressure recovery than would be attainable by

an optimised conventional diffuser (Cp > 0.80 compared to Cp = 0.45). Furthermore, they

report that the amount of bleed required for a hybrid vortex controlled diffuser is much

less than for a simple vortex controlled diffuser; 3% of inlet mass flow compared to the

6% required by Adkins[1975] for a similar overall area ratio. Figure 2.37 illustrates the

effect on pressure recovery of varying the axial and radial bleed gaps. Adkins and

Yost[1979] comment that the effect on diffuser performance is relatively small and

changes in bleed gap geometry only really effect the level of suction required to extract

the bleed air (Vc). However, they did not offer any conclusion on whether this bleed air

would be of sufficient quality for the suggested use for turbine blade cooling. Further-

more, Adkins and Yost[1979] made only simple changes to the bleed gap geometry and

Vc
p1 pc–

q1
----------------=
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were unable to make any conclusions regarding an optimum geometry. Adkins and

Yost[1979] were satisfied to use bleed gap geometries defined from earlier work and did

not attempt to investigate the effect on the flow of more radical changes in the bleed

geometry. This is unfortunate as any description of the flow mechanisms cannot be com-

plete without understanding the interactions of the mainstream flow, the bleed air, the

bleed geometry, the step/fence arrangement and the downstream boundary layer.

Adkins et al[1980] conducted experiments on tubular/conical vortex controlled and hybrid

diffusers with a fully developed inlet flow with the aim of investigating the bleed

requirements, effects of axial and radial bleed gaps (x and y), fence subtended angle (φ =

tan-1y/x), step area ratio (A2/A1), overall area ratio (A3/A1) and the angle of divergence

of the conventional diffuser. (Refer to Figure 2.35). They were unable to put forward any

theories about the flow mechanism other than those already described. Figure 2.38 (a)

and (b) demonstrate how the static pressure recovery varied with non-dimensional length

at various bleed rates. Both (a) and (b) show plots for two HVCD’s of overall area ratio

2.0 but having a step expansion of area ratios 1.2 and 1.34 respectively. Both HVCD’s

have similar overall performance characteristics but importantly both achieve signifi-

cantly higher pressure recoveries than a conventional diffuser of area ratio 2.0 (data also

plotted on Figure 2.38(a) and (b)). Interestingly this is also true for zero bleed and can be

seen in Figure 2.38(a). At zero or very low bleed rates Adkins et al[1980] note that vortex

will break down and suggest that the bleed flow will now originate from downstream of

the fence and will still produce a significant region of low pressure as it accelerates over

the top of the fence (Figure 2.39). In addition to deflecting the main jet by the influence

of this depression, the reverse flow will also generate a highly turbulent area. The result-

ant turbulent mixing is not aerodynamically efficient and high static pressure recoveries

will not be produced unless the flow reattaches to the diffuser wall.

Although the study by Adkins et al[1980] examined a wide range of bleed geometries they

were still unable to make any conclusions regarding optimum geometry. Nor were they

able to offer firm or conclusive evidence concerning the flow mechanisms of this type of

diffuser. These are two very important points as it is likely they are mutually dependant.

The definition of an optimum bleed configuration will require an understanding of the
                                                                                      44



2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
flow mechanisms involved. Importantly, this would need to include an understanding of

how the flow is altered (or perhaps improved) by changes in the configuration of the

bleed gap geometry.

Adkins and Yost[1983] tested a fully annular hybrid vortex controlled diffuser of area

ratio 2.5 and non-dimensional length of 2.33 upstream of a simple combustion chamber

model (Figure 2.40 and Figure 2.41). The flame tube head was manufactured from wood

with no attempt to model porosity or the presence of burners and burner arms. Realistic

inlet conditions were not used; a fully developed inlet profile was used rather than a flow

with blade wakes, high turbulence and swirl such as that generated by a compressor.

Adkins and Yost[1983] reported a high diffuser static pressure recovery coefficient of 0.80

and a very low total pressure loss coefficient of 0.04 at a bleed rate of 4.0%. Loss and

recoveries to the combustor feed annuli are summarised in Figure 2.42 and at 4.0% bleed

are well below the 30% to 40% (of inlet dynamic pressure) target suggested by

Adenubi[1976].

A pre-diffuser was incorporated upstream of the vortex controlled expansion by Adkins

and Yost[1983] in order to raise the pressure of the bleed air. In a modern gas turbine cycle

air is a valuable commodity. Not only is the correct amount required for the combustion

process itself but air is also needed for dilution of the combustion products and cooling

of components such as flame tube walls and turbine blades. Thus, if a portion of air is

required for a bled diffuser it would be imperative that this air can then be used for

another purpose. Adkins[1975] suggests the most suitable purpose would be turbine blade

cooling and additionally comments that an increase in bleed air pressure would be

advantageous, hence the pre-diffusion in their HVCD. To assess the quality of the bleed

air they measured a bleed air static pressure recovery coefficient, CB, defined as:

2.28

This quantity is also plotted in Figure 2.42 and has a value of above 0.3 at 4.0% bleed;

Adkins and Yost remark that this value indicates that the air would have sufficient pres-

sure to be used as a turbine coolant. However, they offer no other evidence to support

this statement and do not identify why they consider a value of CB = 0.3 to be significant.

CB
bleed air static pressure - p1

P1 p1–
-------------------------------------------------------------------=
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Montazerin and Adkins[1985] used the same test rig of Adkins and Yost[1983] (Figure

2.40) but removed the representation of a combustor flame tube. They varied the

included angle of the conventional diffuser from 15° to 45° and found that to maintain

attached flow at the higher angles the bleed rate had to be increased to 6% and above.

However, it was highlighted in Section 2.4 that the presence of a flame tube has a signif-

icant effect on the condition of the diffuser exit profile, reducing profile distortion and

potentially suppressing separation. Thus the levels of diffuser performance recorded by

Montazerin and Adkins[1985] are likely to be below that which would be observed with a

flame tube present.

Adkins and Montazerin[1985] conducted tests on a conical hybrid vortex diffuser in order

to asses the effect of inlet flow distortions. Using the same test facility as Adkins et

al[1980] (Figure 2.43) non uniform inlet velocity profiles were generated by inserting per-

forated plates upstream of the diffuser. These plates all feature a large central hole in

which a settling tube was located, producing peaked profiles as shown in Figure 2.44.

Figure 2.45 summarises performance data for one configuration and clearly shows that

as the inlet profile becomes more peaked (α increases) the effectiveness of the diffuser

reduces and higher bleed rates are required to achieve the same level of pressure recov-

ery.

Adkins and Kuile[1985] added a flame tube canted radially outward at 15° to the test

facility used by Montazerin and Adkins[1985] as shown in Figure 2.46. They reported dif-

ficulties in setting the bleed rates; at an inner bleed above 1% of the inlet mass flow the

outer wall stalled and the effect of this on annulus performance (Cp and λ) is illustrated

in Figure 2.47. The outer bleed was kept at a constant 4% but the inner bleed varied from

0 - 5%. For low levels of inner bleed, annuli performance is good; loss coefficients

below 0.4 and recovery coefficients above 0.8. However, above an inner bleed of 1%

performance rapidly declines. The introduction of pre-diffuser cant has increased the

loading on the outer wall but decreased loading on the inner wall to the extent that it

would probably remain attached without the action of bleed.

Adkins and Kuile suggest the outer diffuser wall stalls and performance rapidly
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decreases. In conclusion, it would appear that bleed is not necessary on the inner wall

and on examination of the geometry this is not surprising. The effect of outwardly can-

ting the diffuser and flame tube results in a modestly loaded inner wall which would

probably remain attached without bleed.

With reference to Figure 2.48, Adkins and Kuile[1985] also report that an unbalanced

bleed significantly alters the mass flow split between the two feed annuli. They do not

plot diffuser exit profiles but this effect is more than likely due to the unbalanced bleed

producing a biased diffuser exit velocity profile hence presenting one of the annuli with a

higher mass flow.

A comprehensive piece of research was undertaken by Myres et al[1993] who performed a

series of tests to investigate the effect of geometric and flow parameters on the perform-

ance of an isothermal, fully annular, inwardly canted, hybrid vortex diffuser in a repre-

sentation of a modern combustion chamber. The tests were designed to simulate,

realistically, the aerodynamic features of an advanced engine core from the exit of a high

pressure compressor to the entry of the turbine. The test facility used by Myres et al is

illustrated in Figures 2.49 and 2.50 with the leading dimensions shown in Figure 2.51.

Measurements were taken at pre-diffuser inlet (i.e. immediately downstream of the de-

swirl vanes), pre-diffuser exit, inner and outer combustor feed annuli. The instrumenta-

tion consisted of wall static pressure tappings and total pressure rakes at inlet and in the

feed annuli with a traversable five hole probe at pre-diffuser exit.

The hybrid vortex controlled diffuser was designed to be similar to that used by Adkins

and Yost[1983] with a step expansion of area ratio 1.3. The conventional diffuser down-

stream of the step expansion had an outer wall angle of 9.5° and inner wall angle of 32°

or 37°. Combined with a cant angle of 20° this produced an diffuser of overall area ratio

2.36 or 2.6 with a non-dimensional length of about 3.6.

The initial tests conducted by Myres et al[1993] involved a clean inlet duct which pro-

duced a fully developed velocity profile. This configuration produced disappointing

results; Cp1-2 values of 0.34 to 0.42 which represents a diffuser effectiveness, η, of less
                                                                                      47



2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
than 50%. Diffuser total pressure losses were also high with λ1-2 ranging from 0.15 to

0.28.

In an attempt to increase the performance of their diffuser Myres et al[1993] installed a set

of swirl/de-swirl vanes immediately upstream of the diffuser. They comment that this

introduced a higher level of inlet turbulence intensity, added blade wakes, energised hub/

shroud boundary layers and promoted circumferential movement of the flow in the pre-

diffuser. They do not, however, present any evidence of this other than an increase in per-

formance of the diffuser to a level in line with previous studies.

The inward cant and modest angle of the outer diffuser wall should not present much of

an aerodynamic problem for the flow. Thus it is of no surprise that Myres et al[1993] were

able to remove vortex bleed from this area. Once a working system had been established

some promising results were observed. For a nominal bleed rate of about 1.2% of the

total inlet flow the pre-diffuser static pressure recovery was high (Cp1-2 ≈ 0.75) and the

total pressure loss was low (λ1-2 ≈ 0.1 - 0.17). The condition of the flow to the feed

annuli was also relatively good (Cp1-4 ≈ 0.8 and λ1-4 ≈ 0.2 - 0.25). 

Myres et al[1993] recognised the fact that high performance engines cannot afford to

waste even 2% of the airflow, and that the utility of the bleed air is proportional to its

pressure. Thus, they measured and plotted the ratio of bleed chamber static pressure to

diffuser inlet total pressure for 2% bleed. Figure 2.52 shows the ratio reduces as inlet

Mach number increases but no qualitative assessment of this data is offered

A further observation on the work of Adkins and Yost[1983], Montazerin and

Adkins[1985] and Adkins and Kuile[1985] is that the geometries studied (Figure 2.36, Fig-

ure 2.40 and Figure 2.46) do not incorporate a definite vortex chamber. Much of the

work discussed above suggests a vortex chamber is an essential component of a hybrid

vortex controlled diffuser having it’s origins in Ringleb’s[1955] cusp diffuser. However,

the lack of a definite vortex chamber here would cast doubts on this conclusion. Further-

more, on inspection, it appears that the presence of a Coanda bubble immediately down-

stream of the step expansion may more closely simulate Ringleb’s cusp vortex. Thus it
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must be asked what is the purpose of a vortex chamber; does it represent an important

part of the flow mechanisms or is it simply a means of removing the bleed air? In addi-

tion, what of the Coanda bubble itself? Such a phenomenon will always be formed

downstream of a backward step but to what extent does it contribute to the flow mecha-

nisms of a hybrid vortex controlled diffuser? Indeed what precisely are these flow mech-

anisms? The evidence is not conclusive in the support of Adkins et al[1980].

2.7 Summary

To reiterate, it is has been highlighted that conventional diffuser technology is unlikely to

offer a solution to the problems posed by future, low emission, staged combustion sys-

tems. However, as reported in Section 2.6, the work of Adkins et al[1980], Myres et

al[1993] and others has demonstrated that hybrid diffusers can, indeed, achieve the

required rates of diffusion and turning and offer an attractive option for use with this type

of combustion system. Unfortunately, these authors have left some important questions

which must be addressed:

• All the studies reported have based their bled diffusers on the basic geometry devel-

oped by Adkins et al[1980]. There have been no studies into the development of alter-

native bleed geometry and how this could be used to augment the performance of the

diffuser or improve the quality of the bleed flow. Additionally, there is some doubt

that a ‘vortex chamber’ is really a necessary feature.

• Although Adkins et al[1980] have suggested flow mechanisms for hybrid diffusers, no

detailed measurements or computational predictions have been made which can ver-

ify or disprove these theories. Furthermore, since no conclusive data exist on the

effect of bleed gap configuration any suggested mechanisms cannot be complete.

• When considering hybrid diffusers for use in modern gas turbine combustion systems

previous studies have not incorporated realistic or representative configurations. It

was highlighted in Sections 2.3.2 and 2.4 that the upstream and downstream condi-

tions have a large impact on the performance of a diffuser. The studies reported here

have not included an inlet flow typical of axial compressor efflux (including OGV
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wakes) or a detailed reproduction of a modern flame tube design. The effect of these

conditions must analysed in order to assess the potential use of hybrid diffusers.

• Furthermore, detailed and high quality data allowing back-to-back performance com-

parisons of hybrid and conventional diffuser technologies are not available. Again,

without this type of data it is impossible to conclude as to the suitability of hybrid dif-

fusers for use in combustion systems of the future.

• Comment has been made concerning utilising the bleed air for component cooling but

no conclusive data exist with which to assess this possibility. Nor has any attempt

been made to improve the quality of the bleed air. If the bleed air cannot be usefully

employed elsewhere then it unlikely this type of diffuser will be used in a gas turbine

combustion system. Modern engine cycles cannot afford to waste any air.

2.8 Aims and Objectives

Based on the survey presented in the previous section, the overall aim of this study is to

analyse the performance and flow mechanisms of hybrid diffusers in modern, low emis-

sion, radially staged gas turbine combustion systems. This includes:

 •  determining the effect on pre-diffuser and system performance of:

(i) altering geometrical parameters, including investigating the purpose of the

     vortex chamber and a generic study into alternative bleed/step arrangements,

(ii) varying bleed rates,

(iii) inclusion of diffuser struts, and

(iv) representative inlet conditions incorporating OGV wakes.

 •  assessing the quality of the bleed air flow, possible methods of improving this and its

potential use for component cooling.

 •  a detailed examination of the flow mechanisms of hybrid diffusers in order to deter-

mine the pertinent aerodynamic processes and thus allow the description of an optimum

hybrid diffuser for use in a modern, low emission, radially staged gas turbine combustion
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system.

To achieve these aims both an experimental and analytical approach should be used.

Firstly, a representative isothermal experimental test facility was available to provide the

realistic environment necessary to assess the performance and suitability of hybrid dif-

fusers for use in aero gas turbines. Secondly, the application of Computational Fluid

Dynamic (CFD) would enable the prediction of the entire flow field within a hybrid dif-

fuser thus, facilitating a more detailed assessment of the flow structure and aerodynamic

mechanisms. Furthermore, CFD is an ideal vehicle for a generic study of bleed gap

geometry and how this can be optimised.

2.9 Structure of Thesis 

This thesis will, in the main, discuss the experimental and computational work separately

until these are drawn together in the final conclusions section.

Following the general introduction (Chapter 1.0) and review of past work (Chapter 2.0)

the experimental investigation will be discussed in Chapters 3.0 and 4.0, beginning with

a presentation, in detail, of the experimental test facility, instrumentation, data acquisi-

tion/reduction and error analysis. This is followed, in Chapter 4.0, by a detailed presenta-

tion and discussion of data and observations from the experimental test programme.

The computational work is described in Chapters 5.0 and 6.0. Chapter 5.0 introduces the

techniques and methods employed in the computational modelling. Following on from

this, Chapter 5.0 also discusses the geometry and meshes used in the computation cou-

pled with a subsequent assessment of the solution techniques. Results from the computa-

tional study are presented and discussed in Chapter 6.0 and, where relevant, compared to

the experimental results. Finally, conclusions will be made and re-iterated in Chapter 7.0

with any suggestions for further work also being made.
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Figure 2.1 Basic Diffuser Geometry

Figure 2.2 Faired and Dump Diffusers

Figure 2.3 Influence of Divergence Angle on Pressure Loss, Lefebvre[1983]
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Figure 2.4 Annular Diffuser Performance Data, Sovran and Klomp[1967]

Figure 2.5 Diffuser Flow Regimes, Kline et al[1959]
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Figure 2.6 Flow Regime Chart, Kline et al[1959]

Figure 2.7 Motion of a Displaced Element in a Curved Flow
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Figure 2.8 Effect of Inlet Boundary Layer Blockage on Pressure Recovery of Two 

AR 2.0 Diffusers, Stevens and Williams[1980]
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Figure 2.9 Effect of Inlet Swirl on Axial Velocity Profile, Elkersh et al[1985]
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Figure 2.10 Effect of Inlet Swirl on Diffuser Performance, Elkersh[1985]
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Figure 2.11 Effect of Profile Distortion on Diffuser Performance, Stevens et al[1978] 
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Figure 2.12 Test Section, Hestermann et al[1991]

Figure 2.13 Influence of Dump Gap Ratio on Diffuser Exit Profile, Hestermann et 

al[1991]

a) L/h1 = 3.0, AR = 1.78, B1 = 0.05, b) L/h1 = 3.0, AR= 1.78, B1 =0.12, 
c) L/h1 = 1.84, AR = 1.78, B1 = 0.05
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Figure 2.14 Test Section, Fishenden and Stevens[1977]

Figure 2.15 Influence of Dump Gap Ratio on Overall Pressure Loss Coefficient, 

Fishenden and Stevens[1977]
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Figure 2.16 Flow Pattern in the Dump Region, Fishenden and Stevens[1977]

Figure 2.17 Test Section Geometry, Carrotte and Bailey[1994]
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Figure 2.18 Variation of Pressure Loss to the Feed Annuli with Flame Tube Depth, 

Carrotte and Bailey[1994]

Figure 2.19 Principle of A Multi Passage Diffuser
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Figure 2.20 Exit Profile Distortion Caused by Splitter, Moore[1976]

Figure 2.21 General Electric Twin Passage Diffuser, Salba et al[1982]
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Figure 2.22 Cross Section of Double Annular Sector Rig, Shedden[1993]

Figure 2.23 Pre-Diffuser Configurations, Shedden[1993]
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Figure 2.24 Boundary Layer Control by Suction

Figure 2.25 Effect of Suction Control on Diffuser Exit Velocity Profile for a 30o 

Conical Diffuser, Furuya et al[1966]
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Figure 2.26 Heskestad[1968] Bleed Gap Geometry

Figure 2.27 Effect of Suction on Pressure Recovery, Heskestad[1968]
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Figure 2.28 Suggested Flow in Suction Controlled Diffuser with No Suction and 

Suction Greater than Critical, Heskestad[1968]

Figure 2.29 Flow Over a Mountain Ridge, Ringleb[1955]
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Figure 2.30 Ringleb’s[1955] Cusp Diffuser

Figure 2.31 Vortex Controlled Diffuser, Adkins[1975]

Figure 2.32 Suggested Flow Mechanism of Vortex Controlled Diffuser, Adkins[1975]
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Figure 2.33 Performance Characteristics of VCD, Adkins[1975]

Figure 2.34 The Hybrid Vortex Controlled Diffuser, Adkins et al[1980]
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Figure 2.35 Hybrid Vortex Controlled Diffuser Nomenclature, Adkins et al[1980]

Figure 2.36 Combined Diffuser Arrangement, Adkins and Yost[1979]
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Figure 2.37 Effect of Bleed Gap on Pressure Recovery, Adkins and Yost[1979]

Figure 2.38 HVCD Pressure Recovery, Adkins et al[1980]
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Figure 2.39 Vortex Controlled Diffusers at Low and Zero Bleed, Adkins et al[1980]

Figure 2.40 A Compact Diffuser System for Annular Combustors, Adkins and 

Yost[1983]

Low Bleed

Zero Bleed
                                                                                      72



2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
Figure 2.41 Leading Dimensions for Figure 2.40, Adkins and Yost[1983]

Figure 2.42 HVCD Performance, Adkins and Yost[1983]

θ = 7.5o; 15o; 22.5o

Note: all dimensions are divided by annulus height at inlet
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Figure 2.43 Test Arrangement, Adkins and Montazerin[1985]

Figure 2.44 Inlet Velocity Profiles, Adkins and Montazerin[1985]
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Figure 2.45 Effect of Inlet Distortion, Adkins and Montazerin[1985]

Figure 2.46 Canted Diffuser Arrangement, Adkins and Kuile[1985]
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Figure 2.47 Diffuser Performance with Unbalanced Bleed, Adkins and Kuile[1985]
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Figure 2.48 Effect of Bleed Imbalance of Annuli Mass Flow, Adkins and Kuile[1985]
                                                                                      77



2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
Figure 2.49 Myres et al[1993] Test Facility

Figure 2.50 HVCD of Myres et al[1993]

VORTEX
CHAMBER
                                                                                      78



2.0 A DISCUSSION OF DIFFUSER TECHNOLOGY 
Figure 2.51 Leading Dimensions, Myres et al[1993]

Figure 2.52 Ratio of Bleed Static to Inlet Total Pressure, Myres et al[1993]
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3.1 Description of the Test Facility

Findings from a preliminary experimental study using a simple two-dimensional, planar

test rig are presented in Appendix A1. Initially it was hoped that this would aid the inves-

tigation by simplifying geometry modification and providing easier access for instru-

mentation. However, due to flow interactions with the test rig end walls the hybrid

diffuser became unstable. Thus, the main experimental investigation was undertaken uti-

lising an existing fully annular test facility which was then modified. Illustrated in Figure

3.1, this facility comprises of a test cell containing the test rig, a plenum chamber and a

fan room adjacent to the test cell. Contained within the fan room is a large centrifugal fan

driven by a 75kW, variable speed d.c. motor. This draws approximately 4kgs-1 of ambi-

ent air through a system of filters (not shown in Figure 3.1) before delivering the clean

air, via a diffusing passage, to a plenum chamber of volume 18m3. The air then flows

through a honeycomb flow straightener and a bell mouth intake into a single stage axial

compressor. This compressor is driven by a 100kW, variable speed d.c. motor through a

4:1 step up spiral bevel gearbox and a vertical shaft allowing it to run at rotational speeds

up to 5200 rpm.

3.1.1  The Test Rig

The test rig is mounted vertically in order to simplify the overall mechanical design and

allows each section to be kept concentric using only lightly bolted, spigotted flanges and,

only when absolutely necessary, thin aerodynamic struts. This configuration then allows

the rig to be assembled using only an overhead hoist and simple lifting frames and thus

removes the need for complicated tooling.

Figure 3.2 details the rig which is manufactured predominately from Plexiglass, other

acrylics, aluminium for main load bearing components and in a few selected areas, such

as the intake flare, hardwood.

The test rig is designed to simulate all of the likely airways present in a modern combus-
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tion system. Thus on exiting the pre-diffuser system the flow is split into a maximum of

eight separate streams. Five of these are fundamental to radially staged combustion sys-

tems; namely the flame tube inner feed annulus, outer feed annulus, splitter annulus,

inner cowl/burner (pilot) and outer cowl/burner (main) (refer to Figure 1.8). The remain-

ing streams are optional and can be used to provide off-takes for hybrid diffuser bleed

flow, or to simulate turbine blade cooling flow or cabin service off-takes. Each of these

flows passes through an infinitely variable throttle and flow metering system (either cal-

ibrated bellmouths or orifice plates - refer to Appendix A4) before dumping into the test

cell.

The flame tube is a representative model of a radially staged combustor front-end (exter-

nal aerodynamics) only and does not include air admission ports or wall cooling features.

This allows the five fundamental air flows to remain separate until they have passed

through the flow metering section (Figure 3.2). This consists of five, fully annular, infi-

nitely variable throttles followed by a settling length and a series of calibrated orifice

holes designed using the data of Hay and Spencer[1992].

The test rig is essentially of modular design which allows alternative configurations to be

tested. Consequently, various designs of IGV, rotor blading, OGV, pre-diffuser, flame

tube cowl, fuel injectors, dump cavity liners and bleed off-take features can all be fitted

without disruption to other components.

3.1.2  Test Rig Traversing

In order to assess the aerodynamic performance of the system it is necessary to obtain

complete area surveys of the flow at rotor exit, OGV exit, pre-diffuser exit, various posi-

tions around the flame tube head and at entry to the feed annuli. To achieve this a pres-

sure probe must be moved both radially and circumferentially. Radial movement is

achieved using a purpose-built linear traverse mechanism providing radial positional

accuracy of ±0.025mm. This consists of a precision linear guide fitted with a lead screw

and a stepper motor as described in Appendix A5. However, circumferential movement

is more complicated and is accomplished by rotating both the inner and outer pressure

casings (see Figure 3.3), onto which the linear traverse is secured. It is essential that the
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timing between the OGVs, pre-diffuser, dump liner porosity and flame tube head

remains fixed. Consequently, these are all held stationary, whilst the casings rotate on

upper and lower pairs of bearings (Figure 3.3). Circumferential movement is achieved

using a high powered DC servo motor fitted with a large reduction, low backlash gear-

head. This rotates the outer casing using a heavy duty, high precision toothed timing belt

and provides a circumferential positional accuracy of ±0.01°. The inner casing is

mechanically locked to the outer casing.

When it is necessary to simulate an air bleed from the outer dump cavity then an airtight

seal is needed between the outer casing, which rotates, and the outer dump liner which is

held stationary. During the collection of test data, the radial gap between these two items

is sealed using an inflatable tube shown in Figure 3.3. This seal is deflated and the air

vented to atmosphere leaving enough clearance to allow circumferential movement of

the outer casing.

3.1.3  Compressor Stage Design and Operating Conditions

Section 2.0 highlighted that the inlet conditions are of great importance to the overall

performance of a diffuser/combustor system. In an aero gas turbine the diffuser inlet con-

ditions are generated by a multi-stage axial compressor and the flow is characterised by

many complex features. The outlet guide vane wakes, the turbulence structure and the

radial distribution of total pressure downstream are all very different to that produced by,

for example, a tandem cascade. A truly representative flow structure can only be repro-

duced by using representative blading, operating at the correct angles of incidence.

Unfortunately a multi-stage compressor has many technical problems associated with it.

For example they are extremely complex and expensive, require large power require-

ments to drive and produce a high pressure rise which results in structural difficulties.

However, a single stage axial compressor, whilst not perfect, reproduces representative

inlet conditions with none of the problems associated with multi-stage compressors.

Compressor operating conditions are usually defined by a pair of parameters; a flow

function  and a speed function . These are usually referred to as the

‘non-dimesional’ mass flow and ‘non-dimensional’ rotational speed although they are

m· T/AP N/ T
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not truly dimensionless. Cohen at al[1977] show that all operating conditions covered by a

pair of ‘non-dimensional’ mass flow and speed should give rise to similar velocity trian-

gles, so that the vane angles and air flow directions will match and the compressor

should yield the same performance in terms of pressure ratio, temperature ratio and isen-

tropic efficiency.

Ideally, the flow in the test rig would be such that the ‘non-dimensional’ mass flow

and compressor blade Reynolds Numbers are engine representative. However, due to the

low temperatures and pressures in the test rig it is not possibly to satisfy both these

requirements. Thus, the design mass flow was set to give a sufficiently high OGV Rey-

nolds Number of approximately 1.8 x 105, which is above the critical value, and a pre-

diffuser inlet Mach Number of 0.15, which is close to that of many engines.

The 154 OGVs are engine standard, whereas the 77 IGV/rotor blades were designed spe-

cifically to provide a representative swirl angle and total pressure distribution at the

design flow coefficient. The ratio of OGVs to IGVs was deliberately set at an integer

value (2:1) to prevent a vernier effect. A non-integer ratio would result in the alignment

of the IGV/rotor and OGVs changing slightly around the annulus. This would present

each OGV with a slightly different upstream condition and thus impact the performance

of the OGV.

The rotor blades employ a NACA (A) camber line, a mid-height lift coefficient of 0.62

and a mid-height stagger angle of 59.4°. Superimposed on this was a NACA-65 profile

with mid-height maximum thickness-chord ratio of 6% and a thickened trailing edge.

Details of the compressor rotor air angles and overall stage performance at mid annulus

height are given below in Table 3.1 and Table 3.2.
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Table 3.1 Compressor Rotor Air Angles (mid annulus height)

Table 3.2 Compressor Stage Performance (mid annulus height)

3.2 Instrumentation and Data Analysis

3.2.1  Data Acquisition and Control

A schematic representation of the various devices used to monitor and control the test

facility, perform probe radial/circumferential traversing and sample/record data is shown

in Figure 3.4. The system is based around an IBM compatible Personal Computer (PC)

linked to a 16 bit data acquisition system. This provides analogue to digital conversion of

up to 16 channels of time averaged voltage information, together with the conditioning

and recording of five K-type thermocouple readings. Three RS232 serial links enable the

PC to communicate with a DC servo traverse system and the two DC motors driving the

Rotor Entry Rotor Exit

α1 β1 α2 β2

15.9° 65.5° 46.0° 53.3°

Speed (N) 4000 r.p.m.

N/√To1 235.6

Mass Flow Rate 3.79 kgs-1

Temperature Rise 6.5 K

Total Pressure Rise 6600 Pa

Degree of Reaction 73.4%

Flow Coefficient, Va/U 0.385

Blade Loading, Cp∆To/U2 0.373

α1
β1

U U

Va
Va

VR1 V1 VR2 V2

β2
α2

U = rotor velocity
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centrifugal fan and compressor rotor. Operating conditions and data provided by pneu-

matic pressure probes are converted to voltages using Furness FCO44 differential pres-

sure transducers. These transducers are calibrated, including compensation of zero drift

due to temperature, resulting in an accuracy of approximately ±0.5 mmH2O.

Several safety systems are also built into the instrumentation due to the complex

mechanical nature of the turbo machinery. This enables the performance of critical com-

ponents to be closely monitored and the test facility automatically shut down or a warn-

ing given to the operator if certain parameters exceed operational limits. For example,

the rotor blade tip clearance was set to 1.8% of the blade height and a fine wire is posi-

tioned in the rotor housing to monitor this. Should, for any reason, the tip running clear-

ance decrease then this wire would be broken initialising automatic shut down. In

addition, the temperature and pressure of the oil fed to the gearbox was also monitored as

was the temperature of the main drive shaft bearings.

To assess the aerodynamic performance of the system under test, data were obtained

using a miniature five hole probe used in the ‘non-nulled’ configuration (refer to Appen-

dix A3). Area traverses were conducted at rotor exit, OGV exit, pre-diffuser exit and at

entry to the inner and outer combustor feed annuli. These measurement stations are illus-

trated in Figure 3.2 and designated 2, 3, 4, 5 and 7 respectively. Pressure information

from the splitter annulus (station 6) was recovered using a system of fixed pitot rakes and

wall static tappings via a Furness FCO510 scanivalve. Burner feed was assessed via a

series of pressure tappings arranged around the main and pilot injectors. Positioning of

the five hole probe was achieved radially using a stepper motor powered linear guide

(Appendix A5) in conjunction with electronic wall proximity detection. Driven by a PC

this system enabled radial probe positioning with an accuracy of ±0.025 mm. This radial

traverse system could be attached to either of the external casings which were free to

rotate relative to the test section geometry. Circumferential probe movement was

achieved using a DC servo drive unit which provided a positional accuracy of better than

±0.01°.
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3.2.2  Operating Condition Control

A suite of software was developed by Denman[1996] to utilise the instrumentation system

described above. Control of the facility relies upon successful integration of the centrifu-

gal fan and the rotor. Initially, on start-up, the centrifugal fan must assist the rotor in

overcoming the system pressure loss. However, as the rotor accelerates towards the

desired N/√To1 it begins to work more effectively. Thus the speed of the centrifugal fan

must be gradually reduced to allow the rotor to achieve the correct flow coefficient (Va/

U). Similarly, during shut down, a balance must be achieved to prevent a compressor

surge.

Two Furness FCO44 pressure transducers were used to monitor the static and dynamic

pressures in the inlet section upstream of the IGV row (Station 1, Figure 3.2). A K-type

thermocouple was used to monitor the inlet stagnation temperature, To1, and the rotor

speed feedback signal was provided by a shaft encoder. Using these signals the control

system was able to maintain a rotor speed, N/√To1, and a flow coefficient, Va/U, to

within ±0.08% and ±0.18% respectively. For this investigation the flow coefficient was

fixed at the design value of 0.385. However, the control algorithms have the ability to

allow the operator to preset the value of Va/U and thus investigate off-design perform-

ance. A third FCO44 pressure transducer was used to monitor a stable reference pressure

situated below the outer dump liner (Figure 3.3). This pressure was used as reference for

all measured pressures as a ∆p measured with reference to ambient would be (a) too

large for the pressure tansducers and (b) reduce measurement resolution because changes

in ∆p would small and difficult to resolve.

One module within the control software allows the operator to set the various mass flow

splits using the metering section shown in Figure 3.2. Using this device the mass flow

rate to each combustor feature can be set to within ±0.1% of the total rig intake mass

flow rate. The ability to perform this task accurately is of paramount importance as a

development of this allows the hybrid diffuser bleed flow to be set to within ±0.05% of

the total rig mass flow rate. Figure 3.2 illustrates the hybrid diffuser bleed system. Outer

bleed flows out of the vortex chamber, through a throttle and is vented to the test cell via

twelve calibrated bellmouths. The inner bleed flows from the inner bleed chamber via a
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throttle and through a single calibrated orifice designed in line with Spencer and

Hay[1992].

3.2.3  Data Reduction

A polar (x, r, θ) co-ordinate system was used as this is naturally suited to an annular test

facility. The x co-ordinate is aligned axially, in a streamwise direction, with the test rig

centre line. The r co-ordinate extends radially outwards from the centre line and rotates

circumferentially in an anti-clockwise direction (i.e. right-handed co-ordinate system)

about the x-axis subtending an angle of θ from some datum. Velocity components are u,

v and w such that u is the axial velocity in the x direction, v is the radial velocity in the r

direction and w is the swirl velocity in the θ direction.

