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Abstract 

To know what applications are currently in operation across modem packet based 

communication networks such as the Internet is always attractive to network 

administrators, network service providers and security systems. The availability of this 

information can contribute to preventing improper network use, which may include illegal 

activities, consume a large amount of bandwidth, or may cause security problems or break 

policies in network usage. In addition, using this information, the network may be able to 

establish enhanced environments for the applications, which are in use. 

Various techniques exist to perform network application detection. However difficulty is 

encountered where the traditional techniques will fail in their task. For example, if the 

application uses non-registered port numbers, the capture of certain specific packets is 

impossible or the data portion of at least some of the packets is unavailable due to 

encryption or processing overload. 

In this Thesis an alternative approach to application detection, using packet size 

distributions, is applied to TCP applications. This statistical property of the traffic stream 

is found to be unique to certain kinds of network applications. The detection can be 

achieved by simply comparing this "fingerprint" with pre-evaluated samples stored in a 

database. Previous work has shown that packet size distributions can successfully identify 

many types ofUDP application. 

This Thesis suggests that for those TCP-based network applications that do not use the 

Nagle Algorithm, the detection mechanism, which had been proved to be successful for 

UDP-based applications, could be also adopted without any modification. For Nagle

based applications, the situation becomes more complicated, however, with some pre

computation, successful detection can be achieved as well. A prototype detector 

implementing the suggested approaches has been designed in order to test the feasibility 

and performance of the approach proposed. The tests carried out upon this prototype 

platform indicate that the method is u~ersally suitable for several of distributions and 

give out satisfied detection success ratios. 
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Chapter I Introduction 

CHAPTER 

1 
Introduction 

1.1 Introduction 

In recent years, following the revolution of the computer age, mankind has stepped into 

the age of Information which means that networks have come to be part of people's life, 

not just a mystic word only used by a few researchers any more. Also, advances in 

computing power and the acceptance of the personal computer in the home and office 

have led to a plethora of new applications, which tap the enormous computational 

resource now available even in mainstream desktop personal computers. 

These have triggered explosive growth of some new bandwidth-hungry applications, such 

as networking games, video/audio on demand, e-learning and so on, at the same time 

traditional network applications do not diminish their speed of increment. In the 

information age, the network user population has been increasing by almost 100% per

year, the increment of network traffic even reaching a 300% growth in annual traffic 

[FomKMC04]. As a result, Internet traffic has reached an unprecedented level [OdI03]. A 

suggestion has been made that technological advances in networking will make 

bandwidth cheap and consequently, always under-utilized. The reality is quite different

the adoption of faster networking technologies such as A TM did alleviate some of the 

problems but once again, however, the combination of the expensive cost of 

implementation, need for standards, infrastructure and widely needed applications slowed 

the deployment of ATM [Acts03J. The conflict between increasing user demand and 

existent network resources thus becomes more and more serious. 
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1.2 Network Management 

One solution to the problem is to fundamentally rebuild the existing network system. This 

is a perfect solution since it would solve all known defects, and furthermore, provide a 

nice foundation platform for further exploitation [Cle06j. Nevertheless, the cost will be 

huge and the deployment will take a long time. 

Maximizing existing infrastructure performance would be much more feasible. This does 

not alter the structure of existing equipment, instead, by optimizing this, it would supply 

decent performance with a cost as low as possible. As such, network management is 

raising its value. 

1.2.1 The Importance of Network Management 

Performance issues are very important in computer networks. When hundreds or 

thousands of computers are interconnected, complex interactions, with unforeseen 

consequences, are common. Some problems, such as congestion, are caused by 

temporary resource overloads, some by structural resource imbalance. Solving these 

problems is the primary task for network management [DanOlj. 

"Network management is the process of using hardware and software by trained 

personnel to monitor the status of network components and line facilities, question end

users and carrier personnel, and implement or recommend actions to alleviate outages 

and/or improve communications performance as well as conduct administrative tasks 

associated with the operation of network" [Com99]. This is the definition of network 

management. In my words, it is "the process of making the most of the network". As 

indicated in this chapter, we are in the midst of an explosive growth of network traffic. 

Network management is entering a new phase in its development. For any network 

manager, it is quite easy to list several reasons to demonstrate how important the task of 

network management is. A fast, advanced network must have all of its components 

optimally working together to most effectively deliver the applications and services for 

which it was designed. This requires solid capabilities of controlling, planning, allocating, 

deploying, coordinating, and monitoring the resources of a network [PiIM04j. It is also 
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essential to maintain an alert mechanism and troubleshooting capabilities to discover 

prqblems, and react quickly to fix them. Table 1.1 summarizes the major reasons why the 

network must be managed, providing the rational for network management. 

Dependence upon network availability 

Effect of network failure 

Network size and complexity 

Coping with network device sophistication 

Network performance and capacity planning balance 

Operating cost containment 

Table 1.1 Rationalesfor Network Management 

1.2.2 Quality of Service 

QoS (Quality of Service) refers to both the performance of a network relative to 

application needs and the set of technologies that enable a network to make performance 

assurances. It uses a set of quantities, which are so-called QoS parameters that network 

elements would control in order for networks to make QoS guarantees to applications in 

terms of providing a certain contracted level of service throughout the application session. 

QoS parameters include the following: 

• Packet Rate 

• Latency 

• litter 

• Packet Loss Rate (PLR) 

• Packet Error Rate (PKR) 

• Throughput 
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Much effort and research related to QoS has been made to improve the performances of 

networking applications [KarKL03] [PlaBH99] [GeIL05] [WanYFZFOO]. QoS does not 

create bandwidth, but manages it so that it is used more effectively and efficiently to meet 

the wide range of application requirements. In the application layer, a variety of QoS 

protocols such as RSVP [BraZBH97] were developed to enhance the performance of 

applications crossing network, these include some compression techniques and a host of 

coding techniques to adapt applications to the network conditions on which they are 

running [NirB95], not just assigning high priority to time sensitive applications, but 

involving programmable network infrastructures which can be dynamically configured to 

service individual applications. 

Application detection provides the ability to identifY what applications are currently in 

operation and the knowledge of the requirements from the network. If this information 

has been known, a QoS activity can then carry out on the next action, which is probably 

adapting the network configuration to satisfy the needs of that application and 

maximizing performance [TenSSW97]. This is an area where the ability to automatically 

detect what applications are running in a given part of the network will be a valuable aid. 

1.3 Network Security 

The growth of communications in the age of Information has made both individuals and 

organizations highly dependent upon the use of networks to perform their normal day-to

day tasks. Unfortunately, there has been a corresponding increase in unauthorized 

exploitation and misuse of these computer systems. 

1.3.1 The Importance of Network Security 

The network is a bad neighbour [CheB03]. For the information security aspect, no 

individual or organization would like to suffer from the damage or loss of their 

information, regardless of how sensitive or critical the information. Problems are not 

limited to information security breaches. Many organizations are losing a lot of money 

through uncontrolled Internet access or in a word, abuse. A survey of nearly 200 
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international comparues carried out by Infosec, NetPartners and Secure Computing 

Magazine estimated that a typical large company (1,000 employees) could be losing £2.5 

million per year through employees' use of Internet for non-business purposes - an 

average loss of £2,500 per employee [ClaOOj. Therefore, the need for security has become 

a vital issue for networks, not only because of the extreme importance of the data residing 

on the networks but also the important perfonnance of communication lines over which 

the data are transmitted. 

1.3.2 Network Threats 

Network threats can be classified in two high level tenns-Destruction and Unauthorized 

Access [AshM99j. 

Denial of service (DoS) [CheB03j is the most typical of destructive attacks. By sending 

more requests to a machine than it can handle, it makes the host unable to service the 

requests coming from legitimate users. DoS attacks are probably the nastiest, and most 

difficult to address [HusHP03j. These are the nastiest, because they're very easy to 

launch, difficult (sometimes impossible) to track, and it isn't easy to refuse the requests of 

the attacker, without also refusing legitimate requests for service. 

Unauthorized Access refers to a number of different attacks, such as Executing 

Commands Illicitly, Confidentiality Breaches, Data Diddling (or Data Changing) and 

Data Destruction [HusHP03j. The goal of these attacks is to access some resource that 

your machine should not provide to the attacker. 

Unauthorized Access can be achieved in both passive and active ways. Table 1.2 

(reproduced from [AshM99)) summarizes ways in which access can be gained. 

Passive accesses are in the nature of eavesdropping on, or monitoring (sniffering) of, 

transmissions [Kum05). The goal of the opponent is to obtain infonnation that is being 

transmitted. This kind of attack is very difficult to detect because it does not involve any 

alteration of the data. However, it is feasible to prevent the success of these attacks. Thus, 

the emphasis in dealing with passive attacks is on prevention rather than detection. 
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Another category of unauthorized access is active accesses. These attacks involve some 

modification of data stream or creation of an attacking stream. They present the opposite 

characteristics of passive attacks, it is quite difficult to prevent active attacks absolutely, 

instead, the goal is to detect them and to recover from any disruption or delays caused by 

them. Because the detection has a deterrent effect, it may also contribute to prevention. 

Intrusion Activity Type of Attack Tool Method of Access 

Access violation Password cracker or Telnet, remote control 

guessing JP spoofing, program, 
(Actively) 

Trojan horse Java applet 

Userlhost discovery Ping, Sniffer JCMP tools on 

corrupted system, 
(Actively, Passively) 

Sniffer Tools 

Exposure of Network Scanner Tools on corrupted 

Vulnerabilities system 

(Actively) 

Corruption of information Virus, worm E-mail, file transfer 

corrupted system 
(Actively) 

Theft of information Password cracker or Tools on corrupted 

guessing, JP spoofing, system, Sniffer Tools 
(Actively, Passively) 

Sniff er 

Table 1.2 Securlty Threats and Access Techmques 

The availability of a robust application detection mechanism helps the network manager 

to discover unwanted networking sessions by positively examining the malicious traffic 

or negatively identify abnormal traffic on well-known ports such as a virus operating on 

port 80. 
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1.4 Contribution to Knowledge 

Traditional application detection techniques heavily rely upon the content inside the 

traffic. This Thesis attempts to find a new application detection mechanism for some 

classes of TCP-based applications. The ideas discussed in this Thesis can provide an 

alternative approach in order to achieve application level classification for some areas 

where traditional or current popular application detection mechanisms show poor ability. 

In summary, the work in this Thesis has found a new identifiable signature and a 

statistical method in detecting network applications based on this signature for some 

classes ofTCP-based applications. 

For some TCP-based applications, variations on the distribution profiles response to 

varied network conditions are seen to follow a predictable pattern. It appears that the 

impact of delay is to cause an aggregation of packet payloads. This is basically caused by 

the use of the Nagle algorithm, which states that any data sent subsequently should be 

held until the outstanding data is acknowledged (ACKed) or until there is a full packet's 

worth of data to send. However, as the variations are predictable, an approach has been 

suggested and experimentally verified its feasibility for various distributions. 

The detection technique discussed in this Thesis provides the ability for detecting some 

classes of TCP-based applications on which conventional techniques would show poor 

detecting ability. As this technique is a statistical method, it shows advantage over those 

traditional content techniques especially when the application data are encrypted or under 

bad network conditions such that some specific packets could not be captured. 

1.5 Outline of Chapters 

This Thesis is organised as below: 

Chapter 2 introduces the main TCP lIP concepts related to the work in this Thesis, the 

traditional and current popular application detection techniques and their characteristics 

are briefly discussed. The statistical comparison method Chi-square test is also introduced. 
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Chapter 3 describes preliminary experimental work which was for the purpose of 

examining the feasibility of making the packet size distribution a detectable signature for 

TCP-based networking applications. The distribution profiles have been tested under 

different running conditions and loaded network conditions in order to discover if they are 

unique and consistent. 

Chapter 4 concentrates on solving the problems emergmg from Chapter 3, i.e. some 

Nagle-based applications show aggregation in their packet size distribution. An 

aggregated detection mechanism is presented and some experiments are described to 

verify the feasibility of the methods proposed. 

Chapter 5 describes the design and architecture of a prototype application detector 

employing the ideas discussed in the last two chapters. 

Chapter 6 describes the procedure of selecting suitable parameters for the detector. A 

number of tests performed and the results obtained with the prototype detector under a 

variety of conditions are also presented. 

Chapter 7 provides summary conclusions of the results achieved by this work. 
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CHAPTER 

2 
Application Detection Techniques 

2.1 Introduction 

In this chapter, the traditional and current popular application detection techniques and 

their limitations are briefly discussed. The idea of detecting TCP-based applications using 

an alternative application "signature" packet size distribution, which is the core of this 

work, is also presented. 
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2.2 TCP/IP Reference Model 

2.2.1 Seven Layer OSI Model 

............... ............... 

7 Application 

Presentation Appfication Ping, Telnet FTP 
etc. 6 

5 Session 
............... 

4 Transport Transport TCP, UDP 
............ ......... .... 

3 Network Internet IP 
............... 

2 Data Link Network Interface Network driver 

Physical Hardware software, NIC 

OSI Reference TCPlIP Reference Protocols 

Figure 2.1 OSI and TCPIIP reference mode and associated protocols 

Figure 2.1 (reproduced from [Mar94]) is a seven-layer model. Each layer performs 

specific functions and communicates with the layers directly above and below it. The 

higher three layers deal more with user services, applications, and activities whereas the 

lower four are concerned more with the actual transmission of information. 

The TCP lIP reference Model is used in the worldwide Internet, which is the most popular 

communication network today. The second column shows the correspondence between 

the TCPIIP Reference Model and OSI Model. The TCPIIP model does not have session or 

presentation layers and experience with the OSI model has proven this view correct: they 

are of little use to most applications [KurR03j. TCP and UDP protocols have been 

defined at the Transport Layer, while the Internet Layer defines an official packet format 

and protocol called the Internet Protocol. The TCP lIP model does not care about what 

happens below the Internet Layer, but points out that the host has to connect to the 

network using some protocols over which IP packets can be sent/received. 
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2.2.2 Transport Layer Protocols 

TCPfUDP Protocols 

Two different protocols are defined in this layer-TCP and UDP. The User Datagram 

Protocol (UDP), defined by IETF RFC768, provides a simple, but unreliable message 

service for connectionless services. Each UDP header carries both a source port identifier 

and destination port identifier, which allow high-level protocols to target specific 

applications and services among hosts. A datagram can be sent at any moment without 

prior advertising, negotiation or preparation [Com99]. The datagram is just sent and it is 

hoped that the receiver is able to handle it. There is no guarantee that the datagram will be 

delivered to the destination host. Not only could the datagram be undelivered, but it could 

be also delivered in an incorrect order. It means a packet can be received before another 

one, even if the secondhas been sent before the first one received. [KurR03] 

All applications included in the work of this Thesis are based on TCP (Transmission 

Control Protocol), which is described in STD-7IRFC-793. TCP is, unlike UDP, a' 

connection-oriented protocol that is responsible for reliable communication between two 

end processes [Ric94]. Before actually transmitting data, a connection must be established 

between the two end points. The recipient need only be completely identified at the time 

the connection is established. The data can be then transferred in full duplex (send and 

receive on a single session). When transferring data, only information sufficient to 

identify the connection is required. TCP guarantees that all data sent will be received 

without any error and in the correct order. Should any error occur, it will automatically be 

corrected (retransmitted as needed) or the error will be notified if it cannot be corrected 

[WanC91]. 

Interactive and Bulk Data Flow 

TCP applications basically use either interactive or bulk mode to exchange 

communication traffics. In the interactive mode, the TCP initially uses a stop-and-wait 

protocol. The sender of a data packet requires an acknowledgment for that packet before 

the next one is sent. An optional delayed acknowledgement strategy has been defined in 

[Bra89]. Delayed ACKs allow a receiver to refrain from transmitting an ACK for every 
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incoming packet immediately [Koz05]. However, the receiver must send a piggyback 

ACK with the next packet it sends. In addition, an ACK should not be delayed for more 

than 500~ sec while waiting for payload from applications to arrive [Mar94]. In the bulk 

mode, on the other hand, the sender is allowed to transmit multiple packets before it stops 

and waits for an acknowledgment. TCP uses a variety of mechanisms in order to achieve 

the congestion control in this mode. These mechanisms control the rate of data entering 

the network, keeping the data flow below a rate that would trigger collapse. Modem 

implementations of TCP contain four major algorithms: Slow-start, congestion avoidance, 

fast retransmit, and fast recovery [AIIP99]. Each of these algorithms controls the sending 

rate by manipulating a congestion window that limits the number of outstanding 

unacknowledged bytes that are allowed at any time. When a connection starts, the slow 

start algorithm is used to quickly incre'ase congestion window to reach the network 

capacity [SteCW A99]. When the sender detects that a packet has been lost, it deems that 

the network is overload and decreases the congestion window quickly. After estimating 

the network capacity, TCP switches to the congestion avoidance algorithm [WanC91], 

which slowly increases the congestion window in order to make the most use of the 

bandwidth. 

The Nagle Algorithm 

In addition, some applications in employ the Nagle Algorithm, which is named after its 

creator - John Nagle. The Nagle algorithm is used to automatically aggregate a number'of 

small-buffered messages. This process increases the efficiency of a network application 

system by decreasing the number of packets that must be sent. 

Nagle's document [Nag84] specified a means of dealing with what he called the small 

packet problem, created when an application generates data one byte at a time, causing 

the network to be overloaded with small packets (a situation often referred to as send-side 

silly window syndrome). A single character - one byte of data - originating from a 

keyboard could result in the transmission of a 41-byte packet consisting of one byte of 

useful information and 40 bytes of header data. This situation translates into 4000% 

overhead, which was considered to be acceptable for a lightly loaded network, but not so 

for a heavily loaded network, where it could necessitate retransmissions, cause lost 
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packets, and hamper transmission speed through excessive congestion in switching nodes 

and gateways [Ric94]. 

The Nagle algorithm works by aggregating a number of small outgoing messages, and 

sending them all at once. Specifically, as long as there is an outstanding packet for which 

the sender has received no acknowledgement, the sender should keep buffering its output 

until it has a full packet's worth of output, so that output can be sent all at once. 

In the work of this Thesis, information contained in the Internet layer is used in the 

application identification process, and some effects on this information caused by the 

Transport Layer are considered. 

2.3 Current Application Detection Methods 

A number of methods may be applied to identify an application. The ideal network 

application detection approach would require two communicating network nodes to 

announce the identity of the application they are running as part of the session start 

process. The identity information could be included within the session traffic. This , 
requires that the location of this information in the packets should be known in advance. 

However, this is still an "ideal", many applications in use today operate without such 

announcement. 

2.3.1 Port Number 

A port number is a way to identify a specific process to which an Internet or other 

network message is to be forwarded when it arrives at a host. For the Transmission 

Control Protocol (TCP) and the User Datagram Protocol (UDP), a port number is a l6-bit 

integer that is put in the header appended to a message unit. This port number is passed 

logically between client and server transport layers and physically between the transport 

layer and the Internet Protocol layer and forwarded on. 

The port numbers are divided into three ranges [Iana07]: 
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Well Known Ports: from 0 through 1023 (inclusive). 

Registered Ports: from 1024 through 49151 (inclusive). 

DynamiclPrivate Ports: from 49152 through 65535 (inclusive). 

Some services or processes have conventionally assigned permanent port numbers. These 

are known as well-known port numbers. The Well Known Ports are controlled and 

assigned by IANA [Iana07] and on most systems can only be used by system (or root) 

processes or by programs executed by privileged users. The well-known ports use a small 

portion of the possible port numbers. For many years the assigned ports were in the range 

0-255. In 1992, the range for assigned ports managed by the IANA was expanded to the 

range 0-1023 [PosR94]. Many traditional network services were assigned associated port 

numbers on which they could bind. For these processes, the identifications would be 

relatively reliably detected by looking at the port number they are using. However, this 

would not always be the case as almost no service specifies that it must listen on a fixed 

port. For example, the HTTP protocol indicates that a Web server should basically listen 

on port 80, but it is possible for a particular Web server to use a different port number 

[Koz05]. An administrator could manually change the configuration to make the server 

listen on port 8080. As such, identifying a well-known service using port number will not 

guarantee the result is always right. 

