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Synopsis 

For all types of aircraft (civil, military, manned, unmanned) the aircraft designer specifies a 

safe range for the centre of gravity (cg) of the aircraft and designs the aircraft to operate 

safely within these limits. Changes to the cg may affect aircraft stability, performance and 

fuel economy so it is an important system parameter. 

Changes to the in-flight cg position have traditionally been estimated by calculating fuel burn 

and from that calculating the change in weight and hence change in cg. Other techniques to 

estimate in-flight aircraft cg are included in the literature review. 

The motivation for additional cg estimation techniques arise from the potential benefits they 

offer to a Flight Control System (FCS). These benefits include the potential for improved 

fault detection and an improved FCS design with better aircraft performance and fuel 

economy. 

State estimation using Kalman filters has been used since the 1960’s in many fields of 

application including the aerospace industry. This thesis will introduce the concept of using 

state estimation to detect the unexpected angular acceleration associated with a cg change. 

This state estimation concept is applied to a linear Phantom aircraft model and then to a 

complex non-linear aircraft model of a delta-canard military aircraft, called ADMIRE.  

The most common state estimation approach used with non-linear systems is the Extended 

Kalman Filter (EKF), but an alternative approach is proposed in which the pitching and roll 

moment coefficient derivatives are selectively modified based upon the aircraft angle of 

attack, speed and altitude. Both longitudinal and lateral cg estimators are described and 

examples of their performance are provided and compared with an EKF version of the 

estimator. A discrete version of the estimator is also described and used with a hardware fuel 

rig. Faults are applied to the fuel rig and it is proposed that the estimator could aid the fault 

diagnosis.  

In a real implementation the aircraft will not be precisely modelled, therefore a sequence of 

robustness tests are included to identify the critical aircraft parameters affecting the estimator.  

The results show that a cg estimator based upon a Kalman filter, and using a selective 

coefficient correction approach, can satisfy the performance requirements specified by the 

industrial sponsor, BAE Systems.  
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1. Introduction 

Aircraft are designed to operate within a specified centre of gravity range to ensure their safe 

operation. Apart from the safe operation of the aircraft the cg location affects the aircraft 

stability, performance and fuel consumption, so the cg value is an important piece of data for 

the Flight Control System (FCS). 

The cg can be calculated when the aircraft is on the ground by weighing the aircraft on scales, 

but in flight the FCS resorts to estimation techniques to estimate the changes to the cg as fuel 

is consumed. 

This thesis describes a new approach to estimate the in-flight aircraft cg by using state 

estimation techniques. 

The following subsections detail the motivation for this research, the unique contribution 

made in this thesis to a potential new cg estimator, and the overall structure of this thesis. 

This research has been sponsored by the EPSRC and BAE Systems. 

1.1 Motivation 

The motivation for this research are the potential benefits that an additional cg estimate may 

provide to the FCS. A model based cg estimator could: 

a) Provide an additional method to estimate the centre of gravity when other techniques 

e.g. accelerometers, fuel flow measurements, have failed. 

b) Provide an additional piece of information to the FCS to improve fault detection e.g 

confirm the failure to deploy stores, confirm the presence of a fuel leak. 

c) Allow for cg position dependent FCS design ‘scheduling’, resulting in a more robust 

design, particularly at the extreme aft/lateral cg positions. 

d) Allow better normalisation of aircraft handling qualities with aircraft cg. For example 

forward cg configurations typically tend to be more sluggish in pitch manoeuvres. In 

addition, lateral cg offsets induce rolling moments which need to be compensated for 

within the control laws to avoid intrusive bank angle motion. 

It is noted in (Orgun & Flanigan, 1991) that “the practice has been to use a worst case 
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estimate of the center of gravity in automatic flight control situations in which center of 

gravity is an important parameter” which led to “less than optimal control action”. Therefore 

a more accurate cg estimate which led to an improved worst case estimate could be used to 

improve the control action, and hence aircraft performance and economy. 

1.2 Research Contribution 

This thesis will propose the use of model based techniques to estimate aircraft cg. Modelling 

techniques have been used extensively in the aerospace sector (Hutchinson, 1984), but at the 

start of this research to the author’s knowledge they had not been used with the sole purpose 

of estimating the in-flight aircraft cg. Recent research by Abraham and Costello (2009) does 

use an Extended Kalman Filter (EKF) to estimate the weight and cg of a helicopter, however 

their approach is different to the one proposed in this thesis. 

This thesis will propose the novel method of using Kalman filters to obtain the unexpected 

angular acceleration caused by a change in cg, and then converting the unexpected angular 

acceleration into an estimate of the change in cg. The unexpected angular acceleration is the 

difference between the acceleration expected by the model in the estimator and the actual 

aircraft angular acceleration. 

This thesis will propose a solution to the estimation problem applied to a non-linear aircraft 

model by the selective modification of the pitching or rolling moment coefficients, as 

opposed to the more traditional approach of using an EKF. The results of both approaches are 

compared and analysed. 

Finally, this thesis will provide the simulation results in which the cg estimator has been used 

to detect changes in cg caused by faults in an experimental aircraft fuel rig, and suggest that a 

cg estimator could be used as an aid in fault detection. 

1.3 Thesis Structure 

Section 2 provides background information regarding aircraft centre of gravity, state 

estimation and Kalman filters, and also includes a literature review of in-flight cg estimation 

techniques.  

Section 3 describes the performance requirements placed upon the cg estimator by the 

research sponsors BAE Systems. It also describes the methodology adopted to estimate the 
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change in cg using state augmentation to estimate the unexpected angular acceleration.  

Section 4 describes the use of a linear aircraft model which is modified to enable the injection 

of moments representative of a cg change. It also describes a longitudinal cg estimator and 

provides some sample results of the estimation. The section includes results from robustness 

tests in which the linear aircraft model coefficients are systematically modified.  

Section 5 describes the development of both a longitudinal and lateral cg estimator to a non-

linear aircraft model, ADMIRE, which is a complex model of a delta-canard military aircraft.  

Section 6 describes the modification of the cg estimator to remain accurate when the aircraft 

is manoeuvring, or is at a different speed to the estimator configuration. Robustness testing is 

performed to assess the accuracy of the estimator in a real system when the aircraft is not 

modelled perfectly. 

Section 7 describes a combined longitudinal and lateral cg estimator, and provides example 

results using a model which incorporates a BAE developed cg modifier model. The BAE cg 

modifier model includes a model for the effect of aircraft acceleration on fuel sloshing and 

hence the cg. 

Section 8 describes the implementation of a discrete version of the cg estimator used in 

conjunction with a hardware fuel rig. It contains examples when hardware faults are applied 

to the fuel rig to demonstrate the fault detection capability of the estimator.  

Section 9 investigates the use of an Extended Kalman Filter (EKF) in which a linearised 

model of the aircraft is continuously calculated. The results from this version of an EKF are 

compared with those from section 6. 

Section 10 summarises the results from this research and suggest future work that may be 

done. 

The appendices include conference papers, relevant Matlab code, robustness test results, and 

samples of the table data used in the section 6 estimator. 
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2. Project Background 

Section 2.1 provides background information about the aircraft cg and its effect upon aircraft 

stability, performance and fuel economy. It also provides background information about 

Kalman filters and the use of state estimation techniques. 

Section 2.2 provides a literature review of current methods used to measure or estimate the 

aircraft centre of gravity. 

Section 2.3 provides an introduction to aircraft flight dynamic equations and the terminology 

that will be used later in this thesis. 

The literature review is summarised in section 2.4. 

2.1 Background 

2.1.1 Aircraft Centre of Gravity 

The centre of gravity is an important piece of data about an aircraft because it is the location 

about which the aircraft rotates (NASA, 2006). “It is the mass center of the airplane, or the 

theoretical point at which the entire weight of the aircraft is assumed to be concentrated” 

(Federal Aviation Administration, 2004). The aircraft performance is dependent upon the cg 

location because all moments are derived with respect to the centre of gravity location, 

therefore the cg location is required in an FCS to accurately predict and control the aircraft 

performance. 
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Figure 1. Aircraft axes through cg (Geistware, 2010). 

Figure 1 shows the centre of gravity of an aircraft and the three rotational axes about the cg. 

A stable aircraft has the capability to be trimmed and will then maintain straight and level 

flight without further control surface action. 

 

Figure 2: Aircraft in level flight (Wikipedia, 2010). 

Figure 2 gives a side view of a typical aircraft. In a trimmed aircraft the lift forces Lw and Lt 

match the weight W which is focused through the centre of gravity. The cg is aft of the 

aerodynamic centre of the main wing. A more detailed analysis to calculate the aircraft cg in 

terms of the aircraft forces is contained in section 4. 
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To be statically stable any disturbance must result in the production of a restoring moment. 

According to Phillips (2004, p354) “A stable airplane in free flight will always seek the angle 

of attack that makes the pitching moment about the cg equal to zero”. Therefore the location 

of the centre of gravity greatly affects the control stability of the aircraft. It is also noted in 

Phillips (2004: 366) that the further forward the cg the more stable the aircraft becomes, but 

the aircraft requires more negative elevator deflection for trim. In a canard configuration to 

maintain stability the cg must be located between the wing and the canard (Phillips, 2004: 

385). 

More explicitly according to (Federal Aviation Administration, 2007) in a stable aircraft if a 

rising gust of wind causes the aircraft nose to pitch up then the aircraft will slow down, the 

downward force on the tail will decrease, and the weight concentrated at the cg will pull the 

aircraft nose back down. Alternatively if the aircraft nose drops then the airspeed will 

increase and the increased tail load will bring the nose back up.  

If the cg position is too far aft then the aircraft will be unstable because commanding the 

aircraft elevator will be unable to bring the nose back down. Conversely, if the cg is too far 

forward then the elevator commands the nose back up, and the aircraft will have to fly at a 

higher angle of attack and with increased drag. 

So it can be seen that the centre of gravity position is fundamental to aircraft stability, and 

can be related to fuel consumption since the performance of the aircraft is affected by the 

attitude and trim of the aircraft. It is possible to save fuel by moving the centre of gravity to 

reduce the required elevator down load and hence drag. The ideal location for the centre of 

gravity is carefully determined by the aircraft designers and an allowable range will have 

been calculated for the flight control system.  

The lateral cg is also important to aircraft performance, but not as important as longitudinal 

cg. As noted in Federal Aviation Administration (2007) “The lateral cg may be upset by 

uneven fuel loading or burnoff” which is corrected by using the aileron trim tab. “The 

deflected trim tab deflects the aileron to produce additional lift on the heavy side, but it also 

produces additional drag, and the airplane flies inefficiently” (Federal Aviation 

Administration, 2007). 
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The aircraft cg will vary as fuel is used up or sloshes in its tanks, or stores are deployed, or 

cargo is added or removed. Fuel sloshing is a particular problem in future aircraft design 

according to Baeten and Stern (2008), who state that fuel sloshing is recognised as one of the 

“limiting factors in the design of airborne tank structures and flight control systems”. The 

high agility of combat aircraft and cruise missiles requires exact knowledge of the cg and 

inertia. When a fuel tank is full then the cg and inertia behaves similar to a solid, however 

when partly filled the residual fuel sloshes in its tanks affecting cg location, inertia and hence 

aircraft performance.  

The aircraft cg may also vary if the FCS employs weight management to improve aircraft 

performance. For example it is described in Filippone (2006: 43) how fuel is pumped from 

the forward to the rear fuel tanks in Concorde to move the centre of gravity, because when 

the aircraft transitions from subsonic to supersonic flight the centre of pressure moves about 2 

metres to the rear. 

Unlike aircraft data such as acceleration or altitude, the aircraft centre of gravity is not 

something that can be directly measured during flight, therefore the aircraft centre of gravity 

is a dynamic value that requires estimating. 

2.1.2 State Estimation of Linear Time Invariant Systems 

There is a whole field of literature on the subject of estimation, be it estimation of signals, 

parameters or state. The process of selecting the best estimate leads to the use of statistical 

techniques to calculate the best estimate, and the best estimate requires some criteria of what 

‘best’ is.  

“Estimation is the process of inferring the value of a quantity of interest from indirect, 

inaccurate and uncertain observations.” (Bar-Shalom, Rong Li, & Kirubarajan, 2001: 1) 

State estimation requires that the states that cannot be measured can still be inferred from the 

available measurements, and this leads to the requirement that the system is observable. “A 

process is called observable if from the measurements of the output it is possible to determine 

the state of the process.” (Eykhoff, 1974). 

The model of the aircraft system will consist of data that is time-invariant (e.g. parameters) 

and data that evolves in time according to an equation (state).  
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The estimate of an unmeasurable state is through a system called an observer, see Figure 3.  

 

 

A full-order observer estimates all of the state variables of the plant. The observer contains a 

state-space model to represent the physical system. In the state-space approach the state 

variables and state equations describe the system, where the state equations are given by: 

wBuAxx ++=       (1) 

where 

x is the state vector of dimension nx 

u is the input vector of dimension nu 

w is the process noise vector of dimension nx 

A is the state matrix of dimension nx x nx 

B is the input gain of dimension nx x nu 

The output of the system is:  

vCxy +=       (2) 

Measurement 
noise v 

Process 
noise w 

x_est 
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+ 

+ 
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C B 
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y + 

+ 

+ 

C 
u 

Figure 3: Full-order observer 
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where 

y is the output vector of dimension ny 

C is the measurement matrix of dimension ny x nx 

v is the measurement noise vector of dimension ny 

The full-order observer has an additional gain matrix G (see Figure 3) to control the dynamic 

performance of the observer. It can be seen that the input into G is the difference between the 

estimated outputs and plant measurements. 

The observer design problem is to obtain a gain G that over time minimizes the error between 

the observer and system outputs. 

x(𝑡) − 𝑥�(𝑡) =: 𝑒(𝑡) → 0         (3) 

It is explained in (Dutton, Thompson & Barraclough, 1997: 442) that the design equation for 

the observer is 

𝐹 = 𝐴 − 𝐺𝐶           (4) 

Therefore the design procedure is to choose the poles of F to give the desired dynamic 

performance of the observer and then use (4) to obtain the value of G. 

It is recognized in control theory that the poles “may be arbitrarily assigned to desired 

locations if and only if (C,A) is observable” (Stevens & Lewis, 2003: 541). A good example 

of observer design can be found in (Carnegie Mellon University, 1997) in which a pole 

placement technique is used to place the poles at least five times further to the left than the 

dominant poles of the system. In (Stevens & Lewis, 2003: 543) and (Dutton, Thompson & 

Barraclough, 1997: 445) they both suggest the observer poles should be at least five to ten 

times faster than the fastest plant pole. One point to note is that the faster the observer is, the 

more noise it will pass through. 

A full-order observer should give good estimates if the system is initialized to a known state 

and the measurements can be predicted. However in practice a model will suffer from an 

imperfect initial estimate and imperfectly predictable evolution. It will also suffer from noise 

on the process and on the measurements (as shown in Figure 3), so any estimation will have 
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to filter out the noise from its results. It is in such a system that the Kalman filter is preferable 

to the observer.  

In 1960 Kalman published his paper (Kalman, 1960) which presented an optimum linear 

estimator as a recursive operation, and this became known as the Kalman filter. His estimator 

was later extended with Bucy to work in continuous form (Kalman & Bucy, 1961) and this 

solution became known as the Kalman-Bucy filter. 

The relationship between continuous and discrete observers, and Kalman filters is illustrated 

in Figure 4. 

 

 

As shown in Figure 4, and explained in more detail later, an observer and Kalman-Bucy filter 

have a fixed gain used to correct the state estimate. In contrast the discrete-time Kalman filter 

and Extended Kalman Filter employ an adaptive gain in which the gain is continually 

recalculated. The Kalman filter and Luenberger observer are identical in structure, however 

the Luenberger observer would be used in a deterministic system whereas the Kalman filter is 

Non-
adaptive 
gain 

State 
observer 

Extended 
Kalman 
filter 

Discrete 
implementation 

Discrete 
implementation 

Kalman-
Bucy filter 

Kalman 
filter 

CONTINUOUS DISCRETE 

Adaptive 
gain 

Adaptive 
gain + non-
linear model 

Figure 4: Observer and Kalman filter overview 
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aimed towards a stochastic system and provides a design process based upon quantifying 

noise levels. It is explained later that the Kalman gain is continously recalculated (adaptive 

gain) but for linear systems the values in the gain matrix eventually converge to a constant 

(non-adaptive gain). 