To achieve a meaningful assessment of the relative performance of the various diffuser

configurations it is necessary to derive a system of performance parameters, which in

turn can be related to each measurement station. Five hole probe area surveys consisting

typically of 21 radial x 21 circumferential data points were used to aerodynamically

assess the flow. Throughout the data acquisition procedure the operator was required to

periodically input the ambient pressure into the control program. By maintaining con-

stant operating conditions (  and N/√To1) and hence a constant inlet Mach

number, this allowed for the pressure readings from the five hole probe to be corrected to

the ICAO Standard Day (Pamb = 760 mmHg and Tamb = 288.15 K). Given that pressures

were all measured with respect to a reference pressure (i.e. ∆p = p - pref) the measured

difference will be proportional to the mean dynamic pressure of the flow ( )

i.e.  

but  ,     and 

m· T/AP

1/2ρU2

p pref– 1
2
---ρU2∝

M U
γRtamb

---------------------= p
ρ
--- Rt= γ can be assumed constant
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thus

and since the Mach number is constant a measured pressure can be corrected to an ICAO

Standard Day equivalent as follows:

 

Appendix A3 presents, in full, the relevant five hole probe theory, method of calibration

and discusses how the five pressure readings are reduced to values of velocity, total pres-

sure, static pressure and dynamic pressure for each data point. From this data, as dis-

cussed in Section 2.2, a set of quantitative performance parameters can be derived, such

as mass weighted static pressure recovery (Equation 3.1) and total pressure loss (Equa-

tion 3.2) coefficients, 

3.1

3.2

3.2.4  Graphical Techniques for Data Presentation

Graphical representation of the experimental data is afforded using a commercial plot-

ting package; Tecplot (Amtec Engineering Inc.). This allows visualisation of technical

data in a number of formats including simple ‘X-Y’ plots and two-dimensional surface

plots (contours, vectors etc.). Presentation of data using these techniques enables quick

and easy visualisation and significantly aids analysis.

‘X-Y’ plots are used to display various parameters including circumferentially averaged

profiles of axial velocity, pitch angle, yaw angle, etc. These profiles are usually plotted

against the non-dimensionalised radial position (i.e. plotted on a scale of 0 to 1.0):

3.3

p pref– M2pamb∝

p pref–( )standard day p pref–( )measuredx
pamb( )standard day
pamb( )measured

---------------------------------------=

Cp1 2–
p̃2 p̃1–
P̃1 p̃1–
-----------------=

λ1 2–
P̃1 P̃2–
P̃1 p̃1–
-----------------=

r ri–( )
ro ri–( )

------------------
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where r is the radial position, ri and ro are the traverses station inner and outer radii

respectively.

The independent variable is also generally non-dimensionalised, and the non-dimension-

alising parameter indicated on the figure. For example, circumferentially averaged

velocity profiles are non-dimensionalised by the area weighted mean axial velocity, . 

In most instances ‘X-Y’ plots display the data points and where possible Tecplot is used

to fit a spline curve.

Two-dimensional contour plots are used to illustrate the radial and circumferential varia-

tion of parameters across a measurement sector, viewing upstream in a negative x-direc-

tion. Similarly, vector plots are used to project the total velocity vectors onto the

measurement sector. Although viewing in two-dimensions does not give a true indication

of total velocity it allows the variation of radial and swirl velocity across an axial plane

to be easily visualised.

3.2.5  Error Analysis

It is important to recognise that experimental errors can be introduced and equally

important to quantify these errors and attempt, where possible, to reduce them to an

acceptable level. Traditionally errors occur in several key areas; hardware, data collec-

tion and data reduction. However it is difficult to separate the latter two as the final errors

are a combination of many factors.

In general the experimental test facility was manufactured to the specified dimensions

with an accuracy of ±0.1mm. This leads to a possible variation of the area at OGV entry

of ±0.3% which is deemed tolerable.

Section 3.2 and Appendix A3 describe how miniature five hole probes have been used to

assess the relative performance of the various diffusers under investigation. The posi-

tional accuracy of the probe within the test rig is difficult to quantify. The traverse mech-

anisms used are accurate to ±0.025 mm in the radial direction and ±0.01° in the

u
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circumferential direction. The probes are held in the test rig by accurately manufactured

blocks and guides. These ensure that the probe stem is held rigid and the head is aligned

correctly in pitch. To align the probe head in yaw the probe is first held in the traverse

mechanism and guide/block and then using an engineer’s flat table, set squares and a

datum face on the block, the head is positioned at the required angle (0° or 45° to the rig

axis). The probe head is always aligned using the same datum face to ensure consistancy.

The probe, traverse and guide block can then be attached to the test rig ensuring, with the

use of a spirit level, that the datum face on the block is square. The resultant pitch and

yaw setting error is then about ±1°. Furthermore, this same method of probe alignment is

used when calibrating the probes (Appendix A3) ensuring that alignment is consistent

between calibration and data collection.

A detailed and quantitative description of the accuracy of the five hole probe is, in itself,

a substantial piece of work and thus beyond the scope of the current project. However,

other authors have examined the accuracy of the five hole probe. Appendix A3 describes

the calibration method used for the five hole probe and the accuracy of this was analysed

by Wray[1997]. He found that, away from any solid surface, the errors in the velocities

and flow angles were negligible for a calibration range of ±36° in yaw and pitch. The

presence of a wall close to the probe head can introduce errors and Sitaram et al[1981]

found that the measured velocity could vary by ±1%. Similarly, close to a wall, Tamigni-

aux and Oats[1986] revealed that a maximum error of 2° in measured flow angle was

seen. However, these errors are confined to a region less than one probe head diameter

from a wall and therefore have a negligible overall effect.

Turbulence levels also effect the accuracy of a five hole probe; an error of ±0.3% was

seen by Sitaram et al for a turbulence intensity of about 10%. At rotor exit and diffuser

exit turbulence intensities are, in general, less than 10%. However, at entry to the feed

annuli this value can approach 30%, thus at the annuli measurement stations a slightly

higher error may be observed.

The physical size and presence of the probe can also introduce errors as it presents a

blockage to the flow. It is also possible that, in confined regions, the presence of a pres-

sure probe can modify the flow mechanisms under study. However, at the various meas-
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urement stations the five hole probe presents only a small blockage. For example, at

rotor exit (station 2) the five hole probe represents about 6% of the passage height but

only 0.004% of the area.

Ultimately the accuracy of any pressure measurements also depends upon the accuracy

of the Furness FC044 differential pressure transducers, and the associated data acquisi-

tion system. The pressure transducers were calibrated against a Furness FC0510 Micro-

manometer which has a quoted accuracy of better than ±0.05% at ±500 mmH2O.

Calibration was performed by logging the pressure in a vessel as it was varied through

the range ±500mmH2O. The analogue voltages produced by the transducers were con-

verted to a digital signal by an analogue-to-digital convertor (ADC) which itself was cal-

ibrated by comparison, over a range of voltages, with a very accurate DC voltage source.

The accuracy of the ADC was found to be ±0.1% which yields an accuracy for the trans-

ducer calibration of about ±0.15%. Thus, the accuracy of pressure measurements from

the test rig is ±0.25% and is a combination of the overall transducer accuracy coupled

with accuracy of the voltage measurements. However, this is true only for the maximum

pressure difference; the accuracy will decrease as the pressure difference drops. Typical

measurements record a pressure difference in the region 100-200 mmH2O which will

result in an accuracy of about ±0.5%.

The individual five hole pressures are used to calculate the dynamic pressure of the flow

and this is then used to calculate the flow total velocity. It is sensible to assume that the

dynamic pressure is obtained with a similar accuracy to the individual pressures, and

since dynamic pressure is proportional to velocity squared then the error in the measured

velocity would be halved to ±0.25%.

Throughout this work diffuser and system performance is discussed in terms of mass-

weighted static pressure recovery and total pressure loss coefficients as defined in Equa-

tions 3.1 and 3.2. An error analysis for typical mass-weighted pressures at rotor exit and

diffuser exit indicated that these coefficients have an accuracy of better than ±2.0%.
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3.3 Test Section Inlet Conditions

All experimental data were recorded at a design rotor flow coefficient, Va/U, of 0.385

and an OGV Reynolds number of approximately 1.8 x 105. Mean flow conditions meas-

ured at rotor exit (station 2) and OGV exit (station 3) are illustrated in Figure 3.5 and

Figure 3.6. The data, recorded over a single IGV blade space, represent and define the

inlet conditions for all the various test geometries described later.

Non-dimensionalised, circumferentially averaged axial velocity, total pressure and swirl

angle distributions at rotor exit are presented in Figure 3.5(a), (b), and (c) respectively.

Reasonably thick boundary layers can be seen in Figure 3.5(a) on the inner and outer

wall each amounting to some 10-15% of the passage height.

The effect of rotor tip leakage losses are clearly visible in the total pressure profile

shown in Figure 3.5(b). This local loss in total pressure is caused by secondary flows

across the tip of the rotor from the pressure to the suction side of the blade.

The rotor was designed to have an exit swirl angle of -46 degrees and achieves this at

mid annulus height (Figure 3.5(c)), however there is a sharp reduction in swirl angle

close the passage walls due to the reduced axial velocity of the boundary layers.

Variations in the total pressure contours illustrated in Figure 3.5(d) are due to the influ-

ence of IGV wakes. Local flow angle variations caused by these wakes will effect the

performance of the rotor and introduce local total pressure losses. However, the charac-

teristics shown in Figure 3.5 are typical of the flow downstream of a rotor.

Due to an OGV/IGV ratio of 2 the OGV exit conditions are periodic and thus OGV exit

conditions were recorded over a sector made up of two OGV spaces and then integrated

over a full annulus. The rig instrumentation allows several of these sectors to be tra-

versed as described in Section 3.2.1 and this enabled confirmation that this sector was

indeed repeated.

Figure 3.6(a) details the non-dimensionalised axial velocity contours over a two OGV
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sector. The OGV wakes are easily identified as the two regions of low axial velocity (i.e.

darker contours). The slight difference between the two wakes results from a propagation

of the IGV wake through the rotor which influences local OGV performance.

A plot of total velocity vectors (Figure 3.6(b)) reveals the secondary flows generated by

the static pressure gradients within the OGVs. These can be seen as a rotational tendency

in the flow.

The circumferentially averaged axial velocity at OGV exit (Figure 3.6(c)) is slightly

inboard biased but generally does not differ greatly from the average. The slight diver-

gence towards the outer casing is a result of the slightly deeper OGV wake flow and sec-

ondary flows at this radius (i.e. there is a loss core generated on the suction surface of the

OGV at 75% height). This also impacts the circumferentially averaged swirl angle distri-

bution as shown in Figure 3.6 (d). Towards the outer casing the swirl angle drops then

rapidly climbs as, firstly, the wake flow, and then secondly, the boundary layer causes the

flow to deviate from the axial direction. The negative angle indicates that the flow is

under turning out of the OGV passage; the design swirl angle being zero.

The aerodynamic performance of the OGV row is detailed in Table 3.3 in terms of the

mass weighted total pressure loss, static pressure recovery and kinetic energy coeffi-

cients. Measurements of mass flow at rotor exit (station 2) and OGV exit (station 3) by

means of five-hole probe area traverses produce a balance of better than ±1.0%

Table 3.3 OGV Performance Data

λ2-3 Cp2-3 α3

0.10 0.40 1.17
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3.4 Test Section Geometry

3.4.1  Flame Tube Geometry

A detailed view of the two flame tube geometries employed in this study is given in Fig-

ure 3.7(a) and (b), with Table 3.4 detailing some leading dimensions. These will be

referred to as Build 1 and Build 2 respectively. The test facility was originally designed

to accommodate the Build 1 flame tube with the Build 2 configuration arising from a

development of radially staged combustor technology driven by the need to significantly

reduce the length and weight of the combustion system.

Both build standards represent typical radially staged combustion systems with the main

combustor positioned outboard of the pilot. Generically similar, both present a difficult

aerodynamic challenge for the diffuser; namely very high required levels of diffusion

and controlled turning in order to prevent excessively high annuli total pressure losses.

To allow for investigation of the flow between rotor exit and the feed annuli the cowl

flows are modelled. However, combustor wall porosity is not modelled as this enables

the design mass flow distribution (Table 3.5) to be forced using the metering section as

described earlier. There are, however, several major geometrical differences in the two

builds, and these are summarised below:

• The Build 2 pilot flame tube was moved axially upstream of its location in Build 1.

• In Build 1 a single burner feed arm was employed. However, to accommodate the

axial movement of the pilot combustor separate burner feed arms were introduced.

This significantly reduced the length available for the pre-diffuser.

• The full elliptical cowl in Build 1 was replaced in Build 2 by simple annular fairings.

• Although 22 burners were employed per bank in each build, the circumferential

stagger was ½ and ¼ of a burner sector for Builds 1 and 2 respectively.

• The splitter annulus in Build 1 was replaced by an effusion cooled wall in Build 2.
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Table 3.4 Leading Dimensions

The main and pilot (Figure 3.8) injectors are modelled, for both build standards, using

dummy injectors of suitable porosity. By considering mass continuity, Equation 3.4 was

used to calculate the appropriate number of plain holes (N) to replace the flow area rep-

resented by the inner, outer and dome elements of each swirler.

3.4

Table 3.5 Flametube Air Mass Flow Distribution - Design Values

Build 1 Build 2

Station No. Description rmean 

(mm)

h (mm) rmean 

(mm)

h (mm)

2 Rotor Exit 316.75 30.5 316.75 30.5

3 OGV Exit 316.75 30.5 316.75 30.5

4 Diffuser Exit 316.75 varies 316.75 varies

5 Inner Annulus 195.60 27.2 214.60 21.5

6 Splitter Annulus 334.00 19.0 n/a n/a

7 Outer Annulus 462.25 24.5 465.20 18.6

Feature

Build 1

(%)

Build 2

(%)

Inner Annulus 17.7 23.0

Pilot Combustor 7.7 14.6

Splitter / Effusion Wall 18.3 1.7

Main Combustor 25.6 29.1

Outer Annulus 30.7 31.6

Ahole Scale
Aswirler

N
------------------

Cdswirler
Cdhole

--------------------××=

m·
m· total
------------- m·

m· total
-------------
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3.5 A Discussion of the Pre-Diffuser Geometries

3.5.1  Conventional Datum Pre-Diffuser

The conventional, single passage Datum pre-diffuser geometry, shown in Figure 3.9, rep-

resents current engine technology and is included to provide benchmark performance

from which any improvements can be measured. The diffuser has a modest overall area

ratio of 1.48, with a non-dimensionalised length (L/h1) of 3.13 and at exit it is canted

radially outwards at an angle of β = +4.0°. Also included are 22 radial struts circumfer-

entially aligned mid-way between the main and pilot injectors. The strut leading edge has

a radius of 0.75mm and is centred on a local OGV blade space. The strut trailing edge

thickness is approximately 28% of diffuser exit height. Designed using conventional

design rules the Datum diffuser is also area ruled to account for the strut blockage. (Area

ruling simply increases the area of a strutted diffuser to account for the blockage created

by the struts).

3.5.2  Optimised Conventional Pre-Diffuser

Illustrated in Figure 3.10 this diffuser represents an attempt to optimise conventional dif-

fuser technology using the multi-passage concept described in Section 2.5 in conjunction

with conventional design rules. By introducing a splitter vane the effective non-dimen-

sional length of the two resulting passages is increased by a factor of approximately 2.

Thus, with reference to Figure 3.11, the area ratio of each passage can be increased. Fur-

thermore, this configuration also allows a significant increased degree of turning within

the diffuser which will improve the feed to the injectors and combustor feed annuli. The

Optimum Conventional diffuser, therefore, will demonstrate the performance limits

associated with conventional diffusers and act as a secondary benchmark with which to

compare hybrid diffuser performance.

Both diffuser passages have an area ratio of 2.0 resulting in an overall diffuser area ratio

of 2.0. The inner passage has a non-dimensionalised length of 6.79 and at exit is canted

radially inwards at an angle of -14°. The outer passage has a non-dimensional length of

4.95 and at exit is also radially canted at an angle of +14°. Figure 3.10 clearly shows that
                                                                                       97



3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
the Optimised Conventional diffuser is considerably longer than the Datum diffuser and

this significantly reduces the dump gap in the Build 1 configuration but, more notably,

results in the fact that it physically will not fit into the Build 2 test section. Again this dif-

fuser has 22 equi-spaced radial struts with the leading edges centred on an OGV blade

space and the trailing edges aligned between the injectors. The leading edge is fairly

blunt with a radius of approximately 4mm and a trailing edge equal to 19% of diffuser

exit height.

3.5.3  Hybrid Diffusers - Build 1 Flame Tube

A review of previous work with hybrid diffusers has been presented in Section 2.6 and

revealed that there is a significant lack in the understanding of the flow mechanisms

involved. However, a basic hybrid configuration was developed using a knowledge of

the specific requirements of an aero gas turbine combustion system coupled with data

from the work of Adkins et al[1980] and Myres et al[1993]. The final design adopted for

this study consisted of a three stage hybrid diffuser as illustrated in Figure 3.12 and Fig-

ure 3.14. The initial geometry (Hybrid1) represents a conservative design which was

then extended into five distinct diffusers, for the Build 1 flame tube, whilst maintaining

the same fundamental configuration. For the Build 1 flame tube configuration all the

hybrid diffusers have a modest static pressure rise imposed immediately downstream of

the OGVs using a conventional diffuser. This Stage 1 diffuser has an area ratio of 1.3, a

non-dimensional length of 1.4 and a wall angle of 7°. The Stage 2 diffuser consists of a

sudden step expansion as discussed in Section 2.6. Two values of area ratio were used for

the Stage 2 diffuser; 1.3 and 1.42. The control of the Stage 2 diffuser is afforded by

bleeding air into vortex chambers through circumferential slots located in the inner and

outer walls. The bleed slot geometry was defined in terms of parameters “x” and “y”

which were inferred non-dimensionally from published data (Section 1.4). These are

detailed in Figure 3.12 and remained unaltered throughout the experimental work. For all

the hybrid diffuser geometries tested the Stage 3 diffuser comprised of a moderately

loaded conventional diffuser immediately downstream of Stage 2. The wall angle and

hence area ratio progressively increases throughout, as detailed in Table 3.6 and illus-

trated in Figure 3.11 and Figure 3.13. The main function of the Stage 3 component was

essentially to encourage radial flow movement and, although diffusive in nature, provide
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an environment for rapid flow reattachment. Describing the configuration of the hybrid

diffuser in three stages is in no way meant to imply that the flow physics can be sepa-

rated into these same three distinct regions. On the contrary, strong interactions between

the step expansion and Stages 1 and 3 are likely to dominate the overall performance.

The decision to impose a moderate static pressure recovery on the flow immediately

prior to the vortex controlled step expansion is logical when considered in the context of

an aero gas turbine. It is essential that any air removed can be used to replace or augment

air that is normally removed from elsewhere in the combustion system. Normally air

removed from this region is used for turbine blade or disc cooling. Furthermore the con-

dition of the bleed flow must be of sufficient pressure to be useful. Thus a conventionally

diffusing section upstream of the off-take can be advantageous in providing a significant

level of pressure recovery before the air is removed. Additionally, the presence of strong,

fresh OGV wakes was also thought to be important. The presence of the step expansion

imposes a significant adverse pressure gradient upon the flow passing over the bleed. If

the OGV exit plane is too close to the bleed off-take then the low energy wake flow rep-

resents the flow least likely to overcome this pressure gradient. Consequently this flow

would then form the majority of the bleed flow resulting in only poor quality air being

removed which would be unsuitable for use elsewhere. The presence of the conventional

Stage 1 diffuser will allow the blade wakes to begin to mix out

 

Table 3.6 Pre-Diffuser Specification

Diffuser AR1 L1/h1 AR2 AR3 L3/h3 θ3 AR L/h1 β Strut

Hybrid 1 1.3 1.4 1.3 1.34 1.22 7° 2.27 3.5 0° 7

Hybrid 2 1.3 1.4 1.3 1.42 1.22 9° 2.40 3.5 0° 7

Hybrid 3 1.3 1.4 1.3 1.47 1.22 11° 2.49 3.5 0° 7

Hybrid 4 1.3 1.4 1.42 1.35 1.11 9° 2.49 3.5 0° 7

Hybrid 5 1.3 1.4 1.42 1.23 1.11 9° 2.27 3.5 0° 3

Hybrid 6 1.05 0.22 1.60 1.23 1.48 9° 2.06 3.0 0° 3

Datum - - - - - - 1.48 3.13 +4° 3

Opt. Conv.

(inner/outer)

- - - - - - 2.00 6.79

4.95

-12°

+12°

3
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In order to investigate the reattachment process immediately downstream of the step,

static pressure tappings were positioned along the outer wall of the Hybrid 4 Stage 3 dif-

fuser as illustrated in Figure 3.15. The design of the instrumentation was strongly influ-

enced by the desire to resolve the OGV wakes and their effect on flow reattachment.

Thus 40 static pressure tappings were arranged in an array distributed over one OGV

space. The instrumentation system described earlier and shown in Figure 3.4 included a

remotely operated scanni-valve which allowed data to be automatically sampled from

each of the static pressure tappings. Figure 3.15 also illustrates how P.T.F.E. bearings

were used to allow the Stage 3 outer wall to be circumferentially rotated relative to the

OGV row. Thus a full area survey of the wall static pressure could be easily achieved

covering one or several OGV spaces.

The desire to assess the effect of radial struts in the Stage 3 diffuser led to the transition

of the Hybrid 4 pre-diffuser into Hybrid 5. The two pre-diffusers are identical except for

22 radial struts located in the Stage 3 component of Hybrid 5. The leading edge of each

strut was positioned 12 mm, 2.5 step heights (refer to Figure 3.12) downstream of the

step expansion. This was done to limit the effect the presence of the strut had on reattach-

ment and to allow the integrity of the Coanda bubble shown in Figure 2.31 to be main-

tained. The leading edge of each strut was elliptical in shape to increase their tolerance to

any non-axial flow. The struts had a simple, straight taper to a trailing edge thickness of 8

mm which is approximately 10.5% of the annulus height at pre-diffuser exit. This thick-

ness was chosen such that the overall area ratio of Hybrid 5 was returned to that of

Hybrid 1 (i.e. AR = 2.27). Thus direct comparison of performance data would then be

possible.

3.5.4  Hybrid Diffuser - Build 2 Flame Tube

To accommodate the reduction in length imposed by moving the pilot combustor for-

ward for Build 2, the Stage 1 diffuser has been almost removed from the Hybrid 6 dif-

fuser (Table 3.6 and Figure 3.14(b)). Tests, to be reported later, suggested that the area

ratio of the Stage 2 diffuser was quite modest. Thus, to offset the loss of Stage 1 diffusion

the Stage 2 area ratio was increased to 1.6. In order to maintain consistency and continu-

ity with the hybrid diffusers tested in Build 1 the Stage 3 section of Hybrid 6 is designed
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to have the same area ratio as in Hybrid 5. It is, however, slightly longer and thus the aer-

odynamic loading is slightly less. The Hybrid 6 diffuser also includes 22 engine repre-

sentative radial struts within the Stage 3 section with a trailing edge thickness equivalent

to some 22% of the diffuser exit height and the leading edge positioned approximately

6.3 step heights downstream of the step expansion.

In addition to removing most of the Stage 1 diffuser the bleed chambers have also been

significantly redesigned. The space afforded by the Build 2 flame tube was insufficient

to accommodate the ‘vortex chambers’ as seen in Build 1. These were replaced by dif-

fusing passages shown in Figure 3.14. If the vortex chambers are not necessary and only

exist as a means to produce a stable bleed flow then a diffusing passage rather than a

chamber could be used. This would reduce the extra complexity and length introduced

by the vortex chambers with the additional benefit that simple diffusing passages will

improve the quality of the bleed flow making its use for component cooling a more

attractive option.

3.6 Two-Dimensional, Axi-Symmetric Flame Tube Arrangement

One aim of this project was to use Computational Fluid Dynamics (CFD) to supplement

experimental data and reveal, in greater detail, the structure of the controlling flow

mechanisms of a hybrid diffuser. However, as described in Section 5.0, the generation of

a computational representation of the experimental test facility and calculation of the

associated flow field is a highly complex task. It is not practical to generate an exact

computational model of the experiment and simplifications to the geometry must be

introduced. This then enables computational predictions to be undertaken but raises the

question of their validity and accuracy. Without a direct comparison to an identical

experimental test it is not possible to conclude that the CFD results are free from numer-

ical error. Therefore, to enable validation of the computational methodology the experi-

mental test facility was modified to produce a two-dimensional, axi-symmetric flame

tube configuration which can be more closely modelled using CFD. A comparison of

experimental data from the modified facility with computational data would then satis-

factorily indicate the accuracy of the computational methods and allow a more confident

discussion of further CFD predictions.
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In order to produce an entirely two-dimensional, axi-symmetric configuration of the test

facility the compressor stage must be removed entirely. The structure of the flow down-

stream of an axial compressor is highly three dimensional and varies considerably in the

circumferential direction. Although changing the inlet conditions will alter diffuser per-

formance it is reasonable to assume it will not greatly affect the controlling flow mecha-

nisms of the hybrid diffuser. Thus, in order to study these mechanisms, simplifying the

inlet conditions is reasonable. Therefore the IGV row, rotor and OGV row were replaced

by simple perspex rings as shown in Figure 3.16. Data acquisition and control was

afforded using the same system as the un-modified rig (described in Section 3.2). To

achieve the same inlet Reynolds Number of about 1.8 x 105 (based now on inlet duct

height) as for the un-modified rig the centrifugal fan was run at a higher speed. Further to

removing the compressor the downstream geometry was also modified by removal of the

burners and simplification of the cowl. The replacement cowl is shown in Figure 3.16

and no longer includes the ‘double-bubble’ shape of the original. Initially the new cowl

was designed to have no porosity but for reasons described in Section 4.4 limited poros-

ity was introduced as illustrated in Figure 3.17.

There are several ramifications caused by removing the compressor and modifying the

cowl geometry. The inlet conditions to the pre-diffuser will change significantly and the

modified cowl will impose a different set of constraints on the diffuser exit flow. Both of

these will effect diffuser performance (refer to Section 2.0). Previously 51.6% of the

total mass flow passed through the cowl into the burners or splitter annulus but now the

mass flow splits will be significantly different. The mass flow splits used are outlined in

Section 4.4 and were set in the same way as before using the metering section (Section

3.2). However, if inlet conditions for the computational prediction are taken from exper-

imental measurements on the modified facility then the results will serve to provide the

direct comparison necessary for CFD validation. Furthermore, data to match the three-

dimensional computational prediction can be easily obtained by simply replacing the

rotor. 
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.1 The Test Facility
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.2 The Test Rig (showing Hybrid Diffuser and Build 1 Flame Tube)
                                                                                       104



3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.3 Traverse Arrangement

Reference Pressure
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Figure 3.4 Instrumentation System
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.5 Rotor Exit Conditions
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Figure 3.6 OGV Exit Conditions
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
(a) Build 1

(b) Build 2

Figure 3.7 Flame Tube Geometry
                                                                                       109



3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.8 Burner Schematic

Figure 3.9 Conventional Datum Diffuser
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Figure 3.10 Optimum Conventional Diffuser

Figure 3.11 A Comparison with Nominal Design Curves
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.12 Hybrid Pre-Diffuser Geometry Definition

Figure 3.13 Hybrid Diffuser Area Ratio Distribution
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.14 Hybrid Diffuser Options (Refer to Table 3.6)

(a) Hybrid Vortex Controlled Diffuser

(b) Hybrid Diffuser
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3.0 EXPERIMENTAL ARRANGEMENT AND PROCEEDURE
Figure 3.15 Static Pressure Tapping Arrangement on Stage 3 Outer Wall
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Figure 3.16 Modified (Two-Dimensional, Axi-Symmetric) Test Section

Figure 3.17 Modified Cowl Geometry

Original Cowl Profile

Modified Cowl Profile
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4.0 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Build 1 Flame Tube

4.1.1  Diffuser Performance

Diffuser performance was assessed using the methods described in Section 3 by conduct-

ing five-hole probe area traverses at rotor exit (station 2) and pre-diffuser exit (station 4).

Due to the presence of the bleed chamber access for instrumentation was not available at

OGV exit (station 3) and therefore, for all the diffusers, the reference/inlet plane for all

performance parameters was rotor exit. Hybrid diffuser data are quoted for the minimum

bleed requirement (unless otherwise stated). This corresponds to the minimum amount of

bleed required for the hybrid diffuser to move from a state of stall into a stable flow

regime (refer to Section 2.6). Work conducted by Adkins et al[1980] and Myres et al[1994]

suggested that the minimum bleed requirement would be in the region of 1 to 3% of total

inlet mass flow bled through each vortex chamber/bleed duct. It can be seen from Table

4.1 that the current results concur with this. The minimum bleed requirement for each

hybrid diffuser was determined experimentally by systematically increasing the bleed

levels and conducting an area traverse at diffuser exit. As an example of this Figure 4.1

illustrates the diffuser exit velocity profiles for Hybrid 4 at various bleed rates and indi-

cates that the minimum bleed requirement was found to be 3.0% of the inlet mass flow

bled through each chamber. At bleed rates below this the diffuser has either stalled or is

close to stall. As suggested by Adkins et al[1980], the minimum required bleed increases

with diffuser loading such that, at an area ratio of 2.49, the most heavily loaded hybrid

diffuser (Hybrid 4) also has the largest minimum bleed requirement.

Table 4.1 details the main diffuser performance parameters (as defined in Section 2.2) for

all the diffusers tested with the Build 1 flame tube. The Datum diffuser (Figure 3.8) rep-

resents current ‘engine-in-service’ technology and the Optimum Conventional diffuser

(Figure 3.9) is a twin passage diffuser which represents the limit to which conventional

technology can be taken. Thus, these two conventional diffusers offer a benchmark by

which to measure any increase in performance from hybrid diffusers. The Datum dif-

fuser has the lowest area ratio and as expected returns the smallest mass weighted static
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pressure recovery coefficient of 0.63 but with a low aerodynamic loading it has a low

mass weighted total pressure loss coefficient of 0.16. The Optimum Conventional dif-

fuser has a much higher area ratio and yields a significant increase in performance over

the Datum diffuser; the inner and outer passages have static pressure recovery coeffi-

cients of 0.72 and 0.71 respectively. As described in Section 2.5 a splitter vane increases

the effective non-dimensional length of the resulting passages. This allows a higher over-

all area ratio to be achieved but increases skin friction losses due to a larger surface area.

However, the final mass weighted total pressure loss coefficients of 0.15 and 0.17 for the

inner and outer passages respectively are similar to that of the Datum diffuser. 

The Hybrid 1 diffuser has similar performance figures to the Optimum Conventional dif-

fuser with a static pressure recovery coefficient of 0.71 and a slightly increased loss coef-

ficient of 0.18. It is important to note when directly comparing the performance of the

conventional and hybrid pre-diffusers that the conventional pre-diffusers contain struts

whereas the hybrid pre-diffusers do not. The inclusion of struts will increase the loss

because of increased skin friction but can, potentially, increase pressure recovery by

removing swirl. Initially Hybrid 1 may seem to have a poor level of performance for a

diffuser with an overall area ratio of 2.27. Certainly it is operating at a much lower effec-

tiveness than the conventional diffusers. (Note it is difficult to calculate an ideal static

pressure rise, and hence an effectiveness due to the presence of the OGVs between the

measurement stations. The expression for an ideal diffuser, Cp' = 1 - AR-2, is not appro-

priate). However, Figure 3.11 shows that at this area ratio and non-dimensional length

conventional diffusers would undoubtedly stall. Figure 3.11 is plot of area ratio versus

non-dimensional length and shows an experimentally determined line of first stall for

conventional diffusers (Sovran and Klomp[1967]). It is a notable fact that all the hybrid

diffusers are well above this line and, with the correct amount of bleed, remain fully

attached.

The change from Hybrid 1 to Hybrid 2 involved an increase in overall area ratio to 2.4

which was achieved by increasing the divergence angle of the Stage 3 diffuser from 7 to

9 degrees. This resulted in only a very slight increase in the static pressure recovery coef-

ficient; it remained almost constant at 0.72. This suggests Hybrid 2 is less efficient than

Hybrid 1 as an area ratio increase has not yielded a higher static pressure recovery. A fur-
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ther increase in Stage 3 wall angle to 11 degrees and overall area ratio to 2.5 (Hybrid 3)

also resulted in very little change in static pressure recovery although the total pressure

loss increases to 0.2. Increases in the Stage 3 loading had little effect on diffuser per-

formance thus, for Hybrid 4, the Stage 2 area ratio was increased from 1.32 to 1.4 while

maintaining an overall area ratio of 2.5 (i.e. diffuser loading was redistributed from Stage

3 to Stage 2). 

Table 4.1 Pre-Diffuser Performance Data (* - indicates strutted diffusers)

In summary the total pressure loss in the hybrid diffusers is higher than for either of the

conventional diffusers and also increases further with area ratio. This is due to the inher-

ent behaviour of hybrid diffusers; the separation and reattachment process incurring

higher intrinsic aerodynamic losses.

For any type of hybrid diffuser to be placed in an operating aero gas turbine combustion

Diffuser

Area 

Ratio

L/h1 Bleed Req.

(inner/outer)

(%)

Cp2-4 λ2-4 α4

Datum* 1.48 3.13 - 0.63 0.16 1.58

Opt. Conv.*

(inner/outer)

2.0 6.79

4.95

- 0.72

0.71

0.15

0.17

2.01

2.21

Hybrid 1 2.27 3.5 1.5

1.5

0.71 0.18 1.25

Hybrid 2 2.40 3.5 2.0

2.0

0.72 0.18 1.4

Hybrid 3 2.49 3.5 2.5

2.5

0.71 0.20 1.45

Hybrid 4 2.49 3.5 3.0

3.0

0.71 0.20 1.45

Hybrid 5* 2.27 3.5 3.0

3.0

0.71 0.19 1.55

m· b/m· tot
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system the presence of load bearing radial struts would be necessary and an important

issue is whether the presence of these struts will effect the flow mechanism of hybrid dif-

fusers. The positioning of the struts is discussed in Section 4.1.2 but it can be seen from

Table 4.1 that the presence of struts in Hybrid 5 has no detrimental effect on overall dif-

fuser performance.