The Registered Ports are listed by IANA and on most systems can be used by ordinary 

user processes or programs executed by ordinary users [Pos94]. The registered port 

numbers are in the range from 1024 through 49151. Companies and other users register 

port numbers in this range with IANA for use by the applications. Some applications use 

fixed registered port numbers when sending and receiving data over the Internet by 

default. Application detection at its simplest level can make use of this fact. An example 

of this is WarCraft Ill. It uses port 6112 at the server side. Nevertheless, in fact, one could 

only say that WarCraft III will use port 6112 instead of saying that an application using 

port 6112 must be WarCraft Ill. This is because although many applications have been 

registered to IANA so that multiple uses of the same ports can be avoided, there are still 

many that have not yet as registration is not forced. IANA only registers uses of these 

ports as a convenience to the community [Pos94]. Hence, the possibility of two or more 

applications using the same registered port does exist. In addition, in a similar way to the 
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situation for well-known ports, most applications using registered ports allow users to 

change the default port usage. However many users never use this function. 

With so many applications developed for use over the Internet, registration of port usage 

for every one becomes impractical. For this reason, there is a move toward using 

dynamically allocated ports [BhaO 1). For these applications, a dynamic port number also 

named an ephemeral port is assigned temporarily (for the duration of the request and its 

completion). An ephemeral port can be chosen from either the range of Registered Port 

Numbers or DynamiclPrivate port numbers. It will last for only a brief time. The port is 

then abandoned and can be used by other applications. One could argue that ephemeral 

port is typically used in server-client direction - registered port is still used in client

server direction. However, there are many applications that are using ephemeral ports in 

dual directions and rely upon the centralized servers in order to allow the servers and 

clients can be found by each other. Third-Party network gaming platform is a notable 

example. People are establishing many servers to distribute the ephemeral port pairs and 

clearly, port numbers cannot be utilized to identify these applications. 

2.3.2 Packet Classification 

There are a number of network services that may require packet classification, such as 

application-aware routing, access-control in firewalls, policy based routing, provision of 

differentiated qualities of service, and traffic billing [GupMOO). The categorization 

function is performed by a flow classifier (also called a packet classifier), which 

maintains a set of rules, where each flow obeys at least one rule. The rules classify which 

flow a packet belongs to based on the contents of the packet header( s), for example the set 

of packets whose source address starts with prefix bits S, whose destination address is D, 

and which are sent to the server port for web traffic. Associated with each flow is an 

action which defines the additional processing - example actions include sending to a 

specific queue, dropping the packet, making a copy, etc [MacF02). 

Packet classification does supply some information about the types of services by 

extracting some fields from the packets. However, actually, packet classification is not an 

application detection technique. Its goal is to determine which flow an arriving packet 

belongs to so as to determine - for example - whether to forward or filter it, where to 
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forward it to, and what class of service it should receive. These services require that 

packets be classified based on a set of rules that are applied to the destination address, 

flow identifiers such as source address, layer-4 protocol type, and port numbers. As such, 

no application level information is required for this technique. And also, no application 

level detection ability can be supplied. Therefore, for an application detection scheme to 

work, deeper analysis of the traffic stream must be performed. 

2.3.3 Stateful Inspection 

As well as examining header information, Stateful Inspection can examine the contents of 

a packet (up to the application layer) to determine more contexts about the packet beyond 

its source and destination information accommodated in the header. In addition, Stateful 

Inspection monitors the state of a connection and compiles historic information in a state 

table. Some services, which are operated over the application level of the TCP/IP 

reference model, are standards-based. With these services, generally, application level 

headers were defined by RFC or some other well-known document, and one could simply 

detect these services through digging into the service header field available inside every 

single packet [CheP04]. This approach can for example be applied to those traditional 

network applications such as email server (or client) that use SMTP over TCP/IP and web 

browser clients that use HITP. 

Always-on Stateful Inspection introduces a further ability of application detection by 

incorporating full-time session state awareness and extra context information, which is 

stored and updated dynamically. This form of Stateful Inspection provides cumulative 

data against which subsequent communication attempts can be evaluated and acted upon 

in real time [RajOS].·1t also delivers the ability to create virtual session information for 

tracking connectionless protocols (e.g. Microsoft RPC and UDP-based applications). This 

approach is often applied on services such as RTP or the set of standards defined in H.323, 

the session start-up procedure could be tracked in order to achieve identification as for 

these services, the establishment patterns of connections are often known in advance and 

source application information could be extracted from a series of packets [BhaO 1]. 

Stateful inspection uses information that utilizes layers 3-7 of the OS! model (network 
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layer and upwards) in order to obtain information such as the type of service/application 

[RajOS]. By combining information from various layers (transport, session, and network), 

a detector is able to better understand the protocol that it is inspecting and make more 

intelligent decisions on the identification of application. 

2.3.4 Deep Packet Inspection 

The term "Deep Packet Inspection" describes a variety of features that enable a detector 

to scour individual data packets or streams of packets to spot specific code or other 

context that might be part of a signature of certain application [SchML03]. Deep Packet 

Inspection directs, persists, filters and logs lP-based applications, including Web traffic, 

based on content encapsulated in a packet's header or payload. As already discussed, 

always-on Stateful Inspection features enable detection devices to move beyond just 

inspecting traffic based on the information contained in data packet headers to monitor 

active connections. Deep packet inspection supplies the ability to dig even deeper into 

traffic flows to spot hidden signatures like Web, e-mail, and DNS servers. By way of 

example, Deep Packet Inspection lets the detection device look deep into the content of a 

TCP or UDP flow for a complete view. This is accomplished by reassembling IP 

datagrams, TCP datastreams and UDP packets as they flow through the device to view the 

entire application content. Viruses and many recent applications have fallen into the area 

where the application detection can be performed by this approach. To perform effective 

Deep Packet Inspection (DPI), it is vital that the protocol traffic be reordered in the form 

it was originally transmitted. To bridge the gap between receiving packets out of order 

and/or in fragments and the requirement to perform Deep Packet Inspection, the detection 

device requires a "reorder engine" to take all of the packets and put them in the original 

transmission order [KruVVK02]. Once put in the proper sequence, by searching for the 

key strings, which included in the payload portions, some non-standard application 

patterns can be matched. 

Current application detection mechanisms provide accurate detection for some classes of 

applications, especially well-known services that are standards-based messaging. 
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However, due to the nature of these techniques, they would show poor detecting ability 

on some applications on which the work of this Thesis has concentrated. 

2.4 Statistical Methods 

2.4.1 The Fragility oCCurrent Detection Techniques 

Current detection techniques clearly have their advantages. However, there are cases 

where they will fail in their task. The operation of content based classification techniques 

such as deep packet inspection require that considerable processing and buffer memory is 

used as a number of complete datagrams often in sequence, including their headers and 

data portions must be captured and stored for processing for every network session. In 

addition, depending upon the exact technique adopted, the capture of certain specific 

packets may be necessary (i.e. the packets that are sent to establish the session or a 

sequence of packets potentially containing a key string) which may be quite difficult to 

implement, especially in a high load network environment. The fundamental shortcoming 

of content-based detection techniques is that the packet formats, the content signature and 

session negotiation mechanisms must be known in advance, and the content of packets 

captured should be obtained. This limits their ability to operate on encrypted datagrams in 

which the content will present in an unintelligible form [ParBLP003]. 

The work to be described presents a different approach to the problem. The detection 

techniques proposed would compliment conventional methods since they target detection 

of particular classes of applications. If a statistical property of the traffic stream can be 

found that is largely unique to a given application then detection may be possible with 

very little packet decoding necessary. One could simply compare this characteristic (or 

measured for an unknown application) with pre-evaluated samples stored in a database 

and select the appropriate match. We have examined one such characteristic, namely the 

packet size distribution. 
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2.4.2 Rationale of the New Statistical Approach 

The theory of the approa'ch is quite reasonable. In a packet switched network, messages 

that some networked applications exchange may be of fixed size. However, when a 

networked application is designed, to ensure efficiency, the messages that are exchanged 

should be as brief as possible. As a result, an exchanged message may represent just a few 

elements of application iRformation as is necessary. In a packet switched network, the 

messages would be encapsulated in a packet when ready for transportation. The length of 

the packet header is known in advance and is a standard size. The length of the payload 

(the message) can be known by checking the transmitted packet size or alternatively, 

checking the packet header field. While network applications are running, the information 

that they exchange would generally conform to a certain pattern, which means the 

messages or the length of the packets would also conform to this pattern. For example, in 

some real-time games, the information regarding a player such as position and status are 

the most frequent messages that are transmitted, this information can. be encapsulated in a 

defined structure Struct A, which has a fixed length for transportation. Contrarily, some 

building information using a structure Struct B that is a different length may be used 

occasionally, thus the packet sizes will present a distribution with a major peak at the size 

of Struct A and a minor peak at the size of Struct B. In some networked video/audio 

players, almost all the messages transmitted will contain the frames of video/audio files. 

One video/audio file is basically coded at a single bit rate, which decides the frame size 

and the definition of the playback. As a result the packet sizes will present a distribution 

with a peak at the frame size, since the size of packets that contain playing frames will be 

fixed or just vary a little. 

The two examples above may be too idealised to represent the practical reality, as the 

actual cases will be much more complex. However, the packet size distributions observed 

so far are unique and it is expected that many networked applications will have their own 

particular packet size distributions [ClaMOOj. The distribution of packet sizes observed 

over some time interval could be determined and if sufficiently consistent for a given 

application but different across applications, one could use this as an application 

signature. The approach has been successfully applied for some UDP real-time 

applications [ParBLP003j. The work of this Thesis has concentrated on extending this 

work to TCP applications. 
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2.4.3 Potential Effects Caused by TCP on Packet Size Distribution 

As mentioned in the previous section, TCP and UDP are two different Transport Layer 

Protocols. For UDP-based applications, the sending of packets is controlled completely 

by . the application itself, the packet size distribution thus can only dep'end on the 

application by which it is generated. However, it very likely that the packet size 

distribution from a TCP-based application will be affected by the transportation 

mechanism of TCP. This is the area where most effort has been focused in the work of 

this Thesis. 

Some applications studied in this work utilize the TCP bulk mode or interactive mode 

[Ric94] without the Nagle Algorithm. These applications behave in a similar way to 

UDP-based applications. Their original packet size distributions may show consistency 

and no variation under different network conditions. The Nagle-based applications 

however, could potentially suffer from the effects caused by this algorithm. Due to the 

nature of the Nagle Algorithm, a packet could be aggregated when the last outstanding 

packet is lost or its acknowledgement is delayed. As TCP .s a stream-oriented protocol 

without apparent boundary [ForB05], it is impossible to know the original packet size of 

the application. The packet size distribution therefore could vary from case to case. Hence, 

some further analysis needs to be performed in order to detect Nagle-based applications. 

Another significant effect caused by TCP could be the MSS (maximum segment size), 

which is the largest amount of data, specified in bytes, that a computer or 

communications device could handle in a single, unfragmented packet. 

2.4.4 Statistical Chi-square Test 

Cbi-square Test 

The essential requirement of the detection technique described in this Thesis is to achieve 

detection by comparing the packet size distribution of an unknown application against 

stored distributions from known applications. As such, it is necessary to choose a proper 

statistical method to test the fitness between two distributions. The Chi-square test is thus 

adopted in order to test the goodness-of-fit. 
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The reason for choosing the Chi-square test over other statistical test methods is that the 

packet size distribution is a frequency statistical measurement, and the Chi-square test is 

particularly appropriate with variables expressed as frequencies [Sch88]. In addition, 

when used for frequency comparisons, the Chi-square test is a non-parametric test, since 

it compares entire distributions rather than parameters (means, variances) of distributions. 

Except for the need to avoid very small hypothetical frequencies, the test is relatively free 

of constraining assumptions [Hay88]. 

Goodness of Fit Test 

The goodness-of-fit test consists of determining whether the frequency counts in the 

categories of the variable agree with a specified distribution. To carry out a Chi-square 

goodness-of-fittest, a null hypothesis must be defined in advance: 

Ho = the two distributions come from the same random discrete variable population 

and the alternative hypothesis is stated as: 

HI = the two distributions are not from the same random discrete variable population 

In general, one may not expect the observed sample frequencies to be equal to the 

expected frequencies, even when Ho is he correct model. However, if there are large 

differences, a poor "fit" is evidence that Ho is not the correct model. 

The Chi-square value (X') is an overall measure of discrepancy between the observed 

frequencies and the expected frequencies under Ho. The Chi-square value X' of two sets 

of data is given by 

, ,,(o-e)' 
X=L...) ) 

eJ 

(2.1) 

where the sum is over all categories, with Oj the observed frequency count and ej the 

expected frequency count in bin number j. 

21 



Chapter 2 Application Detection Techniques 

This weighted sum of squared differences is equal to 0 if and only if every observed 

frequency is equal to the corresponding expected frequency under Ho, that is, if the fit is 

perfect. If there are large differences between Oj andej , thenx2will be large, which in 

turn suggests that the null hypothesis should be rejected [Kit96]. 

When the sum of frequency counts in all categories is large and Ho is true, the sampling 

distribution of X2 is known to be approximately Chi-squared with k-I degrees of freedom. 

Figure 2.2 illustrates a typical Chi-square density curve. 

Reject Ho 

o 

Figure 2.2 Typical X 2 distribution profile 

As shown in Figure 2.2, the square of the shadowed area represents the probability that a 

test Chi-square value X 2 is greater than a critical value xL, where k -I is the degree of 

freedom. In such a case, we have, with a given probability, confidence to believe that 

Ho should be rejected. The critical value X'I'12 for a certain percentage confidence v can 

be calculated approximately using 

(2.2) 
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where t2'[~J can be looked up in the table of critical values for I-Distribution when the 

degree of freedom is greater than 50. For those cases lower than 50, table of Critical 

Values of the Chi-square Distribution could be referenced [HerCRA63]. 

The Chi-square test requires that frequency counts in all categories should be no less than 

5 unless the number of categories is very large and only very few categories have 

frequency counts less than 5 [Ham75]. Those categories with small-expected frequencies 

can be combined with neighbour categories to meet this requirement in order to improve 

the approximation. 

2.5 Summary 

Current application detection mechanisms provide accurate detection for some classes of 

applications, especially well-known services that are standards-based messaging. 

However, due to the nature of these techniques, they would show poor detecting ability 

on some applications on which the work of this Thesis has concentrated. A new statistical 

approach was proposed and demonstrated by [ParBLP003] in order to detect some UDP

based applications. This Thesis considers applying the method on the TCP-based 

applications. Due to the difference between TCP and UDP, it is expected that some TCP

based applications, which are using the Bulk Mode of the TCP, may behave similarly as 

the UDP-based application, the packet size distributions will be independent of the 

network conditions. In another hand, for some TCP-based applications that the Nagle

Algorithm is used, the packet size distributions are very likely to vary under different 

network conditions. 
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CHAPTER 

3 
TCP-Based Application Data Analysis 

3.1 Introduction 

In this chapter, the preliminary experimental work for the purpose of examining the 

feasibility of making packet size distribution a detectable signature for TCP-based 

networking applications is presented. 

As described previously in Chapter 2, the packet size distribution has been experimentally 

shown to be a detectable signature for real-time UDP-based applications [ParBLP03]. 

Now, we come to the TCP-based situation. In the first place, tests were carried out on a 

number of TCP-based applications in order to examine the packet size distribution 

consistencies of these applications. The Chi-square detections among these applications 

were subsequently introduced so that the visual results can be mathematically confirmed. 

The effects of network load and application settings on these characteristics were 

examined to determine if sufficient tolerance existed such that the distribution could be 

used as an application signature. 
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3.2 The Experiment System Architecture 

3.2.1 Loaded Network Emulator (LNE) 

In order to simulate different network conditions, a Loaded Network Emulator (LNE) 

[OliBPD99j was adopted for this work. Its purpose is simply to drop or delay packets 

passing through it according to user entered parameters. Loss and delay variations are 

applied according to a Gaussian distribution and one is also able to specify means around 

which the variations occur. Similar work has been done by [ArmS04j. 

This tool works in combination with the Linux Iptables [And05], which is a framework 

that enables packet filtering. Iptables is responsible for filtering all packets with an 
attribute of "FORWARD" and pushes them onto a stack named ip _queue. Afterwards, the 

LNE carries out actions on those packets inside the ip _queue in order to decide their 

behaviour according to the parameters that the user entered---delayed to be forwarded or 

dropped. Hence, a packet passing through a node on which the LNE is running will suffer 

delay or loss. A loaded network condition is so emulated. Itis important to emphasise that 

the LNE does not actually generate any new traffic on the network. It simply emulates 

load by recreating the symptoms experienced by the application traffic (i.e. loss and 

delay) in a loaded network. 

3.2.2 The Experimental Architecture 

In order to obtain the packet size distributions of different applications, an experimental 

architecture was established as shown in Figure 3.1. 

Two subnets 192.168.1.0 and 192.168.2.0 were deployed. In each subnet, there were pes 

on which the applications under test were run. The Linux Box was configured as a 

network bridge and set to forward so that the two subnets can be connected. Iptables was 

also employed using command 

iptables -A FORWARD -j QUEUE 
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which forced all packets passing through the Linux Box with an attribute of FORWARD 

into the Iptables packet queue for furth~r action [Ipt06]. The LNE then was used in order 

to process those packets inside the Iptables packet queue so as that different network 

conditions could be emulated. 

D 8ID§ LNE 
o- n 0=0 Hub Packet Queue 

Detector t 
* Llnux Box 

Iptables 

192.168.1." 192.168.2." Card Ethernet Card 

PC PC 

Figure 3.1 Experimental System Architecture 

A packet capture process was carried out via the hub inside subnet 192.168.1.0. Since all 

packets coming from subnet 192.168.2.0 need to be passed through the Linux Box on 

which a network condition emulating mechanism functioned, all arriving packets on the 

hub were perturbed by the LNE --- delays or losses were caused, so that, depending on 

the configuration of the LNE, the packet size distribution profiles under various network 

conditions were obtained in repeatable and understood conditions. 

3.3 The Consistency of the Packet Size Distribution as an Application 
Detecting Signature 

In order to test the consistency of the packet sIze distribution profiles, a number of 

applications in different general classes were tested; games, video streaming servers, email

clients and web browsers and so on. The traffic was monitored and analyzed, unique 

source/destination IP addresses and port numbers identified each connection and the streams 

in two directions (client to server, server to client) were separately recorded. 
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3.3.1 The Effect of Application Settings/Scenarios on the Packet Size 

Distributions 

Packet size distributions may potentially vary under different running conditions (such as 

the intensities of the battles for some networked games or playback bit-rates for the 

stream media players) [BorS99] [SheN03]. This is vitally important as it affects the use of 

packet size distributions as a detection signature. Applications must be profiled and tested 

with differing settings to ensure the accuracy of the approach. In each test performed 

here, the traffic was captured for a 60s interval, the distribution granularity used was 1 

byte per bin for a network MTU of 1500 bytes. 