In this thesis an estimator containing a Kalman-Bucy filter with a fixed non-adaptive gain is 

described, and then a discrete version of this filter is also described. Finally an estimator 

containing an Extended Kalman Filter with a recalculated Kalman gain (adaptive gain) is 

described. 

“In almost all realistic situations the observations made on the system under study are 

contaminated with random influences (disturbances, errors)”. One has to use statistical 

methods to obtain a ‘best’ result by ‘filtering out’ the influence of the disturbances (Eykhoff, 

1974). 

The choice of estimation technique is dependent upon the problem. If the process and 

measurements are subject to zero mean Gaussian noise and the process is characterized by 

linear differential (or difference) equations with known coefficients, then the Kalman-Bucy 

filter is the optimal solution to minimize the mean square error (Bar-Shalom, Rong Li, & 

Kirubarajan, 2001: 355). 

According to (Lewis, 1986: 68) the discrete-time Kalman filter is the best linear estimator if 

the initial estimate x0, process noise w and measurement noise v have arbitrary statistics, and 

it is the optimal estimator if x0, w and v are normal. 

Fundamental to the Kalman filter is the Kalman gain which is applied to the difference 

between measured and estimated values, the same as matrix G in Figure 3. The calculation of 

the Kalman gain is defined in many books, for example (Dutton, Thompson, & Barraclough 

1997: 484),  (Lewis, 1986: 68) and (Grewal & Andrews, 2001: 116). These calculations 

require statistical data regarding the process noise and measurement noise and this data is 

defined by two matrices Q and R. The sensor noise can be measured or derived from the 

manufacturer’s specifications and this allows the covariance data in R to be calculated. The 

process noise is very difficult to measure and so the covariance data in Q is obtained by 

tuning the filter. When the Q and R matrices have been calculated the Kalman gain may be 

precomputed because it does not depend upon the noise samples but on the noise statistics 
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(Jazwinski, 1970).  

Figure 5, adapted from a diagram contained in (Dutton, Thompson, & Barraclough, 1997: 

483), shows a discrete time Kalman filter connected to a plant.  

 

The plant is assumed to have the model: 

)1()1()( −+−= kGukFxkx       (5) 

)()( kHxky =       (6) 

where  

 k = sample number 

x = state vector 

F = system matrix 

G = input matrix 

H = output matrix 

K = Kalman gain 

z = measurement vector 

uk+1 
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Figure 5 : Discrete-time Kalman filter 
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F, G and H are equivalent to A, B and C in Figure 3, but numerically different . 

As explained earlier the Kalman filter is structurally identical to a Luenberger observer but is 

designed for a stochastic system containing noisy signals, but for simplicity the process and 

measurement noise have been omitted from the diagram. 

The signal u is input into both the plant and Kalman filter. The Kalman filter contains a 

model of the plant which is used to make a prediction of the state values. The plant 

measurements z are also input into the Kalman filter and compared with the predicted values, 

and the Kalman gain K is applied to the difference and used to correct the state in the filter. 

Thus the Kalman filter undergoes a prediction-correction cycle: it uses the model data to 

make a prediction and then corrects it with the actual plant measurements. 

The equations below, based on (Simon, 2006: p128), specify how the Kalman gain is 

calculated. 

State estimate   𝑥�𝑘+1− = 𝐹𝑘𝑥�𝑘 + 𝐺𝑘𝑢𝑘      (7) 

Error covariance   𝑃𝑘+1− = 𝐹𝑘𝑃𝑘𝐹𝑘𝑇 + 𝑄𝑘      (8) 

Kalman gain   𝐾𝑘+1 = 𝑃𝑘+1− 𝐻𝑘+1𝑇 (𝐻𝑘+1𝑃𝑘+1− 𝐻𝑘+1𝑇 + 𝑅𝑘+1)−1  (9) 

State estimate update  𝑥�𝑘+1 = 𝑥�𝑘+1− + 𝐾𝑘+1(𝑧𝑘+1 − 𝐻𝑘+1𝑥�𝑘+1)            (10) 

Error covariance update 𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1−               (11) 

Where 

𝑥� = state estimate 

P = error covariance matrix 

Q = system noise covariance matrix 

R = measurement noise covariance matrix 

The Kalman gain matrix must be chosen so that the estimates are optimal in some sense. The 

gain reflects the relative accuracy of the predicted states compared to the new observation. 

Low sensor noise (or high process noise) implies good measurements and / or large model 

uncertainty resulting in a high gain to correct the prediction. The opposite case (high sensor 
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noise or low process noise) implies poor measurements and / or small model uncertainty and 

therefore a lower gain is used since greater reliance is placed upon the accuracy of the model. 

If the process noise wk and measurement noise vk are Gaussian, zero-mean, uncorrelated then 

the Kalman filter minimises (at each time step) the estimation error. If the process and 

measurement noise are not Gaussian but still zero-mean and uncorrelated then the Kalman 

filter is the optimal linear filter. 

Figure 6 shows a simplified Kalman-Bucy filter which runs in continuous time. Its structure 

is identical except that the G in Figure 3 has been replaced by the stochastically determined 

Kalman gain K. 

 

 

As before the inputs to the Kalman-Bucy filter are typically the plant inputs and measured 

outputs. The inputs u are used by the model of the plant contained in A, B and C to estimate 

the plant outputs. The estimated outputs are compared with the actual measured outputs and 

the difference is multiplied by the Kalman gain. 

The equations for the continuous-time Kalman-Bucy filter (Simon, 2006: 236) are given 

below: 

Kalman gain   𝐾 = 𝑃𝐶𝑇𝑅−1                  (12) 

State estimate update  𝑥� = 𝐴𝑥� + 𝐵𝑢 + 𝐾(𝑦 − 𝐶𝑥�)̇             (13) 
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Figure 6: Continuous-time Kalman-Bucy filter 
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Error covariance update 𝑃̇ = −𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄           (14) 

The Kalman-Bucy filter, like its discrete counterpart, is time varying but as noted in (Simon, 

2006: 252) in some situations it converges to a linear time invariant filter and so a constant 

Kalman gain can be used. 

The Kalman filter is widely used in many applications and it is impractical to detail all of its 

uses. It is noted in (Raol, Girija, & Singh, 2004: 66) that Kalman filtering has generated 

extensive application in aerospace system problems and thousands of papers have been 

written on Kalman filtering. For linear systems the Kalman filter is an optimal state observer 

for stochastically defined inputs / systems. 

The evolution of the application of the Kalman filter in the aerospace industry is described in 

(Hutchinson, 1984). The use of the filter as a practical tool in aerospace is further described 

in (McGee & Schmidt, 1985). 

A good practical introduction to the discrete-time Kalman Filter can be found in (Welch & 

Bishop, 2006). 

This report will not show the derivation of the Kalman filter or Kalman-Bucy filter because 

the focus of the PhD is not to show the mathematics behind it but instead to show its 

application. There are many text books that do show the derivation of the filters and describe 

them in great detail, for example (Dutton, Thompson, & Barraclough, 1997: 791),  (Lewis, 

1986: 69) and (Grewal & Andrews, 2001: 116). 

When non-linear systems are modelled the standard state estimation approach is to use an 

Extended Kalman Filter (EKF).  According to (Simon, 2006: 396) the EKF “is undoubtedly 

the most widely used non-linear state estimation technique that has been applied in the past 

few decades”. An EKF is essentially the same as a Kalman filter except that the filter is 

continually re-designed based upon a model that is re-linearised around the state estimate. 

The EKF has found use in applications such as navigation or GPS. Section 9 will describe the 

Extended Kalman Filter further and give an example of its implementation as a cg estimator. 

2.2 Literature Review - Aircraft Centre of Gravity Estimation 

The survey of aircraft centre of gravity calculation can be divided into two areas, one area 

will describe current methods used to obtain the cg when the aircraft is on the ground, and the 
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second area will describe techniques used, or under research, to estimate the cg when the 

aircraft is in-flight. 

It is worth emphasising the importance of the weight and cg location to an aircraft. Weight 

and balance issues have caused numerous accidents, which primarily affect cargo flights but 

have still caused accidents in passenger flights. The paper by van Es (2007) provides a review 

of civil aircraft accidents related to weight and balance issues that have occurred since 1970, 

and reached the conclusion that a weight and balance related accident is 8.5 times more likely 

with a cargo flight compared to a passenger flight. The accidents that occurred in the period 

under study were caused by a variety of factors, such as errors in the load sheet, shifting of 

cargo, incorrect loading, etc. Van Es (2007) concluded that, although accidents due to weight 

and balance issues have nearly halved in the past 35 years, most of the problems could be 

resolved by an automatic weight and balance system. However van Es (2007) argues that the 

accuracy of current onboard weight and balance systems is insufficient to use them as the 

primary means for determining weight and balance. 

In 2003 the NTSB (the US National Transportation Safety Board) recommended research 

into systems to give weight and balance data before flight dispatch. Following an accident in 

Benin of a Boeing 727 the French investigative body, the BEA (BEA, 2003), recommended 

that all new commercial aircraft have onboard weight and balance systems and that 

regulations are put in place to retrofit these systems where possible. 

According to the FAA (2005) “an operator may use an onboard system to measure an aircraft 

weight and balance as the primary means to dispatch an aircraft provided the FAA has 

certified the system”. The advisory circular (FAA, 2008) describes how to obtain FAA 

approval for an onboard weight and balance system. According to van Els (2007) the 

“specifications drafted for onboard weight and balance systems state that the system shall be 

capable of measuring the gross weight within an accuracy of 1% and the aircraft centre of 

gravity within 1% of the mean aerodynamic chord”.  

To clarify, the onboard weight and balance systems discussed in the preceding paragraphs 

refer to on-ground systems. 

2.2.1 Aircraft Centre of Gravity Calculation on Ground 

This sub-section describes the current method used to weigh an aircraft and calculate its 
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centre of gravity position, and is primarily sourced from Federal Aviation Administration 

(2007), a 97 page document to provide the aircraft mechanic with the method to determine 

the weight and centre of gravity of an empty aircraft, and also to give the aircrew information 

about the safe loading of aircraft. 

The aircraft weight and centre of gravity is computed when the aircraft is on the ground. The 

aircraft manufacturer will specify the empty weight of the aircraft and its empty weight centre 

of gravity location. The weight in a loaded aircraft must be distributed to keep the cg within 

specified limits, therefore as weight is added a record is kept of the addition of new 

equipment, cargo etc. 

The aircraft weight may be calculated on the ground by positioning the aircraft on scales. The 

weight of any device holding the aircraft in position needs to be subtracted and the aircraft 

must be in its level flight attitude. The arms (distance between the cg of the item and a datum 

point) of the weighing points are all specified for the aircraft. The moment is the weight 

multiplied by the arm and the centre of gravity is calculated as : 

weighttotalmomenttotalcg /=                 (15) 

The cg position is relative to the datum point. 

It is also possible to calculate the change in cg when weight is shifted with : 

weighttotalshiftedweightcedisshiftedweightcg /tan⋅=∆               (16) 

The FAA issue a Type Certificate Data Sheet for all aircraft approved by them, and this 

certificate will specify the safe cg range. 

Example Piper PA-28-160 Cherokee 

cg range (+84” to +95.9” from datum) at 1650 lb or less 

(+85.9” to +95.9” from datum) at 1975 lb 

(+88.2” to +95.9” from datum) at 2200 lb 

maximum weight 2200 lb  

datum is 78.4” forward of wing leading edge 

If an aircraft mechanic adds or removes any equipment to the aircraft then the FAA dictate 
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that the weight and balance sheet for the aircraft must be updated. 

Some large transport aircraft have on board weighing systems that, when the aircraft is on the 

ground, give the aircrew a continuous indication of the total aircraft weight and cg location as 

a percentage of the mean aerodynamic chord (mac). The system consists of strain-sensing 

transducers in each main wheel and nose wheel axle, a weight and balance computer, and 

indicators that show the gross weight, the cg location expressed as a percentage of mac. 

During preflight planning the pilot must ensure that the weight and cg are within allowable 

limits and completes a weight and balance loading form. 

2.2.2 Aircraft Centre of Gravity Estimation in Flight 

The standard method to estimate the aircraft centre of gravity when the aircraft is in flight is 

to divide the aircraft into separate nodes with each node having its own weight and centre of 

gravity location. One node will specify the initial empty aircraft weight and cg location and 

the other nodes will be defined for the different fuel tanks or ballast.  Brockman (1980) 

describes this approach using 18 nodes, and also describes how fuel temperature and fuel 

weight is used to calculate consumed fuel in each tank. The effect of flap and landing gear 

positions is accommodated by shifting the position of the empty aircraft weight node in the 

calculation. The weights are summed to obtain the total weight, the total moment is 

calculated and from this the centre of gravity is computed. 

However according to Glover (1985) the estimation of cg through the fuel burn approach is 

“subject to significant errors arising out of inaccuracies in fuel burn computations and shifts 

in passenger and cargo locations as well as errors that may be present in the initial 

measurement of the center of gravity on the ground”. 

Blakely and Hedges (1998) describes an improvement of the approach in Brockman (1980). 

It adopts the same general methodology, separating the aircraft into nodes, and improves it by 

describing how more modern technology is exploited. In addition to this it also incorporates 

fuel sloshing into the calculations by including a fuel slosh time lag based upon the aircraft 

pitch rate. 

An alternative method to estimate the cg is to use accelerometers. A patent by Sundstrand 

Corporation (Glover, 1985) describes a technique using two accelerometers and signal 
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processing to estimate the aircraft centre of gravity. The accelerometers are placed near the 

front and rear of the aircraft to produce signals representing the rotation of the aircraft 

through the cg. The accelerometer signals are combined into a signal representing both 

motion of the aircraft and cg, and a signal representing the motion of the aircraft. The two 

signals are then combined to get a signal representing the cg. 

Two patents by the Boeing Company (Orgun & Flanagan, 1991) and then (Wu, 1996) 

describe the apparatus for the real-time estimation of aircraft centre of gravity. The first 

patent describes a technique to estimate cg based upon the aircraft angle of attack, flap setting 

and stabilizer position. The second patent is an improvement on the first by adding additional 

factors into the approximation including aircraft weight, the expected load factor on the 

aircraft, dynamic pressure on the aircraft and the reference wing area of the aircraft. When 

the aircraft descends through a pre-specified altitude the cg estimate is stored in memory for 

use during the landing phase. The patent (Wu, 1996) claims that the cg estimate “falls within 

1% of mac of the measured graph over a large angle of attack range”. 

More recent attempts at cg estimation have focused upon using neural nets. A paper by Idan 

et al (2004) describes a neural net which is trained to estimate the weight and longitudinal cg 

of an aircraft when the aircraft is in trimmed flight, i.e. it is climbing, cruising or descending. 

The paper provides the theory to show that the longitudinal cg is a function of the 

dimensionless total pitch couple CM and normal force CZ and these are in turn functions of 

the Mach number, angle of attack α, elevator deflection δe , flight path angle γ and normal cg 

zcg. It then describes how a neural net was trained to estimate the weight and cg of an aircraft 

using an aircraft model of a small business jet. The neural net was trained using 

approximately 4000 test points. Zero-mean Gaussian noise was added to the test data with 

standard deviations of 300 lb and 1.5% mac. The paper claims the neural net estimated the cg 

with an accuracy of 1.6% mac, and 99% of the points were accurate within 1% mac. 

The approach taken by Idan et al (2004) was extended by Zhang et al (2009) into a data 

fusion approach. Zhang et al (2009) is concerned with designing an attitude controller to 

provide consistent performance under varying cg. It varies the cg in an aircraft model and 

then estimates the cg change using an adaptive weighted data fusion technique. The data 

fusion technique uses cg estimates from the traditional approach of estimating cg from an 

estimate of changes in aircraft weight, and also a cg estimate based upon the Idan et al (2004) 
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neural net approach. The paper does not detail the accuracy or effectiveness of this data 

fusion approach to estimate the cg. 

Another neural net approach is described by Bi et al (2004). This paper used a neural net to 

estimate the gross weight and cg of an in-flight V-22 tilt-rotor aircraft. The test data used to 

develop the neural net were obtained from 14 tests consisting of 321 different flight “runs” to 

train the model, and each run lasted between 6 and 30 seconds and represented “a nominally 

steady flight condition at a given airspeed, gross weight and flight altitude”. During the tests 

the cg varied with a 4.5 inch range. The authors of this paper claim the cg estimation had a 

root mean square (rms) error of 0.17 inches (4.32mm), and 95% of the points had an 

estimation error less than 0.35 inches (8.89mm). 