Looking solely at the diffuser performance parameters, it does not initially appear that

hybrid diffusers offer any significant increase in performance over their conventional

counterparts. As the Stage 2 and Stage 3 area ratios are increased from Hybrid 1 to 4

there is effectively no change in static pressure recovery. All the un-strutted hybrid dif-

fusers provide a higher static pressure recovery than the Datum diffuser but only offer

comparable values to the Optimum Conventional diffuser. However, it will be shown

later, that the exit conditions presented to the dump and flame tube are more favourable.

The increased area ratio and exit height means that the hybrid diffusers perform a much

higher degree of controlled turning, directing the flow, at diffuser exit, towards the com-

bustor feed annuli. The required diffusion and turning within the dump gap is reduced

and, as reported by Fishenden and Stevens[1977], this will reduce the overall total pres-

sure loss to the feed annuli.

Some evidence of the improved flow condition at diffuser exit can be seen by examining

the kinetic energy coefficient, α, at diffuser exit. Essentially α is a measure of the flow

distortion; a value of unity indicating a flat velocity profile with the value increasing

with the level distortion. The affect of flow distortion on the diffuser performance was

discussed in Section 2.0 and in summary an increased level of distortion is detrimental.

With reference to Equation 2.23 (Stevens et al[1978]) an increase in the kinetic energy

coefficient at diffuser exit potentially increases the total pressure loss. A highly distorted

flow has a loss which is “locked into the profile”. Such a flow, allowed to mix out to a

uniform profile will incur a higher total pressure loss than a less distorted flow (i.e lower

α). The kinetic energy coefficient for each diffuser is given in Table 4.1. However, it

must be noted that a strutted diffuser will generally have a higher value of α due to flow

distortions caused by the strut wake. Thus, only the kinetic energy coefficient for Hybrid

5 can be sensibly compared to the Datum and Optimum Conventional diffusers. The

Datum diffuser has an α value of 1.58 but this increases above a value of 2 for the Opti-
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mum Conventional diffuser. This is due to the extra curvature of the twin-passage dif-

fuser introducing a biased and peaked velocity profile. However, at exit to the Hybrid 5

diffuser the kinetic energy coefficient has a value of 1.55 and is similar to that of the

Datum diffuser. In addition to the Hybrid 5 diffuser achieving a significant increase in

area ratio this relatively low level of flow distortion suggests that the feed to the flame

tube annuli will be superior to the conventional diffusers. 

Figure 4.3 shows the axial velocity contours, normalised by the average axial velocity, at

exit to the various diffusers at the bleed rates indicated in Table 4.1. For the Datum dif-

fuser the plot shows a complete burner sector (i.e. strut to strut) which equates to seven

OGV spaces and represents a repeating sector. The struts wakes are clearly visible as

areas of low velocity (dark grey regions) at the circumferential extremities of the sector.

The OGV wakes are also seen as areas of locally lower velocity separated by the higher

velocity non-wake flow (i.e. lighter contours). The different nature between adjacent

OGV wakes is due to the existence of IGV wakes persisting through the rotor. Axial

velocity contours for Hybrid 1-4 (Figure 4.3(b)-(e)) are shown for two OGV spaces only

as these are un-strutted diffusers and flow phenomena are repeated every two OGV

spaces.

Velocity vectors at diffuser exit (Figure 4.4) illustrate the effect of the high divergence

angle in the Stage 3 section which encourages the flow to turn outboard and inboard

towards the outer and inner feed annuli. The magnitude of the radial velocity component

is relatively small and increases only marginally from the Datum diffuser through to

Hybrid 5. However, recall that the hybrid diffusers, especially Hybrid 4 and 5, have a

much larger exit height and as such are providing a much higher degree of controlled

turning. Although increased performance is not obvious at diffuser exit, this is another

indication that the hybrid diffusers will provide improved feed to the flame tube and feed

annuli. This tendency to turn is shown more clearly in the circumferentially averaged

pitch angle (Figure 4.5). At diffuser exit, close to the walls, the average flow is angled

outboard and inboard at ±30 degrees thus directing it towards the feed annuli.

Velocity vectors also indicate that there is a higher residual swirl (persisting from the

rotor) at diffuser exit for all non-strutted diffusers. This swirl will persist into the feed
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annuli and, due to conservation of angular momentum, its magnitude will diminish in the

outer annulus but increase in the inner annulus as observed by Bailey and Carrotte[1996].

This will have a significant and detrimental effect on the feed to the flame tube.

Although struts impose a loss penalty due to increased ‘wetted’ area they can be benefi-

cial as they damp out residual swirl. This is clearly seen in the circumferentially aver-

aged swirl angle profiles (Figure 4.6). The average diffuser exit swirl angle for the

Datum and Hybrid 5 (both strutted) diffusers is small. However, with no struts present

the other diffusers have much higher levels of swirl; approaching -5 degrees at mid

height. Hybrid 4 is the most heavily loaded diffuser in the Stage 2 and 3 section and as

such increased boundary layer growth and reduced axial velocity results in the increased

swirl angle seen close to the outer wall (Figure 4.6).

4.1.2  Hybrid 4 Stage 3 Wall Static Pressure Tapping Data

In hybrid diffusers including a step expansion, the mainstream flow separates from the

tip of the fence and, under the action of the bleed flow, reattaches at some point down-

stream on the Stage 3 diffuser wall. The low energy fluid close to the wall in the Stage 1

diffuser is unable to overcome the pressure gradient set up by the bleed flow. It is

diverted and rapidly accelerates into the bleed as shown in Figure 4.7. Adkins et al[1980]

suggest the remaining air flows into the Stage 3 diffuser and will begin to decelerate and

thus a shearing action is set up between the bleed flow and the mainstream flow. This

creates a turbulent shear layer and re-energises the mainstream flow enabling it to nego-

tiate the step expansion and reattach on the Stage 3 wall. A Coanda bubble is set up in

the corner immediately downstream of the fence; the size and rotational strength of this

is a function of the bleed rate.

It is the interaction of the bleed flow and mainstream flow which combine to cause the

flow to reattach on the Stage 3 wall. Thus it is of interest to determine what effect the

level of bleed has on this process. From the work of Adkins et al[1980] it is already known

that there is a minimum level of bleed below which the flow will not reattach. Experi-

mentally it is very difficult to measure the effect of the bleed rate on the flow mecha-

nisms near the transition from Stage 2 to Stage 3. Pressure probes are intrusive and can,

by their very nature, destroy the flow mechanism under investigation. Furthermore, the
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test facility is complex and it is extremely difficult to position a pressure probe in the

region immediately downstream of the step expansion (Stage 2 diffuser). Therefore, in

an attempt to study the effect of the bleed experimentally, an array of static pressure tap-

pings on the Stage 3 wall of the Hybrid 4 diffuser were employed (refer to Section 3.5.3

and Figure 3.11). These pressure tappings were located only on the outer wall of the

Stage 3 diffuser and as such do not necessarily give a true indication of the condition of

the air flow. For example, below the minimum bleed requirement, the diffuser could be

in a state of transitory stall. It would then be possible for the flow to be attached to the

outer wall of the diffuser but separated from the inner wall. This may not be clear from

the static pressure readings. Thus these results were not assessed in isolation but with

careful consideration of diffuser exit data from five-hole probe measurements.

Figure 4.8 illustrates the variation of circumferentially averaged wall static pressure

recovery (with respect to rotor exit) along the Stage 3 diffuser outer wall. It is important

to note that there is only a relatively small static pressure rise within the Stage 3 diffuser

with Cp increasing by only 0.06 from 0.61 to 0.67. Assuming that the Stage 1 diffuser

operates with a typical effectiveness of about 80% it would produce a static pressure

recovery coefficient of 0.32. The measured overall static pressure recovery coefficient of

the diffuser is about 0.70 thus the majority of the static pressure recovery must, therefore,

be attributed to the step expansion (Stage 2 diffuser). 

It is not possible to derive the exact position at which the flow reattaches from the static

pressure data. What is clear, from Figure 4.8, is that the most rapid increase in wall static

pressure occurs immediately downstream of the step; i.e. in the region associated with

flow reattachment. Figure 4.9 illustrates how the location of the maximum wall static

pressure gradient varies with bleed. This does not reveal the actual reattachment point

but gives a good indication of how it varies with bleed. Simple computational predictions

(see Sections 5.0 and 6.0) indicate reattachment should occur in the region 10-20 mm

downstream of the step and reduce with increasing bleed. The location of the maximum

gradient in wall static pressure agrees with this as does the variation of its location with

bleed rate.

Figure 4.10 shows a typical contour plot of wall static pressure recovery with a bleed rate
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of nominally 3.0% each side. Contour plots for all the bleed rates show similar trends

and the three-dimensionality of the flow can be seen. There exists a periodic variation of

the wall static pressure recovery across the three OGV spaces shown. This suggests that

the reattachment length will also vary periodically. Obviously there is an interaction

between the OGV wake flow and the bleed which locally affects the reattachment mech-

anism. It is not possible to give an exact explanation for the behaviour but a study to

extract this type of information would lend itself to the use of Computational Fluid

Dynamics (CFD). As described in Sections 5.0 and 6.0 CFD predicts a solution for the

entire flow domain thus revealing much more information on the nature of the flow.

However, a three dimensional CFD study is not a simple task.

Figure 4.9 and Figure 4.10 both suggest that the flow reattaches on the outer wall at, and

beyond, a point some 10mm downstream of the step. As mentioned earlier, for a hybrid

diffuser to be used in a practical aero gas turbine the presence of load bearing radial

struts would be required. A major point of concern is the placement of these struts, more

specifically the location of the leading edge with respect to the reattachment point. It was

argued that one reason for the failure of the planar test facility (Appendix A1) was the

destruction of the flow mechanisms by the end walls. Placing the strut leading edge

within the Coanda bubble could also have the same effect. Information from the static

pressure tapping data suggest that the strut leading edge should be placed no closer than

10mm to the step. Thus, the 22 radial struts for Hybrid 5 were located 12mm down-

stream of the step. This extra 2mm providing a small margin for error as time constraints

only allowed a single set of struts to be designed and manufactured. Results presented in

Table 4.1 demonstrate that the inclusion of such struts does not have a significant effect

on diffuser performance.

4.1.3  Outer Feed Annulus Performance

Table 4.2 details performance figures for the flow to the outer combustor feed annuli

(station 7) with reference to rotor exit (station 2). Adenubi[1976] comments that the total

pressure loss from OGV exit to the combustor feed annuli should be no more than 30%

to 40% of the OGV exit dynamic pressure. As reported in Section 3.0 the reference plane

throughout this experimental investigation was rotor exit, not OGV exit, because of
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access constraints imposed by the bleed chambers. However, with the Datum diffuser fit-

ted measurements were taken which enabled OGV performance to be determined (Table

3.3). Incorporating this data, Adenubi’s target loss of 35% of OGV exit dynamic was re-

calculated giving a new target loss equivalent to 30% of rotor exit dynamic pressure.

It is important that the flow delivered to the feed annuli has a sufficient static pressure

recovery (reduction in velocity) with a minimum total pressure loss such that it is in a

good condition to adequately feed the primary ports and cooling rings etc. Immediately,

it is evident from Table 4.2 that the mass weighted total pressure loss coefficient to the

outer annuli for both conventional diffusers is above the target of 0.3. The Datum dif-

fuser results in a loss coefficient to the outer annuli of 0.33 and the Optimised Conven-

tional diffuser has a slightly smaller loss of 0.32.

The total pressure loss to the outer annuli for all the hybrid diffusers is below the target

value. For example, Hybrid 4 shows a reduction of 5% of rotor exit dynamic from the

Optimum Conventional diffuser with a total pressure loss coefficient of 0.27. The addi-

tion of radial struts in Stage 3 of the Hybrid 5 diffuser appears to have only a small effect

on performance to the outer annuli. The loss for the strutted Hybrid 5 diffuser is slightly

increased from Hybrid 1 which has the same overall area ratio with no struts, but the loss

is nominally the same as for Hybrid 4 which, apart from struts, is geometrically identical

to Hybrid 5.

Table 4.2 Outer Feed Annulus Performance Data

Figure 4.11 shows the circumferentially averaged velocity profiles in the outer annulus

with axial velocity contours shown in Figure 4.12. All the diffusers show a similar shape

Diffuser Cp2-7 λ2-7 α7

Datum 0.63 0.33 1.17

Opt. Conv. 0.65 0.32 1.17

Hybrid 1 0.70 0.27 1.14

Hybrid 2 0.70 0.26 1.13

Hybrid 4 0.70 0.27 1.13

Hybrid 5 0.70 0.27 1.13
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profile with a slight outboard bias.

Velocity contours and vectors (Figure 4.13) also show that there exists, in all cases, a

region of low velocity associated with the wake from the burner feed arm. For the Datum

and Optimum Conventional diffusers this wake is in line with the burner feed arm and is

seen in the middle of the sector. However, due to the greater swirl in the non-strutted pre-

diffusers the burner feed arm wake is located circumferentially left of centre.

Outer annulus velocity vectors (Figure 4.13) and circumferentially averaged swirl angles

(Figure 4.14) clearly show that there is higher degree of swirl in the outer annulus when

strutted diffusers are not used. With reference to Figure 4.6, struts in the diffuser remove

this swirl from the rotor. However, close to the inner casing there is a local increase in

swirl due to the low axial velocity in this region (refer to Figure 4.11). A high degree of

swirl within the combustor annuli is not desirable as it degrades the quality of the feed to

the flame tube admission ports and cooling features.

On further examination of the velocity vectors in the outer feed annuli (Figure 4.13) pairs

of contra-rotating vortices can be seen. These pairs of vortices have a periodicity which

is set by the burner spacing and are generated as the annulus flow fills the injector/burner

feed arm wake. It is also possible that the formation of these vortices is aided by a type of

Goertler instability which is generated within a shear layer when it undergoes a signifi-

cant amount of turning and results in the formation of Taylor-Goertler vortices (Schlicht-

ing[1979]).

4.1.4  Splitter Feed Annulus Performance

Instrumentation in the splitter annulus was limited due to access restrictions as described

in Section 3.0. However, the instrumentation was sufficient to obtain the performance

figures shown in Table 4.3. The static pressure recovery and total pressure loss coeffi-

cients are again quoted with reference to rotor exit and target value of 0.3 for the total

pressure loss coefficient is again applicable. Only the Datum diffuser supplies air to the

splitter annulus with a loss greater than 0.3, all the other diffuser configurations meet the

performance requirements; the hybrid diffuser options returning loss coefficients of 0.21
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- 0.23. The Optimum Conventional diffuser only just meets the target loss coefficient

with a value of 0.30. Although the diffuser static pressure recovery is relatively high the

presence of a vane (see Figure 3.8b) directs flow away from the splitter annulus and thus

introduces an extra turning loss for the splitter flow. The series of hybrid diffusers do not

suffer from this impediment and as such have significantly lower loss figures to the split-

ter annulus.

Table 4.3 Splitter Feed Annulus Performance Data8

4.1.5  Inner Feed Annulus Performance

Table 4.4 details the performance figures for the flow to the inner feed annulus (station 4)

with respect to rotor exit conditions (station 2). Applying the same target criteria for the

total pressure loss as before (i.e. λ<0.3) it is again evident that the flow from the Datum

diffuser fails to meet this target, exceeding it by some 5% of rotor exit dynamic. How-

ever, the Optimum Conventional diffuser and all the hybrid diffusers produce inner

annulus loss coefficients below the target value. Comparing the Optimum Conventional

and hybrid diffusers there is very little difference in overall performance. All yield loss

coefficients of 0.25 - 0.26 and static pressure recovery coefficients of 0.68 - 0.70.

Figure 4.15 illustrates the circumferentially averaged velocity profiles in the inner annu-

lus and shows that for all the diffusers the flow has a slight bias towards the inner casing.

This can also be seen in the axial velocity contour plots (Figure 4.16) in addition to the

presence of wakes from the pilot injectors. Pairs of contra rotating vortices are, again,

also present created by the annulus flow filling these wakes. The vortices are easily visi-

Diffuser Cp2-6 λ2-6 α6

Datum 0.62 0.33 1.16

Opt. Conv. 0.67 0.30 1.16

Hybrid 1 0.76 0.21 1.12

Hybrid 2 0.74 0.22 1.12

Hybrid 4 0.74 0.22 1.11

Hybrid 5 0.74 0.23 1.12
                                                                                       127



4.0 EXPERIMENTAL RESULTS AND DISCUSSION
ble on the velocity vector plots shown in Figure 4.17.

Table 4.4 Inner Feed Annulus Performance Data

Conservation of angular momentum dictates (Bailey and Carrotte[1996]) that the swirl

velocity magnifies with decreasing radius. Figure 4.18 clearly show a large swirl compo-

nent is present in the flow for the non-strutted diffusers (Hybrid 1, 2 and 4) but is reduced

by the introduction of struts (Datum and Hybrid 5). 

4.1.6  Burner Feed Performance

Burner feed data obtained from the test facility can be used for comparative analysis only

due to the fact that dummy fuel injectors with representative porosity were used (refer to

Figure 3.8). No attempt was made to model swirler flows; importance being placed on

obtaining the correct mass flow only. However, the data obtained are sufficient to calcu-

lated total pressure loss figures and assess the relative performance of each diffuser in

terms of their ability to feed the burners.

Table 4.5 details the total pressure loss coefficients (with respect to rotor exit) to the pilot

and main burners. For both burners the flow with the lowest loss is delivered via the

Optimum Conventional diffuser. The Datum diffuser has the highest losses with the

hybrid diffusers showing an improvement but unable to match the Optimum Conven-

tional diffuser. The reason why the Optimum Conventional diffuser results in the lowest

burner feed losses is that its twin passages point the flow directly at the burners (see Fig-

Diffuser Cp2-5 λ2-5 α5

Datum 0.61 0.35 1.07

Opt. Conv. 0.68 0.27 1.10

Hybrid 1 0.71 0.25 1.15

Hybrid 2 0.70 0.26 1.11

Hybrid 4 0.70 0.26 1.11

Hybrid 5 0.70 0.25 1.16
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ure 3.10).

Table 4.5 Burner Flow Total Pressure Loss Coefficient (w.r.t. Rotor Exit)

4.1.7  Dump Losses

Total pressure loss to the combustor feed annuli are, according to Fishenden and Ste-

vens[1977], attributed to two sources. Namely, losses in the pre-diffuser and losses in the

dump region. Pre-diffuser losses and overall losses have been discussed in Sections 4.1.1

and 4.1.3 - 5 respectively. The dump gap total pressure loss coefficients are shown in

Table 4.6 and defined (Equation 4.1) as the total pressure loss from diffuser exit (station

4) to the combustor feed annuli (station 5/7) normalised by the rotor exit dynamic pres-

sure.

4.1

Table 4.6 Total Pressure Loss Coefficients in the Dump

Diffuser Pilot (inner) Main (outer)

Datum 0.32 0.35

Opt. Conv. 0.25 0.30

Hybrid 1 0.33 0.36

Hybrid 2 0.30 0.34

Hybrid 4 0.27 0.36

Hybrid 5 0.27 0.35

Diffuser λ4-5 λ4-7

Datum 0.19 0.18

Opt. Conv. 0.13 0.16

Hybrid 1 0.08 0.11

Hybrid 2 0.08 0.09

Hybrid 4 0.06 0.07

Hybrid 5 0.06 0.07

λ4 5–
P̃4 P̃5–

q̃2
-----------------=
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The dump losses for the Datum diffuser are relatively high which is a function of the

modest area ratio and low degree of turning offered by the diffuser. The flow must

undergo a significant amount of turning within the dump in order to reach the feed annuli

which leads to high dump losses and ultimately high losses to the feed annuli.

At exit to the Optimum Conventional diffuser the static pressure recovery is greater and

the velocity lower than for the Datum diffuser and as such the flow incurs a slightly

lower dump loss. However, because the Optimum Conventional diffuser is longer than

all the other diffusers and the dump gap smaller, the flow has less room in which to turn

and enter the feed annuli and therefore incurs a high turning loss. Thus the benefit of

extra turning within the Optimum Conventional diffuser is somewhat offset by the reduc-

tion in dump gap size. The dump gap size is restored to that of the Datum diffuser for the

series of hybrid diffusers and Table 4.6 shows that there is a marked improvement in

dump gap performance. Now the benefit of increased diffusion and turning offered by

the hybrid diffusers is realised and dramatically reduces the total pressure loss within the

dump. The loss is reduced by almost half from the Datum to Hybrid 1 diffuser and con-

tinues to reduces, albeit only slightly, as the Stage 3 divergence angle is increased.

4.2 Build 2 Flame Tube

Section 3.4 has discussed the difference between the two flame tube builds. In summary

the main difference is the fact that in the second design the pilot flame tube and burner

were moved axially upstream of their location in Build 1 configuration (see Figure 3.7).

This significantly reduced the size of the dump gap (by almost 50%) and limits the avail-

able space for the pre-diffuser. As a result the Build 2 flame tube significantly magnifies

the aerodynamic challenge facing the diffuser. Not only is the Optimum Conventional

diffuser now too long for the available space but the hybrid diffusers also had to be radi-

cally modified. Section 3.5 has discussed how, to reduce length, the vortex chamber was

replaced by a simple bleed duct in the Hybrid 6 diffuser (Figure 3.14). This represents a

significant departure from the concept of the hybrid diffuser introduced by Adkins et

al[1980] but it also represents a much more attractive engineering option. This duct-bled

concept reduces complexity, saves length and weight and potentially offers a method by

which the bleed air can be recovered with a lower loss. Furthermore, the Build 2 flame
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tube and Hybrid 6 diffuser provide an experimental test case which can be used to assess

the validity of a duct-bled hybrid diffuser.

4.2.1  Diffuser Performance 

Diffuser performance was assessed as before using the methods described in Section 3.0.

Table 4.7 details the main performance parameters for the Datum and Hybrid 6 diffusers.

Note, also, that Datum diffuser performance data for the Build 1 flame tube are also

quoted for ease of comparison.

(NB all diffusers contain struts)

Table 4.7 Pre-Diffuser Performance Data (Build 2 Flame Tube)

Clearly a hybrid diffuser with a duct bleed is a viable option. With reference to Figure

3.11, Hybrid 6 has a high aerodynamic loading but remains attached under the action of

bleed. Previous results suggested that the Hybrid 6 diffuser would require a bleed rate of

about 3.0% of total inlet mass flow through each of the inner and outer bleed ducts.

However, at this level of bleed the Hybrid 6 diffuser is seen to exhibit a small region of

separated flow on the outer wall of the Stage 3 diffuser. This is evident on the axial

velocity contour plot (Figure 4.20c) and the velocity vector plot (Figure 4.21c). In order

to remove this separation the outer bleed was increased to 4.0% of the total inlet mass

flow while maintaining the inner bleed at 3.0%. Plots of axial velocity contours and

velocity vectors, shown in Figure 4.20(d) and Figure 4.21(d) respectively, indicate that

Diffuser

Area 

Ratio

L/h1 Bleed Req.

(inner/outer)

(% )

Cp2-4 λ2-4 α4

Datum

(Build 1)

1.48 3.13 - 0.63 0.16 1.58

Datum

(Build 2)

1.48 3.13 - 0.65 0.14 1.68

Hybrid 6 2.06 3.0 3.0

4.0

0.69 0.20 1.59

m· tot
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this was successful at eliminating the flow separation.

4.2.2  Feed Annulus Performance

Moving the pilot flame tube burner forward was expected to have a detrimental effect on

the performance of the flow to the feed annuli. A higher degree of turning is now

required in a shorter length which will ultimately cause higher turning losses. Table 4.8

and Table 4.9 detail the outer and inner annulus performance figures respectively. It is

evident that performance with the Build 2 flame tube is severely reduced. For the Datum

diffuser the total pressure losses to each annuli increase well in excess of the target value

of 0.3. Furthermore, the additional turning offered by the Hybrid 6 diffuser reduces the

total pressure loss but it still remains above the target value. In summary the reduction of

the dump gap coupled with the deep flame tube will result in high losses to the annuli

irrespective of the diffuser option employed.

Table 4.8 Outer Annulus Performance Figures - Build 2

Table 4.9 Inner Annulus Performance Figures - Build 2

Diffuser Cp2-7 λ2-7 α7

Datum (Build 1) 0.63 0.33 1.17

Datum (Build 2) 0.54 0.40 1.13

Hybrid 6 0.59 0.36 1.16

Diffuser Cp2-5 λ2-5 α5

Datum (Build 1) 0.61 0.35 1.16

Datum (Build 2) 0.44 0.44 1.30

Hybrid 6 0.52 0.36 1.52
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4.3 Bleed Flow Assessment

4.3.1  Effect of Bleed Rate on Diffuser Performance

The effect of bleed rate is documented by Adkins et al[1980] who have shown that there is

a step increase in performance once the minimum bleed requirement is reached (refer to

Section 2.6). The relationship shown in Figure 2.33 has been difficult to verify experi-

mentally. A minimum bleed requirement exists as detailed in Table 4.1 and below this

value the hybrid diffuser was in a state of stall. Unfortunately, it was not possible to

obtain sensible performance figures for the hybrid diffusers when they had stalled. The

reversed flow associated with separation does not fall within the calibration range of the

five-hole probe (refer to Appendix A3) and zero values are returned by the reduction

software for the pressures and velocities; the latter certainly should be negative. These

zero values are included in the final data reduction which leads to a false result for the

performance parameters. Thus, it has not been possible to reproduce the relationship

seen by Adkins et al[1980]. However, above the minimum bleed requirement the hybrid

diffusers behaved as the literature predicted; the values of static pressure recovery and

total pressure loss do not alter greatly with a further increase in bleed rate. This is illus-

trated in Table 4.10 which shows the performance parameters for Hybrid 4 for various

bleed rates above the minimum bleed requirement. 

Table 4.10 Variation of Diffuser Performance with Bleed Rate (Hybrid 4)

The method used for calculating the data presented in Table 4.10 does not take into

account the bleed flow. The total pressure loss coefficient from rotor exit to diffuser exit

is defined as:

Inner/Outer Bleed

(% )

Cp2-4 λ2-4

2.0/2.0 0.70 0.20

2.5/2.5 0.71 0.20

3.0/3.0 0.71 0.20

m· total
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4.2

In Equation 4.2 the mass weighted total pressure and dynamic pressure at rotor exit

include the bleed flow whereas the total pressure at diffuser exit includes only that flow

which passes down the diffuser. It is difficult to say what effect this has on the final per-

formance figures. It is the low energy, poor quality boundary layer flow, associated with

the Stage 1 diffuser wall flow, that is bled off and if this is not accounted for Equation 4.2

may give an optimistic value for loss. A stream tube analysis using only the flow which

passes down the diffuser to calculate rotor exit values may yield better results. However,

due to the complex three dimensional nature of the flow it is difficult to define what flow

is actually bled off. The low energy flow associated with the boundary layer is likely to

be bled off but so is a proportion of the low energy OGV wake flow. Thus the traditional

methods for presenting total pressure loss and static pressure recovery are the only viable

option, and have therefore been used throughout this experimental study. Furthermore,

from an engine performance perspective accounting for the bleed flow does not matter

provided the bleed air can be used to replace component cooling flows usually removed

elsewhere in the engine.

4.3.2  Vortex Chamber versus Duct Bleed

For many years the main driving force behind the development of diffuser technology

has been the desire to decrease length and hence weight but maintain efficiency and

effectiveness. Currently with the advent of low emission, radially staged combustion

systems a significant driving force behind diffuser development is to increase the capa-

bility of diffusers to turn the flow around the deep flame tube and reduce total pressure

losses to the feed annuli. Hybrid diffusers offer a potential solution to this problem but

the issue of weight is still an important one. Hybrid diffusers studied by Adkins et

al[1980] and Myres et al[1994] have all incorporated a vortex chamber as discussed in Sec-

tion 2.6. However, a vortex chamber is a significant component and as such carries a

length and weight penalty. Due to this it is unlikely that a vortex chamber would be

included in any design of hybrid diffuser fitted in an aero gas turbine combustion system.

It was shown in Section 4.2.1, however, that a vortex chamber is not necessary and exists

λ2 4–
P̃2 P̃4–

q̃2
-----------------=
                                                                                       134



4.0 EXPERIMENTAL RESULTS AND DISCUSSION
only to provide a stable pressure gradient which will drive the bleed flow. A ducted bleed

offers further advantages in terms of using the bleed air elsewhere in the engine. In a

modern aero gas turbine air is usually bled from the dump region for use in turbine blade

and disc cooling. Since this usually amounts to about 7-10% of the engine mass flow it

has been suggested (Adkins et al[1980]) that the air bled form a hybrid diffuser could be

used for this purpose. If this was to be the case then the bleed air must be recovered with

the minimum of pressure loss. A duct bleed potentially offers lower losses than a vortex

chamber as it can be used to eliminate the high loss vortex flow. Unfortunately without a

back-to-back test of identical vortex and duct bled diffusers the results do not indicate

what impact on overall diffuser performance a duct bleed has. This information cannot

be derived from these results as the Hybrid 6 diffuser and Build 2 flame tube are signifi-

cantly different form Hybrid 1-5 diffusers which contain a vortex chamber but are fitted

with the Build 1 flame tube. A duct bleed and a vortex bleed will differ as Figure 4.22

illustrates. In a vortex chamber the vortex will expand to fill the entire chamber. How-

ever, with a duct a separation bubble will form on the upstream side of the duct. This sep-

aration bubble will present a blockage to the bleed flow affecting the manner in which

mainstream flow is captured by the bleed. It will also cause an acceleration of the flow

adjacent to the downstream wall of the duct. Furthermore, the size and shape of the duct

will further alter this. The effect of substituting a duct for the vortex chamber and further

modifications to the bleed geometry are computationally investigated and discussed in

Sections 5.0 and 6.0.

4.3.3  Bleed Flow Total Pressure Loss

No data exist defining a target total pressure loss for the bleed flow at which it would still

be suitable for use in component cooling. However, during assessment of the Optimum

Conventional diffuser a bleed from the outer dump region was simulated as illustrated in

Figure 4.23. With reference to Figure 4.23 it can be seen that this bleed air flows through

the same cavity and throttle set up as the outer hybrid diffuser bleed flow. Furthermore,

the test rig reference pressure is also measured within this cavity (i.e. the pressure rela-

tive to which all other pressures are measured, see Section 3.0). Therefore, it is possible

to define a bleed flow total pressure loss for both the dump bleed (Optimum Conven-

tional Diffuser) and hybrid diffuser bleeds; 
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4.3

where B is Outer Bleed and:

 4.4

Thus, the bleed loss coefficient becomes:

4.5

The total pressure loss of the flow for the Optimum Conventional dump bleed was

acceptable (Denamn[1996]) and thus it serves to provide a figure to use as a bench mark

for hybrid diffuser bleed flow losses. Table 4.11 gives the total pressure loss coefficient

for the outer bleed flow for the various diffusers. For the Optimum Conventional diffuser

the loss coefficient amounts to 36% of rotor exit dynamic pressure but the losses for the

hybrid diffuser bleed flows all exceed this. Thus it is likely that further work would be

required to investigate this and perhaps reduce the bleed flow losses. 

Table 4.11 Bleed Flow Total Pressure Loss Coefficients

It is apparent from the data that the loss coefficient increases with bleed rate. Figure 4.24

is a plot showing how the bleed flow total pressure loss coefficient varies with bleed rate

for the Hybrid 4 diffuser. This would suggest that in any future design of hybrid diffuser

Diffuser Outer Bleed

(% )

λ2-B

Opt.Conventional 6.7 0.36

Hybrid 1 1.5 0.48

Hybrid 2 2.0 0.50

Hybrid 3 2.5 0.53

Hybrid 4 3.0 0.55

Hybrid 5 3.0 0.55

Hybrid 6 4.0 0.61

λ2 B–
P̃2 P̃B–

q̃2
------------------=

P̃ref P̃B=

λ2 B–
P̃2 P̃ref–

q̃2
--------------------=

m· total
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a compromise may be necessary. It could be possible to design a diffuser with the maxi-

mum possible area ratio and Stage 3 divergence angle to maximise combustor feed

annuli performance. However, the bleed rate required may incur unacceptable bleed flow

losses. Thus it would be necessary to decrease the diffuser loading in order to reduce the

amount of bleed flow and its total pressure loss.

4.4 Two-Dimensional, Axi-Symmetric Flame Tube Arrangement

4.4.1  Two-Dimensional Inlet (Clean)

The test facility was modified as described in Section 3.6 to remove the single stage axial

compressor and replace the flame tube/burner arrangement with a simple two-dimen-

sional, axi-symmetric flame tube. Furthermore, the test section was fitted with the

Hybrid 4 diffuser thus producing an experimental arrangement which could be directly

simulated using Computational Fluid Dynamics (CFD) as described in Section 5.0.

Initially the modified cowl had no porosity and the mass flow was split equally between

the inner and outer feed annuli. Five-hole probe traverses at diffuser exit revealed that for

this configuration, no matter what bleed rate was used, the diffuser stalled. The possibil-

ity of this being caused by leaks or geometrical irregularities was investigated and ruled

out. Further measurements revealed that for a bleed rate of 3.0% each side the diffuser

stalled from the outer wall. In an attempt to prevent this the outer bleed was increased

but, although the outer wall flow reattached, the inner wall stalled. No combination of

inner/outer bleed could be found such that the flow remained attached to both the inner

and outer diffuser walls.

A contributing factor to this behaviour was thought to be instability effects caused by the

stagnation point on the cowl moving randomly. With porosity added (refer to Figure

3.17) it was hoped that this would provide a feature to anchor the stagnation point and

introduce a degree of stability. The flow split was set to 35:30:35 between the inner:split-

ter:outer annuli and the bleed set to 3.0% each side. Again the diffuser stalled on the

outer wall. Increasing the outer bleed caused the outer wall flow to reattach but the inner

wall flow then separated. Initial CFD predictions (see Section 5.0 and 6.0) indicated that
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a bleed of 3.0% would result in a stable flow regime. However, these initial calculations

were performed with an inlet turbulence intensity of 5% which is representative of the

flow downstream of a rotor and not the clean inlet used here. Stevens and Williams[1980]

demonstrated that increased levels of inlet turbulence are beneficial to diffuser perform-

ance. However, with clean inlet conditions the turbulence intensity is likely to be less

than 1.0%. Further CFD predictions with this level of inlet turbulence intensity indicated

the diffuser would now stall. At this low level of inlet turbulence it was not possible, no

matter what bleed rates were used, to prevent the flow from separating on the experi-

metal facility. Unfortunately the result of this is that the data are not of sufficient quality

or quantity to satisfactorily evaluate and assess 2D CFD accuracy and validity. This must

now rely on the three dimensional calculations

4.4.2  Three-Dimensional Inlet (Rotor)

The three-dimensional computational model is described in Section 5.0 and employs the

same simplified flame tube geometry as the two-dimensional model but with inlet condi-

tions taken from experimental measurements downstream of the single stage axial com-

pressor. This configuration was easily recreated experimentally by simply returning the

compressor to the facility as illustrated in Figure 4.25. Using the experimental tech-

niques described in Section 3.0 this configuration was assessed with an initial inner and

outer bleed rate of 2.5% and a downstream mass flow split of 35:30:35 between the

inner, splitter and outer annuli.

