
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Detecting TCP-based applications using packet size distributionsDetecting TCP-based applications using packet size distributions

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Bo Li

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Li, Bo. 2019. “Detecting Tcp-based Applications Using Packet Size Distributions”. figshare.
https://hdl.handle.net/2134/15329.

https://lboro.figshare.com/

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

',I

I

University Library

.111 L0':lghbprough

.Umverslty

AuthorlFiling Title ~!l' .. fl.:

.,
Class Mark .. .

Please note that fines are charged on ALL
overdue items.

0403694787

~IIIIIIIIII~ I~ 11111111111111111111 ~III

Bo Li

Detecting TCP-based applications using packet size distributions

2008

!il.1,~ Lougl:/)omugh
~ J.rniver~·Hv ;"v 1';1 .- _.

Pi!king!ofl Library

Dato '2 ~/2-/ Ocr
Class I
Ace -
No. CHo'661'-r7i:>1

Abstract

To know what applications are currently in operation across modem packet based

communication networks such as the Internet is always attractive to network

administrators, network service providers and security systems. The availability of this

information can contribute to preventing improper network use, which may include illegal

activities, consume a large amount of bandwidth, or may cause security problems or break

policies in network usage. In addition, using this information, the network may be able to

establish enhanced environments for the applications, which are in use.

Various techniques exist to perform network application detection. However difficulty is

encountered where the traditional techniques will fail in their task. For example, if the

application uses non-registered port numbers, the capture of certain specific packets is

impossible or the data portion of at least some of the packets is unavailable due to

encryption or processing overload.

In this Thesis an alternative approach to application detection, using packet size

distributions, is applied to TCP applications. This statistical property of the traffic stream

is found to be unique to certain kinds of network applications. The detection can be

achieved by simply comparing this "fingerprint" with pre-evaluated samples stored in a

database. Previous work has shown that packet size distributions can successfully identify

many types ofUDP application.

This Thesis suggests that for those TCP-based network applications that do not use the

Nagle Algorithm, the detection mechanism, which had been proved to be successful for

UDP-based applications, could be also adopted without any modification. For Nagle

based applications, the situation becomes more complicated, however, with some pre

computation, successful detection can be achieved as well. A prototype detector

implementing the suggested approaches has been designed in order to test the feasibility

and performance of the approach proposed. The tests carried out upon this prototype

platform indicate that the method is u~ersally suitable for several of distributions and

give out satisfied detection success ratios.

I

Acknowledgments

First of all I would like to thank my supervisor, Prof. Oavid Parish, for his continuous

support during my PhD study. Oavid always gave good advices and encouragement

during my least inspired times. I have leant a lot from him, ranging from general research

skills to specific knowledge.

I also gratefully appreciate help provided by researchers in the High Speed Network

group within the department, namely Dr. Mark Sandford, Mr. Peter Sandford, Or. Mark

Withal and Or. Shiru De Silva. I had many discussions with Mark S and Peter at the

beginning of my research, which gave invaluable input into my research. Thank you to

Mark Wand Shiru for the ideas and supports in using the test platform.

Special thanks go to my friend and colleague Konstantinos Kyriakopoulos. Although we

were working on completely different research topics, he was always there to listen and

give his opinions. Thank you for being with me over the last two years.

Furthermore, I would like to thank my parents, for giving me life, educating me, and

encouraging me to pursue my interests, and supported me unconditionally. I would like to

dedicate this Thesis to them.

II

Publication

80, L., Parish, DJ., Sandford, J.M. and Sandford, P., "Using rep Packet Size

Distributions for Application Detection", PGNet 2006 Proceedings, Merabiti, Pereira and

Abuelma'atti, Liverpool John Moores University, PGNet, Liverpool John Moores

University, June 2006, pp 184-189, ISSN I 9025 6013 9

III

Table o[Conlenls

Table of Contents

1 ... 1

1.1 Introduction ... ······························ .. · ··· .. ··· .. ·· .. ·· .. ····1

1.2 Network Management ········· .. ···· .. ·· · .. ··· .. ···2

1.2.1 The Importance of Network Management······································ .. ···2

1.2.2 Quality of Service .. 3

1.3 Network Security················ .. ······························ .. ······4

1.3.1 The Importance of Network Security .. ··································4

1.3.2 Network Threats .. ············5

1.4 Contribution to Knowledge ... 7

1.5 Outline of Chapters ... · · .. ·· ·7

2 .. ·····································9
2.1 Introduction .. 9

2.2 TCPIIP Reference Model ... 10

2.2.1 Seven Layer OSI Model··· ... 10

2.2.2 Transport Layer Protocols ... II

2.3 Current Application Detection Methods · · ··13

2.3.1 Port Number .. ················13

2.3.2 Packet Classification ... 15

2.3.3 Stateful Inspection ... 16

2.3.4 Deep Packet Inspection ... 17

2.4 Statistical Methods ... 18

2.4.1 The Fragility of Current Detection Techniques··· .. ··18

2.4.2 Rationale of the New Statistical Approach·························.··19

2.4.3 Potential Effects Caused by TCP on Packet Size Distribution .. 20

2.4.4 Statistical Chi-square Test·· ... 20

2.5 Summary ... 23

3 .. ······ .. ······· .. ······24

3.1 Introduction ... · · ···24

3.2 The Experiment System Architecture .. 25

3.2.1 Loaded Network Emulator (LNE)···25

3.2.2 The Experimental Architecture .. ···25

3.3 The Consistency of the Packet Size Distribution as an Application Detecting

Signature ... · .. · .. · .. · · · · .. ·26

IV

3.3.1

3.3.2

3.4

3.5

Table o[Conlenls

The Effect of Application Settings/Scenarios on the Packet Size Distributions""""""""""" 27

The Effect of Network Load on The Packet Size Distributions .. 39

Tbe Uniqueness Tests on tbe TCP Packet Size Distributions .. · .. · · · ····· 51

Summary .. ·54

4 .. · .. •···· .. ······· •···· ··· •··· • •· · ·· .. • .. ·· • · ··· •· •· .. 55

4.1 Introduction .. 55

4.2 Metbods of Aggregation Application Detection .. · 56

4.2.1 Methodology .. · ···· .. ·;........ 56

4.2.2

4.2.3

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.4

Selection of Referring Bins ... 65

The Selection of Aggregation Method ... ,' : 66

Verification .. · ·67

The Generation of Sample Original Distribution for Virtual Applications 67

N agle-Based Application Emulator··· ····· .. ·· ·· · .. 68

Tests of Real Nagle-Based Applications ... 69

Tests of Virtual Nagle-Based Applications ... 85

Tests on Other Virtual Applications .. 100

Summary ... 102

5 ... ············103

5.1 Introduction .. 103

5.2 Operation Overview .. ·104

5.3 Tbread LoadPacketsO .. : ··· 107

5.4 Tbread DetectO ... 110

5.5 Tbread SanpUIO · .. · ·113

5.6 Tbread BuildStoredProfilesO .. ·; 116

5.7 Summary .. ; .. 119

6 .. ·· ·· ·· ····· · .. ·· · .. ···· .. · ··· · ··· · ··· ··· ····· ·· 120

6.1 Introduction .. 120

6.2 Tbe Settings oftbe Detectol" .. 121

6.2.1 Non-Nagle Applications .. 121

6.2.2 Nagle-Based Applications ... 127

. 6.2.3 Virtual N agle-Based App lications ... 13 I

6.3 Application Detector Performance ... 133

6.3.1 Non-Nagle Applications .. 134

6.3.2

6.3.3

6.3.4

6.4

Nagle-Based Applications ... 136

Virtual Nagle-Based Applications ... 138

Virtual Applications with Large Packet Sizes ... 141

Simultaneously Running Application .. ·141

V

Table of Contents

6.5 Summary .. 142

7···· ·· ··· ··· ······ ·· ······· · · .. · · · · ··· ·145

7.1 Iutroduction .. 145

7.2 Conclusions .. ·145

7.3 Future Works .. 148

7.4 Contribution Remarks .. ·149

VI

List of Figures

List of Figures

Figure 2.1 OSI and TCP/IP reference mode and associated protocols ... 10

Figure 2.2 Typical X' distribution profile ... 22

Figure 3.1 Experimental System Architecture .. 26

Figure 3.2 Packet size distribution/or Crim-Sky (svr-c/i) 2 players ... 27

Figure 3.3 Packet size distribution/or Crim-Sky (cli-svr) 2 players .. 28

Figure 3.4 Packet size distribution/or Crim-Sky (svr-cli) Free-Fly. 4 players .. 28

Figure 3.5 Packet size distribution/or Crim-Sky (svr-c/i) Group-combat. 4 players 28

Figure 3.6 Packet size distribution/or WarCraft III (svr-cli) overail .. 30

Figure 3.7 Packet size distribution/or WarCraft III (cli-svr) overail .. 30

Figure 3.8'Packet size distribution/or WarCraft III (svr-cli) high intensity fight.. 31

Figure 3.9 Packet size distribution for WarCraft III (cli-svr) high intensity fight.. 31

Figure 3.10 Packet size distributions/or RealPlayer while playingfiles at different bit rates 32

Figure 3.11 Packet size distributions/or HTTP ... 34

Figure 3.12 Dumpedfile details/or HTTP ... 34

Figure 3.13 Packet sizedistribution/or FTPcontrol-commandsessions .. 36

Figure 3.14 Packet size distribution/or SMTP control-command sessions , ... 36

Figure 3.15 Packer'size distributions/or FTPdatatransmissionsession .. 37

Figure 3.16 Packet size distributions/or SMTP data transmission session ... 37

Figure 3:17 Packet size distribution/or SSH .. 38

Figure 3.18 Packet size distribution/or SSH. ... 39

Figure 3.19 Packet size distribution/or Crim-Sky under low-load network condition 40

Figure 3.20 Packet size distribution for Crim-Sky under moderate-load network cond!tion 41

Figure 3.21 Packet size distributions/or Crim-Sky under heavy-load network condition 42

Figure 3.22 Packet size distributions/or WarCraft 1I1 under network condition 0/100 rns de/ay 43

Figure 3.23 Dumpedfile details a/the WarCraft III under ideal network condition 44

Figure 3.24 Packet size distributions/or WarCraft III under network condition 0/200 ms delay 45

Figure 3.25 Packet size distributions/or WarCraft III under network condition 0/3 percent loss 46

Figure 3.26 Packet size distributions for RealPlayer under low-load network condition (600 kbps bit rate)

... 47

Figure 3.27 Packet size distributions/or RealPlayer under heavy-load network ... 48

Figure 3.28 Packet size distributions/or HTTP under network condition 0/200 ms delay 48

Figure 3.29 Packet size distributions under network condition 0/ lOO ms delay .. 49

Figure 3.30 Packet size distributions/or SSH under worsening network condition 50

Figure 3.31 Chi-square Values o/Crim-Sky against database (CIi-Srv) .. 52

Figure 3.32 Chi-square Values o/WarCrafi III against database (CIi-Srv) .. 53

VII

Lisl of Figures

Figure 4.1 Packet size distribution for WarCraft III under heavy-load network condition 60

Figure 4.2 A sample original distribution. which needs 10 use the second method 66

Figure 4.3 Parameters to describe a distribution 68

Figure 4.4 Original packet size distribution of War Craft III (cli to srv) .. 70

Figure 4.5 Original packet size distribution of WarCraft III (srv to cli) .. 70

Figure 4.6 Captured aggregated distribution for WarCraft III under the network condition of 150ms delay

(srv to cli) .. 71

1000
.

E 800

" 0
(j 600
~
c

" 400 " c-
l!!

u.. 200

0
0 20 40 60 80 100 120 . 140

Bin No. (1byte/bin)

Figure 4.7 Theoretical aggregated distribution calculated from the original distribution of WarCraft III (cli

tosrv} 71

Figure 4.8 Theoretical aggregated distribution calculated from the original distribution of another virtual

application (cli to srv) ... 71

Figure 4.9 Captured aggregated distribution for WarCraft III under the network condition of 150ms delay

(srv to cli) .. 72

Figure 4.10 Calculated theoretical aggregated distribution from the original distribution of War Craft III

(cli to srv) .. 72

Figure 4. I 1 Theoretical aggregated distribution calculated from the original distribution of another virtual

application (cli to STV) ... 72

Figure 4. I2 Summarization of Chi-square tests for identification of WarCraft III 74

Figure 4.13 Captured aggregated distribution for WarCraft III under the network condition of 300ms fIXed

delay (STV to cli} 75

Figure 4.14 Theoretical aggregated distribution calculatedfrom the original distribution ofWarCraft III

(STV to cli) .. : 75

VIII

List of Figures

Figure 4.15 Theoretical aggregated distribution calculatedfrom the original distribution 0/ another virtual

application (srv to cli) ... 75

Figure 4.16 Captured ggregated distribution/or WarCraft III under the network condition 0/ 150ms de/ay

(srv to cli) .. 76

Figure 4.17 Theoretical aggregated distribution calculatedfrom the original distribution o/WarCraft III

(srv to cli) .. 76

Figure 4.18 Theoretical aggregated distribution calculated from the original distribution 0/ another virtual

application (srv to cli) ... : 76

Figure 4.19 Summarization o/Chi-square tests/or identification o/WarCraft III : 77

Figure 4.20 Captured aggregated distribution o/WarCraft III under the network condition 0/300ms delay

(srv to cli) : .. 78

Figure 4.21 Theoretical aggregated distribution calculatedfrom the original distribution o/WarCraft III

(cli 10 srv) .. 78

Figure 4.11 Theoretical aggregated distribution calculated from the original distribution 0/ another virtual

application (cli to srv) ... 79

Figure 4.23 Captured aggregated distribution 0/ WarCraft III under the network condition o/jillered delay

(srv 10 cli) .. 79

Figure 4.14 Theoretical aggregated distribution calculatedfrom the original distribution 0/ WarCraft III

(cli to srv) .. 79

Figure 4.25 Theoretical aggregated distribution calculatedfrom the original distribution 0/ another virtual

application (cli to srv) ... 80

Figure 4.26 Summarization o/Chi-square tests/or identification o/WarCraft III under network condition

o/jillered delay 81

Figure 4.27 Original packet size distribution o/SSH-Client Ill ... 82

Figure 4.28 Captured aggregated distribution for SSH-Client under the network condition 0/300 ms fIXed

delay 82

Figure 4.29 Theoretical original distribution calculated/rom the original distribution o/SSH-Client 82

Figure 4.30 Summarization o/Chi-square tests/or identification o/SSH-Client under network condition 0/

300msfIXed delay 83

Figure 4.31 Captured aggregated distribution/or SSH-Client under the network condition ofjillered delay

... 83

Figure 4.32 Theoretical original distribution calculated/rom the original distribution o/SSH-Clienl.. 84

Figure 4.33 Summarization o/Chi-square tests/or identification o/SSH-Client under network condition 0/

jillered delay : .. 84

Figure 4.34 Parameters and proftle 0/ original distribution 0/ virtual application I 86

Figure 4.35 Captured aggregated distribution/or virtual application I under the network condition 0/300

ms fIXed delay 86

. Dist temp Dist411r-,mery Dis/3rd-theory
FIgure 4.36 after and were removed ... 87

Figure 4.37 2'd order distribution 0/ virtual application I 87

Figure 4.38 Original distribution o/virtual application 18 .. 88

IX

List of Figures

Figure 4.39 Theoretical aggregated distribution extracted using the original distribution of virtual

application 18 88

Figure 4.40 Theoretical aggregated distribution calculated from the original distribution for virtual

application 25 .. 89

Figure 4.41 Captured aggregated distribution for virtual application I under the network condition of

jiltered delay 89

Figure 4.42 Theoretical original distribution extracted using the original distribution for virtual

application I 90

Figure 4.43 Summarizations o/Chi-square tests a/identifying Virtual Application 1 under network

. condition ofjiltered delay 90

Figure 4.44 Original packet size distribution of virtual application 2 ... 91

Figure 4.45 Distribution profiles for different orders of virtual application 2 ... 92

Figure 4.46 Captured aggregated distribution for virtual application 2 under the network condition of 300

msftxed delay 92

Dist temp D"st4Ih-lhoery D" tJrrl-theory
Figure 4.47. after I and IS were removed .. 93

Figure 4.48 2'd order distribution of virtual application 2 ... 93

Figure 4.49 Captured aggregated distribution for Virtual Application 2 under the network condition of

jiltered delay 94

Figure 4.50 Theoretical original distribution extracted using the original distribution of virtual application

2 .. W

Figure 4.51 Original packet size distribution of virtual application 3 ... 96

Figure 4.52 Distribution profiles of different orders for virtual application 3 ... 96

Figure 4.53 Captured aggregated distribution for virtual application 3 under the network condition of 100

msftxed delay 97

Figure 4.54 Theoretical aggregated distribution calculatedfrom the original distribution for virtual

application 3 .. 97

Figure 4.55 Captured aggregated distribution for virtual application 3 under the network condition of

jiltered delay 98

Figure 4.56 Theoretical aggregated distribution calculatedfrom the original distribution for virtual

application 3 .. 98

Figure 4.57 Theoretical original distribution extracted using the original distribution of virtual application

3 ... 99

Figure 4.58 Captured aggregated distribution for virtual application 3 under a network condition of 300

msftxed delay : lOO

Figure 4.59 Chi-square test summary for all tested virtual applications ... 101

Figure 5.1 Flow diagram of the prototype detector ... : 106

Figure 5.2 Relationship diagram of classes in thread LoadPacketsO .. 108

Figure 5.3 Flow diagram for thread LoadPacketsO .. 109

Figure 5.4 Relationship diagram of classes in thread DetectO .. III

Figure 5.5 Flow diagramfor thread DetectO ... 113

x

List of Figures

Figure 5.6 Flow diagram for thread SnapUiO ... 114

Figure 5.7 Flow diagramfor thread BuildStoredProfilesO .. 118

Figure 6.1 Chi-square results of Nadar 's distribution profiles over 15 seconds sampling periods 122

Figure 6.1 Chi-square results of the Nadar distribution profiles over 30 seconds sampling periods 122

Figure 6.3 Chi-square results of Nadar 's distribution profiles over 45 seconds sampling periods 123

Figure 6.4 Chi-square results of Diablos' distribution profiles over 15 seconds sampling periods 124

Figure 6.5 Chi-square results of Diablo 's distribution profiles over 30 seconds sampling periods 124

Figure 6.6 Chi-square results of Diablo 's distribution profiles over 45 seconds sampling periods 125

Figure 6.7 Acceptance ratios for all applications over 15 second sampling periods 125

Figure 6.8 Acceptance ratios for all applications over 30 second sampling periods 126

Figure 6.9 Acceptance ratios for all applications over 45 second sampling periods 126

Figure 6.10 Chi-square results for WarCrafi II/'s distribution profiles over 400 packets 128

Figure 6.11 Chi-square results for WarCrafi II/'s distribution profiles over 600 packets 128

Figure 6.11 Chi-square results for WarCrafi Ill's distribution profiles over 800 packets 129

Figure 6./3 Chi-square results of WarCraft Ill's distribution profiles over 400 packets 130

Figure 6.14 Chi-square results of War Craft Ill's distribution profiles over 600 packets 130

Figure 6./5 Chi-square results of War Craft Ill's distribution profiles over 800 packets /30

Figure 6.16 Chi-square results for Virtual Nagle-based applications for different numbers of sample

packets 131

Figure 6.17 Acceptance ratios for all virtual Nagle-based applications under ajittered delay network

condition over 600 packets 132

Figure 6.18 Acceptance ratios for all virtual Nagle-based applications under a 300msfIXed delay network

condition over 600 packets 132

Figure 6.19 Acceptance ratios for all virtual Nagle-based applications under a jittered delay network

condition over 800 packets 133

Figure 6.10 Acceptance ratios for all virtual Nagle-based applications under a 300 msflXed delay network

condition over 800 packets 133

Figure 6.11 Success ratios for all non-Nagle applications under ideal network condition /35

Figure 6.11 Success ratios for all Non-Nagle applications under loaded network condition 136

Figure 6.23 Success ratios for real Nagle-based applications under ideal network condition /37

Figure 6.14 Success ratios for real Nagle-based applications under loaded network condition /3 7

Figure 6.15 Success ratios for all virtual Nagle-based applications under loaded network condition 138

Figure 6.16 A simple aggregated distribution profile ... 139

Figure 6.17 Two simple original distribution profiles .. 139

Figure 6.18 Success ratios for all virtual Nagle-based applications under loaded network condition 140

Figure 6.19 Success ratios for Nagle-based applications with large packets under low-load network

condition 141

XI

List a/Tables

List of Tables

Table 1.1 Rationalesfor Network Management·· ···················:······························3

Table 1.2 Security Threats and Access Techniques·· ···6

Table 3.1 Chi-square analysis results for Crim-Sky under different gaming conditions ······························29

Table 3.2 Chi-square analysis results for WarCraft III under different gaming conditions 31

Table 3.3 Chi-square analysis results for RealPlayer for different bit-rates : 33

Table 3.4 Chi-square analysis results for Crim-Sky under different network conditions 42

Table 3.5 Chi-square analysis results for WarCraft III under different network conditions 46

Table 3.6 The stored profile numbers and corresponding application names ··52

Table 3. 7 Results of Chi-squared tests between different application traces· .. ··· 53

Table 4.1 Original packet size distribution values offirst 28 bins for WarCraft 11/ 60

Table 4.2 Chosen parameters for virtual application distributions .. : ····· .. ·68

Table 4.3 A sample of ordered packet series table .. ···· : ... 69

Table 5.1 Detector process summary .. 105

Table 5.2 User Interface Information ... 115

Table 6.1 Success ratios for simultaneously running applications .. ···· .. ·142

Table 6.2 Parameters selectedfor the prototype detecto,.··143

Table 6.3 Success ratios for strictly defined "success" .. 144

Table 6.4 Success ratios for less strictly defined "success" ... 144

XII

List of Symbols

,

List of Symbols

ACK Acknowledgement

API Application Programming Interface

ATM Asynchronous Transfer Mode

DNS Domain Name Service

DoS Denial of Service

DPI Deep Packet Inspection

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

JDBC Java DataBase Connectivity

JSDK Java Servlet Development Kits

JVM Java Virtual Machine

LNE Loaded Network Emulator

MIB Management Information Base

MSS maximum segment size

MTU Maximum Transmission Unit

NIC Network Interface Card

OSI Open Systems Interconnection

PC Personal Computer

PLR Packet Loss Rate

PKR Packet Error Rate

QoS Quality of Service

RFC Request For Comments

RPC Remote Procedure Call

RTP Real Time Transport Protocol

RTSP Real Time Streaming Protocol

XIII

SMTP

SSH

STD

TCP

UDP

VI

XML

List of Symbols

'Simple Mail Transfer Protocol

Secure Shell

Standard

Transmission Control Protocol

User Datagram Protocol

User Interface

Extensible Markup Language

XIV

Chapter I Introduction

CHAPTER

1
Introduction

1.1 Introduction

In recent years, following the revolution of the computer age, mankind has stepped into

the age of Information which means that networks have come to be part of people's life,

not just a mystic word only used by a few researchers any more. Also, advances in

computing power and the acceptance of the personal computer in the home and office

have led to a plethora of new applications, which tap the enormous computational

resource now available even in mainstream desktop personal computers.

These have triggered explosive growth of some new bandwidth-hungry applications, such

as networking games, video/audio on demand, e-learning and so on, at the same time

traditional network applications do not diminish their speed of increment. In the

information age, the network user population has been increasing by almost 100% per

year, the increment of network traffic even reaching a 300% growth in annual traffic

[FomKMC04]. As a result, Internet traffic has reached an unprecedented level [OdI03]. A

suggestion has been made that technological advances in networking will make

bandwidth cheap and consequently, always under-utilized. The reality is quite different

the adoption of faster networking technologies such as A TM did alleviate some of the

problems but once again, however, the combination of the expensive cost of

implementation, need for standards, infrastructure and widely needed applications slowed

the deployment of ATM [Acts03J. The conflict between increasing user demand and

existent network resources thus becomes more and more serious.

Chapter 1 Introduction

1.2 Network Management

One solution to the problem is to fundamentally rebuild the existing network system. This

is a perfect solution since it would solve all known defects, and furthermore, provide a

nice foundation platform for further exploitation [Cle06j. Nevertheless, the cost will be

huge and the deployment will take a long time.

Maximizing existing infrastructure performance would be much more feasible. This does

not alter the structure of existing equipment, instead, by optimizing this, it would supply

decent performance with a cost as low as possible. As such, network management is

raising its value.

1.2.1 The Importance of Network Management

Performance issues are very important in computer networks. When hundreds or

thousands of computers are interconnected, complex interactions, with unforeseen

consequences, are common. Some problems, such as congestion, are caused by

temporary resource overloads, some by structural resource imbalance. Solving these

problems is the primary task for network management [DanOlj.

"Network management is the process of using hardware and software by trained

personnel to monitor the status of network components and line facilities, question end

users and carrier personnel, and implement or recommend actions to alleviate outages

and/or improve communications performance as well as conduct administrative tasks

associated with the operation of network" [Com99]. This is the definition of network

management. In my words, it is "the process of making the most of the network". As

indicated in this chapter, we are in the midst of an explosive growth of network traffic.

Network management is entering a new phase in its development. For any network

manager, it is quite easy to list several reasons to demonstrate how important the task of

network management is. A fast, advanced network must have all of its components

optimally working together to most effectively deliver the applications and services for

which it was designed. This requires solid capabilities of controlling, planning, allocating,

deploying, coordinating, and monitoring the resources of a network [PiIM04j. It is also

2

Chapter 1 Introduction

essential to maintain an alert mechanism and troubleshooting capabilities to discover

prqblems, and react quickly to fix them. Table 1.1 summarizes the major reasons why the

network must be managed, providing the rational for network management.

Dependence upon network availability

Effect of network failure

Network size and complexity

Coping with network device sophistication

Network performance and capacity planning balance

Operating cost containment

Table 1.1 Rationalesfor Network Management

1.2.2 Quality of Service

QoS (Quality of Service) refers to both the performance of a network relative to

application needs and the set of technologies that enable a network to make performance

assurances. It uses a set of quantities, which are so-called QoS parameters that network

elements would control in order for networks to make QoS guarantees to applications in

terms of providing a certain contracted level of service throughout the application session.

QoS parameters include the following:

• Packet Rate

• Latency

• litter

• Packet Loss Rate (PLR)

• Packet Error Rate (PKR)

• Throughput

3

Chapter 1 Introduction

Much effort and research related to QoS has been made to improve the performances of

networking applications [KarKL03] [PlaBH99] [GeIL05] [WanYFZFOO]. QoS does not

create bandwidth, but manages it so that it is used more effectively and efficiently to meet

the wide range of application requirements. In the application layer, a variety of QoS

protocols such as RSVP [BraZBH97] were developed to enhance the performance of

applications crossing network, these include some compression techniques and a host of

coding techniques to adapt applications to the network conditions on which they are

running [NirB95], not just assigning high priority to time sensitive applications, but

involving programmable network infrastructures which can be dynamically configured to

service individual applications.

Application detection provides the ability to identifY what applications are currently in

operation and the knowledge of the requirements from the network. If this information

has been known, a QoS activity can then carry out on the next action, which is probably

adapting the network configuration to satisfy the needs of that application and

maximizing performance [TenSSW97]. This is an area where the ability to automatically

detect what applications are running in a given part of the network will be a valuable aid.

1.3 Network Security

The growth of communications in the age of Information has made both individuals and

organizations highly dependent upon the use of networks to perform their normal day-to

day tasks. Unfortunately, there has been a corresponding increase in unauthorized

exploitation and misuse of these computer systems.

1.3.1 The Importance of Network Security

The network is a bad neighbour [CheB03]. For the information security aspect, no

individual or organization would like to suffer from the damage or loss of their

information, regardless of how sensitive or critical the information. Problems are not

limited to information security breaches. Many organizations are losing a lot of money

through uncontrolled Internet access or in a word, abuse. A survey of nearly 200

4

Chapter 1 Introduction

international comparues carried out by Infosec, NetPartners and Secure Computing

Magazine estimated that a typical large company (1,000 employees) could be losing £2.5

million per year through employees' use of Internet for non-business purposes - an

average loss of £2,500 per employee [ClaOOj. Therefore, the need for security has become

a vital issue for networks, not only because of the extreme importance of the data residing

on the networks but also the important perfonnance of communication lines over which

the data are transmitted.

1.3.2 Network Threats

Network threats can be classified in two high level tenns-Destruction and Unauthorized

Access [AshM99j.