Recent research into helicopter cg estimation by Abraham and Costello (2009) has used an 

Extended Kalman Filter (EKF) which is constructed with the rigid state of the helicopter and 

augmented with the weight and the 3 components of the cg (x, y and z axis). A different 

approach proposed by Cummins et al (2009) suggests that accelerometers could be used to 

measure the small changes in natural frequencies associated with the pitch-heave mode of 

vibration which would change as a result of a cg change. 

2.3 Flight Dynamic Equations 

This section introduces the aircraft flight dynamic equations and some terminology that will 

be used later in this thesis. The equations of motion for a rigid aircraft cover the six degrees 

of freedom and are non-linear. 

The aerodynamic forces and moments which affect an aircraft depend upon its orientation 

with respect to the airflow. These angles are the angle of attack (α) and sideslip angle (β).  

The coordinate system is defined such that the body x-axis is parallel to the fuselage, the y-

axis is at 90 to starboard and the z-axis is 90 “downwards”. A right-hand rule is applied to the 

values, for example a positive y value is to starboard and a positive z value is “downwards”. 

The following set of equations were obtained from (Stevens & Lewis, 2003) and (Forsell & 

Nilsson, 2005). 
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Velocity is: 

𝑉̇𝑇 =
𝑢𝑏 ∙ 𝑢̇𝑏 + 𝑣𝑏 ∙ 𝑣̇𝑏 + 𝑤𝑏 ∙ 𝑤̇𝑏

𝑉𝑇
 

                     (17) 

Where the force equations are given by: 

𝑢̇𝑏 = 𝑟𝑏 ∙ 𝑣𝑏 − 𝑞𝑏 ∙ 𝑤𝑏 − 𝑔 ∙ 𝑠𝑖𝑛𝜃 + 𝐹𝑥/𝑚ass               (18) 

𝑣̇𝑏 = −𝑟𝑏 ∙ 𝑢𝑏 + 𝑝𝑏 ∙ 𝑤𝑏 + 𝑔 ∙ 𝑠𝑖𝑛𝜙 ∙ 𝑐𝑜𝑠𝜃 + 𝐹𝑦/𝑚𝑎𝑠𝑠              (19) 

𝑤̇𝑏 = 𝑞𝑏 ∙ 𝑢𝑏 − 𝑝𝑏 ∙ 𝑣𝑏 + 𝑔 ∙ 𝑐𝑜𝑠𝜙 ∙ 𝑐𝑜𝑠𝜃 + 𝐹𝑧/𝑚𝑎𝑠𝑠              (20) 

The symbols Fx, Fy and Fz identify the forces acting on the aircraft in the x, y and z axes. 

The angle of attack is calculated from: 

𝛼̇ =
𝑢𝑏 ∙ 𝑤𝑏̇ − 𝑤𝑏 ∙ 𝑢𝑏̇

𝑢𝑏2 + 𝑤𝑏2
 

                     (21) 

The sideslip angle is calculated from: 

𝛽̇ =
𝑣̇𝑏 ∙ 𝑉𝑇 − 𝑉𝑏 ∙ 𝑉̇𝑇

𝑉𝑇2 ∙ 𝑐𝑜𝑠𝛽
 

                     (22) 

The roll rate is: 

𝑝̇𝑏 =
𝐼𝑥𝑧�𝐼𝑥 − 𝐼𝑦 + 𝐼𝑧� ∙ 𝑝𝑏 ∙ 𝑞𝑏 − �𝐼𝑧�𝐼𝑧 − 𝐼𝑦� + 𝐼𝑥𝑧2 � ∙ 𝑞𝑏 ∙ 𝑟𝑏 + 𝐼𝑧 ∙ 𝑀𝑥 + 𝐼𝑥𝑧 ∙ 𝑀𝑧

𝐼𝑥 ∙ 𝐼𝑧 − 𝐼𝑥𝑧2
 

                     (23) 

The pitch rate is: 

𝑞̇𝑏 =
(𝐼𝑧 − 𝐼𝑥) ∙ 𝑝𝑏 ∙ 𝑟𝑏 − 𝐼𝑥𝑧(𝑝𝑏2 − 𝑟𝑏2) + 𝑀𝑦

𝐼𝑦
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                     (24) 

The yaw rate is: 

𝑟̇𝑏 =
��𝐼𝑥 − 𝐼𝑦�𝐼𝑥 + 𝐼𝑥𝑧2 � ∙ 𝑝𝑏 ∙ 𝑞𝑟 − 𝐼𝑥𝑧�𝐼𝑥 − 𝐼𝑦 + 𝐼𝑧� ∙ 𝑞𝑏 ∙ 𝑟𝑏 + 𝐼𝑥𝑧 ∙ 𝑀𝑥 + 𝐼𝑥 ∙ 𝑀𝑧

𝐼𝑥 ∙ 𝐼𝑧 − 𝐼𝑥𝑧2
 

                      (25) 

These angular accelerations are dependent upon various moments of inertia and moments. 

The moments are largely dependent upon the aircraft speed and angle of attack or sideslip 

angle. The main effect of aircraft speed is to change the dynamic pressure 𝑞�. 

𝑞� = 𝜌 ∙ 𝑉𝑇2
2�                      (26) 

The angle of attack α mainly affects the pitching moment coefficient Cm whereas the sideslip 

angle β is equally important for the other moments. A generalisation for the angle of attack α 

is that as it increases then the pitching moment coefficient Cm will also increase. 

𝑀𝑥 = 𝑞� ∙ 𝑆 ∙ 𝑏 ∙ 𝐶𝑛 + 𝑧𝑐𝑔 ∙ 𝐹𝑦 + 𝑦𝑐𝑔 ∙ 𝐹𝑧                 (27) 

𝑀𝑦 = 𝑞� ∙ 𝑆 ∙ 𝑏 ∙ 𝐶𝑚 − 𝑥𝑐𝑔 ∙ 𝐹𝑧 + 𝑧𝑐𝑔 ∙ 𝐹𝑥                 (28) 

𝑀𝑧 = 𝑞� ∙ 𝑆 ∙ 𝑏 ∙ 𝐶𝑙 + 𝑥𝑐𝑔 ∙ 𝐹𝑦 − 𝑦𝑐𝑔 ∙ 𝐹𝑥                 (29) 

From these equations it can be seen that changes in the centre of gravity (xcg) affects the 

moments which in turn alter the aircraft angular acceleration. 

There are also equations for the orientation of the aircraft. 

A changes in the yaw angle is calculated by: 

𝜓̇ = (𝑞𝑏 ∙ 𝑠𝑖𝑛𝜙 + 𝑟𝑏 ∙ 𝑐𝑜𝑠𝜙)/𝑐𝑜𝑠𝜃                  (30) 

A change in the pitch angle is calculated by: 

𝜃̇ = 𝑞𝑏 ∙ 𝑐𝑜𝑠𝜙 − 𝑟𝑏 ∙ 𝑠𝑖𝑛𝜙                   (31) 

Finally, a change in the bank angle is calculated by: 
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𝜙̇ = 𝑝𝑏 + 𝑡𝑎𝑛𝜃 ∙ (𝑞𝑏 ∙ 𝑠𝑖𝑛𝜙 + 𝑟𝑏 ∙ 𝑐𝑜𝑠𝜙)                 (32) 

The final set of equations define the aircraft co-ordinates in the 3 axes.  

𝑥̇𝑣 = 𝑐𝑜𝑠𝜃 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑢𝑏 + (𝑠𝑖𝑛𝜙 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜙 ∙ 𝑠𝑖𝑛𝜑) ∙ 𝑣𝑏 + (𝑐𝑜𝑠𝜙 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑

+ 𝑠𝑖𝑛𝜙 ∙ 𝑠𝑖𝑛𝜑) ∙ 𝑤𝑏 

                      (33) 

𝑦̇𝑣 = 𝑐𝑜𝑠𝜃 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑢𝑏 + (𝑠𝑖𝑛𝜙 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜙 ∙ 𝑐𝑜𝑠𝜑) ∙ 𝑣𝑏 + (𝑐𝑜𝑠𝜙 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜑

− 𝑠𝑖𝑛𝜙 ∙ 𝑐𝑜𝑠𝜑) ∙ 𝑤𝑏 

                      (34) 

𝑧̇𝑣 = −𝑠𝑖𝑛𝜃 ∙ 𝑢𝑏 + 𝑠𝑖𝑛𝜙 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑣𝑏 + 𝑐𝑜𝑠𝜙 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑤𝑏               (35) 

The set of complex non-linear equations in this sub-section defines the aircraft flight dynamic 

behaviour. 

To analyse the aircraft behaviour it is common practice to obtained linearised equations for 

the aircraft, and these linearised equations are obtained when the aircraft is at a known steady 

state. 

If the aircraft is flying in a trimmed state then the aircraft is at an equilibrium point with zero 

acceleration. 

𝑝,̇ 𝑞̇, 𝑟̇, 𝑢̇, 𝑣̇, 𝑤̇ = 0                    (36) 

In this thesis the ADMIRE ‘trim’ routines have been used to obtain an acceptable equilibrium 

point. The aircraft speed, altitude and angle of attack (optional) must be provided and then 

the trim routine executes a minimisation algorithm routine to find an acceptable equilibrium 

point. The trim routine provides the initial inputs into the non-linear aircraft model and the 

initial outputs from the aircraft model. If the aircraft is then linearised at the equilibrium point 

then the inputs into and the outputs from the linear model are delta values from the initial 

conditions. 

A small perturbation from the equilibrium point is used to derive a set of linear constant-

coefficient state equations called Jacobian matrices. There is a description in Cook (2007) 

and Stevens and Lewis (2006: section 2.6) regarding the algebraic derivation of the linear 
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equations. It is noted in Stevens and Lewis (2006: section 3.7) that algebraic linearisation was 

only “tractable under the restrictions of wings-level, non-sideslipping steady state flight” and 

it then goes on to describe a numerical linearisation approach. In this thesis it is necessary to 

generate linearised equations when the aircraft does not meet the restrictions described by 

Stevens and Lewis (2006). The matlab routine ‘linmod’ has been used to obtain the matrices 

of the linear aircraft model by numerical linearisation. 

2.4 Summary 

A limitation of the literature review is a lack of data regarding the current accuracy of cg 

estimates obtained by the FCS. Brockman (1980), Blakely & Hedges (1998), Glover (1985) 

and Zhang et al (2009) give no data for the accuracy of their approaches.  

Bi et al (2004) does quote an rms error of 0.17 inches (4.32 mm) for the cg estimate, with 

95% of points having an estimation error less than 0.35 inches (8.89 mm). However Bi et al 

(2004) does not give details of the aircraft manoeuvres in which the estimation occurred, 

except than the data used was obtained when the aircraft was in “a nominally stable flight 

condition”, so it is presumed that the aircraft was not manoeuvring. 

Idan et al (2004) quotes a cg estimation accuracy of 1.6% mac with 99% of points accurate 

within 1% mac, however the paper is only concerned with estimating the cg of a trimmed 

aircraft. 

Wu (1996) claims an accuracy within 1% mac but the estimator is only used the specific 

scenario when the aircraft is in a landing phase. 

The literature survey has shown papers affecting various types of aircraft: commercial 

passenger aircraft (Wu, 1996), tilt-rotor aircraft (Bi et al, 2004), helicopters (Abrahams & 

Costello, 2009) (Cummins et al, 2009), business jets (Idan et al, 2004) and it is difficult to 

compare the results since they use such different aircraft. The papers that do provide results 

use different terminology to specify them, for example (Bi et al, 2004) use the absolute 

measurement in inches, whereas (Idan et al, 2004) uses % mac. In addition to this another 

problem is the lack of precise details of the manoeuvres performed by the aircraft during the 

estimation. 

From this survey it would seem reasonable to conclude that any future in-flight cg estimator 
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should aim to have an accuracy of at least 1% mac to be no worse than existing techniques 

such as Wu (1996), Idan et al (2004) and also to satisfy the 1% mac accuracy requirement 

identified in van Els (2007) for future automatic on-ground cg estimation. 

There is no literature that explicitly investigates the use of Kalman filters to estimate the 

aircraft centre of gravity, though Abraham and Costello (2009) did use an EKF on a 

helicopter with encouraging results. 

In this thesis it is proposed that, unlike the neural net approach, greater use is made of 

knowledge of the aircraft equations of motion and aircraft parameters to derive the cg 

estimate. Since the process is characterised by linear differential equations with process and 

measurement noise then Kalman filters will be used. A particular feature of this research is 

the application of defined aircraft manoeuvres and their effect upon the cg estimate, and the 

application of a coefficient correction technique to maintain accurate cg estimates across the 

manoeuvre range and within a specified speed, altitude and angle of attack envelope. 

Fuel sloshing was identified in section 2.1.1 as a limiting factor in future aircraft design. To 

help test the effect of fuel sloshing upon the cg estimate a fuel sloshing model is provided by 

BAE Systems and is included in tests performed upon the estimator in section 7. 
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3.  Methodology 

This section specifies the requirements placed upon an in-flight cg estimator made by the 

project sponsors, BAE Systems. It also describes the theory which relates unexpected angular 

acceleration to a change in the centre of gravity position, and describes how a Kalman-Bucy 

filter can be augmented to obtain the unexpected angular acceleration which is then converted 

into a cg estimate. 

3.1 Requirements 

The research in this thesis was sponsored by EPSRC and BAE Systems. BAE Systems 

provided the performance and manoeuvre requirements for a cg estimator. The performance 

requirements specify an acceptable level of estimation error whereas the manoeuvre 

requirements specify the operational conditions under which the estimator should work 

correctly. 

Performance requirements 

1. Output updated at 10Hz 

2. Maximum static error 0.3% mean aerodynamic chord (mac) 

3. Maximum dynamic error 0.5% mac 

4. Static error accuracy within 1 second 

5. Transient exceedance of static error allowed as long as it does not exceed 20% of the 

static error level, the static performance is recovered within 1 second, no further 

exceedance of static performance requirement occur whilst the system remains 

undisturbed.  

Manoeuvre  requirements 

1. Maximum roll rate +/-30 deg/s 

2. Maximum lateral acceleration +/- 1.5m/s2 

3. Maximum speed acceleration +/- 0.03 Mach/s 

4. Maximum pitch rate obtained from full pull up or push down command in 5 seconds 

 

Subsequent discussions with BAE Systems further refined the scenario in which the cg 

estimator should operate. The cg estimator should operate in the subsonic region, up to 

approximately Mach 0.8, and the maximum bank angle should be +/-45°. 
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The accuracy requirements for this project are more restrictive than any that were specified in 

the literature survey. Wu (1996) obtained an accuracy of 1% mac when a large passenger 

aircraft was in its landing phase. Idan et al (2004) obtained an accuracy under 1% mac for 

99% of points using a business jet model in trimmed flight. 

3.2 Theory to relate unexpected angular acceleration with centre of gravity 

change 

This section develops the theory which is used to estimate the longitudinal centre of gravity 

of an aircraft. The theory covers the scenario when the aircraft is trimmed in horizontal 

straight and level flight and relates pitch acceleration to a change in the centre of gravity.  

Any deviation from trimmed flight is caused by an unexpected moment causing the aircraft to 

pitch up or down. The unexpected moment may be caused by forces external to the aircraft 

e.g. a strong gust of wind, but for now the unexpected moment is assumed to be caused by a 

movement in the longitudinal cg. The deviation from level flight will be trimmed by the FCS 

adjusting the control surfaces. Therefore in straight and level flight the longitudinal cg is 

related to the pitch angular acceleration (which is the unexpected angular acceleration) before 

the aircraft is trimmed, and after the trim the cg is related to the changed control commands 

which is again an unexpected angular acceleration. 

The relationship between the change in longitudinal centre of gravity and angular 

acceleration is analysed in the next two sub-sections, first for a beam and then for a more 

representative aircraft. 

3.2.1. Horizontal Beam with Two Lift Forces 

Assume there is a horizontal beam supported by two lift forces Lw and Lt, and the matching 

opposing weight is through its centre of gravity (see Figure 7). 

Lw = main wing / fuselage lift 

Lt = tailplane lift 

lw = distance of Lw from cg 

lt = distance of Lt from cg 
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W = aircraft weight through cg 

 

 

In this example the total lift force Lw + Lt  = W,  and in the trimmed state there are no net 

moments about the centre of gravity, therefore  Lwlw – Ltlt = 0. 