Figure 4.26 shows the circumferentially averaged, normalised axial velocity profile at

diffuser exit. The profile is inboard biased, due in part to the modified geometry and flow

splits but also due to a thicker inlet boundary layer on the outer wall as shown in Figure

4.27. At diffuser exit this results in an outer wall flow which is close to separating

( wall < 0.1) and an inner wall flow which is well behaved ( wall > 0.8). Before

entering the diffuser the outer wall boundary layer is already thick and low in axial

momentum. An adverse pressure gradient will further thicken the boundary layer having

a negative effect on diffuser performance. In an attempt to improve outer wall perform-

ance the outer bleed was increased firstly to 3.0% and then to 3.5%. By increasing the

bleed rate the transfer of energy/momentum from the bleed flow to the mainstream flow

u/U u/U
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will also increase thus improving the condition of the flow close to the outer wall. Figure

4.26 shows that increasing the bleed rate to 3.0% has only a small positive effect but fur-

ther increasing the bleed to 3.5% causes the non-dimensionalised velocity close to the

outer wall to increase by almost a factor of 3. This supports the theory that the flow

mechanisms of a hybrid diffuser are such that there is a transfer of positive momentum

from the accelerating bleed flow to the diffusing mainstream flow enabling it to reattach

on the Stage 3 wall. Furthermore, as the bleed rate is increased this transfer of energy is

also increased. The fact that altering the bleed flow balance enables hybrid diffusers to

overcome problems imposed by biased inlet profiles or thick developed boundary layers

is important. In a gas turbine the compressor does not always run at the design condition

and will therefore present the diffuser with a range of inlet conditions. However, it is

clear from these results that by altering the bleed flow this should have no significant

impact on diffuser and combustion system performance.

The effect of increasing the outer bleed on the condition of the flow at diffuser exit is

more clearly seen on examination of the normalised axial velocity contours (Figure

4.28). Two OGV wakes are visible separated by a peak in the velocity. As the outer bleed

rate is increased the wakes elongate, the contrast with the peak velocity reduces and the

overall distortion (α4) decreases. Furthermore, overall diffuser performance is seen to

increase with a reduction in total pressure loss being accompanied by an increase in

static pressure recovery as shown in Table 4.12.

Table 4.12 Diffuser Performance (2D Flame Tube, 3D Inlet Conditions, Bi=2.5%)

The main aim of measurements on this experimental configuration was not to further

investigate hybrid diffuser performance or flow mechanisms but to provide a set of data

Outer Bleed

(%)

Cp2-4 λ2-4 α4

2.5 0.70 0.21 1.63

3.0 0.70 0.21 1.60

3.5 0.71 0.20 1.45

m· total
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which could be used to validate computational predictions. To aid this the flame tube was

geometrically simple and used merely to present some representative blockage. Thus the

actual annulus performance (Table 4.13) is not important other than to provide validation

figures. It is clear from profiles of axial velocity within the annuli that attempting to turn

35% of the mass flow around the bluff flame tube and into the feed annuli presents a

severe aerodynamic challenge to the flow. In the inner annuli (Figure 4.29) the flow is

characterised by a very low velocity close to the flame tube casing. This is indicative of

the presence of separation as the flow attempts to follow the cowl profile. The flow in the

outer annuli (Figure 4.30) has not separated from the cowl but shows an inboard bias. 

Table 4.13 Annuli Performance (2D Flame Tube, 3D Inlet Conditions, Bi=2.5%)

The computational methodology is described and the results presented in the following

two sections. It is not sensible to compare and contrast the experimental data with the

CFD data until the latter has been fully introduced. Therefore, discussion of computa-

tional accuracy and validity will be presented in Section 6.0.

Outer Bleed

(%)

λ2-5 λ2-7

2.5 0.24 0.29

3.0 0.24 0.29

3.5 0.23 0.29

m· total
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4.5 Summary

In summary the experimental investigation has revealed the following main points:

• Hybrid diffusers demonstrated a significant increase in performance over conven-

tional diffusers within an isothermal representation of a modern, low-emission, radi-

ally staged combustion system. Pre-diffuser area ratios were increased by over 60%

from a conventional single passage diffuser with an associated rise in static pressure

recovery. However, perhaps the most notable performance benefit demonstrated was a

30% reduction in the feed annuli total pressure loss. This was attributed to the higher

rates of diffusion achieved by a hybrid diffuser which reduced dump gap losses and

ultimately improved the annulus feed. Performance was increased such that a system

incorporating a hybrid diffuser surpassed target total pressure losses in the feed annuli

whereas a conventional diffuser could not.

• Additionally, operation downstream of an axial compressor, in the presence of OGV

wakes, presented no problems. Similarly the inclusion of radial struts within the stage

3 section of the hybrid diffuser was not detrimental to overall performance and was

seen to be slightly beneficial by removing residual swirl.

• Results demonstrated agreement with the literature (Adkins et al[1980]) such that

hybrid diffusers were shown to require a certain minimum level of bleed before they

will function. However, contrary to conclusions in the literature it was clearly shown

that the presence of a vortex chamber is not necessary. A hybrid diffuser with bleed

afforded via a simple duct achieved similar performance to a hybrid diffuser contain-

ing a vortex chamber. This represents a significant engineering advantage as it allows

simplification of the bleed chamber geometry

• In general, bleed flow total pressure losses were seen to increase with bleed rate and

at the minimum bleed requirement were approximately 50% of rotor exit dynamic.

This is high and suggests more work is necessary to reduce this loss before the bleed

air can be confidently employed for turbine blade/disc cooling. However, a duct bleed
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offers a greater potential for reducing bleed flow total pressure losses than a vortex

chamber bleed.

• Finally, an attempt to simulate a 2D axi-symmetric configuration in order to provide

validation data for computational work proved unsuccessful. The introduction of a

clean inlet section reduced turbulence levels which had previously been beneficial to

the operation of the hybrid diffuser, consequently the flow separated. However, com-

prehensive measurements were taken on a simplified 3D geometry in order to provide

the necessary validation data.
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Figure 4.1 Variation of Diffuser Exit Profile with Bleed (Hybrid 4)

Figure 4.2 Circumferentially Averaged Axial Velocity Profiles at Pre-Diffuser Exit
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Figure 4.3 Axial Velocity Contours at Pre-Diffuser Exit
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Figure 4.4 Projected Total Velocity Vectors at Pre-Diffuser Exit
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Figure 4.5 Circumferentially Averaged Pitch Angle at Pre-Diffuser Exit

Figure 4.6 Circumferentially Averaged Swirl Angle at Pre-Diffuser Exit

0.0 0.2 0.4 0.6 0.8 1.0
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

Datum
Hybrid 1
Hybrid 2
Hybrid 3
Hybrid 4
Hybrid 5

(r - ri)/(ro - ri)

Pi
tc

h
A

ng
le

(d
eg

.)

0.0 0.2 0.4 0.6 0.8 1.0
-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

Datum
Hybrid 1
Hybrid 2
Hybrid 3
Hybrid 4
Hybrid 5

(r - ri)/(ro - ri)

Y
aw

A
ng

le
(d

eg
.)
                                                                                       146



4.0 EXPERIMENTAL RESULTS AND DISCUSSION
Figure 4.7 Flow Mechanism of a Hybrid Diffuser

Figure 4.8 Circumferentially Averaged Wall Static Pressure Recovery (Hybrid 4)
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Figure 4.9 Variation of Maximum Static Pressure Recovery

Figure 4.10 Contours of Wall Static Pressure Recovery (Hybrid 4, Binner = 2.75%, 

Bouter = 2.95%)

1.00 1.50 2.00 2.50 3.00 3.50
8.00

9.00

10.00

11.00

12.00

Lo
ca

tio
n

of
(d

C
p/

dx
)m

ax
fr

om
fe

nc
e

(m
m

)

Outer Bleed (%mtot)

0 0.25 0.5 0.75 10

1

2

3

0.67
0.66
0.65
0.64
0.63
0.62
0.61
0.60

O
G

V
Lo

ca
tio

n

Satge 3 Wall Distance (x/L)

Cp 2-w
                                                                                       148



4.0 EXPERIMENTAL RESULTS AND DISCUSSION
Figure 4.11 Circumferentially Averaged Axial Velocity Profiles in Outer Annulus
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Figure 4.12 Axial Velocity Contours in the Outer Annulus
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Figure 4.13 Projected Total Velocity Vectors in the Outer Annulus
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Figure 4.14 Circumferentially Averaged Swirl Angle in Outer Annulus

Figure 4.15 Circumferentially Averaged Velocity Profiles in Inner Annulus
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Figure 4.16 Axial Velocity Contours in Inner Annulus
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Figure 4.17 Projected Total Velocity Vectors in Inner Annulus
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Figure 4.18 Circumferentially Averaged Swirl Angle in Inner Annulus

Figure 4.19 Circumferentially Averaged Axial Velocity Profiles at Pre-Diffuser Exit
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Figure 4.20 Axial Velocity Contours at Pre-Diffuser Exit (Build 2)
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Figure 4.21 Projected Total Velocity Vectors at Pre-Diffuser Exit (Build 2)
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Figure 4.22 Differences between Vortex and Duct Bleed

Figure 4.23 Optimum Conventional Dump Bleed
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Figure 4.24 Variation of Outer Bleed Flow Loss with Bleed Rate (Hybrid 4)

Figure 4.25 2D Flame Tube with 3D Inlet (Rotor)
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Figure 4.26 Circumferentially Averaged Axial Velocity Profile at Diffuser Exit

Figure 4.27 Circumferentially Averaged Axial Velocity Profile at Pre-Diffuser Inlet
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Figure 4.28 Axial Velocity Contours at Diffuser Exit

Figure 4.29 Circumferentially Averaged Axial Velocity Profiles in Inner Annulus
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Figure 4.30 Circumferentially Averaged Axial Velocity Profiles in Outer Annulus
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5.1 Introduction

Sections 3.0 and 4.0 have described and discussed how high quality data for hybrid dif-

fusers were obtained using an experimental facility. However, the cost of such an experi-

ment is often high preventing a large parametric study being undertaken. This is

significant here as the effect of altering bleed gap geometrical parameters, although of

considerable design interest, was not investigated experimentally due to the complexity

and expense of test rig modifications. Computational Fluid Dynamics (CFD) offers a

complementary approach to experimental methods and, although not problem free, pro-

vides several key advantages. Over the last couple of decades both CFD algorithms and

computational power have increased immensely, thus allowing CFD techniques to be

used to predict many complex aerodynamic flows. Ultimately, final proof of most

designs is still determined using an experimental facility but CFD is an important tool in

the design process and significantly increases understanding of the relevant flow mecha-

nisms. It is in the nature of CFD that the flow field is predicted throughout the entire

solution domain at a resolution limited only by the modelling techniques employed and

the physical size of the computational grid. Thus, flow behaviour can be studied in areas

in which it may not be possible to gain access with instrumentation. It is significant that

this is used here to allow a detailed examination of the nature and behaviour of the flow

in a hybrid diffuser; specifically in the Stage 2 diffuser and subsequent reattachment on

the Stage 3 wall. 

The software used for CFD predictions is usually classified in one of three areas: Pre-

Processor, Solver and Post-Processor. In order to perform this investigation a number of

commercially available packages were used. Geometries and mesh definitions were gen-

erated using two packages; PreBFC (from Fluent Inc.) and the ICEM CFD suite (includ-

ing DDN, DDN Mesher Interface and HEX Mesher). A popular and robust solver,

Fluent, was used to define the physical constants, fluid properties and boundary condi-

tions, and finally solve the Reynolds Averaged Navier Stokes Equations. Fluent is also

capable of performing a significant amount of post-processing and has its own data visu-

alisation tools. However, to maintain consistency with the experimental data, Tecplot
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(AMTEC Engineering Inc.) was used for final graphical visualisation of the CFD data.

Commercially available software was used with the aim of simplifying the computa-

tional study. However, this does mean that no further development of solution techniques

to suit the particular flow physics was undertaken other than those already contained

within the software. Nonetheless, the following presents, for completeness a summary of

the modelling techniques used.

5.2 Governing Equations

Unfortunately CFD is not an easy tool to use and requires a sizable amount of knowledge

and experience before accurate predictions can be achieved. The following presents,

briefly, the governing equations of fluid motion for which direct numerical solution

(DNS) is not presently computationally feasible at high Reynolds Numbers. The classi-

cal methods employed to enable solution of the governing equations will be discussed

together with their applicability and accuracy.

The instantaneous continuity equation in Cartesian tensor notation is:

5.1

The momentum equations can be written as:

5.2

Equation 5.2 introduces further variables, namely the viscous stress components, τij and

these can be expressed for a Newtonian fluid (Schlichting[1979]) as:

5.3

t∂
∂ρ ρUi∂

xi∂
------------+ 0=

ρUi∂
t∂

------------
ρUiUj∂

xj∂
------------------+

xi∂
∂p–

xj∂
∂τij+=

τij µ
xj∂

∂Ui
xi∂

∂Uj+ 2
3
---µ xi∂
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Substitution of these viscous stresses into the momentum equations yields the Navier-

Stokes Equations which are a closed set of four non-linear equations with four

unknowns; U, V, W and P (assuming that at low Mach numbers the fluid properties ρ and

µ may be considered constant and known). 

5.3 Solution of the Governing Equations

Direct numerical solution of the Navier-Stokes equations is theoretically possible but

currently computationally far too demanding for practical Reynolds numbers to be use-

ful. Thus, the common practice is to decompose all of the instantaneous quantities into

mean and fluctuating components:

Ui = 5.4

instantaneous = mean + fluctuating

Defining the mean value via a long time-averaging

5.5

leads to the Reynolds Averaged form of the Navier-Stokes equations (quoted here for a

constant density, Newtonian fluid under steady state flow conditions):

5.6

5.7

                                              (1)              (2)     (3)         (4) 

5.8

The various terms can be described as:

(1) convection

(2) static pressure gradient

(3) viscous diffusion

(4) turbulent transport

Ui ui+

Ui xi( ) 1
T
--- Ui xi t',( )

t
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This set of equations is no longer closed since six extra stress terms, , three nor-

mal and three shear, appear in the Reynolds equations. Note that there are nine stress

terms but the stress tensor is symmetrical such that:

5.9

These turbulent stresses are termed the Reynolds stresses and physically represent the

transport of momentum due to the turbulent fluctuations. 

5.4 Closure - Turbulence Modelling

The Reynolds averaged form of the Navier-Stokes equations no longer represents a

closed system due to the extra Reynolds stress terms. Turbulence modelling is a compu-

tational method employed to close the set of mean flow equations. The main task is to

generate procedures which predict the Reynolds stress terms with sufficient accuracy

from knowledge of the time-averaged flow field. There are various methods by which

turbulence can be modelled with different amounts of success and accuracy. These meth-

ods fall into different categories depending upon the number of extra equations to be

solved for turbulence related quantities. Only two methods have been employed in this

investigation, so logically only these two turbulence models will be described. The k-εεεε

model (eddy-viscosity) and the Reynolds Stress model are two of the more established/

mature turbulence models and a full description of each can be found in most relevant

texts (for example Versteeg and Malalasekera[1995]). However, to allow discussion of the

turbulence characteristics of the flow in this investigation some of the underlying ideas

will be briefly presented here.

5.4.1  The k-εεεε Model (Eddy-Viscosity)

Turbulent stresses are found to increase as the mean rate of deformation increases and

Boussinesq (Hinze[1975]) proposed that the Reynolds stresses could be linked to the

mean rates of deformation in direct analogy with the Newtonian definition of molecular

viscous stress. Here the Reynolds stresses are modelled using an extension of Boussin-

ρuiuj( )

ρuiuj ρujui=
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esq’s eddy-viscosity relationship:

5.10

Where the extra term contains the Kronecker delta (δij = 1 when i = j and δij = 0 when i ≠

j) which provides the formula with the correct tensorial properties.

It is a common misconception that the Boussinesq hypothesis implies isotropic turbu-

lence of the normal Reynolds stresses which would be physically incorrect even for sim-

ple two-dimensional flows. Clearly, from Equation 5.10  as each term

contains different spatial velocity gradients. However, the Boussinesq hypothesis does

assume that the turbulent viscosity, µt, is a scalar quality, which is not true. The turbulent

viscosity is a function of the local shear which is a tensor and varies with direction. Thus,

when the anisotropy of the turbulence dominates the mean flow then inconsistencies in

µt will introduce errors in Equation 5.10. However, in flows of this type, such as highly

swirling flows or stress-driven secondary flows, the Boussinesq relationship still

accounts for the high velocity gradients.

The kinematic turbulent viscosity, which has units of m2s-1 can be expressed as a func-

tion of the velocity and length scale. The turbulent kinetic energy, k , and the isotropic

disipation rate of the turbulent kinetic energy, ε, are used to define a velocity scale, ϑ,

and a length scale, l:

, 5.11

5.12

and the dynamic turbulent viscosity as:

5.13

where Cµ is a dimensionless constant.
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The standard high Reynolds Number k-ε Model (Launder and Spalding[1972,74]) has two

model equations, one for k and one for  ε. Where:

5.14

5.15

Exact steady state transport equations for k and ε can be derived (Launder and Spald-

ing[1974]) and expressed for k as:

5.16

where:

Ck - convection 

Pk - production

Tk - turbulent transport

Vk - viscous diffusion

 - velocity-pressure fluctuation interactions

 ε − dissipation

and for ε:

5.17

where:

Cε - convection

 Tε- turbulent transport

 - pressure transport

Vε - viscous diffusion

P1
ε, P2

ε- creation by interaction of turbulence with mean flow

P3
ε - creation by turbulent interaction

P4
ε - viscous destruction

k 1
2
--- uiui( )=

ε µ
ρ
---

xj∂
∂ui

 
 
 

xj∂
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=

Ck Pk Tk Vk Πk ε+ + + +=

Πk

Cε Tε Πε Vε Pε
1 Pε

2 Pε
3 Pε
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The exact equations contain unknowns and unmeasureable terms but based on an under-

standing of the relevant process involved it is possible to model these terms. Beginning

with the exact Reynolds averaged equations for continuity, momentum, turbulent kinetic

energy and it’s isentropic dissipation rate (at high Reynolds numbers) the following

modelling assumptions are made to close the set of equations.

An eddy-diffusivity is used to model the correlation of any fluctuating scalar quantity, 

(e.g. fluctuations in k or ε) with the fluctuating velocities (these appear in the turbulent

transport terms Tk and Tε):

5.18

A turbulent Schmidt number (or turbulent Prandtl number), σt has been introduced

because φ may not diffuse at the same rate as momentum.

The pressure transport terms (  and ) are deemed small and neglected, although,

Bradshaw et al[1981] note that this is not generally true.

Finally, the remaining terms in the ε equation are modelled with a largely empirical

expression:

5.19

where Pk is the production of turbulent kinetic energy given by (for constant density

flow):

5.20

Including all the above modelling assumptions and for high Reynolds number flows the

following set of equations is formed:

φ
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----- φ∂
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-------=
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5.21

5.22

5.23

5.24

The five empirical constants are determined in a variety of ways (Launder and Spald-

ing[1972, 1974]) and the most common values used, also the default values in the Fluent

code, are:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 5.25

The model equations are elliptic by nature and thus the following boundary conditions

are needed:

1) inlet distributions of k and ε must be supplied

2) outlet or symmetry axis ∂k/∂n = 0 and ∂ε/∂n = 0

3) turbulent free stream k = 0 and ε= 0

4) solid walls Log-law for high Reynolds numbers and a reworking of the

 model equations for low Reynolds numbers 

(see Section 5.5)

If values of k and ε are not available at inlet then approximations for the inlet conditions

can be obtained from an assumed turbulence intensity, Ti, and a characteristic eddy

length, l:

            5.26
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Versteeg and Malalasekera[1995] report that, although the k-ε model has achieved notable

success in predicting general engineering flows it is not without its problems. It is well

established and widely validated for many cases but has been observed to be inaccurate

in unconfined flows such as far wakes and mixing layers as the rate of production of tur-

bulent kinetic energy can be much less than the rate of dissipation. Problems are also

encountered for flows with large extra strains such as curved boundary layers, diverging

passages and swirling flows; where highly anisotropic turbulence has a dominant effect.

Craft and Launder[1991] reported that the k-ε model will overpredict the total pressure

losses in impingement regions whereas Bradshaw[1973] reported that the model fails to

predict the large total pressure losses caused by streamline curvature. Little et al[1997]

predicted the flow in a dump diffuser combustion system and suggested that the latter

failing is almost certainly the largest leading to an underprediction of total pressure loss.

5.4.2  The Reynolds Stress Equation Model

The Reynolds Stress Equation Model (RSM), also called the second-order or second-

moment closure model, is the most complex classical statistical turbulence model. The

RSM involves abandoning the concept of an eddy-viscosity altogether (and hence the

Boussinesq relationship for ) and solving separate transport equations for the indi-

vidual Reynolds stresses. These can be derived from the momentum equations and con-

tain triple order velocity correlations and pressure-velocity correlations that must be

modelled to obtain closure. The methodology, in its most complex form, arises from

Launder et al[1975] and Launder[1989]. However, most commercial codes (including Flu-

ent) have some simplification.

A transport equation for the Reynolds stresses ( ) can be written in the form:

5.27

where:

C - convection

P - production

T - turbulent transport

uiuj

uiuj

Cij Pij Tij Vij Πij εij+ + + +=
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V - viscous diffusion

 - velocity-pressure gradient interaction

 ε - dissipation

Within Equation 5.27 the convection, production and viscous diffusion terms require no

modelling and are given by Equations 5.28 to 5.30:

5.28

5.29

5.30

The turbulent transport term is given by:

5.31

and requires modelling. This is achieved by assuming that the triple velocity correlations

are directly related to the gradients of the Reynolds stresses through the generalised gra-

dient-diffusion model of Daly and Harlow[1970]. However this can result in numerical

instabilities so is simplified in Fluent to use a scalar diffusivity (Lien and

Leschziner[1994]):

5.32

The pressure-strain interactions ( ) affect the Reynolds stresses in two ways; (1) via

pressure fluctuations arising due to interactions of eddies with regions of flow with dif-

ferent mean velocity and (2) via pressure fluctuations caused by two eddies interacting

with each other. These processes re-distribute energy between the Reynolds normal

stresses making them more isotropic while reducing the Reynolds shear stresses. The

influence of a wall on this process necessitates corrections, details of which are given in

Launder et al[1975], however, Fluent’s RSM does not include the wall reflection terms

Π
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resulting in a pressure-strain term modelled as:

5.33

where P = 0.5Pii, C1 = 1.8 and C2 = 0.6

The turbulent kinetic energy is computed by summing the normal Reynolds stresses:

5.34

The dissipation rate, εij, is approximated, for high Reynolds numbers, by the isotropic

dissipation rate, ε, such that:

5.35

ε is computed using a model transport equation. Launder et al[1975] present a more exact

form of this equation for ε but like most commercial codes Fluent uses an equation iden-

tical to that used in the standard k- ε model. δij is the Kronecker delta as before and thus

affects normal Reynolds stresses only. This is a reasonable assumption since small scale

motions responsible for the dissipation of turbulence are isotropic.

The model equations are elliptic by nature and the required boundary conditions are:

1) inlet distributions of  and ε must be provided

2) outlet or symmetry axis ∂ /∂n = 0 and ∂ε/∂n = 0

3) turbulent free stream  = 0 and ε= 0

4) solid walls Similar wall functions to the k-ε model for high

Reynolds numbers or a more detailed treatment is

required at low Reynolds numbers

If exact distributions of  and ε are unavailable at flow inlets then approximations can
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be obtained from a turbulent intensity, Ti, and a characteristic length scale, L, using the

following assumptions:

                                       

    5.36

5.5 Modelling of Near-Wall Flows for Wall-Bounded Flows

The two turbulence models discussed in Sections 5.4.1 and 5.4.2 are valid for main-

stream flows only (i.e. flows which are not affected by the presence of a wall). The tur-

bulent flow in regions close to a wall is affected greatly by the presence of this wall.

Firstly, the mean velocity field is altered by the no-slip condition at the wall (i.e.

Uwall=0). Secondly, turbulence close to the wall is heavily damped. In the outer part of

the near wall region turbulence is rapidly amplified by the production of turbulent kinetic

energy due to the Reynolds stresses and the large gradient of mean velocity.

The near-wall region is classically separated into three layers; a laminar sub-layer, an

inner region and an outer region. In the laminar sub-layer the flow, as the name suggests,

is almost laminar in nature and momentum transfer is dominated by the molecular vis-

cosity. In the outer layer the flow is fully turbulent with the turbulence levels playing a

major role. Finally, in the inner layer (or buffer layer) turbulence and molecular viscosity

are both equally important.

There are two methods which can be employed to model this near-wall region. Firstly,

the viscous laminar sub-layer and the outer regions described above can be resolved

completely in a method known as ‘near-wall modelling’. This involves generating a

mesh close to the wall that is fine enough to capture the sub-layer. The main drawback of

this method is it results in a very high density mesh in the regions close to the wall. This

can be computationally expensive and impractical for complex geometries. The second

method uses semi-empirical formulae called ‘wall-functions’ to bridge the viscosity

affected region between the wall and the outer region. The wall function approach is rea-

sonably robust, economical and accurate and is thus more popular than near-wall mode-
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ling. 

5.5.1  Wall Functions

There are two wall functions available within Fluent; a standard wall function and a non-

equilibrium wall function and both comprise law-of-the-wall type functions for mean

velocity and appropriate treatments for the near-wall turbulent quantities.

The basis of wall functions is illustrated in Figure 5.1. An experimentally determined

boundary layer velocity profile can be closely approximated by a linear relationship in

the laminar sub-layer and a log-law relationship in the outer fully turbulent region.

Firstly, non-dimensional velocity and distance (from the wall) parameters are derived:

5.37

5.38

where  and is known as a ‘friction velocity’.

Thus, in the laminar sub-layer (where, generally y+ <5):

5.39

or:

5.40

In the outer layer (30<y+<500) the velocity profile is approximated by a log-law rela-

tionship as described in Launder and Spalding[1974], such that:

5.41

where:

κ - von Karman’s constant (0.42)

U+ U
Uτ
------=
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y
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ρ
------ 
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U+ y+=

U
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---------=

U+ 1
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E - empirical constant (9.81)

In Fluent the Standard Wall Function employs a slightly different format of the log-law

with the mean velocity given by:

5.42

where:

5.43

5.44

and:

UP - mean velocity at point P

kP - turbulent kinetic energy at point P

yP - distance from point P to the wall

 - dynamic viscosity of the fluid

The logarithmic law for mean velocity is valid for y* greater than 30-60. To determine a

point at which to switch from a linear relationship to a log-law Fluent uses the intersec-

tion of the two relationships, where:

5.45

This yields a value for y* of about 11.2. Therefore, Fluent employs the log law when y*

is greater than 11.225. In cells next to the wall with values of y* less than 11.225 the

standard wall function in Fluent applies the laminar stress-strain relationship:

U* = y* 5.46

The log-law is implemented computationally by using information at the near wall point

to deduce the wall shear stress, , which is then used in the discretised momentum

equation for the near wall point.
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κ
--- Ey∗( )ln=

U∗
UPCµ

1 4⁄ kP
1 2⁄

τw/ρ
------------------------------≡

y∗
ρCµ

1 4⁄ kP
1 2⁄ yP

µ
--------------------------------≡

µ

U∗ y∗ 1
κ
--- Ey∗( )ln= =

τw
                                                                                     177



5.0 COMPUTATIONAL METHODOLOGY
The k equation is solved in the whole solution domain including the wall cells with the

imposed boundary condition:

5.47

The production of kinetic energy (Pk) and its dissipation rate in the near-wall cells are

computed from the assumption of local equilibrium. That is to say that the production of

k and its dissipation is assumed to be equal in the near-wall cells. The production is cal-

culated from:

5.48

The  equation is not solved in the near-wall cells. Equation 5.49 is used instead.

5.49

The Non-Equilibrium Wall Function (Kim and Choudhury[1995]) is an additional near-

wall treatment offered by Fluent. Essentially, the main differences from the standard

function are that Launder and Spalding’s[1974] log-law is sensitised to pressure gradient

effects and a two-layer concept is used to apportion the turbulent kinetic energy in the

cells adjacent to the wall.

The sensitised log-law for mean velocity results in the following relationship:

5.50

where:

5.51

yv is the non-dimensional thickness of the laminar sub-layer given by:
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5.52

where yv
* = 11.225.

In the two-layer approach the cells immediately adjacent to the wall are assumed to be

made up of a viscous sub-layer and a fully turbulent layer. The following assumptions for

the turbulent quantities are then made:

5.53

where 

From these profiles the cell-averaged production and dissipation may be computed.

Essentially the local equilibrium assumption (production = dissipation) has been relaxed

in the near-wall cells. The turbulent kinetic energy budget has been altered to take into

account the proportions of the laminar sub-layer and the fully turbulent outer layer.

The standard wall function has been used extensively and gives reasonably accurate pre-

dictions for the majority of high Reynolds number, wall bounded flows. Kim and Choud-

hury[1995] recommend that the non-equilibrium wall function should be used for

complex flows involving separation or reattachment. However, both functions rely on

the same assumption that the boundary layer profile can be closely approximated by a

linear relationship in the laminar sub-layer and a log-law relationship in the outer fully

turbulent region. Therefore, when this is not the case both wall functions will be in error.

Furthermore, the successful computation of wall bounded flows requires careful consid-

erations during the grid generation process. Grid cell size and spacing of wall adjacent

cells must be determined such that the log-law is valid. Distance from the wall is meas-

ured by the parameters y+ and y* (Equations 5.36 and 5.43) which are both solution

dependant and not geometrically fixed. According to Equation 5.45 the linear and log-
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law relationships coincide at a y+ value of approximately 11.2. This sets a lower limit to

the distance from the wall to the nearest grid cell. In the outer layer Versteed and Malala-

lsekera[1995] state that the value of y+ is generally between 30 and 500 and thus suggest a

minimum value of 30 is preferable. However, this is often not possible to ensure in a real

flow. For example in recirculating flow, close to the reattachment point, the velocity

component parallel to the wall is zero with the result that the computation reverts to a

laminar case.

5.6 Numerical Implementation

Fluent uses a control volume technique to convert the differential equations to algebraic

equations which can be solved numerically. This consists of integrating the differential

equations about each control volume (each grid cell), yielding a finite-difference equa-

tion that conserves each quantity on a control-volume basis. Discretisation, using this

finite volume approach, requires appropriate differencing of the convective and diffu-

sive fluxes at each face of the control volume.

The methods used to obtain face pressure and mass fluxes are outlined in Fluent[1998].

The face fluxes are obtained such that the face velocities obey an averaged momentum

balance and face pressures such that velocities stored at cell centre obey the mass bal-

ance. In Fluent this avoids oscillatory pressure or velocity fields (Patankar[1980]) and that

the physical variation of pressure and momentum between cell centres is accurately rep-

resented. 

A Blended Second Order Upwind/Central Difference Scheme (Maruszewski[1992])

was used to determine cell face fluxes. For example the face value of an unknown, φf,

can be expressed as follows:
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5.54

Here boundedness is achieved through the use of θ, which is computed from:

 where 5.55

Pressure-Velocity Coupling

In an incompressible flow prediction the pressure cannot be determined from the equa-

tion of state in the usual manner; the density is constant and by definition is not linked to

the pressure. Furthermore, pressure is only introduced in each component of the momen-

tum equation, which are used to determine each velocity component. The coupling

between pressure and velocity introduces a constraint on the solution of the flow field: if

the correct pressure field is applied in the momentum equations the resulting velocity

field should satisfy continuity. Thus the problem which arises is how to determine the

pressure field from the continuity equation. The pressure-correction technique used to do

this is basically an iterative approach using some physical reasoning to construct the next

iteration from the previous until the pressure and velocity filed are consistent and conti-

nuity is satisfied. The process can be summarised:

•  Step 1 : start with a ‘guess’ for the pressure field (p*).

•  Step 2 : use p* to solve for velocity from the momentum equations (u*, v*).

•  Step 3 : use the continuity equation to construct a pressure correction (p’) which 
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added to p* will bring the velocity field closer to satisfying continuity. The 

‘corrected’ pressure is p = p* + p’. Corresponding velocity corrections can 

be obtained from p’ such that u = u* + u’ and v = v* + v’

•  Step 4 : use p as the new value of p* and repeat the process from Step 2 until the 

velocity field satisfies continuity.

In this study the pressure correction was achieved using the SIMPLE algorithm which

stands for Semi-Implicit Method for Pressure-Linked Equations and is described in

detail by Patankar[1980].

The Iterative Solution Procedure

The SIMPLE algorithm relates the velocity and pressure field which satisfy the momen-

tum and continuity equations at a point. However, Fluent (and other CFD codes) do not

solve the equations at all points simultaneously as it is too demanding on computational

resources. Furthermore the equations are coupled and non-linear, therefore an iterative

solution procedure is required with iterations continuing until all equations are satisfied

at all points. 
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5.7 Computational Investigation of Hybrid Diffusers

The main aim of this computational study was to provide a better understanding of the

controlling flow mechanisms of a hybrid diffuser. This is a reasonably broad aim, and

therefore the investigation initially concentrates on the bleed flow and reattachment

process. To meet this aim flow predictions were made for a simple two-dimensional

hybrid diffuser without a dump or flame tube. In undertaking any CFD calculations it is

important to determine that the solution is grid independent and accurate within the

bounds of the modelling assumptions used. A simple two-dimensional case not only pro-

vides an ideal vehicle with which to study the basic flow mechanisms but, importantly, it

also provides a simple platform with which to:

 •  establish a grid methodology,

 •  ensure grid independency,

 •  assess turbulence model performance, and

 •  develop and assess boundary conditions.

Once the necessary methodology was established using this simple two-dimensional

case it was then maintained throughout the CFD investigation including the results dis-

cussed in the following chapter.