Denial of service (DoS) [CheB03j is the most typical of destructive attacks. By sending

more requests to a machine than it can handle, it makes the host unable to service the

requests coming from legitimate users. DoS attacks are probably the nastiest, and most

difficult to address [HusHP03j. These are the nastiest, because they're very easy to

launch, difficult (sometimes impossible) to track, and it isn't easy to refuse the requests of

the attacker, without also refusing legitimate requests for service.

Unauthorized Access refers to a number of different attacks, such as Executing

Commands Illicitly, Confidentiality Breaches, Data Diddling (or Data Changing) and

Data Destruction [HusHP03j. The goal of these attacks is to access some resource that

your machine should not provide to the attacker.

Unauthorized Access can be achieved in both passive and active ways. Table 1.2

(reproduced from [AshM99)) summarizes ways in which access can be gained.

Passive accesses are in the nature of eavesdropping on, or monitoring (sniffering) of,

transmissions [Kum05). The goal of the opponent is to obtain infonnation that is being

transmitted. This kind of attack is very difficult to detect because it does not involve any

alteration of the data. However, it is feasible to prevent the success of these attacks. Thus,

the emphasis in dealing with passive attacks is on prevention rather than detection.

5

Chapter 1 Introduction

Another category of unauthorized access is active accesses. These attacks involve some

modification of data stream or creation of an attacking stream. They present the opposite

characteristics of passive attacks, it is quite difficult to prevent active attacks absolutely,

instead, the goal is to detect them and to recover from any disruption or delays caused by

them. Because the detection has a deterrent effect, it may also contribute to prevention.

Intrusion Activity Type of Attack Tool Method of Access

Access violation Password cracker or Telnet, remote control

guessing JP spoofing, program,
(Actively)

Trojan horse Java applet

Userlhost discovery Ping, Sniffer JCMP tools on

corrupted system,
(Actively, Passively)

Sniffer Tools

Exposure of Network Scanner Tools on corrupted

Vulnerabilities system

(Actively)

Corruption of information Virus, worm E-mail, file transfer

corrupted system
(Actively)

Theft of information Password cracker or Tools on corrupted

guessing, JP spoofing, system, Sniffer Tools
(Actively, Passively)

Sniff er

Table 1.2 Securlty Threats and Access Techmques

The availability of a robust application detection mechanism helps the network manager

to discover unwanted networking sessions by positively examining the malicious traffic

or negatively identify abnormal traffic on well-known ports such as a virus operating on

port 80.

6

Chapter 1 Introduction

1.4 Contribution to Knowledge

Traditional application detection techniques heavily rely upon the content inside the

traffic. This Thesis attempts to find a new application detection mechanism for some

classes of TCP-based applications. The ideas discussed in this Thesis can provide an

alternative approach in order to achieve application level classification for some areas

where traditional or current popular application detection mechanisms show poor ability.

In summary, the work in this Thesis has found a new identifiable signature and a

statistical method in detecting network applications based on this signature for some

classes ofTCP-based applications.

For some TCP-based applications, variations on the distribution profiles response to

varied network conditions are seen to follow a predictable pattern. It appears that the

impact of delay is to cause an aggregation of packet payloads. This is basically caused by

the use of the Nagle algorithm, which states that any data sent subsequently should be

held until the outstanding data is acknowledged (ACKed) or until there is a full packet's

worth of data to send. However, as the variations are predictable, an approach has been

suggested and experimentally verified its feasibility for various distributions.

The detection technique discussed in this Thesis provides the ability for detecting some

classes of TCP-based applications on which conventional techniques would show poor

detecting ability. As this technique is a statistical method, it shows advantage over those

traditional content techniques especially when the application data are encrypted or under

bad network conditions such that some specific packets could not be captured.

1.5 Outline of Chapters

This Thesis is organised as below:

Chapter 2 introduces the main TCP lIP concepts related to the work in this Thesis, the

traditional and current popular application detection techniques and their characteristics

are briefly discussed. The statistical comparison method Chi-square test is also introduced.

7

---- ------

Chapter I Introduction

Chapter 3 describes preliminary experimental work which was for the purpose of

examining the feasibility of making the packet size distribution a detectable signature for

TCP-based networking applications. The distribution profiles have been tested under

different running conditions and loaded network conditions in order to discover if they are

unique and consistent.

Chapter 4 concentrates on solving the problems emergmg from Chapter 3, i.e. some

Nagle-based applications show aggregation in their packet size distribution. An

aggregated detection mechanism is presented and some experiments are described to

verify the feasibility of the methods proposed.

Chapter 5 describes the design and architecture of a prototype application detector

employing the ideas discussed in the last two chapters.

Chapter 6 describes the procedure of selecting suitable parameters for the detector. A

number of tests performed and the results obtained with the prototype detector under a

variety of conditions are also presented.

Chapter 7 provides summary conclusions of the results achieved by this work.

8

Chapter 2 Application Detection Techniques

CHAPTER

2
Application Detection Techniques

2.1 Introduction

In this chapter, the traditional and current popular application detection techniques and

their limitations are briefly discussed. The idea of detecting TCP-based applications using

an alternative application "signature" packet size distribution, which is the core of this

work, is also presented.

9

Chapter 2 Application Detection Techniques

2.2 TCP/IP Reference Model

2.2.1 Seven Layer OSI Model

...............

7 Application

Presentation Appfication Ping, Telnet FTP
etc. 6

5 Session
...............

4 Transport Transport TCP, UDP
............

3 Network Internet IP
...............

2 Data Link Network Interface Network driver

Physical Hardware software, NIC

OSI Reference TCPlIP Reference Protocols

Figure 2.1 OSI and TCPIIP reference mode and associated protocols

Figure 2.1 (reproduced from [Mar94]) is a seven-layer model. Each layer performs

specific functions and communicates with the layers directly above and below it. The

higher three layers deal more with user services, applications, and activities whereas the

lower four are concerned more with the actual transmission of information.

The TCP lIP reference Model is used in the worldwide Internet, which is the most popular

communication network today. The second column shows the correspondence between

the TCPIIP Reference Model and OSI Model. The TCPIIP model does not have session or

presentation layers and experience with the OSI model has proven this view correct: they

are of little use to most applications [KurR03j. TCP and UDP protocols have been

defined at the Transport Layer, while the Internet Layer defines an official packet format

and protocol called the Internet Protocol. The TCP lIP model does not care about what

happens below the Internet Layer, but points out that the host has to connect to the

network using some protocols over which IP packets can be sent/received.

10

Chapter 2 Application Detection Techniques

2.2.2 Transport Layer Protocols

TCPfUDP Protocols

Two different protocols are defined in this layer-TCP and UDP. The User Datagram

Protocol (UDP), defined by IETF RFC768, provides a simple, but unreliable message

service for connectionless services. Each UDP header carries both a source port identifier

and destination port identifier, which allow high-level protocols to target specific

applications and services among hosts. A datagram can be sent at any moment without

prior advertising, negotiation or preparation [Com99]. The datagram is just sent and it is

hoped that the receiver is able to handle it. There is no guarantee that the datagram will be

delivered to the destination host. Not only could the datagram be undelivered, but it could

be also delivered in an incorrect order. It means a packet can be received before another

one, even if the secondhas been sent before the first one received. [KurR03]

All applications included in the work of this Thesis are based on TCP (Transmission

Control Protocol), which is described in STD-7IRFC-793. TCP is, unlike UDP, a'

connection-oriented protocol that is responsible for reliable communication between two

end processes [Ric94]. Before actually transmitting data, a connection must be established

between the two end points. The recipient need only be completely identified at the time

the connection is established. The data can be then transferred in full duplex (send and

receive on a single session). When transferring data, only information sufficient to

identify the connection is required. TCP guarantees that all data sent will be received

without any error and in the correct order. Should any error occur, it will automatically be

corrected (retransmitted as needed) or the error will be notified if it cannot be corrected

[WanC91].

Interactive and Bulk Data Flow

TCP applications basically use either interactive or bulk mode to exchange

communication traffics. In the interactive mode, the TCP initially uses a stop-and-wait

protocol. The sender of a data packet requires an acknowledgment for that packet before

the next one is sent. An optional delayed acknowledgement strategy has been defined in

[Bra89]. Delayed ACKs allow a receiver to refrain from transmitting an ACK for every

11

Chapter 2 Application Detection Techniques

incoming packet immediately [Koz05]. However, the receiver must send a piggyback

ACK with the next packet it sends. In addition, an ACK should not be delayed for more

than 500~ sec while waiting for payload from applications to arrive [Mar94]. In the bulk

mode, on the other hand, the sender is allowed to transmit multiple packets before it stops

and waits for an acknowledgment. TCP uses a variety of mechanisms in order to achieve

the congestion control in this mode. These mechanisms control the rate of data entering

the network, keeping the data flow below a rate that would trigger collapse. Modem

implementations of TCP contain four major algorithms: Slow-start, congestion avoidance,

fast retransmit, and fast recovery [AIIP99]. Each of these algorithms controls the sending

rate by manipulating a congestion window that limits the number of outstanding

unacknowledged bytes that are allowed at any time. When a connection starts, the slow

start algorithm is used to quickly incre'ase congestion window to reach the network

capacity [SteCW A99]. When the sender detects that a packet has been lost, it deems that

the network is overload and decreases the congestion window quickly. After estimating

the network capacity, TCP switches to the congestion avoidance algorithm [WanC91],

which slowly increases the congestion window in order to make the most use of the

bandwidth.

The Nagle Algorithm

In addition, some applications in employ the Nagle Algorithm, which is named after its

creator - John Nagle. The Nagle algorithm is used to automatically aggregate a number'of

small-buffered messages. This process increases the efficiency of a network application

system by decreasing the number of packets that must be sent.

Nagle's document [Nag84] specified a means of dealing with what he called the small

packet problem, created when an application generates data one byte at a time, causing

the network to be overloaded with small packets (a situation often referred to as send-side

silly window syndrome). A single character - one byte of data - originating from a

keyboard could result in the transmission of a 41-byte packet consisting of one byte of

useful information and 40 bytes of header data. This situation translates into 4000%

overhead, which was considered to be acceptable for a lightly loaded network, but not so

for a heavily loaded network, where it could necessitate retransmissions, cause lost

12

Chapter 2 Application Detection Techniques

packets, and hamper transmission speed through excessive congestion in switching nodes

and gateways [Ric94].

The Nagle algorithm works by aggregating a number of small outgoing messages, and

sending them all at once. Specifically, as long as there is an outstanding packet for which

the sender has received no acknowledgement, the sender should keep buffering its output

until it has a full packet's worth of output, so that output can be sent all at once.

In the work of this Thesis, information contained in the Internet layer is used in the

application identification process, and some effects on this information caused by the

Transport Layer are considered.

2.3 Current Application Detection Methods

A number of methods may be applied to identify an application. The ideal network

application detection approach would require two communicating network nodes to

announce the identity of the application they are running as part of the session start

process. The identity information could be included within the session traffic. This ,
requires that the location of this information in the packets should be known in advance.

However, this is still an "ideal", many applications in use today operate without such

announcement.

2.3.1 Port Number

A port number is a way to identify a specific process to which an Internet or other

network message is to be forwarded when it arrives at a host. For the Transmission

Control Protocol (TCP) and the User Datagram Protocol (UDP), a port number is a l6-bit

integer that is put in the header appended to a message unit. This port number is passed

logically between client and server transport layers and physically between the transport

layer and the Internet Protocol layer and forwarded on.

The port numbers are divided into three ranges [Iana07]:

13

Chapter 2 Application Detection Techniques

Well Known Ports: from 0 through 1023 (inclusive).

Registered Ports: from 1024 through 49151 (inclusive).

DynamiclPrivate Ports: from 49152 through 65535 (inclusive).

Some services or processes have conventionally assigned permanent port numbers. These

are known as well-known port numbers. The Well Known Ports are controlled and

assigned by IANA [Iana07] and on most systems can only be used by system (or root)

processes or by programs executed by privileged users. The well-known ports use a small

portion of the possible port numbers. For many years the assigned ports were in the range

0-255. In 1992, the range for assigned ports managed by the IANA was expanded to the

range 0-1023 [PosR94]. Many traditional network services were assigned associated port

numbers on which they could bind. For these processes, the identifications would be

relatively reliably detected by looking at the port number they are using. However, this

would not always be the case as almost no service specifies that it must listen on a fixed

port. For example, the HTTP protocol indicates that a Web server should basically listen

on port 80, but it is possible for a particular Web server to use a different port number

[Koz05]. An administrator could manually change the configuration to make the server

listen on port 8080. As such, identifying a well-known service using port number will not

guarantee the result is always right.

The Registered Ports are listed by IANA and on most systems can be used by ordinary

user processes or programs executed by ordinary users [Pos94]. The registered port

numbers are in the range from 1024 through 49151. Companies and other users register

port numbers in this range with IANA for use by the applications. Some applications use

fixed registered port numbers when sending and receiving data over the Internet by

default. Application detection at its simplest level can make use of this fact. An example

of this is WarCraft Ill. It uses port 6112 at the server side. Nevertheless, in fact, one could

only say that WarCraft III will use port 6112 instead of saying that an application using

port 6112 must be WarCraft Ill. This is because although many applications have been

registered to IANA so that multiple uses of the same ports can be avoided, there are still

many that have not yet as registration is not forced. IANA only registers uses of these

ports as a convenience to the community [Pos94]. Hence, the possibility of two or more

applications using the same registered port does exist. In addition, in a similar way to the

14

Chapter 2 Application DeteCtion Techniques

situation for well-known ports, most applications using registered ports allow users to

change the default port usage. However many users never use this function.

With so many applications developed for use over the Internet, registration of port usage

for every one becomes impractical. For this reason, there is a move toward using

dynamically allocated ports [BhaO 1). For these applications, a dynamic port number also

named an ephemeral port is assigned temporarily (for the duration of the request and its

completion). An ephemeral port can be chosen from either the range of Registered Port

Numbers or DynamiclPrivate port numbers. It will last for only a brief time. The port is

then abandoned and can be used by other applications. One could argue that ephemeral

port is typically used in server-client direction - registered port is still used in client

server direction. However, there are many applications that are using ephemeral ports in

dual directions and rely upon the centralized servers in order to allow the servers and

clients can be found by each other. Third-Party network gaming platform is a notable

example. People are establishing many servers to distribute the ephemeral port pairs and

clearly, port numbers cannot be utilized to identify these applications.

2.3.2 Packet Classification

There are a number of network services that may require packet classification, such as

application-aware routing, access-control in firewalls, policy based routing, provision of

differentiated qualities of service, and traffic billing [GupMOO). The categorization

function is performed by a flow classifier (also called a packet classifier), which

maintains a set of rules, where each flow obeys at least one rule. The rules classify which

flow a packet belongs to based on the contents of the packet header(s), for example the set

of packets whose source address starts with prefix bits S, whose destination address is D,

and which are sent to the server port for web traffic. Associated with each flow is an

action which defines the additional processing - example actions include sending to a

specific queue, dropping the packet, making a copy, etc [MacF02).

Packet classification does supply some information about the types of services by

extracting some fields from the packets. However, actually, packet classification is not an

application detection technique. Its goal is to determine which flow an arriving packet

belongs to so as to determine - for example - whether to forward or filter it, where to

15

- -
Chapter 2 Application Detection Techniques

forward it to, and what class of service it should receive. These services require that

packets be classified based on a set of rules that are applied to the destination address,

flow identifiers such as source address, layer-4 protocol type, and port numbers. As such,

no application level information is required for this technique. And also, no application

level detection ability can be supplied. Therefore, for an application detection scheme to

work, deeper analysis of the traffic stream must be performed.

2.3.3 Stateful Inspection

As well as examining header information, Stateful Inspection can examine the contents of

a packet (up to the application layer) to determine more contexts about the packet beyond

its source and destination information accommodated in the header. In addition, Stateful

Inspection monitors the state of a connection and compiles historic information in a state

table. Some services, which are operated over the application level of the TCP/IP

reference model, are standards-based. With these services, generally, application level

headers were defined by RFC or some other well-known document, and one could simply

detect these services through digging into the service header field available inside every

single packet [CheP04]. This approach can for example be applied to those traditional

network applications such as email server (or client) that use SMTP over TCP/IP and web

browser clients that use HITP.

Always-on Stateful Inspection introduces a further ability of application detection by

incorporating full-time session state awareness and extra context information, which is

stored and updated dynamically. This form of Stateful Inspection provides cumulative

data against which subsequent communication attempts can be evaluated and acted upon

in real time [RajOS].·1t also delivers the ability to create virtual session information for

tracking connectionless protocols (e.g. Microsoft RPC and UDP-based applications). This

approach is often applied on services such as RTP or the set of standards defined in H.323,

the session start-up procedure could be tracked in order to achieve identification as for

these services, the establishment patterns of connections are often known in advance and

source application information could be extracted from a series of packets [BhaO 1].

Stateful inspection uses information that utilizes layers 3-7 of the OS! model (network

16

Chapter 2 Application Detection Techniques

layer and upwards) in order to obtain information such as the type of service/application

[RajOS]. By combining information from various layers (transport, session, and network),

a detector is able to better understand the protocol that it is inspecting and make more

intelligent decisions on the identification of application.

2.3.4 Deep Packet Inspection

The term "Deep Packet Inspection" describes a variety of features that enable a detector

to scour individual data packets or streams of packets to spot specific code or other

context that might be part of a signature of certain application [SchML03]. Deep Packet

Inspection directs, persists, filters and logs lP-based applications, including Web traffic,

based on content encapsulated in a packet's header or payload. As already discussed,

always-on Stateful Inspection features enable detection devices to move beyond just

inspecting traffic based on the information contained in data packet headers to monitor

active connections. Deep packet inspection supplies the ability to dig even deeper into

traffic flows to spot hidden signatures like Web, e-mail, and DNS servers. By way of

example, Deep Packet Inspection lets the detection device look deep into the content of a

TCP or UDP flow for a complete view. This is accomplished by reassembling IP

datagrams, TCP datastreams and UDP packets as they flow through the device to view the

entire application content. Viruses and many recent applications have fallen into the area

where the application detection can be performed by this approach. To perform effective

Deep Packet Inspection (DPI), it is vital that the protocol traffic be reordered in the form

it was originally transmitted. To bridge the gap between receiving packets out of order

and/or in fragments and the requirement to perform Deep Packet Inspection, the detection

device requires a "reorder engine" to take all of the packets and put them in the original

transmission order [KruVVK02]. Once put in the proper sequence, by searching for the

key strings, which included in the payload portions, some non-standard application

patterns can be matched.

Current application detection mechanisms provide accurate detection for some classes of

applications, especially well-known services that are standards-based messaging.

17

Chapter 2 Application Detection Techniques

However, due to the nature of these techniques, they would show poor detecting ability

on some applications on which the work of this Thesis has concentrated.

2.4 Statistical Methods

2.4.1 The Fragility oCCurrent Detection Techniques

Current detection techniques clearly have their advantages. However, there are cases

where they will fail in their task. The operation of content based classification techniques

such as deep packet inspection require that considerable processing and buffer memory is

used as a number of complete datagrams often in sequence, including their headers and

data portions must be captured and stored for processing for every network session. In

addition, depending upon the exact technique adopted, the capture of certain specific

packets may be necessary (i.e. the packets that are sent to establish the session or a

sequence of packets potentially containing a key string) which may be quite difficult to

implement, especially in a high load network environment. The fundamental shortcoming

of content-based detection techniques is that the packet formats, the content signature and

session negotiation mechanisms must be known in advance, and the content of packets

captured should be obtained. This limits their ability to operate on encrypted datagrams in

which the content will present in an unintelligible form [ParBLP003].

The work to be described presents a different approach to the problem. The detection

techniques proposed would compliment conventional methods since they target detection

of particular classes of applications. If a statistical property of the traffic stream can be

found that is largely unique to a given application then detection may be possible with

very little packet decoding necessary. One could simply compare this characteristic (or

measured for an unknown application) with pre-evaluated samples stored in a database

and select the appropriate match. We have examined one such characteristic, namely the

packet size distribution.

18

Chapter 2 Application Detection Techniques

2.4.2 Rationale of the New Statistical Approach

The theory of the approa'ch is quite reasonable. In a packet switched network, messages

that some networked applications exchange may be of fixed size. However, when a

networked application is designed, to ensure efficiency, the messages that are exchanged

should be as brief as possible. As a result, an exchanged message may represent just a few

elements of application iRformation as is necessary. In a packet switched network, the

messages would be encapsulated in a packet when ready for transportation. The length of

the packet header is known in advance and is a standard size. The length of the payload

(the message) can be known by checking the transmitted packet size or alternatively,

checking the packet header field. While network applications are running, the information

that they exchange would generally conform to a certain pattern, which means the

messages or the length of the packets would also conform to this pattern. For example, in

some real-time games, the information regarding a player such as position and status are

the most frequent messages that are transmitted, this information can. be encapsulated in a

defined structure Struct A, which has a fixed length for transportation. Contrarily, some

building information using a structure Struct B that is a different length may be used

occasionally, thus the packet sizes will present a distribution with a major peak at the size

of Struct A and a minor peak at the size of Struct B. In some networked video/audio

players, almost all the messages transmitted will contain the frames of video/audio files.

One video/audio file is basically coded at a single bit rate, which decides the frame size

and the definition of the playback. As a result the packet sizes will present a distribution

with a peak at the frame size, since the size of packets that contain playing frames will be

fixed or just vary a little.

The two examples above may be too idealised to represent the practical reality, as the

actual cases will be much more complex. However, the packet size distributions observed

so far are unique and it is expected that many networked applications will have their own

particular packet size distributions [ClaMOOj. The distribution of packet sizes observed

over some time interval could be determined and if sufficiently consistent for a given

application but different across applications, one could use this as an application

signature. The approach has been successfully applied for some UDP real-time

applications [ParBLP003j. The work of this Thesis has concentrated on extending this

work to TCP applications.

19

Chapter 2 Application Detection Techniques

2.4.3 Potential Effects Caused by TCP on Packet Size Distribution

As mentioned in the previous section, TCP and UDP are two different Transport Layer

Protocols. For UDP-based applications, the sending of packets is controlled completely

by . the application itself, the packet size distribution thus can only dep'end on the

application by which it is generated. However, it very likely that the packet size

distribution from a TCP-based application will be affected by the transportation

mechanism of TCP. This is the area where most effort has been focused in the work of

this Thesis.

Some applications studied in this work utilize the TCP bulk mode or interactive mode

[Ric94] without the Nagle Algorithm. These applications behave in a similar way to

UDP-based applications. Their original packet size distributions may show consistency

and no variation under different network conditions. The Nagle-based applications

however, could potentially suffer from the effects caused by this algorithm. Due to the

nature of the Nagle Algorithm, a packet could be aggregated when the last outstanding

packet is lost or its acknowledgement is delayed. As TCP .s a stream-oriented protocol

without apparent boundary [ForB05], it is impossible to know the original packet size of

the application. The packet size distribution therefore could vary from case to case. Hence,

some further analysis needs to be performed in order to detect Nagle-based applications.

Another significant effect caused by TCP could be the MSS (maximum segment size),

which is the largest amount of data, specified in bytes, that a computer or

communications device could handle in a single, unfragmented packet.

2.4.4 Statistical Chi-square Test

Cbi-square Test

The essential requirement of the detection technique described in this Thesis is to achieve

detection by comparing the packet size distribution of an unknown application against

stored distributions from known applications. As such, it is necessary to choose a proper

statistical method to test the fitness between two distributions. The Chi-square test is thus

adopted in order to test the goodness-of-fit.

20

Chapter 2 Application Detection Techniques

The reason for choosing the Chi-square test over other statistical test methods is that the

packet size distribution is a frequency statistical measurement, and the Chi-square test is

particularly appropriate with variables expressed as frequencies [Sch88]. In addition,

when used for frequency comparisons, the Chi-square test is a non-parametric test, since

it compares entire distributions rather than parameters (means, variances) of distributions.

Except for the need to avoid very small hypothetical frequencies, the test is relatively free

of constraining assumptions [Hay88].

Goodness of Fit Test

The goodness-of-fit test consists of determining whether the frequency counts in the

categories of the variable agree with a specified distribution. To carry out a Chi-square

goodness-of-fittest, a null hypothesis must be defined in advance:

Ho = the two distributions come from the same random discrete variable population

and the alternative hypothesis is stated as:

HI = the two distributions are not from the same random discrete variable population

In general, one may not expect the observed sample frequencies to be equal to the

expected frequencies, even when Ho is he correct model. However, if there are large

differences, a poor "fit" is evidence that Ho is not the correct model.

The Chi-square value (X') is an overall measure of discrepancy between the observed

frequencies and the expected frequencies under Ho. The Chi-square value X' of two sets

of data is given by

, ,,(o-e)'
X=L...))

eJ

(2.1)

where the sum is over all categories, with Oj the observed frequency count and ej the

expected frequency count in bin number j.

21

Chapter 2 Application Detection Techniques

This weighted sum of squared differences is equal to 0 if and only if every observed

frequency is equal to the corresponding expected frequency under Ho, that is, if the fit is

perfect. If there are large differences between Oj andej , thenx2will be large, which in

turn suggests that the null hypothesis should be rejected [Kit96].

When the sum of frequency counts in all categories is large and Ho is true, the sampling

distribution of X2 is known to be approximately Chi-squared with k-I degrees of freedom.

Figure 2.2 illustrates a typical Chi-square density curve.

Reject Ho

o

Figure 2.2 Typical X 2 distribution profile

As shown in Figure 2.2, the square of the shadowed area represents the probability that a

test Chi-square value X 2 is greater than a critical value xL, where k -I is the degree of

freedom. In such a case, we have, with a given probability, confidence to believe that

Ho should be rejected. The critical value X'I'12 for a certain percentage confidence v can

be calculated approximately using

(2.2)

22

Chapter 2 Application Detection Techniques

where t2'[~J can be looked up in the table of critical values for I-Distribution when the

degree of freedom is greater than 50. For those cases lower than 50, table of Critical

Values of the Chi-square Distribution could be referenced [HerCRA63].

The Chi-square test requires that frequency counts in all categories should be no less than

5 unless the number of categories is very large and only very few categories have

frequency counts less than 5 [Ham75]. Those categories with small-expected frequencies

can be combined with neighbour categories to meet this requirement in order to improve

the approximation.

2.5 Summary

Current application detection mechanisms provide accurate detection for some classes of

applications, especially well-known services that are standards-based messaging.

However, due to the nature of these techniques, they would show poor detecting ability

on some applications on which the work of this Thesis has concentrated. A new statistical

approach was proposed and demonstrated by [ParBLP003] in order to detect some UDP

based applications. This Thesis considers applying the method on the TCP-based

applications. Due to the difference between TCP and UDP, it is expected that some TCP

based applications, which are using the Bulk Mode of the TCP, may behave similarly as

the UDP-based application, the packet size distributions will be independent of the

network conditions. In another hand, for some TCP-based applications that the Nagle

Algorithm is used, the packet size distributions are very likely to vary under different

network conditions.

23

Chapter 3 TCP-Based Application Data Analysis

CHAPTER

3
TCP-Based Application Data Analysis

3.1 Introduction

In this chapter, the preliminary experimental work for the purpose of examining the

feasibility of making packet size distribution a detectable signature for TCP-based

networking applications is presented.

As described previously in Chapter 2, the packet size distribution has been experimentally

shown to be a detectable signature for real-time UDP-based applications [ParBLP03].

Now, we come to the TCP-based situation. In the first place, tests were carried out on a

number of TCP-based applications in order to examine the packet size distribution

consistencies of these applications. The Chi-square detections among these applications

were subsequently introduced so that the visual results can be mathematically confirmed.

The effects of network load and application settings on these characteristics were

examined to determine if sufficient tolerance existed such that the distribution could be

used as an application signature.

24

Chapter 3 rCP-Based Application Data Analysis

3.2 The Experiment System Architecture

3.2.1 Loaded Network Emulator (LNE)

In order to simulate different network conditions, a Loaded Network Emulator (LNE)

[OliBPD99j was adopted for this work. Its purpose is simply to drop or delay packets

passing through it according to user entered parameters. Loss and delay variations are

applied according to a Gaussian distribution and one is also able to specify means around

which the variations occur. Similar work has been done by [ArmS04j.

This tool works in combination with the Linux Iptables [And05], which is a framework

that enables packet filtering. Iptables is responsible for filtering all packets with an
attribute of "FORWARD" and pushes them onto a stack named ip _queue. Afterwards, the

LNE carries out actions on those packets inside the ip _queue in order to decide their

behaviour according to the parameters that the user entered---delayed to be forwarded or

dropped. Hence, a packet passing through a node on which the LNE is running will suffer

delay or loss. A loaded network condition is so emulated. Itis important to emphasise that

the LNE does not actually generate any new traffic on the network. It simply emulates

load by recreating the symptoms experienced by the application traffic (i.e. loss and

delay) in a loaded network.