Consider the scenario where the cg moves by Δcg to create a pitching moment M, then 

𝑀 = 𝐿𝑤(𝑙𝑤 + ∆𝑐𝑔) − 𝐿𝑡(𝑙𝑡 − ∆𝑐𝑔)                (37) 
 

Equation 37 can be rearranged to obtain the change in cg: 

∆𝑐𝑔 = (𝑀− 𝐿𝑤𝑙𝑤 + 𝐿𝑡𝑙𝑡)/(𝐿𝑤 + 𝐿𝑡)                (38) 
 

Since the beam was initially trimmed then Lwlw – Ltlt , and Ltlt – Lwlw, must equal zero, 

therefore 

∆𝑐𝑔 = 𝑀
(𝐿𝑤 + 𝐿𝑡)�                 (39) 

 

Since Lw plus Lt equals the weight of the aircraft then an alternative formulation of the 

equation is : 

∆𝑐𝑔 = 𝑀
𝑊�                 (40) 

 

new 
cg 

lw 

Lw 

W 

Lt 

lt 

Figure 7: Horizontal beam 
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3.2.2 Horizontal Trimmed Aircraft 

The theory for a horizontal beam is now extended to a traditional aircraft with a main wing 

and rear elevator, see Figure 8. The diagram and subsequent trim equation are based on data 

in (Cook, 2007: 41). This example extends the beam example by introducing moments for the 

wings and using standard aircraft terminology for the different forces and measurements 

used. 

 

 

The aircraft terminology is included here for ease of reference, and is also included in the List 

of Symbols. 

c = mean aerodynamic chord 

W = aircraft weight through centre of gravity 

Lw = lift force through wing 

LT = lift force through tailplane 

M0 = wing moment about aerodynamic centre 

MT = tailplane pitching moment about tailplane aerodynamic centre 

h = longitudinal cg position measured from leading edge wing root 

h0 = aerodynamic centre position on reference chord  

h
 

Lw 

W 

M0 

LT 

lT 

c 

MT 

h0

 

Figure 8: Trimmed aircraft in level flight 
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The total pitching moment M about the cg (taken from (Cook, 2007: 42)) is : 

𝑀 = 𝑀0 + 𝐿𝑤(ℎ − ℎ0)𝑐 − 𝐿𝑇𝑙𝑇 + 𝑀𝑇                   (41) 

Assume both M0 and h0 are constants. According to (Cook, 2007: 42) the M0 moment is 

constant for subsonic flight. Also assume that the tailplane aerofoil section is symmetric so 

MT is zero. 

In a trimmed aircraft the pitching moment is zero therefore : 

𝑀0 + 𝐿𝑤(ℎ − ℎ0)𝑐 − 𝐿𝑇𝑙𝑇 = 0                  (42) 

This can be re-arranged to give : 

ℎ𝑐 = (𝐿𝑤ℎ0𝑐 + 𝐿𝑇𝑙𝑇 − 𝑀0)
𝐿𝑤�                   (43) 

The main wing lift and centre of gravity locations are defined in terms of the mean 

aerodynamic chord ‘c’. It is helpful if the location of the tailplane lift is also defined in terms 

of ‘c’ instead of the distance lT. 

The value of lT depends upon the value of h, the centre of gravity position, and in the non-

manoeuvring stable flight condition it can be assumed that the distance from LT to h0 is fixed 

therefore : 

𝐿𝑇𝑙𝑇 = 𝐿𝑇(𝐷 − (ℎ − ℎ0)𝑐                   (44) 

 where D = distance from LT to h0 

Substituting this value for LTlT into the previous equation and then re-arranging gives : 

ℎ𝑐 =
𝐿𝑤ℎ0𝑐 + 𝐿𝑇ℎ0𝑐 + 𝐿𝑇𝐷 −𝑀0

𝐿𝑤 + 𝐿𝑇
 

                     (45) 

This defines the cg location for a trimmed horizontal aircraft. 

Next consider when the aircraft is stable and trimmed but encounters a pitching moment M. 

𝑀 = 𝑀0 + 𝐿𝑤(ℎ − ℎ0) − 𝐿𝑇𝑙𝑇                  (46) 
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Adding in the assumption for lT then : 

𝑀 = 𝑀0 + 𝐿𝑤(ℎ − ℎ0)𝑐 − 𝐿𝑇(𝐷 − (ℎ − ℎ0)𝑐)               (47) 

Re-arranging the equation gives : 

ℎ𝑐 = 𝑀 −𝑀0 + 𝐿𝑤ℎ0𝑐 + 𝐿𝑇ℎ0𝑐 + 𝐿𝑇𝐷
𝐿𝑤 + 𝐿𝑇�                (48) 

Assuming all the lifts etc are unchanged, then a comparison of (45) with (48) shows that ‘h’, 

the longitudinal centre of gravity, has moved further aft by M/( Lw + LT) 

i.e. Δcg = M / (Lw + LT) 

which is identical to (39). 

This analysis has shown that for a trimmed horizontal aircraft the change in the longitudinal 

centre of gravity can be calculated if the pitching moment and total lift or aircraft weight are 

known. 

A dependency should also exist between the cg and amount of control surfaces required to 

trim the aircraft. To trim the aircraft the control surfaces must cancel out any net pitching 

moment. For example if the aircraft is configured for trimmed flight but is pitching up at 

0.005 rad/sec2 with a pitching moment of inertia of 20000 kg m2 then the net pitching 

moment is 100 Nm (calculated using M = Iy q ). 

To trim the aircraft its control surfaces must generate an opposing moment of 100 Nm 

through Lw, and since this moment depends upon the altered lift Lw and the distance between 

Lw and cg then the longitudinal cg position can be estimated in the steady-state by the amount 

of trim. 

3.2.3 Angular Acceleration 

The previous two sections have shown the relationship between a change in the centre of 

gravity and the pitching moment. The final piece of theory will show the relationship 

between the moment and angular acceleration. 

Given Newton’s Second Law adapted for angular acceleration : 
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𝑡 = 𝐼𝛼                     (49) 

where t = torque 

 I = moment of inertia 

 α = angular acceleration 

The aircraft pitching moment M = Iy q . 

Where Iy = pitching moment of inertia 

 q = pitch acceleration 

It was shown in the last section that Δcg  = M/W 

Therefore Δcg  = Iy q /W, or to be more precise since weight is the downward force which is 

mass multiplied by gravity, then 

∆𝑐𝑔 = 𝐼𝑦𝑞̇𝑢𝑛𝑒𝑥
𝑚𝑎𝑠𝑠 ∙ 𝑔�                   (50) 

3.3 State augmentation to obtain unexpected angular acceleration 

It is assumed that the unexpected changes in angular acceleration result from unexpected 

moments about the centre of gravity location and therefore, providing that all possible causes 

of the moment have been allowed for in the Kalman-Bucy filter, then there is a relationship 

between the unexpected angular acceleration and a cg change. 

A top level view of this approach, for an aircraft model with a single elevator deflection 

command, is given in Figure 9. 
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The estimator inputs the commands into the aircraft model and uses these to predict the 

aircraft state, i.e. the predicted pitch rate. It also inputs the actual measurements from the 

aircraft to correct its prediction. Therefore the estimator has the standard prediction-

correction structure described in the previous section. Since the real aircraft measurements 

will be subject to noise then it is proposed that the estimator will be a Kalman-Bucy filter to 

process the noisy aircraft measurements in an optimal way. 

The estimator is required to estimate the unexpected angular acceleration, that is the 

difference between the expected angular acceleration in the estimator model and the actual 

angular acceleration. The problem is therefore one of structuring the Kalman-Bucy filter to 

best estimate this unexpected acceleration.  

A number of different approaches were investigated to estimate the unexpected pitch 

acceleration q , for example differentiating the measured value of q to add q  as a 

measurement. This approach provided reliable estimates of unexpected pitch acceleration but 

when noise was added to the measurements it was very poor, because there was no model for 

q to use in preference to the noisy signal. 

The adopted approach was to augment the Kaman-Bucy filter with the unexpected angular 

acceleration and rely upon the correction process in the Kalman filter to obtain accurate state 

values. This is explained in more detail below. 

Let ‘x’ contain the aircraft state and it is augmented with the unexpected pitch acceleration 

𝑞̇𝑢𝑛𝑒𝑥 to give x~. 

- 

x 
- 

+ 

Unknown 
Moment 

Elevator 
Deflection 

Gain 

Aircraft 
Model 

Estimator 

x-est 

Figure 9: Aircraft model with estimator 
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𝑥~ = [𝑥, 𝑞̇𝑢𝑛𝑒𝑥]                    (51) 

The state-space equation in (52) illustrates how 𝑞̇𝑢𝑛𝑒𝑥 is obtained. All states, apart from q, 

retain their original state-space A and B matrix values as shown by the ‘ ’ to denote no 

change.  
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               (52) 

The variable q has been renamed to qact because it is now the actual value of q calculated 

from the estimated value for 𝑞̇ plus any unexpected 𝑞̇. 

This method of modelling the unknown acceleration is adapted from an example contained in 

Friedland (1986: 421), in which unknown acceleration is modelled as a random process. 

𝐶 = �1 0 0
0 1 0�                   (53) 

Equation (53) shows that the measurements for x (including q) are output but that there is no 

measurement for 𝑞̇𝑢𝑛𝑒𝑥. The additional entry in the row of the state matrix for q provides the 

link to 𝑞̇𝑢𝑛𝑒𝑥 which ensures that the new augmented state x~ is fully observable, and this is 

demonstrated numerically in section 4.2 in an example with a Phantom linear aircraft model. 

The Kalman gain in the filter is obtained by using the Matlab ‘lqe’ function on the augmented 

state x~. The filter is used to obtain unexq which is then scaled by the moment of inertia Iy and 

divided by mass, as defined in (50) to obtain the change in cg. 

The remaining sections in this thesis will use this approach of augmenting the Kalman-Bucy 

filter to estimate the unexpected angular acceleration, which is then converted into an 

estimate of the change in the centre of gravity.  

3.4 Summary 

This section of the thesis has defined the requirements of the estimator, the relationship 

between angular acceleration and a change in cg, and it has also described the state 

augmentation approach to be used to estimate unexpected angular acceleration.  
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4.  Application of a Centre of Gravity Estimator to a Linear Aircraft Model 

This section describes the development and design of a centre of gravity estimator applied to 

a linear aircraft model. It applies the state augmentation approach described in the previous 

section to a Kalman-Bucy filter to estimate unexpected changes in angular acceleration.  

It is assumed that the unexpected angular acceleration caused by an unexpected moment 

about the centre of gravity is caused by a change in the cg location, therefore all possible 

causes of a change in acceleration are accurately modelled in the Kalman-Bucy filter. The 

relationship between the unexpected angular acceleration and a cg change was defined in 

section 3. 

A top level view of this approach was contained in Figure 9. 

4.1 Aircraft Model 

A McDonnell Douglas F4-C Phantom aircraft model is used to estimate changes in the centre 

of gravity. The model details were obtained from Cook (2007: 89). To allow cg changes the 

aircraft model is changed slightly. 

The state space equation for the McDonnell F4-C Phantom aircraft model is shown in (54). 
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             (54)

 

where 

u  = axial velocity 

w  = normal velocity 

q  = pitch rate 

θ  = pitch angle 

𝛿𝑒 = elevator deflection 
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𝐶 = �
1 0 0 0
0
0
0

1
0
0

0
1
0

0
0
1

�                    (55) 

𝐷 = [0; 0; 0; 0]                   (56) 

Full details of the flight conditions and dimensionless longitudinal derivatives are given in 

Example 4.2 in Cook (2007: 80). The data required to convert the unexpected pitch 

acceleration q  into the change in the centre of gravity is the mass of the aircraft and pitching 

moment of inertia. These are: 

mass = 17642 kg 

pitch moment of inertia Iy = 165669 kg m2 

The inputs into the aircraft model are the elevator deflection and unexpected moment. The B 

and D matrices in the Phantom model are amended to accept the unexpected moment as 

input. 
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     (57)

 

Equation (57) shows the modified aircraft model state-space equation. The unexpected 

moment Munex which would be generated by a change in cg is injected into the aircraft model. 

This unexpected moment Munex is divided by Iy in (57) to affect the pitch acceleration 𝑞̇. 

4.2 Estimation Model 

The aircraft model equations are augmented to estimate the change in the centre of gravity. 

To obtain the change in the centre of gravity equation (50) is used to obtain the additional 

entry in the state-space model by converting Δcg to the pitch acceleration change. 

Equation (50) is reordered to give the unexpected pitch acceleration : 
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𝑞̇𝑢𝑛𝑒𝑥 =
∆𝑐𝑔 ∙ 𝑚𝑎𝑠𝑠 ∙ 𝑔

𝐼𝑦
 

        (58) 

Therefore the conversion factor to convert the change in cg to 𝑞̇𝑢𝑛𝑒𝑥 is : 

𝑞̇𝑢𝑛𝑒𝑥 =
∆𝑐𝑔 ∙ 17642 ∙ 9.81

165669
 

𝑞̇𝑢𝑛𝑒𝑥 = 1.0446146∆𝑐𝑔 

This conversion factor is then used in the augmented state-space model to obtain a state 

estimate of the cg change. 
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𝐶 = �
1 0
0 1

0 0 0
0 0 0

0 0
0 0

1 0 0
0 1 0

�                    (60) 

𝐷 = [0; 0; 0; 0]                    (61) 

The observability of the system was checked using the Matlab command ‘obsv’, which 

returns the observability matrix [C; CA; CA^2 ...], see (62). 
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The rank of the filter was then obtained using the Matlab ‘rank’ command, and a rank of 5 

was obtained meaning that the system was fully observable.   

The Kalman gain in the estimator was calculated by using the Matlab ‘lqe’ function. 

4.3 Tuning the Kalman-Bucy Filter 

The estimated maximum and average values of the aircraft measurements were used as initial 

values to develop and tune the Kalman-Bucy filter. The data in Table 1 specifies these 

expected maximum and average values, and also the expected measurement noise. 

Table 1: Phantom Model Kalman-Bucy Filter tuning data 

 u w q θ   

Max value 100 m/s 30 m/s 30°/s  

(0.524 rad/s) 

30° 

(0.5246 rad) 

Average value 20 m/s 10 m/s 5°/s 

(0.0873 rad/s) 

5° 

(0.0873 rad) 
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Measurement 

Noise 

0.2% rms of max 

(0.2 m/s) 

0.2% rms 

of max 

(0.06 m/s) 

0.2% rms of max 

(0.001047 rad/s) 

0.2% rms of max 

(0.001047 rad) 

Noise variance 

for R matrix 

0.04 m/s2  0.036 m/s2  1.0966x10-6 rad/s2 1.0966x10-6 rad2 

 

In Section 2.1.2 it was explained that the Kalman-Bucy filter requires data about the process 

and measurement noise in two matrices, the Q and R matrices, and the values in these 

matrices are used to calculate the Kalman Gain. The values in the R matrix are determined by 

the measurement noise variance which is shown in the bottom row of Table 1. 

The R matrix is 
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It is recognised that the Q matrix values are more difficult to obtain. For example in (Dutton, 

Thompson & Barraclough, 1997: 486) it describes one approach in which the Q matrix values 

are chosen at random and then tuned in simulation studies. The tuning is performed based 

upon the knowledge that reducing the values in Q implies that there is less process noise, and 

the values in the Kalman gain are reduced to give greater emphasis to the predicted state 

generated by the model in the filter. Conversely, increasing the values in Q indicates greater 

process noise and so the measurements become more important, and hence the Kalman gain 

is increased to increase the correction from the measurements. 

The initial value for Q was based upon the square of the estimated average values which gave 
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Figure 10 provides an example of the performance of this estimator. In this example there is a 

0.5m change in the centre of gravity after 1 second. 
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Figure 10: Phantom model (open loop) cg estimator response 

It can be seen in Figure 10 that the estimator quickly estimates the correct value but the result 

is rather noisy. 

After a number of trials the values in the Q matrix were reduced to : 
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Reducing the values in the Q matrix reduces the values in the Kalman gain matrix, and 

therefore there is a reduced correction from the measurements. 

Figure 11 shows the results from the same test given in Figure 10, and after 10 seconds there 

is also a commanded elevator movement of 0.2 radians after 10 seconds. This time the cg 

estimate is noticeably less noisy because the reduced Kalman gain means that the noisy 

measurements have a reduced effect upon the estimate. 

The estimate for the change in the centre of gravity was found to be most sensitive to the 

third and fifth row entries in the Q matrix, for q and Δcg. In general, the smaller the value for 

Δcg relative to the value for q in the Q matrix then the slower the response of the cg estimate, 

but also less noisy the estimate. 
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Figure 11: Phantom model (open loop) cg estimator response zoomed in 

The estimate of the change in the centre of gravity can be seen to climb up to 0.5m at 1 

second and is unaffected by the elevator movement at 10 seconds. The lower graph is zoomed 

in on the steady portion of the estimate to provide a better illustration of noise on the 

estimate. 