Networked Game Crimson-Sky 

Crimson-sky [MicOO] is a typical local area networked game of air-combat simulation 

originally developed by Microsoft for the platform of the XBOX, and was transplanted to 

the PC platform recently. It functions by allowing a number of network clients running 

the game to connect to a server host, which is also rimning the game. The game is 

operated in a semi-duplex like mode: it produces two connections, each of which is in 

charge of the message transportations of one direction (client to server or reverse), the 

other direction of each connection only transmits the acknowledgements of the packets in 

which gaming messages are carried, and ports used are assigned dynamically. 
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Figure 3.2 Packet size distribution for Crim-Sky (svr-cli) 2 players 
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Figure 3.3 Packet size distribution for Crim-Sky (cli-svr) 2 players 

Figure 3.2 and Figure 3.3 show the original profiles under ideal network conditions and 

in two-player mode. Within the interval period, no more intensive action than flying was 

performed. It can be clearly seen that for the server to client traffic most packets are 40 

bytes in size excluding IP and TCP headers, with a minor peak at 56 bytes, and with a 

similar profile in the reverse connection. 
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Figure 3.4 Packet size distribution for Crim-Sky (svr-cli) Free-Fly, 4 players 

'0 
" 0.8 

»~ 
u '" ~ E 0.6 
=> 0 

~ ~ 0.4 
L1. § 

o 0.2 
u 

o 
o 20 40 

, I 
60 80 100 120 

Bin No. (1bytelbin) 

Figure 3.5 Packet size distribution for Crim-Sky (svr-cli) Group-combat, 4 players 
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With an increasing number of players, or increasing intensity of combat, the packet size 

distribution appears to remain stable as shown in Figure 3.4 and Figure 3.5, although a 

few packets of other sizes are also observed. 

Gaming Conditions Chi-Value Critical value 95% Freedom 

Free-fly 2 players 0 3.940 10 

Free-fly 4 players 0.9416 3.940 10 

One-on-One combat 2players 1.4237 5.226 12 

One-on-One combat 4 players 1.2250 4.574 11 

Group combat 4 players 1.7428 5.226 12 
.. 

Table 3.1 ChI-square analYSIS results for Cr/m-Sky under different gammg conditIOns 

The Chi-square values for different gaming conditions tested against the distribution for 

the condition of Free-fly 2 player (server to client direction) has been calculated and 

summarized in Table 3.1. All packet siz~ distribution profiles have been accepted as 

coming from the same sampling population with a confidence of95%. Thus, consistency 

is proven. The client to server direction presented a similar result, although no details are 

given here. 

Networked Game WarCraft III 

In contrast to Crimson-Sky, the popular Internet game, WarCraft III [BIi02], uses only 

one session for the purpose of communication. The profiles in both directions are shown 

in Figure 3.6 and Figure 3.7. These are distributions that were captured from a whole 

battle process. The predominant packet size was 9 bytes with smaller counts for larger 

packets in the server to client direction and 6 bytes in the reverse direction. 
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Figure 3.6 Packet size distribution/or WarCrajl III (svr-cli) overall 
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Figure 3. 7 Packet size distribution/or WarCrajl III (cli-svr) overall 

As for Crimson Sky, the profiles in both directions remained stable with increasing 

number of players, while under different intensities of battle. The inbound stream under 

serious intensity was seen to have slightly lower peaks compared to the mild case. The 

counts obtained for larger packets were seen to be slightly larger compared with those for 

smaller packets. The profile shapes were in general, similar, however (Figure 3.8 and 

Figure 3.9). 
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Figure 3.8 Packet size distribution for WarCrajl III (svr-cli) high intensity fight 
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Figure 3.9 Packet size distribution for WarCrajl III (cli-svr) high intensity fight 

Gaming Conditions Chi-Value Critical value 95% Freedom 

Integrated Battle 2 players 0 40.645 57 

Low Intensity Battle 2 players 2.9999 45.741 63 

Low Intensity Battle 4 players 4.4129 54.325 73 

High Intensity Battle 4 players 3.5053 49.162 67 
.. Table 3.2 Chi-square analysIs results for WarCrajl III under different gammg conditIOns 

The Chi-square values between the profiles under different running conditions are given 

in Table 3.2, with a confidence value of 95%. As seen, the distributions are similar. 
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Networked Multimedia Software RealPlayer 

RealPlayer [ReaIOO] is a widely used media player. It utilizes the RTSP protocol 

[BaiSWCOO] developed by Real-Network Ltd. to provide a multimedia service across the 

Internet. The profiles for playing a number of files with different bit rates have been 

obtained and shown in Figure 3.10. Traffic is only available in the server to client 

direction, no traffic in reverse direction was observed (except the ACK packets without 

any payload) as one would expect because of the nature of the video/audio service. 
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Figure 3.10 Packet size distributions/or RealPlayer while playingfiles at different bit rates 
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The profiles (Figure 3.10) indicate that the packet size distributions shifted rightward 

with increasing bit-rate of the media files, although the shapes of the profiles appear to 

remain similar. As such, poor packet size distribution consistency was expected. Another 

problem is that most of the traffic had been transmitted in the packets that are at the size 

of the MTU. Different clips with various coding bit-rates were subsequently tested and 

Chi-square values were summarized as follow (Table 3.3). 

225 kbps(Clip I) 450 kbps( clip I) 600 kbps(clipl) 

225 kbps( clip 2) 11.573(accepted) I 94. 999(rejected) 198. I 32(rejected) 

450 kbps( clip 2) I 93.899(rejected) 16.655(accepted) I 99.999(rejected) 

600 kbps( clip 2) I 99.999(rejected) I 89.234(rejected) 21.333(accepted) 

Table 3.3 Chi-square analysIs results for RealPlayer for different bit-rates 

Other media players show a similar trait as RealPlayer. In addition, media files coded 

using the same scheme encoding at the same bit rate would show the same profile 

regardless of the format of them or on which application they are played back. As a result, 

it may be quite difficult to identify the operating application by matching the packet size 

distributions at the application level. However, the packet size distribution profile 

provides the ability to identify the general class of the application, i.e. media streaming in 

this case. 

Traditional TCP Applications 

Some traditional TCP applications were also investigated. These traditional applications 

are not real-time and the traffic they generate is often based on manual input or the 

content transferred. The packet size distributions of these applications hence could be 

seriously subject to factitious factors. 
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HTTP Browser 
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Figure 3.11 Packet size distributions for HTTP 

Figure 3.11 shows the profiles for the HTTP [FieGMFB97] while opening two different 

website pages. Most of the packets were transmitted at the size of the MTU, a few of 

them are not. Even discounting all the MTU size packets, the distributions still represent 

no common ground at all as the Chi-square value between them is 196.3433, which was 

too high to accept the hypothesis that the two profiles came from same random 

distribution population. 

uk.www> bo.mshome.net.supfileby: . 197642:199102(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby:.P 199102:199223(121) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: . 199223:200683(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: P 200683:201137(454) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: .201137:202597(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: .202597:204057(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: . 204057:205517(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: . 205517:206977(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: . 206977:208437(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: P 208437:208597(160) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: . 209897:211357(1460) ack 2669 win 16483 
uk.www> bo.mshome.net.supfileby: . 211357:212817(1460) ack 2669 win 16483 

Figure 3.12 Dumpedfile details for HTTP 
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Looking more detailed at the dumped files (Figure 3.12), all the packets that are not at 

the size of the MTU come with the flag PUSH set, following several MTU packets 

without this flag set. This may result from the fact that a webpage cites a number of 

images, Flashes or other sort of files which would be sent in a few continuous packets and 

when the single file has been transmitted, the last packet would be flagged as PUSH 

(highlighted in Pink) so that Tep can submit it to the browser at once, thus, the last 

packet should be the tail of such a file transportation. Since different websites will contain 

different files, the packet size distribution will show diversity. Hence, they cannot be 

considered as a signature to identify the HTTP traffic. 

FTPandSMTP 

The FTP and SMTP share a common feature, which is that they 'establish two sessions for 

one transportation process-a command/control session and a data transmission session. 

Generally, the packet sizes of the command/control sessions are always the length of the 

commands they receive while that of data transmission session are decided by the actual 

data that FTP or SMTP transmits [PosR85] [Pos82]. Obviously, the command lengths 

will depend upon the users' input and thus will show no consistency at all, which has 

been experimentally demonstrated and shown below (Figure 3.13, Figure 3.14). 
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Figure 3.13 Packet size distribution/or FTPcontrol-command sessions 
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Figure 3.14 Packet size distribution/or SMTP control-command sessions 
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The packet size distributions of the data transmission sessions are similar to the HTIP 

transmission. One file (may be one e-mail in SMTP) will be transmitted in a few 

continuous packets, which are always the MTU size except the last one, which is a tail 

packet (Figure 3.15, Figure 3.16). This can be useful as by watching which bin size 

represents as a peak except the MTU, it may be possible to detect certain abnormal 

behaviour such as spam or virus transmission, but this is not what this work concentrates 

on and will not be discussed further. 
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Figure 3.15 Packet size distributions for FTP data transmission session 
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Figure 3.16 Packet size distributions for SMTP data transmission session 

SSH 

The profiles of SSH (Figure 3.17) are quite interesting. SSH provides cryptography and 

authentication technologies for secure remote login, which means all the packets are 

encrypted [SshOS]. For the traditional remote login protocol TELNET [PosR83] which 

works with the. Nagle Algorithm of the TCP protocol, command characters will be 

buffered and not be sent out until the next sending instant is due and the 

acknowledgement of the last packet sent has arrived. As such, packet sizes are both 

command-sensitive and affected by the state of the network connection. The profiles of 
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SSH were seen to be significantly different from those of traditional remote login 

protocols. Under ideal network conditions which means no delay and no loss, every 

keyboard stroke would force the SSH client to generate a single 44 bytes packet without 

any buffering by TCP, thus, the packets that contain command information (direction 

Client to Server) were all 44 bytes and the profile show a robust consistency during the 

tests in which a number of different commands had been operated, while some packets 

other than 44 bytes were observed among those containing feedback information 

(direction Server to Client). 
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Figure 3.17 Packet size distributionfor SSH 
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In several later rounds of tests, some commands different from the first round were 

executed so as to obtain more distribution profiles. Profile plots of a certain round are 

given in Figure 3.1S. The Chi-square analysis mathematically indicates that only the 

profiles of client to server direction support the hypothesis that those profiles were from 
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the same random distribution population (Chi-square value was 0, critical value with 95% 

confidence 0.270) but not in the client to server direction (the Chi-square value was 

83.033, critical value with 95% confidence 8.343). 
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Figure 3.18 Packet size distribution/or SSH 
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SSH has shown its robust packet size distribution consistency, at least, in one direction, in 

this case, further analysis would be valuable. 

3.3.2 The Effect of Network Load on The Packet Size Distributions 

In addition to the effect of running conditions, one must also consider the effects of 

network load, which could potentially affect the application signature [FenFW02j 

[HenOI]. The analysis below describes the results obtained with a number of samples of 

real-time applications operating under varying conditions of emulated load on the 
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Ethemet test network. For the tests conducted with network load, sessions of each 

application were run and the traffic stream perturbed by the introduction of packet loss 

and/or delay by the Loaded Network Emulator. 

Networked Game Crimson-Skies 

Network Condition Emulated 
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Figure 3.19 Packet size distribution for Crim-Sky under low-load network condition 

140 

Figure 3.19 shows the low-load packet size distribution profile of the server to client 

traffic generated. The profile in the reverse direction observed was similar to the server to 

client direction. The predominant packet size was 40 bytes with a minor peak at 56 bytes. 

The difference between it and that under ideal network conditions (Figure 3.2) cannot be 

visually seen. 
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Network Condition Emulated 
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Figure 3.20 Packet size distribution for Crim-Sky under moderate-load network condition 

Under the network condition of 3 percent loss ratio in conjunction of 150ms delay 

(Figure 3.20), the counts obtained for 56 bytes packets were seen to be slightly smaller 

comparing with those for 40 bytes packets. The profile shape was in general, similar, 

however. 

Network Condition Emulated 

Packet Loss Ratio (percentage) 5 

Packet Delay (ms) 300 

A similar result was obtained under the condition of 5 percent packet loss ratio ID 

conjunction of 300ms delay (Figure 3.21), packets of 40 bytes still dominate the 

distribution with slightly higher or lower counts for the packets with size of 44 bytes, 56 

bytes or 124 bytes. Even for the condition of 400ms delay (Figure not given), the 
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distributions remain stable. The profile was therefore very slightly different at this level 

of load but perhaps still within the bounds of variation that one may expect to see in all 

applications. 

The consistency of the packet size distribution profiles under different network conditions 

was then proven by a Chi-square test over these results. The results are given in Table 

3.4. All Chi-square values are lower than the associated critical values of 95% confidence. 
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Figure 3.21 Packet size distributions for Crim-Sky under heavy-load network condition 

Network Conditions Chi-Value Critical value 95% Freedom 

No-load 0 3.247 10 

Low-load 1.3343 3.816 11 

Moderate-load 1.1275 3.816 11 

Heavy-load 1.9344 4.404 12 
.. Table 3.4 Ch,-square analysIs results for Cr/m-Sky under different network cond,tIOns 

Networked Game WarCraft III 

This game is attractive because it reflects the effects on the packet size distributions, 

which are introduced by the congestion control mechanism of the rcp. The result is 

corroborated by [She03]. 
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As described previously, WarCraft III established only one session connection during 

gaming. The two packet transportation directions show different profiles, one can easily 

tell which end is the server and which is the client. 

Network Condition Emulated 

Packet Loss Ratio (percentage) 3 

Packet Delay (ms) 100 

Firstly, consider the network condition of lOOms delay and 3% loss ratio (Figure 3.22). 

In both directions, packet counts of 6 bytes and 9 bytes had retreated to secondary peaks, 

other peaks at 12 bytes (client to server) and 18 bytes represented the first peaks in the 

plots, packets at 18 bytes, 27bytes even 36 bytes also appeared. 
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Figure 3.22 Packet size distributions for WarCraft III under network condition of 100 ms delay 

a. Server - Client 
b. Client - Server 
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15:22:15.900514IP 158.125.50.57.1078 > 158.125.51.148.6112: P 10:19(9) ack 12 win 635 
15:22:15.999984 IP 158.125.51.148.6112 > 158.125.50.57.1078: P 12:18(6) ack 19 win 167 
15:22:16.000658IP 158.125.50.57.1078 > 158.125.51.148.6112: P 19:28(9)ack 18win 635 
15:22:16.100127 IP 158.125.51.148.6112> 158.125.50.57.1078: P 18:24(6) ack 28 win 167 
15:22:16.100881IP 158.125.50.57.1078 > 158.125.51.148.6112: P 28:37(9) ack 24 win 635 
15:22:16.200216IP 158.125.51.148.6112> 158.125.50.57.1078: P 24:30(6) ack 37 win 167 
15:22:16.200915 IP 158.125.50.57.10781 > 158.125.51.148.6112: P 37:46(9) ack 30 win 635 
15:22:16.300285IP 158.125.51.148.6112 > 158.125.50.57.1078: P 30:36(6)ack 46 win 167 
15:22:16.300952IP 158.125.50.57.1078> 158.125.51.148.6112: P 46:55(9) ack 36 win 635 
15:22:16.400543IP 158.125.51.148.6112 > 158.125.50.57.1078: P 36:42(6)ack 55 win 167 
15:22:16.401217IP 158.125.50.57.1078 > 158.125.51.148.6112: P 55:64(9) ack 42 win 634 
15:22:16.500670 IP 158.125.51.148.6112> 158.125.50.57.1078: P 42:48(6) ack 64 win 167 
15:22:16.501358 IP 158.125.50.57.1078 > 158.125.51.148.6112: P 64:73(9) ack 48 win 634 
15:22:16.600785 IP 158.125.51.148.6112 > 158.125.50.57.1078: P 48:54(6) ack 73 win 166 

Figure 3.23 Dumpedfile details of the WarCrafi III under ideal network condition 

By examining the Tcpdump file (Figure 3.23), the original packets were sent with a fixed 

interval of lOOms (highlighted in Red), whilst in the case of loaded network conditions, 

these intervals were prolonged and no more packets were sent until the acknowledgement 

of the outstanding packet had been arrived. This phenomenon occurring in WarCraft III 

could have been caused by utilization of the Nagle Algorithm [Tan96]. It can also be seen 

that the packet size varies according to network condition, and that the size mostly 

increased by an integer multiple of the peak size of original profile, which was considered 

to result from packet aggregation. If the network delays the returning acknowledgements, 

the Nagle transmission mechanism would buffer any due packets and send a larger packet 

containing multiple Application Layer messages at the next sending instant. This results 

in an addition of the original packet size distribution, potentially a number of times when 

due packets are increasing. One would expect that more packets would be aggregated 

with worsening of the network condition in the following tests. 

Network Condition Emulated 

Packet Loss Ratio (percentage) 5 

Packet Delay (ms) 200 
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With the worsening of network conditions, the aggregation phenomenon becomes even 

more distinct (Figure 3.24) as expected. Further analysis could be used to identify the 

Nagle-based application packet size distributions. 
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Figure 3.24 Packet size distributions for WarCraft /If under network condition of200 ms delay 

a. Server - Client 
b. Client - Server 

Network Condition Emulated 

Packet Loss Ratio (percentage) 3 

Packet Delay (ms) .0 

Under the network condition of 3 percent loss ratio (Figure 3.25), the profile shows no 

distinct difference from that under ideal condition although the losses may have resulted 

in the resending of a few packets. This suggests that the simple loss of some packets 

would not cause a variation of packet size distribution profile for Nagle-based 

applications. 
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Table 3.5 gives the Chi-square test results, which show that the network delay condition 

would significantly impact upon the packet size distributions for this Nagle-based 

application. 

'0 
" 0.8 

~~ 
~ § 0.6 
::> 0 

g.s 0.4 
li:'E 

i5 0.2 
u 

o 

'0 
" 0.8 

~~ 
ai ~ 0.6 
::> ~ 
.,.0 
Q) ..s 0.4 
.t'E 

5 0.2 
u 

o 

o 

o 

I 

20 40 60 BO 
Bin No. (1 bytelbin) 

a 

I 

20 40 60 80 
Bin No. (1 bytelbin) 

b 

Figure 3.25 Packet size distributions for WarCrafl 111 under network condition of 3 percent loss 

a. Server - Client 
b. Client - Server 

Network Conditions Chi-Value Critical value 95% Freedom 

No-load 0 49.162 67 

Low-load 86.133 79.697 102 

Moderate-load 196.355 105.560 131 

Heavy-load 196.934 110.956 137 

Loss Only 2.333 50.879 69 
.. Table 3.5 Ch,-square analysIs results for WarCrafl 111 under different network conditIOns 
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Networked Media Player RealPlayer 
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Figure 3.26 Packet size distributions for RealPlayer under low-load network condition (600 kbps 

bit rate) 

As shown in Figure 3.26, in accordance with the result expected previously, while a 600 

kbps clip was played, more traffic had been transmitted in the packets that are at the size 

of the MTU while the network condition is worsening, this is also extended by packet 

aggregation. Being different from networked games, the original packets released by 

media players are much larger than those of games. Hence, the aggregated packets would 

frequently exceed the MTU and are thus sent as an MTU packet with the remaining bits 

pushed into next packet. The playbacks of other bit-rate clips followed similar profiles 

(Figures not given). 

Network Condition Emulated 

Packet Loss Ratio (percentage) 5 

Packet Delay (ms) 250 
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Figure 3.27 Packet size distributions for RealPlayer under heavy-load network 

With the network condition worsening, all the packets were at the size of the MTU 

(Figure 3.27). This demonstrates the poor consistency of the packet size distribution of 

networked media players. 

Traditional TCP Applications 

The profiles of HTTP under loaded network conditions show no difference from those 

under an ideal network condition (Figure· 3.28). This is explainable, when the server 

received the request from client, the full responding information will be submitted to the 

Transport Layer at the same time, and then divided into packets that can be transmitted. 

Thus all the packet sizes have been determined at the same time, the delay or loss of 

packets will have no effect on them. 
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Figure 3.28 Packet size distributions for HTTP under network condition of 200 ms delay 
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It can be seen that SMTP and FTP were not affected by varied network conditions. 