3.2.2 The Experimental Architecture

In order to obtain the packet size distributions of different applications, an experimental

architecture was established as shown in Figure 3.1.

Two subnets 192.168.1.0 and 192.168.2.0 were deployed. In each subnet, there were pes

on which the applications under test were run. The Linux Box was configured as a

network bridge and set to forward so that the two subnets can be connected. Iptables was

also employed using command

iptables -A FORWARD -j QUEUE

25

Chapter 3 rCP-Based Application Data Analysis

which forced all packets passing through the Linux Box with an attribute of FORWARD

into the Iptables packet queue for furth~r action [Ipt06]. The LNE then was used in order

to process those packets inside the Iptables packet queue so as that different network

conditions could be emulated.

D 8ID§ LNE
o- n 0=0 Hub Packet Queue

Detector t
* Llnux Box

Iptables

192.168.1." 192.168.2." Card Ethernet Card

PC PC

Figure 3.1 Experimental System Architecture

A packet capture process was carried out via the hub inside subnet 192.168.1.0. Since all

packets coming from subnet 192.168.2.0 need to be passed through the Linux Box on

which a network condition emulating mechanism functioned, all arriving packets on the

hub were perturbed by the LNE --- delays or losses were caused, so that, depending on

the configuration of the LNE, the packet size distribution profiles under various network

conditions were obtained in repeatable and understood conditions.

3.3 The Consistency of the Packet Size Distribution as an Application
Detecting Signature

In order to test the consistency of the packet sIze distribution profiles, a number of

applications in different general classes were tested; games, video streaming servers, email

clients and web browsers and so on. The traffic was monitored and analyzed, unique

source/destination IP addresses and port numbers identified each connection and the streams

in two directions (client to server, server to client) were separately recorded.

26

Chapter 3 TCP-Based Application Data Analysis

3.3.1 The Effect of Application Settings/Scenarios on the Packet Size

Distributions

Packet size distributions may potentially vary under different running conditions (such as

the intensities of the battles for some networked games or playback bit-rates for the

stream media players) [BorS99] [SheN03]. This is vitally important as it affects the use of

packet size distributions as a detection signature. Applications must be profiled and tested

with differing settings to ensure the accuracy of the approach. In each test performed

here, the traffic was captured for a 60s interval, the distribution granularity used was 1

byte per bin for a network MTU of 1500 bytes.

Networked Game Crimson-Sky

Crimson-sky [MicOO] is a typical local area networked game of air-combat simulation

originally developed by Microsoft for the platform of the XBOX, and was transplanted to

the PC platform recently. It functions by allowing a number of network clients running

the game to connect to a server host, which is also rimning the game. The game is

operated in a semi-duplex like mode: it produces two connections, each of which is in

charge of the message transportations of one direction (client to server or reverse), the

other direction of each connection only transmits the acknowledgements of the packets in

which gaming messages are carried, and ports used are assigned dynamically.

-,-,.-,,--,,---,-~---.--~-----.-~~-~--------~~

u
'"' ~ 0.8 +--------------------------------1

" '" 5i E 0.6 +-------+----------------------1
5-0
~ ~ 0.4 +-------+----------------------1
u. " 8 0.2+----------r-,---1----------------~

O~~~~~=n~~~~~~~~~~~~~~~~~~~~~

o 20 40 60 80 100 120 140
Bin No. (1bytelbin)

Figure 3.2 Packet size distribution for Crim-Sky (svr-cli) 2 players

27

-------- - ---

Chapter 3 TCP-Based Application Data Analysis

'g 0.8
>-~
u '" 0.6 :ii E
=> 0
i.s 0.4
u:"E

=> 0.2 0
(J

0
0 20 40 60 80 100 120 140

Bin No. (1bytelbin)

Figure 3.3 Packet size distribution for Crim-Sky (cli-svr) 2 players

Figure 3.2 and Figure 3.3 show the original profiles under ideal network conditions and

in two-player mode. Within the interval period, no more intensive action than flying was

performed. It can be clearly seen that for the server to client traffic most packets are 40

bytes in size excluding IP and TCP headers, with a minor peak at 56 bytes, and with a

similar profile in the reverse connection.

'g 0.8
>.~
u '" ~ E 0.6
=> 0

~ ~ 0.4
L1. §

o 0.2
u

o
o 20 40

, I
60 80 100 120

Bin No. (1byte/bin)

Figure 3.4 Packet size distribution for Crim-Sky (svr-cli) Free-Fly, 4 players

'0
" 0.8

»~
u '" ~ E 0.6
=> 0

~ ~ 0.4
L1. §

o 0.2
u

o
o 20 40

, I
60 80 100 120

Bin No. (1bytelbin)

Figure 3.5 Packet size distribution for Crim-Sky (svr-cli) Group-combat, 4 players

28

140

140

Chapter 3 rcp -Based Application Data Analysis

With an increasing number of players, or increasing intensity of combat, the packet size

distribution appears to remain stable as shown in Figure 3.4 and Figure 3.5, although a

few packets of other sizes are also observed.

Gaming Conditions Chi-Value Critical value 95% Freedom

Free-fly 2 players 0 3.940 10

Free-fly 4 players 0.9416 3.940 10

One-on-One combat 2players 1.4237 5.226 12

One-on-One combat 4 players 1.2250 4.574 11

Group combat 4 players 1.7428 5.226 12
..

Table 3.1 ChI-square analYSIS results for Cr/m-Sky under different gammg conditIOns

The Chi-square values for different gaming conditions tested against the distribution for

the condition of Free-fly 2 player (server to client direction) has been calculated and

summarized in Table 3.1. All packet siz~ distribution profiles have been accepted as

coming from the same sampling population with a confidence of95%. Thus, consistency

is proven. The client to server direction presented a similar result, although no details are

given here.

Networked Game WarCraft III

In contrast to Crimson-Sky, the popular Internet game, WarCraft III [BIi02], uses only

one session for the purpose of communication. The profiles in both directions are shown

in Figure 3.6 and Figure 3.7. These are distributions that were captured from a whole

battle process. The predominant packet size was 9 bytes with smaller counts for larger

packets in the server to client direction and 6 bytes in the reverse direction.

29

Chapter 3 TCP-Based Application Data Analysis

i O.B+---1r--~
>-~
u ro +----t---~ " E 0.6
Q) ~

" 0
~ ~ 0.4+----t------------------~--------------------------------~

L1. §
8 0.2+----1·---1

O~~~~~~~~~~~~~~~~~~~~~~~~~~~

o 20 40 60 BO
Bin No. (1bytelbin)

Figure 3.6 Packet size distribution/or WarCrajl III (svr-cli) overall

i O.B +--I--------------------------~
>.~
u ro 5i E 0.6 +--t---j
" 0 g ~ 0.4+--+---j
LL§

8 0.2 +--I---j

O~~~~~~~~~~~~~~~~~~~~~~~~~

.0 20 40 60 BO
Bin No. (1bytelbin)

Figure 3. 7 Packet size distribution/or WarCrajl III (cli-svr) overall

As for Crimson Sky, the profiles in both directions remained stable with increasing

number of players, while under different intensities of battle. The inbound stream under

serious intensity was seen to have slightly lower peaks compared to the mild case. The

counts obtained for larger packets were seen to be slightly larger compared with those for

smaller packets. The profile shapes were in general, similar, however (Figure 3.8 and

Figure 3.9).

30

Chapter 3 TCP-Based Application Data Analysis

~ 0.8r--f---~
>-~ u .,
" E 0.6 +---/--------------------------1
Q) ~

" 0
~ ,g. 0.4 +--t--------------------------1
LL §

8 0.2r--~-------------------------_1

o 20 40 60 80
Bin No. (1bytelbin)

Figure 3.8 Packet size distribution for WarCrajl III (svr-cli) high intensity fight

~ 0.8r--~---4
~~
:fi ~ 0.6 +--t---------------------------I
1}0
i!! ,g. 0.4 f--I---------------------------I
LL §

8 0.2+--1---------------------------1

O~~~~~~nn~~~~~~~~~~~nn~~~~~~~~~

o 20 40 60 60
Bin No. (1bytelbin)

Figure 3.9 Packet size distribution for WarCrajl III (cli-svr) high intensity fight

Gaming Conditions Chi-Value Critical value 95% Freedom

Integrated Battle 2 players 0 40.645 57

Low Intensity Battle 2 players 2.9999 45.741 63

Low Intensity Battle 4 players 4.4129 54.325 73

High Intensity Battle 4 players 3.5053 49.162 67
.. Table 3.2 Chi-square analysIs results for WarCrajl III under different gammg conditIOns

The Chi-square values between the profiles under different running conditions are given

in Table 3.2, with a confidence value of 95%. As seen, the distributions are similar.

31

•

Chapter 3 rCP-Based Application Data Analysis

Networked Multimedia Software RealPlayer

RealPlayer [ReaIOO] is a widely used media player. It utilizes the RTSP protocol

[BaiSWCOO] developed by Real-Network Ltd. to provide a multimedia service across the

Internet. The profiles for playing a number of files with different bit rates have been

obtained and shown in Figure 3.10. Traffic is only available in the server to client

direction, no traffic in reverse direction was observed (except the ACK packets without

any payload) as one would expect because of the nature of the video/audio service.

0.25

'C 0.2 Q)

>.~ " ~ 0.15 ~ E
~ 0
.,.~

0.1 ~:::t
u.. ~

~
~

0 0.05 u
0 J

0 200 400 600 BOO 1000 1200 1400

Bin No. (1bytelbin)

a

0.25

'C 0.2 Q)

>.~ " ~ ij; E 0.15
~ -.,.0
~ § 0.1

u.. ~
~

I 0 0.05 u j
0

0 200 400 600 BOO 1000 1200 1400

Bin No. (1bytelbin)

b

0.25

'C 0.2 Q)

>.J::! " ~ 0.15 lii E
~ 0

iifs 0.1
LLi:

~
0 0.05 u

~ 0

0 200 400 600 BOO 1000 1200 1400

Bin No. (1bytelbin)

C

Figure 3.10 Packet size distributions/or RealPlayer while playingfiles at different bit rates

a. 225 kbps
b.450kbps
c.600kbps

32

Chapter 3 TCP-Based Application Data Analysis

The profiles (Figure 3.10) indicate that the packet size distributions shifted rightward

with increasing bit-rate of the media files, although the shapes of the profiles appear to

remain similar. As such, poor packet size distribution consistency was expected. Another

problem is that most of the traffic had been transmitted in the packets that are at the size

of the MTU. Different clips with various coding bit-rates were subsequently tested and

Chi-square values were summarized as follow (Table 3.3).

225 kbps(Clip I) 450 kbps(clip I) 600 kbps(clipl)

225 kbps(clip 2) 11.573(accepted) I 94. 999(rejected) 198. I 32(rejected)

450 kbps(clip 2) I 93.899(rejected) 16.655(accepted) I 99.999(rejected)

600 kbps(clip 2) I 99.999(rejected) I 89.234(rejected) 21.333(accepted)

Table 3.3 Chi-square analysIs results for RealPlayer for different bit-rates

Other media players show a similar trait as RealPlayer. In addition, media files coded

using the same scheme encoding at the same bit rate would show the same profile

regardless of the format of them or on which application they are played back. As a result,

it may be quite difficult to identify the operating application by matching the packet size

distributions at the application level. However, the packet size distribution profile

provides the ability to identify the general class of the application, i.e. media streaming in

this case.

Traditional TCP Applications

Some traditional TCP applications were also investigated. These traditional applications

are not real-time and the traffic they generate is often based on manual input or the

content transferred. The packet size distributions of these applications hence could be

seriously subject to factitious factors.

33

Chapter 3 TCP-Based Application Data Analysis

HTTP Browser

c 8 il 0.8
>.!:! 0.6 -1----------------------------.-1
u ..

~ ~ 0.4 -/---------------------------1-1
! .:. 0.2 +---------------------------H
u.

o 200 400 600 800 1000 1200 1400
Bin No. (lbyteJbin)

c " _ 0.8 +---------------------------H
8il
>.!:! 0.6 +-~-------------------------H
u ..
lii E 0.4 +---------------------------1-1
" 0 ! .:. 0.2 f---------------------------H
u.

O~~~~~~~~~~I~~~~~~~~~~~~~~~~

o 200 400 600 800 1000 1200 1400
Bin No. (lbyteJbin)

Figure 3.11 Packet size distributions for HTTP

Figure 3.11 shows the profiles for the HTTP [FieGMFB97] while opening two different

website pages. Most of the packets were transmitted at the size of the MTU, a few of

them are not. Even discounting all the MTU size packets, the distributions still represent

no common ground at all as the Chi-square value between them is 196.3433, which was

too high to accept the hypothesis that the two profiles came from same random

distribution population.

uk.www> bo.mshome.net.supfileby: . 197642:199102(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby:.P 199102:199223(121) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: . 199223:200683(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: P 200683:201137(454) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: .201137:202597(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: .202597:204057(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: . 204057:205517(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: . 205517:206977(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: . 206977:208437(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: P 208437:208597(160) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: . 209897:211357(1460) ack 2669 win 16483
uk.www> bo.mshome.net.supfileby: . 211357:212817(1460) ack 2669 win 16483

Figure 3.12 Dumpedfile details for HTTP

34

Chapter 3 TCP-Based Application Data Analysis

Looking more detailed at the dumped files (Figure 3.12), all the packets that are not at

the size of the MTU come with the flag PUSH set, following several MTU packets

without this flag set. This may result from the fact that a webpage cites a number of

images, Flashes or other sort of files which would be sent in a few continuous packets and

when the single file has been transmitted, the last packet would be flagged as PUSH

(highlighted in Pink) so that Tep can submit it to the browser at once, thus, the last

packet should be the tail of such a file transportation. Since different websites will contain

different files, the packet size distribution will show diversity. Hence, they cannot be

considered as a signature to identify the HTTP traffic.

FTPandSMTP

The FTP and SMTP share a common feature, which is that they 'establish two sessions for

one transportation process-a command/control session and a data transmission session.

Generally, the packet sizes of the command/control sessions are always the length of the

commands they receive while that of data transmission session are decided by the actual

data that FTP or SMTP transmits [PosR85] [Pos82]. Obviously, the command lengths

will depend upon the users' input and thus will show no consistency at all, which has

been experimentally demonstrated and shown below (Figure 3.13, Figure 3.14).

35

0.12
:g 0.1

g ~ 0.08

~ 00.06
".E. tt ~ 0.04

=>
8 0.02

o

0.12

" " 0.1
>-J;:!
g ~ 0.08
~ <50.06
<T"
~ :g- 0.04

=> 8 0.02

o

o

o

Chapter 3 rCP-Based Application Data Analysis

-

I I
111.11 I I 1.1

20 40 60
Bin No. (1bytelbin)

a

I • 11111 I I • I .1 -;1· 11 -1-1---ll I •
20 40 60

Bin No.(1byteJbin)

b

Figure 3.13 Packet size distribution/or FTPcontrol-command sessions

0.12
:g 0.1

~~ 0.08
" E ~ 00.06
".E. u: 1: 0.04

=> I •

I •

80

I
80

8 0.02

o I I • I h I I I. I I • I. I I I I •

0.12
:g 0.1

~~ 0.08
" E ~ (; 0.06
<T" e "-004

LL " • 80.02

o

o

o

20

I
11 I I III 1.1

20

40 60
Bin No. (1bytelbin)

a

I
I I I I 11

40 60
Bin No. (1bytelbin)

b

Figure 3.14 Packet size distribution/or SMTP control-command sessions

36

80

I
80

Chapter 3 TCP-Based Application Data Analysis

The packet size distributions of the data transmission sessions are similar to the HTIP

transmission. One file (may be one e-mail in SMTP) will be transmitted in a few

continuous packets, which are always the MTU size except the last one, which is a tail

packet (Figure 3.15, Figure 3.16). This can be useful as by watching which bin size

represents as a peak except the MTU, it may be possible to detect certain abnormal

behaviour such as spam or virus transmission, but this is not what this work concentrates

on and will not be discussed further.

~ 0.8+--1
>.J;:f
u .. ii E 0.6 +--1-1
g.o
i" ,g. 0.4 +--1-1
"- 5

8 0.2+--1-1

o 200 400 600 800 1000 1200 1400
Bin No. (1bytelbin)

Figure 3.15 Packet size distributions for FTP data transmission session

~ 0.8+---~
>.~
u .. ii E 0.6 +--1
g.o
~ § 0.4 +--1
"-5 1 8 0.2+---111~

O~~~~~~~~~~~~~~~~~~~~~~~~~

o 200 400 600 800 1000 1200 1400
Bin No. (1 bytelbin)

Figure 3.16 Packet size distributions for SMTP data transmission session

SSH

The profiles of SSH (Figure 3.17) are quite interesting. SSH provides cryptography and

authentication technologies for secure remote login, which means all the packets are

encrypted [SshOS]. For the traditional remote login protocol TELNET [PosR83] which

works with the. Nagle Algorithm of the TCP protocol, command characters will be

buffered and not be sent out until the next sending instant is due and the

acknowledgement of the last packet sent has arrived. As such, packet sizes are both

command-sensitive and affected by the state of the network connection. The profiles of

37

Chapter 3 TCP-Based Application Data Analysis

SSH were seen to be significantly different from those of traditional remote login

protocols. Under ideal network conditions which means no delay and no loss, every

keyboard stroke would force the SSH client to generate a single 44 bytes packet without

any buffering by TCP, thus, the packets that contain command information (direction

Client to Server) were all 44 bytes and the profile show a robust consistency during the

tests in which a number of different commands had been operated, while some packets

other than 44 bytes were observed among those containing feedback information

(direction Server to Client).

"0

~~ 0.8

:i5 E 0.6 t---------------i------------------1
" ~ <To " .s 0.4 +---------------t----;---------------1
U:c

i5 0.2 t---------------i------------------1
u

o 20 40 60 80
Bin No. P bytelbin)

a

'0
,.,~ 0.8 t-----------------------------1
0'" :i5 E 0.6 t-----------------------------1
" ° :if .s 0.4 +--------------------1---------_1
u:"E

i5 0.2+-------------.------~--------_1
u

° 20

Figure 3.17 Packet size distributionfor SSH

a. Clienllo Server
h. Server 10 Clienl

40 60 80
Bin No. (1bytelbin)

h

In several later rounds of tests, some commands different from the first round were

executed so as to obtain more distribution profiles. Profile plots of a certain round are

given in Figure 3.1S. The Chi-square analysis mathematically indicates that only the

profiles of client to server direction support the hypothesis that those profiles were from

38

Chapter 3 TCP-Based Application Data Analysis

the same random distribution population (Chi-square value was 0, critical value with 95%

confidence 0.270) but not in the client to server direction (the Chi-square value was

83.033, critical value with 95% confidence 8.343).

'C
w O.S+-----------------------~------------------------------~

>.~
u '" iii E 0.6 +------------------------1-------------------------------1
&0
w .s 0.4 +------------------------1-------------------------------1
U: C

g 0.2 +-----------------------~------------------------------~
(,)

'C ,.,1l O.S
u '" iii E 0.6
&0
w .s 0.4
U:C

5 0.2
(,)

o

o 20

o 20

Figure 3.18 Packet size distribution/or SSH

a. Client to Server
b. Server to Client

40 60 so
Bin 1\10. (1bytelbin)

a

I I I
40 60 so

Bin 1\10. (1byte/bin)

b

SSH has shown its robust packet size distribution consistency, at least, in one direction, in

this case, further analysis would be valuable.

3.3.2 The Effect of Network Load on The Packet Size Distributions

In addition to the effect of running conditions, one must also consider the effects of

network load, which could potentially affect the application signature [FenFW02j

[HenOI]. The analysis below describes the results obtained with a number of samples of

real-time applications operating under varying conditions of emulated load on the

39

Chapter 3 TCP-Based Application Data Analysis

Ethemet test network. For the tests conducted with network load, sessions of each

application were run and the traffic stream perturbed by the introduction of packet loss

and/or delay by the Loaded Network Emulator.

Networked Game Crimson-Skies

Network Condition Emulated

'" Q) 0.8
il'~
:ii ~ 0.6
6-0
Q) .s 0.4
~ -u. c:

5 0.2
u

o
o

Packet Loss Ratio (percentage) 0

Packet Delay (ms) 100

I I
20 40 60 80 100

Bin No. <1 bytelbin)
120

Figure 3.19 Packet size distribution for Crim-Sky under low-load network condition

140

Figure 3.19 shows the low-load packet size distribution profile of the server to client

traffic generated. The profile in the reverse direction observed was similar to the server to

client direction. The predominant packet size was 40 bytes with a minor peak at 56 bytes.

The difference between it and that under ideal network conditions (Figure 3.2) cannot be

visually seen.

40

Chapter 3 rCP-Based Application Data Analysis

Network Condition Emulated

" Q) 0.8
~~
g ~ 0.6
g.o
Cl) .s 0.4
~ -l1. c:

5 0.2
<.l

o
o

Packet Loss Ratio (percentage) 3

Packet Delay (ms) 150

I
20 40 60 80 100

Bin No. (1 bytelbin)
120 140

Figure 3.20 Packet size distribution for Crim-Sky under moderate-load network condition

Under the network condition of 3 percent loss ratio in conjunction of 150ms delay

(Figure 3.20), the counts obtained for 56 bytes packets were seen to be slightly smaller

comparing with those for 40 bytes packets. The profile shape was in general, similar,

however.

Network Condition Emulated

Packet Loss Ratio (percentage) 5

Packet Delay (ms) 300

A similar result was obtained under the condition of 5 percent packet loss ratio ID

conjunction of 300ms delay (Figure 3.21), packets of 40 bytes still dominate the

distribution with slightly higher or lower counts for the packets with size of 44 bytes, 56

bytes or 124 bytes. Even for the condition of 400ms delay (Figure not given), the
41

Chapter 3 TCP-Based Application Data Analysis

distributions remain stable. The profile was therefore very slightly different at this level

of load but perhaps still within the bounds of variation that one may expect to see in all

applications.

The consistency of the packet size distribution profiles under different network conditions

was then proven by a Chi-square test over these results. The results are given in Table

3.4. All Chi-square values are lower than the associated critical values of 95% confidence.

i O.B

~1 0.6

~~ 0.4
LL C

8 0.2

0 I
o 20 40 60 BO 100 120 140

Bin No. (1 byte/bin)

Figure 3.21 Packet size distributions for Crim-Sky under heavy-load network condition

Network Conditions Chi-Value Critical value 95% Freedom

No-load 0 3.247 10

Low-load 1.3343 3.816 11

Moderate-load 1.1275 3.816 11

Heavy-load 1.9344 4.404 12
.. Table 3.4 Ch,-square analysIs results for Cr/m-Sky under different network cond,tIOns

Networked Game WarCraft III

This game is attractive because it reflects the effects on the packet size distributions,

which are introduced by the congestion control mechanism of the rcp. The result is

corroborated by [She03].

42

Chapter 3 TCP-Based Application Data Analysis'

As described previously, WarCraft III established only one session connection during

gaming. The two packet transportation directions show different profiles, one can easily

tell which end is the server and which is the client.

Network Condition Emulated

Packet Loss Ratio (percentage) 3

Packet Delay (ms) 100

Firstly, consider the network condition of lOOms delay and 3% loss ratio (Figure 3.22).

In both directions, packet counts of 6 bytes and 9 bytes had retreated to secondary peaks,

other peaks at 12 bytes (client to server) and 18 bytes represented the first peaks in the

plots, packets at 18 bytes, 27bytes even 36 bytes also appeared.

'" ~~ 0.8

~ § 0.6
" 0 g .s 0.4
ate

i5 0.2
u

o . I
o

I
20 40 60 80

Bin No. (1 bytelbin)

a

'" ~~ 0.8

~ El 0.6 +-----------------------------1
g.o
~ £ 0.4+----1--------------------------1
ate

~ 0.2+----1--------------------------1
u

o 20 40 60 80
Bin No. (1 bytelbin)

b

Figure 3.22 Packet size distributions for WarCraft III under network condition of 100 ms delay

a. Server - Client
b. Client - Server

43

Chapter 3 TCP-Based Application Data Analysis

15:22:15.900514IP 158.125.50.57.1078 > 158.125.51.148.6112: P 10:19(9) ack 12 win 635
15:22:15.999984 IP 158.125.51.148.6112 > 158.125.50.57.1078: P 12:18(6) ack 19 win 167
15:22:16.000658IP 158.125.50.57.1078 > 158.125.51.148.6112: P 19:28(9)ack 18win 635
15:22:16.100127 IP 158.125.51.148.6112> 158.125.50.57.1078: P 18:24(6) ack 28 win 167
15:22:16.100881IP 158.125.50.57.1078 > 158.125.51.148.6112: P 28:37(9) ack 24 win 635
15:22:16.200216IP 158.125.51.148.6112> 158.125.50.57.1078: P 24:30(6) ack 37 win 167
15:22:16.200915 IP 158.125.50.57.10781 > 158.125.51.148.6112: P 37:46(9) ack 30 win 635
15:22:16.300285IP 158.125.51.148.6112 > 158.125.50.57.1078: P 30:36(6)ack 46 win 167
15:22:16.300952IP 158.125.50.57.1078> 158.125.51.148.6112: P 46:55(9) ack 36 win 635
15:22:16.400543IP 158.125.51.148.6112 > 158.125.50.57.1078: P 36:42(6)ack 55 win 167
15:22:16.401217IP 158.125.50.57.1078 > 158.125.51.148.6112: P 55:64(9) ack 42 win 634
15:22:16.500670 IP 158.125.51.148.6112> 158.125.50.57.1078: P 42:48(6) ack 64 win 167
15:22:16.501358 IP 158.125.50.57.1078 > 158.125.51.148.6112: P 64:73(9) ack 48 win 634
15:22:16.600785 IP 158.125.51.148.6112 > 158.125.50.57.1078: P 48:54(6) ack 73 win 166

Figure 3.23 Dumpedfile details of the WarCrafi III under ideal network condition

By examining the Tcpdump file (Figure 3.23), the original packets were sent with a fixed

interval of lOOms (highlighted in Red), whilst in the case of loaded network conditions,

these intervals were prolonged and no more packets were sent until the acknowledgement

of the outstanding packet had been arrived. This phenomenon occurring in WarCraft III

could have been caused by utilization of the Nagle Algorithm [Tan96]. It can also be seen

that the packet size varies according to network condition, and that the size mostly

increased by an integer multiple of the peak size of original profile, which was considered

to result from packet aggregation. If the network delays the returning acknowledgements,

the Nagle transmission mechanism would buffer any due packets and send a larger packet

containing multiple Application Layer messages at the next sending instant. This results

in an addition of the original packet size distribution, potentially a number of times when

due packets are increasing. One would expect that more packets would be aggregated

with worsening of the network condition in the following tests.

Network Condition Emulated

Packet Loss Ratio (percentage) 5

Packet Delay (ms) 200

44

Chapter 3 rCP-Based Application Data Analysis

With the worsening of network conditions, the aggregation phenomenon becomes even

more distinct (Figure 3.24) as expected. Further analysis could be used to identify the

Nagle-based application packet size distributions.

'0
Q) 0.8

(;'~
g ~ 0.6
::J ~
C' 0
Q) .s 0.4
U:c

g 0.2
()

o

'0
(;' ~ 0.8

~ E 0.6
::J ~
C' 0
Q) ..s 0.4
~ -
lL " g 0.2

()

o

I
o

I

o

I I
20 40 60 80

Bin No. (1 bytelbin)

a

I

I I

20 40 60 80
Bin No. (1 bytelbin)

b

Figure 3.24 Packet size distributions for WarCraft /If under network condition of200 ms delay

a. Server - Client
b. Client - Server

Network Condition Emulated

Packet Loss Ratio (percentage) 3

Packet Delay (ms) .0

Under the network condition of 3 percent loss ratio (Figure 3.25), the profile shows no

distinct difference from that under ideal condition although the losses may have resulted

in the resending of a few packets. This suggests that the simple loss of some packets

would not cause a variation of packet size distribution profile for Nagle-based

applications.

45

Chapter 3 TCP-Based Application Data Analysis

Table 3.5 gives the Chi-square test results, which show that the network delay condition

would significantly impact upon the packet size distributions for this Nagle-based

application.