Furthermore, a simple two-dimensional CFD investigation allows a more generic study

to be undertaken. The experimental work described in Sections 3.0 and 4.0 employed

hybrid diffusers similar to those described by Adkins et al[1980] but due to hardware con-

straints the bleed gap geometry remained unaltered. However, it is reasonably straight-

forward to alter geometry using CFD and as such several different yet generic Stage 2

geometries were modelled and their relative performance compared. 

A natural progression of the investigation leads to a prediction which matches the exper-

imental test rig thus allowing direct comparison between experimental and computa-

tional data. However, a three-dimensional prediction including burners and a fully

featured flame tube represents a very complex geometry. Grid definition and generation

becomes a lengthy process and beyond the scope of this current investigation. It was not
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feasible to generate an exact computational model of the test facility and some geometri-

cal simplification was necessary. Specifically this meant removing the burners and

replacing the complex ‘double-bubble’ cowl with a simpler design. Furthermore, to

facilitate the step from a plane two-dimensional geometry to three-dimensions an axi-

symmetric representation of the test rig was first investigated. Finally, this was extended

into three-dimensional sector by rotation around the centre line thus allowing the inclu-

sion of three-dimensional inlet conditions incorporating OGV wakes.

It is important for any CFD investigation that the solutions generated are shown to be

accurate and valid and this is usually achieved by a grid refinement study and direct

comparison with an identical experiment case. Thus, the experimental test facility was

also modified by replacing the burners and cowl with a simple cowl (Figure 3.17, Sec-

tion 3.6). Furthermore, two and three-dimensional inlet conditions were generated by

removing the compressor (2D) or retaining it and its associated 3D downstream condi-

tions (including OGV wakes).

5.7.1  Geometry Definition and Boundary Conditions

In this section the geometry definitions and applied boundary conditions for the CFD

predictions will be discussed in detail. Eleven distinct diffuser geometries were studied,

all based on an inlet height of 30.5mm, an overall area ratio of 2.5 and a non-dimensional

length of 3.5. The first nine geometries model simple, plane, two-dimensional hybrid dif-

fusers enabling a generic study of bleed gap geometry. The final two geometries were

designed to model a simplified version of the test facility (refer to Section 3.6) firstly

with two-dimensional inlet conditions and finally with representative three-dimensional

inlet conditions including OGV wakes.

5.7.1.1  Plane Two-Dimensional Hybrid Diffusers

Computational models of nine plane two-dimensional diffusers were developed in order

to study and reveal more information about hybrid diffuser flow mechanisms. For sim-

plicity no downstream components were modelled and all the diffusers terminate in a

constant area length of duct (see Figure 5.2). Furthermore, the two-dimensionality allows
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a symmetry boundary condition to be applied at mid inlet duct height, such that:

 =  =  = 0 and v = 0

thus halving the number of grid cells and the computational load.

a) Vortex Bled Hybrid Diffuser

The first diffuser (Figure 5.2) is based on the type of diffuser proposed by Adkins et

al[1980] and has an identical geometry to the Hybrid4 diffuser (Section 3.0) used in the

experimental study. This diffuser incorporates a bleed via a vortex chamber which is,

again, identical in geometry to the vortex chamber used in conjunction with the Hybrid4

diffuser.

b) Duct Bled Hybrid Diffuser

Experimental results clearly indicated that it is not necessary to bleed the air via a vortex

chamber as suggested by Adkins et al[1980] and a ducted bleed performs a similar, if not

the same, function. This is significant as it impacts the suitability of hybrid diffusers for

use in aero gas turbine combustion systems. It is unlikely that a vortex chamber would be

used due to its complexity and associated weight penalty but a ducted bleed is a much

more viable option. Therefore, in order to further investigate this, a Duct Bled diffuser

was studied. This is identical to the Vortex Bled diffuser except that, as shown in Figure

5.3, the vortex chamber has been replaced by a simple duct of width x (x/h1 = 0.15).

c) Extended Duct Bled Hybrid Diffuser

To further investigate the difference between a vortex chamber and a duct bleed a third

hybrid diffuser was modelled with bleed afforded through an extended duct of width 2x

(Figure 5.4). This then provided a geometry some way between a simple duct and a vor-

tex chamber.

n∂
∂U

n∂
∂k

n∂
∂ε
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d) Conventional Diffuser

In order to provide a benchmark the fourth diffuser represents a conventional unbled dif-

fuser as shown in Figure 5.5. To maintain a measure of similarity between the conven-

tional diffuser and the hybrid diffusers the wall angle is varied such that the Stage 1

geometry is unchanged.

e) Alternative Bleed 1

The importance of the combination of a step expansion and Coanda bubble is unclear.

Thus to investigate this the Stage 2 fence was removed firstly by joining the tip of the

fence to stage 3 diffuser exit as shown in Figure 5.6 and...

f) Alternative Bleed 2

... secondly by simply removing the fence (Figure 5.7)

g) Alternative Bleed 3 - “Boundary Layer Bleed”

It has been argued that the flow mechanisms of a hybrid diffuser do not simply remove

the poor quality, energy deficient boundary layer flow but there is a more complex inter-

action between the bleed and mainstream flows. This diffuser, as shown in Figure 5.8,

represents an attempt to model the conventional diffuser of Figure 5.5, but a portion of

the boundary layer is “bled” off without any of the associated mechanisms of a hybrid

diffuser in order confirm whether or not there is a more complex interaction.

h) Alternative Bleed 4 - “Profiled Bleed Gap”

The quality of the bleed flow will affect its suitability for use elsewhere in an engine and

ultimately this will affect the potential use of hybrid diffusers in aero gas turbines. As the

flow enters the bleed duct it will undoubtedly separate and there will exist a separation

bubble (as shown in Figure 4.22). This process will inherently contain a high degree of

loss and will contribute significantly to the overall bleed flow loss. Figure 5.9 illustrates
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one attempt to remove this separation by profiling the upstream corner of the duct.

i) Alternative Bleed 5 - “Angled Bleed Duct”

A second attempt to reduce bleed flow loss was made by angling the bleed duct with the

aim of removing some of the turning loss as shown in Figure 5.10.

Boundary Conditions

The condition of the boundary layer prior to the bleed will influence the bleed flow and

diffuser performance. Therefore, to ensure a boundary layer condition on the Stage 1

wall similar to the experimental case inlet conditions were inferred from OGV exit meas-

urements on the experimental test facility. Taking the circumferentially averaged axial

velocity profile (with zero swirl) gave the inlet axial velocity profile shown in Figure

5.11 with an average velocity of 50.5 ms-1. As no inlet turbulence data exist Equations

5.26 and 5.36 were used to approximate the relevant values for k, ε and Reynolds stress

by specifying an inlet turbulence intensity and characteristic length. Using a hot wire

anemometer to take measurements downstream of the rotor, the average inlet turbulence

intensity was found to be about 5%. Thus this value was used in conjunction with a char-

acteristic length equal to the inlet passage height (30.5 mm) to define the inlet turbulence

data. Additionally it was found that the final solution was relatively insensitive to varia-

tions in these values. For example, Table 5.1 shows that there was no change in overall

diffuser static pressure recovery when the characteristic length was altered. Similarly

Figure 5.12 illustrates that there was negligible difference in the axial velocity profile at

stage 1 exit for changes in inlet turbulence intensity.

Table 5.1 Effect on Solution of Inlet Characteristic Length (Ti = 5.0%, B = 3.0%)

Characteristic Length, L (mm) Cp2-4

15.0 0.779

20.0 0.778

30.5 0.778
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A fixed boundary condition was imposed at bleed flow exit and utilising continuity to

calculate an appropriate velocity the mass flow rate could be set at the desired value.

Finally a zero-gradient boundary condition was applied to the exit such that:

  and  = 0

5.7.1.2  Two-Dimensional Axi-Symmetric Hybrid Diffuser

This geometry (Figure 5.13) comprises a two-dimensional, axi-symmetric representation

of the test facility. The computational geometry has been somewhat simplified in order to

make the CFD predictions possible. However, as discussed in Section 3.6 the test facility

was also modified to produce a two-dimensional axi-symmetric configuration with the

aim of using experimental data for CFD validation. Thus, many of the more complex

features of the original test rig configuration have been removed but it is unlikely that

these greatly affect the generic behaviour of the diffuser. The burners were omitted com-

pletely and the double cowl was replaced by a single entity with limited porosity mod-

elled by a slot representing the splitter annulus. Finally, the dump liner profile was

simplified in order to ease grid generation. A summary of the leading dimensions is

given in Table 5.2. Removal of the burners necessitated a redistribution of the mass flow

and simple area weighting was used to re-calculate the desired mass flow distribution

such that the inner/splitter/outer annuli flow were divided in the ratio 35:30:35. An inlet

velocity profile was taken from inlet measurements on the 2D axi-symmetric test rig

(refer to Section 4.4.1) and the desired bleed flow rates set using fixed velocity boundary

conditions at various flow rates.

Table 5.2 2D Axi-Symmetric Geometry - Leading Dimensions

Feature Station No. Outer Radius (mm) Inner Radius (mm)

Inlet 3 332.0 301.5

Diffuser Exit 4 354.9 278.6

Inner Annulus 5 210.0 182.0

Splitter Annulus 6 320.0 340.0

Outer Annulus 7 474.5 450.0

n∂
∂k

n∂
∂ε
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5.7.1.3  Three-Dimensional, Fully Annular Hybrid Diffuser

The final geometry chosen for study computationally consists of essentially the same

features as the 2D axi-symmetric geometry but extended by rotation in the circumferen-

tial direction. Experimental data illustrate that the inlet velocity varies in the circumfer-

ential (θ) direction in a cyclic/periodic nature. The periodicity of this variation is set by

the OGVs and IGVs, therefore by applying periodic boundary conditions, a sector geom-

etry was generated which computationally represented a full annulus. The sector geome-

try (Figure 5.14) encompasses two OGV spaces with the periodic boundary conditions

subtending an angle of 4.62 degrees. By utilising this approach the demand on computa-

tional resources is significantly reduced.

The experimental facility was also modified by returning the single axial compressor

stage to the two-dimensional axi-symmetric rig configuration, thus producing an experi-

mental set up which was a good match for the computational prediction.

Three dimensional inlet velocity definitions were taken directly from five-hole probe

measurements in the experimental facility. As described in Section 3.2.3 the experimen-

tal data is expressed in a polar (x, r, θ) co-ordinate system. Additionally Appendix A3

describes how the data acquisition system for a five-hole probe records data expressed in

terms of a total velocity (Utot), true yaw angle (YTR) and pseudo pitch angle (PPS) at

specific radial (r) and circumferential (θ) locations. Fluent requires axial (u), radial (v)

and tangential (w) velocities to be specified at inlet and these were easily computed for

the 21 x 21 radial and circumferential locations corresponding to the five-hole probe area

survey by application of the equations given in Appendix A3.

The resulting inlet axial velocity contours are shown in Figure 5.15 with a v-w vector

plot shown in Figure 5.16. The three-dimensional nature of the inlet conditions is clearly

visible with the presence of two OGV wakes (i.e. darker contours). Unfortunately,

detailed information on the structure of the inlet turbulence was not available so, as

before, an inlet turbulence intensity of 5% and a characteristic length equal to the inlet

passage height were used in conjunction with Equations 5.26 and 5.36 to approximate

the distributions of k, ε and Reynolds stress.
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Boundary conditions for the bleed flows and combustor features were set as before using

a fixed velocity condition to force the desired mass flow. The flow to the inner/splitter/

outer combustor feed annuli was divided, as for the experimental equivalent, in the ratio

35:30:35.

5.7.2  Post-Processing and Presentation of Results

Once a CFD solution has been generated it is then necessary to extract data of the

required type and form for analysis. Logically, since one aim was to compare the CFD

data to experimental data, it is sensible that a consistent format is used. To achieve this is

fairly straight forward as within Fluent there are several options which allow the user to

extract solution variables and derived variables. Thus, mass weighted mean pressure data

can be easily extracted at locations corresponding to the experimental measurements sta-

tions (refer to Figure 3.2).

Experimentally, for the hybrid diffuser, access was not available for instrumentation at

OGV exit. Thus all experimental performance data are quoted with respect to rotor exit

conditions (therefore including OGV performance). For example, the diffuser total pres-

sure loss coefficient is:

 5.56

where 2 refers to rotor exit and 4 refers to diffuser exit

However, for the computational data the inlet corresponds to the OGV exit plane and

performance data quoted with respect to this would not include OGV performance (e.g.

loss). Thus to enable sensible comparisons with experimental data the computational

data must be further processed to relate to a ‘rotor-exit’ condition. 

In the experimental investigation (refer to Chapter 3.0 and 4.0) with either of the conven-

tional diffusers fitted access became available for instrumentation at OGV exit. Hence

OGV performance could be assessed and Equations 5.57 and 5.58 define the measured

OGV total pressure loss and static pressure recovery respectively.

λ2 4–
P̃2 P̃4–
P̃2 p̃2–
-----------------=
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 5.57

5.58

Using computational data at inlet (i.e. corresponding to OGV exit - station 3) and Equa-

tions 5.57 and 5.58 it becomes possible to calculate total, static and dynamic pressures at

at ‘pseudo’ rotor exit plane. Using this information the computational performance data

can be quoted with reference to this ‘pseudo’ rotor exit condition and hence compared

directly with experimental data; both now including OGV performance.

Fluent also allows variables to be extracted at specific grid nodes which in turn enables

the extraction of the necessary data to produce X-Y profile plots, two-dimensional con-

tour plots and velocity vector plots. Final graphical presentation of these data was

achieved using Tecplot in an identical manner to that used for the experimental data as

described in Section 3.2.4.

5.8 Grid Generation and Solution Development

To predict the flow field Fluent was used to solve for an incompressible flow regime in a

polar co-ordinate system. The steady state solution to the equations of motion was found

using a finite volume method, employing a blended second order upwind/central differ-

encing scheme and the SIMPLE pressure correction algorithm. Both the k-ε and Rey-

nolds Stress turbulence models were used as were both available wall functions.

However, before any aerodynamic analysis of the CFD predictions can begin assessment

and development of the computational grid and the solution techniques must be con-

ducted. This involves examination of the solution to ensure that it is reasonable, repre-

sents a physical flow regime and grid independent (within practical limits). This is a

complex issue as many of the factors involved are closely linked. For example, the accu-

racy of a CFD prediction is, in general, governed by the number of grid cells and a grid

with too few cells may be unable to capture, effectively, some specific flow mechanism

λ2 3–
P̃2 P̃3–
P̃2 p̃2–
----------------- 0.10= =

Cp2 3–
p̃2 p̃3–
P̃2 p̃2–
----------------- 0.40= =
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resulting in an inaccurate or un-physical solution. However, simply increasing the

number of grid cells may not be computationally practical. Furthermore, the choice of

turbulence model, wall model and boundary conditions will also effect the final solution.

Therefore, it is important to investigate all of these effects and then decide on an opti-

mum combination.

Here, development of the solution techniques was performed, for simplicity, on the plane

two-dimensional, duct-bled hybrid diffuser (Figure 5.3) with the final methodology then

being carried forward to the more complex predictions.

5.8.1  Initial Grid Definition

The important flow mechanisms for a hybrid diffuser are located in and around the Stage

2 section of the hybrid diffuser, specifically around the bleed off-take, step and fence.

Therefore, it is important that the computational grid has a sufficient number of cells in

these regions to successfully capture the physics of the flow. However, since the flow

mechanisms weren’t fully understood the initial grid involved a ‘best-guess’. Thus 20

cells were used across the bleed gap. A cell aspect ratio close to unity was maintained

around the bleed as shown in Figure 5.17. Uniform grid stretching was used to ensure

cell aspect ratios and expansion ratios were kept within acceptable limits (i.e. ratios were

close to unity in regions where there are strong gradients in the flow but relaxed in

regions of the flow which were generally one dimensional). Overall the initial grid con-

tained 300 x 100 cells which represents a relatively low computational workload given

the facilities available.

Boundary conditions as described in Section 5.7.1 were applied in order to produce a

bleed flow rate equal to 3.0% of the total inlet mass flow. A solution was generated using

Fluent v5 with, initially a k-ε turbulence model in conjunction with a standard wall func-

tion to model the near-wall flow.

Experimental data (refer to Chapter 4.0) indicated that a bleed rate of 3.0% would be

above the minimum bleed requirement and the flow should rapidly reattach on the Stage

3 wall. However, a converged solution predicted a non-physical flow regime on the
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Stage 3 diffuser wall. The core flow appeared, initially, as expected with the bleed flow

accelerating into the vortex chamber and a Coanda bubble present immediately down-

stream of the fence but on closer inspection it was clear that the predicted flow near the

wall was physically incorrect. Along the length of the Stage 3 wall the predicted solution

contained a long thin recirculation extending over the wall adjacent cell and its neigh-

bour (Figure 5.18). This behaviour existed along the entire length of the Stage 3 diffuser

wall with little or no positive momentum diffusing from the mainstream flow to the near

wall cell. A second solution was generated but this time using Fluent’s non-equilibrium

wall function. No change was observed and a non-physical flow regime was still in exist-

ence along the Stage 3 wall. A third solution, this time employing a Reynolds Stress tur-

bulence model and a standard wall function. However, Figure 5.19 illustrates that with a

Reynolds Stress model the opposite was observed and the flow in the near wall cell was

seen to accelerate. This ‘wall-jet’ also represents a non-physical solution as it is incon-

sistent with the ‘no-slip’ condition at the wall. A further solution was generated using

Fluent’s non-equilibrium wall function but the non-physical flow behaviour was still

present and unchanged.

5.8.2  Grid Refinement and Near Wall Treatment

The standard and non-equilibrium wall functions both model the near-wall flow by

employing a linear velocity-distance relationship in the laminar sub-layer and a log-law

relationship in the fully turbulent layer as described in Section 5.5.1. The switch from

linear (laminar) to log-law (fully turbulent) modelling occurs in Fluent at a value of

y*>11.225, but the log-law is generally only valid for y+ greater then 30-60. On closer

inspection of the initial solutions described above there was seen to be some discrepancy

between the values of y+ and y* such that it appeared that a log-law relationship was

being applied when it wasn’t valid (i.e. y+<<30-60). This can occur when the near wall

grid spacing is too dense and the laminar sub-layer extends over more than one cell. To

avoid this situation the size of the near wall cell must be enlarged in a direction normal to

the wall. The near wall cell height downstream of the fence in the initial grid corre-

sponded to about 5% of the fence height. Three more grids were generated with the near

wall cell height extended (along the Stage 3 wall only) to 16.5%, 25% and 50% of the

fence height (Figure 5.20).
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Further solutions were computed for these new grids employing both turbulence models

and both wall functions. For a k-ε model it was immediately evident that the new solu-

tions were much improved and, for the grid with a Stage 3 near wall cell height elon-

gated to 16.5% of the fence height, the non-physical flow behaviour had been eliminated.

However, with a Reynolds Stress model, although reduced, the non-physical flow was

still evident to some extent for or all grids and both wall functions (refer to Section

5.8.3).

The choice of wall function appears to make very little difference to the predicted solu-

tion. Figure 5.21 plots, for both wall functions, the axial velocity along the Stage 3 wall

in the near wall cell for a k-ε model. Clearly, there is very little difference in the pre-

dicted velocity near the wall between the two wall functions. Both the standard and non-

equilibrium wall functions are based on the same basic approximations (Section 5.5.1)

and, therefore, since differences in the final solutions are small only the more classic

standard wall function was employed for all successive predictions.

In order to finalise the grid it was necessary to ensure that the solution was grid inde-

pendent. The overall accuracy of a CFD solution is related to the number of grid cells

used, however, the final grid density is limited to a practical level by the complexity of

the geometry. Two further grids were generated, maintaining the near wall spacing, but

doubling the number of cells in each direction for the first, and similarly halving the

number of cells in each direction for the second. Solutions were generated for each grid

with both turbulence models and both wall functions. Figure 5.22 summarises the effect

of grid density on the diffuser static pressure recovery and mean exit velocity. Effec-

tively the solution appears grid independent above 30000 cells (300 x 100); any benefit

gained by increasing grid density above this would be offset by increased computational

load.

5.8.3  Turbulence Model Assessment

The final choice of turbulence model is not a simple one as there are many factors to take

into account. Many CFD experts consider the more complex Reynolds Stress model to

be a more viable way forward for a general purpose turbulence model. The k-ε model is
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known to have problems for some unconfined flows and flows with large extra strains

(e.g. curved boundary layers and swirling flows). Little et al[1997] demonstrated that sys-

tem loss in a dump diffuser was underpredicted due to the inability of the k-ε model to

predict the large increases in loss due to flow curvature over the head of a combustor.

However, the k-ε model has been widely used and validated and has achieved notable

success in the prediction of engineering flows. Little et al[1997] conclude that a k-ε model

can be confidently used in the prediction of trends.

Predictions using the Reynolds Stress model also have problems in some flows involving

unconfined recirculation owing to problems with the ε-equation modelling. Furthermore,

the Reynolds Stress model can be restrictive as it is computationally more expensive due

to the extra equations that must be solved. Also in this particular investigation there is

very little inlet turbulence data available and as such it is difficult to determine and

define a Reynolds Stress distribution at inlet.

Differences in solutions generated using a k-ε and Reynolds Stress turbulence model

occur in regions associated with the flow reattachment and subsequent boundary layer

growth on the Stage 3 diffuser wall. Global parameters such as static pressure recovery

are not notably different for the two turbulence models. Figure 5.23 shows the diffuser

pressure recovery and mean exit velocity,  illustrating the similarities.

However, close inspection of the reattachment region on the Stage 3 diffuser wall reveals

differences and a non-physical behaviour for the Reynolds Stress case. Streamline plots

for both models are shown in Figure 5.24 and 5.25 and clearly show differences in the

formation of the Coanda bubble and reattachment lengths. Furthermore, Figure 5.26

shows that a wall-jet was again predicted along the Stage 3 using a Reynolds Stress

model. Near wall treatments discussed in the previous were unable to eliminate this

anomaly. The accurate prediction of the flow in this region is crucial to the aim of this

study; understanding hybrid diffusers. The k-ε prediction does not exhibit any non-phys-

ical behaviour. Additionally, it was envisaged that the final three-dimensional calcula-

tions would be very computationally expensive and possibly not feasible using the

Reynolds Stress turbulence model. Therefore the decision was made to use a k-ε turbu-

lence model for all predictions discussed below.
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Figure 5.1 Near-Wall Region

Figure 5.2 Vortex Bled Hybrid Diffuser

Figure 5.3 Duct Bleed Hybrid Diffuser
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Figure 5.4 Extended Duct Bleed Hybrid Diffuser

Figure 5.5 Conventional Diffuser

Figure 5.6 Alternative Bleed 1
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Figure 5.7 Alternative Bleed 2

Figure 5.8 Alternative Bleed 3 - “Boundary Layer Bleed”

Figure 5.9 Alternative Bleed 4 - “Profiled Bleed Gap”
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Figure 5.10 Alternative Bleed 5 - “Angled Bleed Duct”

Figure 5.11 Inlet Velocity Profile for Plane Two-Dimensional CFD
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Figure 5.12 Effect of Inlet Turbulence Intensity on Solution (L=30.5mm, B=3.0%)

Figure 5.13 Two-Dimensional, Axi-Symmetric Hybrid Diffuser with Flame Tube
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Figure 5.14 3D Computational Geometry

Figure 5.15 3D CFD Inlet Conditions - Normalised Axial Velocity Contours
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Figure 5.16 3D CFD Inlet Conditions - V-W Velocity Vectors

Figure 5.17 Initial 2D Grid in Stage 2 Diffuser (shown with Duct Bleed)
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Figure 5.18 Non-Physical Near-Wall Flow (Initial 2D Grid, k-εεεε, Standard Wall 

Function, 3% Bleed)
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Figure 5.19 Non-Physical Near-Wall Flow (Initial 2D Grid, RNS, Standard Wall 

Function, 3% Bleed)
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Figure 5.20 Near Wall Modified 2D Grids (Near Wall Cell 16.5%, 25% and 50% of 

Fence Height)
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Figure 5.21 Axial Velocity in Stage 3 Near Wall Cell (k-εεεε, 3% Bleed)

Figure 5.22 Effect of Grid Density on Solution (k-εεεε, Standard Wall Function, 3% 

Bleed)
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Figure 5.23 Effect of Turbulence Closure Method on Solution

Figure 5.24 Streamlines at Reattachment (k-εεεε, Standard Wall Function, 3% Bleed)
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Figure 5.25 Streamlines at Reattachment (RNS, Standard Wall Function, 3% 

Bleed)

Figure 5.26 Anomaly in RNS Boundary Layer Profile on Stage 3 Wall 
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION

The results presented and discussed in this section were all generated using a commercial

CFD code, Fluent, with an eddy-viscosity turbulence model as described in Section 5.0.

The various diffusers, described in Section 5.7.1, all comprise of the same overall area

ratio (2.5) and non-dimensional length (3.5) as the Hybrid 4 diffuser used in the experi-

mental study (Sections 3.0 and 4.0). Initially, the discussion will centre on the perform-

ance of a two-dimensional planar representation of the Hybrid 4 diffuser with a vortex

chamber bleed, a duct bleed and an extended duct bleed. Results are presented for the

300 x 100 computational mesh which, as described in Section 5.8, produced a grid inde-

pendent solution. Subsequently the discussion will move on to the performance of a

series of two-dimensional diffusers with modified bleed off-take geometry. Logically,

the next section discusses results from the simplified two-dimensional, axi-symmetric

model of the test facility in conjunction with the relevant experimental data. Finally, the

impact of three-dimensional inlet conditions including OGV wakes and residual swirl is

discussed.

In line with the arguments presented in Section 5.7 data are only presented for an eddy-

viscosity (k-ε) turbulence closure used in conjunction with wall behaviour modelled by a

standard log-law wall function.

6.1 Two-Dimensional, Plane Hybrid Diffuser Study

6.1.1  Overall Diffuser Performance

Overall diffuser performance data, as defined in Section 2.2, is presented in Table 6.1 -

Table 6.3. However, the question of correctly accounting for removing the bleed flow

was first raised in Section 4.3.1. Traditionally, the mass weighted total pressure loss from

rotor exit (measurement station 2) to diffuser exit (station 4) is defined as:

6.1λ2 4–
P̃2 P̃4–

q̃2
-----------------=
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The question arose due to the fact that the mass weighted total and dynamic pressures

( ) at rotor exit include the bleed flow whereas at diffuser exit the mass weighted

total pressure does not. It can be argued that removal of the energy deficient, poor quality

boundary layer will, using Equation 6.1, result in an optimistic view of performance.

Calculation of the mass weighted pressures using a streamtube analysis and hence

including only the flow which passes down the diffuser would yield a more accurate

result. However, for the experimental data only the traditional method of performance

accounting was used. A streamtube approach was not possible due to the highly three

dimensional nature of the inlet conditions. For example, OGV wake flow has low axial

momentum and will be less able to overcome the radial pressure gradient and therefore

more likely to be captured by the bleed. In the simple two-dimensional computational

study, mass weighted pressures can easily be calculated which do not include the bleed

flow. This was done by simply omitting the portion of flow, at inlet, which makes up the

bleed streamtube. At inlet mass-weighted pressures were calculated using cell-centred

values outside of the bleed streamtube, such that:

6.2

where  are computed from the inlet flow minus the bleed flow.

An assessment of the difference between λ2-4 and λ2’-4 was performed using the solution

generated for the hybrid diffuser with a vortex chamber and the data are presented in

Table 6.1. It can be seen that accounting for the bleed does, indeed, have an effect on the

indicated diffuser performance. Corrected total pressure loss coefficients increase by 4 -

5% and static pressure recovery coefficients reduce by about 1%. Although this may not

be a significant amount it is important to note that it exists and that performance data

from the experimental investigation are slightly optimistic. However, to prevent confu-

sion and maintain a consistent approach throughout this work, data will only be pre-

sented (unless otherwise stated) using the traditional methods without accounting for the

effect of removing the bleed flow. Thus sensible comparisons can be made between all

the configurations both experimental and computational.

P̃2 , q̃2

λ2' 4–
P̃2' P̃4–

q̃2'
------------------=

P̃2' and q̃2'
                                                                                       211



6.0 COMPUTATIONAL RESULTS AND DISCUSSION
A reattachment length, Xr, is also quoted and this is defined as the axial (x) distance

along the Stage 3 wall at which the flow reattaches measured from the back face of the

fence as shown in Figure 6.1. Reattachment is defined as the point at which:

6.3

6.1.1.1  Vortex Chamber and Duct Bled Hybrid Diffusers

Before considering the relative performance of the hybrid diffusers it is important to rec-

ognise that there is no difference in overall diffuser performance between the hybrid dif-

fusers bled through a vortex chamber, a duct or an extended duct (refer to Section 5 for

geometry description).

Tables 6.1 - 6.3 demonstrate that loss coefficients, pressure recovery coefficients and

reattachment lengths are identical at the same bleed rates. For example, with a bleed rate

of 2.5% all three hybrid diffusers have a mass weighted static pressure recovery coeffi-

cient of 0.77 - 0.78, a mass weighted total pressure loss coefficient of 0.116 and the flow

reattaches at a point 25% along the Stage 3 wall. This would suggest that the important

parameter is the bleed mass flow rate, not the three different bleed geometry arrange-

ments.

Bleed

(% tot)

Cp2-4 λ2-4 Cp2’-4 λ2’-4 Xr/L3 

0.0 0.647 0.139 0.647 0.139 stalled

1.0 0.724 0.124 0.717 0.129 stalled

1.5 0.747 0.120 0.741 0.125 0.51

2.0 0.764 0.118 0.758 0.123 0.33

2.5 0.777 0.116 0.771 0.121 0.25

3.0 0.786 0.115 0.780 0.120 0.21

4.0 0.800 0.113 0.794 0.118 0.17

y∂
∂U

 
 

wall
0=

m·
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Table 6.1 Diffuser Performance - Hybrid Diffuser with Vortex Chamber

 

Table 6.2 Diffuser Performance - Hybrid Diffuser with Duct Bleed

Table 6.3 Diffuser Performance - Hybrid Diffuser with Extended Duct Bleed

Normalised axial velocity profiles at diffuser exit, as shown in Figures 6.2 and 6.3, are

also indistinguishable between a vortex chamber and a duct bleed. As are the variations

of loss, pressure recovery and reattachment with bleed rate (Figures 6.4 - 6.6). Further-

more, a more detailed examination of the mainstream flow field reveals no difference

between the three diffusers. Therefore, it is fair to conclude that the differences in the

three methods of bleed employed do not effect the mainstream diffuser flow. The fact

Bleed

(% tot)

Cp2-4 λλλλ2-4 Xr/L3 

0.0 0.649 0.140 stalled

1.0 0.713 0.125 stalled

1.5 0.737 0.121 0.53

2.0 0.756 0.121 0.33

2.5 0.774 0.116 0.25

3.0 0.778 0.115 0.21

4.0 0.793 0.113 0.17

Bleed

(% tot)

Cp2-4 λλλλ2-4 Xr/L3 

0.0 0.656 0.138 stalled

1.0 0.719 0.125 stalled

1.5 0.744 0.121 0.53

2.0 0.762 0.118 0.33

2.5 0.775 0.116 0.25

3.0 0.779 0.120 0.21

4.0 0.799 0.114 0.17

m·

m·
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that a vortex chamber is unnecessary was initially confirmed during the experimental

investigation (Section 4.0) and is now further confirmed here. This contradicts much of

the previous research, including the work of Adkins et al[1980], which suggested that a

vortex chamber was a necessary component of a hybrid diffuser. Reiterating what has

already been stated, this is significant in engineering terms as the inclusion of a vortex

chamber increases the complexity of a hybrid diffuser and imposes a size and weight

penalty. Replacing the vortex chamber by a simple duct immediately removes this prob-

lem making the hybrid diffuser more attractive for an engineering application, particu-

larly in the aero industry. Furthermore, a duct has the potential to be developed to reduce

aerodynamic losses to the bleed air thus enabling it to be used elsewhere in an engine for

component cooling.

Initially at zero bleed the duct-bled hybrid diffuser stalls but as the bleed rate is increased

diffuser performance begins to improve. At a bleed rate above 1.5% the flow reattaches

on the Stage 3 wall but at a reattachment length corresponding to over half the length of

the Stage 3 diffuser. Further increases in bleed reduce the reattachment length as illus-

trated in Figure 6.6 and with a bleed rate of 4.0% reattachment is rapid (Xr/L3 ~ 0.17).

Figures 6.4 and 6.5 demonstrate that the total pressure loss reduces and the static pres-

sure recovery increases as the point of reattachment moves upstream (i.e. increasing

bleed). With no bleed the total pressure loss coefficient is 0.14 but this reduces to 0.113

for 4.0% bleed. Correspondingly, the static pressure recovery coefficient increases from

0.649 to 0.793.

To quantify this level of performance, it is important to recognise that the overall area

ratio of 2.5 is very high and is coupled with a relatively short non-dimensional length of

3.5. Nominal conventional diffuser design curves (refer to Figure 3.11) predict that at

this loading a conventional diffuser would stall; a maximum area ratio of 1.5 being more

realistic. A solution generated for a conventional diffuser (AR = 2.5, L/h1 = 3.5) does

indeed, show that at this level of loading a conventional diffuser will stall (Figure 6.7).

Figure 6.8 shows a streamline plot for the duct-bled hybrid diffuser with a 2.5% bleed

rate. This represents a bleed rate above the minimum requirement and the flow reattaches
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on the Stage 3 wall after some 25% of its length. As the flow enters the bleed duct it can

be seen to separate from the upstream side of the duct but rapidly accelerate on the

downstream side. Clearly, in the Stage 2 diffuser, close to the bleed, there is a large

amount of flow deflection. A Coanda bubble is formed on the leeward side of the fence

and this feature is seen to decrease in size but increase in rotational strength as the bleed

rate is increased.

Figure 6.9 shows a streamline plot for 1.5% bleed which is just below the minimum

bleed requirement. Again the bleed flow accelerates into the duct and the mainstream

flow undergoes some deflection. However, there exists a large recirculation and although

the flow does eventually reattach to the Stage 3 wall the reattachment length is long (Xr/

L3>0.5).

With no bleed, a streamline plot (Figure 6.10) shows that the Stage 3 flow is dominated

by a large separation and the diffuser has clearly stalled presenting a non-viable configu-

ration.