Figure 3.29 gives the profiles of the control sessions of the two protocols under loaded 

network conditions. This should result from the Bulk Transportation mechanism they 

deploy. 
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Figure 3.29 Packet size distributions under network condition of JOO ms delay 

a. FTP control session 
b. SMTP control session 
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SSH once again showed an interesting packet size distribution (Figure 3.30). In the 

direction of client to server, the same aggregation phenomenon as that occurring on 

WarCraft III was observed. The packet sizes, which are always 44 bytes under ideal 

conditions, have been multiplied to 88 bytes or 132 bytes with worsening network 

conditions, as shown in Figure 3.30. On the other hand, in the reverse direction, the 

situation became more complicated. There seems to be some mechanism controlling 

packet delay within SSH, the worse the network condition, the more packets of size 76 

bytes being observed. As the packets of SSH are all encrypted, it is impossible to dig into 

the data portion of the packet to find out what exactly happened. Therefore, the packet 

size distribution profile from client to server is unique from all other applications seen. 
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Figure 3.30 Packet size distributions for SSH under worsening network condition 

a. Server - Client under 100 ms delay 
b. Client - Server under 100 ms delay 
c. Server - Client under 300 ms delay 
d. Client - Server under 300 ms delay 
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Other traditional TCP-based applications (protocols) such as HTTP, FTP, SMTP and 

TELNET, have shown very poor packet size distribution consistencies. These TCP based 

applications, however, are standards-based. Web browsers and email clients must be so in 

order to allow inter-operability with similar products from different vendors. The 

detection of these applications, for example, in the case of web browsers, may require 

knowledge of exactly what HTTP transaction is contained in the stream [FieGMFB97] 

and this can only be done by extensive packet decode through knowledge of the HTTP 

packet format and transmission mechanism. Commercial products allowing detection and 

analysis of this type of non real-time application are already available and are not 

therefore discussed in great depth in this work. 

3.4 The Uniqueness Tests on the TCP Packet Size Distributions 

It is now necessary to investigate the uniqueness of the packet size distributions for TCP

based applications, in order to determine if a TCP-based application can be differentiated 

from the other applications by comparing its packet size distribution profile with those of 

others. 

The quantitative uniqueness between relevant distributions was investigated using a 

database of packet size distributions against which new traces of applications could be 

compared. The Chi-square test is designed to convert the differences (or deviations) 

between the two into the probability of their occurring by chance, taking into account 

both the size of the sample and the number of variables (degrees of freedom) [Sch88]. 

The selected in-database applications are five TCP-based games and the SSH application. 

For those applications using the Nagle Algorithm, only the original (i.e. under ideal 

network condition) profile was considered; the solution of the detailed detection method 

for these applications will be discussed in Chapter 4. Table 3.6 gives the stored profile 

numbers with corresponding application names. 
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StoredProfile Number Application Name 

1-2 Nardar 

3-4 Need For Speed III 

5-6 Crimson Sky 

7-8 Diablo 11 

9-10 warCraft III 

11 SSH-Client 

Table 3.6 The stored profile numbers and correspondmg applicatIOn names 

Crimson-Sky and WarCraft III 

The plots below (Figure 3.31, Figure 3.32) show the Chi-square values of the tests on 

Crimson-Sky and WarCraft III distribution profiles compared against those of six other 

applications in the database. The horizontal axis represents the stored profile number. The 

perfonnance of the uniqueness was good with the lowest Chi-square values occurring at 

the profile number for Crimson-Sky (No.5, No.6) and warCraft III (No.9) respectively. 

Very importantly, in these two cases, the correct applications were very well 

differentiated from the other applications. 

-+- Chi-Square Values ___ Critical Values with 95% Confidence 

250 

200 

150 

100 

50 

o -
2 3 

" I 
\ / 
\ / .. 

\. .L.------" --
4 5 678 

Stored Application Numbers 

Figure 3.31 Chi-square Values ojCrim-Sky against database (CIi-Srv) 
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Figure 332 Chi-square Values ofWarCraft III against database (Cli-Srv) 

APP- Chi- Critical value Critical value Next Chi- Critical 

TEST Value 95% 50% cloest app Value value 50% 

Crim 10.213 113.090 22.337 warCraft 196.226 37.335 

Nadar 4.281 68.249 88.334 Diablo 191.131 88.334 

WarCraft 3.505 47.449 64.335 Diablo 115.892 72.334 

DiabloII 49.647 77.929 82.358 WarCraft 189.897 99.334 

NFS III 0 0.351 0.584 SSH 200.000 1.064 

SSH 0 0.351 0.584 NFS II 200.000 1.064 

Table 3. 7 Results of Ch,-squared tests between different applicatIOn traces 

Table 3.7 shows a general Chi-square summary for all application that had been tested. 

For each application, the Chi-squared value resulting from the computation with the pre

stored trace for that application is shown, along with the corresponding 95% and 50% 

confidence value (which varied according to number of degrees of freedom). The lowest 

Chi-squared value resulting from the computation with a different application trace is also 

given, again with the corresponding 50% confidence value. As the computation ignores 

packet size probabilities of zero in both data sets, the confidence value varies from 

application to application. 
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It is seen that, for all the applications shown, the lowest Chi-squared value always 

occurred when the computation was performed with a trace from the same application. In 

all cases, this Chi-square value is below the critical value for 95% confidence value. In all 

. cases, the next lowest Chi-squared value from a different application is seen to be 

significantly greater that the first, and much greater than the associated 50% confidence 

value for this second choice application. Hence the second choice application must be 

rejected in favour of the first. All the application traces are uniquely identifiable, and the 

majority can be considered to be statistically unique for the database. 

3.5 Summary 

In this chapter, the consistency of the packet size distributions of the TCP-based 

applications was tested. It experimentally shows that, for some applications, the packet 

size distributions do not vary as the running conditions are changed. Networked media 

players and traditional TCP applications however show different characteristics - the 

packet size distributions vary significantly when different contents are transferred. In 

addition, as discussed previously, some applications using bulk mode behave in the same 

way as the UDP-based applications, the packet size distributions are consistent under 

different network delay/loss levels, whereas some the Nagle-based applications aggregate 

their packet size distributions as the network condition is worsening. For these 

applications, analysis in advance is required in order to achieve the detection . 

• 
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CHAPTER 

4 
TCP Applications with the Nagle Algorithm 

4.1 Introduction 

The tests described in the previous chapter have illuminated that some TCP-based real

time applications show robust packet size distribution consistencies whereas others do 

not. Those that do not have in common that the Nagle Algorithm has been adopted based 

on the analysis ofthe Tcpdump output files (see Chapter 3). 

In these applications, the packet sizes sent could be varied by loaded network conditions, 

under which the data would be buffered by the TCP layer implementation and will not be 

sent out until the acknowledgement of last outstanding packet has been received. In this 

case, the packet size distribution profiles would therefore show poor consistencies, 

however, the packet aggregations have some certain patterns to adhere to. We suggest an 

approach and test this to perform application detection on the Nagle-based applications. 

In this chapter, the approach is explained and its feasibility experimentally is proven. 
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4.2 Methods of Aggregation Application Detection 

Firstly, the methods discussed in this chapter are based on the results experimentally 

obtained in Chapter 3, i.e. that the original (under ideal network condition) packet size 

distributions of Nag le-based applications are consistent and detectable. 

4.2.1 Methodology 

During the operation of a Nagle-based application, the packet generation and the network 

condition variation are two independent events as information about one of them does not 

tell anything about the other one [HogMC06]. 

Let the original packet size be an independent discrete random variable X, and the 

network condition be the second independent discrete random variable C. Due to the 

nature of the Nagle Algorithm, in every time interval, the possible values of C can be 

described as {condition that makes no aggregation, condition that the delay is enough for 

2 packets being aggregated, condition that the delay is enough for 3 packets being 

aggregated but not for 4 packets, condition that the delay is enough for 4 packets being 

aggregated but not for packets, ...... }, or simply defined as {Cl, C2, C3, C4, ...... }. 

Therefore, when aggregation occurs, we define a packet generated as an original packet as 

a I st order packet, whilst we define a packet aggregated from 2 original packets as a 2nd 

order packet (from 3 original packets as 3rd order, etc). A packet size distribution can 

certainly consist of different order packets, however, the presence of each packet will not 

affect the generation of the others. As such, let us simply consider the probability of a 

single packet generation. 

Under a loaded network condition, in every time interval, the probability of the 
Lst-agg 

generation of a I st order packet in an aggregated packet series, P. is: 

P • I ,,- a g g = P a "g (n ) . P (C I ) (4.1) 

"ig ( ) 
where p. n is the probability of the generation of a n byte original packet. If the 

generation of every single packet is an independent event which means that the generated 
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packet size has no relation to the last packet generated, then the probability of a 2nd order 

2nd-ogg 

packet in an aggregated distribution with a given packet size n P. being generated 

can be written: 

, < • 
p;"d-a gg = L p;rt g ,p::it·p(C 2 ) (4.2) 

, .0 

while that for the 3,d order is: 

, < • 
p~'d-agg = L P;"g ·p;~Z 'p(C,) (4.3) 

, = 0 

the equations for other orders can be derived in the same way. As a result, the probability 

of a .given packet size n under a certain network condition p. agg is 

p n agg = i 
i = 0 

ilh-agg 
Pn (4.4) 

IIh-agg 

where P. is the probability for the ith order, and j is the maximum order of 

aggregation. 

Let the probability of an aggregated packet without consideration of the aggregating 

pUh 
probability P(C) be • , then 

d 2nd· an Pn IS: 

p~rd is: 

'<. 
2nd " plSI 1st p" = L..J le • Pn-k 

k=O 

Ie!>n ISn-k 

3rd = ~ plst . (~ 1st. 1st ) 
Pn L... le L... PI Pn-k-I 

k"'O 1=0 

p~h can thus be iteratively written as: 
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'.n 
ith _ "'" plst • p(i-I)lh 

PI! - L..J J; /I-A: 
boO 

or 

'.n 
ilh _ "'" p0rig • p(l-l)th 

PI! - ~ k II-k (i> I) (4.5) 

'·0 

and rewrite (4.1), (4.2), (4.3): 

p!,,-agg = p!" . p( C, ) 
(4.6) 

(4.7) 

(4.8) 

Precedent research suggests that, for a real-time application, 300ms is a threshold delay 

that a user can tolerate [Far02]. Therefore a maximum order of 4 was observed as the 

greatest aggregation order number under this network condition and was adopted for this 

work. The delay emulated in all tests was limited to 300ms. However, consideration for 

higher order packets and greater delay could be made. 

The packets generated by applications represent a time senes [Kan076j. They are 

sometimes generated in an orderly manner [Far02]. For instance, a packet of 31 bytes 

may always follow a packet of 30 bytes, or packets of 10, 35 and 50 bytes may always 

appear continuously in the order of "35bytes, 10 bytes and 50 bytes". This is explainable. 

For example, in an application, on events, e.g. the event I , which sends out a 30-byte 

packet, will trigger an event2, which generates a 3 I-byte packet. As such, the generation 

of every single packet would become a conditional probability event [How04]. This 

circumstance must be considered as it may occur in practice. In this case, let the original 

orig-con 

probability of an n byte packet be P n , then (4.6), (4.7), and (4.8) can be rewritten: 

!Sf-ogg-con _ orig-con (C) 
Pn - Pa . P 1 

, • n 
p ;nd-agg-Co n = L p;r;g-con 

, ·0 
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kS, 
p~rd-agg-CQn = L p;r;g-con. p~~:-agg-con 'p(C

3
) 

and (4.4) here is 

k = 0 

Pnagg-con = t 
;= 0 

ith-agg -con 
Po 

(4.11) 

(4.12) 

D' a", {C agg C a", C agg C agg} 
For an aggregated packet size distribution 1st aunt" aunt, ' aunt, ,'" ount".o 

Countagg 
where ' is the number of packets of n bytes, we have: 

(4.13) 

where Sumagg is the total number of packets in an aggregation distribution. Since the total 

number of packets of the i th order is: 

Sum"h =Sumagg ·P(C,) (4.14) 

(4.13) hence is: 

Countagg = Sum'" . ph' + Sum"d . p"d + Sum"d . p'<d + Sum"h . p"h 
n n n n n (4.15) 

S irh 
As such, with the availability of um ,using (4.15), the aggregated packet size 

distribution of a known application under a given network condition can be theoretically 

calculated. Alternatively, the original probability of a given packet size existing in an 

aggregated packet size series can be extracted according to this equation. 

Now, it is necessary to investigate the aggregated packet size distribution profiles to seek 

S ith 
a way to obtain um . 

The plot in Figure 4.1 gives the profile of WarCraft III under a heavy-load network 

condition. Let it be an unknown aggregated packet size distribution, which is defined as 

Dist agg {Count,gg Count agg Count agg ... } 
I' 2' 3' 
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Figure 4.1 Packet size distribution for WarCrafl III under heavy-load network condition 

Packet Size I 2 3 4 5 6 7 

Probability 0 0 0 0 0 0 0 

Packet Size 8 9 ID 11 12 13 14 

Probability 0 0.9770 0.0002 0 0 0 0.0012 

Packet Size 15 16 17 18 19 20 21 

Probability 0 0 0 0 0.0003 0.0003 0 

Packet Size 22 23 24 25 26 27 28 

Probability 0.0003 0.0028 0 0 0 0.0003 0 

Table 4.1 Orlgmal packet sIze dlstrzbutlOn values offlrst28 blnsfor WarCrafl III 

Now, assume that Distogg is aggregated from the original distribution of War Craft Ill. The 

normalized distributions for different order of WarCraft III are 

Dist1S/{ I" pi" plst ... } 
PI ' 2 ' 3 ' 

Dist'nd {p"d p"d p'nd ... } 
I , 2 ' 3 ' 

Dist'nl {p"d p'nl p"d ... } 
1 ' 2 ' 3 , 

Dist"h{p"h p"h p"h ... } I , 2 , 3 , 

Obviously, the bin number N whose value is non-zero for the (i) th order packet size 

distribution is 

NE {i·Min{n},i·Max{n}} 
(4.16) 

60 



Chapter 4 TCP Applications with the Nagle Algorithm 

where n is a non-zero bin in the original distribution. 

Table 4.1 gives the probabilities of the first 28 bins of WarcarftIII (Cli-Srv) under ideal 

network condition. More than 97% of the packets are generated as 9 bytes and 9 bytes is 

the smallest packet size observed. According to Table 4.1, the Min{n} of WarCraft III is 

9, so that the 2nd order packet size would all be greater or equal to 18 bytes, and all 9 

bytes packets should have been generated as original packets which we refer to as a bin of 

1st order. Thus, (4.14) here is: 

and we have 

Sum is/ = Countogg lp'" , , 

Thus, a theoretical packet size distribution for original packets 

Distlst-theory {Count:SI-theOry ,Count~.!'I-lheory ,Count;,st-lheOry , ... } *' 

can be calculated using 

C t ]:If-theory 1st C t agg / ,,, 
Dun n ::::;:: P" . Dun 9 P9 

(4.17) 

(4.18) 

(4.19) 

Count 1st-theory 

where n is the number of original( or named as I st order) packets of n bytes, 

c ogg 

ount, is the number of packets of 9 bytes in the unknown aggregated distribution. 

Afterwards, remove all original packets using 

C t temp - C ta" C tlU-theory 
Dun n - oun n - Dun" 

where Count:" is the number of the aggregated packets of n bytes. So far, an 

intermediate distribution 

Distkmp {Count''''P Count"mp Count"mp ... } 
I' 2' 3' 
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theoretically without any original packet has been obtained. Again, Min(n) of WarCraft 

III is 9, according to (4.16), the 3rd order packet size would be all equal to or greater than 

27 bytes, so all 18 bytes packets in Dist"m
p 

should have been generated as 2nd order 

packets. Thus, we refer to the bin of 2nd order equal to 18, and the packet size distribution 

for those 2nd packets 

Dist2nd-lheory {Count,2ni-lheory, Count;lld-lheOry, Count;nd-Iheory ", .} 

can be calculated using 

Count 2nd-lheo,y = p2nd .Count temp /p2nd 
n n 18 18 (4.20) 

a Dist"mp without original or 2nd order packet is therefore obtained using 

C t temp o un n 
= C t agg C t 2nd -theory o un n - ou n n 

We repeat the steps above until the 4th order has been reached. Now, we have gained four 

theoretical packet size distributions 

D is! Ill-theory {C ou nt,lst-theory , C oun tist-lheory , C ount~.H-lheory ," ,} 

Dist2nd-lheory {Count,2nd-throry , Count;nd-Iheory , Count32nd-theory, . .. } 

Dist'ro-Ih'~Y{Count'ro-lh,ary Count'ro-Ih,ary Count'ro-dt,ary ... } 
I , 2 ' 3 ' 

Dist4fh-theory {Count,41h-theory ,Count;th-theory, Count;th-theory",,} 

Using 

Count~ory = CoW1tb/-lkory +Count2nd - theOl'Y +Count3rrJ-lheory + Co 14th-theory 
n n n nun" (4.21) 

a theoretical aggregated distribution 

DisttheOI)'{Count,heory Count theory Count'heory ... } 
I' 2' 3' 
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can be obtained and it should be theoretically equal to the unknown aggregated 

distribution Dist
ayg 

• 

When an unknown aggregated distribution has been obtained, one could assume that it is 

aggregated from a certain known original distribution Dist«", and the same method as 

D . theory D' /heQl"y 
above applied to it to calculate 1St . 1St can be described as "how should the 

assumed distribution theoretically aggregate under the network condition which the 

captured aggregated distribution had suffered". Afterwards, a Chi-square test is carried 

out on Dist~'o,y against the captured aggregated distribution with the null hypothesis that 

D ' /heOl'y D· « .. 
"1St is aggregated from the assumed original distribution 1St ". Detections 

thus are achieved. 

An alternative method to identify the application is to reverse the previous approach. 

Instead of obtaining Dist~'o,y , we try to extract the original packet size distribution from 

an aggregated one Disto
yg 

• Assume that an unknown aggregated distribution Disto
gg 

is 

aggregated from a known original distribution Dist«" . We have assumed that the 

maximum aggregation order is 4, thus, according to (4.16), all packets whose sizes are 

greater than 3· Mtn:{n} should have been generated as 4th order packet~. A referring bin 

r
4 

can be then chosen from {3· Max{n} , 4· Max{n}} to calculate 

Dist4th-theory {CoUnJI41h-lheory ,Count:Ih-lheory ,Co unt:fh-theory",,} 

using: 

C t 4th-theory o un n = p:,h .Count,.agg /Pr:,h (4.22) 

We then remove it from Dist
agg 

using 

= Count ogg _ Counl4lh-theory 
n n 

(4.23) 
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Distkmp {Count kmp Count"mp Count'''''!' ... } . . th 
So far, t' 2' 3' should theoretically contam no 4 order 

packets, hence the 3,d order referring bin r3 can be chosen from {2· Max{n}, 3· Max{n}} to 

calculate 

Dis/3rd-theory {C ountI3rd-lheory, Count;,d-theory, Count;rd-theory, ... } 

using 

Co U n t 3rd -theory = p 3rd • C 0 U n t temp Ip 3rd 
n n I) I) (4.24) 

and remove it from Dist"m
p 

. 

Count temp = Count,em p _ CountJrd-theory 
n n n (4.25) 

We repeat these steps until the 2nd order theoretical distribution has been removed. 

D · 1emp D' list-theory 
1St therefore can be renamed as IS since it should theoretically consist of 

only 1 SI order packets, and a Chi-square test can be undertaken on Dist"t-<h",y ~d 

Dist~ig with a null hypothesis that" Dist
agg 

is aggregated from the assumed original 

distribution Dist~ig ". 