4.4 Robustness Testing 

In practice the Kalman-Bucy filter will not contain a model which exactly matches the real 

aircraft behaviour, and it is therefore necessary to perform robustness tests to examine how 

the estimator behaves in such a situation, and also to quantify the potential errors and to 

identify the key model coefficients that affect the estimator performance. 

The robustness tests were performed upon the linear Phantom model described in the 

preceding section. The dimensionless derivatives defined in Cook (2007: 81) were increased 

by 10% and then the Matlab code defined in Appendix C was executed to obtain new aircraft 

state-space matrices. The cg estimation was then performed and the final estimate for the 

change in the centre of gravity of 0.5m was recorded after 20 seconds. The original estimate 

after 20 seconds was 0.5007m. 

The Matlab code used to calculate the changed aircraft coefficients is listed in Appendix C. 
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Table 2: Phantom Model X and Z derivative robustness test results 

Dimensionless  

derivative  

Original Value  Test Value  Final Δcg  Final value 

% error  

Xu  0.0076  0.00836  0.5007  0 

Xw  0.0483  0.05313  0.5007  0 

Xw-dot  0  0  0.5007  0 

Xq  0  0  0.5007  0 

Xη  0.0618  0.06798  0.5007  0 

Zu  -0.7273  -0.80003  0.5007  0 

Zw  -3.1245  -3.4365  0.5007  0 

Zw-dot  -0.3997  -0.43967  0.5007  0 

Zq  -1.2109  -1.33199  0.5007  0 

Zη -0.3741  -0.41151  0.5007  0 

 

X is the axial force component and Z is the normal force component. Table 2 defines the 

dimensionless derivatives e.g Xu is 𝜕𝑋 𝜕𝑢� . A full list of definitions is included in the List of 

Symbols section. 

Table 2 details the results when each coefficient was increased one at a time by 10%. It can 

be seen that the X and Z derivatives had no effect upon the final estimate for the cg change. 

This testing was repeated for the M (pitching moment) derivatives, see Table 3. 
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Table 3: Phantom Model M derivative robustness test results 

Dimensionless  

derivative  

Original Value  Test Value  Final Δcg  Final value 

% error  

Mu  0.034  0.0374  0.4978  0.44  

Mw  -0.2169  -0.23859  0.5379  7.58  

Mw-dot  -0.591  -0.6501  0.5017  0.34  

Mq  -1.2732  -1.40052  0.503  0.6  

Mη  -0.5581  -0.61391  0.4069  18.62  

 

The M derivatives did affect the final estimate, which would be expected because the M 

derivatives are used to directly calculate q . 

The final set of testing was performed using data that is used to calculate the state-space 

matrix coefficients using the dimensionless derivatives, and the data chosen were mass, 

moment of inertia and velocity, see Table 4. 

Table 4: Phantom Model robustness test results 

Data  Original 

Value  

Test 

Value  

Final Δcg  Final value 

% error  

Velocity  178  195.8  0.3605  27.9  

Mass  17642  19406.2  0.5505  10.1  

Pitch Moment 

of inertia  

165669  182235.9  0.5005  0.1  

 

Other data such as wing area, mean aerodynamic chord and acceleration due to gravity were 

not varied because they either don’t change (wing area) or change very little (g). For 

example, the gravitational constant g depends on the square of the distance from the centre of 



44 

 

the earth, therefore the weight of an object decreases with altitude. If an aircraft is flying at an 

altitude of 10km then it is approximately 6388km from the centre of the earth so the value of 

the gravitational constant has decreased by a ratio of the square of 6378/6388, which is about 

0.9984. So a 10000kg aircraft weighs 9984kg at an altitude of 10km. 

The results in Table 4 illustrate the importance of velocity to the estimator. Velocity is used 

to calculate 𝑚′ and 𝐼𝑦′  (see Appendix C) and is used as a multiplier to convert the 

dimensionless derivatives to dimensional derivatives (see Appendix 2 in Cook, 2007: 413). 

Therefore the velocity error causes large errors in the Kalman-Bucy filter which causes the 

large observed estimation error. The cg estimation error due to the mass error is proportional 

to the mass error, so the 10% error in mass leads to a 10% error for the estimate of the change 

in cg. This error can be explained by examining (58) where 𝑞̇𝑢𝑛𝑒𝑥 is proportional to the value 

for mass. 

The tables do not give a complete picture of the effect of inaccurate modelling since they 

only provide the final estimate of the change in the centre of gravity and do not show how the 

estimate varies over time. The following graphs show the transient performance of the 

estimator when the parameters are varied one at a time. 

 

Figure 12: Phantom model robustness test – Mw, Mn 
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Figure 13: Phantom model robustness test – Mass, Iy, Mq 

These diagrams show a number of interesting points. Figure 12 shows that the change in Mn 

has no effect upon the estimate until the elevator moves at 10 seconds, which is a logical 

result because Mn has no effect upon q until the elevator moves. Figure 13 shows that the 

estimate due to the change in mass is consistently approximately 10% too high. Again this 

result is consistent with what would be expected, because the calculation of the cg change 

contains a division by the aircraft mass, see (50). Note also that with the “perfect” model used 

for the results in Figure 10 the elevator movement had no impact, these results therefore show 

the “correction” action via the measurements. 

The results in Table 4 indicate that the change in the moment of inertia Iy had minimal impact 

upon the estimation, but Figure 13 shows the transient variation in the estimate particularly 

when the elevator moves. 

The results of the robustness tests can be summarised as: 

1. The X and Z derivatives have a minimal effect upon the estimate. 

2. The estimate is most sensitive to changes in velocity, Mn and mass and Mw, the other 

changes reduced the accuracy of the estimate by less than 1%. 

3. There is a transient effect upon the estimation and this is illustrated by the effect of 

the pitching moment of inertia Iy 
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4.5 Pitch Rate Controller 

The previous sections used the Phantom model in an open loop configuration without any 

form of controller. A simple pitch rate controller is added to make the results more 

representative of a real system. The objective of the pitch rate controller is to amend the 

commands into the aircraft model such that the output pitch rate q matches the command into 

the controller.  

Note that the addition of a controller was simply to assess the performance of the estimator 

when a controller was added,  therefore little effort was made analyzing the controller 

performance and no attempt was been made to check that the gains do not cause a demanded 

movement that may exceed physical system limits. 

4.5.1 PID Controller 

The use of a PID controller is shown below.

 

The PID controller has a proportional gain, integral gain and derivative gain. 

After a number of trials a proportional gain of 50 and integral gain of 10 was selected. The 

performance is shown below when a pitch rate of 0.2 rad/s2 is commanded at 1 second. 

Pitch rate 
command 

Measurements 

(u,w,q,θ) 

q 

- 
+ 

PID 

Phantom Aircraft 
Model 

Figure 14: Phantom model with PID controller 
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Figure 15: Phantom model with PID controller – pitch rate output 

A more complex, and realistic, command sequence was next tested. At 1 second a pitch rate 

of 0.5 radians/s was commanded and then at 4 seconds a zero pitch rate command is issued. 

At 6 seconds a -0.5 radian/s pitch rate command is issued followed by a zero command at 9 

seconds. Also for greater realism the pitch rate commands are steeply ramped up and down 

instead of being step commands. 

The results are shown in Figure 16 and Figure 17. 
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Figure 16: Phantom model with PID controller – pitch rate command and output 

The final stage in this model development is to incorporate the pitch rate controller with the 

Phantom aircraft model, add noise to the model measurements and use a Kalman-Bucy filter 

to estimate the change in the centre of gravity. 

Figure 17 shows the results when the pitch rate commands described above are issued, and 

the centre of gravity changes by 0.2m at 3 seconds. 

 

Figure 17: CG estimate for Phantom model with changing pitch rate 
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4.5.2 PID Controller plus Estimator Robustness Tests 

For completeness the robustness tests were repeated on the Phantom model with the PID 

pitch rate controller and estimator. As before the parameter values were increased by 10%. 

The X and Z derivatives did not affect the estimate for the change in the centre of gravity, 

and therefore the results from the changed X and Z derivatives are omitted. 

The change to the M derivatives did affect the estimate, and in this configuration with the 

PID controller Mw, Mη and then Mu had the biggest effect upon the final estimate, see Table 

5. The Mw and Mu changes had a substantially increased impact upon the estimate compared 

to the scenario without the pitch rate controller. This can be explained by the controller 

causing a continuous pitch rate change whereas without it the pitch rate q would tend to damp 

to zero. Therefore with the controller u and w increase in value more and hence have a 

greater impact upon q and the change in the centre of gravity. This also leads to the 

conclusion that the Q matrix which was tuned for open-loop may need to be retuned in the 

closed loop scenario with a pitch rate controller. 

Table 5: Phantom Model with PID Controller robustness testing results 

Dimensionless  

derivative  

Original Value  Test Value  Final Δcg  Final value 

% error  

Mu  0.034  0.0374  0.4776  4.48  

Mw  -0.2169  -0.23859  0.3801  23.98  

Mw-dot  -0.591  -0.6501  0.4982  0.36  

Mq  -1.2732  -1.40052  0.4948  1.04  

Mη  -0.5581  -0.61391  0.5989  19.78  

 

The model was also tested with changes to mass, moment of inertia and velocity as shown in 

Table 6. 
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Table 6: Phantom Model with PID Controller robustness testing results 

Phantom Data  Original 

Value  

Test 

Value  

Final Δcg  Final value 

% error  

Velocity  178  195.8  0.5676  13.52  

Mass  17642  19406.2  0.5506  10.12  

Pitch Moment of 

inertia  

165669  182235.9  0.5029  0.58  

 

As before velocity and mass have a major impact upon the final estimated value and a 10% 

increase in mass causes the estimate of the change in the centre of gravity to increase by 10%. 

The percentage change in cg error when velocity was changed in the closed loop model has 

changed from -27.9% to 13.52%. This apparent improvement is misleading because the cg 

estimate had not stabilized. In the closed loop model version the aircraft was continuing to 

pitch and the cg estimate was continuing to increase, therefore if the model had run for longer 

then the percentage error would have increased. 

4.6 Summary 

This section has described how a moment, representative of a shift in cg, is injected into a 

linear aircraft model, and the change in cg is then estimated by using a Kalman-Bucy filter. It 

has shown the relationship between the values in the Kalman-Bucy Q and R matrices and the 

speed of response of the estimator and the noise in the estimate. The preferred values in the Q 

matrix are a trade off between the speed of estimator response and noisiness of the estimate. 

This section has also shown that the cg estimator is still accurate when a pitch rate controller 

is added to the system to make it more representative of a genuine aircraft Flight Control 

System, and maintains an accurate estimate when the aircraft undergoes some pitching 

manoeuvres. Finally this section has shown the key coefficients critical to the accuracy of the 

estimator with the Phantom model, the main ones being Mw and Mη.  
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5. Application of a Centre of Gravity Estimator to a non-linear aircraft 

model 

This section will describe the development and design of a centre of gravity estimator applied 

to a non-linear aircraft model. 

5.1 Non-linear Aircraft Model 

The non-linear aircraft model used in the remainder of this thesis is called ADMIRE. The 

ADMIRE (Aero-Data Model in a Research Environment) model is a generic model of a small 

single-seat fighter aircraft with a delta-canard configuration, see Figure 18. 

 

Figure 18: ADMIRE aircraft 

The ADMIRE model contains twelve states : velocity (VT), angle of attack (α), sideslip (β), 

roll rate (pb), pitch rate (qb), yaw rate (rb), roll angle (φ), pitch angle (θ), yaw angle (ψ), 

longitudinal coordinate (xv), lateral coordinate (yv), normal coordinate (zv) plus additional 

states for sensors, actuators and FCS. The model is fully described by Forsell and Nilsson 

(2005). 

𝐴𝐷𝑀𝐼𝑅𝐸 𝑥 = [𝑉𝑇 ,𝛼,𝛽,𝑝, 𝑞, 𝑟,𝜑,𝜃,𝜓, 𝑥𝑣 ,𝑦𝑣, 𝑧𝑣]               (63) 

The ADMIRE aircraft model can model a variety of parametric uncertainties, amongst them 

are changes in the longitudinal cg position xcg and also aircraft mass. This facility has been 

used to inject cg changes into the ADMIRE aircraft model. 

A good description of a non-linear aircraft model and the 6-DOF (Degrees Of Freedom) 

equations of motion is contained in Stevens and Lewis (2003). The moment equations of 
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motion defined in ADMIRE are consistent with those defined in (Steven and Lewis, 2003 : 

110). 

The ADMIRE control system has been tuned at 30 design points, at 20m, 3000m and 6000m 

altitude and at Mach 0.22, 0.35, 0.45, 0.55, 0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2. Therefore the 

model should be used within these design points to obtain sensible values. 

The ADMIRE model is provided with trim command files which try to trim the aircraft in 

straight and level flight or at a specified angle of attack. These trim commands take the 

aircraft speed and altitude as inputs and use a minimization routine to generate the trim. It 

should be noted that the trim routines generate an approximation, and at some speed and 

altitude combinations they are unable to generate a trimmed aircraft. 

5.2 Measurement Noise 

The measurement noise used with the ADMIRE non-linear aircraft model, and used to set the 

Kalman filter R matrix, was obtained from sample test flight data provided by BAE Systems. 

A sample of the test flight data is shown in Figure 19, and the other three data set diagrams 

are included in Appendix D. 

 

Figure 19: Sample flight test measurements used to obtain measurement noise 
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The graphs contained within Figure 19 are : 

PTTAIRL - total air pressure (mbar) 

PSAAIRRL - static air pressure (mbar) 

FCSMACH - Mach number 

FCSAOA - Angle of attack (°) 

FCSBETA - Beta (°) 

P  - roll rate (°/s) 

Q  - pitch rate (°/s) 

R  - yaw rate (°/s)  

INBANK - bank angle (°) 

INTHETA - pitch angle (°) 

NX  - longitudinal acceleration (‘g’) 

NY  - lateral acceleration (‘g’) 

NZ  - normal acceleration (‘g’) 

To obtain a measure of the noise in these measurements the Matlab ‘wden’ command was 

used. ‘wden’ is a one dimensional de-noising function in the Matlab Wavelet toolbox which 

provides a noise free signal by thresholding the wavelet coefficients of the signal. A wavelet 

is a mathematical function used to cut up the data into different frequency components and 

then study it according to its scale. The ‘wden’ command used is given below: 

xd = wden(x,'heursure','s','one',3,'sym8'); 

where: 

‘heursure’ -  a heuristic used to select the wavelet threshold 

‘s’   - use soft thresholding  

‘one’   - no rescaling used 

3  - wavelet decomposition level 

‘sym8’  - desired wavelet name 



54 

 

Noise was added to the noise free signal to recreate the original signal and to obtain a 

measure of the RMS of the noise. The reconstituted noisy signal was visually compared with 

the original to spot any obvious errors. An additional check was performed by a comparison 

with the results of analysis at BAE Systems in which the noise was measured by taking the 

Fourier transform of the signal and removing the noise components, and then regenerating the 

‘clean’ signal and subtracting from the original to leave the ‘noise’ part of the signal. A 

comparison of the results showed that the noise variance was in the same order of magnitude.  

Table 7: ADMIRE Measurement Noise 

 RMS noise RMS in ADMIRE 

model units 

Variance 

Mach 0.0001 Mach 0.0001 Mach 1e-8 Mach2 

AOA 0.004° 0.0000698 rad 4.87e-9 rad2 

Beta 0.004° 0.0000698 rad 4.87e-9 rad2 

P 0.14°/s 0.00244 rad/s 5.95e-6 (rad/s)2 

Q 0.05°/s 0.00087 rad/s 7.6e-7 (rad/s)2 

R  0.05°/s 0.00087 rad/s 7.6e-7 (rad/s)2 

Bank  0.025° 0.00044 rad 1.9e-7 rad2 

Theta  0.004° 0.0000698 rad 4.87e-9 rad2 

Nx  0.0028 ‘g’ 0.0028 ‘g’ 7.84e-6 ‘g’2 

Ny  0.008 ‘g’ 0.008 ‘g’ 6.4e-5 ‘g’2 

Nz  0.008 ‘g’ 0.008 ‘g’ 6.4e-5 ‘g’2 

Psa  0.06 mbar 0.06 mbar 3.6e-3 mbar2 

 

There are some ADMIRE signals that are missing from the flight test data: velocity, phi and 

z. 
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a. Velocity 

Since the speed of sound is 340.3 m/s at sea level then the RMS for Mach was converted into 

an RMS for m/s, giving a velocity RMS of 0.034 m/s. 

b. Phi - Use same value as theta. 

c. Altitude (z) 

The Matlab ‘atmospalt’ command was used to convert the static pressure (PSAAIRRL) to 

altitude. At higher altitude errors in pressure have more effect due to the reduced air pressure. 