At exit to the Stage 1 section, before any bleed flow has been removed, profiles of axial

velocity (u) and radial velocity (v) indicate that the flow is already feeling a significant

influence of the bleed. Figure 6.11 shows the axial velocity profile at Stage 1 exit (imme-

diately upstream of the bleed) for 0.0, 1.5 and 2.5% bleed and reveals that as the bleed

rate increases the peak velocity decreases, the condition of the boundary layer improves

(i.e. reduces in thickness) and there is a migration of mass flow towards the wall.

Similarly, the magnitude of the peak radial velocity (Figure 6.12) increases with bleed.

At zero bleed there is only minimal flow deflection and there exists only a small radial

component of around -2ms-1. However at 2.5% bleed this radial component increases to

-8ms-1 indicating the flow has a much greater turning potential even before reaching the

bleed.

At exit to the Stage 2 section a similar pattern of behaviour is observed. Again the mag-

nitude of the peak axial velocity (Figure 6.13) decreases with increasing bleed rate. This

is accompanied by a flattening of the profile and a migration of mass flow towards the
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wall. Alternatively this can be viewed as a transfer of positive momentum towards the

wall, hence improving the condition of the boundary layer as it forms on the Stage 3

wall. However, with no bleed the axial velocity near the wall is negative and the diffuser

is stalled.

The radial velocity at exit to Stage 2 with 2.5% bleed (Figure 6.14) is also significantly

higher, demonstrating a much greater tendency for the flow to turn and expand into the

Stage 3 diffuser. The radial component of the velocity is some four times greater at 2.5%

bleed than for zero bleed.

Across the bleed gap itself there is also a notable variation of the radial velocity compo-

nent for the various bleed rates. With no bleed (Figure 6.15) there is a negligible radial

velocity component but with increased bleed the radial velocity increases rapidly, indi-

cating the bleed flow must accelerate more quickly into the bleed duct. The high bleed

flow velocity results in a region of low static pressure, thus creating a strong pressure

gradient.

The static pressure gradient, dp/dy (computed by Fluent), across the bleed gap is plotted

for 0.0, 1.5 and 2.5% bleed in Figure 6.16. At lower levels of bleed the pressure gradient

is close to zero but increases rapidly with bleed such that this gradient becomes a strong

factor in the deflection of the mainstream flow.

6.1.1.2  Alternative Bleed Geometries

The duct-bled hybrid diffuser represents a simple two-dimensional simulation of the

experimental Hybrid 4 diffuser. The five alternative bleed geometries (Alt.1 to 5, refer to

Figures 5.6 - 5.10) comprise of the same overall area ratio (2.5) and non-dimensional

length (3.5) but represent distinct and logical extensions to the simple ducted bleed (refer

to Section 5.5.6). Solutions generated for each of these geometries yielded the overall

diffuser performance parameters presented in Table 6.4.
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Table 6.4 Diffuser Performance - Alternative Bleed Hybrid Diffusers (2.5% Bleed)

By removing the fence the results for Alt.1 this configuration poses the question of

whether the fence and Coanda bubble are a necessary combination and to what extent do

their presence contribute to the performance of the hybrid diffuser. Indeed, with a bleed

rate of 2.5% these features are not required and the Alt.1 diffuser has a slightly higher

overall performance than the duct-bled hybrid diffuser. A streamline plot (Figure 6.17)

for Alt.1 shows that the flow reattaches immediately to the Stage 3 wall and no Coanda

bubble is formed. This demonstrates that the Coanda bubble is not an essential compo-

nent of the flow mechanisms of a hybrid diffuser. Furthermore, it is the elimination of

this feature and the loss associated with the recirculating flow which results in the slight

increase in performance. However, removal of the fence necessitates a higher Stage 3

wall angle if the overall area ratio is to be maintained. Figure 6.18 is a plot of the axial

velocity in the wall adjacent cell and illustrates that for Alt.1 the near wall flow is posi-

tive and the diffuser is not close to stall. However, to achieve a higher overall area ratio a

further increase in wall angle would be necessary and this may result in a stall. For Alt.1

it is clear that a divergence angle of 14 degrees is acceptable and the fence/step is not

necessary. However the fence/step does offer an instantaneous area ratio increase with

the added benefit of reducing Stage 3 loading. Nonetheless, for an aeronautical applica-

tion a feature such as a fence is undesirable as it is not practical in an engineering sense,

being difficult and expensive to manufacture and likely to fail (e.g. cracking at sharp cor-

ners) due to the harsh environment in which it operates. In summary, Alt.1 is an attrac-

tive option as it significantly simplifies the overall complexity of the diffuser without

Diffuser Cp2-4 λ2-4 Xr/L3 

Conventional 0.746 0.123 Stall @ 0.56

Alt. 1 0.794 0.111 0

Alt. 2 Stall Stall Stalled

Alt. 3 0.785 0.116 Stall @ 0.72

Alt. 4 0.795 0.109 0

Alt. 5 0.797 0.109 0
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incurring any performance penalty.

The Alt.2 diffuser represents the opposite of Alt.1; removal of the fence but maintaining

the sudden step expansion. Figure 6.19 shows a streamline plot for a 2.5% bleed rate

revealing that the flow cannot now overcome the large unconfined expansion. The

stresses in the free shear layer are too great and the flow separates resulting in a badly

stalled diffuser and jet flow. It is unlikely that this configuration presents a viable option

at whatever level of bleed rate is employed.

Hybrid diffusers operate by a more complex mechanism than simply removing the

energy deficient boundary layer flow. It is argued here that hybrid diffusers essentially

operate due to an additional mechanism, viz a transfer of positive momentum from the

accelerating bleed flow to the diffusing mainstream flow. However, little evidence has

been presented in the literature (refer to Section 2.6) to demonstrate this fact. The Alt.3

geometry slices off 2.5% of the near wall flow via a fence running parallel to the diffuser

wall and effectively represents a boundary layer bleed, eliminating the accelerating bleed

aspect of the hybrid diffuser flow mechanisms. A streamline plot (Figure 6.20) and near

wall axial velocity plot (Figure 6.18) show that the flow separates from a point 72%

along the Stage 3 wall. This is an improvement over the conventional diffuser (Figures

6.7 and 6.18) which separates at 56% but the Alt.3 diffuser, nevertheless, has stalled.

Thus a simple boundary layer bleed, although beneficial, does not produce the same flow

structure as the duct-bled (or Alt.1) hybrid diffuser. The streamline plot indicates that

there is no flow acceleration associated with the bleed, the bleed flow is simply “sliced

off”. If the bleed flow does not accelerate into the bleed duct then it does not gain

momentum and cannot transfer this positive momentum to the mainstream flow. The

Stage 3 boundary layer flow is then unable to overcome the expansion and strong

adverse pressure gradient. In conclusion, this qualitatively demonstrates that hybrid dif-

fusers do not function by simply removing the low energy boundary layer flow, but by a

more complex interaction between the bleed and mainstream flows.

The Alt.4 diffuser geometry is similar to Alt.1 but with the upstream corner of the bleed

gap profiled in an attempt to eliminate the separation bubble in the bleed duct and hence

reduce bleed flow loses. Performance figures (Table 6.4) clearly show that the alteration

to the bleed gap geometry has no effect on overall performance. This is further supported
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by a streamline plot for a 2.5% bleed rate as shown in Figure 6.21. Profiling the bleed

gap merely replaces the dividing streamline associated with the separation bubble with a

solid surface and removes the high loss flow. The bleed flow total pressure loss is indeed

reduced (this is discussed in Section 6.1.2) but the overall diffuser performance is unaf-

fected.

Performance figures (Table 6.4) and streamlines (Figure 6.22) for the Alt.5 diffuser with

a 2.5% bleed rate illustrate that angling the bleed duct to reduce bleed flow losses also

does not alter the mainstream flow or the pertinent mechanisms. The improvement in

bleed flow performance is similar to that gained for Alt.4 (again refer to Section 6.1.2). It

has not been investigated here but it is probable that the gain in bleed flow quality will

increase as the angle of the bleed duct becomes more acute. However, at some angle the

configuration will approach the case represented by Alt.3 which has been shown to result

in flow separation.

Figures 6.23 - 6.28 show contours of static pressure, normalised by inlet conditions, for

the Duct-bled diffuser and the five alternative bleed geometries for a bleed rate of 2.5%.

The duct-bled, Alt.1, 4 and 5 diffusers all show very similar variations in static pressure

with a modest recovery of static pressure in the Stage 1 section, followed by a rapid

increase across Stage 2 with high gradients centred on the downstream side of the bleed.

Examination of the contours reveal that the majority of the static pressure recovery can

be attributed to the Stage 2 diffuser. This is supported by the experimental observations

which, as discussed in Section 4.0, indicated that around half of the static pressure recov-

ery occurred within this region. Interestingly, however, it would appear that the sudden

step expansion does not contribute to the rapid static pressure recovery. Contour varia-

tions are almost identical regardless of whether a step expansion exists (duct-bled dif-

fuser) or not (Alt.1). The highest gradients emanate from the downstream tip of the bleed

gap and would appear to be a direct result of the interaction of the bleed flowwith the dif-

fusing mainstream flow and not the sudden increase in area ratio.

Although not fully attached, Alt.3 (Figure 6.26) exhibits only a small region of separated

flow and as such achieves a modest static pressure recovery. However, the influence of

the bleed is marginal and the static pressure contours show that the recovery in the Stage
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2 diffuser is not rapid and compares poorly with the fully attached hybrid diffusers

(Alt.1, 4 and 5).

The development of the mass weighted static pressure recovery coefficient (Cp) along

the entire length of the diffuser is shown in Figure 6.29. Initially the recovery is more or

less identical for all the diffusers, as expected, since they all have identical Stage 1

geometry. However, for the functioning hybrid diffusers (duct-bled, Alt.1, 4, and 5) there

is a rapid increase in Cp at x/L = 0.35 - 0.4 which corresponds to the location of the

bleed. The remaining diffusers, which all contain some degree of flow separation, do not

exhibit this phenomenon. The magnitude of recovery within the Stage 3 section is similar

for all the diffusers with the gradient reducing as the boundary layer thickens under the

action of the adverse pressure gradient. However, the final values of Cp differ by a signif-

icant amount which can be attributed to the rapid increase in static pressure over the

Stage 2 section.

The rapid recovery associated with the Stage 2 / bleed section is further illustrated in a

plot of the axial gradient of the pressure coefficient against diffuser length (Figure 6.30).

A high peak exists in the Stage 2 diffuser for the functioning hybrid diffusers (duct-bled,

Alt.1, 4 and 5) but not for the remaining diffusers (Alt.2 and 3) which are non-functional

and cannot truly be called hybrid diffusers.

6.1.2  Bleed Flow Assessment

The effect of bleed rate on diffuser performance has been discussed in Section 4.3 for the

experimental data and in Section 6.1.1 for the two-dimensional computational model of

the Hybrid 4 (duct-bled) diffuser. However, it is important to assess the condition of the

bleed flow as current aero gas turbine engine cycles requires all the available air to be

utilised. Air to be used for turbine blade cooling is usually bled off from within the com-

bustion chamber and it is therefore logical (according to Adkins et al[1980]) that air bled

from a hybrid diffuser could be used in place of this air.

The mass weighted total pressure loss coefficient from rotor exit to the bleed boundary

condition is defined as:
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6.4

for station ‘B’ mass-weighted pressure are evaluated across the exit of the bleed duct.

Although no definitive target is available for this parameter it is desirable that the loss is

minimised.

Table 6.5 Bleed Flow Mass Weighted Total Pressure Loss

Table 6.5 details the total pressure loss for various bleed levels through the vortex cham-

ber, extended duct-bled and duct-bled hybrid diffusers. The overall diffuser performance

for these three configurations was identical, however, it is clear that the loss increases

significantly as the bleed rate increases. Furthermore, the simple duct incurs a lower

bleed flow loss than the extended duct and the vortex chamber at any given bleed rate. At

2.5% bleed the vortex chamber loss amounts to 53% of the rotor exit dynamic pressure

and the extended duct loss is 54%. Yet with a simple duct the bleed flow incurs a reduced

loss amounting to 49% of rotor exit dynamic pressure.

The reason for this behaviour is not complex. In a vortex chamber the vortex will expand

to fill the entire chamber. This process involves high loss mechanisms and will ulti-

mately lead to a high total pressure loss for the bleed flow. A similar argument can be put

forward for the extended duct as a vortex will form and expand to fill the available space.

Bleed

Vortex Chamber Ext. Duct Duct

1.0 0.495 0.494 0.467

1.5 0.537 0.509 0.483

2.0 0.541 0.524 0.489

2.5 0.552 0.538 0.494

3.0 0.572 0.552 0.499

4.0 0.614 0.582 0.511

λ2 B–
P̃2 P̃B–

q̃2

------------------=

λ2 B–
P̃2 P̃B–

q̃2
------------------=
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However, for a simple duct the separation bubble is much smaller and as a result the

associated loss is reduced.

A bleed flow total pressure loss equivalent to 50% of the rotor exit dynamic pressure is a

significant value. The Alt. 4 and 5 geometries represent two simple attempts to reduce

this loss. Both aspire to do this by reducing the turning loss and removing the separation

bubble by way of (1) profiling the bleed gap and, (2) angling the bleed duct.

Table 6.6 Bleed Flow Mass Weighted Total Pressure Loss (2.5% Bleed)

Table 6.6 details the bleed loss total pressure losses at 2.5% bleed for the duct-bled,

Alt.1, 4 and 5 hybrid diffusers. The loss for the simple duct bled diffuser is greatest at

49.4% of rotor exit dynamic and is slightly reduced for Alt.1 to 45.6%. Thus, removal of

the fence and Coanda bubble has a small effect on the bleed flow loss. However, Alt.4

and 5 achieve their aim of reducing the loss by around one fifth from a simple duct.

Streamline plots (Figures 6.21 and 6.22) show that the separation bubble in the bleed

duct has been eliminated hence the quality of the bleed flow increases making it more

attractive for use in component cooling.

6.1.3  Flow Mechanisms - Momentum Transfer Analysis

It is clearly evident that the presence of the bleed has a strong influence on the perform-

ance of hybrid diffusers. It can been seen from streamline plots, velocity contours/pro-

files and mass-weighted pressure coefficients that without bleed a hybrid diffuser will

stall. However, with increasing bleed the flow will reattach and the diffuser performance

will improve. In a similar manner it has also been qualitatively demonstrated that the

Hybrid Diffuser

Duct Bleed 0.494

Alt.1 0.456

Alt.4 0.384

Alt.5 0.387

λ2 B–
P̃2 P̃B–

q̃2
------------------=
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bleed mechanism is not just a simple boundary layer bleed, which merely removes

energy deficient flow. When the same amount of mass flow was removed from the

boundary layer using a simple flow-aligned slot, the pertinent flow mechanisms were not

present and the diffuser stalled. In order to undertake a more quantitative examination of

the flow mechanisms a momentum transfer analysis has been undertaken. Close inspec-

tion of the terms within the momentum equation can reveal where and how positive

streamwise momentum is transported to the low energy flow, enabling it to overcome the

high adverse pressure gradients and thus prevent separation.

To conduct this analysis only one geometry was considered. As discussed earlier, apart

from two specific cases, the mainstream flow remains unchanged for the various hybrid

bleed step geometries tested. These two cases were Alt.2 and 3, both of which stall at rel-

atively high bleed rates. However, of all the geometries studied, Alt.4 presents the most

simple case as the profiled bleed and removal of the large step expansion eliminate much

of the complex flow associated with separation on the leeward side of the bleed duct and

the Coanda bubble in the corner of the step. Such features contain extremely high gradi-

ents and as such have a tendency to overwhelm the data of interest. Hence the Alt. 4

geometry was selected for this detailed study. Furthermore, only three bleed rates were

employed; 2.5%, 1.0% and 0.0% of the inlet mass flow. These represent, respectively, a

rate above the minimum bleed requirement, an intermediate level of bleed just below the

minimum required and no bleed.

As discussed in Section 6.1.1, overall diffuser performance improves with increasing

bleed rate. This can be clearly seen in Table 6.7 which details the mass-weighted per-

formance parameters as defined in Sections 2.2 and 6.1.1. Streamline plots for the three

bleed rates are given in Figures 6.31 - 6.33 and show that for 0.0 and 1.0% bleed the flow

separates from the Stage 3 wall. With no bleed the flow only remains attached for the

first 40% of the Stage 3 wall. This increases to 90% for 1.0% bleed; only with 2.5%

bleed does the diffuser remain fully attached with no evidence of stall. Profiles of axial

velocity (Figure 6.34) at diffuser exit also reveal evidence of flow separation; the condi-

tion of the wall flow is clearly much improved for 2.5% bleed resulting in a much more

uniform profile.
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Table 6.7 Mass Weighted Diffuser Performance Figures - Alt. 4 Geometry

6.1.3.1  The Momentum Equation

The momentum equations are defined, derived and well-documented in several texts,

such as Fletcher[1988], in Cartesian or cylindrical polar co-ordinates. However, due to the

diverging nature of a diffuser there will always exist a radial component of velocity and

an associated momentum transfer. Therefore, for this analysis, it is useful to transform

the momentum equations into a co-ordinate system defined using the inviscid stream-

lines. The reason being that if the flow development followed the inviscid behaviour

exactly there would be zero velocity component or convective momentum transport nor-

mal to the local inviscid streamline. If the real viscous solution is transformed and  ana-

lysed with respect to the inviscid streamline co-ordinate system the transverse

component of momentum transport associated with viscous effects, such as boundary

layer growth, is likely to be small. Hence, the viscous momentum transport due to the

bleed flow will then be highlighted and can therefore be studied. Fluent was used to

solve for an inviscid flow (as described in Fluent[1998]) and provide the co-ordinate sys-

tem based on the inviscid streamlines. An example streamline plot of an inviscid solution

obtained from Fluent for the Alt. 4 diffuser with 2.5% bleed is shown in Figure 6.35.

With reference to Figure 6.36 the mean streamwise momentum equation (for incom-

pressible, high Reynolds number, steady flow) applied along the inviscid streamlines can

be written locally as:

6.5

Bleed 
(%mtot)

Cp2-4 λ2-4

0.0 0.738 0.122
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2.5 0.795 0.111
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Equation 6.5 assumes that locally the inviscid streamline-based co-ordinates (s, n) may

be considered as a pair of orthogonal straight lines rotated by an angle β to the Cartesian

coordinate direction.

In Equation 6.5 Us is aligned with the inviscid streamline, Vs is normal to the inviscid

streamline and , and  are now to be considered as the Reynolds stresses in the s-n

co-ordinate system. The terms on the LHS of the equation are associated with the accel-

eration experienced by a fluid element, whereas the terms on the RHS represent the

forces applied to the element of fluid. These forces arise due to the pressure gradient and/

or gradients in the Reynolds stresses. The flow path of an elemental fluid particle in the

diffuser is therefore defined by the applied pressure and turbulent forces. At a given loca-

tion the streamwise acceleration, Us∂Us/∂s, in addition to depending on the applied

forces, is also a function of the velocity component and streamwise velocity gradient

normal to the direction being considered, Vs∂Us/∂n. This term represents the effects

introduced due to the transverse convection of streamwise momentum by the normal

velocity component (Vs).

The various terms in Equation 6.5 are not immediately available and must be computed

from the inviscid and turbulent solutions as predicted by Fluent. It now becomes neces-

sary to express the cartesian velocity components of the turbulent soluyion with respect

to the inviscid streamlines which, at any given point, subtend an angle β with the axial, x,

direction (refer to Figure 6.36). The computed flow field can then be resolved locally in

the direction of the inviscid streamlines using the following transformation:

6.6

where u and v represent the predicted, time-averaged Cartesian velocity components,

and β is obtained from the inviscid flow field such that:

6.7

A typical plot of β is shown in Figure 6.37. Now, to obtain Vs∂Us/∂n, for example, in

uu uv
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Vs 
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terms of x, y, u and v the following steps are used:

Firstly, from Equation 6.6:

6.8

Secondly, ∂Us/∂n can be re-written:

6.9

or                                        6.10

Also, again from Equation 6.6,

6.11

therefore,

6.12

where,

 6.13

and similarly for ∂Us/∂y.

Vs∂Us/∂n can now be evaluated at any point in terms of the Cartesian components.

Us∂Us/∂s can be found using a similar method and the pressure gradient term can be eas-

ily computed from:

6.14

Although the individual Reynolds stresses can be computed using the Boussinesq rela-

tionship it was not considered necessary for the purposes of the present analysis to trans-

form the Reynolds stresses in into the components in the s and n directions. Thus the

final term in Equation 6.5 has not been separated into its individual components but is
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
included in what follows as the ‘closing term’ in the momentum balance.

Returning to Equation 6.5 it is now possible to discuss the individual terms, their influ-

ence and contribution to streamwise momentum and how they are affected by the bleed.

There are two classical methods of analysing the system; a Eulerian control volume tech-

nique or a Lagrangian approach which looks at the path of an elemental fluid particle. In

a Eulerian approach Equation 6.15 represents a statement on the processes which poten-

tially cause a change of the s-momentum content of an infinitesimal control volume sur-

rounding any point. Since the flow is steady-state (time-invariant), then the change at

any point is in fact zero, i.e. there is a balance between the various processes.

6.15

A Eulerian method is useful to analyse how the control volume will gain or lose stream-

wise momentum due to each term. However, a Lagrangian approach is more useful when

analysing the flow in a hybrid diffuser to demonstrate the effect on an elemental fluid

particle as it passes through the control volume. This will highlight how the various

processes contribute to the governing flow mechanisms of a hybrid diffuser. 

For example, consider the effect of the static pressure gradient. A favourable streamwise

pressure gradient (negative ) will, acting in isolation, give rise to a positive force in

the s direction acting on the contents of the control volume. This may be interpreted as a

positive source of streamwise momentum, tending to increase the s-momentum of the

control volume (i.e. a gain process). To maintain the balance in Equation 6.15 the term

Us∂Us/∂s must then be positive as the streamwise velocity increases tending to decrease

the s-momentum of the control volume (i.e. a loss process). Alternatively, in a Lagrang-

ian approach a fluid element passing through the control volume will gain s-momentum

and accelerate due to the favourable pressure gradient.

Similarly, in a Eulerian approach, a negative value of Vs∂Us/∂n can be interpreted as a

gain process tending to increase the s-momentum of the control volume which will, in a

Lagrangian approach, cause a fluid element passing through the control volume to gain
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
positive streamwise momentum.

Secondly, consider a free shear layer such as the edge of a jet as illustrated in Figure

6.38. The figure shows the shape of the U and V profiles in these flows. Physically, at the

jet edge transverse convective transport leads to s-momentum gain as the higher momen-

tum jet core region spreads into the surrounding lower velocity field. The term

 is negative illustrating that in a Eulerian approach a control volume will gain

s-momentum due to this term. Thus in a Lagrangian approach a fluid particle passing

through the control volume will also gain s-momentum (i.e. the term Us∂Us/∂s is positive

as the control volume will lose s-momentum to the this term). 

In summary, with reference to Figures 6.40-6.63 the terms in Equation 6.15 have the fol-

lowing characteristics:

• Us∂∂∂∂Us/∂∂∂∂s

Dimensionally equivalent to an acceleration, Us∂Us/∂s can be considered as describing

the acceleration (or deceleration) of the streamwise velocity component of the fluid in

the direction of the inviscid streamlines. Within a diffusing flow this term will be posi-

tive (the flow is losing momentum) provided the flow is attached. The velocity in the

direction of an inviscid streamline will be positive but reducing in magnitude (∂Us/∂s

negative) due to the diffusing nature of the flow and the increasing static pressure.

• Vs∂∂∂∂Us/∂∂∂∂n

This term physically represents the transport of streamwise momentum across or in a

direction normal to the inviscid streamlines by the normal velocity component Vs. A

negative value indicates a control volume will gain positive streamwise momentum in a

transverse direction and this will therefore increase the s-momentum of a fluid particle.

• 1/ρρρρ.∂∂∂∂p/∂∂∂∂s

This term represents the creation/destruction of s-momentum due to the pressure force

Vs Us/ n∂∂
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exerted on a control volume. An increasing pressure produces an adverse pressure gradi-

ent and gives rise to a positive value of 1/ρ.∂p/∂s causing a reduction in streamwise

velocity. In a diffuser the presence of an adverse pressure gradient acts to retard the axial

velocity and causes rapid growth of the boundary layer which may lead to flow separa-

tion. Thus the transport of momentum associated with this term is an important feature in

the flow mechanisms of a hybrid diffuser.

•

This term physically represents gradients of the turbulent stresses acting on the control

volume faces. The turbulent stresses may be interpreted as transporting streamwise

momentum due to turbulent velocity fluctuations.

6.1.3.2  Flow Field Discussion (2.5% Bleed)

With reference to Figure 6.39, at a bleed rate of 2.5% there are five distinct flow regions

within the Alt. 4 hybrid diffuser. Thus, for ease of presentation, the flow field for each of

these regions will be discussed separately. Region 1 corresponds to the inlet of the Stage

1 diffuser. Regions 2 and 3 are located immediately upstream and downstream of the

bleed and hence describe the manner in which the bleed flow contributes to the mecha-

nism of a hybrid diffuser. Finally, Region 4 represents the flow within the Stage 3 dif-

fuser and Region 5 corresponds to overall diffuser exit.

• Region 1

Contour plots of the four terms in the momentum equation are presented, for Region 1, in

Figures 6.40 - 6.43, with the corresponding streamline plot in Figure 6.44. As the flow

negotiates the constant area inlet duct the boundary layer develops normally. However,

approaching the diffuser the flow begins to feel the influence of the downstream

(increasing) pressure field with the result that the mainstream flow begins to slow and

diverge. Upstream of the convex corner this gives rise to a negative Vs and  as

higher momentum fluid is transported into the boundary layer. Immediately upstream of

the corner the turbulent solution has increasing velocity in the direction of the inviscid

s∂
∂ uu

n∂
∂ uv+ 

 

Vs Us/ n∂∂
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streamline which can be seen as a positive value of Us∂Us/∂s. Immediately downstream

of the corner the diverging passage gives rise to a strong adverse streamwise pressure

gradient and a rapid retardation of the streamwise velocity (Us). Typically, as the flow

diffuses Us∂Us/∂s is negative as Us reduces and the local static pressure increases. Fur-

thermore, as the boundary layer develops along the diffuser wall it begins to thicken

under the action of the adverse pressure gradient.

• Regions 2 and 3

Figures 6.45 - 6.48 show contour plots of the terms in the momentum equation as the

flow enters the bleed, with streamlines shown in Figure 6.49. Significantly, as the flow

approaches the bleed there is a notable upstream effect which improves the condition of

the boundary layer on the Stage 1 diffuser. Positive regions of Us∂Us/∂s (Figure 6.45)

show firstly that the near wall flow accelerates towards the bleed and secondly that there

is a strong acceleration of the flow as it enters the bleed duct. Negative contours of

Vs∂Us/∂n (Figure 6.46) demonstrate that positive s momentum is being transported from

a normal direction into the near wall region. Additionally, contours of -1/ρ.∂p/∂s (Figure

6.47) show that there is a favourable streamwise pressure gradient set up by the bleed

which is driving these effects. 

As the flow negotiates the corner and flows into the bleed duct the pressure gradient then

becomes strongly adverse and the boundary layer rapidly grows. However, the aug-

mented condition of the boundary layer enables it to overcome this increased loading and

prevents the flow from separating.

The rapidly increasing area within the main part of the diffuser coupled with the pressure

gradient created by the bleed generates a strong adverse streamwise pressure gradient

(high negative values of -1/ρ.∂p/∂s). The velocity field responds to this pressure force

and negative values of Us∂Us/∂s indicate high levels of diffusion as the streamwise

velocity component reduces.

The streamlines in Figure 6.49 show that the pressure gradient created by the bleed

causes entrapment and deflection of the mainstream flow and also drives an acceleration
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of bleed flow (seen in highly positive values of Us∂Us/∂s in the mouth of the bleed duct).

Thus the bleed flow gains a significant amount of streamwise momentum

There exists a dividing streamline, as shown in Figure 6.49. On the LHS of (or below)

this streamline the bleed flow turns and rapidly accelerates into the bleed duct. However,

on the RHS of (or above) the dividing streamline the flow expands into the Stage 3 dif-

fuser. Either side of this streamline contours of  (Figure 6.48) show that the

fluid is subject to high turbulent forces of opposite sign. The result of this is a layer con-

taining a high amount of shear between the accelerating bleed flow and diffusing main-

stream flow. 

Contours of Vs∂Us/∂n (Figure 6.46) reveal that there is a high transverse transport of

streamwise momentum from the accelerating bleed flow to the diffusing mainstream

flow. This can be seen by the negative region of Vs∂Us/∂n at the inlet to the Stage 3 dif-

fuser which indicates this flow is gaining streamwise momentum from the bleed flow

(i.e. from the positive region of Vs∂Us/∂n in the mouth of the bleed) which is high in

streamwise momentum.

This is the important governing mechanism which allows a hybrid diffuser to function.

The bleed flow accelerates into the bleed gaining positive streamwise momentum. A

layer of high shear is setup between the accelerating bleed flow and diffusing main-

stream flow. A transfer of positive streamwise momentum across this layer from the

bleed flow enables the flow which forms the fresh boundary layer on the Stage 3 wall to

remain attached and overcome the high adverse pressure gradient within the Stage 3 dif-

fuser.

• Region 4

The flow in Region 4 (Figures 6.50 - 6.54) behaves typically as one would expect for a

modest area ratio conventional diffuser even though at about 14 degrees the wall angle is

much higher than normally acceptable. However, it is the augmented condition of the

flow forming the boundary layer on the Stage 3 wall which enables it to remain attached

to this high angle wall when under normal circumstances it would separate.
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• Region 5

Initially within Region 5 the static pressure continues to rise (Figure 6.58) and the axial

velocity reduces (Figure 6.56) as the flow continues to diffuse. However, in the constant

area duct the streamwise pressure gradient and -1/ρ.∂p/∂s (Figure 6.58) tend to zero.

Coupled with this the streamwise velocity component approaches a constant value (i.e.

Us becomes constant and ∂Us/∂n tends to zero) as the flow settles and becomes more uni-

form.

6.1.3.3  Flow Field Discussion (Zero Bleed)

In order to asses what effect the bleed has on the various terms of the momentum equa-

tion it is useful to examine the case with zero bleed. A streamline plot (Figure 6.31) dem-

onstrated that without bleed the Alt. 4 hybrid diffuser stalls with the flow separating from

the Stage 3 wall. Contour plots for the various terms of Equation 6.15 without bleed are

presented in Figures 6.60 - 6.63.

• Region 1

Region 1 is too far upstream of the bleed to feel any significant effect thus the structure

of the flow remains essentially unchanged for all bleed rates.

• Regions 2 and 3

Even without bleed the flow in Region 2 feels the influence of the bleed duct. However

without bleed the effect of this is minimal. A small amount of flow enters the bleed duct

giving rise to similar phenomenon seen with bleed. For example, there exists a small

region immediately upstream of the bleed duct where the pressure gradient is favourable

and the fluid accelerates slightly into the duct. However, the magnitude of this is greatly

reduced from the case with 2.5% bleed and provides only a small benefit.

Within the main part of the diffuser, contours of -1/ρ.∂p/∂s (Figure 6.62) and Us∂Us/∂s

(Figure 6.60) show that the adverse pressure gradient is not as strong as with bleed and

the flow does not decelerate/diffuse to the same extent as when bleed is present. Data
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have shown that within a hybrid diffuser the majority of the static pressure recovery can

be attributed to the Stage 2 section and it is clear that with zero bleed the level of recov-

ery here is greatly reduced.

Contours for Region 3 demonstrate that without bleed the pertinent flow mechanisms are

not present. Thus the flow forming the boundary layer is much lower in streamwise

momentum than at a bleed rate of 2.5% and as such it cannot overcome the adverse pres-

sure gradient within the Stage 3 diffuser and ultimately separates. Contours of -1/ρ.∂p/∂s

show that the pressure gradient rapidly becomes strongly adverse and contours of Vs∂Us/

∂n indicate that there is only a very small transfer of positive streamwise momentum to

the flow forming the boundary layer.

• Region 4

Essentially the flow in Region 4 reflects the fact that the diffuser stalls. The adverse pres-

sure gradient is strong resulting in rapid boundary layer growth. Furthermore, the flow

forming the boundary layer is already low in streamwise momentum resulting in the fact

that it cannot overcome this adverse pressure gradient and separates.
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6.2 Two-Dimensional, Axi-Symmetric Hybrid Diffuser with Flame Tube

The computational model of a two-dimensional, axi-symmetric hybrid diffuser with a

flame tube is not only a logical extension of the planar work (Section 6.1) but is also a

direct simulation of the modified experimental facility described in Section 3.6. In sum-

mary this geometry is a simplified two-dimensional, axi-symmetric representation of a

radially staged combustion system incorporating the Hybrid 4 (Duct-bled) diffuser. The

compressor stage was removed resulting in a “clean” inlet and the flame tube was some-

what simplified in addition to removing the burners (refer to Figure 3.16 for the experi-

mental configuration and Figure 5.13 for the computational configuration).

The computational geometry, mesh, boundary conditions and solution techniques have

been discussed in Section 5. The planar work (Section 6.1) employed an inlet turbulence

intensity of 5% which is typical of the average levels seen at OGV exit on the experi-

mental facility when the single stage axial compressor is in place. However, with the

compressor removed, as in the two-dimensional, axi-symmetric experimental configura-

tion, inlet turbulence intensity would be much lower, typically 0.5 ~ 1.0%. The results

for this experimental configuration have been discussed in Section 4.4.1 and, in sum-

mary, it was found that this configuration was unstable and no matter what bleed rates or

flow splits were employed the hybrid diffuser stalled.

A streamline plot (Figure 6.64) for a converged solution with an inlet turbulence inten-

sity of 0.5% and bleed rates of 2.5% shows similar behaviour to the experimental case.

The predicted flow clearly separates from the outer Stage 3 wall. (A stall occurs on the

outer wall first due to radius effects giving rise to slightly higher levels of diffusion on

the outer wall).