Here, we have a problem. When a captured aggregated packet size distribution mostly 

consists of high order packets, the extracted Distt"-'h'~y would be null or almost null and 

. D' (i+l)lh-theory 
therefore difficult to identify. The solution to this problem is that when 1St has 

D' t"mp been removed from IS , if there are no (or almost no) lower order packets in the 

distribution, Dist"m
p 

would theoretically contain only (or mostly) i th order packets, as 

such, Dist"m
p 

should comply with the i th order disiribution Dist"h of the assumed 

D' /emp D' Ith application. Hence, detection can be achieved by comparing 1St against 1St every 

D · t(i+l)lh-lheory D' t"mp 
time IS has just been removed from IS • 
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4.2.2 Selection of Referring Bins 

The referring bin for the i th order can be selected from 

{(i -I)· Min{n}, i· Min{n}} 

for the first method or from 

{Max{n} ,(i + I)· Max{n}} 

for the second method. However, since the generation of packet is a random event, the 

packet size distribution may vary from case to case, therefore not every bin in the range is 

suitable for use as a referring bin. 

As the probability of each bin is different from each other, it is possible that, if the 

probability of a certain bin is very low, a packet with a size of this bin will not appear in a 

sampling interval. Also, if a low probability bin is chosen, the calculated theoretical 

distribution may vary considerably with a tiny variation of the number of packets with 

sizes of that bin from one sampling interval to another. For instance, for WarCraft Ill, if 

10 bytes is chosen, in the first captured distribution, 2 packets of this sizes and 9770 9-

byte packets are observed, in the second one, 4 lO-byte and 9500 9-byte packets are 

generated. In both captured distributions, sample population are 10000. The variation of 

the number of thelO-byte packets «an be considered as "very tiny (from 2 to 4)" 

compared to that of the 9-byte (from 9770 to 9500), the number of the 9-byte packets in 

the two calculated theoretical distributions however will vary 2 times (4/ 2). On the other 

hand, if 9-byte is chosen, the number of the 10-byte packets in the calculated theoretical 

distribution will only vary 1.028 times (9770 / 9500). As such, basically, a bin with the 

relatively high probability in the usable range should be adopted. 

In some circumstances, all bins in the useable range are very small. In this case, several 

bins could be adopted and theoretical distribution calculated for every non-zero bin 

respectively, making the mean of values of all obtained theoretical distributions the value 

of the final theoretical distribution in order to improve the accuracy of the methods. 
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4.2.3 The Selection of Aggregation Method 

To understand the reason that two methods have been proposed, it is necessary to explain 

a simple example. 

0.1 ,--------------------------------------------------, 

~ 0.08 +-----------------/-------------1 
>.4;t! 
" .. a; E 0.06 +--------------
g.o 
~ § 0.04 +--------------
u. § 

8 0.02 +---------------: 
OL---------------~ 

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Bin fib. (1bylelbin) 

Fig.ure 4.2 A sample original distribution, which needs to use the second method 

In the plot given by Figure 4.2, the general shape of the original (or I st order) packet size 

distribution is quite different from that of WarCraft Ill, which shows an increasing trend. 

In this sample, the original distribution spreads from 25 to 90, according to (4.16), the 

usable range of referring bin for the 1st order is {O, 50}, however, all bins in this range 

represent too small values to utilise the first method. On the other hand, as figure 4.3 

shows, in the usable range of referring bins for the 4th order {270,360}, 3'd order 

{180,270}, 2nd order {90,180}, the values of bins are much more reasonable, hence, it is 

easy to chose referring bins for every order. As such, the second method is suitable for 

this original distribution profile. 

In practice, suitable methods may vary for any given packet size distribution. It is 

necessary to decide which one should be adopted in respect of the actual distribution 

profiles of known applications. 
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4.3 Verification 

To verify the feasibility of the proposed methods, a number of tests have been carried out, 

and in this section, these tests are described. 

The tests can be divided into two catalogues: real applications and emulated applications. 

During the experiments, we had found that there were very few real Nagle-based 

applications in practice. However, one would expect that there will be more Nagle-based 

applications in the future [Pax94]. So, it is still necessary to verify the potential feasibility 

of the methods mentioned above. A Nagle-based application emulator had been 

developed in order to investigate the performance of the methods to identify a variety of 

aggregated distributions. 

4.3.1 The Generation of Sample· Original Distribution for Virtual 

Applications 

Of course, we cannot test all possible distributions. In order to verify that the methods are 

generally feasible to all kinds of distributions, a hundred typical sample di~tributions were 

generated. Three parameters were used to describe a distribution: distribution trend which 

give the general shape; median position and spread, which quantitatively define the 

profile position and range of non-zero bins of the distribution as shown in Figure 4.3. The 

chosen values for these three parameters are summarized below in Table 4.2 
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ion 

Figure 4.3 Parameters to describe a distribution 

Trends Increasing, Decreasing, Concave, Protruding, Random 

Median Position 10, 20,50, 100, 200, 500 

Spread 10,20,50,100,200 

Table 4.2 Chosen parameters for vlr/ual appizcatlOn dlstrlbutlOns 

The distances and value differences between two neighbour bins were generated 

randomly. Using the above, one hundred sample application distributions have been 

obtained. 

4.3.2 Nagle-Based Application Emulator 

The purpose of this tool is to emulate the packet generations of virtual Nagle-based 

applications. It uses Client/Server architecture. Since the Nagle Algorithm is generally 

performed by default by all the TCP implementations, the Nagle Algorithm is In 

operation when the communication socket between the Client and the Server IS 

established as long as we do not set the no_delay option while programming the socket. 

Both ordered and non-ordered packet series can be generated based on the user's input. 

When the pattern option is set as non-ordered, the emulator will simply generate a series 

of packets using a random number generator, which complies with a user-input 
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distribution. The packet size distribution so generated may show variation from the input 

if a finite number of packets were generated, but, if the generated packet number is 

infinite, the distribution would be no different from the input. If the ordered option was 

set, the emulator would firstly seek a user-input table (Table 4.3 gives one line of an 

example table) for the probability of the next packet size according to the size of the last 

packet generated. If no ordered information for the last packet size is available or the 

random generator return value shows that no ordered packet should be generated, the 

emulator will simply generate a packet which complies with the use'r-input distribution, 

otherwise, an ordered packet will be sent with the probability from the given table. 

'" Next Packet 15 bytes 22 bytes 45 bytes 60 bytes Others oS 

8 ~ 

Size Q) 

'" 
N 

Q) r;; 
>. - probability 15% 10% 5% 40% 30% 
~ Q) 

..><: 
u 

0 ,g: M 

Table 4.3 A sample of ordered packet serles table 

4.3.3 Tests of Real Nagle-Based Applications 

Two real applications in this category are currently available----WarCraft III and SSH

Client. These tests used the same experimental system as that described in Chapter 3. For 

WarCraft IU, both traffic in the client to server and server· to client directions were 

captured while only client to server direction traffic for SSH-client is considered. The 

packet size distributions were based on 1000 packet samples. All original distributions of 

real applications and virtual applications had been stored in the database in advance so 

that a captured distribution of the test application can be calculated and compared against 

all the others. 
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Network Game WarCraft III 

Network Condition Emulated 

I Packet Delay (ms) 150 

The original packet size distribution profiles of WarCraft III in both directions are 

represented in Figure 4.4 and Figure 4.5. 
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Figure 4.4 Original packet size distribution of War Craft III (cli to srv) 
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Figure 4.5 Original packet size distribution of War Craft III (srv to cli) 
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Figure 4.6 Captured aggregated distribution/or WarCrafl III under the network condition 0/ 
150ms de/ay (srv to cli) 
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Figure 4. 7 Theoretical aggregated distribution calculated/rom the original distribution 0/ 
WarCrafl I/I (cli to srv) 
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Figure 4.8 Theoretical aggregated distribution calculated/rom the original distribution 0/ 
another virtual application (cli to srv) 
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Figure 4.9 Captured aggregated distribution for WarCraft III under the network condition of 

150ms delay (srv to cli) 
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Figure 4.10 Calculated theoretical aggregated distribution from the original distribution of 

WarCraft III (cli to srv) 
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Figure 4.11 Theoretical aggregated distribution calculatedfrom the original distribution of 

another virtual application (cli to srv) 
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For WarCraft III, the theoretical aggregation method was employed. In Figure 4.6, the 

plot gives the captured packet size distribution using Tcpdump. A peak appeared at 12 

bytes with a minor peak at 6 bytes, and some 18 byte packets were also observed. It 

appears that packets from the 1 ",2nd and 3rd order were all present in the sampled 

distribution. Figure 4.7 then gives the calculated theoretical distribution profile from the 

original packet size distribution of WarCraft III. Another plot (Figure 4.8) which shows 

the calculated theoretical distribution profile with a virtual application (Decreasing, 

Median Position 50, and Spread 50) is also given here. It can be visually seen that the 

theoretical profile calculated from the original distribution of WarCraft III was very 

similar with the sampled one whilst the other distribution from the virtual application is 

not. The reverse direction presented the same result as indicated by Figure 4.9 to 4.11. 

The following plot (Figure 4.12) gives the result of the Chi-square tests on the captured 

distributions of traffic from both directions against all the calculated theoretical 

distributions from the in-database distributions generated by the Nagle application 

emulator. 
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Figure 4.12 Su!"marization of Chi-square tests for identification of WarCraft III 

/L Client to Server 
b. Server to Client 
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The red curves represent the Critical Value with 95% confidence. It can be seen that in 

both directions, only at the In-Database Application Numbers for WarCraft III-Server-to

Client (I) or WarCraft III-Client-to-Server (2) have the Chi-square values lower than the 

critical value. 

Network Condition Emulated 

I Packet Delay (ms) 
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Figure 4.13 Captured aggregated distribution for WarCraft III under the network condition of 

300ms fixed delay (srv to cli) 
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Figure 4.14 Theoretical aggregated distribution calculated from the original distribution of 

WarCraft III (srv to cli) 
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Figure 4.15 Theoretical aggregated distribution calculated from the original distribution of 

another virtual application (srv to cli) 
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Figure 4.16 Captured ggregated distribution for WarCraft III under the network condition of 

J 50ms delay (srv to cli) 
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Figure 4.17 Theoretical aggregated distribution calculated from the original distribution of 

WarCraft III (srv to cli) 
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Figure 4.18 Theoretical aggregated distribution calculated from the original distribution of 

another virtual application (srv to cli) 
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Under this network condition, from Figure 4.13, very few 9 bytes packets had been 

observed, most packets were aggregated as 2nd or 3'd order packets. A similar 

circumstance was seen in the reversed direction (Figure 4.16) The method had 

successfully calculated the theoretical aggregated distribution from the original 

distribution of warCraft III (as indicated in Figure 4.14 and Figure 4.17) and 

mathematically differentiated from those calculated from other In-Database distributions 

as shown by the Chi-square analysis (Figure 4.19). Calculated theoretical aggregated 

distributions with another distribution are also given (Figure 4.15 and Figure 4.18) here 

for visually comparison. 

1000 

., 800 
::J 

~ 600 
i!! 
tU 

400 ::J 
0-

ff? :;:: 200 
u 

0 

0 10 20 30 40 50 60 70 80 90 
In·Database ~plication Number 

a 

1000 

" 800 
::J 

~ 600 
!! 
m 
::J 400 
/1 
:;:: 200 U 

0 
0 10 20 30 40 50 60 70 80 90 

In-Database Application Number 

b 

Figure 4.19 Summarization o/Chi-square tests/or identification o/WarCrajt 111 

a. Client to Server 
b. Server to Client 
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Network Condition Emulated 

Packet Loss Ratio (percentage) 5 

Packet Delay (ms) litter (50-300) 

This network condition is closer to a WAN environment in practice. The delay was 

jittered from 50ms to 300ms randomly for every packet that passed through LNE. 
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Figure 4.20 Captured aggregated distribution ofWarCrafl III under the network condition of 

300ms delay (srv to cli) 
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Figure 4.21 Theoretical aggregated distribution calculated from the original distribution of 

WarCrafl III (cli to srv) 
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Figure 4.22 Theoretical aggregated distribution calculated from the original distribution of 

another virtual application (cli to srv) 
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Figure 4.23 Captured aggregated distribution of War Craft III under the network condition of 

jittered delay (srv to cli) 
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Figure 4.24 Theoretical aggregated distribution calculated from the original distribution of 

WarCraft JJJ (cli to srv) 
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Figure 4.25 Theoretical aggregated distribution calculatedfrom the original distribution of 

another virtual application (cli to srv) 

Under this kind of reality-similar network condition, much more the high-order packets 

were observed. The numbers of I SI and 2nd order packets are very similar, with little 

decrease for the numbers of 3'd and 4th order packets (Figure 4.20 and Figure 4.23). The 

analysis method had again generated theoretical aggregated packet size distributions, 

which were similar to the captured ones with the original packet size distributions of 

WarCraft III in both directions (Figure 4.21 and Figure 4.24). Those generated using the 

incorrect original distribution did not (Figure 4.23 and Figure Figure 4.25). The results 

of Chi-square tests are also summarized below (Figure 4.26). Again, the Chi-square 

values were only accepted at the application numbers of War Craft III itself. 
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In-Database Application Number 

a 
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b 

Figure 4.26 Summarization of Chi-square tests for identification of WarCraft III under network 

condition ofjittered delay 

a. Client to Server 
b. Server to Client 

SSH-Client 

As indicated ID Chapter 3, SSH-client generates a very simple original packet size 

distribution under ideal network condition, only 44 bytes packets were observed in the 

traffic captured (Figure 4.27). As such, only this bin and multiple of this bin can be 

chosen as the referring bins for the purpose of calculation. In fact, either the first or the 

second method is suitable for SSH-client. The second one was adopted here to test for 

real applications. 
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Network Condition Emulated 
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Figure 4.27 Original packet size distribution ofSSH-Client III 
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Figure 4.28 Captured aggregated distribution for SSH-Client under the network condition of 300 

ms fixed delay 

40 
35 

" 30 ~ 

8 25 
g 20 
~ 15 
~ 10 u. 

5 
0 

0 20 40 60 80 100 120 140 160 180 

Bin No. (1bytelbin) 

Figure 4.29 Theoretical original distribution calculatedfrom the original distribution ofSSH

Client 
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Under this network condition, similar to warCraft III, very few packets were generated as 

original packets (Figure 4.28). The original packet size distribution of the captured 

distribution has been easily extracted (Figure 4.29) and identified using a Chi-square test 

with a Chi-square value 0, which means "completely match". The results of the Chi

square tests are summarized below (Figure 4.30). Again, only at the SSH-Client, the 

lowest Chi-square value was observed and was lower than 95% confidence critical value. 
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Figure 4.30 Summarization of Chi-square tests for identification of SSH-Client under network 

condition of300msfIXed delay 
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Figure 4.31 Captured aggregated distribution for SSH-Client under the network condition of 

jillered delay 
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Figure 4.32 Theoretical original distribution calculated from the original distribution of SSH

Client 

Under this network condition, packets are produced in all orders. Also one 5th order 

packet was observed as seen in Figure 4.31. The analysis extracted the theoretical 
r 

original packet size distribution. However, the fifth order packet has not been removed as 

we had chosen 4 as the maximum order number (Figure 4.32). The Chi-square value 

therefore was not "completely matched", but still acceptable with a critical value of 95%. 

In practice, more orders could be included in the SSH-c1ient detection as its packet size 

distribution is very simple, the increment of orders would not significantly increase 

quantity of computation. The plot below shows the Chi-square test results obtained 

(Figure 4.33). The acceptance occurred at the application number of SSH-Client. 
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Figure 4.33 Summarization of Chi-square tests for identification of SSH-Client under network 

condition ofjittered delay 
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4.3.4 Tests of Virtual Nagle-Based Applications 

The testing objects in the following tests were virtual Nagle-based applications. We have 

selected about a hundred typical distributions and entered them into the virtual Nagle

based application emulator described in the last section. For every distribution, either 

random or ordered packet series were generated and captured based on 1000 packet 

samples. Three of them have been .chosen for discussion· here. The others showed similar 

results. 

Virtual Application 1 

The three parameters for the packet size distribution of this application and the original 

distribution profile are shown in Figure 4.34. The packet order attribute of this 

application was set as non-ordered with a packet rate of 5/sec. The reason for choosing 

this configuration is because it has a large spread which is thought relatively difficult to 

detect, in addition, for this application, the second method is preferred and the feasibility 

of this was verified. The original packet size distribution of this virtual application 

represents a general increasing shape of with a non-zero bin range of 1-122 as shown in 

Figure 4.34. 

Trend Increasing 

Median Position 50 

Spread lOO 

Packet Series Non-Ordered 

Id in Database 69 
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Figure 4.34 Parameters and profile of original distribution of virtual application 1 
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Figure 4.35 Captured aggregated distribution for virtual application 1 under the network 

condition of 300 ms fixed delay 

Figure 4.35 shows the aggregated packet size distribution profile for virtual application I 

under the network condition of 300 ms fixed delay. The profile looks very complicated. 

In the range of 366-488 bytes between which packets could be from the 4th order, many 

packets had been observed. Quite a few low order (0-122) packets also appeared. 
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Figure 4.37 2nd order distribution of virtual application 1 

Figure 4.36 gives the profile of Dist"m
p 

after Dist',h-'ho"Y and Dist,,,Hh,,,y had been 

removed from the captured packet size distribution Distagg . Figure 4.37 shows the profile 

D · 2nd D' agg 
of 1St for virtual application 1. It was mathematically accepted that 1St was 

aggregated from the original packet size distribution of virtual application 1 because it 

had a Chi-square value of 122.222 and the 95% confidence critical value was 176.556. 

A virtual application (No.18 in database) original packet size distribution is give by 

Figure 4.38, which has the same median position (50 bytes) and spread (lOO) but 

different shape (concave). Figure 4.39 gives the theoretical original distribution extracted 

using the original distribution of virtual application 18. Even visually, one can 

immediately argue that the two profiles are from the different random distribution 

population and were afterwards rejected mathematically with a Chi-square value 794.978. 
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Figure 4.38 Original distribution of virtual application 18 
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Figure 4.39 Theoretical aggregated distribution extracted using the original distribution of 

virtual application 18 

The plot (Figure 4.40) below shows the profile of the theoretical aggregated distribution 

calculated with another In-Database distribution (concave, median position 200 bytes, and 

spread 200, No.25 in database) using the first method. It is definitely far away from the 

captured one (Figure 4.3S) and was also rejected with a Chi-square value of 653.256. 
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Figure 4.40 Theoretical aggregated distribution calculated from the original distribution for 

virtual application 25 

Network Condition Emulated 

I Packet Delay (ms) I Jitter (50-300) 

The packet size distribution profile of virtual application 1 under a jittered delay network 

condition seen in Figure 4.41 looks quite different from that under the 300ms fixed delay 

network condition, It is difficult to determine how many I sI order packets in the range I 

byte to 122 bytes were captured, as the 2nd order distribution ranges from 2 bytes to 244 

bytes. In addition, many high order packets were also seen in this aggregated distribution. 
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Figure 4.41 Captured aggregated distribution for virtual application 1 under the network 

condition ofjittered delay 
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Again, the Nagle-detection mechanism successfully extracted the original packet size 

distribution using the original distribution of virtual application 1. The extracted 

distribution is given in Figure 4.42. There were still some higher order packets that have 

not been removed, and slight value variations at some bins, nevertheless, the Chi-square 

test has accepted that this aggregated distribution was aggregated from the original packet 

size distribution of virtual application 1. Mathematical results against other In-Database 

applications are summarized in Figure 4.43. The red column represents the acceptance of 

Chi-square test which occurred at the number of this virtual application. 
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Figure 4.42 Theoretical original distribution extracted using the original distribution for virtual 

application 1 
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Figure 4.43 Summarizations of Chi-square tests of identifying Virtual Application 1 under 

network condition ofjittered delay 
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Virtual Application 2 

Trend Random 

Median Position lOO 

Spread 200 

Packet Series Ordered 

Id in Database 37 

Figure 4.44 shows the profile of original packet size distribution for virtual application 2. 