'0
" 0.8

~~
~ § 0.6
::> 0

g.s 0.4
li:'E

i5 0.2
u

o

'0
" 0.8

~~
ai ~ 0.6
::> ~
.,.0
Q) ..s 0.4
.t'E

5 0.2
u

o

o

o

I

20 40 60 BO
Bin No. (1 bytelbin)

a

I

20 40 60 80
Bin No. (1 bytelbin)

b

Figure 3.25 Packet size distributions for WarCrafl 111 under network condition of 3 percent loss

a. Server - Client
b. Client - Server

Network Conditions Chi-Value Critical value 95% Freedom

No-load 0 49.162 67

Low-load 86.133 79.697 102

Moderate-load 196.355 105.560 131

Heavy-load 196.934 110.956 137

Loss Only 2.333 50.879 69
.. Table 3.5 Ch,-square analysIs results for WarCrafl 111 under different network conditIOns

46

Chapter 3 TCP-Based Application Data Analysis

Networked Media Player RealPlayer

Network Condition Emulated

Packet Loss Ratio (percentage) 3

Packet Delay (ms) lOO

0.25

~ 0.2
>-~ u .. 0.15 ai E
" 0 CT c 0.1 ~:;:::
"- c

" 0 0.05 ()

0 J
0 200 400 600 800 1000 1200 1400

Bin No.(1byte/bin)

Figure 3.26 Packet size distributions for RealPlayer under low-load network condition (600 kbps

bit rate)

As shown in Figure 3.26, in accordance with the result expected previously, while a 600

kbps clip was played, more traffic had been transmitted in the packets that are at the size

of the MTU while the network condition is worsening, this is also extended by packet

aggregation. Being different from networked games, the original packets released by

media players are much larger than those of games. Hence, the aggregated packets would

frequently exceed the MTU and are thus sent as an MTU packet with the remaining bits

pushed into next packet. The playbacks of other bit-rate clips followed similar profiles

(Figures not given).

Network Condition Emulated

Packet Loss Ratio (percentage) 5

Packet Delay (ms) 250

47

Chapter 3 rCP-Based Application Data Analysis

0.5,----------------------------,

i 0.4+---~----~
~~
:ij E 0.3 +----------------------------,.--1
" 5 g ~ 0.2 +----------------------------\--1
u:: §

8 0.1 +----------------------------I~

o 200 400 600 800 1000 1200 1400

Bin No.(1bytelbin)

Figure 3.27 Packet size distributions for RealPlayer under heavy-load network

With the network condition worsening, all the packets were at the size of the MTU

(Figure 3.27). This demonstrates the poor consistency of the packet size distribution of

networked media players.

Traditional TCP Applications

The profiles of HTTP under loaded network conditions show no difference from those

under an ideal network condition (Figure· 3.28). This is explainable, when the server

received the request from client, the full responding information will be submitted to the

Transport Layer at the same time, and then divided into packets that can be transmitted.

Thus all the packet sizes have been determined at the same time, the delay or loss of

packets will have no effect on them.

0.5,-------------------------------T,

i 0.4+--+4
>-~ u ro + ___________________________ .I~
:ij E 0.3
" 5 g ~ 0.2 +-----------------------------1--1
U: §

8 0.1 +----------------------------~I-~

o 200 400 600 800 1000 1200 1400

Bin No.(1bytelbin)

Figure 3.28 Packet size distributions for HTTP under network condition of 200 ms delay

48

Chapter 3 TCP-Based Application Data Analysis

It can be seen that SMTP and FTP were not affected by varied network conditions.

Figure 3.29 gives the profiles of the control sessions of the two protocols under loaded

network conditions. This should result from the Bulk Transportation mechanism they

deploy.

0.1

i 0.08
>- .~

§ I 0.06

~ "" 0.04 u. c

.3 0.02

o

0.1

i 0.08
>-.1:1
g ~ 0.06
~ 5
~ § 0.04
u. c

.3 0.02

o

1 1 I 1 11
o 20

•
1 11 ••• .,1 1 • T .1 .1 ••

o 20

I I I 11 1
40 60

Bin No.(1bytelbin)

a

• •
1 1 1 •

40 60
Bin No.(1byteJbln)

b
Figure 3.29 Packet size distributions under network condition of JOO ms delay

a. FTP control session
b. SMTP control session

1
80

1
80

SSH once again showed an interesting packet size distribution (Figure 3.30). In the

direction of client to server, the same aggregation phenomenon as that occurring on

WarCraft III was observed. The packet sizes, which are always 44 bytes under ideal

conditions, have been multiplied to 88 bytes or 132 bytes with worsening network

conditions, as shown in Figure 3.30. On the other hand, in the reverse direction, the

situation became more complicated. There seems to be some mechanism controlling

packet delay within SSH, the worse the network condition, the more packets of size 76

bytes being observed. As the packets of SSH are all encrypted, it is impossible to dig into

the data portion of the packet to find out what exactly happened. Therefore, the packet

size distribution profile from client to server is unique from all other applications seen.

49

,

Chapter 3 rCP-Based Application Data Analysis

i 0.8
>-:tt
u .. 0.6 ffi E
~ 0
ar.s 0.4 u: C

~
0 0.2 u

0 I I
o 20 40 60 80 100 120 140 160 180

Bin No. (1 bytelbin)

a

i 0.8
?;Jj
c .. 0.6 ~ E
~ 0 ar c 0.4 ~". u. c

~
0 0.2 u

0 I I I

o 20 40 60 80 100 120 140 160 180
Bin No. (1 bytelbin)

b

i 0.8
>-~
u .. 0.6 ffi E
~ 0

ar.s 0.4 u:1:
~
0 0.2 U

0 I

o 20 40 60 80 100 120 140 160 180
Bin No. (1 bytelbin)

c

i 0.8
»:t!
u .. 0.6 ffi E
~ 0
if.s 0.4 u: C

~
0 0.2 u

0 I I I

o 20 40 60 80 100 120 140 160 180
Bin No. (1bytelbin)

d
Figure 3.30 Packet size distributions for SSH under worsening network condition

a. Server - Client under 100 ms delay
b. Client - Server under 100 ms delay
c. Server - Client under 300 ms delay
d. Client - Server under 300 ms delay

50

Chapter 3 TCP-Based Application Data Analysis

Other traditional TCP-based applications (protocols) such as HTTP, FTP, SMTP and

TELNET, have shown very poor packet size distribution consistencies. These TCP based

applications, however, are standards-based. Web browsers and email clients must be so in

order to allow inter-operability with similar products from different vendors. The

detection of these applications, for example, in the case of web browsers, may require

knowledge of exactly what HTTP transaction is contained in the stream [FieGMFB97]

and this can only be done by extensive packet decode through knowledge of the HTTP

packet format and transmission mechanism. Commercial products allowing detection and

analysis of this type of non real-time application are already available and are not

therefore discussed in great depth in this work.

3.4 The Uniqueness Tests on the TCP Packet Size Distributions

It is now necessary to investigate the uniqueness of the packet size distributions for TCP

based applications, in order to determine if a TCP-based application can be differentiated

from the other applications by comparing its packet size distribution profile with those of

others.

The quantitative uniqueness between relevant distributions was investigated using a

database of packet size distributions against which new traces of applications could be

compared. The Chi-square test is designed to convert the differences (or deviations)

between the two into the probability of their occurring by chance, taking into account

both the size of the sample and the number of variables (degrees of freedom) [Sch88].

The selected in-database applications are five TCP-based games and the SSH application.

For those applications using the Nagle Algorithm, only the original (i.e. under ideal

network condition) profile was considered; the solution of the detailed detection method

for these applications will be discussed in Chapter 4. Table 3.6 gives the stored profile

numbers with corresponding application names.

51

-----_. __ ._ ..

Chapter 3 TCP-Based Application Data Analysis

StoredProfile Number Application Name

1-2 Nardar

3-4 Need For Speed III

5-6 Crimson Sky

7-8 Diablo 11

9-10 warCraft III

11 SSH-Client

Table 3.6 The stored profile numbers and correspondmg applicatIOn names

Crimson-Sky and WarCraft III

The plots below (Figure 3.31, Figure 3.32) show the Chi-square values of the tests on

Crimson-Sky and WarCraft III distribution profiles compared against those of six other

applications in the database. The horizontal axis represents the stored profile number. The

perfonnance of the uniqueness was good with the lowest Chi-square values occurring at

the profile number for Crimson-Sky (No.5, No.6) and warCraft III (No.9) respectively.

Very importantly, in these two cases, the correct applications were very well

differentiated from the other applications.

-+- Chi-Square Values ___ Critical Values with 95% Confidence

250

200

150

100

50

o -
2 3

" I
\ /
\ / ..

\. .L.------" --
4 5 678

Stored Application Numbers

Figure 3.31 Chi-square Values ojCrim-Sky against database (CIi-Srv)

52

.""
~

9 10 11

250

200

150

100

50

o
.....

Chapter 3 TCP-Based Application Data Analysis

__ Chi-Square Values --*-Critical Values with 95% Confidence

~ ~
~ /

-IL"'- / --- ~j

2 3 4 5 678 9 10 11
Stored Application Numbers

Figure 332 Chi-square Values ofWarCraft III against database (Cli-Srv)

APP- Chi- Critical value Critical value Next Chi- Critical

TEST Value 95% 50% cloest app Value value 50%

Crim 10.213 113.090 22.337 warCraft 196.226 37.335

Nadar 4.281 68.249 88.334 Diablo 191.131 88.334

WarCraft 3.505 47.449 64.335 Diablo 115.892 72.334

DiabloII 49.647 77.929 82.358 WarCraft 189.897 99.334

NFS III 0 0.351 0.584 SSH 200.000 1.064

SSH 0 0.351 0.584 NFS II 200.000 1.064

Table 3. 7 Results of Ch,-squared tests between different applicatIOn traces

Table 3.7 shows a general Chi-square summary for all application that had been tested.

For each application, the Chi-squared value resulting from the computation with the pre

stored trace for that application is shown, along with the corresponding 95% and 50%

confidence value (which varied according to number of degrees of freedom). The lowest

Chi-squared value resulting from the computation with a different application trace is also

given, again with the corresponding 50% confidence value. As the computation ignores

packet size probabilities of zero in both data sets, the confidence value varies from

application to application.

53

Chapter 3 rCP-Based Application Data Analysis

It is seen that, for all the applications shown, the lowest Chi-squared value always

occurred when the computation was performed with a trace from the same application. In

all cases, this Chi-square value is below the critical value for 95% confidence value. In all

. cases, the next lowest Chi-squared value from a different application is seen to be

significantly greater that the first, and much greater than the associated 50% confidence

value for this second choice application. Hence the second choice application must be

rejected in favour of the first. All the application traces are uniquely identifiable, and the

majority can be considered to be statistically unique for the database.

3.5 Summary

In this chapter, the consistency of the packet size distributions of the TCP-based

applications was tested. It experimentally shows that, for some applications, the packet

size distributions do not vary as the running conditions are changed. Networked media

players and traditional TCP applications however show different characteristics - the

packet size distributions vary significantly when different contents are transferred. In

addition, as discussed previously, some applications using bulk mode behave in the same

way as the UDP-based applications, the packet size distributions are consistent under

different network delay/loss levels, whereas some the Nagle-based applications aggregate

their packet size distributions as the network condition is worsening. For these

applications, analysis in advance is required in order to achieve the detection .

•

54

Chapter 4 TCP Applications with the Nagle Algorithm

CHAPTER

4
TCP Applications with the Nagle Algorithm

4.1 Introduction

The tests described in the previous chapter have illuminated that some TCP-based real

time applications show robust packet size distribution consistencies whereas others do

not. Those that do not have in common that the Nagle Algorithm has been adopted based

on the analysis ofthe Tcpdump output files (see Chapter 3).

In these applications, the packet sizes sent could be varied by loaded network conditions,

under which the data would be buffered by the TCP layer implementation and will not be

sent out until the acknowledgement of last outstanding packet has been received. In this

case, the packet size distribution profiles would therefore show poor consistencies,

however, the packet aggregations have some certain patterns to adhere to. We suggest an

approach and test this to perform application detection on the Nagle-based applications.

In this chapter, the approach is explained and its feasibility experimentally is proven.

55

Chapter 4 TCP Applications with the Nagle Algorithm

4.2 Methods of Aggregation Application Detection

Firstly, the methods discussed in this chapter are based on the results experimentally

obtained in Chapter 3, i.e. that the original (under ideal network condition) packet size

distributions of Nag le-based applications are consistent and detectable.

4.2.1 Methodology

During the operation of a Nagle-based application, the packet generation and the network

condition variation are two independent events as information about one of them does not

tell anything about the other one [HogMC06].

Let the original packet size be an independent discrete random variable X, and the

network condition be the second independent discrete random variable C. Due to the

nature of the Nagle Algorithm, in every time interval, the possible values of C can be

described as {condition that makes no aggregation, condition that the delay is enough for

2 packets being aggregated, condition that the delay is enough for 3 packets being

aggregated but not for 4 packets, condition that the delay is enough for 4 packets being

aggregated but not for packets, }, or simply defined as {Cl, C2, C3, C4, }.

Therefore, when aggregation occurs, we define a packet generated as an original packet as

a I st order packet, whilst we define a packet aggregated from 2 original packets as a 2nd

order packet (from 3 original packets as 3rd order, etc). A packet size distribution can

certainly consist of different order packets, however, the presence of each packet will not

affect the generation of the others. As such, let us simply consider the probability of a

single packet generation.

Under a loaded network condition, in every time interval, the probability of the
Lst-agg

generation of a I st order packet in an aggregated packet series, P. is:

P • I ,,- a g g = P a "g (n) . P (C I) (4.1)

"ig ()
where p. n is the probability of the generation of a n byte original packet. If the

generation of every single packet is an independent event which means that the generated

56

Chapter 4 rcp Applications with the Nagle Algorithm

packet size has no relation to the last packet generated, then the probability of a 2nd order

2nd-ogg

packet in an aggregated distribution with a given packet size n P. being generated

can be written:

, < •
p;"d-a gg = L p;rt g ,p::it·p(C 2) (4.2)

, .0

while that for the 3,d order is:

, < •
p~'d-agg = L P;"g ·p;~Z 'p(C,) (4.3)

, = 0

the equations for other orders can be derived in the same way. As a result, the probability

of a .given packet size n under a certain network condition p. agg is

p n agg = i
i = 0

ilh-agg
Pn (4.4)

IIh-agg

where P. is the probability for the ith order, and j is the maximum order of

aggregation.

Let the probability of an aggregated packet without consideration of the aggregating

pUh
probability P(C) be • , then

d 2nd· an Pn IS:

p~rd is:

'<.
2nd " plSI 1st p" = L..J le • Pn-k

k=O

Ie!>n ISn-k

3rd = ~ plst . (~ 1st. 1st)
Pn L... le L... PI Pn-k-I

k"'O 1=0

p~h can thus be iteratively written as:

57

Chapter 4 rcp Applications with the Nagle Algorithm

'.n
ith _ "'" plst • p(i-I)lh

PI! - L..J J; /I-A:
boO

or

'.n
ilh _ "'" p0rig • p(l-l)th

PI! - ~ k II-k (i> I) (4.5)

'·0

and rewrite (4.1), (4.2), (4.3):

p!,,-agg = p!" . p(C,)
(4.6)

(4.7)

(4.8)

Precedent research suggests that, for a real-time application, 300ms is a threshold delay

that a user can tolerate [Far02]. Therefore a maximum order of 4 was observed as the

greatest aggregation order number under this network condition and was adopted for this

work. The delay emulated in all tests was limited to 300ms. However, consideration for

higher order packets and greater delay could be made.

The packets generated by applications represent a time senes [Kan076j. They are

sometimes generated in an orderly manner [Far02]. For instance, a packet of 31 bytes

may always follow a packet of 30 bytes, or packets of 10, 35 and 50 bytes may always

appear continuously in the order of "35bytes, 10 bytes and 50 bytes". This is explainable.

For example, in an application, on events, e.g. the event I , which sends out a 30-byte

packet, will trigger an event2, which generates a 3 I-byte packet. As such, the generation

of every single packet would become a conditional probability event [How04]. This

circumstance must be considered as it may occur in practice. In this case, let the original

orig-con

probability of an n byte packet be P n , then (4.6), (4.7), and (4.8) can be rewritten:

!Sf-ogg-con _ orig-con (C)
Pn - Pa . P 1

, • n
p ;nd-agg-Co n = L p;r;g-con

, ·0

58

orig-con
. P n -,

(4.9)

'p(C,) (4.10)

Chapter 4 TCP Applications with the Nagle Algorithm

kS,
p~rd-agg-CQn = L p;r;g-con. p~~:-agg-con 'p(C

3
)

and (4.4) here is

k = 0

Pnagg-con = t
;= 0

ith-agg -con
Po

(4.11)

(4.12)

D' a", {C agg C a", C agg C agg}
For an aggregated packet size distribution 1st aunt" aunt, ' aunt, ,'" ount".o

Countagg
where ' is the number of packets of n bytes, we have:

(4.13)

where Sumagg is the total number of packets in an aggregation distribution. Since the total

number of packets of the i th order is:

Sum"h =Sumagg ·P(C,) (4.14)

(4.13) hence is:

Countagg = Sum'" . ph' + Sum"d . p"d + Sum"d . p'<d + Sum"h . p"h
n n n n n (4.15)

S irh
As such, with the availability of um ,using (4.15), the aggregated packet size

distribution of a known application under a given network condition can be theoretically

calculated. Alternatively, the original probability of a given packet size existing in an

aggregated packet size series can be extracted according to this equation.

Now, it is necessary to investigate the aggregated packet size distribution profiles to seek

S ith
a way to obtain um .

The plot in Figure 4.1 gives the profile of WarCraft III under a heavy-load network

condition. Let it be an unknown aggregated packet size distribution, which is defined as

Dist agg {Count,gg Count agg Count agg ... }
I' 2' 3'

59

Chapter 4 TCP Applications with the Nagle Algorithm

'0
" >.~ 0.8 " .,

c:
E " 0.6 =>

CT 0

~
c:

"" 0.4 u- c:
=>
0 0.2 u

18

I I -i 36
o

o 20 40 60 80

Figure 4.1 Packet size distribution for WarCrafl III under heavy-load network condition

Packet Size I 2 3 4 5 6 7

Probability 0 0 0 0 0 0 0

Packet Size 8 9 ID 11 12 13 14

Probability 0 0.9770 0.0002 0 0 0 0.0012

Packet Size 15 16 17 18 19 20 21

Probability 0 0 0 0 0.0003 0.0003 0

Packet Size 22 23 24 25 26 27 28

Probability 0.0003 0.0028 0 0 0 0.0003 0

Table 4.1 Orlgmal packet sIze dlstrzbutlOn values offlrst28 blnsfor WarCrafl III

Now, assume that Distogg is aggregated from the original distribution of War Craft Ill. The

normalized distributions for different order of WarCraft III are

Dist1S/{ I" pi" plst ... }
PI ' 2 ' 3 '

Dist'nd {p"d p"d p'nd ... }
I , 2 ' 3 '

Dist'nl {p"d p'nl p"d ... }
1 ' 2 ' 3 ,

Dist"h{p"h p"h p"h ... } I , 2 , 3 ,

Obviously, the bin number N whose value is non-zero for the (i) th order packet size

distribution is

NE {i·Min{n},i·Max{n}}
(4.16)

60

Chapter 4 TCP Applications with the Nagle Algorithm

where n is a non-zero bin in the original distribution.

Table 4.1 gives the probabilities of the first 28 bins of WarcarftIII (Cli-Srv) under ideal

network condition. More than 97% of the packets are generated as 9 bytes and 9 bytes is

the smallest packet size observed. According to Table 4.1, the Min{n} of WarCraft III is

9, so that the 2nd order packet size would all be greater or equal to 18 bytes, and all 9

bytes packets should have been generated as original packets which we refer to as a bin of

1st order. Thus, (4.14) here is:

and we have

Sum is/ = Countogg lp'" , ,

Thus, a theoretical packet size distribution for original packets

Distlst-theory {Count:SI-theOry ,Count~.!'I-lheory ,Count;,st-lheOry , ... } *'

can be calculated using

C t]:If-theory 1st C t agg / ,,,
Dun n ::::;:: P" . Dun 9 P9

(4.17)

(4.18)

(4.19)

Count 1st-theory

where n is the number of original(or named as I st order) packets of n bytes,

c ogg

ount, is the number of packets of 9 bytes in the unknown aggregated distribution.

Afterwards, remove all original packets using

C t temp - C ta" C tlU-theory
Dun n - oun n - Dun"

where Count:" is the number of the aggregated packets of n bytes. So far, an

intermediate distribution

Distkmp {Count''''P Count"mp Count"mp ... }
I' 2' 3'

61

Chapter 4 rcp Applications with the Nagle Algorithm

theoretically without any original packet has been obtained. Again, Min(n) of WarCraft

III is 9, according to (4.16), the 3rd order packet size would be all equal to or greater than

27 bytes, so all 18 bytes packets in Dist"m
p

should have been generated as 2nd order

packets. Thus, we refer to the bin of 2nd order equal to 18, and the packet size distribution

for those 2nd packets

Dist2nd-lheory {Count,2ni-lheory, Count;lld-lheOry, Count;nd-Iheory ", .}

can be calculated using

Count 2nd-lheo,y = p2nd .Count temp /p2nd
n n 18 18 (4.20)

a Dist"mp without original or 2nd order packet is therefore obtained using

C t temp o un n
= C t agg C t 2nd -theory o un n - ou n n

We repeat the steps above until the 4th order has been reached. Now, we have gained four

theoretical packet size distributions

D is! Ill-theory {C ou nt,lst-theory , C oun tist-lheory , C ount~.H-lheory ," ,}

Dist2nd-lheory {Count,2nd-throry , Count;nd-Iheory , Count32nd-theory, . .. }

Dist'ro-Ih'~Y{Count'ro-lh,ary Count'ro-Ih,ary Count'ro-dt,ary ... }
I , 2 ' 3 '

Dist4fh-theory {Count,41h-theory ,Count;th-theory, Count;th-theory",,}

Using

Count~ory = CoW1tb/-lkory +Count2nd - theOl'Y +Count3rrJ-lheory + Co 14th-theory
n n n nun" (4.21)

a theoretical aggregated distribution

DisttheOI)'{Count,heory Count theory Count'heory ... }
I' 2' 3'

62

Chapter 4 rcp Applications with the Nagle Algorithm

can be obtained and it should be theoretically equal to the unknown aggregated

distribution Dist
ayg

•

When an unknown aggregated distribution has been obtained, one could assume that it is

aggregated from a certain known original distribution Dist«", and the same method as

D . theory D' /heQl"y
above applied to it to calculate 1St . 1St can be described as "how should the

assumed distribution theoretically aggregate under the network condition which the

captured aggregated distribution had suffered". Afterwards, a Chi-square test is carried

out on Dist~'o,y against the captured aggregated distribution with the null hypothesis that

D ' /heOl'y D· « ..
"1St is aggregated from the assumed original distribution 1St ". Detections

thus are achieved.

An alternative method to identify the application is to reverse the previous approach.

Instead of obtaining Dist~'o,y , we try to extract the original packet size distribution from

an aggregated one Disto
yg

• Assume that an unknown aggregated distribution Disto
gg

is

aggregated from a known original distribution Dist«" . We have assumed that the

maximum aggregation order is 4, thus, according to (4.16), all packets whose sizes are

greater than 3· Mtn:{n} should have been generated as 4th order packet~. A referring bin

r
4

can be then chosen from {3· Max{n} , 4· Max{n}} to calculate

Dist4th-theory {CoUnJI41h-lheory ,Count:Ih-lheory ,Co unt:fh-theory",,}

using:

C t 4th-theory o un n = p:,h .Count,.agg /Pr:,h (4.22)

We then remove it from Dist
agg

using

= Count ogg _ Counl4lh-theory
n n

(4.23)

63

Chapter 4 TCP Applications with the Nagle Algorithm

Distkmp {Count kmp Count"mp Count'''''!' ... } . . th
So far, t' 2' 3' should theoretically contam no 4 order

packets, hence the 3,d order referring bin r3 can be chosen from {2· Max{n}, 3· Max{n}} to

calculate

Dis/3rd-theory {C ountI3rd-lheory, Count;,d-theory, Count;rd-theory, ... }

using

Co U n t 3rd -theory = p 3rd • C 0 U n t temp Ip 3rd
n n I) I) (4.24)

and remove it from Dist"m
p

.

Count temp = Count,em p _ CountJrd-theory
n n n (4.25)

We repeat these steps until the 2nd order theoretical distribution has been removed.

D · 1emp D' list-theory
1St therefore can be renamed as IS since it should theoretically consist of

only 1 SI order packets, and a Chi-square test can be undertaken on Dist"t-<h",y ~d

Dist~ig with a null hypothesis that" Dist
agg

is aggregated from the assumed original

distribution Dist~ig ".

Here, we have a problem. When a captured aggregated packet size distribution mostly

consists of high order packets, the extracted Distt"-'h'~y would be null or almost null and

. D' (i+l)lh-theory
therefore difficult to identify. The solution to this problem is that when 1St has

D' t"mp been removed from IS , if there are no (or almost no) lower order packets in the

distribution, Dist"m
p

would theoretically contain only (or mostly) i th order packets, as

such, Dist"m
p

should comply with the i th order disiribution Dist"h of the assumed

D' /emp D' Ith application. Hence, detection can be achieved by comparing 1St against 1St every

D · t(i+l)lh-lheory D' t"mp
time IS has just been removed from IS •

64

Chapter 4 TCP Applications with the Nagle Algorithm

4.2.2 Selection of Referring Bins

The referring bin for the i th order can be selected from

{(i -I)· Min{n}, i· Min{n}}

for the first method or from

{Max{n} ,(i + I)· Max{n}}

for the second method. However, since the generation of packet is a random event, the

packet size distribution may vary from case to case, therefore not every bin in the range is

suitable for use as a referring bin.

As the probability of each bin is different from each other, it is possible that, if the

probability of a certain bin is very low, a packet with a size of this bin will not appear in a

sampling interval. Also, if a low probability bin is chosen, the calculated theoretical

distribution may vary considerably with a tiny variation of the number of packets with

sizes of that bin from one sampling interval to another. For instance, for WarCraft Ill, if

10 bytes is chosen, in the first captured distribution, 2 packets of this sizes and 9770 9-

byte packets are observed, in the second one, 4 lO-byte and 9500 9-byte packets are

generated. In both captured distributions, sample population are 10000. The variation of

the number of thelO-byte packets «an be considered as "very tiny (from 2 to 4)"

compared to that of the 9-byte (from 9770 to 9500), the number of the 9-byte packets in

the two calculated theoretical distributions however will vary 2 times (4/ 2). On the other

hand, if 9-byte is chosen, the number of the 10-byte packets in the calculated theoretical

distribution will only vary 1.028 times (9770 / 9500). As such, basically, a bin with the

relatively high probability in the usable range should be adopted.

In some circumstances, all bins in the useable range are very small. In this case, several

bins could be adopted and theoretical distribution calculated for every non-zero bin

respectively, making the mean of values of all obtained theoretical distributions the value

of the final theoretical distribution in order to improve the accuracy of the methods.

65

Chapter 4 rcp Applications with the Nagle Algorithm

4.2.3 The Selection of Aggregation Method

To understand the reason that two methods have been proposed, it is necessary to explain

a simple example.

0.1 ,--,

~ 0.08 +-----------------/-------------1
>.4;t!
" .. a; E 0.06 +--------------
g.o
~ § 0.04 +--------------
u. §

8 0.02 +---------------:
OL---------------~

o 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Bin fib. (1bylelbin)

Fig.ure 4.2 A sample original distribution, which needs to use the second method

In the plot given by Figure 4.2, the general shape of the original (or I st order) packet size

distribution is quite different from that of WarCraft Ill, which shows an increasing trend.

In this sample, the original distribution spreads from 25 to 90, according to (4.16), the

usable range of referring bin for the 1st order is {O, 50}, however, all bins in this range

represent too small values to utilise the first method. On the other hand, as figure 4.3

shows, in the usable range of referring bins for the 4th order {270,360}, 3'd order

{180,270}, 2nd order {90,180}, the values of bins are much more reasonable, hence, it is

easy to chose referring bins for every order. As such, the second method is suitable for

this original distribution profile.

In practice, suitable methods may vary for any given packet size distribution. It is

necessary to decide which one should be adopted in respect of the actual distribution

profiles of known applications.

66

Chapter 4 TCP Applications with the Nagle Algorithm

4.3 Verification

To verify the feasibility of the proposed methods, a number of tests have been carried out,

and in this section, these tests are described.