Several more solutions were generated with increasing inlet turbulence levels up to 5%

(i.e. to a level equivalent to downstream of an axial compressor). Figure 6.65 shows a

streamline plot for a converged solution with an inlet turbulence intensity of 5.0% and

bleed rates of 2.5%. The streamlines now show that the diffuser flow is attached and the

system is stable.
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Authors such as Stevens and Williams[1980] have shown that increased inlet turbulence

intensity levels can be beneficial to diffuser performance (refer to Section 2.3.2). Also,

Isomoto and Honami[1989] showed that for a backward facing step the reattachment

length has a strong negative correlation with the inlet turbulence intensity. Here, this

effect is more pronounced and the hybrid diffuser is only viable with inlet turbulence

above a certain level. To illustrate this Figure 6.66 shows axial velocity profiles at dif-

fuser exit for solutions generated with various levels of inlet turbulence intensity. At

intensities below 3.0% the diffuser stalls from the outer wall, however, above 3.0% the

flow reattaches on the Stage 3 diffuser wall and the steady state solution is now stable.

Details of static pressure recovery and total pressure loss coefficients are given in Table

6.8 for varying levels of inlet turbulence intensity. Diffuser performance is seen to

increase with inlet turbulence intensity. For example with an inlet turbulence intensity of

0.5% (i.e. similar to that in the “clean” experimental configuration) the diffuser is stalled

and has a relatively low static pressure recovery coefficient. However, with an inlet tur-

bulence intensity above 3.0%, which is more typical of the conditions downstream of a

compressor, the static pressure recovery coefficient rises to almost 0.8.

Table 6.8 Variation of Performance with Inlet Turbulence (Bi = Bo = 2.5%)

The effect of inlet turbulence intensity on the static pressure field can be seen in Figures

6.67 and 6.68 which show static pressure recovery contours for an inlet turbulence inten-

sity of 5.0% and 0.5% respectively. The distributions show a similar pattern but the level

of static pressure recovery is globally greater for the higher inlet turbulence.

Inlet Turbulence, 

Ti(%)

Diffuser Exit Inner Annulus Outer Annulus

Cp2-4 λλλλ2-4 Cp2-5 λλλλ2-5 Cp2-7 λλλλ2-7

0.5 0.744 0.122 0.628 0.201 0.721 0.246

1.0 0.750 0.127 0.617 0.210 0.722 0.241

2.0 0.760 0.129 0.612 0.213 0.730 0.234

3.0 0.778 0.131 0.598 0.222 0.747 0.216

5.0 0.789 0.131 0.639 0.210 0.755 0.203
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Figure 6.66 also shows a line representing experimental data taken from the equivalent

experimental arrangement (i.e. clean inlet and an inlet turbulence intensity of approxi-

mately 0.5 ~ 1.0%). Although showing some differences the experimental and computa-

tional profiles agree well. The experimental profile is reasonably closely matched by the

prediction (for Ti = 0.5%) showing a stall of equal magnitude on the outer wall, a similar

overall shape and an average velocity close to 26ms-1. The profiles differ close to the

inner wall over a distance corresponding to 10 - 15% of the diffuser exit height. How-

ever, it is known that the presence of a wall can introduce errors into five-hole pressure

probe readings (Section 3.2.5). Thus it is possible that in reality the two profiles are more

closely matched than indicated by Figure 6.66. Nonetheless, due to the low levels of inlet

turbulence intensity in the two-dimensional test facility and the resulting unstable hybrid

diffuser flow there is insufficient experimental data with which to compare computa-

tional predictions. However, at increased levels of inlet turbulence computational predic-

tions can provide useful data. Although absolute accuracy cannot be established, some

information on trends can be extracted. For example, Table 6.9 illustrates the effect of

altering the bleed rate on diffuser and system performance with an inlet turbulence inten-

sity of 5.0%.

Table 6.9 Variation of Performance with Bleed (Ti = 5.0%)

The two-dimensional, axi-symmetric computational geometry differs from the fully

three dimensional experiment and as such will produce different values of performance

parameters. However, the configurations are, to an extent, generically similar and it

would therefore be fair to assume that levels of performance will also be similar. The

experimental Hybrid4 diffuser, with inner and outer bleeds of 3.0%, returned a diffuser

Bleed (%minlet)

inner: outer

Diffuser Exit Inner Annulus Outer Annulus

Cp2-4 λλλλ2-4 Cp2-5 λλλλ2-5 Cp2-7 λλλλ2-7

0.0 : 0.0 0.712 0.144 0.579 0.241 0.694 0.263

1.0 : 1.0 0.736 0.128 0.605 0.222 0.718 0.241

2.5 : 2.5 0.789 0.131 0.639 0.210 0.755 0.203

3.0 : 3.0 0.796 0.131 0.689 0.186 0.759 0.191
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pressure coefficient of Cp2-4 = 0.71 and a loss coefficient of λ2-4 = 0.21 (refer to Section

4.0). Table 6.9 shows that for the same bleed rate the two-dimensional, axi-symmetric

predictions gave corresponding values of 0.80 and 0.13. These values compare reasona-

bly well considering the differences in the two configurations; the computational predic-

tion does not include blade wakes and the simplified cowl geometry effectively increases

the blockage at diffuser exit. Stevens et al[1970] report that increased turbulence from

OGV wakes can increase Cp. However, this is incidental here as the inlet turbulence, for

the CFD, is set at a level representative of that downstream of the OGVs. Thus the inclu-

sion of wakes would, here, only increase the loss due to increased mixing. Furthermore,

an increased blockage at diffuser exit will reduce the velocity profile distortion and,

according to Hestermann et al[1991] augment diffuser performance. Thus it is possible to

give reasons for the different performance figures, hence providing some measure of

confidence in the two-dimensional prediction.

In summary, the effect of altering the bleed rate on the performance of the two-dimen-

sional, axi-symmetric hybrid diffuser has been distinctly illustrated in Figures 6.64 -

6.70. Figure 6.69 shows a streamline plot for a bleed rate equal to 1.0% of inlet mass

flow led through both the inner and outer bleeds. Clearly, this is below the minimum

bleed requirement and the diffuser stalls from the outer Stage 3 wall. Figure 6.64 is the

corresponding streamline plot for a bleed of 2.5% which is above the minimum require-

ment and shows a fully attached stable flow. The effect of bleed rate is also graphically

illustrated in Figure 6.70 which shows normalised axial velocity profiles at diffuser exit

for various bleed rates from 0.0 - 3.0%. With 2.5% of the inlet mass flow bled through

each side the profile demonstrates that the diffuser is fully attached. However, below this

level of bleed the diffuser stalls from the outer Stage 3 wall resulting in a much higher

peak velocity and profile distortion. Increasing the bleed rate above the minimum bleed

requirement further improves the condition of the diffuser exit flow. At a bleed rate of

3.0% the profile becomes much more uniform with a greater outboard migration of mass

flow which improves the condition of the boundary layers. The increased diffuser perfor-

mance, at higher bleed rates, also beneficially effects the condition of the flow to the feed

annuli. At higher bleed rates there is a greater degree of diffusion and the increased out-

board migration of the mass flow within the diffuser reduces the amount of turning

required within the dump gap. This reduces the dump gap losses and in turn reduces the
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losses to the feed annuli. For example at 0.0% bleed the outer annulus loss coefficient is

0.26 but this is reduced to 0.19 when the bleed rate is increased to 3.0%.

6.3 Hybrid Diffuser with OGV Wakes

Directly extending the two-dimensional computational work discussed above into three

dimensions enables the inclusion of three-dimensional inlet conditions incorporating the

flow structure associated with OGV wake flow. Section 2.3 outlines the effect that inlet

conditions have on diffuser performance, highlighting the importance of reproducing

engine representative inlet conditions containing such features as OGV wakes. The geo-

metrical configuration, grid generation and applied boundary conditions for the three-

dimensional predictions are described and discussed in Section 5.7. Significantly the

inlet velocity definition is taken directly from five-hole probe measurement on the exper-

imental facility (refer to Section 4.4) and thus exactly matches the experimental case.

However, as highlighted in Section 5.7, the description of the inlet turbulence is less

exact as these type of data cannot be obtained from a five-hole probe.

6.3.1  Diffuser Performance and OGV Wake Effects

Measurements from the experimental facility and data from two-dimensional, axi-sym-

metric computational work suggest that an inlet turbulence intensity of 5% is both a real-

istic and necessary level for the diffuser flow to remain attached. Furthermore,

measurements from the modified test facility (Section 4.4) indicate that an unbalanced

bleed rate would also be required due to the diffuser outer wall being more prone to sep-

aration. Thus for the first computational prediction the inlet turbulence intensity was set

to 5.0% in conjunction with inner and outer bleed rates equal to 2.5% and 3.0% of the

inlet mass flow, respectively.

Figure 6.71 shows the normalised axial velocity contours at diffuser exit for the experi-

mental case. The velocity profile has a slight inboard bias with the peak velocity located

at some 35% of the annulus height. More notably, however, is that Figure 6.71 shows

that velocity peaks and troughs associated with the OGV wakes are still present at dif-

fuser exit.
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Figure 6.72 shows a corresponding axial velocity contour plot for the initial computa-

tional prediction (i.e. Ti = 5.0%, Bi = 2.5% and Bo = 3.0%). It is immediately evident that

the OGV wakes have not persisted through to diffuser exit as they do in the experimental

case and, additionally to the wakes mixing out, the peak velocity has shifted and is

located more centrally.

Velocity vectors at diffuser exit are shown in Figures 6.73 and 6.74 for the experimental

and computational cases respectively. The experimental case exhibits a slightly higher

swirl component but the pitch component appears lower than the computational predic-

tion. Overall the predicted flow field at diffuser exit differs from the experimental case

due, in part, to the more rapid mixing out of the wake flow. The rate at which OGV

wakes will mix out is dependant upon the turbulent structure of the flow. Wolf and John-

ston[1969] reported that mixing is promoted by higher turbulence intensities and larger

scale eddies.

There are two potential reasons why the predicted flow field differs from the experimen-

tal case. Firstly, the inlet turbulence definition may be in error, and secondly, the turbu-

lence model chosen may be unable to satisfactorily model the flow. Both these reasons

are, however, closely linked as the turbulence model used dictates the method by which

inlet turbulence must be defined. Furthermore, if the inlet turbulence definition is incor-

rect the solution may be in error regardless of the turbulence model used.

Here, for this computational prediction, an eddy-viscosity (k-ε) turbulence closure was

used for reasons outlined in Section 5.0. This model requires the description of the inlet

turbulent flow field by means of specifying distributions of k and ε; the Reynolds

stresses are then computed form the Boussinesq hypothesis (Equation 5.16). Velocity

data at inlet were specified directly from measurements on the experimental facility but

distributions of k and ε were not available and had to be approximated using Equation

5.26. Thus the structure of the inlet turbulence is not entirely correct; clearly from Equa-

tion 5.26 distributions of k and ε calculated from a single turbulence intensity and char-

acteristic length are uniform. In reality this is not the case downstream of OGVs where

the distribution of intensity and length scale will be far from uniform. Therefore,

although velocities and pressures are correct at inlet, the turbulence definition contains
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errors.

Additionally differences in the predicted solution may also be due to the eddy-viscosity

turbulence model being unable to predict the evaluation of the Reynolds stresses satis-

factorily. Many authors have commented that the Boussinesq hypothesis implies iso-

tropic turbulence. This is not strictly correct; in reality it assumes that the turbulent

viscosity is isotropic and can be expressed as a scalar (µt in Equation 5.10). This is gen-

erally a valid assumption but when the turbulence is strongly anisotropic, such as down-

stream of OGV wakes, the turbulent viscosity should definitely be a tensor quantity.

Hence it is feasible that the calculated stresses may be incorrect which will, in turn,

effect the turbulent mixing of the OGV wake flow.

A further turbulence model was available for use within Fluent, namely the Reynolds

Stress Model (RSM) as described in Section 5.4. The RSM solves transport equations for

the individual Reynolds stresses directly, avoiding the use of the Boussinesq hypothesis,

and is therefore often considered a more accurate model for the prediction of turbulent

flows. However, this model requires that the individual Reynolds stresses are specified at

inlet and again this information was not available necessitating the use of an approxima-

tion as defined in Equation 5.36. Again the specification of a single turbulence intensity

and characteristic length will result in uniform distributions of k, ε and the Reynolds

stresses which will not be representative of the flow field downstream of OGV’s. Thus,

even if the Reynolds Stress model is more accurate, the prediction of the wake flow will

still contain errors due to the method used to specify the inlet turbulence. The RSM was

not used for the three-dimensional predictions due to the reasons discussed in Section 5.8

including the fact that the RSM is very demanding on computational resources.

Although the inlet turbulence structure is defined using a uniform distribution it is still

possible to alter the wake mixing process by simply changing the inlet turbulence inten-

sity. It has been shown in Figure 6.72 that an inlet intensity of 5.0% encourages vigorous

mixing such that the OGV wakes have mixed out by the time the flow reaches diffuser

exit. According to Wolf and Johnston[1969] reducing the turbulence intensity should

reduce the level of turbulent mixing. Figure 6.75 shows non-dimensionalised axial

velocity contours with the inlet turbulence reduced to only 1.0%. This is much lower
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than levels seen typically downstream of an axial compressor but it does result in a

strong wake flow still being present at diffuser exit. Figure 6.75 clearly shows two OGV

wakes but when compared to the experimental case (Figure 6.71) there remains distinct

differences in the overall flow field. For the experimental case the peak velocity is

around 1.6 times the average but for the predicted flow with an inlet turbulence intensity

of 1.0% this falls to a factor of 1.4. A slightly higher inlet turbulence intensity of 2.0%

encourages a higher degree of mixing and, as shown in Figure 6.76, the wake flow is less

pronounced but still differs from the experimental case.

In addition to changing the nature of the wake mixing by altering the inlet turbulence

intensity it should also be possible to influence this process by altering the characteristic

turbulence length scale used at inlet. In all the predictions here the characteristic length

was set as the OGV passage height but it may be the case that a length based on OGV

spacing or wake width is more appropriate. Unfortunately, due mainly to time con-

straints, this was not investigated.

In summary, the combination of the turbulence model and the method by which the inlet

turbulent conditions are specified cannot reproduce the correct physical flow field. How-

ever, altering the level of inlet turbulence does demonstrate the effect of this parameter

on the development of the OGV wake flow. As the inlet turbulence intensity increases

there is increased mixing of the OGV wakes such that at a turbulence intensity of 5.0%

the wake flow is completely mixed out at diffuser exit. Table 6.10 details some diffuser

and system performance parameters for the experimental case and the computational

predictions. Predicted diffuser static pressure recovery is 15% higher and loss 45% lower

than measured on the experimental facility. Similarly, total pressure losses to the feed

annuli are reduced by a comparable amount. Although many of these differences are

caused by the differing inlet turbulence structure these observations are also consistent

with those of Little et al[1997] and Bradshaw[1973] who suggest that the eddy-viscosity (k-

ε) turbulence model fails to predict the high total pressure losses associated with flow

curvature in the dump region and over the flame tube cowl.
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Table 6.10 Performance Data, Three-Dimensional Predictions, Bi=2.5%, Bo=3.0%

The predicted wake flow may not be entirely representative of the physical case due to

the inlet turbulence definition and the turbulence model but it does provide an opportu-

nity to qualitatively asses the effect OGV wakes may have on the flow mechanisms of

hybrid diffusers. For the hybrid diffuser studied here (Hybrid 4 - refer to Section 3.0) it

seems sensible to suggest that the effect will be centred on two areas. 

Firstly the presence of wakes will change the nature of the bleed as the lower axial

momentum wake flow will be unable to overcome the radial pressure gradient setup by

the bleed thus producing locally higher bleed rates. However, Figure 6.75 shows that the

OGV wakes are not distributed evenly and do not occur in a simple circumferential

plane. They have a complex ‘S’ shape making it difficult to identify the actual circumfer-

ential location of each wake, especially since the swirl component of the inlet flow shifts

this location out of line with the physical position of the OGV’s. Notwithstanding this

regions of low axial momentum fluid can clearly be identified close to the walls and it is

here local bleed rate may be augmented.

Secondly, the structure of wake flow may also affect the reattachment process. Findings

reported in Section 6.1 suggest that a locally increased bleed rate will result in a locally

reduced reattachment length but the complex nature of wake flow may, itself, have a

greater effect. For example, the OGV wake flow will, in general, have a lower axial

momentum than the average value. In a deep wake this may result in the fact that the

wake flow would be unable to overcome the shear stresses and adverse pressure gradient

within the Stage 2 diffuser. This flow would then be more likely to stall and flow reat-

Diffuser Cp2-4 λ2-4 Cp2-5 λ2-5 Cp2-7 λ2-7

Experiment 0.70 0.21 0.55 0.23 0.67 0.29

CFD, Ti = 5.0% 0.813 0.114 0.392 0.225 0.793 0.165

CFD, Ti = 2.0% 0.807 0.118 0.410 0.241 0.790 0.172

CFD, Ti = 1.0% 0.802 0.120 0.427 0.254 0.789 0.172
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tachment would be delayed or not occur and diffuser performance will fall.

Figure 6.77 plots the circumferential variation of reattachment on both the inner and

outer walls of the Stage 3 diffuser with inner and outer bleed rates of 2.5% and 3.0%

respectively and an inlet turbulence intensity of 5.0%. (The plot is not symmetrical about

the centre plane due to the fact that the inlet conditions are not symmetrical; adjacent

OGV wakes differ due to interactions of the 77 IGVs with 154 OGVs and repeatability

occurs over 2 OGVs). For this computational configuration the OGV wakes were almost

entirely mixed out at diffuser exit (Figure 6.75) but Figure 6.77 clearly shows that the

presence of OGVs alters the point of reattachment; defined as the point at which:

 6.16

Firstly, Figure 6.77 shows that reattachment is slightly more rapid on the outer wall due

to the fact that the outer bleed rate is higher than the inner bleed. However, the reattach-

ment length on both walls varies with a periodicity matched to the OGVs. This was also

seen in the experimental observations as reported in Section 4.1.2. Figure 4.10 shows

that wall static pressure was also seen to exhibit a periodic variation matched to the fre-

quency of the OGVs. Experimentally it was not possible to determine a reattachment

point but it was argued that it would vary circumferentially in a periodic manner, in line

with the wall static pressure, due to the influence of the OGVs. Figure 6.78 shows a sim-

ilar plot to Figure 4.10 but for the computational configuration. The inclusion of a line

indicating the reattachment point confirms that the wall static pressure variation does

indeed mimic the variation of reattachment. 

It is difficult, however, to ascertain from Figure 6.77 if the reduction in reattachment

length is associated with wake or non-wake flow because the residual swirl at inlet

causes the wake flow to shift circumferentially from the physical OGV locations. Figure

6.79 is a plot of the axial velocity contours on an axial plane corresponding to a distance

60% across the mouth of the bleed duct. Although mixed considerably there are still

OGV wakes present and, close to upper and lower extremes, regions of low axial veloc-

ity can be seen to periodically occur just to the left of the OGV locations. Comparing

Figure 6.77 with Figure 6.79 it is now clear that downstream of these regions of low

axial velocity (i.e. OGV wake flow) the reattachment length is increased. 

y∂
∂U

 
 

wall
0=
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Figures 6.80 and 6.81 are plots of radial velocity contours across the mouth of the inner

and outer bleed gaps and show higher radial velocities and thus higher bleed rates associ-

ated with the lower axial momentum regions. Work reported in Section 6.1 demonstrated

that for two-dimensional systems higher bleed rates reduce the reattachment length.

However this contradicts what is observed here as, although local bleed rates are

increased, reattachment is delayed within the OGV wake flow.

Plots of velocity contours on circumferential planes corresponding to positions within

and between OGV wake fluid allow the flow field to be further studied. Figures 6.82 and

6.83 are plots of axial and radial velocity contours in the Stage 2 diffuser in a region

within the low axial momentum wake fluid whereas Figures 6.84 and 6.85 show corre-

sponding plots in a region between wakes.

Firstly, the plots of axial velocity contours confirm that reattachment is less rapid within

the low axial momentum OGV wake fluid. The reattachment point corresponds to the

intersection of the zero contour level with the Stage 3 wall and the length required for the

flow to reattach increases by some 30% within the wake.

Secondly, Figures 6.82 and 6.84 show that the axial velocity is globally reduced within

the wakes (as would be expected) when compared to the non-wake flow. This is espe-

cially true in the near wall region approaching the bleed. Although bleed rate is locally

increased within the wakes it is not sufficient to greatly affect the mainstream wake fluid.

The reattachment length is, therefore, locally increased resulting in the periodic variation

seen in Figure 6.77.

A lower inlet turbulence intensity will, according to Wolf and Johnston[1969], reduce

OGV wake mixing. With more pronounced, deeper OGV wakes the regions of low axial

momentum fluid close to the inner wall increase in magnitude. Figure 6.75 shows axial

velocity contours at diffuser exit for a solution generated with an inlet turbulence inten-

sity of only 1.0% and clearly shows a very pronounced wake flow. The two-dimensional

computational work reported in Section 6.2 suggested that such a low turbulence inten-

sity flow would not reattach on the Stage 3 wall but, as Figure 6.75 clearly shows, this is

not the case when OGV wakes are present. Barker and Carrotte[2000] report that the
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highly three-dimensional OGV wake structure promotes radial movement of flow and

encourages the transfer of axial momentum to the boundary layer flow and it is this phe-

nomenon which enables the flow to reattach. Nevertheless this combination of low tur-

bulence intensity and deep wakes results in the fact that within the low energy wake flow

the reattachment length is greatly increased. Figure 6.86 shows the circumferential varia-

tion of reattachment point for an inlet turbulence intensity of 1.0% and shows that,

although the outer wall reattachment is unchanged, the inner wall reattachment is greatly

effected resulting in a large separation bubble. Within the more pronounced wake the

flow is much lower in axial momentum and even with radial transfer of positive momen-

tum under the action of the bleed the flow cannot rapidly reattach. Between the wakes

the near wall flow, in conjunction with the bleed, still has sufficient momentum to over

come the shear stress and adverse pressure gradient and more rapidly reattach on the

Stage 3 wall.
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6.4 Summary

In summary the computational investigation has revealed the following main points:

• Predictions of the flow in a two-dimensional, plane hybrid diffuser have, in support of

the experimental findings, both qualitatively and quantitatively demonstrated that a

vortex chamber is not a necessary component of hybrid diffusers. Significantly this

contradicts much of the early work on hybrid diffusers carried out by Adkins et

al[1980] and Myres et al[1995]. The performance of a hybrid diffuser incorporating a

simple ducted bleed was seen to be the same as when a vortex chamber was present.

• Moreover, these predictions also demonstrated that the step/fence arrangement of

Adkins et al[1980] is unnecessary and does not contribute to the main flow mecha-

nisms of a hybrid diffuser. In addition to simplifying the geometry, several alternative

bleed configurations exhibited a diffuser performance unchanged from that of the

original configuration.

• Furthermore, a momentum transfer analysis revealed that the pertinent flow mecha-

nisms of a hybrid diffuser are centred on a transfer of streamwise momentum from the

accelerating bleed flow to the diffusing mainstream flow. This the enables a fresh

boundary layer to be formed on the stage 3 wall which is sufficiently energetic to

overcome the high rates of diffusion and high adverse pressure gradient.

• Realisation that a vortex chamber could be replaced by a ducted bleed enabled the

bleed geometry to be modified in an attempt to reduce bleed flow total pressure loss.

Although not an optimised bleed geometry a profiled bleed (Alt. 4) reduced the total

pressure loss to 70% of it original value (for 2.5% bleed). However, potential for fur-

ther improvements need to be investigated before conclusions can be made about the

suitability of the bleed air for use in component cooling.

• A prediction incorporating OGV wakes in the inlet conditions showed a level of dif-

fuser and system performance that was slightly above that seen on the full experimen-

tal facility. Additionally, predicted and measured wakes at diffuser exit had some
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similarities but differed due to an incomplete three-dimensional description of the

inlet turbulence (k and ε). However, an investigation into the effect of OGV wakes

revealed that they have an impact on the reattachment process, locally increasing reat-

tachment length.
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Figure 6.1 Definition of Reattachment Length, Xr

Figure 6.2 Axial Velocity Profiles at Diffuser Exit (Vortex Chamber)
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Figure 6.3 Axial Velocity Profiles at Diffuser Exit (Duct Bleed)

Figure 6.4 Variation of Diffuser Total Pressure Loss with Bleed
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Figure 6.5 Variation of Diffuser Static Pressure Recovery with Bleed

Figure 6.6 Variation of Reattachment Length with Bleed
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Figure 6.7 Streamline Plot - Conventional Diffuser

Figure 6.8 Streamline Plot - Duct-bled Diffuser, 2.5% Bleed

Separation
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Figure 6.9 Streamline Plot - Duct-bled Diffuser, 1.5% Bleed

Figure 6.10 Streamline Plot - Duct-bled Diffuser, 0.0% Bleed
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Figure 6.11 Axial Velocity Profile at Stage 1 Exit (Duct-bled Diffuser)

Figure 6.12 Radial Velocity Profile at Stage 1 Exit (Duct-bled Diffuser)
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Figure 6.13 Axial Velocity Profile at Stage 2 Exit (Duct-bled Diffuser)

Figure 6.14 Radial Velocity Profile at Stage 2 Exit (Duct-bled Diffuser)
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Figure 6.15 Radial Velocity Across Bleed Gap (Duct-bled Diffuser)

Figure 6.16 Static Pressure Gradient Across Bleed Gap (Duct-bled Diffuser)
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Figure 6.17 Streamline Plot - Alt. 1, 2.5% Bleed

Figure 6.18 Cell Centred Axial Velocity in Wall Adjacent Cell, 2.5% Bleed
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Figure 6.19 Streamline Plot - Alt.2, 2.5% Bleed

Figure 6.20 Streamline Plot - Alt.3, 2.5% Bleed

Separation
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Figure 6.21 Streamline Plot - Alt.4, 2.5% Bleed

Figure 6.22 Streamline Plot - Alt.5, 2.5% Bleed
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Figure 6.23 Static Pressure Contours - Duct, 2.5% Bleed

Figure 6.24 Static Pressure Contours - Alt.1, 2.5% Bleed
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Figure 6.25 Static Pressure Contours - Alt.2, 2.5% Bleed

Figure 6.26 Static Pressure Contours - Alt.3, 2.5% Bleed
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Figure 6.27 Static Pressure Contours - Alt.4, 2.5% Bleed

Figure 6.28 Static Pressure Contours - Alt.5, 2.5% Bleed
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Figure 6.29 Development of Mass Weighted Static Pressure Recovery

Figure 6.30 Rate of Mass Weighted Static Pressure Recovery
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Figure 6.31 Streamline Plot - Alt.4, 0% Bleed, Stalled

Figure 6.32 Streamline Plot - Alt.4, 1.0% Bleed, Stalled
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Figure 6.33 Streamline Plot - Alt.4, 2.5% Bleed

Figure 6.34 Axial Velocity Profiles at Diffuser Exit, Alt.4
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Figure 6.35 Inviscid Streamline Plot (2.5% Bleed)

Figure 6.36 Diffuser Nomenclature (Momentum Analysis)
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Figure 6.37 Typical Variation of ββββ from Inviscid Solution

Figure 6.38 Gain/Loss Processes of Streamwise Momentum

Figure 6.39 Flow Regions Within Alt.4 Hybrid Diffuser
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
Figure 6.40 Contours of , Alt. 4, Region 1, 2.5% Bleed

Figure 6.41 Contours of , Alt. 4, Region 1, 2.5% Bleed
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Figure 6.42 Contours of , Alt. 4, Region 1, 2.5% Bleed

Figure 6.43 Contours of , Alt. 4, Region 1, 2.5% Bleed
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
Figure 6.44 Turbulent Flow Streamlines, Alt. 4, Region 1, 2.5% Bleed

Figure 6.45 Contours of , Alt. 4, Region 2 & 3, 2.5% Bleed
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
Figure 6.46 Contours of , Alt. 4, Region 2 & 3, 2.5% Bleed

Figure 6.47 Contours of , Alt. 4, Region 2 & 3, 2.5% Bleed
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
Figure 6.48 Contours of , Alt. 4, Region 2 & 3, 2.5% Bleed

Figure 6.49 Streamlines, Alt. 4, Region 2 & 3, 2.5% Bleed
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Figure 6.50 Streamlines, Alt. 4, Region 4, 2.5% Bleed

Figure 6.51 Contours of , Alt. 4, Region 4, 2.5% Bleed
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Figure 6.52 Contours of , Alt. 4, Region 4, 2.5% Bleed

Figure 6.53 Contours of , Alt. 4, Region 4, 2.5% Bleed
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Figure 6.54 Contours of , Alt. 4, Region 4, 2.5% Bleed

Figure 6.55 Streamlines, Alt. 4, Region 5, 2.5% Bleed
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Figure 6.56 Contours of , Alt. 4, Region 5, 2.5% Bleed

Figure 6.57 Contours of , Alt. 4, Region 5, 2.5% Bleed
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Figure 6.58 Contours of , Alt. 4, Region 5, 2.5% Bleed

Figure 6.59 Contours of , Alt. 4, Region 5, 2.5% Bleed
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Figure 6.60 Contours of , Alt. 4, 0.0% Bleed

Figure 6.61 Contours of , Alt. 4, 0.0% Bleed
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Figure 6.62 Contours of , Alt. 4, 0.0% Bleed

Figure 6.63 Contours of , Alt. 4, 0.0% Bleed
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
Figure 6.64 Streamline Plot, 2D, Axi-Symmetric, Bi = Bo= 2.5%, Ti = 0.5%

Figure 6.65 Streamline Plot, 2D, Axi-Symmetric, Bi = Bo= 2.5%, Ti = 5.0%
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Figure 6.66  Effect of Inlet Turbulence on Axial Velocity Profile at Diffuser Exit, 2D, 

Axi-Symmetric, (Experimental Data, Ti < 1.0%)

Figure 6.67 Static Pressure Recovery, 2D, Axi-Symmetric, Ti = 5.0%, Bi= Bo= 2.5%
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Figure 6.68 Static Pressure Recovery, 2D, Axi-Symmetric, Ti = 0.5%, Bi= Bo= 2.5%

Figure 6.69 Streamline Plot, 2D, Axi-Symmetric, Ti = 5.0%, Bi = Bo = 1.0%
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Figure 6.70  Effect of Bleed Rate on Axial Velocity Profile at Diffuser Exit, 2D,     

Axi-Symmetric, Ti = 5.0%

Figure 6.71 Normalised Axial Velocity Contours at Diffuser Exit (Experimental 

Data, Bi = 2.5%, Bo = 3.0%)
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Figure 6.72 Normalised Axial Velocity Contours at Diffuser Exit (CFD Data, Ti = 

5.0%, Bi = 2.5%, Bo = 3.0%)

Figure 6.73 Velocity Vectors at Diffuser Exit (Experimental Data, Bi = 2.5%, Bo = 

3.0%)
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Figure 6.74 Velocity Vectors at Diffuser Exit (CFD Data, Ti = 5.0%, Bi = 2.5%, Bo = 

3.0%)

Figure 6.75 Normalised Axial Velocity Contours at Diffuser Exit (CFD Data Ti = 

1.0%, Bi = 2.5%, Bo = 3.0%)
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Figure 6.76 Normalised Axial Velocity Contours at Diffuser Exit (CFD Data Ti = 

2.0%, Bi = 2.5%, Bo = 3.0%)

Figure 6.77 Circumferential Variation of Reattachment

(Ti = 5.0%, Bi = 2.5%, B = 3.0%)
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6.0 COMPUTATIONAL RESULTS AND DISCUSSION
Figure 6.78 Outer Wall Static Pressure Contours (Ti = 5.0%, Bi = 2.5%, B = 3.0%)

Figure 6.79 Axial Velocity Contours Plane at x=70mm

(Ti = 5.0%, Bi = 2.5%, B = 3.0%)
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Figure 6.80 Inner Bleed Gap Radial Velocity Contours

(Ti = 5.0%, Bi = 2.5%, B = 3.0%)

Figure 6.81 Outer Bleed Gap Radial Velocity Contours

(Ti = 5.0%, Bi = 2.5%, B = 3.0%)
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Figure 6.82 Stage 2Axial Velocity Contours within OGV Wake Fluid

 (Ti = 5.0%, Bi = 2.5%, B = 3.0%)

Figure 6.83 Stage 2 Radial Velocity Contours within OGV Wake Fluid

 (Ti = 5.0%, Bi = 2.5%, B = 3.0%)
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Figure 6.84 Stage 2 Axial Velocity Contours Between OGV Wake Fluid

 (Ti = 5.0%, Bi = 2.5%, B = 3.0%)

Figure 6.85 Stage 2 Radial Velocity Contours Between OGV Wake Fluid

 (Ti = 5.0%, Bi = 2.5%, B = 3.0%)
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Figure 6.86 Circumferential Variation of Reattachment

(Ti = 5.0%, Bi = 2.5%, B = 3.0%)
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7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

Within the past few years strict legislation has come into force governing the emissions

of pollutants from aircraft engines. Of prime importance to gas turbine designers is the

reduction of NOx emissions and this has led to the possible use of staged combustion

systems in an attempt to maintain combustion temperature within a low emission band.

Staged combustion, however, demands high levels of diffusion and turning of the com-

pressor efflux in order to avoid excessive aerodynamic losses which have a negative

effect on engine specific fuel consumption. Furthermore, these high rates of diffusion are

accompanied by large adverse pressure gradients and an associated risk of flow separa-

tion. A review of the relevant published data revealed that current conventional, modest

area ratio diffuser technology is unable to meet these performance requirements. How-

ever, hybrid diffusers, as proposed by Adkins et al[1980], can achieve high rates of effi-

cient diffusion in far shorter lengths than conventional faired or dump pre-diffuser,

representing a potential performance gain and weight saving. Notwithstanding this

designers have been reluctant to employ such diffusers due to a lack of understanding of

the pertinent flow mechanisms and how hybrid diffusers might be optimised for use in

gas turbine combustors.

An experimental study has been carried out utilising an existing isothermal test facility

comprising of a fully annular representation of a staged combustor downstream of a sin-

gle stage axial compressor incorporating engine representative outlet guide vanes. Initial

experimental work lead to rig modifications which allowed a range of hybrid diffuser

systems to be studied. To act as a benchmark the performance of a conventional, single-

passage, dump pre-diffuser and a conventional, twin-passage, optimised dump pre-dif-

fuser were first studied. Additionally, to provide a better understanding of the flow

mechanisms, a computational investigation was also undertaken using a commercial

CFD code (Fluent) employing finite volume methodology and an eddy-viscosity turbu-

lence model.