This distribution profile looks quite similar to a real application. Three major peaks at 34 

bytes, 41 byes, and 64 bytes can be seen. Some other size packets are also seen with 

relatively fewer numbers. The distributions for different order packets overlap each other 

as given in Figure 4.45. Ordered packet series have been generated by the Nagle-based 

Application Emulator with a packet rate of 7/sec which is also similar with those of some 

real-time applications [ArmS04]. 

II 
1.1 I. I I. 1 I I I 

50 100 150 200 250 300 350 450 
Bin No.{1 byleAIIn) 

Figure 4.44 Original packet size distribution o/virtual application 2 
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Figure 4.45 Distribution profiles for different orders of virtual application 2 
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Figure 4.46 Captured aggregated distribution for virtual application 2 under the network 

condition of300 msfIXed delay 

The second method was adopted for detection of this virtual application. As shown in 

Figure 4.46, under network condition of 300 ms fixed delay, 1st order packets are few, 

four major peaks occurred at 98 bytes, 128 bytes which are two primary peaks in the 2nd 

order distribution, 162 bytes, and 192 bytes which are two primary peaks in the 3rd order 

distribution. It can be deduced that this aggregated distribution consist~d mainly of 2nd 

and the 3 rd order packets. 
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Figure 4.48 2nd order distribution of virtual application 2 
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The detection was achieved after IS and IS had been removed from 

captured packet size distribution Dist
Qgg 

• At this time, the profile of Dist·
mp 

(Figure 4.47) 

looks quite similar to that of the 2nd order distribution of virtual application 2 (Figure 

4.48), except for a very few 4th order packets that had not been removed. It was accepted 

by the Chi-square test with a value of 137.234 against the 95% confidence critical value 

164.457. 

Network Condition Emulated . -

I Packet Delay (ms) I Jitter (50- 300) 

Under this network condition, a large peak at 64 bytes, which is the primary peak of the 

I st order distribution of virtual application 2, has been observed in the captured 
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distribution in Figure 4.49. The overall shape of this distribution hence was largely 

different from that under 300ms fixed delay. 

Once again, the original packet size distribution was extracted successfully using the 

sec'ond method ( 

Figure 4.50), showing a major peak at 64 bytes while two secondary peaks at 34 bytes 

and 41 bytes were observed, closed to the original distribution of virtual application 2. 

Some higher order packets seemed to remain in the extracted distribution. However, this 

inaccuracy has not affected the result of the detection. A Chi-square value of212.367 was 

obtained with a 95% critical value of275.817. 
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Figure 4.49 Captured aggregated distribution/or Virtual Application 2 under the network 

condition o/Jittered delay 
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Figure 4.50 Theoretical original distribution extracted using the original distribution a/virtual 

application 2 

Some other tests on ordered packet series were carried out as well, the results represented 

similar theoretical original packet size distributions or theoretical aggregated ones could 

be extracted or calculated using the methods described in this chapter. Clearly, the 
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packets generated by real applications would show variations from case to case, however, 

the nature of the statistical technique suggests that these could be tolerated in a certain 

range. 

Virtual Application 3 

Due to the limitation of the MTU and Nagle-based application's packet size distribution 

aggregation, in some cases, the packet sizes actually sent would not be decided by an 

application itself. For instance, when a payload buffered by TCP has exceeded the MTU 

of the Ethemet on which the application is operating, only the first 1460 bytes would be 

sent out in a packet and TCP would be hung up waiting for the acknowledgement of that 

outstanding packet, even worse, during this phase the application does not stop submitting 

messages to the transport layer. As such, more and more 1460 bytes packets would be 

generated. Hence, if an application's original packet size distribution contains many large 

packets, with a given packet rate, it could have a high probability of suffering from MTU 

size packets. In such case, the methods described would be helpless. Virtual application 3 

is a typical one with such characteristics, and the following experiments verified this 

limitation of the methods. 
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Figure 4.51 Original packet size distribution of virtual application 3 

The original packet size distribution profile is given by Figure 4.51. It can be seen that 

five huge peaks appear at 359 bytes, 375 bytes, 416 bytes, 469 bytes, and 489 bytes 

respectively. These packet sizes are extremely large for real-time applications and are 

seldom seen, however, they do have the possibility to occur. For this virtual application, 

only I SI and 2nd order distributions could be completely calculated in advance (Figure 

4.52) as those distributions higher than 2nd order would all exceed the MTU and all bins 

exceeding the MTU should be ignored. 
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Under this low-load network condition, MTU size packets have not been largely observed 

as shown in Figure 4.53. It seems that the aggregated distribution mostly consisted of I SI 

and 2nd order packets. Thus, detection was successful using the first method. The Chi: 

square value was 23.141, lower than 95% confidence critical value of 193.126. The 

theoretical aggregated distribution calculated with the original distribution of virtual 

application 3 is shown in Figure 4.54. 
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Figure 4.53 Captured aggregated distribution for virtual application 3 under the network 

condition of 100 ms fixed delay 
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virtual application 3 
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With the increment of delay, more MTU size packets were observed as expected. Some 

small size packets which may be the tails coming from the splitting of payload exceeding 

the MTU were also seen as shown in 

Figure 4.55. 
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Figure 4.55 Captured aggregated distribution for virtual application 3 under the network 

cohdition ofjittered delay 

Both the first and the second methods then were applied to try to achieve the detection. 

As shown in Figure 4.56, the so calculated theoretical aggregated distribution has little in 

common with the captured one, and was rejected with a Chi-square value of 568.743 

which was much greater than even the 50% confidence critical value. 
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Figure 4.56 Theoretical aggregated distribution calculated from the original distribution for 

virtual application 3 
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The results of the second method look better than the first method ( 

Figure 4.57). The extracted theoretical original distribution removed some high order 

packets, however, a huge peak at 1460 bytes remained. In addition, the method was 

unable to remove the "tails". In this case, a Chi-square value 272.445 was obtained and 

was also rejected with a critical value 172.870. 
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Figure 4.57 Theoretical original distribution extracted using the original distribution of virtual 

application 3 
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Figure 4.58 Captured aggregated distribution/or virtual application 3 under a network condition 

of 300 ms fixed delay 

When the network condition was worsened to 300 ms fixed delay, the profile of the 

aggregated distribution contained the MIU size packets as shown in Figure 4.58. In such 

case, detection becomes impossible. As shown in the tests above, in the circumstances ( 

that the original packet size distribution consists of large packets and the network is 

highly loaded, the aggregated distribution could potentially exceed the MIU and lead to 

many or even most payloads being sent as MIU packets. In these cases, it would be 

difficult to achieve detection using the methods described in this work. 

4.3.5 Tests on Other Virtual Applications 

All In-Database virtual applications with various original distributions were tested in the 

same way as above. Figure 4.59 shows a general Chi-square summary for all virtual 

applications that were tested under a 50ms to 300ms jittered delay network condition. 
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Figure 4.59 Chi·square test summary for aI/tested virtual applications 

In Figure 4.59(a), the blue curve represents the Chi·square values resulting from the 

computation with the theoretical distributions calculated with their own original packet 

size distributions. The red and green curves represent corresponding critical values with 
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confidence 95% and 90% respectively. The second lowest Chi-squared values resulting 

from the computation with the theoretical distributions calculated with a different 

application trace are also given as a purple curve. 

It is seen that, for all the applications shown, the lowest Chi-squared value always 

occurred when the detection mechanism was performed with the original packet size 

distribution from the same application. In all but a few cases, the Chi-squared value is 

below the critical value of 95% confidence value and, in all cases, below the critical value 

for 90% confidence value. In all cases, the next lowest Chi-squared value from a different 

application is seen to be significantly greater that the lowest ones. 

In Figure 4.59(b), the second lowest Chi-square values are given in the blue curve, 

accompanied with corresponding critical values with confidence 50% in pink. In most 

cases, the Chi-square value is much greater than the associated 50% confidence value for 

that second choice application for a few cases it is not. Nevertheless, as the second lowest 

value must be rejected in favour of the lowest one, those second lowest values could be 

excluded from consideration. The circumstance under 300ms fixed delay network 

condition gives a similar result. Hence, the aggregated distribution detection mechanism 

discussed in this chapter can be considered as successful and feasible. 

4.4 Summary 

The aggregated distribution detection mechanism is proposed and tested in this chapter. 

Two methods were developed in order to suit the needs of a variety of distribution 

profiles. Because of the shortage of the Nagle-based application in reality, around one 

hundred of virtual applications were generated and run across the network. The results 

show that, in spite of a few virtual applications with large size packets often send out 

packets at the MTU size under the loaded network conditions and thus are difficult to 

detect, most applications can be successfully detected regardless the packet size 

distribution profiles' shape, median and spread are varying. Hence, the aggregated 

distribution detection mechanism discussed in this chapter can be considered as 

successful and feasible. 
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CHAPTER 

Design and Architecture of A Prototype 

Application Detector 

5.1 Introduction 

5 

A TCP-based application detector had been designed employing the ideas described in the 

last two chapters. The aim of establishing this prototype detector is to verify the 

feasibilities of those ideas and discover those parameters that could potentially make the 

idea performs better. In this chapter, the design and architecture of this prototype detector 

is discussed. 
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5.2 Operation Overview 

This prototype TCP-based application detector implemented the ideas that packet size 

distribution could be a fingerprint of TCP-based applications and with which 

identification of TCP-based applications can be achieved. The prototype detector was 

written using object-oriented techniques and designed to be as efficient as possible. The 

development language adopted was object-oriented Java. As Java is both a programming 

language and a platform, with the installation of NM (Java Virtual Machine), the ability 

of operating on a variety of platforms could be obtained [SunOSJ. 

In addition, as Java supplies the ability of simultaneous multi-threading [Sun98J, this 

detector has been designed as a whole but could be broken down into a number of threads 

that work in parallel and relatively independently of each other. The advantage of this 

idea is that a thread could continue working on its own jobs without being interrupted by 

other jobs. Among these threads, one is in charge of dumping packets from the network 

and generating packet size distribution profiles, another performs the actual detection 

procedure, while the user interface ·is operated as the third thread. In fact, the whole 

detector is made up of five threads. Table 5.1 below gives all threads with their functions. 

The first stage of the application detection is the collection of the raw packets by 

tcpdump(or windump under windows environment [Win04]). This utility is called by 

thread loadPacketsO, which in turn receives the output of tcpdump and generates 

summaries in the form of packet size distribution profiles. The next thread in the flow, 

DetectO reads these profiles and analyses the streams and connection data and performs 

the identification via the statistical detection methods described in the previous chapter. 

The identified information is displayed by the user interface snapuiO. 
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Thread Name Description 

tcpdump Runs in promiscuous mode in order to collect all raw packets from 

the traffic stream seen by the host network interface. 

LoadPacketsO Reads the output stream, decodes the hex data of IP and TCP 

headers to load raw packets into the detector. Creates packet size 

distribution profiles with the received packets. 

DetectO Performs statistical detection on the TCP packet size distribution 

profiles, generates detection result information. 

Snapui Receives and displays the results of detection 

build This process is used to populate the statistical store with samples 

of distribution profiles of applications - it runs off line from the 

other detector processes. 

Table 5.1 Detector process summary 

Synchronizing problems arose during the programming, because for the Java language, 

the variable transfer from one method to another is based on address, not on variable 

[SchO 1]. This mechanism is similar to the circumstance of transfer a pointer to a function 

in the C language. Hence, it could happen that, if a variable is operated by more than one 

method in different threads, conflicts could potentially exist when multiple methods visit 

the variable at the same time. These problems were resolved by transferring cloned 

objects and using the keyword synchronized for every method which will visit a certain 

object. 

The database used was Mysql [Mys06], which is a medium size database software. Data 

in the database were organised using a relational database technique and connected to the 

detector via JDBC which is a standard database-connection package supplied by JSDK. 

Figure 5.1 gives the overall flow diagram of this prototype detector. 
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5.3 Thread LoadPacketsO 

The thread LoadPacketsO is responsible for collecting data from the network and 

generating packet size distribution profiles readied for detection. The mission of dumping 

raw packets is done by the tcpdump. At the start of this thread, tcpdump is called and run 

as a system process. The format of the tcpdump command is: 

tcpdump -nx -tt -s56 tcp 

The 'x' switch forces the output to be in hexadecimal format and 'n' suppresses 

translation of IP address to host name (in order to save compute cycles - the detector does 

not use host names). The 'tt' switch causes the timestamp on each packet to be in 

calendar time (seconds passed since 1st January 1970). The 's56' switch causes it to 

capture just the first 56 bytes of the IP frame (the link level header preceding the IP 

header is omitted in any case). This also helps to reduce the processing load on the host 

machine; no use is made of the remainder of the packet in any case [BhaO 1]. The last 

protocol switch 'tcp' forces all packets with protocol other than tcp to be filtered [Tcw06]. 

There is no host switch' specified so that tcpdump will run in promiscuous mode and 

capture all packets it has seen. 

The output of tcpdump is streamed in to the thread LoadPacketsO for further action. The 

function of loading the stream from the other applications' standard output is offered by 

JSDK, which could allow the detector to operate in an operating system without a pipe 

output. As such, the data received by LoadPacketsO is therefore at the individual packet 

level and it is processed at full line rate. 

The classes' relationship is shown in Figure 5.2. For each Tep packet received, an object 

of type Packet that contains a number of relevant fields will be created by decoding the 

hexadecimal output stream fed by tcpdump. Then a connection level object of type 

tcpConnection will be created which is identified by the hosts and ports information, if an 

object matching this information already exists, the proper tcpConnection object will be 

updated according to the new arriving packet. The packet size distribution profile is 

established as an object of type tcpDist which is a member of tcpConnection, the 

distribution is actually built into an integer array tcpDist[], besides that another float array 

tcpDistNor[] which is used to accommodate normalized distribution. is also a member of 
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the object tcpDist. After the update is accomplished with the size of new arriving packet, 

this object Packet will be no longer useful and is released by the auto-rubbish-cleaning 

mechanism offered by Java Runtime. 

LoadPacket 

TcpConnection 
TcpConnection 

tcoConnectionGrouof 1 --srclp 
LoadPacketO dstIp 
loadStreamO appName 
nrocessTcoPacketn srcPort 

dstPort 
packetCount 
tcpConnid 
firstPktArriveTime 
lastPktArriveTime 
elaspedTime 

f----+ Packet Packet PacketList[ I 
Packet PacketListReverse[ I 
TcpDist tcpDist arriveTime 

TcpDist TcpDist tcpDistReverse srcip 

tcpDist[ I 
dstIp 

TcpConnectionO protocol 
tcpDistNormalized[ I cioneO flag 
packetCount updateTcpConnectionO srcPort 

TcpDistO submitToDetectO dstPort 

cioneO packetSize 

normaliseOist() 
processHexValO 
cioneO 
setArriveTimeO 

I I 
setSrcipO 

Member _ setDstIpO 
setProtocolO 
setSrcPortO 
setDstPortO 
setPacketSizeO 
setFlagO 

Figure 5.2 Relationship diagram of classes in thread LoadPacketsO 
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The object tcpDist is updated with the new incoming packets during an amount of time 

set by the variable tcpDetectInterval that is parsed from an XML file [Xcwg05], which 

contains the configuration information for the detector. When a time of the 
I . 

tcpDetectInterval elapses from the arrival time of the first packet of this connection, the 

TcpConnection object will be submitted to thread DetectO in order to perform actual 

detection. Figure 5.3 gives the flow diagram of this thread. 

TcpDump 

Raw Packets 

DeccdePacketsO 

Packets 

yes 

Pushes packet into 
TcpConnection 

TcpConnection 

-::>--- no 

Creates Object 
TcpConnection 

~--- yes ---c::' Flag AggDist? ~--- no -----, 

L ______ -+lSubmits TcpConnection 1+ _______ ---1 
to DetectO 

Figure 5.3 Flow diagram for thread LoadPacketsO 
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For the Nagle-based applications, as more sampling packets would be needed so as to 

build a reliable aggregated packet size distribution. The object will not be destroyed until 

detection is completed. If the normal detect method fails in identifying the connection (a 

flag AggDist will be set), more packets captured belonging to this connection will be 

added until the variable aggDetectPacketNumber, which is also parsed from the 

configuration file, is reached in order to allow aggregation distribution detection methods 

to be functioned. 

On most networks, one can expect a large number of connections to be simultaneously 

active. This would soon overload the array bounds of this thread causing it to fail. Some 

connections, however, don't exist for long enough to reach the tcpDetectInterval. These 

connections will be pending and Java Runtime cannot release the memories automatically. 

As such, a sub-thread, which is responsible for cleaning these inactive connections, is 

included in the detector. It periodically checks the existing time of each connection, if this 

parameter is greater than the threshold inactiveConnectionExistingTime, which is set by 

the configuration file, then the application is deemed to have been terminated and the 

object will be destroyed. 

5.4 Thread DetectO 

This thread is at the heart of the application detector system. It performs the actual 

detection, and maintains and archives the detectResult objects, as connections and streams 

on the network are established and terminated. The output of this process feeds the user 

interfaces snapuiO. 

When this thread is started, a number of initial jobs are done at the same time. The stored 

packet size distributions of both the Non-Nagle and Nagle-based applications are loaded. 

Each stored distribution is created as an object of type either StoreTcpDist or 

StoredTcpAggDist and pushed into the static object StoredTcpDistGroup or 

StoredAggDistGroup respectively. Some detector settings are also initialized here, such as 

the detecting interval and the required packet number of the Nagle-based application 

detection. Figure 5.4 gives the classes' relationship. 
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Detect 
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Figure 5.4 Relationship diagram of classes in thread DeteetO 

When a IcpConneclion object arrives and readies for detection, the main method deleclO 

in this thread will be triggered, and the statistical detection technique will be applied on 

the incoming IcpConnection. First of all, some tcpConnection objects that contain very 

few packets will be ignored. This is aimed at reducing the chance of misdetection. Then, 

the thread applies the normal detection method on the IcpDist object. During this 

procedure, all the SloredTcpDisl objects contained within the SloredTcpDislGroup will be 

enumerated, and compared against the test distribution using the Chi-square test described 
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in the previous chapters. If a successful detection attempt is achieved, a DetectResult 

object will be created in order to feed the next stage thread snapuiO for the purpose of 

display. However, if the normal detection method returns a result "unknown", the 

tcpConnection object will set the flag "AggDist" and return to the thread LoadPacketsO 

for complementary packet capture. When the number of sampling packets for this 

tcpConnection object reaches the setting aggDetectPacketNumber, it will be submitted to the 

DetectO thread once again. The thread will iterate all StoredAggDist objects contained 

within the StoredAggDistGroup object and at this time, aggregated distribution detection 

methods will be used. Then a DetectResult object is created and submitted to the snapuiO. 

As the adopted aggregated detection methods and the referring bins vary from application 

to application, if information is loaded from the Mysql database associated with the 

packet size distribution profiles at the initialization stage. Two different methods dealing 

with the aggregated distribution are implemented as described in the Chapter 4. When the 

first method is adopted, the comparison using the Chi-square test is performed once after 

the theoretical aggregated distribution object TheoryAggDist is created. While the second 

method is in operation, a theoretical original distribution object TheoryOrigDist object 

will be calculated. In addition, as described in Chapter 4, detection attempts are also 

applied each time certain order packets are just removed. 

Each time a detection attempt is performed, the critical value of the threshold confidence 

(set in XML file) is calculated and compared with the Chi-square value to see if the result 

should be accepted with the given confidence. If more than one application returns 

acceptance, all the Chi-square values and the associated critical values will be recorded. 

In the case of that no acceptance is observed, the appName field in DetectResult object 

will be set as "Unknown". The flow diagram of this thread is given in Figure 5.5. 
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Figure 5.5 Flow diagram for thread DetectO 

5.5 Thread SanpUIO 

SloredAggDislGroup 

The thread snapuiO is in charge of providing final detection results infonnation to the 

user. As this detector is only designed as a prototype and mainly for the purpose of 

experiments, the user interface is quite simple and some useful infonnation from the 

perfonnance tests is also displayed. Detailed discussion of the structure of this thread will 

not be entered into here. 