The tests can be divided into two catalogues: real applications and emulated applications.

During the experiments, we had found that there were very few real Nagle-based

applications in practice. However, one would expect that there will be more Nagle-based

applications in the future [Pax94]. So, it is still necessary to verify the potential feasibility

of the methods mentioned above. A Nagle-based application emulator had been

developed in order to investigate the performance of the methods to identify a variety of

aggregated distributions.

4.3.1 The Generation of Sample· Original Distribution for Virtual

Applications

Of course, we cannot test all possible distributions. In order to verify that the methods are

generally feasible to all kinds of distributions, a hundred typical sample di~tributions were

generated. Three parameters were used to describe a distribution: distribution trend which

give the general shape; median position and spread, which quantitatively define the

profile position and range of non-zero bins of the distribution as shown in Figure 4.3. The

chosen values for these three parameters are summarized below in Table 4.2

67

Chapter 4 rcp Applications with the Nagle Algorithm

ion

Figure 4.3 Parameters to describe a distribution

Trends Increasing, Decreasing, Concave, Protruding, Random

Median Position 10, 20,50, 100, 200, 500

Spread 10,20,50,100,200

Table 4.2 Chosen parameters for vlr/ual appizcatlOn dlstrlbutlOns

The distances and value differences between two neighbour bins were generated

randomly. Using the above, one hundred sample application distributions have been

obtained.

4.3.2 Nagle-Based Application Emulator

The purpose of this tool is to emulate the packet generations of virtual Nagle-based

applications. It uses Client/Server architecture. Since the Nagle Algorithm is generally

performed by default by all the TCP implementations, the Nagle Algorithm is In

operation when the communication socket between the Client and the Server IS

established as long as we do not set the no_delay option while programming the socket.

Both ordered and non-ordered packet series can be generated based on the user's input.

When the pattern option is set as non-ordered, the emulator will simply generate a series

of packets using a random number generator, which complies with a user-input

68

Chapter 4 rcp Applications with the Nagle Algorithm

distribution. The packet size distribution so generated may show variation from the input

if a finite number of packets were generated, but, if the generated packet number is

infinite, the distribution would be no different from the input. If the ordered option was

set, the emulator would firstly seek a user-input table (Table 4.3 gives one line of an

example table) for the probability of the next packet size according to the size of the last

packet generated. If no ordered information for the last packet size is available or the

random generator return value shows that no ordered packet should be generated, the

emulator will simply generate a packet which complies with the use'r-input distribution,

otherwise, an ordered packet will be sent with the probability from the given table.

'" Next Packet 15 bytes 22 bytes 45 bytes 60 bytes Others oS

8 ~

Size Q)

'"
N

Q) r;;
>. - probability 15% 10% 5% 40% 30%
~ Q)

..><:
u

0 ,g: M

Table 4.3 A sample of ordered packet serles table

4.3.3 Tests of Real Nagle-Based Applications

Two real applications in this category are currently available----WarCraft III and SSH

Client. These tests used the same experimental system as that described in Chapter 3. For

WarCraft IU, both traffic in the client to server and server· to client directions were

captured while only client to server direction traffic for SSH-client is considered. The

packet size distributions were based on 1000 packet samples. All original distributions of

real applications and virtual applications had been stored in the database in advance so

that a captured distribution of the test application can be calculated and compared against

all the others.

69

Chapter 4 rcp Applications with the Nagle Algorithm

Network Game WarCraft III

Network Condition Emulated

I Packet Delay (ms) 150

The original packet size distribution profiles of WarCraft III in both directions are

represented in Figure 4.4 and Figure 4.5.

'2 O.S1-+-----------------------~
>.~
g ~ 0.6 +----+--------------------~-----___l
Q) ~

" 0
~ ,;. 0.4 +----+---------------------------1

Wo " 8 0.2+----+---------------------------1

o~~~~~~==~~~~~==~~~~~==~~==~~==~

o 20 40 60 so 100 120 140
Bin No. (1bytelbin)

Figure 4.4 Original packet size distribution of War Craft III (cli to srv)

u
Q) o.s +--1----------------------------1

>.:!::!
" '" ~ E 0.6 +--·1----------------------------1
~o
~ ,;. 0.4 +--·1----------------------------1
u. §

8 0.2 +--+----------------------------1

o~~~====~~~==~~~====~====~==~==~==~
o 20. 40 60 so 100 120 140

Bin No. (1bytelbin)

Figure 4.5 Original packet size distribution of War Craft III (srv to cli)

70

Chapter 4 TCP Applications with the Nagle Algorithm

1000

C 800

S 600 g
"! 400
W

200 u.

0
0 20 40 60 80 100 120 140

Bin No. (lbyte/bin)

Figure 4.6 Captured aggregated distribution/or WarCrafl III under the network condition 0/
150ms de/ay (srv to cli)

1000

C 800
~
0

0 600
~
c
m 400 ~
0-
~ u. 200

0
0 20 40 60 80 100 120 140

Bin No. (1 byte/bin)

Figure 4. 7 Theoretical aggregated distribution calculated/rom the original distribution 0/
WarCrafl I/I (cli to srv)

200r---,

C 160 t---------------·'I----------
~
o
o 120 1---1\-

u.

(80 t---jf-

40 +---j~

o 20 40 60 80

Bin No. (lbyte/bin)

100 120 140

Figure 4.8 Theoretical aggregated distribution calculated/rom the original distribution 0/
another virtual application (cli to srv)

71

Chapter 4 TCP Applications with the Nagle Algorithm

600r---,

E 500+------;--~
" 8 400+-------1--~ ,.,
g 300+------1--~
" &200+---1~--1--_;·--~
!!
~ 100 ------~---I---__4

O~~~~~~~~~~~~~~~~~~~~~~~~=m~~~~nJ

o 20 40 60 80 100 120 140

Bin No. (lbyte/bin)

Figure 4.9 Captured aggregated distribution for WarCraft III under the network condition of

150ms delay (srv to cli)

600

E 500

S 400

i 300

~ 200 r--
~ 100

0
0 20 40 60 80 100 120 140

Bin No. (lbytelbin)

Figure 4.10 Calculated theoretical aggregated distribution from the original distribution of

WarCraft III (cli to srv)

BOO
700

E 600 " 8 500
~ 400
~ 300
~ 200
~

100
0

i~~I§I
1-
1-
1- -

IUt "" 'n-.rr,. ~

o 20 40 60 BO 100 120 140

Bin No. (1byte/bin)

Figure 4.11 Theoretical aggregated distribution calculatedfrom the original distribution of

another virtual application (cli to srv)

72

Chapter 4 rcp Applications with the Nagle Algorithm

For WarCraft III, the theoretical aggregation method was employed. In Figure 4.6, the

plot gives the captured packet size distribution using Tcpdump. A peak appeared at 12

bytes with a minor peak at 6 bytes, and some 18 byte packets were also observed. It

appears that packets from the 1 ",2nd and 3rd order were all present in the sampled

distribution. Figure 4.7 then gives the calculated theoretical distribution profile from the

original packet size distribution of WarCraft III. Another plot (Figure 4.8) which shows

the calculated theoretical distribution profile with a virtual application (Decreasing,

Median Position 50, and Spread 50) is also given here. It can be visually seen that the

theoretical profile calculated from the original distribution of WarCraft III was very

similar with the sampled one whilst the other distribution from the virtual application is

not. The reverse direction presented the same result as indicated by Figure 4.9 to 4.11.

The following plot (Figure 4.12) gives the result of the Chi-square tests on the captured

distributions of traffic from both directions against all the calculated theoretical

distributions from the in-database distributions generated by the Nagle application

emulator.

73

Chapter 4 TCP Applications with the Nagle Algorithm
I

1000 .,
:J 800
~

600 i!!
t1J
:J 400 C"

"?
200 :E:

u
o -

0 10 20 30 40 50 60 70
In-Database ,Application Num ber

a

1000 ..
:J 800 ro
> 600 i!!
'" :J 400 C"

"?
200 :E:

u
0

0 10 20 30 40 50 60 70
In-Database ,Application Number

b

Figure 4.12 Su!"marization of Chi-square tests for identification of WarCraft III

/L Client to Server
b. Server to Client

80 90

80 90

The red curves represent the Critical Value with 95% confidence. It can be seen that in

both directions, only at the In-Database Application Numbers for WarCraft III-Server-to

Client (I) or WarCraft III-Client-to-Server (2) have the Chi-square values lower than the

critical value.

Network Condition Emulated

I Packet Delay (ms)

74

Chapter 4 TCP Applications with the Nagle Algorithm

600

o I
o 20 40 60 80 100 120 140

Bin No. (1bytelbin)

Figure 4.13 Captured aggregated distribution for WarCraft III under the network condition of

300ms fixed delay (srv to cli)

600

C 500

S
i
1

400

300

200

100

o
o 20

I
40 60 80 100 120 140

Bin No. (1 bytelbln)

Figure 4.14 Theoretical aggregated distribution calculated from the original distribution of

WarCraft III (srv to cli)

700

C 600

" 500 8
~

400

~ 300

~ 200
u.

100

0
0 20 40 60 80 100 120 140

Bin No. (1bytelbin)

Figure 4.15 Theoretical aggregated distribution calculated from the original distribution of

another virtual application (srv to cli)

75

Chapter 4 TCP Applications with the Nagle Algorithm

700

C
600·

B soo

~
400

~ 300

~ 200
"- lOO

0

I
I I

o 20 40 60 80 100 120 140

Bin No. (lbytelbin)

Figure 4.16 Captured ggregated distribution for WarCraft III under the network condition of

J 50ms delay (srv to cli)

700

I
I I

600

~

J
500
400

300

200

100

o
o 20 40 60 80 100 120 140

Bin No. (1bytelbin)

Figure 4.17 Theoretical aggregated distribution calculated from the original distribution of

WarCraft III (srv to cli)

C 100
:l
0 80 u
>- 60 0
c:

" :l 40
C"
~
u. 20

0
0 20 40 60 80 100 120 140

Bin No. (lbytelbin)

Figure 4.18 Theoretical aggregated distribution calculated from the original distribution of

another virtual application (srv to cli)

76

Chapter 4 TCP Applications with the Nagle Algorithm

Under this network condition, from Figure 4.13, very few 9 bytes packets had been

observed, most packets were aggregated as 2nd or 3'd order packets. A similar

circumstance was seen in the reversed direction (Figure 4.16) The method had

successfully calculated the theoretical aggregated distribution from the original

distribution of warCraft III (as indicated in Figure 4.14 and Figure 4.17) and

mathematically differentiated from those calculated from other In-Database distributions

as shown by the Chi-square analysis (Figure 4.19). Calculated theoretical aggregated

distributions with another distribution are also given (Figure 4.15 and Figure 4.18) here

for visually comparison.

1000

., 800
::J

~ 600
i!!
tU

400 ::J
0-

ff? :;:: 200
u

0

0 10 20 30 40 50 60 70 80 90
In·Database ~plication Number

a

1000

" 800
::J

~ 600
!!
m
::J 400
/1
:;:: 200 U

0
0 10 20 30 40 50 60 70 80 90

In-Database Application Number

b

Figure 4.19 Summarization o/Chi-square tests/or identification o/WarCrajt 111

a. Client to Server
b. Server to Client

77

Chapter 4 TCP Applications with the Nagle Algorithm

Network Condition Emulated

Packet Loss Ratio (percentage) 5

Packet Delay (ms) litter (50-300)

This network condition is closer to a WAN environment in practice. The delay was

jittered from 50ms to 300ms randomly for every packet that passed through LNE.

300

I 50

100 - - I--
-

150

o
o 20 40 60 80 100 120 140

Bin No. (1bytefbin)

Figure 4.20 Captured aggregated distribution ofWarCrafl III under the network condition of

300ms delay (srv to cli)

300

"
250

8 200 ;--

~ 150 ;--c
~

100 ~
"- 50

0
0 20 40 60 80 100 120 140

Bin No. (1bytelbin)

Figure 4.21 Theoretical aggregated distribution calculated from the original distribution of

WarCrafl III (cli to srv)

78

Chapter 4 TCP Applications with the Nagle Algorithm

300

"
250

S 200

g 150
~ 100
~
"- 50

0
0 20 40 60 80 100 120 140

Bin No. (lbytelbin)

Figure 4.22 Theoretical aggregated distribution calculated from the original distribution of

another virtual application (cli to srv)

300

"
250 -

S 200 -

i 150 -

~ 100

"- 50

0
0 20 40 60 80 100 120 140

Bin No. (1bytelbin)

Figure 4.23 Captured aggregated distribution of War Craft III under the network condition of

jittered delay (srv to cli)

300

"
250

8 200

?; 150 c
~ 100 ~
"- 50

0
0 20 40 60 80 100 120 140

Bin No. (lbytelbin)

Figure 4.24 Theoretical aggregated distribution calculated from the original distribution of

WarCraft JJJ (cli to srv)

79

Chapter 4 TCP Applications with the Nagle Algorithm

1000

E 800

8 600
~
~ 400

~
200 "-

0
0 20 40 60 80 100 120 140

Bin No. (1byte/bln)

Figure 4.25 Theoretical aggregated distribution calculatedfrom the original distribution of

another virtual application (cli to srv)

Under this kind of reality-similar network condition, much more the high-order packets

were observed. The numbers of I SI and 2nd order packets are very similar, with little

decrease for the numbers of 3'd and 4th order packets (Figure 4.20 and Figure 4.23). The

analysis method had again generated theoretical aggregated packet size distributions,

which were similar to the captured ones with the original packet size distributions of

WarCraft III in both directions (Figure 4.21 and Figure 4.24). Those generated using the

incorrect original distribution did not (Figure 4.23 and Figure Figure 4.25). The results

of Chi-square tests are also summarized below (Figure 4.26). Again, the Chi-square

values were only accepted at the application numbers of War Craft III itself.

80

1000

~ 800

~ 600 i!!
'" g. 400

Cl?
:c: 200 u

o

1000

~ 800
m
> 600
i!!
'" g. 400

Cl?
:c: 200 u

o

o

o

Chapter 4 TCP Applications with the Nagle Algorithm

10 20 30 40 50 60 70 80 90

In-Database Application Number

a

10 20 30 40 50 60 70 80 90

In-Database Application Number

b

Figure 4.26 Summarization of Chi-square tests for identification of WarCraft III under network

condition ofjittered delay

a. Client to Server
b. Server to Client

SSH-Client

As indicated ID Chapter 3, SSH-client generates a very simple original packet size

distribution under ideal network condition, only 44 bytes packets were observed in the

traffic captured (Figure 4.27). As such, only this bin and multiple of this bin can be

chosen as the referring bins for the purpose of calculation. In fact, either the first or the

second method is suitable for SSH-client. The second one was adopted here to test for

real applications.

81

Chapter 4 TCP Applications with the Nagle Algorithm

Network Condition Emulated

I Packet Delay (ms)

~ O.B~-----------1--~
>-~
0",
~ E 0.6~-----------1--------------------------~----------------~
g.o
.,.::.O.4+-------------t---I u:'E

g 0.2+-------------t---I
o

o 20 40 60 BO 100 120 140 160 1BO
Bin No. (1bytelbin)

Figure 4.27 Original packet size distribution ofSSH-Client III

~
i
I

700

600

500
400

300
200
100

o I

o 20 40 60

I

80 100 120 140 160 180

Bin No. (1bytelbin)

Figure 4.28 Captured aggregated distribution for SSH-Client under the network condition of 300

ms fixed delay

40
35

" 30 ~

8 25
g 20
~ 15
~ 10 u.

5
0

0 20 40 60 80 100 120 140 160 180

Bin No. (1bytelbin)

Figure 4.29 Theoretical original distribution calculatedfrom the original distribution ofSSH

Client

82

Chapter 4 TCP Applications with the Nagle Algorithm

Under this network condition, similar to warCraft III, very few packets were generated as

original packets (Figure 4.28). The original packet size distribution of the captured

distribution has been easily extracted (Figure 4.29) and identified using a Chi-square test

with a Chi-square value 0, which means "completely match". The results of the Chi

square tests are summarized below (Figure 4.30). Again, only at the SSH-Client, the

lowest Chi-square value was observed and was lower than 95% confidence critical value.

1000

Q) 800 ::J
m
> 600
~ ..
::J 400 e-en ,
:E 200 u

0

0 10 20 30 40 50 60 70 80 90
In·Database .Application Num ber

Figure 4.30 Summarization of Chi-square tests for identification of SSH-Client under network

condition of300msfIXed delay

Network Condition Emulated

I Packet Delay (ms) I litter (50-300)

350

E
300

5 250

g- 200

!Ij 150

[100
u.

50

0
0 20 40 60 80 100 120 140 160 180 200 220 240

Bin No. (1 byteJbin)

Figure 4.31 Captured aggregated distribution for SSH-Client under the network condition of

jillered delay

83

250

1: 200

8 150 g-
!!! 100
[

50 u.

0
0 20

Chapter 4 TCP Applications with theNagle Algorithm

40 60 BO 100 120 140 160 1BO 200 220 240

Bin No. (1 byte/bin)

Figure 4.32 Theoretical original distribution calculated from the original distribution of SSH

Client

Under this network condition, packets are produced in all orders. Also one 5th order

packet was observed as seen in Figure 4.31. The analysis extracted the theoretical
r

original packet size distribution. However, the fifth order packet has not been removed as

we had chosen 4 as the maximum order number (Figure 4.32). The Chi-square value

therefore was not "completely matched", but still acceptable with a critical value of 95%.

In practice, more orders could be included in the SSH-c1ient detection as its packet size

distribution is very simple, the increment of orders would not significantly increase

quantity of computation. The plot below shows the Chi-square test results obtained

(Figure 4.33). The acceptance occurred at the application number of SSH-Client.

1000

Cl)

"
800

Cii
> 600
~

'" " 400 er
"? :c

200 <.)

0

0 10 20 30 40 50 60 70 80 90

In-Database Application Number

Figure 4.33 Summarization of Chi-square tests for identification of SSH-Client under network

condition ofjittered delay

84

Chapter 4 rcp Applications with the Nagle Algorithm

4.3.4 Tests of Virtual Nagle-Based Applications

The testing objects in the following tests were virtual Nagle-based applications. We have

selected about a hundred typical distributions and entered them into the virtual Nagle

based application emulator described in the last section. For every distribution, either

random or ordered packet series were generated and captured based on 1000 packet

samples. Three of them have been .chosen for discussion· here. The others showed similar

results.

Virtual Application 1

The three parameters for the packet size distribution of this application and the original

distribution profile are shown in Figure 4.34. The packet order attribute of this

application was set as non-ordered with a packet rate of 5/sec. The reason for choosing

this configuration is because it has a large spread which is thought relatively difficult to

detect, in addition, for this application, the second method is preferred and the feasibility

of this was verified. The original packet size distribution of this virtual application

represents a general increasing shape of with a non-zero bin range of 1-122 as shown in

Figure 4.34.

Trend Increasing

Median Position 50

Spread lOO

Packet Series Non-Ordered

Id in Database 69

85

Chapter 4 rcp Applications with the Nagle Algorithm

3.506-02

'C 3.006-02

" >.~ 2.506-02
u ..
C E 2.006-02 " ~ => 0
C"c 1.506-02
~~
u.. § 1.006-02

0
u 5.006-03

O.OOE+OO
0 50 100 150 200 250 300 350 400 450

Bin No. (1bytelbin)

Figure 4.34 Parameters and profile of original distribution of virtual application 1

Network condition emulated

I Packet Delay (ms)

20r--,

~ 16

g 12~--------------_,-~
!! 8 t------------------.l11-I1
i
.t 4 1---------------

o j.,.,.,~~~.,+._..._!'r,JlYl1pl.
o 50 100 150 200 250 300

Bin No. (1byteJbin)

350 400 450

Figure 4.35 Captured aggregated distribution for virtual application 1 under the network

condition of 300 ms fixed delay

Figure 4.35 shows the aggregated packet size distribution profile for virtual application I

under the network condition of 300 ms fixed delay. The profile looks very complicated.

In the range of 366-488 bytes between which packets could be from the 4th order, many

packets had been observed. Quite a few low order (0-122) packets also appeared.

86

---- --------------------

Chapter 4 TCP Applications with the Nagle Algorithm

16,--,

"
14~---------------------1----------------------------------~

8~ 12~------------------,__H4_--------------------------------~ 10~------------------+_rr

g Br--------~
~ 6 ~----------------_Iij-1 4 ~--------------_m__lt

2~----------.__--_t

0J,-,-~~=~'rr.__f'n_\1'r'I'!"I__

o 50 100 150 200 250 300 350 400 450

Bin No. (lbyte/bin)

D · t"mp D' t 4th-thoery D' t3rd-lheory
Figure 4.36 IS after IS and IS were removed

0.02 ,_---,

~ 0.016 ~------------------___;_J__&_------------------------------___1
>,J;l!

" " ii; E 0.012 ~--~------------____;_
~ 5
~ :§. O.OOB ~--------------_____:
u. §

8 0.004 ~------------_____c

o b~~.,.".,Tn"""""""""
o 50 100 150 200 250 300 350 400 450

Bin No. (lbytelbin)

Figure 4.37 2nd order distribution of virtual application 1

Figure 4.36 gives the profile of Dist"m
p

after Dist',h-'ho"Y and Dist,,,Hh,,,y had been

removed from the captured packet size distribution Distagg . Figure 4.37 shows the profile

D · 2nd D' agg
of 1St for virtual application 1. It was mathematically accepted that 1St was

aggregated from the original packet size distribution of virtual application 1 because it

had a Chi-square value of 122.222 and the 95% confidence critical value was 176.556.

A virtual application (No.18 in database) original packet size distribution is give by

Figure 4.38, which has the same median position (50 bytes) and spread (lOO) but

different shape (concave). Figure 4.39 gives the theoretical original distribution extracted

using the original distribution of virtual application 18. Even visually, one can

immediately argue that the two profiles are from the different random distribution

population and were afterwards rejected mathematically with a Chi-square value 794.978.

87

Chapter 4 TCP Applications with the Nagle Algorithm

0.05.,-----------------------------,

~ O.M.--~
>.~
u '" ID E 0.03 -I.-:-----------------------------{
" 0
~ ,;. 0.02
u. §

8 0.01

o
o 50 100 150 200 250 300 350 400 450

Bin No. (1bytelbin)

Figure 4.38 Original distribution of virtual application 18

15,------------------------------,

~ 12

g 9~-------------------------
~ 6r-------------------------------~

! 3 t---------------------

o 50 100 150 200 250 300

Bin No. (1bytelbln)

350 400 450

Figure 4.39 Theoretical aggregated distribution extracted using the original distribution of

virtual application 18

The plot (Figure 4.40) below shows the profile of the theoretical aggregated distribution

calculated with another In-Database distribution (concave, median position 200 bytes, and

spread 200, No.25 in database) using the first method. It is definitely far away from the

captured one (Figure 4.3S) and was also rejected with a Chi-square value of 653.256.

88

Chapter 4 TCP Applications with the Nagle Algorithm

20,--,

~ 16

g 12 +---------
!'l 8j--,-----

I 4+-----
o j,.",~~~~

o 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Bin No. (1byte/bin)

Figure 4.40 Theoretical aggregated distribution calculated from the original distribution for

virtual application 25

Network Condition Emulated

I Packet Delay (ms) I Jitter (50-300)

The packet size distribution profile of virtual application 1 under a jittered delay network

condition seen in Figure 4.41 looks quite different from that under the 300ms fixed delay

network condition, It is difficult to determine how many I sI order packets in the range I

byte to 122 bytes were captured, as the 2nd order distribution ranges from 2 bytes to 244

bytes. In addition, many high order packets were also seen in this aggregated distribution.

50,--,

~ 40

30+---------~~-/!lf---_1 i 20 t--------rl:-

u. 10 t---------.

o 50 100 150 200 250 300 350 400 450

Bin No, (1bytelbin)

Figure 4.41 Captured aggregated distribution for virtual application 1 under the network

condition ofjittered delay

89

Chapter 4 TCP Applications with the Nagle Algorithm

Again, the Nagle-detection mechanism successfully extracted the original packet size

distribution using the original distribution of virtual application 1. The extracted

distribution is given in Figure 4.42. There were still some higher order packets that have

not been removed, and slight value variations at some bins, nevertheless, the Chi-square

test has accepted that this aggregated distribution was aggregated from the original packet

size distribution of virtual application 1. Mathematical results against other In-Database

applications are summarized in Figure 4.43. The red column represents the acceptance of

Chi-square test which occurred at the number of this virtual application.

wr--.
~ 40

30~------------11I1---~

u.
i 20 +----,-;\~-

10 j--------.

oj..,.,. __ ~

o 50 100 150 200 250 300 350 400

Bin No. (1bytelbin)

Figure 4.42 Theoretical original distribution extracted using the original distribution for virtual

application 1

1000

" 800 ::J

~ 600 f!? ..
::J 400 C"
'{'
:E 200 u

0

1 5 9 13 1721 25 29 33 37 41 45 49 5357 61 6569 737781 858993 97

In-Database I'pplication Id

Figure 4.43 Summarizations of Chi-square tests of identifying Virtual Application 1 under

network condition ofjittered delay

90

Chapter 4 TCP Applications with the Nagle Algorithm

Virtual Application 2

Trend Random

Median Position lOO

Spread 200

Packet Series Ordered

Id in Database 37

Figure 4.44 shows the profile of original packet size distribution for virtual application 2.

This distribution profile looks quite similar to a real application. Three major peaks at 34

bytes, 41 byes, and 64 bytes can be seen. Some other size packets are also seen with

relatively fewer numbers. The distributions for different order packets overlap each other

as given in Figure 4.45. Ordered packet series have been generated by the Nagle-based

Application Emulator with a packet rate of 7/sec which is also similar with those of some

real-time applications [ArmS04].

II
1.1 I. I I. 1 I I I

50 100 150 200 250 300 350 450
Bin No.{1 byleAIIn)

Figure 4.44 Original packet size distribution o/virtual application 2

91

Chapter 4 TCP Applications with the Nagle Algorithm

0.3

1
I
I

11 1
U 11I.IJJ,l L ,I

0.25 "E
,,~

8 ~ 0.2

g ~ 0.15
" ~ 5- g 0.1
Q)~

u: 0.05

o
1 100 200 300 400 500 600 700

Bin No. (1 bytelbin)

o 1st order - 2nd order -3rd order --'4th order

Figure 4.45 Distribution profiles for different orders of virtual application 2

Network Condition Emulated

I Packet Delay (ms) I Fixed 300

40,--,
35~------_.--+_--~

~ 30~------·1--1---------------------------------------~
o 25~----_.-1--.1~-1---~
~ 20~----~~--·H_-1---~

i ~~ j------,-----/l-
5 ~--jj,c_ltlct
o b-""""",,J,QliM

o 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Bin No. (1byteJbin)

Figure 4.46 Captured aggregated distribution for virtual application 2 under the network

condition of300 msfIXed delay

The second method was adopted for detection of this virtual application. As shown in

Figure 4.46, under network condition of 300 ms fixed delay, 1st order packets are few,

four major peaks occurred at 98 bytes, 128 bytes which are two primary peaks in the 2nd

order distribution, 162 bytes, and 192 bytes which are two primary peaks in the 3rd order

distribution. It can be deduced that this aggregated distribution consist~d mainly of 2nd

and the 3 rd order packets.

92

40
35

~ 30
o 25
ii' 20

I ~~
5
o Jjl

Chapter 4 rcp Applications with the Nagle Algorithm

I .1 01
~J LI J U JII,[.I1I,I, .1. I. I. ,.11

o 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Bin No. (1bytelbin)

D ' Iemp D' 4th-lhoery D' 3rd-lheory
Figure 4.47 1St after 1St and 1St were removed

'0 0.07
1l 0.06

~= a; § 0.05
g. 0 0.04
I!!,s
u.. ~ 0.03

" 8 0.02
0.01

o
I

IIJ

o 100

I .1.1 ,
Ill. I JI

200 300 400

Bin No. (1byte/bin)

Figure 4.48 2nd order distribution of virtual application 2

500 600 700

D · t4lh-lhoery D' tJrd-theory
The detection was achieved after IS and IS had been removed from

captured packet size distribution Dist
Qgg

• At this time, the profile of Dist·
mp

(Figure 4.47)

looks quite similar to that of the 2nd order distribution of virtual application 2 (Figure

4.48), except for a very few 4th order packets that had not been removed. It was accepted

by the Chi-square test with a value of 137.234 against the 95% confidence critical value

164.457.