Large amounts of data were gathered experimentally and it was concluded that these
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were of high quality. Similarly, a large amount of computational data were also pro-

duced. However, derived performance parameters such as mass weighted total pressure

loss and static pressure recovery coefficients revealed that the computational data con-

tained some degree of error. Predicted total pressure loss and static pressure recovery

coefficients were slightly lower and higher, respectively, than those determined in an

equivalent experiment. Notwithstanding this, it was shown that a valid parametric study

could be performed to the extent that the same conclusions about parametric changes

could be made from the experimental or predicted data. It is believed that the source of

the error originated from two areas. Firstly, insufficient data were available to completely

and accurately describe the flow’s turbulence structure at inlet. Secondly, although the

eddy-viscosity turbulence model is able to capture the main flow physics it is known to

have some problems, for example under predicting turning losses.

On the whole, measured and predicted diffuser performance data agreed well with pub-

lished data. For example, hybrid diffusers were shown, in a given length, to achieve

much higher area ratios, controlled flow turning and static pressure recoveries than con-

ventional diffusers. A strutted hybrid diffuser demonstrated a 53% increase in area ratio

over a conventional, single passage “datum” diffuser designed using accepted nominal

design rules and typical of current single annular engine technology. This increased area

ratio realised a resultant static pressure recovery increase of 13%. However, the type of

hybrid diffuser proposed by Adkins et al[1980] was seen to incur a higher diffuser total

pressure loss due to the flow separation and reattachment process and the higher degree

of overall turning.

The inclusion of radial struts within the Stage 3 section of a hybrid diffuser was shown to

have only a minimal impact on the measured diffuser or system performance. Using

measured data from an unstrutted hybrid diffuser the leading edge of the strut was posi-

tioned downstream of the reattachment point to prevent interactions with the reattach-

ment process. Additionally, the inclusion of struts was also shown to remove residual

swirl from the flow which in turn should have a beneficial effect on feed to the various

combustor features.

In terms of overall system performance it is significant that both the conventional diffus-
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ers tested failed to deliver air to the combustor feed annuli without incurring unaccepta-

bly high total pressure losses. This further confirms the fact that conventional diffusers

cannot achieve the required performance and are therefore unattractive for use with radi-

ally staged combustion systems.

In comparison, the increased diffusion and turning afforded by the hybrid diffusers

greatly reduced the dump losses and resulted in feed annuli total pressure losses well

within target values (i.e. below 30% of OGV exit dynamic pressure). This suggests that,

in overall performance at least, hybrid diffusers represent a viable solution for the

requirements of staged combustors.

Further agreement with previously published data was demonstrated in as much that the

minimum required level of bleed was both dependant on, and increased with, diffuser

area ratio. In addition, for a given configuration, levels of bleed similar to those

employed in the published data were required such that at the maximum area ratio (≈ 2.5)

tested a bleed equal to 3.0% of the inlet mass flow was removed through both bleed

ducts/chambers. 

As the minimum bleed requirement is reached static pressure recovery rapidly increases

while loss and reattachment length both rapidly reduce but all three then remain almost

constant thereafter. Increasing the bleed rate above the minimum required level resulted

in only a small increase in diffuser performance. However, increases in bleed rate were

seen to be detrimental to total pressure losses within the bleed flow itself.

Levels of bleed required throughout this study were typical of the quantity of air used for

turbine blade/disk cooling (6% of total inlet flow) and therefore the option of using the

bleed air for component cooling remains a reality. Unfortunately, air bled through a vor-

tex chamber incurs a high total pressure loss making it unattractive for component cool-

ing purposes. However, it was demonstrated that a vortex chamber is not a necessary

feature, and does not contribute to the flow mechanism of a hybrid diffuser, other than

providing a stable bleed. A simple duct was shown to perform the same function and is

not only attractive from a practical engineering perspective but was also seen to signifi-

cantly reduce the bleed flow total pressure loss by reducing the size of the flow recircula-
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tion. For a bleed flow of 3.0% the total pressure loss through a vortex chamber was equal

to 60% of the rotor exit dynamic pressure whereas for a simple duct this figure was

reduced to 50%. Additionally, modifications to the bleed duct, including profiling the

upstream corner (Figure 7.1), removed any trace of flow separation and further reduced

the bleed flow total pressure loss to 39% of the rotor exit dynamic head. This level of

loss suggests that the air bled from a hybrid diffuser is sufficient in quality to be used for

component cooling elsewhere in the engine. 

Furthermore, a generic study of hybrid diffuser geometry revealed that the step/fence

arrangement was also not necessary. Although providing an immediate increase in area

the step does not contribute to the governing flow mechanisms. Moreover, the presence

of the Coanda bubble is a result of the step/fence and also not a necessary component of

hybrid diffusers. Thus the name Hybrid Vortex Controlled Diffuser becomes somewhat

of a misnomer as the control is not afforded by the presence of any vortex. The term

Hybrid Diffuser is more applicable.

Detailed examination of the flow field revealed that the controlling flow mechanisms are

centred on the bleed flow. It is not a simple boundary layer bleed and involves a much

more complex interaction between the accelerating bleed flow and the diffusing main-

stream flow. Essentially, two processes occur as shown in Figure 7.2. Firstly, momentum

is transferred from the accelerating bleed flow to the diffusing mainstream flow, re-ener-

gising it and enabling it to remain attached on the high angle Stage 3 wall under the

action of a strong adverse pressure gradient. Secondly, the radial pressure gradient cre-

ated by the bleed causes deflection of the mainstream flow which also transports higher

momentum fluid into the boundary layer.

Understanding this allows the geometry of a hybrid diffuser to be optimised for use in a

staged gas turbine combustion system. Figure 7.1 shows such a geometry with the step/

fence removed thus making the diffuser a much less complex engineering component.

This type of hybrid diffuser was shown to achieve the same area ratio, static pressure

recovery and loss in an equivalent length using comparable bleed rates as the type of

hybrid “vortex controlled” diffuser proposed by Adkins at al[1980] and others (Figure

7.3). Yet it is not only more attractive in engineering terms but modifications to the bleed
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duct were shown to reduce bleed flow losses making this air available for component

cooling.

The condition of the flow at inlet to hybrid diffusers influences the performance of the

diffuser and the ability of the flow to remain attached. With a clean inlet, a developed

boundary layer and low levels of inlet turbulence hybrid diffusers were observed to stall.

However, increased levels of inlet turbulence, such as those generated by the single stage

axial compressor, for an identical hybrid diffuser prevented flow separation.

Additionally, a biased inlet velocity profile with a thick boundary layer on one wall does

not present a problem to hybrid diffusers. Increasing the bleed on the wall in question has

been shown to overcome any difficulties caused and returns a more uniform profile at

diffuser exit. The ability of hybrid diffusers to overcome this type of inlet profile distor-

tion may be significant in terms of operation downstream of a compressor functioning at

an off-design condition.

The presence of OGV wakes in the inlet flow has been clearly shown to influence the

performance of hybrid diffusers. The flow structure within OGV wakes redistributes

high energy mainstream flow to the near wall regions thus preventing or delaying flow

separation. Furthermore, the low energy fluid associated with wakes affects both the

bleed and reattachment process. Local bleed rates are augmented because the low energy

wake flow cannot overcome the radial pressure gradient set-up by the bleed. However,

any benefit this may produce is negated by the fact that within the wake the axial

momentum is relatively low and this fluid cannot easily overcome the high adverse pres-

sure gradient. For a hybrid diffuser including a step this results in periodically increased

reattachment lengths and regions, within the wakes, where the flow is more prone to sep-

aration.

Overall, this study has revealed a more detailed understanding into the pertinent flow

mechanisms of hybrid diffusers. This has opened the path for modifications which can

optimise this type of diffuser for a specific task such as use in a staged combustion sys-

tem. Thus the final conclusion is that the performance of hybrid diffusers is more than

satisfactory for use within low-emission, staged, gas turbine combustion systems.
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7.2 Recommendations and Further Work

Recommendations for further work forthcoming from this study can be separated into

several main, but interconnected, areas:

• A greater understanding of the principles involved may have lead to a more simple

design of hybrid diffuser but there remains no definitive data to define optimum bleed

gap geometries. Several authors have inconclusively studied the effect of the relative

size of the axial and radial bleed gaps but only on the type of hybrid “vortex control-

led” diffuser proposed by Adkins et al[1980]. Therefore there exists a need to study the

impact of alteration to bleed gap geometry in order to fully optimise hybrid diffusers.

This type of parametric study would be ideally suited to the use of two-dimensional

Computation Fluid Dynamics making it relatively straightforward and inexpensive.

• With the above in mind a logical extension to the work reported here would be to

design, manufacture, fit and test an optimised hybrid diffuser to the experimental test

facility. Furthermore, it is clear that twin-passage diffusers potentially offer many per-

formance benefits over their single passage counterparts. Thus optimisation of a

hybrid diffuser for use in a staged combustor may require such a feature leading to the

need to investigate designs such as Figure 7.4.

• Further work could also be undertaken in an attempt to model, more accurately, a

hybrid diffuser and staged combustor in three dimensions. Firstly, work would need to

be undertaken to investigate and improve on the turbulence closure and, secondly, a

more detailed description of the inlet turbulence (k, ε and Reynolds Stress distribu-

tions) would have to be obtained. However, this type of study should not be under-

taken lightly and would require a considerable amount of knowledge regarding

advanced turbulence modelling.
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Figure 7.1 “Optimum” Hybrid Diffuser

Figure 7.2 Main Flow Mechanisms

Strong Radial Pressure Gradient

Accelerating Bleed Flow

Transfer of Positive
Streamwise Momentum

Deflection of Mainstream Flow and
Convection of High Momentum Fluid
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Figure 7.3 “Old” Hybrid “Vortex Controlled” Diffuser

Figure 7.4 Further Hybrid Diffuser Development
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A1 PRELIMINARY EXPERIMENTAL INVESTIGATION

A1.1 Introduction

The design of a research test facility for the study of hybrid diffusers involves considera-

tion of several important factors and ultimately some kind of trade-off. On review of the

relevant literature it was clear that there existed only a limited understanding of the con-

trolling flow mechanisms of hybrid diffusers. Therefore, it was considered important to

isolate these mechanisms by removing complex geometry influences and revert to a

‘generic’ geometry. An extra advantage of this is a reduction of the physical complexity

of a test facility thus aiding access for instrumentation and minimising overall cost.

However, it is also important that a test facility can adequately represent any real appli-

cation under investigation. Here, for example, the potential use of hybrid diffusers in

radially staged aero gas turbine combustion systems is an important factor. This raises

the question of whether the test facility needs to be fully annular, include a flame tube,

burners, a rotor, IGVs or OGVs. 

For this project it was envisaged that the initial stages of the investigation would be con-

ducted using a simple rectangular/planar test rig. A fully annular facility (refer to Section

3.0) would be used for the latter stages of the investigation once a set of design rules had

been established. A simple rectangular/planar test rig would allow for modular construc-

tion which in turn enables easy modification of the diffuser geometry. Such a test rig was

designed incorporating only a very basic and simple representation of a flame tube and a

set of swirl-deswirl vanes to simulate reasonably representative inlet conditions. 

A1.2 Experimental Arrangement

The rectangular test facility (Figure A1.1) was designed to be of similar non-dimensional

geometry (based on OGV exit height) as the fully annular test facility described in Sec-

tion 3.0. The reason for maintaining a similar geometry was to allow for a back-to-back

comparison between the two test facilities. The rig was supplied with air via an under-

ground plenum chamber from a centrifugal fan driven by a variable speed, 75 kW d.c.

motor at a rate of about 1.6-1.7 kgs-1.
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The overall size of the rig was a compromise between several factors. A high aspect ratio

rig is preferable in terms of reducing end wall boundary layer effects and improving

accessibility for pressure probes and other instrumentation. Two limiting factors were the

capacity of the centrifugal fan and the size of the plenum chamber. However, by far the

most important factor in determining the rig size was the aspect ratio. This is extremely

important because of the boundary layer growth on the end walls of a rectangular/sector

rig. It is usual to quote the aspect ratio as the ratio between rig width and inlet height, i.e.

WR/h1, and a value of around 10 is typical. If the width of the rig is insufficient then the

effect of the end wall boundary layers will be felt throughout the rig including the central

measurement section. An aspect ratio quoted with respect to the diffuser exit height is

perhaps more important because the adverse pressure gradient within the diffusing flow

will cause the boundary layer to grow more rapidly. The final design of the test rig had an

inlet height of 45.75 mm which is a 1.5 scale up from the fully annular facility. Rig width

was physically limited to 1000mm giving an aspect ratio, based on the inlet height, of

around 20 and based on the diffuser exit height of around 8.

A1.2.1  Swirl - Deswirl Inlet

The effect of inlet conditions on the performance of diffusers is a subject which has been

thoroughly investigated by Stevens, Harasgama and Wray[1984], Stevens and Wil-

liams[1980], Stevens et al[1978] for conventional diffusers and Adkins et al[1980] for

Hybrid diffusers. The above authors all conclude that the condition of the inlet flow

greatly effects the performance of the diffuser. Thus for a project concerned with aero

gas turbine combustion systems it is important that diffuser inlet conditions are repre-

sentative of those found in aircraft engines, i.e. the presence of residual swirl and outlet

guide vane wakes. For a fully annular test facility this is usually achieved by placing a

single stage axial compressor upstream of the diffuser. However, achieving entirely

engine representative inlet conditions on a rectangular/planar test rig is not possible. Sev-

eral authors including Myres et al[1993] have attempted to simulate the presence of a rotor

by using a cascade of blades to introduce some swirl followed by a row of outlet guide

vanes to remove the swirl. These ‘swirl-deswirl’ blades produce wakes but generally do

not produce the same distribution of swirl or the same turbulence structure as a rotor.
                                                                                    A1-3



A1 PRELIMINARY EXPERIMENTAL INVESTIGATION
The air flow enters the test rig from the plenum chamber via a contoured intake and then

proceeds through a short length of flow straightener. A set of ‘swirl-deswirl’ vanes were

used in an attempt to model compressor outlet conditions and provide blade wakes. The

inlet guide vanes comprised of a set of 53 simple uncambered vanes which turned the

flow from an axial direction through 45°. The outlet guide vanes were modelled on those

used downstream of the rotor in the fully annular test facility. These returned the flow to

an axial direction and produced the desired wakes. The 53 OGVs were untapered,

untwisted, had an axial chord of 47.25mm with a spacing of 19.35mm.

The inlet length was kept short to try to achieve a fairly flat velocity profile at diffuser

inlet which is typical of actual aero gas turbine combustion systems. A relatively short

inlet duct also ensured minimal boundary layer growth on the end walls.

A1.2.2  Test Section Geometry

Immediately after passing through the OGV row the air flows through a hybrid diffuser

into the main test section. The hybrid diffuser, shown in Figure A1.2, is most easily

described by separating it into three individual components; Stage 1 (conventional) dif-

fuser, Stage 2 step expansion and Stage 3 (conventional) diffuser. The diffuser’s total

non-dimensional length (L/h1) was 3.5 and is non-dimensionally the same as the Datum

diffuser used in the fully annular test facility. The Stage 1 diffuser has a modest area ratio

of 1.3, a wall angle of 7° and a non-dimensional length of 1.3. It was designed as a small

insert so that its geometry could be easily changed.

The geometry of the Stage 2 diffuser was based, non-dimensionally on the work of

Adkins et al[1980] and Myres et al[1993], giving a step expansion ratio of 1.3 and axial and

radial bleed gaps (x and y in Figure 1.25) of 7.1 mm and 1.8 mm respectively. The bleed

was controlled via a slot and slider arrangement and a calibrated orifice (see Appendix

A4) which enabled up to 3% of the total inlet mass flow to be bled through each vortex

chamber. 

Finally, the conventional Stage 3 diffuser was designed to hinge at inlet and have a vari-

able angle of divergence thus facilitating rapid modification of the Stage 3 and overall
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area ratio.

To maintain the philosophy of a simple test rig the combustor flame tube profile was

extensively simplified and did not incorporate a double cowl as in the fully annular rig.

This was replaced by a flat cowl with the outer radii modelled, non-dimensionally, on the

fully annular facility. Flame tube porosity was modelled only very approximately by a

series of drilled holes in the cowl (not shown in Figure A1.1).

A1.2.3  Instrumentation

The instrumentation and control techniques were identical in nature to those used with

the fully annular facility. A description of the hardware, software and relevant techniques

are presented in detail in Section 3. In summary, the instrumentation system is based

around an IBM compatible Personal Computer (PC) linked to a data acquisition system

and a DC servo traverse mechanism. Operating conditions and data were provided by

pneumatic pressure probes and converted to voltages using Furness FC044 differential

pressure transducers. 

Rig inlet conditions were monitored using a pitot probe at OGV entry in conjunction

with a wall static pressure tapping. Calibration of this combination was carried out by

comparing the inlet dynamic pressure and mass flow with results from a button hook

probe across the OGV entry plane in the centre of the rig. A control loop enabled use of

this information to govern the speed of the centrifugal fan to achieve and maintain the

desired inlet conditions (ReOGV = 1x105). 

A1.3 Results and Discussion

During calibration of the inlet it became apparent that there was a problem with the test

rig. The mass flows indicated by the pitot-static combination and that calculated from the

button hook probe traverse were significantly different.

At the design process it was recognised that the boundary layer growth on the end walls

would present a problem. Due to the adverse pressure gradient in a diffuser a boundary
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layer on an end wall grows rapidly. This effect is more pronounced in this case because

of the large area ratios and high amount of diffusion. The boundary layer growth on the

end walls was causing a mass flow migration towards the centre of the test rig. This was

confirmed by traversing a five hole probe from each end wall at diffuser exit towards the

central region of the rig. Figure A1.3 illustrates that a large boundary layer exists causing

an increase in the local velocity in the central portion of the rig at diffuser exit and thus

an increase in the indicated mass flow. 

The effect of this flow migration is twofold;

1) there is an increased mass flow in the central portion of the test rig where detailed

measurements are taken. Indicated mass-weighted pressures be will greater resulting in

an over-optimistic measure of performance.

2) the outboard regions of the test facility are deficient of mass flow and will be more

prone to flow separation under the action the adverse pressure gradient. 

To try to solve this problem an attempt was made to bleed off the end wall boundary

layer through a series of small holes. By a process of trial an error enough holes were

drilled in each end wall to remove the boundary layer effect and prevent an excessive

amount of mass flow migration. Comparing the mass flow between OGV entry and dif-

fuser exit indicated that this appeared to cure the mass flow migration problem. Previ-

ously the mass flow in the central section at diffuser exit was seen to be 25% higher than

measured at OGV entry. With the end wall boundary layer bleed in place only an error of

+5% was seen and, although not ideal, was considered acceptable.

The studies of Adkins et al[1980] suggested that a divergence angle in the Stage 3 diffuser

of 15 degrees would remain attached. However, a single five hole probe traverse at dif-

fuser exit indicated that this geometry produced separated flow in the rectangular rig. In

fact a transitory stall existed even when the divergence angle was reduced to 7 degrees.

Using flow visualisation techniques such as ‘wool-tufts’ and smoke it became apparent

that the flow was initially separating in the corner formed by the end wall and this sepa-

ration was migrating throughout the diffuser. The question now became; why does the
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diffuser separate at much lower divergence angles than suggested by the literature? The

answer to this was the interaction between regions of vorticity and the end walls. Flow

visualisation techniques (wool tufts and smoke) revealed that these vortices roll up along

the end walls as illustrated in Figure A1.4.

In a hybrid diffuser there are two distinct vortices as illustrated in Figure A1.5. The first,

most obvious, vortex is in bleed chamber. The second area of high vorticity which exists

behind the fence and may be described as a Coanda bubble. If this Coanda bubble rolls

up at the end wall this would almost certainly cause flow separation in the corner where

the Stage 3 diffuser meets the end wall. The presence of this separation will be felt

throughout the diffuser causing a drastic drop in performance if not a complete stall

across the test section. Furthermore, the interaction of the bleed chamber vortex with the

end wall may reduce the effectiveness of the bleed. Thus, locally, the bleed could be

below the minimum requirement also resulting an stall.

A1.4 Conclusion

It is clear from the problems encountered that a rectangular test rig is not a suitable test

vehicle with which to investigate hybrid vortex controlled diffusers. The interaction of

areas of high vorticity with the end walls appears to destroy the key flow mechanisms.

The three dimensional nature of the flow is not suited to an investigation in a pseudo two

dimensional environment. To investigate a hybrid diffuser the integrity of the vortex on

the leeward side of the fence must be maintained at all times. Thus without complex flow

management at the end walls the only suitable test vehicle for the investigation of hybrid

diffusers is a fully annular test facility.
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Figure A1.1 Rectangular/Planar Test Facility

Figure A1.2 Hybrid Diffuser Nomenclature

Measurement Stations:
2 - OGV Exit
4 - Pre-Diffuser Exit
5 - Feed Annuli
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Figure A1.3 End Wall Boundary Layer

Figure A1.4 Vortex ‘Roll-Up’ at End Wall

Figure A1.5 Regions of Vorticity
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A button hook probe is a useful piece of equipment as, in addition to being used as a con-

ventional pitot probe, it can also provide static pressure data. The two probe configura-

tions are illustrated in Figure A2.1. To obtain a true total pressure reading the probe is

aligned with the flow direction and to measure a pseudo static pressure the probe is

rotated through 180°. The ‘button hook’ geometry ensures the entry to the probe remains

in essentially the same spacial location when the probe is rotated 180° about its stem.

Therefore, the true total pressure and pseudo static pressure are recorded at the same

location. 

A calibration factor, K is defined as:

A2.1

where:

P total pressure of the flow, as measured by the probe when facing in the

upstream direction

pps pseudo static pressure as recorded by the probe when rotated through 180°

p static pressure of the flow

A value of K (typically 1.31) is obtained by placing the probe in a calibration tunnel and

subjecting it to various dynamic pressures (q = P - p) of known magnitude while taking

readings for (P - pps). The value of K does vary slightly with Reynolds Number. How-

ever, for the velocity range over which the calibration was performed (typically 30-

70ms-1) the value of K varies by less than ±0.6%.

K
P pps–( )
P p–( )

---------------------=
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Figure A2.1 Button Hook Probe Geometry
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A3.1 Introduction

The five-hole probe consists of five individual pressure sensing holes - a central hole

around which four chamfered holes are arranged. A typical five-hole probe is illustrated

in Figure A3.1 and A3.2, both showing a central tube around which four chamfered tubes

are arranged. This type of probe can be used in one of two different methods to deter-

mine local values of flow direction, velocity and total pressure within an air flow. The

two methods are normally referred to as ‘nulled’ or ‘non-nulled’.

(i) Nulled Five-Hole Probe

In this method the probe is aligned in the flow such that each pair of opposing holes is

balanced. In this configuration the central hole acts as a pitot probe and registers the local

stagnation pressure. The dynamic pressure is a function of the difference between the

central hole and the side holes and is obtained from a calibration chart. The ‘nulled’

method of operation requires the probe to be mounted in some mechanism which allows

it to be rotated in both yaw and pitch. It is relatively easy to obtain the flow direction as

this is given by measuring the amount of rotation, from some datum, before the probe

achieves the ‘balanced’ condition. Unfortunately the ‘nulled’ method has some disad-

vantages, namely;

(i) Rotation of the probe within the test facility is usually very difficult due to the typi-

cally limited access.

(ii) Even if (i) is not a major factor the actual process of nulling the side holes can be dif-

ficult and time consuming, even with the aid of computers.

Added to this there is also significant effort required, during calibration and data reduc-

tion, to obtain the static pressure and flow velocities.
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(ii) Non-nulled Probe

In this method the five-hole probe is introduced into the flow in a fixed and known atti-

tude, usually in alignment with the rig access. Figure A3.1 illustrates this with a velocity

vector approaching the probe from a direction which can be described by a pitch and a

yaw angle in the conventional sense. In this configuration it is possible to determine,

using suitable calibration data, the total pressure, the flow velocity, the pitch and yaw

angle from the five pressures. A set of typical calibration data is shown in Figures A3.2 -

A3.6 and comprises of four two-dimensional graphs showing the pitch angle, yaw angle,

Dynamic and Static Pressure Parameters (Dp and Sp) plotted against the Pitch and Yaw

Pressure Parameters (X and Y). The latter two parameters ‘X’ and ‘Y’ are mathematical

combinations of the five hole pressures. The four pressure parameters are, for most prac-

tical purposes, independent of the flow velocity so it is possible to use a single set of cal-

ibration data.

A3.2 Theory for Non-Nulled Probes

The basic theory is based on the mathematical concept that when aligned to the flow the

pressure registered by any tube, Pn, is the sum of the local static pressure, ps, and some

fraction of the dynamic pressure, q.

Pn = ps + Knq A3.1

    where Kn is the fractional part of the dynamic pressure q sensed by hole n.

Assuming that the effects of Mach Number and Reynolds Number are negligible then the

value of Kn depends only on the flow direction relative to hole n. This relationship can

then be used to define the values of the Pitch and Yaw Pressure Parameters, the Dynamic

Pressure Parameter and the Stagnation pressure Parameter.
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A3.2.1  Pitch and Yaw Pressure Parameters, X and Y

An indication of the flow pitch and yaw can be reasonably obtained by comparing the

pressure difference between opposing holes, i.e. (p1 - p3) and (p2 - p4). To obtain the

Pitch and Yaw Pressure Parameters these are non-dimensionalised by some function of

dynamic pressure;

A3.2

A3.3

The tube denoted by ‘i’ is chosen carefully in order to maximise the sensitivity (A3.2.4)

A3.2.2  Dynamic Pressure Parameter, Dp

The difference between the pressure sensed by the central hole and any of the other four

holes is a function of the flow velocity. Using Equation A3.1

p5-pi = q(K5-Ki) A3.4

Defining Dp as (K5-Ki) gives the Dynamic Pressure Parameter and this, like X and Y, is a

function of flow direction alone.

A3.5

A3.2.3  Stagnation Pressure Parameter, Sp

By combining the incompressible Bernoulli equation with Equation A3.1 for hole 5:

, and A3.6

The Stagnation Pressure Parameter, Sp, is defined as the group on the right hand side,

such that:

A3.7

X
p1 p3–
p5 pi–
----------------=

Y
p2 p4–
p5 pi–
----------------=

q
p5 pi–

Dp
---------------=

Pt p5– q 1 K5–( )=
pt p5–
p5 pi–
---------------

1 K5–
K5 Ki–
------------------≡

Pt p5 Sp p5 pi–( )+=
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A3.2.4  Tube ‘i’

The choice of tube ‘i’ is varied as a function of flow direction in order to obtain ‘sensi-

ble’ values of the Pitch and Yaw Pressure Parameters, X and Y. With reference to Figure

A3.1 consider a flow incident on a probe of cone angle φ (see Figure A3.2) at a positive

yaw angle, YTR. As YTR→φ/2 then p4→p5 and (p5-p4)→0 resulting in both X and Y

tending to infinity. Thus ‘i’ is chosen as 2 to give finite values of (p5-pi) until YTR

reaches φ/2 when hole 2 is in the wake of the probe tip. With real flows there are varia-

tions in both pitch and yaw so it is common practice to take hole ‘i’ as the most leeward

hole with the lowest pressure. However, if the same methodology is used during calibra-

tion and analysis then hole ‘i’ can realistically be any side hole 1 to 4. To significantly

simplify the analysis of results it is beneficial to limit the choice of hole ‘i’ to just two

holes. Flows within combustion systems, such as those studied in this project, generally

have much larger variations in pitch than yaw direction. Thus all work conducted pre-

sented here assumes the convention where pi is chosen from the lesser value of p2 or p4.

A3.3 Calibration of Five-Hole Probes

Calibration of a five-hole probe to be used in the non-nulled mode involves subjecting

the probe to a flow of known dynamic pressure while holding the probe in a known ori-

entation. This must be done over a range of pitch and yaw angles which cover all combi-

nations likely to be encountered during any flow study (typically ±36° for both yaw and

pitch). The mechanism used to calibrate the probes is shown in Figure A3.7. The gimbals

are accurate to within ±0.1° and can orient the probe at yaw and pitch angles up to ±45°

from the flow direction. The direction of the flow vector is most sensibly described by

‘true’ yaw and pitch angles However, without the ability to achieve compound move-

ment of each gimbal it is mechanically difficult to enable independent variation of these

angles. Thus, with reference to Figure A3.1, the probe is positioned by the gimbals in a

true yaw and a pseudo pitch plane. 

The positioning of the gimbals is afforded by two d.c. servo motors controlled and moni-

tored by a PC. The five hole pressures are recorded by a data acquisition system similar

to that described in Section 3.0. To ensure continuity the same PC, analogue-to-digital
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convertor and pressure transducers were used for the calibration process and for record-

ing of experimental data. Finally, a calibration file is written detailing the values of X, Y,

Pseudo Pitch, True Yaw, Dp and Sp.

A3.4 Data Reduction

Raw experimental data consists of a file containing positional data and the corresponding

pressure readings for the five holes. A series of computer programs are used to post proc-

ess this data and extract local and average values of pressure, velocity components and

flow angles. The first stage in this process uses the five hole pressures to calculate the

non-dimensional parameters X and Y (Equations A3.2 and A3.3). Although the size of

the five hole probe is small only hole 5 is situated at the exact measurement point with

holes 1 - 4 all being slightly offset. Thus, to correct for this, the holes 1 - 4 are interpo-

lated onto the centre hole before calculating X and Y. These values of X and Y can then

be compared to the calibration file to recover values of PPS, YTR, Dp and Sp. In order to

do this a least square, bi-quadratic surface is fitted to each of the four parameter arrays

using the closest 25 points. The dynamic pressure, q, is then calculated from the

Dynamic Pressure Parameter, Dp (Equation A3.5) and hence a total velocity, Utot, can be

calculated. Velocity components u, v and w are then calculated from the following equa-

tions:

u = Utotcos(PPS)cos(YTR) A3.8

v = Utotsin(PPS) A3.9

w = Utotcos(PPS)sin(YTR) A3.10

If desired, the true pitch angle is given by:

PTR = A3.11v
u
--- PPS( )tan

YTR( )cos
--------------------------=
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Figure A3.1 Five Hole Probe

Figure A3.2 Typical Five Hole Probe Dimensions

φ/2, φ = cone angle
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Figure A3.3 Contours of Constant Pseudo Pitch Angle, PPS

Figure A3.4 Contours of Constant Yaw Angle, YTR
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Figure A3.5 Contours of Constant Dynamic Pressure Parameter, Dp

Figure A3.6 Contours of Constant Stagnation Pressure Parameter, Sp

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
X

-2.0

-1.0

0.0

1.0

2.0

Y

0.6

0.60.7

0.7 0.7
0.8

0.8

0.9

0.
9

0.9

1

11.1

1.2

1.2

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
X

-2.0

-1.0

0.0

1.0

2.0

Y

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.
6

0.6

0.6

0.
6

0.
8

0.8

0.8

0.
8

0.8

1

1.2
                                                                             A3-9



A3 FIVE-HOLE PROBE THEORY
Figure A3.7 FIve Hole Probe Calibration Rig
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In any test facility where airflow is under investigation it is essential to accurately meas-

ure the air mass flow rate. This is of prime importance when one of the parameters under

study is a bleed flow such as in a hybrid diffuser. Thus the problem posed is how can the

flow be controlled and measured with sufficient accuracy. For the sake of brevity only

the mechanisms employed to control the hybrid diffuser bleed in the fully annular test

facility will be described here. Although the same principles were employed on the pla-

nar test facility.

The majority of the fully annular test facility existed before conception of this current

project and was designed to allow the modifications for bleed flow extraction to be rela-

tively easy. With reference to the test rig, shown in Figure 3.2, the inner bleed flows from

the Stage 2 diffuser into the bleed chamber and then via a vaned passage into the central

hub of the rig. The flow is throttled by a slotted drum containing a disc (Figure A4.1)

which can be moved up and down, on a lead screw, to reduce or increase flow respec-

tively. The air is then exhausted to atmosphere via a calibrated orifice hole designed in

line with Hay and Spencer[1992]. The latter allowing the mass flow rate to be set to

±0.05% of the total inlet mass flow rate. The outer bleed is controlled in a similar manner

with the flow from the bleed chamber entering a cavity under the dump liner and then

exhausting to atmosphere via 12 calibrated bell mouth trumpets (see Figure 3.2 and Fig-

ure A4.2). The outer bleed is throttled by rotating a wooden ring containing 12 holes

which align with the exit to the trumpets.

The main advantage of using orifice plates/holes is that they are very simple and easy to

use and if suitably calibrated they are also accurate. The basic theory is that the mass

flow rate through an orifice meter is directly proportional to the square root of the static

pressure drop across the orifice, or:

A4.1

where  and is the drop in static pressure across the orifice and K is a con-

stant of proportionality. Both the inner and outer bleeds exhaust to atmosphere or more

accurately to the pressure of the lab within which the test rig is housed. Therefore, 

m· K ρ∆p=

∆p p2 p1–=
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A4.2

porifice is the static pressure at some point in the orifice (refer to Figure A4.1 and Figure

A4.2) and plab is the lab pressure, measured by the rig control instrumentation. 

Calibration is relatively easy and involves measuring the flow though the orifice with a

calibrated probe and comparing directly with the measured pressure drop. This was

achieved for the inner bleed by mounting the whole throttle assembly on top of a bell

mouth supplied with air from a centrifugal fan via a plenum chamber (Figure A4.3). The

fan speed and throttle setting were varied to produce mass flow rates close to those

expected in the test rig (i.e. around 3% of total rig inlet flow). A calibrated button hook

probe was traversed across the outlet to the orifice and using a simple computer algo-

rithm this was integrated up to give the mass flow. The pressure drop was also recorded

and thus a suitable calibration coefficient was calculated. A similar procedure was used

to calibrate a single trumpet from the outer bleed. Figure A4.4 shows plots of 

against mass flow rate and show good linear relationships. The equations for these rela-

tionships were then programmed into the rig control software thus enabling accurate

control/metering of the bleed flows.

Figure A4.1 Inner Bleed Throttle and Orifice

∆p porifice plab–=

ρ∆p
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Figure A4.2 Outer Bleed Bell Mouth Trumpet

Figure A4.3 Inner Bleed Calibration
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Figure A4.4 Vortex Bleed Calibration Curves
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The probe linear traverse mechanism enables a five hole or button hook probe to be

accurately traversed across any passage such as a combustor feed annuli. It was specially

designed and manufactured for this project and comprises of a linear guide, a stepper

motor and a lead screw. The mechanism is controlled by PC (see Section 3.2) and has a

positional accuracy of ±0.025mm.

Figure A5.1 Probe Linear Traverse Mechanism

Figure A5.2 Section A-A
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Figure A5.3 Section B-B

Figure A5.4 Section C-C
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