Except the java.awt and java.swing, which are two standard packages in JSDK 

[SunM06j, no other operating system related VI API is employed. This is also aimed at 

trans-platfonn operation. A static object of the type connTableData is maintained by this 

thread in order to allow the thread DetectO to push the DetectResult objects into it. This 

thread simply iterates all DetectResult objects accommodated in connTableData and 
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parses them so as that detailed detection result information can be displayed. The update 

interval of the user interface is set to 5 seconds in the configuration file. The flow diagram 

of this thread is given in Figure 5.6. 

OetactO 

DetectResult 

Reads detect result 
info 

conn TableOata 

Outputs display 

Figure 5.6 Flow diagram[or thread SnapUiO 

Monitor 

The whole user interface could be divided into two major parts. The Detector Information 

Display shows the working status of the detector, such as current threshold confidence, 

capture interval, and number of stored distributions. This information must be supplied as 

it could potentially affect the performance of this detector (this will be discussed in 

Chapter 6). The Detect Result Display shows all detections achieved whatever they result 

in identification are "unknown". Each line in the basic data display represents one stream 

or connection. The information shown is summarised in Table 5.2. 
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Column Heading Description 

Source IP IP address of source machine generating traffic. 

Source Port Source port number in use for this connection. 

Dest IP IP address of destination machine. 

Dest Port Destination port number in use for this connection. 

Time Start Time of first packet for this connection was captured. 

Prot Protocol of this connection. 

Pkt Count Packets captured for current build. (Reset when 

DETECTINTEV AL has elapsed). 

Lo Chi-square Value The lowest Chi-square value obtained for this connection from 

the last detection attempt 

Lo Critical value The critical value with confidence I associated with the lowest 

with confidence 1 Chi-square value from the last detection attempt 

Lo Critical value The critical value with confidence 2 associated with the lowest 

with confidence 2 Chi-square value from the last detection attempt 

Lo Critical value The critical value with confidence 3 associated with the lowest 

with confidence 3 Chi-square value from the last detection attempt 

2"" Chi-square Value The second lowest Chi-square value obtained for this 

connection from the last detection attempt 

2nu Critical value The critical value with confidence I associated with the second 

with confidence 2 lowest Chi-square value from the last detection attempt 

2nu Critical value The critical value with confidence 2 associated with the second 

with confidence 2 lowest Chi-square value from the last detection attempt 

2"" Critical . value The critical value with confidence 3 associated with the second 

with confidence 3 lowest Chi-square value from the last detection attempt 

Prediction Application identity determined through port usage. 

Hits Number of times associated identity was found for each result 

of detection 

Detect Attempts Total number of times carried on this connection 

Acceptances Number of times the correct application had been accepted by 

Chi-square tests. 

Table 5.2 User Interface Informat/on 
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Actually, following the concept of object-oriented programming, the design of the 

software should follow the order from the top layer (i.e. User interfaces) to the bottom 

layer (the actual detection functions) [DatK97], hence, this thread was the first one to be 

written and acts as the entry of the whole detector. The other threads, which are working 

in parallel, are all initialized or triggered inside this thread. 

The design of this interface is exclusively for the purpose of testing the ideas described in 

previous chapters and to find out any areas where potential improvement could be 

achieved. The display format was so designed to allow users to see information relating to 

the experiments. 

5.6 Thread BuildStoredProfilesO 

This thread is separated from the prototype detector and works independently for the 

purpose of inputting stored packet size distribution profiles into the database. The 

architecture of this thread shares the same code with thread LoadPackelsO. In addition, a 

module, which is in charge of connecting the database, is added. We below discuss the 

process to establish a stored distribution profile using WarCraft III as an example. 

The Unix utility Icpdump or its windows version windump [Win04], is used here to do the 

actual packet capture from the network. The command options used are shown below. 

Tcpdurnp -ox -tt -s56 host port 6112 and tcp black 

The meaning of the switches is explained in Section 5.2. The host, port, and protocol 

parameters enable capture of all tcp packets (as only TCP packets are of interest in this 

work) destined to or from the specified port 6112 on the host named black, so that other 

traffic is filtered out. The hardware architecture is the same as Figure 3.1. 

When the thread is started, Icpdump will capture packets. The arrival time of the first 

packet is extracted and stored (from the timestamp inserted by Icpdump rather than the 

arrival time determined from the host computer real time clock). The distribution profiles 

are built in the capture array using all the subsequent packets until the first one whose 

time stamp is sloredProjiielnlervai seconds (preset in· the configuration file) after that of 
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the first packet was received. Then the array that accommodates the distribution profile is 

nonnalized and written into the table of TCP packet size distribution in the Mysq/ 

database and the user is prompted to enter the applications' names. 

For the Nagle-based applications, after the establishment of the distribution array, some 

pre-computation will be perfonned using equation 4.5 in order to obtained packet size 

distributions for different orders. Afterwards, the referring number for each order and the 

aggregation detection method adopted for this specific application are requested. The 

distribution profiles of the Nagle-based applications and above infonnation, which the 

user entered, will be written into the table of aggregated packet size distributions in the 

Mysq/ database. The flow diagram is given in Figure 5.7. 
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In the database, all pre-stored application distribution profiles will be normalized before 

they can be written into the table. For the Nagle-based pre-stored applications, the packet 

size distribution of each order is calculated in advance and stored in the database so as to 

reduce the computation quantity cost when the detection is carried out in real-time. When 

a connection is readied for detection, the normalized distribution will be multiplied with 
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the total packet number for the connection to obtain an integer distribution as required by 

the Chi-square test. 

The referring bin numbers of the Nagle-based application were chosen according to the 

principle described in Chapter 4. So far, this is only done manually as the selection of 

referring bins could vary from case to case. 

5.7 Summary 

This prototype TCP application detector is designed for testing the ideas described in the 

last two chapters. Most effort was directed at implementation of these ideas and· founding 

a testing platform in order to find out how well the ideas work and to determine some 

parameters, which could optimize the detection job. As such, the architecture of this 

prototype is very simple but may satisfy some requirements for a complete application 

detector. 
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CHAPTER 

6 
Application Detector Performance 

6.1 Introduction 

In the last chapter, a TCP-based application detector prototype implementing the 

suggestion described in Chapter 3 and Chapter 4 that TCP-based applications could be 

identified using packet size distributions is presented. Now, it is necessary to test the 

performance of this prototype detector. 

In this chapter, the performance of the TCP Application Detector is measured and 

discussed. In addition, some parameters for the detector are found experimentally in order 

to achieve the best balance between detection reliability and timeliness of the identity 

information. 
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6.2 The Settings of the Detector 

The packet size distribution is a statistical measurement, and could show varymg 

stabilization over different counts of samples. As such, it is necessary to determine how 

many packet samples it should take to build stable enough packet size distribution profiles 

of applications for the purpose of detection. 

The Chi-square test detection approach is such a good detection technique that it has the 

ability to accept applications with a certain percentage confidence, which is essential for 

this work, rather than just give out the one that the operating application is most likely to 

be. Hence, another aim of these tests is to try to find the appropriate confidence threshold 

for the Chi-square detection, which means the degree of assurance that the result of the 

Chi-square detection is correct. Although the choice of confidence level is somewhat 

arbitrary, in practice 90%, 95%, and 99% intervals are often used [FerT89]. We chose 

90% and 95% to be the candidate thresholds that may be appropriate for the detector. 

6.2.1 Non-Nagle Applications 

For those applications that do not use the Nagle Algorithm, the packet rates would not be 

affected by the network condition. The packets generated during a certain period would 

be fixed, the number of sampled packets depends upon the capture interval, hence, the 

capture interval was utilized as a parameter that can determine the reliability of packet 

size distributions for the non-Nagle applications and potentially affect the performance of 

the detector. 

In the following tests, different capture intervals were used to build sample profiles for 

detection. All applications were monitored for fifteen minutes with the detector. When the 

appropriate capture intervals had been reached, the captured sample profiles were 

submitted to the DetectO thread, Chi-square values were then given to measure the 

reliabilities of the distribution profiles captured. For the purpose of comparison, only the 

results obtained up to 20th attempts are plotted. 
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Network Game Nadar 

Three different capture intervals were tested for this application---15 seconds, 30 seconds, 

and 45 seconds. For this game, the packet size distribution profiles of outbound and 

inbound streams are very similar. Therefore, Only one direction is given here. 
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Figure 6_1 Chi-square results of Nadar 's distribution profiles over 15 seconds sampling periods 

In Figure 6.1, the test results for a capture interval of IS seconds are given. The first 

detection attempt was rejected by both critical values of 95% and 90% confidence. This 

rejection could have been caused by some specific packets generated for exchanging 

control messages during the connection establishment period. Afterwards, Chi-square 

tests returned a series of Chi-square values with a mean of around 58. In a few cases, Chi

square values were greater than the associated 95% but lower than 90% confidence 

critical values. One attempt (attempt 17) rejected by both 95% and 90% confidence was 

observed. However, the detector had identified the application in most attempts. 
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Figure 6.2 Chi-square results of the Nadar distribution profiles over 30 seconds sampling periods 
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Network Game Nadar 

Three different capture intervals were tested for this application---15 seconds, 30 seconds, 

and 45 seconds. For this game, the packet size distribution profiles of outbound and 

inbound streams are very similar. Therefore, Only one direction is given here. 
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Figure 6.1 Chi-square results oj Nadar 's distribution profiles over 15 seconds sampling periods 

In Figure 6.1, the test results for a capture interval of 15 seconds are given. The first 

detection attempt was rejected by both critical values of 95% and 90% confidence. This 

rejection could have been caused by some specific packets generated for exchanging 

control messages during the connection establishment period. Afterwards, Chi-square 

tests returned a series of Chi-square values with a mean of around 58. In a few cases, Chi

square values were greater than the associated 95% but lower than 90% confidence 

critical values. One attempt (attempt 17) rejected by both 95% and 90% confidence was 

observed. However, the detector had identified the application in most attempts. 
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Figure 6.2 shows the results for a capture interval of 30seconds. The first detection 

attempt still shows a high Chi-squared value; however, this could be accepted. The 

remaining detection attempts give a series of Chi-square values with a mean of about 40. 

They could all be accepted by the Chi-square tests as these values were much lower than 

critical values with 95% confidence. The profiles' reliabiIities thus were improved 

considerably with this capture interval. 
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Figure 6.3 Chi-square results ofNadar 's distribution profiles over 45 seconds sampling periods 

As the capture interval was increased to 45 seconds, the Chi-square values returned 

provide a smoother profile. This indicates that the packet size distributions built over this 

capture interval were more stable than the previous ones. However, the mean of all the 

Chi-square val ues did not drop significantly (Figure 6.3). 

Network Game Diablo n 

The packet size distribution profiles of Diablo II [BliOll are more complicated than those 

ofNadar. One would expect a longer capture interval to achieve decent profile reliability. 

For this application, the chosen capture test intervals are also 15 seconds, 30 seconds and 

45 seconds. The results are shown in Figure 6.4 blow. 
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Figure 6_4 Chi-square results of Diab/os' distribution profiles over 15 seconds sampling periods 

In the resulting plot obtained over 15 second capture intervals, the profile reliability was 

not achieved as most detection attempts returned Chi-square values greater than the 

critical values for both 95% and 90% confidence whicb indicated unsuccessful detections. 

There were insufficient packets captured to allow a consistent distribution to be built. 

Ln Figure 6.S, as the capture interval was increased to 30 seconds, the results were much 

better. Detection attempts were in general successful, but in four cases, the Chi-square 

values were still greater than 90% confidence critical values. 
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Figure 6.5 Chi-square results of Diablo 's distribution profiles over 30 seconds sampling periods 

124 



Chapter 6 Applicalion Detector Performance 
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Figure 6.6 Chi-square resulls of Diablo 's distribution profiles over 45 seconds sampling periods 

When the capture interval was set to 45 seconds, considerable improvement of the 

distribution profiles' reliabilities was observed. From Figure 6.6, most Chi-square values 

were much lower than the 95% confidence critical values. Only one detection attempt was 

not (attempt 14), however, this was still very close to the 90% confidence critical value. 

The three plots below (Figure 6.7, 6.8, 6.9) show the results of acceptance (by Chi-square 

tests) ratios for all available non-Nagle based applications over different capture intervals. 
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Figure 6. 7 Acceptance ratios for all applications over J 5 second sampling periods 
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Figure 6.8 Acceptance ratios for all applications over 30 second sampling periods 
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Figure 6. 9 Acceptance ratios for all applications over 45 second sampling periods 

In Figure 6.7, the acceptance ratio observed is not acceptable as the results for several 

applications are low. For Diablo, which has a complex packet size distribution profile, in 

the client to server direction, almost no successful detections were achieved with 95% 

confidence. Even with 90% confidence, the acceptance ratio was still quite low. It seems 

that over a 15 seconds interval, a consistent distribution cannot be obtained. In the second 

and third plots, the results are much better, most applications had achieved 100% 

acceptance ratios, while for Diablo, acceptable results were observed. 

As the capture interval over which the profiles were built increased, the profiles' 

reliabil ity did improve but the drawback was the fact that one had to wait longer between 

each detection attempt. In some cases, a few failures in detection could be considered to 

not seriously affect the performance of the detector in favour of a shorter capture interval. 

Hence, a capture interval of 45 seconds with a threshold confidence 95% is considered to 

be suitable for these non-Nagle applications. 
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6.2.2 NagJe-Based Applications 

In contrast to the non-Nagle applications, as a packet will not be sent out until the 

acknowledgement of the last outstanding packet arrives, the packet rates of the Nagle

based applications could vary according to the worsening of network conditions. Thus, it 

may be difficult to find a fixed capture interval for a Nagle-based application. Instead, the 

number of sampled packets is considered to be a parameter which could potentially affect 

the performance ofthe detector. 

In the following tests, which were similar to those of the non-Nagle applications, the 

tested applications were keep running and the detectO process was applied every time a 

given number packets had been captured until 20 detection attempts had been achieved. 

Two loaded network conditions, whicJ1 are jitter of 50 to 300 ms delay and a 300 ms fixed 

delay, were introduced by the LNE, so that the performance of the detector could be 

evaluated. 

Real Network Application WarCraft III 

Three different numbers of sample packets were tested, 400, 600, and 800. During the 

tests, the application was kept running, and once a test number of sample packets had 

been captured, detection attempts were carried out over the samples obtained. 

Under 50-300 ms Jitter 

Figure 6.10 shows the Chi-square test results over samples of 400 - packets. 
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Figure 6.10 Chi-square results for WarCraft Ill's distribution profiles over 400 packets 

In both directions (only the client to server direction plot provided), about one-third of the 

Chi-square values calculated were lower than the 90% confidence critical values, the 

others were higher. In the client to server direction, 8 detection attempts had returned Chi

square values greater even than the 90% confidence critical values, while that number is 

10 for the server to client stream. 
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Figure 6.11 Chi-square results for WarCraft Ill's distribution profiles over 600 packets 
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Figure 6.12 Chi-square results for WarCraft Ill's distribution profiles over 800 packets 

Figure 6.11 and Figure 6.12 show the Chi-square test results over samples of 600 and 

800 packets. Drops in the mean of the Chi-square values were observed for these two 

sampling numbers compared with the results over 400 packets. In addition, all Chi-square 

values were much lower than both the 95% and the 90% confidence critical values. In the 

case where the sampling packet number increased from 600 to 800, there seems no visible 

performance improvement. 

Under 300 ms Fixed Delay 

Under 300 ms fixed delay, the results shown in Figures 6.13, 6.14, 6.15 were obtained. 

The Chi-square values over 400 packets were erratic, many detection attempts returned 

values greater than the 95% confidence critical values, and even a few were rejected with 

the 90% confidence critical values. As the sampling packet number was increased to 600, 

the mean of Chi-square values showed a drop from 30 to 25. When the sampling packet 

number was increased to 800, no significant improvement was observed. On one occasion, 

the detector returned a very high Chi-square value, this happened as during this capture 

interval, the PC on which game client was running experienced a 100% usage ratio, and 

might have caused a temporary stop in sending/receiving packets. As such, this is 

considered to be a random inaccuracy and should not affect the results as a whole. 

129 



Chapter 6 Application Detector PerfOrmance 

__ chi-square value -+-90% confidence critical value ~95% confidence critical value 

~ r------------------------------------------------------' 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Detection Attempt 

Figure 6_13 Chi-square results ofWarCrafi UI's distribution profiles over 400 packets 
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Figure 6.14 Chi-square results of WarCrafi W's distribution profiles over 600 packets 
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Figure 6.15 Chi-square results of WarCrafi Ill's distribution profiles over 800 packets 
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6.2.3 Virtual Nagle-Based Applications 

As there are very few Nagle-based applications to investigate, the analysis continued 

using a simulation. All virtual applications had been tested with various sampled packet 

numbers; 400,600, and 800. 

Figure 6.16 shows the mean of the Chi-square values calculated over different sampling 

packet numbers for all the virtual Nagle-based applications. Most applications show a 

considerable drop in value as the sample number increases from 400 to 600, and very 

little variation from 600 to 800. This is similar to the situation observed in WarCraft ill. 

However, for a few applications, the mean kept dropping from 600 packets to 800 packets. 

Interestingly, these instances all occurred for those applications, which had large bin 

spreads in their packet size distributions. This is explainable as with the increase of the 

distribution freedom, more sample packets would be needed to establish reliable and 

stable distributions. In a few instances, the means of the Chi-square values showed no 

significant variation as the sampling number increased. These applications often had a 

small spread of packet size distributions, and contrary to those with large spreads, 400 

packets were sufficient to establish reliable packet size distributions. 
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Figure 6.16 Chi-square results/or Virtual Nagle-based applications/or different numbers 0/ 
sample packets 

Figures 6.17 and 6.18 plot the acceptance ratios with 95% and 90% confidence for 600 

sample packets under a jittered delay network and a 300 rns fixed delay network. Except 

for those applications with very small spreads, most applications have poor acceptance 
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rations for 95% confidence. For some applications, acceptance ratios below 70% were 

observed with 95% confidence. When it comes to 90% confidence, many applications 

show improved the acceptance ratios than 95%, the lowest acceptance ratio was greater 

than 80% and 100% acceptance ratios for 2/3 applications were obtained. 
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Figure 6.17 Acceptance ratios for all virtual Nagle-based applications under ajittered delay 

network condition over 600 packets 
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Figure 6.18 Acceptance ratios for all virtual Nagle-based applications under a 300ms fixed delay 

network condition over 600 packets 

When the sampling packet number was set to 800, considerable performance 

improvements were observed for many applications with large spreads. Under both 

jittered delay and 300ms fIXed delay, most of them achieved acceptance ratios that were 

greater than the 90% using the 90% confidence critical values, with three showing 83%, 

85% and 88% in Figure 6.19 and other two showing 84% and 88% in Figure 6.20 

respectively. For the 95% confidence, the results obtained still did not reach an acceptable 

level, one may expect improvement on acceptance ratios with the increase of the 
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sampling packet number. However, it will take too long a time in order to capture packets 

for a practical detector if sampling packet number is increased further. The settings of the 

detector were thus set as sampling packet number 800 and tbreshold confidence 90%. 
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Figure 6.19 Acceptance ratios for all virtual Nagle-based applications under ajittered delay 

network condition over 800 packets 
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Figure 6.20 Acceptance ratios for all virtual Nagle-based applications under a 300 ms fixed 

delay network condition over 800 packets 

6.3 Application Detector Performance 

After the parameters had been decided, it was necessary to test the performance of the 

prototype application detector. The following tests were carried out on all stored 

applications. The testing system architecture was the same as that OD which the previous 

tests had been carried out. The pes on which tested applications were running were 

connected using lOMB Ethemet cards. 
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Figure 6.21 Success ratios for all non-Nagle applications under ideal network condition 

Under Loaded Network Conditions 

A suggestion was made and proven in Chapter 4 of this Thesis that the presence of 

network load would not affect the packet size distributions of the Non-Nagle applications; 

hence, the performance of the detector should not be impacted by loaded network 

conditions. This assumption was tested here with the prototype detector. The test network 

was artificially loaded at different levels and the performance of the detector measured 

with various Non-Nagle applications. 