Network Condition Emulated . -

I Packet Delay (ms) I Jitter (50- 300)

Under this network condition, a large peak at 64 bytes, which is the primary peak of the

I st order distribution of virtual application 2, has been observed in the captured

93

Chapter 4 TCP Applications with the Nagle Algorithm

distribution in Figure 4.49. The overall shape of this distribution hence was largely

different from that under 300ms fixed delay.

Once again, the original packet size distribution was extracted successfully using the

sec'ond method (

Figure 4.50), showing a major peak at 64 bytes while two secondary peaks at 34 bytes

and 41 bytes were observed, closed to the original distribution of virtual application 2.

Some higher order packets seemed to remain in the extracted distribution. However, this

inaccuracy has not affected the result of the detection. A Chi-square value of212.367 was

obtained with a 95% critical value of275.817.

120

" 100 ~
0
() 80
il'
c 60 " ~ 0' 40 e
u.

20

0

I 1

11 I, . .1111 JLIlLu •.•. J.

o 100 200 300 400 500 600 700

Figure 4.49 Captured aggregated distribution/or Virtual Application 2 under the network

condition o/Jittered delay

0.3

'il 0.25

il'~ 02
~ E .
~ S 0.15

L.I.. § 0.1

8 0.05

o
o

IL.h ,IlL L'L

100 200 300 400 500 600 700

Figure 4.50 Theoretical original distribution extracted using the original distribution a/virtual

application 2

Some other tests on ordered packet series were carried out as well, the results represented

similar theoretical original packet size distributions or theoretical aggregated ones could

be extracted or calculated using the methods described in this chapter. Clearly, the

94

-
Chapter 4 rcp Applications with the Nagle Algorithm

packets generated by real applications would show variations from case to case, however,

the nature of the statistical technique suggests that these could be tolerated in a certain

range.

Virtual Application 3

Due to the limitation of the MTU and Nagle-based application's packet size distribution

aggregation, in some cases, the packet sizes actually sent would not be decided by an

application itself. For instance, when a payload buffered by TCP has exceeded the MTU

of the Ethemet on which the application is operating, only the first 1460 bytes would be

sent out in a packet and TCP would be hung up waiting for the acknowledgement of that

outstanding packet, even worse, during this phase the application does not stop submitting

messages to the transport layer. As such, more and more 1460 bytes packets would be

generated. Hence, if an application's original packet size distribution contains many large

packets, with a given packet rate, it could have a high probability of suffering from MTU

size packets. In such case, the methods described would be helpless. Virtual application 3

is a typical one with such characteristics, and the following experiments verified this

limitation of the methods.

Trend Random

Median Position 500

Spread 200

Packet Series Ordered

Packet Rate S/sec

95

0.05

i 0.04
~~
~ ~ 0.03
~5
~ ~ 0.02
u.. §

8 0.Q1

o

Chapter 4 rcp Applications with the Nagle Algorithm

l -Im J JJ
o 100 200 300 400 SOO 600 700 600 900 1000 1100 1200 1300 1400

Bin No. (lbylelbin)

Figure 4.51 Original packet size distribution of virtual application 3

The original packet size distribution profile is given by Figure 4.51. It can be seen that

five huge peaks appear at 359 bytes, 375 bytes, 416 bytes, 469 bytes, and 489 bytes

respectively. These packet sizes are extremely large for real-time applications and are

seldom seen, however, they do have the possibility to occur. For this virtual application,

only I SI and 2nd order distributions could be completely calculated in advance (Figure

4.52) as those distributions higher than 2nd order would all exceed the MTU and all bins

exceeding the MTU should be ignored.

0.18

0.15

0.12

0.09

0.06

0.03

o

I I
11 I,
11 I 11
11 I 11
I h l, 1,111, , , 1,10. 11. IIlIIHl.lL.

o 100 200 300 400 SOO 600 700 600 900 1000 1100 1200 1300 1400

Bin No. (1 by1e1bin)

I-1st Order • 2nd Order I

Figure 4.52 Distribution profiles of different orders for virtual application 3

Network Condition Emulated

I Packet Delay (ms) I Fixed 100

96

Chapter 4 TCP Applications with the Nagle Algorithm

Under this low-load network condition, MTU size packets have not been largely observed

as shown in Figure 4.53. It seems that the aggregated distribution mostly consisted of I SI

and 2nd order packets. Thus, detection was successful using the first method. The Chi:

square value was 23.141, lower than 95% confidence critical value of 193.126. The

theoretical aggregated distribution calculated with the original distribution of virtual

application 3 is shown in Figure 4.54.

120

§ 100
8
~ BO

~ 60
" W 40
u.

20

o dJ .. u. 1

200 400 600

,I
1.,11 LI. L ,.1.1 .. Ih..UL ,
. 800 1000 1200 1400

Figure 4.53 Captured aggregated distribution for virtual application 3 under the network

condition of 100 ms fixed delay

120
C
" 100 0
u
~ 80
c

60 " " C"
I!! 40
u.

20

0

I 1

I h, .1" I, IILlt ,1.11.1 Ilj". "L

200 400 600 BOO 1000 1200 1400

Figure 4.54 Theoretical aggregated distribution calculatedfrom the original distribution for

virtual application 3

Network Condition Emulated

I Packet Delay (ms) I Jitter (50-300)

97

Chapter 4 TCP Applications with the Nagle Algorithm

With the increment of delay, more MTU size packets were observed as expected. Some

small size packets which may be the tails coming from the splitting of payload exceeding

the MTU were also seen as shown in

Figure 4.55.

_ 250
c

" 8 200

g 150

" " ~ 100
u.

50

o
o.

I

200 400

, .. iI," 1/,1 "
600 800 1000 1200 1400

Bin No.(1bytelbin)

Figure 4.55 Captured aggregated distribution for virtual application 3 under the network

cohdition ofjittered delay

Both the first and the second methods then were applied to try to achieve the detection.

As shown in Figure 4.56, the so calculated theoretical aggregated distribution has little in

common with the captured one, and was rejected with a Chi-square value of 568.743

which was much greater than even the 50% confidence critical value.

35

" 30
g 25
u
~ 20
~ 15
" ~ 10
u. 5

o
o

, 11
1 11

200 400 600

11 11 1 , J.
II r.r 1iliJ,-;,1 , I, J I ' I nul.! L

800 1000 1200 1400

Figure 4.56 Theoretical aggregated distribution calculated from the original distribution for

virtual application 3

98

Chapter 4 TCP Applications with the Nagle Algorithm

The results of the second method look better than the first method (

Figure 4.57). The extracted theoretical original distribution removed some high order

packets, however, a huge peak at 1460 bytes remained. In addition, the method was

unable to remove the "tails". In this case, a Chi-square value 272.445 was obtained and

was also rejected with a critical value 172.870.

35
"E 30
5
u 25
{;' 20 c
!l 15
eT

e! 10 u.
5
o 111.1",1., .,"

o
.. L . L.i." I

200 400 600

I I
iiJIIJU Ill .• .,,~, "I.

800 1000 1200 1400

Figure 4.57 Theoretical original distribution extracted using the original distribution of virtual

application 3

Network Condition Emulated

Packet Loss Ratio (percentage) 3

Packet Delay (ms) Fixed 300

99

Chapter 4 rcp Applications with the Nagle Algorithm

1000

'E 800

.9 .600

i 400

~
200 u.

0
0 200 400 600 800 1000 1200 1400

Bin No. (1bytelbin)

Figure 4.58 Captured aggregated distribution/or virtual application 3 under a network condition

of 300 ms fixed delay

When the network condition was worsened to 300 ms fixed delay, the profile of the

aggregated distribution contained the MIU size packets as shown in Figure 4.58. In such

case, detection becomes impossible. As shown in the tests above, in the circumstances (

that the original packet size distribution consists of large packets and the network is

highly loaded, the aggregated distribution could potentially exceed the MIU and lead to

many or even most payloads being sent as MIU packets. In these cases, it would be

difficult to achieve detection using the methods described in this work.

4.3.5 Tests on Other Virtual Applications

All In-Database virtual applications with various original distributions were tested in the

same way as above. Figure 4.59 shows a general Chi-square summary for all virtual

applications that were tested under a 50ms to 300ms jittered delay network condition.

lOO

Chapter 4 TCP Applications with the Nagle Algorithm

900

I 800

700

., 600
"
~

500 e
co
"400
~
:;:

300 U

o 10 20 30 40 50 60 70 80

VIrtual ~plication Number

--chi·square Io6lue from same application
--associated 95% confidence critical Io6lue
--associated 90% confidence criticallo6lue
--next lowest chi·square Io6lue from different application

a

900

800

700 .,
" 600 ro
> 500 e
co 400 " CT

'" 300 ~
U

200

100

0 ~~ ~~ = ~-

0 10 20 30 40 50 60 70 80

VIrtual ~plication Number

--neld lowest chi·square value from different application

--associated 50% confidence critical value

b

Figure 4.59 Chi·square test summary for aI/tested virtual applications

In Figure 4.59(a), the blue curve represents the Chi·square values resulting from the

computation with the theoretical distributions calculated with their own original packet

size distributions. The red and green curves represent corresponding critical values with

101

Chapter 4 rcp Applications with the Nagle Algorithm

confidence 95% and 90% respectively. The second lowest Chi-squared values resulting

from the computation with the theoretical distributions calculated with a different

application trace are also given as a purple curve.

It is seen that, for all the applications shown, the lowest Chi-squared value always

occurred when the detection mechanism was performed with the original packet size

distribution from the same application. In all but a few cases, the Chi-squared value is

below the critical value of 95% confidence value and, in all cases, below the critical value

for 90% confidence value. In all cases, the next lowest Chi-squared value from a different

application is seen to be significantly greater that the lowest ones.

In Figure 4.59(b), the second lowest Chi-square values are given in the blue curve,

accompanied with corresponding critical values with confidence 50% in pink. In most

cases, the Chi-square value is much greater than the associated 50% confidence value for

that second choice application for a few cases it is not. Nevertheless, as the second lowest

value must be rejected in favour of the lowest one, those second lowest values could be

excluded from consideration. The circumstance under 300ms fixed delay network

condition gives a similar result. Hence, the aggregated distribution detection mechanism

discussed in this chapter can be considered as successful and feasible.

4.4 Summary

The aggregated distribution detection mechanism is proposed and tested in this chapter.

Two methods were developed in order to suit the needs of a variety of distribution

profiles. Because of the shortage of the Nagle-based application in reality, around one

hundred of virtual applications were generated and run across the network. The results

show that, in spite of a few virtual applications with large size packets often send out

packets at the MTU size under the loaded network conditions and thus are difficult to

detect, most applications can be successfully detected regardless the packet size

distribution profiles' shape, median and spread are varying. Hence, the aggregated

distribution detection mechanism discussed in this chapter can be considered as

successful and feasible.

102

Chapter 5 Design and Architecture of A Prototype Application Detector

CHAPTER

Design and Architecture of A Prototype

Application Detector

5.1 Introduction

5

A TCP-based application detector had been designed employing the ideas described in the

last two chapters. The aim of establishing this prototype detector is to verify the

feasibilities of those ideas and discover those parameters that could potentially make the

idea performs better. In this chapter, the design and architecture of this prototype detector

is discussed.

103

Chapter 5 Design and Architecture of A Prototype Application Detector

5.2 Operation Overview

This prototype TCP-based application detector implemented the ideas that packet size

distribution could be a fingerprint of TCP-based applications and with which

identification of TCP-based applications can be achieved. The prototype detector was

written using object-oriented techniques and designed to be as efficient as possible. The

development language adopted was object-oriented Java. As Java is both a programming

language and a platform, with the installation of NM (Java Virtual Machine), the ability

of operating on a variety of platforms could be obtained [SunOSJ.

In addition, as Java supplies the ability of simultaneous multi-threading [Sun98J, this

detector has been designed as a whole but could be broken down into a number of threads

that work in parallel and relatively independently of each other. The advantage of this

idea is that a thread could continue working on its own jobs without being interrupted by

other jobs. Among these threads, one is in charge of dumping packets from the network

and generating packet size distribution profiles, another performs the actual detection

procedure, while the user interface ·is operated as the third thread. In fact, the whole

detector is made up of five threads. Table 5.1 below gives all threads with their functions.

The first stage of the application detection is the collection of the raw packets by

tcpdump(or windump under windows environment [Win04]). This utility is called by

thread loadPacketsO, which in turn receives the output of tcpdump and generates

summaries in the form of packet size distribution profiles. The next thread in the flow,

DetectO reads these profiles and analyses the streams and connection data and performs

the identification via the statistical detection methods described in the previous chapter.

The identified information is displayed by the user interface snapuiO.

104

Chapter 5 Design and Architecture of A Prototype Application Detector

Thread Name Description

tcpdump Runs in promiscuous mode in order to collect all raw packets from

the traffic stream seen by the host network interface.

LoadPacketsO Reads the output stream, decodes the hex data of IP and TCP

headers to load raw packets into the detector. Creates packet size

distribution profiles with the received packets.

DetectO Performs statistical detection on the TCP packet size distribution

profiles, generates detection result information.

Snapui Receives and displays the results of detection

build This process is used to populate the statistical store with samples

of distribution profiles of applications - it runs off line from the

other detector processes.

Table 5.1 Detector process summary

Synchronizing problems arose during the programming, because for the Java language,

the variable transfer from one method to another is based on address, not on variable

[SchO 1]. This mechanism is similar to the circumstance of transfer a pointer to a function

in the C language. Hence, it could happen that, if a variable is operated by more than one

method in different threads, conflicts could potentially exist when multiple methods visit

the variable at the same time. These problems were resolved by transferring cloned

objects and using the keyword synchronized for every method which will visit a certain

object.

The database used was Mysql [Mys06], which is a medium size database software. Data

in the database were organised using a relational database technique and connected to the

detector via JDBC which is a standard database-connection package supplied by JSDK.

Figure 5.1 gives the overall flow diagram of this prototype detector.

105 .

"l ...
I::
~
!'>
~
" " ~
~
::!

..:a, -if
""' (!
C'
:§
'" 1} -0 '" '" s ...

WAN

:: ::~ ~ ~

Hub

Calculates order
distribution profiles

SIOf9dAggDisl

Selects referring
bins and Method

yes (

TcpDump

SIOf9dTcpDisl

Raw Packets

S/of9dTcpDlsI
SIOf9dAggDisl

Display

LoadPackels()

TcpConneclion

DslsctO

DetectRssul1

SnapU/()
.....
~.

§'

f

Chapter 5 Design and Architecture of A Prototype Application Detector

5.3 Thread LoadPacketsO

The thread LoadPacketsO is responsible for collecting data from the network and

generating packet size distribution profiles readied for detection. The mission of dumping

raw packets is done by the tcpdump. At the start of this thread, tcpdump is called and run

as a system process. The format of the tcpdump command is:

tcpdump -nx -tt -s56 tcp

The 'x' switch forces the output to be in hexadecimal format and 'n' suppresses

translation of IP address to host name (in order to save compute cycles - the detector does

not use host names). The 'tt' switch causes the timestamp on each packet to be in

calendar time (seconds passed since 1st January 1970). The 's56' switch causes it to

capture just the first 56 bytes of the IP frame (the link level header preceding the IP

header is omitted in any case). This also helps to reduce the processing load on the host

machine; no use is made of the remainder of the packet in any case [BhaO 1]. The last

protocol switch 'tcp' forces all packets with protocol other than tcp to be filtered [Tcw06].

There is no host switch' specified so that tcpdump will run in promiscuous mode and

capture all packets it has seen.

The output of tcpdump is streamed in to the thread LoadPacketsO for further action. The

function of loading the stream from the other applications' standard output is offered by

JSDK, which could allow the detector to operate in an operating system without a pipe

output. As such, the data received by LoadPacketsO is therefore at the individual packet

level and it is processed at full line rate.

The classes' relationship is shown in Figure 5.2. For each Tep packet received, an object

of type Packet that contains a number of relevant fields will be created by decoding the

hexadecimal output stream fed by tcpdump. Then a connection level object of type

tcpConnection will be created which is identified by the hosts and ports information, if an

object matching this information already exists, the proper tcpConnection object will be

updated according to the new arriving packet. The packet size distribution profile is

established as an object of type tcpDist which is a member of tcpConnection, the

distribution is actually built into an integer array tcpDist[], besides that another float array

tcpDistNor[] which is used to accommodate normalized distribution. is also a member of

107

Chapter 5 Design and Architecture of A Prototype Application Detector

the object tcpDist. After the update is accomplished with the size of new arriving packet,

this object Packet will be no longer useful and is released by the auto-rubbish-cleaning

mechanism offered by Java Runtime.

LoadPacket

TcpConnection
TcpConnection

tcoConnectionGrouof 1 --srclp
LoadPacketO dstIp
loadStreamO appName
nrocessTcoPacketn srcPort

dstPort
packetCount
tcpConnid
firstPktArriveTime
lastPktArriveTime
elaspedTime

f----+ Packet Packet PacketList[I
Packet PacketListReverse[I
TcpDist tcpDist arriveTime

TcpDist TcpDist tcpDistReverse srcip

tcpDist[I
dstIp

TcpConnectionO protocol
tcpDistNormalized[I cioneO flag
packetCount updateTcpConnectionO srcPort

TcpDistO submitToDetectO dstPort

cioneO packetSize

normaliseOist()
processHexValO
cioneO
setArriveTimeO

I I
setSrcipO

Member _ setDstIpO
setProtocolO
setSrcPortO
setDstPortO
setPacketSizeO
setFlagO

Figure 5.2 Relationship diagram of classes in thread LoadPacketsO

108

Chapter 5 Design and Architecture of A Prototype Application Detector·

The object tcpDist is updated with the new incoming packets during an amount of time

set by the variable tcpDetectInterval that is parsed from an XML file [Xcwg05], which

contains the configuration information for the detector. When a time of the
I .

tcpDetectInterval elapses from the arrival time of the first packet of this connection, the

TcpConnection object will be submitted to thread DetectO in order to perform actual

detection. Figure 5.3 gives the flow diagram of this thread.

TcpDump

Raw Packets

DeccdePacketsO

Packets

yes

Pushes packet into
TcpConnection

TcpConnection

-::>--- no

Creates Object
TcpConnection

~--- yes ---c::' Flag AggDist? ~--- no -----,

L ______ -+lSubmits TcpConnection 1+ _______ ---1
to DetectO

Figure 5.3 Flow diagram for thread LoadPacketsO

109

- -- ---- - -------------

Chapter 5 Design and Architecture of A Prototype Application Detector

For the Nagle-based applications, as more sampling packets would be needed so as to

build a reliable aggregated packet size distribution. The object will not be destroyed until

detection is completed. If the normal detect method fails in identifying the connection (a

flag AggDist will be set), more packets captured belonging to this connection will be

added until the variable aggDetectPacketNumber, which is also parsed from the

configuration file, is reached in order to allow aggregation distribution detection methods

to be functioned.

On most networks, one can expect a large number of connections to be simultaneously

active. This would soon overload the array bounds of this thread causing it to fail. Some

connections, however, don't exist for long enough to reach the tcpDetectInterval. These

connections will be pending and Java Runtime cannot release the memories automatically.

As such, a sub-thread, which is responsible for cleaning these inactive connections, is

included in the detector. It periodically checks the existing time of each connection, if this

parameter is greater than the threshold inactiveConnectionExistingTime, which is set by

the configuration file, then the application is deemed to have been terminated and the

object will be destroyed.

5.4 Thread DetectO

This thread is at the heart of the application detector system. It performs the actual

detection, and maintains and archives the detectResult objects, as connections and streams

on the network are established and terminated. The output of this process feeds the user

interfaces snapuiO.

When this thread is started, a number of initial jobs are done at the same time. The stored

packet size distributions of both the Non-Nagle and Nagle-based applications are loaded.

Each stored distribution is created as an object of type either StoreTcpDist or

StoredTcpAggDist and pushed into the static object StoredTcpDistGroup or

StoredAggDistGroup respectively. Some detector settings are also initialized here, such as

the detecting interval and the required packet number of the Nagle-based application

detection. Figure 5.4 gives the classes' relationship.

110

Chapter 5 Design and Architecture of A Prototype Application Detector

Detect

TcpConnection tcpConnectionForDetect TCDConnecton I
StoredAggDist storedAggDistGroup[I
StoredTcpDist storedTcpDistGroup[I

DeteetResult ~ DetectResult detectResultGroup[I

DetectO
srcJp readTcpConnection 0
dstIp detect()
appName
srcPort
dstPort • firstPktArriveTime
lastPktArriveTime StoredTepDist StoredAggDist
elaspedTime
chiSquareValue appName appName
chiSquareValueRev appld appld
erse reference I stOrderBin[I
DetectResult() getAppNameO reference2ndOrderBin[I
c1one() getAppld() reference3rdOrderBin[I
setSrclp() , reference4thOrderBin[I

, , aggDistOrder[I[I , , setDstIp()
------------, aggDistOrderNorrnalized[][I setSrcPort() , ,

setDstPort()

I I
maxOrder

TcpDist
setPrediction() StoredAggDist()
setFstPktArrTime() , , getAppNameO
setLstPktArrTimeO , ,

getAppldO , ,
eetOhiects() , , , , , , ,

TheoryOrigDist TheoryAggDist

reference I stOrderB in[I reference I stOrderBin[I
reference2ndOrderBin[I reference2ndOrderBin[I
reference3rdOrderBin[] reference3rdOrderBin[I
reference4thOrderBin[I reference4thOrderBin[I
aggDistOrder[][I aggDistOrder[][I
aggDistOrderNorrnalized[III aggDistOrderNorrnalized[][I
m::txOrcier maxOrder

Member -- TheoryOrigDistO TheoryAggDistO
geneateTheoryOrigDistO geneate Theory AggDist()

Inherit

Figure 5.4 Relationship diagram of classes in thread DeteetO

When a IcpConneclion object arrives and readies for detection, the main method deleclO

in this thread will be triggered, and the statistical detection technique will be applied on

the incoming IcpConnection. First of all, some tcpConnection objects that contain very

few packets will be ignored. This is aimed at reducing the chance of misdetection. Then,

the thread applies the normal detection method on the IcpDist object. During this

procedure, all the SloredTcpDisl objects contained within the SloredTcpDislGroup will be

enumerated, and compared against the test distribution using the Chi-square test described

111

Chapter 5 Design and Architecture of A Prototype Application Detector

in the previous chapters. If a successful detection attempt is achieved, a DetectResult

object will be created in order to feed the next stage thread snapuiO for the purpose of

display. However, if the normal detection method returns a result "unknown", the

tcpConnection object will set the flag "AggDist" and return to the thread LoadPacketsO

for complementary packet capture. When the number of sampling packets for this

tcpConnection object reaches the setting aggDetectPacketNumber, it will be submitted to the

DetectO thread once again. The thread will iterate all StoredAggDist objects contained

within the StoredAggDistGroup object and at this time, aggregated distribution detection

methods will be used. Then a DetectResult object is created and submitted to the snapuiO.

As the adopted aggregated detection methods and the referring bins vary from application

to application, if information is loaded from the Mysql database associated with the

packet size distribution profiles at the initialization stage. Two different methods dealing

with the aggregated distribution are implemented as described in the Chapter 4. When the

first method is adopted, the comparison using the Chi-square test is performed once after

the theoretical aggregated distribution object TheoryAggDist is created. While the second

method is in operation, a theoretical original distribution object TheoryOrigDist object

will be calculated. In addition, as described in Chapter 4, detection attempts are also

applied each time certain order packets are just removed.

Each time a detection attempt is performed, the critical value of the threshold confidence

(set in XML file) is calculated and compared with the Chi-square value to see if the result

should be accepted with the given confidence. If more than one application returns

acceptance, all the Chi-square values and the associated critical values will be recorded.

In the case of that no acceptance is observed, the appName field in DetectResult object

will be set as "Unknown". The flow diagram of this thread is given in Figure 5.5.

112

Chapter 5 Design and Architecture orA Prototype Application Detector

Sets
TcpConnectjon

flag AggDist and _ no
returns to

LoadPacketsO for
more packets

LoadPacketsO

Normal Detect
Method

Submits
DetecResult to
thread SnapU/O

StoredTcpDislGroup

>--no

Aggregated
Detect Method

Figure 5.5 Flow diagram for thread DetectO

5.5 Thread SanpUIO

SloredAggDislGroup

The thread snapuiO is in charge of providing final detection results infonnation to the

user. As this detector is only designed as a prototype and mainly for the purpose of

experiments, the user interface is quite simple and some useful infonnation from the

perfonnance tests is also displayed. Detailed discussion of the structure of this thread will

not be entered into here.

Except the java.awt and java.swing, which are two standard packages in JSDK

[SunM06j, no other operating system related VI API is employed. This is also aimed at

trans-platfonn operation. A static object of the type connTableData is maintained by this

thread in order to allow the thread DetectO to push the DetectResult objects into it. This

thread simply iterates all DetectResult objects accommodated in connTableData and

113

- --- -- - ---- ---------

Chapter 5 Design and Architecture o[A Prototype Application Detector

parses them so as that detailed detection result information can be displayed. The update

interval of the user interface is set to 5 seconds in the configuration file. The flow diagram

of this thread is given in Figure 5.6.

OetactO

DetectResult

Reads detect result
info

conn TableOata

Outputs display

Figure 5.6 Flow diagram[or thread SnapUiO

Monitor

The whole user interface could be divided into two major parts. The Detector Information

Display shows the working status of the detector, such as current threshold confidence,

capture interval, and number of stored distributions. This information must be supplied as

it could potentially affect the performance of this detector (this will be discussed in

Chapter 6). The Detect Result Display shows all detections achieved whatever they result

in identification are "unknown". Each line in the basic data display represents one stream

or connection. The information shown is summarised in Table 5.2.

114

Chapter 5 Design and Architecture of A Prototype Application Detector

Column Heading Description

Source IP IP address of source machine generating traffic.

Source Port Source port number in use for this connection.

Dest IP IP address of destination machine.

Dest Port Destination port number in use for this connection.

Time Start Time of first packet for this connection was captured.

Prot Protocol of this connection.

Pkt Count Packets captured for current build. (Reset when

DETECTINTEV AL has elapsed).

Lo Chi-square Value The lowest Chi-square value obtained for this connection from

the last detection attempt

Lo Critical value The critical value with confidence I associated with the lowest

with confidence 1 Chi-square value from the last detection attempt

Lo Critical value The critical value with confidence 2 associated with the lowest

with confidence 2 Chi-square value from the last detection attempt

Lo Critical value The critical value with confidence 3 associated with the lowest

with confidence 3 Chi-square value from the last detection attempt

2"" Chi-square Value The second lowest Chi-square value obtained for this

connection from the last detection attempt

2nu Critical value The critical value with confidence I associated with the second

with confidence 2 lowest Chi-square value from the last detection attempt

2nu Critical value The critical value with confidence 2 associated with the second

with confidence 2 lowest Chi-square value from the last detection attempt

2"" Critical . value The critical value with confidence 3 associated with the second

with confidence 3 lowest Chi-square value from the last detection attempt

Prediction Application identity determined through port usage.

Hits Number of times associated identity was found for each result

of detection

Detect Attempts Total number of times carried on this connection

Acceptances Number of times the correct application had been accepted by

Chi-square tests.

Table 5.2 User Interface Informat/on

lIS

Chapter 5 Design and Architecture of A Prototype Application Detector

Actually, following the concept of object-oriented programming, the design of the

software should follow the order from the top layer (i.e. User interfaces) to the bottom

layer (the actual detection functions) [DatK97], hence, this thread was the first one to be

written and acts as the entry of the whole detector. The other threads, which are working

in parallel, are all initialized or triggered inside this thread.

The design of this interface is exclusively for the purpose of testing the ideas described in

previous chapters and to find out any areas where potential improvement could be

achieved. The display format was so designed to allow users to see information relating to

the experiments.

5.6 Thread BuildStoredProfilesO

This thread is separated from the prototype detector and works independently for the

purpose of inputting stored packet size distribution profiles into the database. The

architecture of this thread shares the same code with thread LoadPackelsO. In addition, a

module, which is in charge of connecting the database, is added. We below discuss the

process to establish a stored distribution profile using WarCraft III as an example.

The Unix utility Icpdump or its windows version windump [Win04], is used here to do the

actual packet capture from the network. The command options used are shown below.

Tcpdurnp -ox -tt -s56 host port 6112 and tcp black

The meaning of the switches is explained in Section 5.2. The host, port, and protocol

parameters enable capture of all tcp packets (as only TCP packets are of interest in this

work) destined to or from the specified port 6112 on the host named black, so that other

traffic is filtered out. The hardware architecture is the same as Figure 3.1.