For example a static pressure of 220 mbar (22000 pascal) gives an altitude of 11180m and an 

RMS of 0.06 mbar gives an error of 1.729m. However at approximately 110m altitude the 

error from an RMS of 0.6 mbar falls to 0.5m. An RMS error for z of 1m was selected because 

this was between the two extreme values of 1.7m and 0.5m. 

Table 8 contains the noise variance values which are used in the remainder of this thesis. 

Table 8: ADMIRE Measurement Noise 

 Chosen RMS noise Variance 

Velocity 0.034 m/s 1.156e-3 (m/s)2 

AOA 0.0000698 rad 4.87e-9 rad2 

Beta 0.0000698 rad 4.87e-9 rad2 

P 0.00244 rad/s 5.95e-6 (rad/s)2 

Q 0.00087 rad/s 7.6e-7 (rad/s)2 

R 0.00087 rad/s 7.6e-7 (rad/s)2 

Bank 0.00044 rad 1.9e-7 rad2 

Theta 0.0000698 rad 4.87e-9 rad2 

Yaw 0.0000698 rad 4.87e-9 rad2 

z 1.0 m 1.0 m2 
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Nx 0.0028 ‘g’ 7.84e-6 ‘g’2 

Ny 0.008 ‘g’ 6.4e-5 ‘g’2 

Nz 0.008 ‘g’ 6.4e-5 ‘g’2 

 

5.3 Longitudinal cg estimation 

5.2.1 ADMIRE Longitudinal cg equation 

This section uses the aircraft equations of motion in ADMIRE to generate the relationship 

between changes in longitudinal cg and unexpected changes in pitch acceleration 𝑞̇𝑢𝑛𝑒𝑥. 

In ADMIRE the pitch acceleration equation is defined by (64). 

𝑞̇𝑏 = 𝐶5 ∙ 𝑝𝑏 ∙ 𝑟𝑏 − 𝐶6(𝑝𝑏2 − 𝑟𝑏2) + 𝐶7 ∙ 𝑀𝑦                (64) 

where 

𝐶5 =
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

 

𝐶6 =
𝐼𝑥𝑧
𝐼𝑦

 

𝐶7 =
1
𝐼𝑦

 

𝑞̇𝑏 is the pitch acceleration (rad/s2) 

𝑟𝑏 is the yaw velocity (rad/s) 

𝑝𝑏 is the roll velocity (rad/s) 

𝑀𝑦 is the pitching moment (N m) 

xI is the x body moment of inertia (kg m2) 

yI is the y body moment of inertia (kg m2) 

zI is the z body moment of inertia (kg m2) 

xzI is the x-y body axis product of inertia (kg m2) 
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The total pitching moment equation is defined by (65). 

𝑀𝑦 = 𝑞� ∙ 𝑆𝑟𝑒𝑓 ∙ 𝐶𝑟𝑒𝑓 ∙ 𝐶𝑚𝑡𝑜𝑡 − 𝑥𝑐𝑔 ∙ 𝐹𝑧 + 𝑧𝑐𝑔 ∙ 𝐹𝑥 − 0.15𝑇𝑥 + 5.5𝑇𝑧            (65) 

where 

𝑞� is the dynamic pressure (pascals) 

𝑆𝑟𝑒𝑓 is the wing surface area (m2) 

𝐶𝑟𝑒𝑓 is the mean aerodynamic chord (m) 

𝐶𝑚𝑡𝑜𝑡 is the pitching moment coefficient 

𝐹𝑧 is the total force in body-fixed z axis (N) 

𝐹𝑥 is the total force in body-fixed x axis (N) 

𝑥𝑐𝑔 is the centre of gravity along the x axis 

𝑧𝑐𝑔 is the centre of gravity along the z axis 

𝑇𝑥 is the engine thrust along the x axis (N) 

𝑇𝑧 is the engine thrust along the z axis (N) 

It can be seen in (65) that the effect on the pitching moment of a cg shift along the x axis is 

dependent upon the normal force Fz. 

∆𝑀𝑦 = ∆𝑐𝑔 ∙ 𝐹𝑧                   (66) 

The change in the moment can be calculated from the unexpected change in the pitch 

acceleration as : 

∆𝑀𝑦 = 𝐼𝑦 ∙ 𝑞̇𝑢𝑛𝑒𝑥                   (67) 

Substituting (67) into (66) : 

∆𝑐𝑔 =
𝐼𝑦 ∙ 𝑞̇𝑢𝑛𝑒𝑥

𝐹𝑧
 

         (68) 

Note that although Fz is an output in the ADMIRE model nz has been used, because 

ADMIRE provides a sensor model for nz. The relationship between Fz and nz is : 
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𝑛𝑧 =
−𝐹𝑧

𝑚𝑎𝑠𝑠 ∙ 𝑔
 

                     (69) 

Therefore the equation used with the ADMIRE model to estimate changes in longitudinal cg 

is : 

∆𝑐𝑔 =
𝐼𝑦 ∙ 𝑞̇𝑢𝑛𝑒𝑥

−𝑛𝑧 ∙ 𝑚𝑎𝑠𝑠 ∙ 𝑔
 

               (70) 

5.2.2 Longitudinal CG Estimation Model 

To obtain the coefficients in the Kalman-Bucy filter the aircraft is initially trimmed in straight 

and level flight using the ‘admtrim_sl’ script supplied with the ADMIRE model. The results 

of the trim are the initial conditions of the aircraft inputs and the aircraft outputs. The trim 

also incorporates the FCS which tried to maintain the trimmed aircraft state. The model can 

then be linearised by using the Matlab ‘linmod’ command to obtain its state-state equations. 

The normal ADMIRE state equations contain the 12 states defined in (63). 

To estimate longitudinal cg the Kalman-Bucy filter needs to be augmented with 𝑞̇𝑢𝑛𝑒𝑥, the 

process to do this was described in section 3.3. The value of 𝑞̇𝑢𝑛𝑒𝑥  is then scaled by the 

pitching moment of inertia Iy, mass, gravity and nz to obtain the dxcg estimate (see (70)). 

The most important state affecting pitch acceleration is the angle of attack α. Other important 

states affecting pitch acceleration are velocity and altitude since they define the dynamic 

pressure 𝑞� which is used in the pitching moment equation (65). 

The aircraft state stored in the Kalman-Bucy filter and used to estimate longitudinal cg is 

given in (71). 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑥 = [𝑉𝑇 ,𝛼,𝛽,𝑝, 𝑞, 𝑟,𝜑,𝜃,𝜓, 𝑧𝑣, 𝑞̇𝑢𝑛𝑒𝑥]               (71) 

The ‘x’ and ‘y’ states are removed from the filter because they do not contribute to the cg 

estimate. An estimator focused solely upon longitudinal cg could probably still be accurate 

with fewer states, e.g.  [𝑉𝑇 ,𝛼, 𝑞, 𝑧𝑣, 𝑞̇𝑢𝑛𝑒𝑥], but this approach wasn’t taken because a 

combined longitudinal and lateral cg was later developed, see section 7. 



59 

 

The Kalman-Bucy filter is checked for observability by using the Matlab ‘rank’ and ‘obsv’ 

functions, and the filter has full observability. 

The Kalman gain used in the filter is obtained by using the Matlab ‘lqe’ function. 

The structure of the longitudinal cg estimator is shown in Figure 20. 

 

 

The commands in ‘u’ are listed in Table 9. The aircraft measurements are listed in Table 10. 

Table 9: ADMIRE commands 

Abbreviation Description 

drc Right canard angle (radians) 

dlc Left canard angle (radians) 

droe Right outer elevon angle (radians) 

drie Right inner elevon angle (radians) 

dlie Left inner elevon angle (radians) 

dloe Left outer elevon angle (radians) 

dr Rudder angle (radians) 

Kalman-
Bucy filter 

Divide 

x 

u 

y 

Iy 

nz 

mass 

g 

dxcg 

𝑞̇𝑢𝑛𝑒𝑥 
x 

Figure 20: Structure of longitudinal cg estimator 
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dle Leading-edge flap angle (radians) 

ldg Landing gear (Boolean) 

tss Throttle setting 

 

Table 10: ADMIRE measurements 

Abbreviation Description 

Vt Airspeed (m/s) 

alpha Angle of attack (radians) 

beta Angle of sideslip (radians) 

p Roll angular rate (radians/second) 

q Pitch angular rate (radians/second) 

r Yaw angular rate (radians/second) 

Psi (ψ) Azimuth angle (radians) 

Theta (θ) Elevation (radians) 

Phi (φ) Bank (radians) 

z Z position (m) 

 

The script to linearise the aircraft and create the estimator matrices is included in Appendix F. 

5.2.3 Longitudinal CG Estimation Results 

In a similar process to that described in section 4.3 the Q matrix in the Kalman-Bucy filter 

was iteratively amended to provide ‘best’ results, where ‘best’ was a trade-off between the 

noisiness of the estimate and speed of response. It was noted earlier in section 4.3 that the 

important coefficients in the Q matrix are the ones for ‘q’ and 𝑞̇𝑢𝑛𝑒𝑥 and therefore most 

attention was paid to these two coefficients. 

The results in this section were obtained using the Q = diag([10  0.02  0.01  0.01  0.01  0.01  

0.01   0.01  0.01  10  0.2]). The R matrix contained the noise variances defined in Table 8. 
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Figure 21 shows the estimate for a 0.1m shift in longitudinal cg after 10 seconds when the 

non-linear ADMIRE aircraft is trimmed in straight and level flight at Mach 0.4 and at 5000m 

altitude. 

 

Figure 21: Estimate of 0.1m change in longitudinal cg. Aircraft trimmed at Mach 0.4, 
5000m altitude. 

Figure 22 shows the same scenario as Figure 21 but without measurement noise added to the 

measurements. 

 

Figure 22: Estimate of 0.1m change in longitudinal cg. No measurement noise. 

0 2 4 6 8 10 12 14 16 18 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Estimate of 0.1m dxcg at 10 seconds.
Aircraft in straight and level flight at Mach 0.4, 5000m altitude.

Time (seconds)

dx
cg

 (m
)

0 2 4 6 8 10 12 14 16 18 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Estimate of 0.1m dxcg at 10 seconds.
Aircraft in straight and level flight at Mach 0.4, 5000m altitude.

Time (seconds)

dx
cg

 (m
)



62 

 

Figure 23 shows the estimate for a -0.05m shift in longitudinal cg after 10 seconds, this time 

with the aircraft trimmed at Mach 0.6 and at 3000m altitude. For clarity measurement noise 

has not been added. 

 

Figure 23: Estimate of -0.05m change in longitudinal cg. No measurement noise. 

Figure 24 shows the estimate for a shift in longitudinal cg driven by a sine wave. The aircraft 

is trimmed at Mach 0.5 at 4000m altitude. As before measurement noise has not been added. 

 

Figure 24: Estimate of sine wave longitudinal cg shift. No measurement noise. 
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These results show that the basic concept for cg estimation described in the previous section 

for the linear Phantom model also apply to the non-linear ADMIRE aircraft model. However 

the tests were only applied to the aircraft trimmed in straight and level flight at the Mach 0.4 

and 5000m altitude. To obtain a better understanding of the cg estimator performance at 

different speeds the aircraft was then trimmed and linearised at different speeds (Mach 0.25, 

0.35, 0.45, 0.55) at 2000m altitude. The same startup script was used as before, therefore each 

time the cg estimator was also configured for the same speed and altitude as the aircraft. 

Figure 25 shows estimates for a 0.1m shift in longitudinal cg after 10 seconds. 

 

Figure 25: Estimate of longitudinal cg change at Mach 0.25, 0.35 and 0.45 at 2000m 
altitude. No noise added. 

Figure 26 shows estimates for a 0.1m shift in longitudinal cg after 10 seconds when the 

aircraft is at 3000m altitude and at various Mach (0.55, 0.65, 0.75). 

0 2 4 6 8 10 12 14 16 18 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Estimate of 0.1m dxcg shift at 10 seconds.
Aircraft in straight and level flight at 2000m altitude and various Mach.

Time (seconds)

dx
cg

 (m
)

 

 

Mach 0.25 dxcg estimate
Mach 0.35 dxcg estimate
Mach 0.45 dxcg estimate



64 

 

 

Figure 26: Estimate of longitudinal cg change at Mach 0.55, 0.65 and 0.75 at 3000m 
altitude. No noise added. 

Figure 27 shows estimates for a 0.1m shift in longitudinal cg after 10 seconds when the 

aircraft is at 3000m altitude and at various Mach (0.85, 0.95, 1.05, 1.15). 

 

Figure 27: Estimate of longitudinal cg change at Mach 0.85, 0.95, 1.05 and 1.15 at 
3000m altitude. No noise added. 
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It can be seen from Figure 27 that at speeds close to the speed of sound the cg estimate is less 

accurate, this is particularly noticeable at Mach 1.05. 

In this sequence of tests it should be noted that the aircraft trim was not perfect and at higher 

speeds the requested speed and altitude were chosen to permit the trim routine to complete 

and just remain within the tolerance parameters of the script. In other words at high speeds it 

proved more difficult to obtain linearised aircraft model coefficients. At some speeds and 

altitude combinations the trim routine was unable to obtain a satisfactory trim. 

5.3 Lateral cg estimation 

5.3.1 Lateral cg equations 

This section uses the aircraft equations of motion in ADMIRE to generate the relationship 

between changes in lateral cg and unexpected changes in roll acceleration 𝑝̇𝑢𝑛𝑒𝑥. 

In ADMIRE the roll acceleration equation is defined in : 

𝑝̇ = (𝐶1 ∙ 𝑟 + 𝐶2 ∙ 𝑝)𝑞 + 𝐶3 ∙ 𝑀𝑥 + 𝐶4 ∙ 𝑀𝑧                (72) 

where 

𝐶1 =
�𝐼𝑦 − 𝐼𝑧�𝐼𝑧 − 𝐼𝑥𝑧2

𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧2
 

𝐶2 =
(𝐼𝑥 − 𝐼𝑦 + 𝐼𝑧)𝐼𝑥𝑧

𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧2
 

𝐶3 =
𝐼𝑧

𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧2
 

𝐶4 =
𝐼𝑥𝑧

𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧2
 

The roll moment Mx and yaw moment Mz equations are defined in (73) and (74). 

𝑀𝑥 = 𝑞� ∙ 𝑆𝑟𝑒𝑓 ∙ 𝑏𝑟𝑒𝑓 ∙ 𝐶𝑟𝑚𝑡𝑜𝑡 − 𝑧𝑐𝑔 ∙ 𝐹𝑦 + 𝑑𝑦𝑐𝑔 ∙ 𝐹𝑧              (73) 

𝑀𝑧 = 𝑞� ∙ 𝑆𝑟𝑒𝑓 ∙ 𝑏𝑟𝑒𝑓 ∙ 𝐶𝑦𝑚𝑡𝑜𝑡 − 𝑑𝑥𝑐𝑔 ∙ 𝐹𝑦 − 𝑑𝑦𝑐𝑔 ∙ 𝐹𝑥 − 5.5𝑇𝑦             (74) 

where 
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𝑏𝑟𝑒𝑓 is the reference span 

𝐶𝑟𝑚𝑡𝑜𝑡 is the rolling moment coefficient 

𝐶𝑦𝑚𝑡𝑜𝑡 is the yaw moment coefficient 

Fy is the total force in the body-fixed y axis (N) 

Ty is the engine thrust along the y axis (N) 

It can be seen in (73) that the effect on the roll moment of a cg shift along the y axis depends 

upon the normal force Fz. 

∆𝑀𝑥 = 𝑑𝑦𝑐𝑔 ∙ 𝐹𝑧                   (75) 

There is also an effect upon the yaw moment from the cg shift along the y axis. 