Figure 6.22 plots the success ratios for all the non-Nagle applications under different 

network conditions, three levels of load were emulated with the LNE which were low

load (lOOms fixed delay, 3% loss), medium-load (jittered 50-300ms delay, 3%loss ), and 

high-load (300ms fixed delay, 5% loss). Similar results to those obtained from tests under 

ideal network conditions were observed. The detector therefore performed well over a 

loaded network. Even at the highest level of load, the success ratios were acceptable as 

most applications retained 100% success except for Diablo II which achieved a 92% 

success ratio. 

135 



Chapter 6 Application Detector Performance 

----6- low-loaded ~ medium-loaded __ high-loaded 

0 

"" 0.9 IV 
Cl: 

:a 0.6 
U) 

0.7 U) 

~ 0.6 ., 
C/) 

0.5 
2 3 4 5 6 7 6 9 

Application Number 

Figure 6.22 Success ratios/or all Non-Nagle applications under loaded network condition 

6.3.2 Nagle-Based Applications 

The Nagle-based applications were then tested on the same experimental system as the 

Non-Nagle applications. The sampling packet number was assigned to 800 as described 

previously and detection attempts were carried out each time 800 sampling packets had 

been captured. The build time of a test profile varied according to the network conditions, 

basically, for an application which has an original packet rate of 7/sec, under a medium. 

level load network, the build time would vary from 80 seconds to 200 seconds 

approximately. 

10 the following tests, each Nagle-based application in the database was run 10 times for a 

running time of at least 15 minutes and would stop once 20 detection attempts had been 

made. As such, during the operation of each application, the number of detection attempts 

was more than 200 in total over which success ratios were calculated. 

Under Ideal Network Conditions 

Under the no-load network, the detector functioned perfectly as shown in Figure 6.23. 

All detection attempts had returned the correct application name, no misdetection 

occurred. 
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Figure 6.23 Success ratios for real Nagle-based applications under ideal network condition 

Under Loaded Network Conditions 

Three levels of load were adopted for the two real Nagle-based applications. Under these 

loaded network conditions, the aggregated packet size distribution mechanism was 

operational. The general results are summarized in Figure 6.24 
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Figure 6.24 Success ratios for real Nagle-based applications under loaded network condition 

Under low-load and medium-load network, the success ratios of both applications were 

good, for SSH-Client, 100% success was even achieved. Variation was observed under 

the high-load network condition. The success ratio for warCraft ill was improved, with a 

small drop for SSH-Client when the network condition was worse. These results could be 

caused by the fact that when 300 ms fixed delays were introduced by the LNE, very few 

first order packets were captured. This could lead to a decrease in the degree of freedom 

of the aggregated packet size distribution profile for warCraft ill and therefore improved 

the re liabilities of the Chi-square tests. However, for SSH-Client, under the high-load 

network condition, some more of the fifth order packets were captured. As the detector 
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was set to deal with the 4th order packets at most, those 5th order packets could have 

caused some misdetection. 

6.3.3 Virtual Nagle-Based Applications 

The tests on the virtual Nagle-based applications were carried out only under loaded 

network conditions. Figure 6.25 shows the success ratio results of these applications. 
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Figure 6.25 Success ratios for all virtual Nagle-based applications under loaded network 

condition 

For the reason that these virtual Non-Nagle applications had much more complicated 

packet size distributions, the success ratios were generally lower than those of the real 

Nagle-based applications. Under the low-load and medium-load network conditions, 

some virtual applications with small spreads achieved 100% success, whereas, some large 

spread applications gained lower success ratios. The success ratios showed positive 

correlation to the spreads of the applications. The larger spread the application has the 

lower success ratio the detector achieved. When the application were operated under 

high-load network conditions, some applications that use the second aggregated detection 

method showed slight drops in success ratios, these drops could have been caused by the 

situations mentioned in Chapter 4. This suggested that when the aggregated packet size 

distributions were mostly consist of higher order packets, the detection attempts will be 

applied once a certain order packets are just removed from the sample distributions, 

however, at that moment, some lower packets are still remained in the sample 

distributions, as such, the detection attempts would be affected by the presence of these 
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lower order packets. Nevertheless, the effects were not serious and the success ratios kept 

in acceptable levels. 

Actually, it possible that a sample aggregated packet size distribution could be considered 

to be aggregated from more than one original stored distribution. A simple aggregated 

distribution is given in Figure 6.26. Another two simple original distributions are also 

shown in Figure 6.27. 
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Figure 6.26 A simple aggregated distribution profile 
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Figure 6.27 Two simple original distribution profiles 
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The aggregated distribution profile given out in Figure 6.26 consisted of 200 packets of 3 

bytes, 200 packets of 6 bytes, 200 packets of 9 bytes and 200 packets of 12 bytes. This 
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profile could be considered to be aggregated from the original distribution shown in 

Figure 6.27 (a) with 200 1st order packets, 200 2nd order packets, 200 3'd order packets 

and 200 4th order packets. On the other hand, it could also be considered to be aggregated 

from the original distribution shown in Figure 6.27 (b) with 400 1st order packets and 400 

2nd packets. In reality, this instance could also potentially occur. The detector thus would 

sometimes return more than one application that was accepted by the Chi-square test for 

the Nagle-based applications. An immediate example of this situation is virtual 

application no.61, which has a success ratio (as shown in Figure 6.25) that is obviously 

lower than the acceptance ratio obtained previously. In these cases, the detector may have 

no ability to achieve a unique identification. However, at least the possible applications 

had been reduced into a significantly smaller range. 

In Figure 6.28, the detection success ratios of the virtual Nagle-based applications when 

success was redefined as "the correct application had been accepted by Chi-square test 

regardless of weather or not other incorrect applications were also accepted" are plotted. 
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Figure 6.28 Success ratios for all virtual Nagle-based applications under loaded network 

condition 

From the plot, it can be seen that for the virtual applications, the success ratios were 

improved considerably. The lowest success ratio observed was 85%, which is quite 

reasonable. Since the real Nagle-based applications would probably have much less 

compl icated spreads than the virtual applications, one could expect higher success ratios 

when a real detector is used. 
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6.3.4 Virtual Applications with Large Packet Sizes 

In Chapter 4, the suggestion that the aggregated detection mechanism shows poor ability 

to identiry those applications with large size packets was discussed. Here, five virtual 

applications falling into this category were tested. These applications' packet size 

distributions have the same median position which is 500 bytes but different spreads and 

trends. 

Figure 6.29 plots the success ratios for these virtual applications under low-load network 

conditions. The delay was set to ISO ms. It can be seen that the results exhibited are 

acceptable as the lowest one represents a 83% success ratio. This result suggests that 

under this low-load network condition, most aggregated packet sizes did not reach the 

MTU size, and the profiles captured showed in general no difference from those 

applications with smaller packet sizes. 
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Figure 6.29 Success ratios for Nagle-based applications with large packets under low-load 

network condition 

6.4 Simultaneously Running Application 

Clearly, a practical detector will need to identiry applications running simultaneously on 

multiple clients across the network [BhaO I]. Some tests on simultaneously running 

applications were therefore carried out. 

In the first round test, three applications were operated on a single PC. In the second 

round, three applications were operated on three separate PCs, which were connected to a 
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hub, and the detector was attached to the hub in order to analyse the traffic. The aim of 

these tests was to verify the ability to identifY applications in the presence of other traffic. 

The three applications were Crim-Sky, Need for Speed III and WarCraft Ill. Network 

load of jittered 50-300 ms delay in conjunction with 5% loss was introduced by the LNE. 

The three applications were operated only once for twenty minutes during which several 

detection attempts were made. Table 6.1 below shows the success ratios for the three 

applications of this test. 

Test round Crim-Sky Need for Speed III WarCraft III 

1 100% 100% 99% 

2 100% 100% 100% 

Table 6.1 Success ratIOs for simultaneously runmng applicatIOns 

According to the results obtained, the detector performance showed no difference from 

that when the applications were running individually. This test did demonstrate that the 

detector has the ability to distinguish the identities of the streams of multiple applications, 

all present at the same time. 

6.5 Summary 

Some parameters of the detector prototype are found in this chapter. For the non-Nagle 

applications, capture interval is selected as a parameter as the sending of packets is not 

affected by the TCP implementation and the number of packets in one capture interval is 

fixed. However, for the Nagle-based applications, this number will be potentially 

changed. The number of sample packets is therefore chosen as the corresponding 

parameter. 

An interval of thirty seconds is enough for most non-Nagle applications except DiabloIl 

due to its complex distribution profile. A better performance was observed when the 

interval increased from 30 seconds to 45 seconds, and no significant change as the 

internal increased further to 60 seconds. Most Nagle-based applications exhibited a 

similar characteristic. Performance was improved as the sampling number was set from 
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400 to 600 but little variation from 600 to 800. However, for a few applications with large 

spreads of distribution profile, performance can be even improved further when sampling 

number increased from 600 to 800. Nevertheless, as discussed previously, it will take too 

long a time in order to capture packets for a practical detector if sampling packet number 

is increased further. In order to achieve the best balance between detection reliability and 

timeliness of the identity information, 45 seconds and 800 were selected to be the 

parameters so that stable captured distributions can be established. 

The Chi-square tests were applied on the captured distributions. Most applications can be 

successfully detected using 95% as the threshold confidence. For several virtual 

applications with very complicated distribution profiles, 90% is considered to be more 

suitable. The settings of the detector are summarized in Table 6.2 

Capture Interval/Sampling 
Threshold Confidence 

Number 

Non-Nagle Applications 45 seconds 95% 

Nagle-based Applications 800 packets 90% 

Table 6.2 Parameters selectedfor the prototype detector 

A lot of tests had been carried out in order to see how well the mechanism was working. 

All real applications including eight Non-Nagle applications and two Nagle-based 

applications can be identified without any difficulty. The success ratios are all more than 

90%. For those virtual applications with complicated profiles, drops on the success ratios 

were seen comparing to those virtual applications with simple profiles. Nevertheless, 

most of them achieved success ratios more than 85%. The lowest one 77% was occurred 

when it tried to detect virtual application 61, which can be still considered as acceptable. 

The results were 'summarized in Table 6.3. The numbers in the table show the count of 

applications achieved the corresponding successful ratios. 
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100% 99%-90% 90%-80% <80% 

Non-Nagle 
8 1 0 0 

Applications 

Nagle-based 
61 17 12 2 

Applications 
Table 6.3 Success ratIOs for slr/ctly defined "success" 

As the "success" is defined strictly, improvement can be seen if the definition is changed 

to "the correct application had been accepted by Chi-square test regardless of weather or 

not other incorrect applications were also accepted". In this circumstance, many 

applications achieved better successful ratios (see Table 6.4). The lowest success ratio 

observed was 85%, which is quite reasonable. 

100% 99%-90% 90%-80% <80% 

Non-Nagle 
8 I 0 0 Applications 

Nagle-based 
59 31 2 0 Applications 

Table 6.4 Success ratIOs for less strictly defined "success" 

Some tests on simultaneously runmng applications were afterwards carried out. The 

results suggested that the prototype detector did have the ability to identifY network 

applications with other traffic in present. 
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CHAPTER 

7 
Conclusions and Recommendations for 

Future Work 

7.1 Introduction 
In this chapter, the conclusions on the study undertaken in this Thesis are drawn. The 

results based upon the experiences are summarized. Finally, the recommendations of 

future work arising from this work are discussed. 

7.2 Conclusions 

To know what applications are currently in operation across modern packet based 

communication networks such as the Internet is always attractive to network 

administrators, network service providers and security systems. The availability of this 

information can contribute to preventing improper network use. In addition, using this 

information, the network may be able to establish enhanced environments for the 

applications which are in use. In such cases, an efficient mechanism for identification of 

the application generating a traffic stream is required. 

Traditionally, application detection has been based on well-known port numbers. All 

applications using TCPIIP as their transport protocol must use a port number with which 

to identify the packets generated. This simple identification mechanism has however 

become much less accurate for identifying applications. A recently developed technique, 

deep packet inspection, is a process which involves searching for uniquely identifying 

information held within the data portion of the packets. Such mechanisms are accurate 

enough for application detection, yet have shortcomings as well. Although this technique 
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functions well for standards-based applications, other applications for which the relevant 

technical information is not forthcoming would not be detectable. 

An approach for detecting networked applications using an alternative application 

"signature", the Packet Size Distribution, has been proposed and discussed in this Thesis 

in order to identify those TCP-based real-time applications that are not standards-based. 

For TCP-based real-time applications utilising bulk mode or interactive mode without the 

Nagle Algorithm, the packet size distribution profiles show robust consistency under 

different running conditions or under loaded network co~ditions. However, some 

traditional TCP-based applications such as FTP, SMTP, and HTTP could not be identified 

using this fingerprint due to the fact that the packet size distributions of these applications 

highly depend on their users' input and had poor consistencies. 

On the other hand, those applications using the Nagle Algorithm present variations in the 

packet size distribution profiles with the worsening of the supporting network condition. 

The Nagle Algorithm says that when a TCP connection has outstanding data that has not 

been acknowledged, small packets cannot be sent until the outstanding data is 

acknowledged. The size of packet generated by these applications would therefore be 

aggregated and the distribution profiles would look quite different from those under ideal 

network conditions. However, the response to such aggregation phenomenon is seen to 

follow a predictable pattern in many cases, and a solution to their detection has been 

arisen and discussed in Chapter 4. This was experimentally proved and assessed for its 

feasibility. A variety of packet size distribution profiles have been tested, and satisfactory 

detection results have been obtained showed that the method is suitable universally for 

different kinds of distributions. 

Two limitations were discovered with the aggregated detection methods. ;r"he first is that 

when the packets generated by the applications are relatively large, the MTU of the 

subnet would limit the size of the outgoing packets leading to many payloads being sent 

out as the MTU size packets. The aggregated distribution would thus become much less 

predictable and make it difficult for an aggregated detection mechanism to achieve 

successful detection. Another drawback is that it could potentially happened that an 

aggregated packet size distribution could be generated that was aggregated from two or 

more completely different original distributions. In this case, the detection attempt would 
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return two or more "correct" results, and there is no way so far to tell which one is 

actually correct. Nevertheless, the range of possible applications would be considerably 

diminished by the aggregated detection mechanism, and in any case this circumstance has 

a very low probability of actually occurring. 

It was found that a relatively long capture interval is needed by these non-Nagle 

applications in order to build reliable packet size distribution profiles, and for these 

Nagle-based applications, the packet count would vary according to different network 

conditions. As such, the number of packets captured was chosen as the key parameter in 

order to guarantee the stability of the distribution profiles generated. As the interval or 

number of packets captured over which the profiles were built increased, the detector 

performance improved but the drawback was the fact that one had to wait longer between 

each detection attempt. Tests were carried out in order to achieve the best balance 

between detection reliability and computation resource consumption or timeliness of the 

identity information. 

Chi-square analysis was adopted to statistically compare the captured packet size 

distributions against a database and was considered a successful mechanism for this work. 

The threshold confidence could be another factor which may affect the performance of 

the detector. 

A prototype detector implementing the ideas of this work was developed and tested. For 

non-Nagle applications, the performance was perfect since excellent success ratios had 

been obtained for all applications tested. For the two real Nagle-based applications, 

WarCraft III and SSH-Client, perfect performance was also observed, whereas, some 

drop in success ratios for the virtually generated Nagle-based applications was seen. This 

. could be explained as the packet size distribution profiles of these applications are often 

much more complicated than those real applications. However, the detector successfully 

identified these virtual applications in most cases and the success ratios were kept at an 

acceptable level. 

In some cases, detection was unsuccessful on the first attempt, but improved with 

subsequent attempts, as each new sample of the stream was captured. This was often due 

to the application not having reached a steady state of operation. With many applications, 

this was usually when connection negotiation was still occurring. 
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7.3 Future Works 

The packet size distribution has been verified for its ability to be an identifiable signature 

for some classes of TCP-based applications. This section aims to briefly introduce some 

of the research issues related to the work discussed in this Thesis. Investigation into these 

issues provides knowledge to improve the application detection mechanism. 

The probability of encountering a packet size distribution profile which is similar to one 

profile in the database but generated by a different application potentially exists. That is, 

for the TCP-based applications whose packet size distribution profiles show no 

consistency under varied conditions, sometime, the distribution profiles generated by 

them could exhibit similarity to a certain profile in the database which is captured from an 

application has consistent packet size distributions. Although this should be a low

probability event, it could potentially occur. As a result, a misdetection result may be 

returned, and cause a network operator to draw incorrect conclusions about the utility of 

hislher network and perhaps lead to incorrect optimisation. In addition, clearly, as more 

applications are added to the database, the likelihood of two or more applications having 

very similar packet size distribution profiles increases. In such cases, two suggestions can 

be made in order to reduce the likelihood of the said misdetection. Firstly, whilst Chi

square is a suitable analysis technique for this work as it is a distribution-independent test 

and has the ability to reject poorly matched profiles some of the matching techniques 

employed in pattern recognition may be applicable to application detection [DudH73J. 

The second suggestion is to include more application related information during the 

detection procedure. Some information contained in the headers of the packets could not 

be considered as unique. Nevertheless, it could be used to reduce the set of applications 

against which the sample distribution profile needs to be compared. Further, some 

additional statistical measurements such as packet rates or packet sending intervals could 

contribute to reduce the comparison domain. 

Some applications (i.e. FTP) follow a distribution consisting of predominantly large 

(MTU) and small (ack) packet sizes. Whilst the unique identification of such applications 

is not possible, it is clear that only certain TCP applications show this characteristic. The 

detection mechanism could still have benefit however. The analysis could be used to 
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verify that the application is indeed what it claims to be. For example, the approach could 

not formally identify an FTP stream on Port 20, but it could be used to reject such a 

classification if, for example, Nadar traffic was masquerading on Port 20. 

7.4 Contribution Remarks 

The statistical application detection mechanism was first used by [BhaOI) which 

discussed and demonstrated the feasibility of using the packet size distribution as the 

fingerprint in order to uniqueJy identify an UDP-based application running on a network. 

With the improvement of the quality of the Internet, one may expect more and more 

networked applications that adopt TCP protocol will be developed in the recent future, 

and it is as such necessary and practical to apply this mechanism on the TCP-based 

applications. 

The statistical technique is capable of identifying the non-Nagle based applications with 

remarkable success and shows resistant to network load. However, due to the difference 

between the UDP and TCP transportation protocol, when this detection method was 

applied on the TCP-based applications, some problems was emerged and makes it is not 

applicable to detect some Nagle-based applications. The statistical technique was then 

improved by this work and experimentally shows reasonable capability in identifying 

those applications. 

The pattern matching method adopted by this work is the Chi-square test which is a 

simple statistical method based on probability theory. One can certainly expect that the 

performance will be improved when some more sophisticated pattern recognition methods are 

utilized. 

The idea of this work is not intend to replace the traditional content-based detection 

techniques but try to provide a complementary detection method in detecting some kind 

of networked applications on which conventional packet analysis often fails. It was 

proven to be suitable for the real-time applications. In addition, this work gives an option 

while detecting some applications that exchanging encrypted traffics such as SSH which 

is a typical application falling into this category. In summary, the results achieved by this 

work not only contributes to the research in the field of the traffic stream analysis as well 
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as the network monitoring, but provides a useful technique while developing a practical 

intelligent network. 
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