When the thread is started, Icpdump will capture packets. The arrival time of the first

packet is extracted and stored (from the timestamp inserted by Icpdump rather than the

arrival time determined from the host computer real time clock). The distribution profiles

are built in the capture array using all the subsequent packets until the first one whose

time stamp is sloredProjiielnlervai seconds (preset in· the configuration file) after that of

116

Chapter 5 Design and Architecture of A Prototype Application Detector

the first packet was received. Then the array that accommodates the distribution profile is

nonnalized and written into the table of TCP packet size distribution in the Mysq/

database and the user is prompted to enter the applications' names.

For the Nagle-based applications, after the establishment of the distribution array, some

pre-computation will be perfonned using equation 4.5 in order to obtained packet size

distributions for different orders. Afterwards, the referring number for each order and the

aggregation detection method adopted for this specific application are requested. The

distribution profiles of the Nagle-based applications and above infonnation, which the

user entered, will be written into the table of aggregated packet size distributions in the

Mysq/ database. The flow diagram is given in Figure 5.7.

117

Chapter 5 Design and Architecture of A Prototype Application Detector

SloredTcpDisl

TcpDump

Raw Packets

DecodePackelsO

Packets

Creates Object
TcpConnection

TcpConnection

no

User inputs
application info

Calculates order
distribution

StoredAggDist

Figure 5.7 Flow diagram for thread BuildStoredProjilesO

User inputs
referring bins and
method

In the database, all pre-stored application distribution profiles will be normalized before

they can be written into the table. For the Nagle-based pre-stored applications, the packet

size distribution of each order is calculated in advance and stored in the database so as to

reduce the computation quantity cost when the detection is carried out in real-time. When

a connection is readied for detection, the normalized distribution will be multiplied with

118

Chapter 5 Design and Architecture of A Prototype Application Detector

the total packet number for the connection to obtain an integer distribution as required by

the Chi-square test.

The referring bin numbers of the Nagle-based application were chosen according to the

principle described in Chapter 4. So far, this is only done manually as the selection of

referring bins could vary from case to case.

5.7 Summary

This prototype TCP application detector is designed for testing the ideas described in the

last two chapters. Most effort was directed at implementation of these ideas and· founding

a testing platform in order to find out how well the ideas work and to determine some

parameters, which could optimize the detection job. As such, the architecture of this

prototype is very simple but may satisfy some requirements for a complete application

detector.

119

Chapter 6 Application Detector Performance

CHAPTER

6
Application Detector Performance

6.1 Introduction

In the last chapter, a TCP-based application detector prototype implementing the

suggestion described in Chapter 3 and Chapter 4 that TCP-based applications could be

identified using packet size distributions is presented. Now, it is necessary to test the

performance of this prototype detector.

In this chapter, the performance of the TCP Application Detector is measured and

discussed. In addition, some parameters for the detector are found experimentally in order

to achieve the best balance between detection reliability and timeliness of the identity

information.

120

Chapter 6 Application Detector Performance

6.2 The Settings of the Detector

The packet size distribution is a statistical measurement, and could show varymg

stabilization over different counts of samples. As such, it is necessary to determine how

many packet samples it should take to build stable enough packet size distribution profiles

of applications for the purpose of detection.

The Chi-square test detection approach is such a good detection technique that it has the

ability to accept applications with a certain percentage confidence, which is essential for

this work, rather than just give out the one that the operating application is most likely to

be. Hence, another aim of these tests is to try to find the appropriate confidence threshold

for the Chi-square detection, which means the degree of assurance that the result of the

Chi-square detection is correct. Although the choice of confidence level is somewhat

arbitrary, in practice 90%, 95%, and 99% intervals are often used [FerT89]. We chose

90% and 95% to be the candidate thresholds that may be appropriate for the detector.

6.2.1 Non-Nagle Applications

For those applications that do not use the Nagle Algorithm, the packet rates would not be

affected by the network condition. The packets generated during a certain period would

be fixed, the number of sampled packets depends upon the capture interval, hence, the

capture interval was utilized as a parameter that can determine the reliability of packet

size distributions for the non-Nagle applications and potentially affect the performance of

the detector.

In the following tests, different capture intervals were used to build sample profiles for

detection. All applications were monitored for fifteen minutes with the detector. When the

appropriate capture intervals had been reached, the captured sample profiles were

submitted to the DetectO thread, Chi-square values were then given to measure the

reliabilities of the distribution profiles captured. For the purpose of comparison, only the

results obtained up to 20th attempts are plotted.

121

Chapter 6 Application Detector PerfOrmance

Network Game Nadar

Three different capture intervals were tested for this application---15 seconds, 30 seconds,

and 45 seconds. For this game, the packet size distribution profiles of outbound and

inbound streams are very similar. Therefore, Only one direction is given here.

__ Chi-Square Value -+- Critical Value 95% Confidence ___ Critical Value 90% Confidence

80
70

~60
~ 50

" tu 40
" /J) 30

1:. 20 u
10
o

\
~ ~ ~
~ / '\. ...-A-.. /'"--... ~~ "\... /

y '-tt

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6_1 Chi-square results of Nadar 's distribution profiles over 15 seconds sampling periods

In Figure 6.1, the test results for a capture interval of IS seconds are given. The first

detection attempt was rejected by both critical values of 95% and 90% confidence. This

rejection could have been caused by some specific packets generated for exchanging

control messages during the connection establishment period. Afterwards, Chi-square

tests returned a series of Chi-square values with a mean of around 58. In a few cases, Chi

square values were greater than the associated 95% but lower than 90% confidence

critical values. One attempt (attempt 17) rejected by both 95% and 90% confidence was

observed. However, the detector had identified the application in most attempts.

__ Chi-Square Value -+-Critical Value 95% Confidence ___ Critical Value 90% Confidence

80
70

" " 60
~ 50
i!?
IV 40
" /jf 30
-E 20
U 10

o

~

~ ~'-....... ~

'"
....-

""- ~ /'---.... /"'-..
"'\. / -.r ""- / \ /'

Y \/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Detection Attempt

Figure 6.2 Chi-square results of the Nadar distribution profiles over 30 seconds sampling periods

122

Chapter 6 Application Detector Performance

Network Game Nadar

Three different capture intervals were tested for this application---15 seconds, 30 seconds,

and 45 seconds. For this game, the packet size distribution profiles of outbound and

inbound streams are very similar. Therefore, Only one direction is given here.

____ Chi-Square Value -+-Critical Value 95% Confidence _ Critical Value 90% Confidence

~ r-~--,

70 ~ ~~~~~~~~~j ~ 6O~~~~~~~,)
~ 50 ..
:. 40 +--- ----
" /J) 30
:! 20
o

10 t--
0 ~~-+~-~4--+-4-~~~~-+-4--+~~~~-+_~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6.1 Chi-square results oj Nadar 's distribution profiles over 15 seconds sampling periods

In Figure 6.1, the test results for a capture interval of 15 seconds are given. The first

detection attempt was rejected by both critical values of 95% and 90% confidence. This

rejection could have been caused by some specific packets generated for exchanging

control messages during the connection establishment period. Afterwards, Chi-square

tests returned a series of Chi-square values with a mean of around 58. In a few cases, Chi

square values were greater than the associated 95% but lower than 90% confidence

critical values. One attempt (attempt 17) rejected by both 95% and 90% confidence was

observed. However, the detector had identified the application in most attempts.

__ Chi-Square Value -+-Critical Value 95% Confidence _ Critical Value 90% Confidence
80 ,------------------------------,

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Detection Attempt

Figure 6.2 Chi-square results oj the Nadar distribution profiles over 30 seconds sampling periods

122

Chapter 6 Application Detector Performallce

Figure 6.2 shows the results for a capture interval of 30seconds. The first detection

attempt still shows a high Chi-squared value; however, this could be accepted. The

remaining detection attempts give a series of Chi-square values with a mean of about 40.

They could all be accepted by the Chi-square tests as these values were much lower than

critical values with 95% confidence. The profiles' reliabiIities thus were improved

considerably with this capture interval.

__ Chi-Square Value -+-Critical Value 95% Confidence ~Critical Value 90% Confidence

80
70

Cl)

280
~ 50
~
'" 40
" ~30

-E. 20
U 10

o

~: ; , , ;~ , ~
r-

~ -""'" ...:;.-... /" " ~ ~

'v" '-.../ - -
-

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Detection Attem pt

Figure 6.3 Chi-square results ofNadar 's distribution profiles over 45 seconds sampling periods

As the capture interval was increased to 45 seconds, the Chi-square values returned

provide a smoother profile. This indicates that the packet size distributions built over this

capture interval were more stable than the previous ones. However, the mean of all the

Chi-square val ues did not drop significantly (Figure 6.3).

Network Game Diablo n

The packet size distribution profiles of Diablo II [BliOll are more complicated than those

ofNadar. One would expect a longer capture interval to achieve decent profile reliability.

For this application, the chosen capture test intervals are also 15 seconds, 30 seconds and

45 seconds. The results are shown in Figure 6.4 blow.

123

Chapter 6 Application Detector Performance

___ Chi-Square Value ___ Critical Value 95% Confidence - Critical Value 90% Confidence

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Detection Attempt

Figure 6_4 Chi-square results of Diab/os' distribution profiles over 15 seconds sampling periods

In the resulting plot obtained over 15 second capture intervals, the profile reliability was

not achieved as most detection attempts returned Chi-square values greater than the

critical values for both 95% and 90% confidence whicb indicated unsuccessful detections.

There were insufficient packets captured to allow a consistent distribution to be built.

Ln Figure 6.S, as the capture interval was increased to 30 seconds, the results were much

better. Detection attempts were in general successful, but in four cases, the Chi-square

values were still greater than 90% confidence critical values.

-....-Chi-Square Value -+-Critical Value 90% Confidence _ Critical Value 95% Confidence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6.5 Chi-square results of Diablo 's distribution profiles over 30 seconds sampling periods

124

Chapter 6 Applicalion Detector Performance

__ Chi-Square Value --+- Critical Value 90% Confidence ~Critical Value 95% Confidence

120
., 100 ::>

~ 80
~

60 '" ::>
C"

40 "I
:c 20 (J

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6.6 Chi-square resulls of Diablo 's distribution profiles over 45 seconds sampling periods

When the capture interval was set to 45 seconds, considerable improvement of the

distribution profiles' reliabilities was observed. From Figure 6.6, most Chi-square values

were much lower than the 95% confidence critical values. Only one detection attempt was

not (attempt 14), however, this was still very close to the 90% confidence critical value.

The three plots below (Figure 6.7, 6.8, 6.9) show the results of acceptance (by Chi-square

tests) ratios for all available non-Nagle based applications over different capture intervals.

1.2

~ 1

'" 0:: 0.8
1l
c: 0.6
S § 04

<{ 0.2

o

StoredProfile Number Application Name

1-2 Nardar

3-4 Need For Speed III

5-6 Crimson Sky

7-8 Diablo II

-=-95% confidence ~90% confidence

-- . !'(

~ ~ ---

~ / -
f- ~ -y

1 2 3 4 5 6 7 8
~plication Number

Figure 6. 7 Acceptance ratios for all applications over J 5 second sampling periods

125

Chapter 6 Application Detector Performance

--,Pr- 95% confidence ~ 90% confidence

1.2 r-------------------------------,
o
~ 1 - ~~~--~~~--~~~--~~~--~~~--~~~ ~

'8°.8 ~
§ 0.6

~ 04
« 0.2

0 ~--_+---T_--_+---T_--_+---r_--~--__4

2 3 4 5 6 7 8
Application Num ber

Figure 6.8 Acceptance ratios for all applications over 30 second sampling periods

~ 95% confidence ~ 90% confidence
1.2

~ ~ ~ ~ £) ~ ~ -~
o
~

I-

I-

0:: 0.8
2l
c 0.6
.!!!
~ 04
« 0.2

° 2 3 App~cation N u~ ber
6 7 8

Figure 6. 9 Acceptance ratios for all applications over 45 second sampling periods

In Figure 6.7, the acceptance ratio observed is not acceptable as the results for several

applications are low. For Diablo, which has a complex packet size distribution profile, in

the client to server direction, almost no successful detections were achieved with 95%

confidence. Even with 90% confidence, the acceptance ratio was still quite low. It seems

that over a 15 seconds interval, a consistent distribution cannot be obtained. In the second

and third plots, the results are much better, most applications had achieved 100%

acceptance ratios, while for Diablo, acceptable results were observed.

As the capture interval over which the profiles were built increased, the profiles'

reliabil ity did improve but the drawback was the fact that one had to wait longer between

each detection attempt. In some cases, a few failures in detection could be considered to

not seriously affect the performance of the detector in favour of a shorter capture interval.

Hence, a capture interval of 45 seconds with a threshold confidence 95% is considered to

be suitable for these non-Nagle applications.

126

Chapter 6 Application Detector Performance

6.2.2 NagJe-Based Applications

In contrast to the non-Nagle applications, as a packet will not be sent out until the

acknowledgement of the last outstanding packet arrives, the packet rates of the Nagle

based applications could vary according to the worsening of network conditions. Thus, it

may be difficult to find a fixed capture interval for a Nagle-based application. Instead, the

number of sampled packets is considered to be a parameter which could potentially affect

the performance ofthe detector.

In the following tests, which were similar to those of the non-Nagle applications, the

tested applications were keep running and the detectO process was applied every time a

given number packets had been captured until 20 detection attempts had been achieved.

Two loaded network conditions, whicJ1 are jitter of 50 to 300 ms delay and a 300 ms fixed

delay, were introduced by the LNE, so that the performance of the detector could be

evaluated.

Real Network Application WarCraft III

Three different numbers of sample packets were tested, 400, 600, and 800. During the

tests, the application was kept running, and once a test number of sample packets had

been captured, detection attempts were carried out over the samples obtained.

Under 50-300 ms Jitter

Figure 6.10 shows the Chi-square test results over samples of 400 - packets.

127

60

" :l 50

~ 40
fI'
'" 30 :l

c? 20
:E 10
U

o

Chapter 6 Application Detector Performance

__ chi-square value __ 90% confidence critical value --95% confidence critical value

r-;::--h\. ~
-

~ ~ -
f-- ~ ~ ~ ------~ V

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6.10 Chi-square results for WarCraft Ill's distribution profiles over 400 packets

In both directions (only the client to server direction plot provided), about one-third of the

Chi-square values calculated were lower than the 90% confidence critical values, the

others were higher. In the client to server direction, 8 detection attempts had returned Chi

square values greater even than the 90% confidence critical values, while that number is

10 for the server to client stream.

__ chi-square value __ 90% confidence critical value __ 95% confidence critical value

50

" :l 40
~

-

~ 30 ,...
'" g. 20

':'Z 10
.<: -
U 0

.... /r ~ ./z ~ ~

~r""'---.. ~ :--
~

~ "" ~ ~
-- -

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attem pt

Figure 6.11 Chi-square results for WarCraft Ill's distribution profiles over 600 packets

128

Chapter 6 ApplicOlion Detector Performance

-o-chi-square value -+-90% confidence critical value - 95% confidence critical value

"
50 r --,

::> 40
~
~ 30 ·

'" 5- 20
en 1. 10 j-____ -A-____ __

U 0 ~~--~~~--~~--4_~--+_~--+__+--T_----T__r--__ _r--~~
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6.12 Chi-square results for WarCraft Ill's distribution profiles over 800 packets

Figure 6.11 and Figure 6.12 show the Chi-square test results over samples of 600 and

800 packets. Drops in the mean of the Chi-square values were observed for these two

sampling numbers compared with the results over 400 packets. In addition, all Chi-square

values were much lower than both the 95% and the 90% confidence critical values. In the

case where the sampling packet number increased from 600 to 800, there seems no visible

performance improvement.

Under 300 ms Fixed Delay

Under 300 ms fixed delay, the results shown in Figures 6.13, 6.14, 6.15 were obtained.

The Chi-square values over 400 packets were erratic, many detection attempts returned

values greater than the 95% confidence critical values, and even a few were rejected with

the 90% confidence critical values. As the sampling packet number was increased to 600,

the mean of Chi-square values showed a drop from 30 to 25. When the sampling packet

number was increased to 800, no significant improvement was observed. On one occasion,

the detector returned a very high Chi-square value, this happened as during this capture

interval, the PC on which game client was running experienced a 100% usage ratio, and

might have caused a temporary stop in sending/receiving packets. As such, this is

considered to be a random inaccuracy and should not affect the results as a whole.

129

Chapter 6 Application Detector PerfOrmance

__ chi-square value -+-90% confidence critical value ~95% confidence critical value

~ r--'

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6_13 Chi-square results ofWarCrafi UI's distribution profiles over 400 packets

__ Chi-square value -+-90% confidence critical value -.-95% confidence critical value

~

'" " 40
~
~ 30

'" " 20 a-
m
. .!. 10
.I::
()

0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attempt

Figure 6.14 Chi-square results of WarCrafi W's distribution profiles over 600 packets

'"
60

" ~ '" > 40
~

30 '" " a- 20 m
. .!. 10 .I::
()

0

__ chi-square value -+-90% confidence critical value - 95% confidence critical value

-

-
<?

/'\ - -""
~,

~ ~ ~

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Detection Attem pt

Figure 6.15 Chi-square results of WarCrafi Ill's distribution profiles over 800 packets

130

Chapter 6 Application Detector Peiformance

6.2.3 Virtual Nagle-Based Applications

As there are very few Nagle-based applications to investigate, the analysis continued

using a simulation. All virtual applications had been tested with various sampled packet

numbers; 400,600, and 800.

Figure 6.16 shows the mean of the Chi-square values calculated over different sampling

packet numbers for all the virtual Nagle-based applications. Most applications show a

considerable drop in value as the sample number increases from 400 to 600, and very

little variation from 600 to 800. This is similar to the situation observed in WarCraft ill.

However, for a few applications, the mean kept dropping from 600 packets to 800 packets.

Interestingly, these instances all occurred for those applications, which had large bin

spreads in their packet size distributions. This is explainable as with the increase of the

distribution freedom, more sample packets would be needed to establish reliable and

stable distributions. In a few instances, the means of the Chi-square values showed no

significant variation as the sampling number increased. These applications often had a

small spread of packet size distributions, and contrary to those with large spreads, 400

packets were sufficient to establish reliable packet size distributions.

- 400 packets --600 packets - 800 packets

450
400 .,
350 ::J

(ij 300 >
~ 250

'" ::J 200
CT
'? 150
:c 100 u

50
0

0 10 20 30 40 50 60 70 80

Virtual ~plication Number

Figure 6.16 Chi-square results/or Virtual Nagle-based applications/or different numbers 0/
sample packets

Figures 6.17 and 6.18 plot the acceptance ratios with 95% and 90% confidence for 600

sample packets under a jittered delay network and a 300 rns fixed delay network. Except

for those applications with very small spreads, most applications have poor acceptance

131

Chapter 6 Application Detector Peiformance

rations for 95% confidence. For some applications, acceptance ratios below 70% were

observed with 95% confidence. When it comes to 90% confidence, many applications

show improved the acceptance ratios than 95%, the lowest acceptance ratio was greater

than 80% and 100% acceptance ratios for 2/3 applications were obtained.

- for 90% confidence --for 95% confidence

1.2 ,------------------------------,

Jl 1 t---'-"'VI"-'-'rr,,~ .,
et: 0.8
1l c 0.6
J!l § 04

« 0.2
O ~~_+--~~_+--~--_+--~+_~~~+_~~--+_~~

o 10 20 30 40 50 60 70 80

Virtual ~plicaijon Number

Figure 6.17 Acceptance ratios for all virtual Nagle-based applications under ajittered delay

network condition over 600 packets

-for 90% confidence --for 95% confidence

1.2,----------------------------,
1 t---,-",7"~_o~·~~~~rrr,,._~-~~""r_--,,_rr~

o 10 20 30 40 50 60 70 80

Virtual ~plication Number

Figure 6.18 Acceptance ratios for all virtual Nagle-based applications under a 300ms fixed delay

network condition over 600 packets

When the sampling packet number was set to 800, considerable performance

improvements were observed for many applications with large spreads. Under both

jittered delay and 300ms fIXed delay, most of them achieved acceptance ratios that were

greater than the 90% using the 90% confidence critical values, with three showing 83%,

85% and 88% in Figure 6.19 and other two showing 84% and 88% in Figure 6.20

respectively. For the 95% confidence, the results obtained still did not reach an acceptable

level, one may expect improvement on acceptance ratios with the increase of the

132

Chapter 6 Application Detector Performance

sampling packet number. However, it will take too long a time in order to capture packets

for a practical detector if sampling packet number is increased further. The settings of the

detector were thus set as sampling packet number 800 and tbreshold confidence 90%.

- for 90% confidence --for 95% confidence

1.2,..-- ---------------------------,
o .,
"' 1 1-"r<::<""'......., ~"""'"'"
et: 0.8 1---''--...~--!l4f---''----'''I-
1l
c: 0.6 \-------------
J!! § 0.4

« 0.2

o ~~-+--~~_+~--+__+~--+_~~--+_~~--+_~~
o 10 20 30 40 50 50 70 80

Virtual ~plication Number

Figure 6.19 Acceptance ratios for all virtual Nagle-based applications under ajittered delay

network condition over 800 packets

- for 90% confidence - for 95% confidence

1.2,----------------------------,
~ 1 +-~~~~~r_.~~~"~~Tn~~,_r-_v~~~-r_--~~~I
"' et: 0.8
1l
c: 0.6
J!!

J ~: 1-------

o 10 20 30 40 50 60 70 80

Virtual ~plication Number

Figure 6.20 Acceptance ratios for all virtual Nagle-based applications under a 300 ms fixed

delay network condition over 800 packets

6.3 Application Detector Performance

After the parameters had been decided, it was necessary to test the performance of the

prototype application detector. The following tests were carried out on all stored

applications. The testing system architecture was the same as that OD which the previous

tests had been carried out. The pes on which tested applications were running were

connected using lOMB Ethemet cards.

133

Chapter 6 Application Detector Performance

----c- success ratio .. ~ - --r:r 0 .'" 0.9 ..
et:
.2

0.8

'" 0.7 '" 8 0.6
'" '" 0.5

2 3 4 5 6 7 8

/>i:>plication Number

Figure 6.21 Success ratios for all non-Nagle applications under ideal network condition

Under Loaded Network Conditions

A suggestion was made and proven in Chapter 4 of this Thesis that the presence of

network load would not affect the packet size distributions of the Non-Nagle applications;

hence, the performance of the detector should not be impacted by loaded network

conditions. This assumption was tested here with the prototype detector. The test network

was artificially loaded at different levels and the performance of the detector measured

with various Non-Nagle applications.

Figure 6.22 plots the success ratios for all the non-Nagle applications under different

network conditions, three levels of load were emulated with the LNE which were low

load (lOOms fixed delay, 3% loss), medium-load (jittered 50-300ms delay, 3%loss), and

high-load (300ms fixed delay, 5% loss). Similar results to those obtained from tests under

ideal network conditions were observed. The detector therefore performed well over a

loaded network. Even at the highest level of load, the success ratios were acceptable as

most applications retained 100% success except for Diablo II which achieved a 92%

success ratio.

135

Chapter 6 Application Detector Performance

----6- low-loaded ~ medium-loaded __ high-loaded

0

"" 0.9 IV
Cl:

:a 0.6
U)

0.7 U)

~ 0.6 .,
C/)

0.5
2 3 4 5 6 7 6 9

Application Number

Figure 6.22 Success ratios/or all Non-Nagle applications under loaded network condition

6.3.2 Nagle-Based Applications

The Nagle-based applications were then tested on the same experimental system as the

Non-Nagle applications. The sampling packet number was assigned to 800 as described

previously and detection attempts were carried out each time 800 sampling packets had

been captured. The build time of a test profile varied according to the network conditions,

basically, for an application which has an original packet rate of 7/sec, under a medium.

level load network, the build time would vary from 80 seconds to 200 seconds

approximately.

10 the following tests, each Nagle-based application in the database was run 10 times for a

running time of at least 15 minutes and would stop once 20 detection attempts had been

made. As such, during the operation of each application, the number of detection attempts

was more than 200 in total over which success ratios were calculated.

Under Ideal Network Conditions

Under the no-load network, the detector functioned perfectly as shown in Figure 6.23.

All detection attempts had returned the correct application name, no misdetection

occurred.

136

Chapter 6 Appllea/ion Detector Performance

1 r---------~~--------------------~--------_.

~ 0.9

a:: 0.8

~ 1l 0.7

'" 06 (IJ

0.5 ~----------------------~~----------------------_4

2
Application Number

Figure 6.23 Success ratios for real Nagle-based applications under ideal network condition

Under Loaded Network Conditions

Three levels of load were adopted for the two real Nagle-based applications. Under these

loaded network conditions, the aggregated packet size distribution mechanism was

operational. The general results are summarized in Figure 6.24

-=- Iow-Ioaded ~ medium-loaded __ high-loaded

1
0

~ 0.9
a::
:a 0.8

'" 0.7 '" g
0.6

'" (IJ
0.5

2

Application Number

Figure 6.24 Success ratios for real Nagle-based applications under loaded network condition

Under low-load and medium-load network, the success ratios of both applications were

good, for SSH-Client, 100% success was even achieved. Variation was observed under

the high-load network condition. The success ratio for warCraft ill was improved, with a

small drop for SSH-Client when the network condition was worse. These results could be

caused by the fact that when 300 ms fixed delays were introduced by the LNE, very few

first order packets were captured. This could lead to a decrease in the degree of freedom

of the aggregated packet size distribution profile for warCraft ill and therefore improved

the re liabilities of the Chi-square tests. However, for SSH-Client, under the high-load

network condition, some more of the fifth order packets were captured. As the detector

137

Chapter 6 Application Detector Performance

was set to deal with the 4th order packets at most, those 5th order packets could have

caused some misdetection.

6.3.3 Virtual Nagle-Based Applications

The tests on the virtual Nagle-based applications were carried out only under loaded

network conditions. Figure 6.25 shows the success ratio results of these applications.

- Iow-loaded

1.2

1 1--..-" r-........ r-""l:i'i~"
08
0.6

04

0.2

o
o 10 20 30

medium-loaded --high-loaded

40 50 60 70 80

Figure 6.25 Success ratios for all virtual Nagle-based applications under loaded network

condition

For the reason that these virtual Non-Nagle applications had much more complicated

packet size distributions, the success ratios were generally lower than those of the real

Nagle-based applications. Under the low-load and medium-load network conditions,

some virtual applications with small spreads achieved 100% success, whereas, some large

spread applications gained lower success ratios. The success ratios showed positive

correlation to the spreads of the applications. The larger spread the application has the

lower success ratio the detector achieved. When the application were operated under

high-load network conditions, some applications that use the second aggregated detection

method showed slight drops in success ratios, these drops could have been caused by the

situations mentioned in Chapter 4. This suggested that when the aggregated packet size

distributions were mostly consist of higher order packets, the detection attempts will be

applied once a certain order packets are just removed from the sample distributions,

however, at that moment, some lower packets are still remained in the sample

distributions, as such, the detection attempts would be affected by the presence of these

138

Chapter 6 Application Detector Performance

lower order packets. Nevertheless, the effects were not serious and the success ratios kept

in acceptable levels.

Actually, it possible that a sample aggregated packet size distribution could be considered

to be aggregated from more than one original stored distribution. A simple aggregated

distribution is given in Figure 6.26. Another two simple original distributions are also

shown in Figure 6.27.

300

250

200

150

r --

I

100

50

o
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6.26 A simple aggregated distribution profile

0.8

0.6

0.4

0.2

o

0.8

0.6

0.4

0.2

o

r

-- --

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b

Figure 6.27 Two simple original distribution profiles

I

I
!

I
I

The aggregated distribution profile given out in Figure 6.26 consisted of 200 packets of 3

bytes, 200 packets of 6 bytes, 200 packets of 9 bytes and 200 packets of 12 bytes. This

139

Chapler 6 Application Detector Performance

profile could be considered to be aggregated from the original distribution shown in

Figure 6.27 (a) with 200 1st order packets, 200 2nd order packets, 200 3'd order packets

and 200 4th order packets. On the other hand, it could also be considered to be aggregated

from the original distribution shown in Figure 6.27 (b) with 400 1st order packets and 400

2nd packets. In reality, this instance could also potentially occur. The detector thus would

sometimes return more than one application that was accepted by the Chi-square test for

the Nagle-based applications. An immediate example of this situation is virtual

application no.61, which has a success ratio (as shown in Figure 6.25) that is obviously

lower than the acceptance ratio obtained previously. In these cases, the detector may have

no ability to achieve a unique identification. However, at least the possible applications

had been reduced into a significantly smaller range.