∆𝑀𝑧 = 𝑑𝑦𝑐𝑔 ∙ 𝐹𝑥                   (76) 

From (72) the change in the moment can be calculated as the unexpected change in the roll 

acceleration: 

𝑝̇𝑢𝑛𝑒𝑥 = 𝐶3 ∙ 𝑑𝑦𝑐𝑔 ∙ 𝐹𝑧 + 𝐶4 ∙ 𝑑𝑦𝑐𝑔 ∙ 𝐹𝑥                (77) 

Therefore : 

𝑑𝑦𝑐𝑔 =
𝑝𝑢𝑛𝑒𝑥̇

𝐶3 ∙ 𝐹𝑧 + 𝐶4 ∙ 𝐹𝑥
 

          (78) 

In full the equation is : 

𝑑𝑦𝑐𝑔 =
𝑝̇𝑢𝑛𝑒𝑥(𝐼𝑥𝑧 − 𝐼𝑥𝑧2 )
𝐼𝑥 ∙ 𝐹𝑧 + 𝐼𝑥𝑧 ∙ 𝐹𝑥

 

                     (79) 

As before ‘nz’ and ‘nx’ are used instead of Fz and Fx because these are measurements that 

would be available from a real aircraft. The equation then becomes : 
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𝑑𝑦𝑐𝑔 =
𝑝̇𝑢𝑛𝑒𝑥(𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧2 )

−𝑚𝑎𝑠𝑠 ∙ 𝑔(𝐼𝑥 ∙ 𝑛𝑧 + 𝐼𝑥𝑧 ∙ 𝑛𝑥)
 

          (80) 

5.3.2 Lateral CG Estimation Model 

The important states affecting roll acceleration are sideslip β, roll acceleration p, yaw 

acceleration r, and the bank angle φ. 

As noted earlier the ADMIRE aircraft model contains twelve states but not all of them are 

needed to estimate unexpected angular roll acceleration and the ‘x’ and ‘y’ states have been 

left out of the estimator. 

The Kalman-Bucy filter is augmented with 𝑝̇𝑢𝑛𝑒𝑥 as described in section 3.3. The value of 

𝑝̇𝑢𝑛𝑒𝑥  is then scaled by the moments of inertia along the x-axis Ix, moment of inertia along 

the z axis Iz, the deviation moment of inertia Ixz, the longitudinal acceleration nx and normal 

acceleration nz, mass and gravity to obtain the dycg estimate. 

As before the aircraft is trimmed in straight and level flight using ‘admtrim_sl’, and then the 

aircraft is linearised using Matlab linmod’ to obtain the coefficients to use in the Kalman-

Bucy filter.  

The standard ADMIRE model did not output nx which is required in (80), therefore the 

ADMIRE code was modified to output it. 

The aircraft state stored in the Kalman-Bucy filter and used to estimate lateral cg is given in 

(81). 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑥 = [𝑉𝑇 ,𝛼,𝛽,𝑝, 𝑞, 𝑟,𝜑,𝜃,𝜓, 𝑧𝑣, 𝑝̇𝑢𝑛𝑒𝑥]               (81) 

The Kalman-Bucy filter is checked for observability by using the Matlab ‘rank’ and ‘obsv’ 

functions, and the filter has full observability. 

The Kalman gain used in the filter is obtained by using the Matlab ‘lqe’ function. 

The structure of the lateral cg estimator is shown in Figure 28. 
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The script to linearise the aircraft and create the estimator matrices is included in Appendix F.  

5.3.3 Lateral CG Estimation Results 

As before the Q matrix in the Kalman-Bucy filter was iteratively amended to provide ‘best’ 

results where ‘best’ was a trade-off between the noisiness of the estimate and speed of 

response. For the lateral cg estimator the important coefficients in the Q matrix are the ones 

for p and 𝑝̇𝑢𝑛𝑒𝑥. 

The results in this section were obtained using Q = diag([10  0.02  0.02  0.02  0.01  0.1  0.01   

0.01  0.01  10  0.2]). 

Figure 29 shows the estimate for a 0.05m shift in lateral cg after 10 seconds when the 

ADMIRE aircraft is trimmed in straight and level flight at Mach 0.4 and at 5000m altitude. 
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Figure 28: Structure of lateral cg estimator 
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Figure 29: Estimate of 0.05m change in lateral cg 

Figure 30 shows the same scenario as Figure 29 but without measurement noise added to the 

measurements. 

 

Figure 30: Estimate of 0.05m change in lateral cg. No measurement noise. 

Figure 31 shows the estimate for a shift in lateral cg driven by a sine wave. The aircraft is 

trimmed at Mach 0.5 at 4000m altitude. As before measurement noise has not been added. 

The estimate of lateral cg can be seen to follow the actual change of lateral cg with a short 

delay. 
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Figure 31: Estimate of sine wave lateral cg change. 

The next set of diagrams provide results when the aircraft is trimmed and linearised at 

different speeds, and the estimator is also configured for the same speed. 

Figure 32 shows estimates for a 0.05m shift in lateral cg when the aircraft is at 2000m 

altitude and at various Mach (0.25, 0.35, 0.45, 0.55). 

 

Figure 32: Estimate of lateral cg change. Aircraft at Mach 0.25, 0.35 and 0.45 at 2000m 
altitude. 
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Figure 33 shows estimates for a 0.05m shift in lateral cg when the aircraft is at 3000m 

altitude and at various Mach (0.55, 0.65, 0.75). 

 

Figure 33: Estimate of lateral cg change. Aircraft at Mach 0.55, 0.65 and 0.75, at 3000m 
altitude. 

Finally Figure 34 shows estimates for a 0.05m shift in lateral cg when the aircraft is at 3000m 

altitude and at high speed,  Mach (0.85, 0.95, 1.05, 1.15). 
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Figure 34: Estimate of lateral cg change. Aircraft at Mach 0.85, 0.95, 1.05 and 1.15, and 
at 3000m altitude. 

The results from the lateral cg estimator have shown greater accuracy and stability at 

different speeds compared to the longitudinal cg estimator. This is because ADMIRE is a 

model of an unstable aircraft and therefore maintaining a stable pitch is a difficult process for 

the FCS, small changes in the aircraft angle of attack can lead to large non-linear changes in 

aircraft performance. 

5.4 Summary 

A complex non-linear aircraft model, ADMIRE, has been used with the cg estimator. The 

equations to estimate the cg change from unexpected angular acceleration have been 

developed. Apart from the addition of extra aircraft states the basic structure of the Kalman-

Bucy filter is unchanged from the linear aircraft model estimator described in section 4. The 

overall cg estimator has been expanded to handle the addition of the aircraft forces. 

The results have shown that the augmented Kalman-Bucy filter can still accurately estimate 

changes in angular acceleration and hence the change in cg. The use of a non-linear aircraft 

model and the addition of forces such as nz have had only a minor effect upon the estimator 

accuracy, although there is a noticeable error in longitudinal cg accuracy when the aircraft is 

close to the speed of sound. 
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When tuning the Kalman-Bucy filter the R matrix was set to the measurement noise variance 

whilst the Q matrix was generated on a trial and error basis starting from sensible initial 

values based upon the maximum expected measurement change. The key components in the 

Q matrix were the values for the augmented unexpected angular acceleration entry and 

expected angular acceleration entry i.e. the ones for ‘q’ and 𝑞̇𝑢𝑛𝑒𝑥 and ‘p’ and 𝑝̇𝑢𝑛𝑒𝑥. 

However there are a number of limitations with the cg estimator developed in this section. 

The cg estimator has not taken into account changes in mass or moments of inertia. In each 

test the estimator is configured at the same speed and altitude as the aircraft so the Kalman-

Bucy filter will be an accurate model of the aircraft. The aircraft is trimmed in straight and 

level flight and does not perform any manoeuvres. These limitations will be investigated in 

the next chapter. 
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6. Application of a Centre of Gravity Estimator to a Manoeuvring Non-

Linear Aircraft Model 

This section will investigate the use of the cg estimator when the aircraft manoeuvres or is at 

a different speed or altitude to the one that the estimator was configured for. 

The estimator described in section 5 was generated from a linear aircraft model trimmed at 

the same speed and altitude as the actual aircraft. Section 6.1 shows that such an estimator 

will not be sufficiently accurate when the actual aircraft is at a different speed or altitude 

compared with the estimator configured speed or altitude. 

One approach to correct the estimator is to scale its coefficients based upon changes in 

dynamic pressure. This approach is explained in more detail in section 6.2 and it greatly 

improves the estimator performance but it still fails to fully satisfy the requirements specified 

in section 3. 

In section 6.3 some of the non-linearities in the longitudinal axis are investigated and then in 

section 6.4 an approach to selectively modify the estimator coefficients based upon angle of 

attack, Mach and altitude is described. The results from some testing show that this cg 

estimator satisfies its requirements. 

The same approach is then adopted in section 6.5 for the lateral estimator; first the non-

linearities are investigated and then a cg estimator is developed to selectively modify some of 

the rolling moment coefficients. As before some test results are provided which demonstrate 

the estimator satisfying its requirements. 

Section 6.6 provides some examples when the aircraft manoeuvre exceeds the requirements 

specified in section 3.1. Section 6.7 provides robustness test results when the estimator was 

deliberately made inaccurate by selectively changing key coefficients, aircraft mass or 

inertias. 

6.1. Performance of the Longitudinal CG Estimator during aircraft 

manoeuvres 

This section provides the results when the estimator described in section 5.2 is used with an 

aircraft that performs different manoeuvres (pitch, roll, lateral and longitudinal acceleration), 

or is trimmed in straight and level flight at a different speed from that used in the estimator 

model. 



75 

 

Figure 35 shows the estimator results when it is configured for straight and level flight at 

Mach 0.4 5000m altitude, but the aircraft is configured at different speeds. There is a 0.1m 

step change in the longitudinal cg after 10 seconds. 

The static upper and lower limits specified in the requirements are clearly marked on the 

graph. The upper limit is 0.0156m (0.3% mac) above the actual cg and the lower limit is 

0.0156m below the actual cg. 

 

Figure 35: Estimate of change in longitudinal cg. Aircraft at various speeds, estimator 
configured for Mach 0.4 5000m altitude 

The estimator under-estimates the cg change when the aircraft is at Mach 0.5 and Mach 0.6 

but over-estimates the cg change when the aircraft is at Mach 0.3. 

This is explained by the differences in dynamic pressure at the different aircraft speeds. The 

dynamic pressure is defined in (82) (Steven & Lewis, 2001: 63) : 

𝑞� = 𝜌
2
𝑉𝑇2                    (82) 

where 

𝑞� is the dynamic pressure 

𝑉𝑇 is the freestream airspeed 

ρ is the mass density 
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The dynamic pressure affects the pitching moment, see (65). Therefore if the aircraft is at 

Mach 0.5 but the estimator is configured at Mach 0.4 then the corrective action by the control 

surfaces on the aircraft will be smaller because they have more effect due to the higher 

dynamic pressure, and therefore the estimate of dxcg will be correspondingly smaller. 

For completeness the test results when the aircraft is configured at the same speed as the 

estimator and undergoes different manoeuvres are included in Appendix E. An example of 

the results from an acceleration manoeuvre are shown in Figure 36. 

 

Figure 36: Uncorrected estimator. Acceleration test. 

This section has shown that the estimator designed in Section 5 is inadequate when the 

aircraft manoeuvres or is at a different speed to the one that the estimator was configured for. 

The next sub-section investigates the aircraft coefficients and how the estimator may be 

modified to give acceptable results. 

6.2. Scaled Longitudinal CG Estimator based upon Dynamic Pressure 

One approach that can be used when estimating non-linear systems is to employ an Extended 

Kalman Filter (EKF). An EKF is essentially the same as a Kalman filter except that the filter 

is continuously re-linearised around the state estimate. The EKF has found use in applications 

such as navigation or GPS, however there are known problems with it regarding stability and 

divergence, see Bar-Shalom et al (2001: 385), and it is also computationally much more 

demanding, typically by two orders of magnitude. Since there are known difficulties 
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implementing an EKF, and given the restricted manoeuvre range requirements then 

alternative approaches were investigated to obtain an estimator that still satisfied the 

requirements. 

The previous section suggested that the errors in the estimator at different speeds may be due 

to changes in the dynamic pressure 𝑞�. It is fairly straightforward to modify the estimator to 

scale its inputs based upon changes in the dynamic pressure to test such an approach. The cg 

estimator described in section 5 was modified to scale the inputs to the Kalman-Bucy filter by 

the dynamic pressure ratio, which is the actual aircraft dynamic pressure divided by the 

dynamic pressure that the estimator was configured at, see (83). In practice the dynamic 

pressure signal will be available from the aircraft’s Air Data system. 

𝑞�  𝑟𝑎𝑡𝑖𝑜 =  𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑞�
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑞�

                   (83) 

Figure 37 provides a diagrammatic representation of the modified estimator. 

 

 

The scaling was applied to all commands ‘u’, except the ‘tss’ thrust command because its 

affect upon the pitching moment is unaffected by the dynamic pressure. The scaling was also 

applied to the alpha measurement because the AoA has the dominant effect upon the pitching 
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moment. Note that the tests were also repeated using additional aircraft measurements but 

they had little effect upon the results. 

Figure 38 illustrates the results from this approach. As before the estimator is configured for 

straight and level flight at Mach 0.4 5000m altitude and the aircraft is then configured in 

straight and level flight at different speeds. A longitudinal cg shift of 0.1m is applied after 10 

seconds. The red lines on the graph denote the static upper and lower limits defined in the 

requirements in section 3.1. 

 

Figure 38: Estimates of dxcg with correction for changes in dynamic pressure ratio 

The results show an offset in the estimate which is particularly noticeable at Mach 0.6 and 

Mach 0.3. Note that no correction was made for the delta measurements (i.e. measured values 

minus trim point values) and commands (i.e. commands minus trim point values) used in the 

estimator, for example at Mach 0.6 the estimator would input a large delta value for velocity 

VT. As before the static upper and lower limits are shown by the red lines in the graphs. 

A correction was then made to obtain more accurate delta commands and measurements with 

the estimator. The initial values for the commands and measurements had been obtained from 

trimming the aircraft at different Mach numbers, and these values were interpolated by a 

lookup table based upon aircraft speed. The difference between these values and the actual 

aircraft commands and measurements were then scaled by the dynamic pressure ratio method 
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described earlier. The results from this correction are shown in Figure 39. The additional 

correction virtually removed the estimation offsets, but at Mach 0.3 the estimate is still 

unacceptable because it exceeds the acceptable upper and lower limits, and at Mach 0.6 the 

estimate takes too long to converge within the static lower limit. 

 

Figure 39: Estimates of dxcg with aircraft trimmed at various speeds. Estimator using 
interpolated trim points and scaling inputs based upon dynamic pressure ratio 

The correction using dynamic pressure has greatly improved the cg estimate when the aircraft 

is in straight and level flight but at different speeds to the estimator configuration, but the 

results are still unacceptable. When the aircraft manoeuvre requirements are tested the results 

are worse. Figure 40 provides an example when the push-down manoeuvre is implemented, 

as before the top left graph provides the cg estimate. 
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Figure 40: Longitudinal cg estimate during maximum push down manoeuvre. 
Estimator corrected for dynamic pressure and interpolated trim points. 

The main reason the estimate in Figure 40 is so bad is due to the change in the angle of attack 

(AoA). The relationship between the AoA and the pitching moment is investigated in the next 

section. 

6.3. ADMIRE Pitching Moment Non-Linearities 

Figure 41 shows the value of Cmα at various AoA when the aircraft is trimmed for flight at 

Mach 0.4 and at 5000m altitude. The data is obtained by trimming the aircraft at different 

AoA and then obtaining a linear model. For example at 8° AoA the value of Cmα (pitching 

moment coefficient derivative with respect to α) is approximately 8 and at 4° AoA the value 

of Cmα is approximately 4.8. In other words a change in the AoA at 8° has nearly double the 

effect on the pitching moment compared to when the aircraft is at 4° AoA. 
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Figure 41: Cmα at Mach 0.4 and various angles of attack 

Figure 42 gives a more complete representation of some of the non-linearities in the pitching 

moment of the ADMIRE model, in the AoA range of +/- 12°. Identification of the non-

linearities in the aircraft pitching moment coefficient values will help to determine the design 

of a new cg estimator. 