In Figure 6.28, the detection success ratios of the virtual Nagle-based applications when

success was redefined as "the correct application had been accepted by Chi-square test

regardless of weather or not other incorrect applications were also accepted" are plotted.

- Iow-loaded - medium-loaded --high-loaded

1.2

W '\Y "'~ ~ "''1 V C":::I 'V ~ y '" 0.8 I-- -
0.6 r- -

0.4 I-

0.2 -

0
0 10 20 30 40 50 60 70 80

Figure 6.28 Success ratios for all virtual Nagle-based applications under loaded network

condition

From the plot, it can be seen that for the virtual applications, the success ratios were

improved considerably. The lowest success ratio observed was 85%, which is quite

reasonable. Since the real Nagle-based applications would probably have much less

compl icated spreads than the virtual applications, one could expect higher success ratios

when a real detector is used.

140

Chapter 6 Application Detector PerfOrmance

6.3.4 Virtual Applications with Large Packet Sizes

In Chapter 4, the suggestion that the aggregated detection mechanism shows poor ability

to identiry those applications with large size packets was discussed. Here, five virtual

applications falling into this category were tested. These applications' packet size

distributions have the same median position which is 500 bytes but different spreads and

trends.

Figure 6.29 plots the success ratios for these virtual applications under low-load network

conditions. The delay was set to ISO ms. It can be seen that the results exhibited are

acceptable as the lowest one represents a 83% success ratio. This result suggests that

under this low-load network condition, most aggregated packet sizes did not reach the

MTU size, and the profiles captured showed in general no difference from those

applications with smaller packet sizes.

,g 0.8 !====::===::;~==~==~~
'" 0:: 0.6 +------------------------------1
'" '" ~ 0.4 +-----------------------------1
cil 0.2 +------------------------------1

O~----~----_+-----~----~----~
2 3

Application Number
4 5

Figure 6.29 Success ratios for Nagle-based applications with large packets under low-load

network condition

6.4 Simultaneously Running Application

Clearly, a practical detector will need to identiry applications running simultaneously on

multiple clients across the network [BhaO I]. Some tests on simultaneously running

applications were therefore carried out.

In the first round test, three applications were operated on a single PC. In the second

round, three applications were operated on three separate PCs, which were connected to a

141

-- ------------

Chapter 6 Application Detector Peiformance

hub, and the detector was attached to the hub in order to analyse the traffic. The aim of

these tests was to verify the ability to identifY applications in the presence of other traffic.

The three applications were Crim-Sky, Need for Speed III and WarCraft Ill. Network

load of jittered 50-300 ms delay in conjunction with 5% loss was introduced by the LNE.

The three applications were operated only once for twenty minutes during which several

detection attempts were made. Table 6.1 below shows the success ratios for the three

applications of this test.

Test round Crim-Sky Need for Speed III WarCraft III

1 100% 100% 99%

2 100% 100% 100%

Table 6.1 Success ratIOs for simultaneously runmng applicatIOns

According to the results obtained, the detector performance showed no difference from

that when the applications were running individually. This test did demonstrate that the

detector has the ability to distinguish the identities of the streams of multiple applications,

all present at the same time.

6.5 Summary

Some parameters of the detector prototype are found in this chapter. For the non-Nagle

applications, capture interval is selected as a parameter as the sending of packets is not

affected by the TCP implementation and the number of packets in one capture interval is

fixed. However, for the Nagle-based applications, this number will be potentially

changed. The number of sample packets is therefore chosen as the corresponding

parameter.

An interval of thirty seconds is enough for most non-Nagle applications except DiabloIl

due to its complex distribution profile. A better performance was observed when the

interval increased from 30 seconds to 45 seconds, and no significant change as the

internal increased further to 60 seconds. Most Nagle-based applications exhibited a

similar characteristic. Performance was improved as the sampling number was set from

142

.Chapter 6 Application Detector Performance

400 to 600 but little variation from 600 to 800. However, for a few applications with large

spreads of distribution profile, performance can be even improved further when sampling

number increased from 600 to 800. Nevertheless, as discussed previously, it will take too

long a time in order to capture packets for a practical detector if sampling packet number

is increased further. In order to achieve the best balance between detection reliability and

timeliness of the identity information, 45 seconds and 800 were selected to be the

parameters so that stable captured distributions can be established.

The Chi-square tests were applied on the captured distributions. Most applications can be

successfully detected using 95% as the threshold confidence. For several virtual

applications with very complicated distribution profiles, 90% is considered to be more

suitable. The settings of the detector are summarized in Table 6.2

Capture Interval/Sampling
Threshold Confidence

Number

Non-Nagle Applications 45 seconds 95%

Nagle-based Applications 800 packets 90%

Table 6.2 Parameters selectedfor the prototype detector

A lot of tests had been carried out in order to see how well the mechanism was working.

All real applications including eight Non-Nagle applications and two Nagle-based

applications can be identified without any difficulty. The success ratios are all more than

90%. For those virtual applications with complicated profiles, drops on the success ratios

were seen comparing to those virtual applications with simple profiles. Nevertheless,

most of them achieved success ratios more than 85%. The lowest one 77% was occurred

when it tried to detect virtual application 61, which can be still considered as acceptable.

The results were 'summarized in Table 6.3. The numbers in the table show the count of

applications achieved the corresponding successful ratios.

143

Chapter 6 Application Detector Performance

100% 99%-90% 90%-80% <80%

Non-Nagle
8 1 0 0

Applications

Nagle-based
61 17 12 2

Applications
Table 6.3 Success ratIOs for slr/ctly defined "success"

As the "success" is defined strictly, improvement can be seen if the definition is changed

to "the correct application had been accepted by Chi-square test regardless of weather or

not other incorrect applications were also accepted". In this circumstance, many

applications achieved better successful ratios (see Table 6.4). The lowest success ratio

observed was 85%, which is quite reasonable.

100% 99%-90% 90%-80% <80%

Non-Nagle
8 I 0 0 Applications

Nagle-based
59 31 2 0 Applications

Table 6.4 Success ratIOs for less strictly defined "success"

Some tests on simultaneously runmng applications were afterwards carried out. The

results suggested that the prototype detector did have the ability to identifY network

applications with other traffic in present.

144

- - - -----------

Chapter 7 Conclusions and Recommendations for Future Work

CHAPTER

7
Conclusions and Recommendations for

Future Work

7.1 Introduction
In this chapter, the conclusions on the study undertaken in this Thesis are drawn. The

results based upon the experiences are summarized. Finally, the recommendations of

future work arising from this work are discussed.

7.2 Conclusions

To know what applications are currently in operation across modern packet based

communication networks such as the Internet is always attractive to network

administrators, network service providers and security systems. The availability of this

information can contribute to preventing improper network use. In addition, using this

information, the network may be able to establish enhanced environments for the

applications which are in use. In such cases, an efficient mechanism for identification of

the application generating a traffic stream is required.

Traditionally, application detection has been based on well-known port numbers. All

applications using TCPIIP as their transport protocol must use a port number with which

to identify the packets generated. This simple identification mechanism has however

become much less accurate for identifying applications. A recently developed technique,

deep packet inspection, is a process which involves searching for uniquely identifying

information held within the data portion of the packets. Such mechanisms are accurate

enough for application detection, yet have shortcomings as well. Although this technique

145

Chapter 7 Conclusions and Recommendations for Future Work

functions well for standards-based applications, other applications for which the relevant

technical information is not forthcoming would not be detectable.

An approach for detecting networked applications using an alternative application

"signature", the Packet Size Distribution, has been proposed and discussed in this Thesis

in order to identify those TCP-based real-time applications that are not standards-based.

For TCP-based real-time applications utilising bulk mode or interactive mode without the

Nagle Algorithm, the packet size distribution profiles show robust consistency under

different running conditions or under loaded network co~ditions. However, some

traditional TCP-based applications such as FTP, SMTP, and HTTP could not be identified

using this fingerprint due to the fact that the packet size distributions of these applications

highly depend on their users' input and had poor consistencies.

On the other hand, those applications using the Nagle Algorithm present variations in the

packet size distribution profiles with the worsening of the supporting network condition.

The Nagle Algorithm says that when a TCP connection has outstanding data that has not

been acknowledged, small packets cannot be sent until the outstanding data is

acknowledged. The size of packet generated by these applications would therefore be

aggregated and the distribution profiles would look quite different from those under ideal

network conditions. However, the response to such aggregation phenomenon is seen to

follow a predictable pattern in many cases, and a solution to their detection has been

arisen and discussed in Chapter 4. This was experimentally proved and assessed for its

feasibility. A variety of packet size distribution profiles have been tested, and satisfactory

detection results have been obtained showed that the method is suitable universally for

different kinds of distributions.

Two limitations were discovered with the aggregated detection methods. ;r"he first is that

when the packets generated by the applications are relatively large, the MTU of the

subnet would limit the size of the outgoing packets leading to many payloads being sent

out as the MTU size packets. The aggregated distribution would thus become much less

predictable and make it difficult for an aggregated detection mechanism to achieve

successful detection. Another drawback is that it could potentially happened that an

aggregated packet size distribution could be generated that was aggregated from two or

more completely different original distributions. In this case, the detection attempt would

146

Chapter 7 Conclusions and Recommendations for Future Work

return two or more "correct" results, and there is no way so far to tell which one is

actually correct. Nevertheless, the range of possible applications would be considerably

diminished by the aggregated detection mechanism, and in any case this circumstance has

a very low probability of actually occurring.

It was found that a relatively long capture interval is needed by these non-Nagle

applications in order to build reliable packet size distribution profiles, and for these

Nagle-based applications, the packet count would vary according to different network

conditions. As such, the number of packets captured was chosen as the key parameter in

order to guarantee the stability of the distribution profiles generated. As the interval or

number of packets captured over which the profiles were built increased, the detector

performance improved but the drawback was the fact that one had to wait longer between

each detection attempt. Tests were carried out in order to achieve the best balance

between detection reliability and computation resource consumption or timeliness of the

identity information.

Chi-square analysis was adopted to statistically compare the captured packet size

distributions against a database and was considered a successful mechanism for this work.

The threshold confidence could be another factor which may affect the performance of

the detector.

A prototype detector implementing the ideas of this work was developed and tested. For

non-Nagle applications, the performance was perfect since excellent success ratios had

been obtained for all applications tested. For the two real Nagle-based applications,

WarCraft III and SSH-Client, perfect performance was also observed, whereas, some

drop in success ratios for the virtually generated Nagle-based applications was seen. This

. could be explained as the packet size distribution profiles of these applications are often

much more complicated than those real applications. However, the detector successfully

identified these virtual applications in most cases and the success ratios were kept at an

acceptable level.

In some cases, detection was unsuccessful on the first attempt, but improved with

subsequent attempts, as each new sample of the stream was captured. This was often due

to the application not having reached a steady state of operation. With many applications,

this was usually when connection negotiation was still occurring.

147

Chapter 7 Conclusions and Recommendations [or Future Work

7.3 Future Works

The packet size distribution has been verified for its ability to be an identifiable signature

for some classes of TCP-based applications. This section aims to briefly introduce some

of the research issues related to the work discussed in this Thesis. Investigation into these

issues provides knowledge to improve the application detection mechanism.

The probability of encountering a packet size distribution profile which is similar to one

profile in the database but generated by a different application potentially exists. That is,

for the TCP-based applications whose packet size distribution profiles show no

consistency under varied conditions, sometime, the distribution profiles generated by

them could exhibit similarity to a certain profile in the database which is captured from an

application has consistent packet size distributions. Although this should be a low

probability event, it could potentially occur. As a result, a misdetection result may be

returned, and cause a network operator to draw incorrect conclusions about the utility of

hislher network and perhaps lead to incorrect optimisation. In addition, clearly, as more

applications are added to the database, the likelihood of two or more applications having

very similar packet size distribution profiles increases. In such cases, two suggestions can

be made in order to reduce the likelihood of the said misdetection. Firstly, whilst Chi

square is a suitable analysis technique for this work as it is a distribution-independent test

and has the ability to reject poorly matched profiles some of the matching techniques

employed in pattern recognition may be applicable to application detection [DudH73J.

The second suggestion is to include more application related information during the

detection procedure. Some information contained in the headers of the packets could not

be considered as unique. Nevertheless, it could be used to reduce the set of applications

against which the sample distribution profile needs to be compared. Further, some

additional statistical measurements such as packet rates or packet sending intervals could

contribute to reduce the comparison domain.

Some applications (i.e. FTP) follow a distribution consisting of predominantly large

(MTU) and small (ack) packet sizes. Whilst the unique identification of such applications

is not possible, it is clear that only certain TCP applications show this characteristic. The

detection mechanism could still have benefit however. The analysis could be used to

148

Chapter 7 Conclusions and Recommendations for Future Work

verify that the application is indeed what it claims to be. For example, the approach could

not formally identify an FTP stream on Port 20, but it could be used to reject such a

classification if, for example, Nadar traffic was masquerading on Port 20.

7.4 Contribution Remarks

The statistical application detection mechanism was first used by [BhaOI) which

discussed and demonstrated the feasibility of using the packet size distribution as the

fingerprint in order to uniqueJy identify an UDP-based application running on a network.

With the improvement of the quality of the Internet, one may expect more and more

networked applications that adopt TCP protocol will be developed in the recent future,

and it is as such necessary and practical to apply this mechanism on the TCP-based

applications.

The statistical technique is capable of identifying the non-Nagle based applications with

remarkable success and shows resistant to network load. However, due to the difference

between the UDP and TCP transportation protocol, when this detection method was

applied on the TCP-based applications, some problems was emerged and makes it is not

applicable to detect some Nagle-based applications. The statistical technique was then

improved by this work and experimentally shows reasonable capability in identifying

those applications.

The pattern matching method adopted by this work is the Chi-square test which is a

simple statistical method based on probability theory. One can certainly expect that the

performance will be improved when some more sophisticated pattern recognition methods are

utilized.

The idea of this work is not intend to replace the traditional content-based detection

techniques but try to provide a complementary detection method in detecting some kind

of networked applications on which conventional packet analysis often fails. It was

proven to be suitable for the real-time applications. In addition, this work gives an option

while detecting some applications that exchanging encrypted traffics such as SSH which

is a typical application falling into this category. In summary, the results achieved by this

work not only contributes to the research in the field of the traffic stream analysis as well

149

Chapter 7 Conclusions and Recommendationsfor Future Work

as the network monitoring, but provides a useful technique while developing a practical

intelligent network.

150

References

References

And05

Acts03

AlIP99

ArmS04

AshM99

BaiSWCOO

O. Andreasson

"Iptables Tutorial"

http://www.netfilter.org, 2005

Advanced Communication Technologies and Services (ACTS)

Programme

"A TM in Europe"

http://www.dit.upm.es/infowin/atmeurope/. 2003

M. AlIman and V. Paxson

"TCP Congestion Control"

Request for Comments, RFC1122,

Network Working Group, 1989

G. Armitage and L. Stewart

"Some Thoughts on Emulating litter for User Experience Trials"

Proceedings of the 3rd ACM SIGCOMM workshop on Network and

system support for games, Portland, USA, Aug 2004, pp.157-160

P. Ashley and V. Mark

"Practical Intranet Security"

Kluwer Academic Publisher, 1999, ISBN: 978-0-7923-8354-3

G. Bai, Z. Shen, W. Wang and S. Cheng;

"RSTP: a new lightweight transport protocol for VoIP"

Communication Technology Proceedings, 2000. WCC - ICCT 2000.

International Conference, vol. 1 ,Beijing, China, Aug 2000, pp. 639 -

642

151

Bas98

BhaOI

References

o. Bashir

"Management and Processing of Network Performance Information"

Doctoral Thesis, Loughborough University, 1998

K. Bharadia

"Network Application Detection Techniques"

Doctoral Thesis, Loughborough University, 2001

B1iO I Blizzard Inc.

"Diablo II Game Guide"

http;llwww.blizzard.com/diablo2. 2001

Bli02 Blizzard Inc.

BorS99

Bra89

BraCS97

"WarCraft III Game Guide"

https ;//www.worldofWarCraft.com/info. 2002

M. Borella and M. S

"Source Models of Network Game Traffic"

Computer Communications, vol. 23(4),2000, pp. 403-410

R. Braden

"Requirements for Internet Hosts; Communication Layers"

Request for Comments, RFC 1122,

Network Working Group, 1989

R. Braden, D. Clark and S. Shenker,

"Integrated Services in the Internet Architecture; an Overview"

Request for Comments, RFC1633,

Network Working Group, 1997

152

BraZBH97

CheB03

ClaOO

ClaMOO

Cle06

Com99

DanOl

References

R. Braden, L. Zhang, S. Berson and S. Herzog,

"Resource ReSerVation Protocol (RSVP)"

Request for Comments, RFC2205,

Network Working Group, 1997

W. Cheswick and S. Bellov

"Firewalls and Internet Security: Repelling the Wily Hacker"

Addison-Wesley, 2003, ISBN-lO: 020l63466x

H. Clare

"Internet and E-Mail: Use and Abuse"

Institute of Personnel and Development, 2000, ISBN-ID: 0852928815

S. McCreary and K. Claffy,

"Trends in Wide Area IP Traffic Patterns: A View from Ames Internet

Exchange"

Proceedings of 13th ITC Specialist Seminar on Measurement and

Modeling oflP Traffic, Monterey, USA, September 2000, pp. 1--11

A. Clemm

"Network Management Fundamentals"

Cisco Systems, 2006, ISBN-IO: 1587201372

E. Corner

"Computer Networks and Internets"

Prentice Hall, 1999, ISBN-lO: 0131434519

A. Daniel

"Internet Future Strategies: How Pervasive Computing Services Will

Change the World"

Prentice Hall, 2001, ISBN-IO: 013041803X

153

DatK97

DudH73

Far02

FenFW02

References

D. Kayshav

"Effective Object-Oriented Software Construction: Concepts,

Principles, Industrial Strategies, and Practices"

Prentice HaIJ, 1997, ISBN-lO: 0130867691

O. Duda and P. Hart

"Pattern Classification and Scene Analysis"

John WiJey & Sons, 1973, ISBN-IO: 0471223611

J. Farber,

"Network Game Traffic Modelling"

Proceedings of the 1st Workshop on Network and System Support for

Games, Braunschweig, Germany, April 2002, pp. 53-57

W. Feng, F. Chang, W. Feng, andJ. Walpole,

"Provisioning Online Games: A Traffic Analysis of a Busy Counter

Strike Server"

SIGCOMM, Proceedings of the Internet Measurement Workshop,

Marseille, France, November 2002, pp. 151-156

FieGMFB97 R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T. Bemers-Lee

"Hypertext Transfer Protocol- HTTP/I.!"

Request for Comments, RFC2068,

Network Working Group, 1997

FomKMC04 M. Fomenkov, K. Keys, D. Moore and K. Claffy,

"Longitudinal Study of Internet Traffic in 1998-2003"

Proceedings of the Winter International Synposium on Information and

Communication Technologies, Cancun, Mexico, Jan 2004, pp. 1-6

154

ForB05

GelL05

Reftrences

A. Forouzan and A. Behrouz

"TCPIIP Protocol Suite", 3'd edition.

McGraw-Hill, 2005, ISBN: 0072967722

E. Gelenbe and P. Liu

"QoS and Routing in the Cognitive Packet Network"

Proceedings of the IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks, Taormina, IT AL Y, Jun

2005, pp. 517-521

Gil92 H. Gilbert

GupMOO

Ham75

Hay88

HenOI

"Network Management: Technique, Tools, and Systems Network

Management Overview"

Courier International Ltd, 1992, ISBN-IO: 0471927813

P. Gupta and N. McKeown

"ClassifYing Packets Using Hierarchical Intelligent Cuttings"

IEEE Micro, vol. 20, no. I, Jan.-Feb. 2000, pp. 34-41

M. Hammerton

"Statistics for The Human Sciences"

Longman Group Ltd, 1975, ISBN-IO: 0582442737

L. Hays

"Statistics"

Holt, Richard and Winston Inc, 1988, ISBN-IO: 0030744679

T. Henderson

"Latency and User Behaviour on a Multiplayer Games Server"

Proceedings 'of Third International Workshop on Networked Group

Communication, London, UK, Nov 2001, pp. 1-13

155

HerCRA63

HogMC06

How04

HusHP03

Iana07

References

Herbert, Colton, Raymond and R. Arkin

"Tables for Statistics"

Barnes & Noble Books, 1963

v. Hogg, W. Mckean and T. Craig

"Introduction to Mathematical Statistics", 6th Edition

Pearson Education, 2006, ISBN-10: 0131867938

D. Howell

"Fundamental Statistics", 5th Edition

Thomson Learning Inc, 2004, ISBN: 0495099007

A. Hussain, 1. Heidemann, and C. Papadopoulos

"A Framework for Classifying Denial of. Service Attacks"

Proceedings of the ACM SIGCOMM Conference, Karlsruhe,

Germany, August 2003, pp. 99-110

IANA

"Port Assignments"

Current List of Well-Known and Registered Port Assignments, 2003

http://www.isi.edulin-notes/ianalassignments/port-numbers

Ipt06 The Netfilter Core Team

Kan076

"The NetfilterlIptables HOWTO's"

http://www.netfilter.org, 2006

M. Kendall and 1. Ord

"Time Series"

Edward Arnold, 1976, ISBN-10: 0852642954

156

KarKL03

References

M. Karol, 1. Krishnan and J. J. Li

"VoIP Protection and Performance Improvement"

Computer Communications and Networks. Proceedings of the 12th

International Conference, Dallas, USA, Qct 2003, pp. 505-510

Kit96 1. Kitchens

Koz05

Kum05

KurR03

MacF02

"Exploring Statistics: A Modern Introduction to Data Analysis and

Inference", 2nd Edition

Brooks/Cole Publishing Campany, 1996, ISBN-I 0: 0534781403

M. Kozierok

"The TCPIIP Guide, A Comprehensive, Illustrated Internet Protocols

Reference"

Bennington Vermont, 2005, ISBN-IO: 1-59327-047-X

http://www.tcpipguide.com/

S. Karnouskos

"Dealing with Denial-of-Service Attacks in Agent-Enabled Active and

Programmable Infrastructures"

Proceedings ofthe 25th Annual International Computer Software and

Applications Conference (CQMPSAC'OI), Chicago, USA, Qct 2001,

pp. 445-450

F. Kurose and W. Rose

"Computer Networking"

Pearson Education, 2003, ISBN-I 0: 0321497708

C. Macian and R. Finthammer

"An Evaluation of the Key Design Criteria to Achieve High Update

Rates in Packet Classifiers"

IEEE Network, Vol. 15.6, Nov. 2001, pp. 24-29

157

Mar94

MicOO

Mys06

Nad93

Nag84

NirB95

OdlO3

References

J. Martin

"TCP/IP Networking: Architecture, Administration and Programming"

Prentice Hall, 1994, ISBN-I 0: 0136422322

Microsoft Ltd.

"Crimson-Sky Versions"

http://www.microsoft.comlgames/crimsonskies. 2000

MysqlAB

"The MySQL Knowledge Base"

http://www.mysql.com/networklknowledgebase.html. 2006

M. Nadler and E. Smith

"Pattern Recognition Engineering"

Wiley, 1993, ISBN-IO: 0471622931

1. Nagle

"Congestion Control in IPITCP Internetworks"

Request for Comments, RFC896,

Network Working Group, 1984

V. Nirkhe and M. Baugher

"Quality of Service Support for Networked Media Players"

Proceedings ofIEEE COMPCON, San Francisco, USA, Mar 1995, pp.

234-238

A. M. Odlyzko

"Internet Traffic Growth: Sources and Implications"

Proceedings of the SPIE, vol. 5247, Aug 2003, pp. 1-15

158

OliBPD99

References

M.A.Oliver, K.R.Bharadia, 1.W.Phillips andDJ.Parish

"Grading and Predicting Networked Application Behaviour"

IEE Computing and Control Journal, vol .11, Apr 2000, pp. 65-72

ParBLP003 J. Parish, K. Bharadia, A. Larkum, 1. W. Phillips and M. Oliver

Pax94

PlaBH99

PilM04

Pos82

"Using Packet Size Distributions to Identify Real-Time Networked

Applications"

Communications, IEE Proceedings, vo!. 150, Aug 2003, pp. 221-227

v. Paxson

"Growth Trends in Wide Area TCP Connections"

IEEE Network, Vo!. 8, No. 4, Jul-Aug 1994, pp. 8-17

A Plaat, H. E. Bal and R. F. Hofman

"Sensitivity of Parallel Applications to Large Differences in

Bandwidth and Latency in Two-Layer Interconnects"

Proceedings on the Fifth International Symposium on High

Performance Computer Architecture, Orlando, USA, Jan 1999, pp.

244-253

T. Piliuoras and C. Mann.

"Network Design: Management and Technical Perspectives"

Auerbach Publishers, 2004, ISBN-IO: 0849316081

J. Postel

"Simple Mail Transfer Protocol"

Request for Comments, RFC821 ,

Network Working Group, 1982

159

PosR83

PosR85

PosR94

Raj05

Ric94

RealOO

SanPL05

References

1. Postel and J. Reynolds

"Telnet protocol specification"

Request for Comments, RFC854,

Network Working Group, 1983

J. Postel and J. Reynolds

"File Transfer Protocol"

Request for Comments, RFC959,

Network Working Group, 1985

J. Postel and 1. Reynolds

"Assigned Numbers"

Request for Comments, RFC 1700,

Network Working Group, 1994

S. Raja

"Why Always-On Stateful Inspection and Deep Packet Analysis are

Essential to Deliver Non-Stop Protection"

White Paper, Top Layer Networks, 2005

http://www.toplayer.com

W. R. Stevens

"TCPIIP Illustrated"

Addison-Wesley, 1994, ISBN-IO: 0201633469

Real Networks

"RealPlayer G2 User Information", 2000

http://www.real.com

M. Sandford, D. Parish and B. Li

"Using Flow Statistics to Identify Network Applications"

White Paper, Loughborough University, 2005

160

Sch88

SchOI

SchML03

She03

Ssh05

SteCWA99

Sun05

Re[erences

W. Schefler

"Statistics: Concepts and Applications"

The BenjaminlCummings Publishing Company, 1988, ISBN 0-8053-

8780-3

H. Schildt

"Java 2: The Complete Reference", Fifth Edition

McGraw-Hill, 2001, ISBN-IO: 8441518653

D. V. Schuehler, J. Moscola and J. Lockwood, D

"Architecture for a Hardware Based, TCPIIP Content Scanning

System"

High Performance Interconnects, Proceedings of the 11 th Symposium,

Stanford, USA, Aug. 2003, Dpp. 89-94

N. Sheldon

"The Effect of Latency on User Performance in WarCraft Ill"

Proceedings of the 2nd Workshop on Network and System Support for

Games (NetGames 2003), Redwood, USA, May 2003, pp. 3-14

SSH Communication Security

"Technical Solution Description"

http://www.ssh.com

S. Savage, N. Cardwell, D. Wetherall and T. Anderson

"TCP Congestion Control with a Misbehaving Receiver"

ACM Computer Communication Review, vo!. 29(5), Oct 1999, pp. 71-

78

Sun Microsystem, Ltd

"Java Overview White Paper"

http://java.sun.com , 2005

161

Sun98

SunM06

Tcw06

TenSSW97

Win04

WanC91

References

Sun Microsystem, Ltd

"Java Language Overview White Paper"

http://java.sun.com , 1998

Sun Microsystem, Ltd

- -- ------------

"Java ™ 2 Platform Standard Edition 5.0 API Specification"

http://java.sun.com/j2sell.5.0/docs/api/ , 2006

Tcpdump Workers

"Tcpdump Howto"

http://www.tcpdump.org , 2006

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,

and G. 1. Minden

"A Survey of Active Network Research"

IEEE Communications Magazine, vo1.35, Jan 1997, pp. 80-86

Windump Team

"WinDump Manual"

http://www.winpcap.org/windump, 2004

Z. Wang and J. Crowcroft

"A New Congestion Control Scheme: Slow Start and Search"

ACM Computer Communication Review, vol. 21, Jan 1991, pp. 32-43

WanYFZFOO P.Y.Wang. Y.Yemini, D.Florissi, J.zinky and P.Florissi

"Experimental QoS Performances of Multimedia Applications"

INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, vol.2,

Tel Aviv, Israel, Mar 2000, pp. 970-979

162

Xcwg05

References

XML Core Working Group

"Extensible Markup Language (XML)"

http://www.w3.orgIXML, 2005

163

Appendix

164