The value of the Cmvt coefficient is small and therefore although it does change for AoA the 

changes are unlikely to have a big effect upon the estimator. The change in Cmcanard is more 

significant but a linear interpolation between the values at -12°, 0° and 12° should provide 

reasonably accurate values. The coefficient Cmq is linear (i.e. unchanged) for regions of AoA 

-12° to 4°, and between 4° to 8° and then 9° to 12° the change in value could be 

approximated by interpolation between data point set at 4°, 8° and 12°. The coefficient values 

for the elevons are very variable but this variability is over a small range in values, they 

would require data points at -12°, -10°, -7°, 2°, 3°, 6° and 12° to obtain accurate values. The 

effect of the elevon non-linearities on 𝑞̇ depends upon the scale of the elevon command. For 

example the inner elevon coefficient derivative has the value of -2.3 at -10° AoA but at 6° 

AoA it has the value of approximately -2.45. Therefore the estimator could potentially 

contain a derivative error of -0.15 if the value is not corrected, and if the inner elevon was at 

10° (0.1745 radians) then the error introduced into the estimate of the expected value of 𝑞̇ is 

0.026 radians/s2 which will give a cg estimate error of 0.003m (calculated from (70) using the 

ADMIRE values for mass and Iy). 
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Figure 42: ADMIRE aircraft pitching moment coefficients at various AoA 

The approach used in section 6.2 scaled the estimator for changes in dynamic pressure. It is 

now explained why this approach was insufficient. 

Figure 43 shows the coefficient derivatives for Cmα at various speeds and AoA. 

 

Figure 43: ADMIRE Cmα coefficient at various Mach and Aoa 
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The changes in Cmα for AoA at Mach 0.3 and Mach 0.4 are very similar apart from the scale 

of the coefficient derivative, including the fact that they share the same “kink points”, -7°, -

6°, 0°, 1°, 6°, 9°. However at Mach 0.5 and Mach 0.6 the “kink points” are -6°, -5°, -1°, 0°, 

2°, 3°, 6°, 10°. The pitching moment is largely caused by Cmtot which is scaled by the 

dynamic pressure q see (65), the other terms Sref and Cref are constant. However it is not the 

case that at different speeds the variation in Cmα seen in Figure 43 is only caused by changes 

in dynamic pressure. 

Table 11 shows the ratio of Cmα at different speeds and AoA compared with the Mach 0.4 

value when scaled for the change in dynamic pressure. For example at Mach 0.3 and at an 

AoA of -10° the Mach 0.3 value for Cmα is 99.4% of the M0.4 value when scaled for the 

change in dynamic pressure, however at Mach 0.5 Cmα is only 72.6% of the value it should 

be if the M0.4 value is scaled up by the change in dynamic pressure.  

Table 11: Variation in Cmα when scaled by dynamic pressure normalised to value at 
Mach 0.4 

AoA (deg) M0.3 M0.4 M0.5 M0.6 

-10 0.99 1 0.73 0.57 

-9 0.98 1 0.85 0.68 

-8 1.01 1 0.88 0.71 

-7 1.01 1 0.86 0.69 

-6 1.00 1 1.12 0.89 

-5 1.03 1 0.94 0.78 

-4 1.00 1 0.93 0.77 

-3 1.00 1 0.94 0.81 

-2 1.00 1 0.94 0.81 

-1 1.00 1 0.94 0.81 

0 1.01 1 1.03 0.91 

1 1.01 1 0.86 0.75 

2 1.02 1 0.85 0.74 
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This analysis has shown that there is a relationship between the pitching moment, AoA and 

aircraft speed, but the relationship is not linear. Cmα varies very closely with the change in 

dynamic pressure between Mach 0.3 and Mach 0.4, but at greater speeds the value of Cmα is 

generally less than would be expected if it was scaled by the ratio of the change in dynamic 

pressure. 

It should be noted that Cmα will also vary at the same Mach and AoA but at different 

altitudes. Examples are given in Table 12 when the aircraft is configured at Mach 0.4 and at 

an AoA of 6°. 

Table 12: Cmα at Mach 0.4, 6° AoA at different altitudes. 

Altitude Cmα 

20 8.82 

1000 7.82 

3000 6.13 

5000 4.73 

 

The conclusion from this section is that modifying the estimator to correct the inputs for 

changes in dynamic pressure is insufficient to give reliably accurate results, and that the 

estimator needs to take into account changes in speed, AoA and altitude to remain accurate. 

3 1.01 1 1.06 0.88 

4 1.02 1 1.08 0.89 

5 1.02 1 1.07 0.95 

6 1.02 1 1.05 0.94 

7 1.03 1 1.08 0.92 

8 1.00 1 0.90 0.76 

9 1.01 1 0.81 0.70 

10 1.02 1 0.82 0.73 
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6.4 Longitudinal CG Estimator – Selective Coefficient Correction 

This section develops an estimator that uses speed, AoA and altitude to modify the pitching 

moment coefficients in the Kalman-Bucy filter, i.e. as the aircraft manoeuvres the pitching 

moment coefficients are modified to more accurately represent the manoeuvring aircraft.  

The calculation of the coefficients is designed to capture as many of the aircraft non-

linearities as is practical. As noted earlier the standard approach to this problem would be to 

use an EKF, but given the known problems with an EKF then this alternative approach is 

investigated. Also the project sponsors BAE Systems had a preference for some sort of 

scheduled estimator instead of an EKF because this would simplify the process of getting the 

estimator accepted by the certification authorities. 

For the longitudinal cg estimator Cmα is used to select the data points since the AoA is the 

dominant aircraft characteristic affecting the pitching moment. The selected data points will 

then be reassessed depending upon estimator performance.  

The key AoA data points to capture changes in Cmα at Mach 0.3 and Mach 0.4 occur at -7°, -

6°, 0°, 1°, 6°, 9° and 12° (see section 6.3). 

For simplicity AoA points below -7° and above 12° are not considered. A more useful 

estimator would cover a far greater AoA range but the purpose here is to investigate a 

suitable estimation correction mechanism for changes in AoA rather than develop a complete 

system. 

A set of derivative data was obtained at combinations of points in the flight envelope, as 

defined by Table 13.  

Table 13: ADMIRE cg estimator data points 

AoA (degrees) [-7, -6, -1, 0, 1, 2, 3, 6, 9, 12] 

Mach [0.2 0.3 0.4 0.5 0.6] 

Altitude (m) [20 1000 3000 5000] 

 

The data points in Table 13 were selected to reduce the effect of the non-linearities in the 

aircraft. For example at Mach 0.4 Cmα is fairly constant at an AoA between 0° and -6°, and 

between 3° and 6°, see Figure 42, so these data points were selected. However when nz 
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approaches zero this magnifies any estimation error, see (70), therefore additional data points 

were selected at low AoA to reduce this error. 

The derivative data is used to correct the Kalman-Bucy pitching moment coefficients detailed 

in Table 14. These coefficients were chosen because they had the largest effect upon pitch 

acceleration. A subset of this table data is contained in Appendix H. 

Table 14: ADMIRE cg estimator corrected coefficients 

Commands Cmdlc Cmdrc Cmdloe Cmdroe Cmdlie Cmdrie Cmtss 

Measurements Cmα Cmvt Cmq 

 

The corrected coefficients are obtained by linear interpolation from a look up table using 

Mach, AoA and altitude as inputs. Obviously any remaining non-linearities between data 

points will be missed with this method. The delta inputs into the estimator are similarly 

obtained from the difference with an interpolated value for the trim point. 

Since the estimator has been configured when the aircraft is in level flight it will not 

accurately estimate the effect of ‘p’ and ‘r’ on the pitch acceleration, see (64). Therefore a 

correction is applied to unexq to compensate for this: 

)(_ 22
65 bbbb rpCrpCcorrectionpr −−⋅⋅=                (84) 

The overall structure of the estimator is shown diagrammatically in Figure 44. 
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The output from the Kalman-Bucy filter is unexq  which is then corrected for changes in ‘p’ 

and ‘r’ and pitch acceleration (Figure 45), scaled by Iy and then divided by vertical 

acceleration nz, ‘g’ and the mass of the aircraft. 

The “Get A & B matrices” block uses Mach number, altitude and angle of attack to linearly 

interpolate values for the 10 coefficients defined in Table 14. The 7 command coefficients are 

inserted into the B matrix in the Kalman-Bucy filter and the 3 measurement coefficients are 

inserted into the A matrix of the Kalman-Bucy filter. These inserted coefficients will then be 

used inside the filter to generate a more accurate estimate for 𝑞̇.  

The “Get design point” block in Figure 44 is used to obtain an interpolated trim point which 

is subtracted from the aircraft commands and measurements to get the delta values to be used 

in the cg estimator. However one effect of this block is that when the aircraft pitches up or 

down then the interpolated value for the q trim point reduces the delta value used by the 

estimator. The result of this is that incomplete information about the true value of pitch 

acceleration is received by the estimator. A correction for this error is included in the 

corrections block shown in Figure 44 and expanded in Figure 45. The qtrim-dot estimator 

estimates the pitch acceleration that is excluded from the measurements due to the use the 

interpolated trim points.  
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Figure 44: Longitudinal cg estimator structure 
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An example is given in Figure 46 of the effect of interpolating the q trim points on the delta q 

value which is input into the estimator. In the example the aircraft pitches down from an AoA 

of 6° to -6° then back up during a push-down manoeuvre.   

 

Figure 46: Effect of change in AoA on the measured ‘q’ and delta ‘q’ used by the cg 
estimator. 

Figure 46 shows the aircraft pitch rate when it is in straight and level flight, then pitches 

down by about 13 °/second before returning to a zero pitch rate (see top left graph). The trim 

values for q (obtained from “Get design point”) are shown in the top right graph and display a 
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similar change, therefore the delta values of q used in the estimator are relatively small (see 

bottom right graph in Figure 46). 

When the estimator makes its estimate for 𝑞̇𝑢𝑛𝑒𝑥 it does not correctly estimate 𝑞̇ due to the 

changing 𝑞𝑡𝑟𝑖𝑚. Therefore the estimated 𝑞̇𝑢𝑛𝑒𝑥 should be the difference between the expected 

value for 𝑞̇ (𝑞̇𝑒𝑥𝑝) and the sum of the delta measurement input 𝑞̇𝑑𝑒𝑙𝑡𝑎 and 𝑞̇𝑡𝑟𝑖𝑚. 

𝑞̇𝑢𝑛𝑒𝑥 = 𝑞̇𝑑𝑒𝑙𝑡𝑎 + 𝑞̇𝑡𝑟𝑖𝑚 − 𝑞̇𝑒𝑥𝑝                 (85) 

A simple Kalman-Bucy filter was used to obtain 𝑞̇𝑡𝑟𝑖𝑚 in a two state filter containing 

[𝑞𝑡𝑟𝑖𝑚, 𝑞̇𝑡𝑟𝑖𝑚], and 𝑞̇𝑡𝑟𝑖𝑚 was used to correct the estimate of 𝑞̇𝑢𝑛𝑒𝑥. 

The Q and R matrix values in the Kalman-Bucy filter to obtain 𝑞̇𝑡𝑟𝑖𝑚 are given in (86).  

 

                     (86) 

The values in the Q matrix were obtained by trial and error, the R matrix value matches the 

noise variance for q identified in Table 8. 

When nz approaches zero it will increase any estimation error of 𝑞̇𝑢𝑛𝑒𝑥 because nz is used in 

the division in (70) to obtain dxcg. Therefore the cg estimator includes a check to prevent 

divide by zero, and holds the value of dxcg when nz is between +0.4 g and -0.4 g to reduce 

the magnified error. The choice of 0.4 g was obtained from experimentation. A small value 

causes a greater dxcg error whereas a large value leads to a greater time when the cg estimate 

is not updated. 

Table 15: Maximum dxcg estimation error for different nz hold values 

nz hold value (+/-) Maximum dxcg 
error (m) 

0.1 -0.0423 

0.2 0.028 

0.3 0.016 

0.4 0.0102 

0.5 0.007 
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Table 15 contains the maximum estimation error obtained when the maximum push down 

manoeuvre was performed with a change in longitudinal cg of 0.1m. The results were 

obtained using the coefficient correction estimator that is described later in this chapter.  

Note that the thrust command (tss) is shown as a separate input in Figure 44. A simple 

modification to Cmtss was implemented to estimate the pitching effect when the afterburners 

were engaged, which occurs when tss is greater than 0.8.  

Figure 47 shows engine thrust generated from the thrust command tss, and shows that engine 

thrust increases more sharply when tss is greater than 0.8. Since the estimator is generated 

from trim data points when the afterburner is inactive it will underestimate thrust at large 

values of tss. The correction for the active afterburners in the estimator is a gain applied to 

the interpolated value of Cmtss.  

 

Figure 47: Engine thrust from ‘tss’ command. Aircraft at Mach 0.5 and 4000m altitude. 

The measurement noise added to the ADMIRE aircraft model is defined in Table 8 – 

obtained from representative flight test data as described in section 5.2. The noise variance is 

used to populate the R matrix of the Kalman-Bucy filter. 

The Q matrix in the Kalman-Bucy filter was obtained by trial and error from a sensible initial 

set of values (which were based upon the values of the average measurements) : 

𝑄 = 𝑑𝑖𝑎𝑔([10  0.02  0.01  0.01  0.01  0.01  0.01  0.01  0.01  10  0.2])            (87) 
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6.4.1 Modified Longitudinal CG Estimator - Results 

This section displays sample results for the different aircraft manoeuvres specified in section 

3.1, using the longitudinal cg estimator. Each aircraft manoeuvre occurs when the aircraft is 

trimmed at Mach 0.4 and at 5000m altitude, and after 10 seconds there is a cg shift of 0.1m. 

Note that for clarity measurement noise has not been added to the signals making the results 

less noisy than they would otherwise be. 

In all of the figures the cg estimate is in the top left graph and the static upper and lower 

limits are marked on the graph. The other graphs show the aircraft commands or relevant 

aircraft data pertaining to the manoeuvre. 

6.4.1.1 Acceleration 

The BAE acceleration manoeuvre requirement (section 3.1) is that the cg estimator copes 

with aircraft acceleration of +/- 0.03 Mach/second.  

In this test the aircraft accelerates from Mach 0.4 to Mach 0.75, see Figure 48. Note that the 

cg estimate drifts off at speeds above Mach 0.6 because the estimator is only configured with 

data up to a maximum speed of Mach 0.6, see Table 13. The cg estimate remains within its 

static error limit. The other graphs show the change in nz, Mach and commanded thrust. Note 

that the engine afterburners are activated after about 15 seconds. The rate of acceleration is 

about 0.02 Mach/second, which is the maximum acceleration that was achieved in straight 

and level flight. 
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Figure 48: Acceleration test 

6.4.1.2 Lateral Acceleration 

The BAE lateral acceleration manoeuvre requirement (section 3.1) is that the cg estimator 

copes with lateral acceleration of +/- 1.5m/s2. 

In this test a rudder command occurs after 11 seconds and generates a value for vdot (lateral 

acceleration) of approximately -1.4 m/s2. The effect upon the estimate of the cg is negligible, 

see Figure 49, and the estimate remains well within static limits. 

 

Figure 49: Lateral acceleration test 
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6.4.1.3 Roll 

The BAE roll manoeuvre requirement is that the cg estimator copes with a roll rate of +/- 30 

°/second. BAE verbally advised that a maximum bank angle of 45° should be considered. 

In this test a roll is commanded after 11 seconds and the aircraft banks at a rate of 

approximately +21 °/second and -29 °/second, see Figure 50. The aircraft bank angle reaches 

about 50°. As before the cg estimate remains well within specified limits. 

 

Figure 50: Roll test 

6.4.1.4 Pitch down 

The BAE pitching manoeuvre requirement is that the cg estimator copes with the manoeuvre 

when the pitch stick is pushed down to its maximum over a five second period, and then 

returned to its neutral position after a further five seconds.  

The results from such a manoeuvre are shown in Figure 51. A maximum push down is 

commanded at 15.5 seconds over 5 seconds, and then the pitch stick is pulled back to level 

flight over another 5 seconds. This test is more demanding of the estimator because changes 

in the AoA have a big effect upon the pitching moment. The AoA and nz both pass through 

zero. Since dxcg is calculated by dividing by nz (70) then as nz decreases this magnifies any 

errors. The results show the cg estimate staying within its static limits. 
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Figure 51: Pitch stick push down test 

During the test the aircraft speed increases to over Mach 0.6 and altitude drops from 5000m 

to about 3500m (not shown in Figure 51). 

The results from this section have shown that selective modification of the pitching moment 

coefficients in the Kalman-Bucy filter has enabled the estimator to satisfy its requirements, 

even when the aircraft goes through various manoeuvres. 

6.4.1.5 Sample Mission 

In a sample mission the aircraft accelerates from Mach 0.2 at 20m altitude to about Mach 0.5 

at 4500m altitude. It then levels off and performs a couple of banked turns changing direction 

by about 60°, and then descends to about 700m. During this mission there are three step 

changes in the cg as shown in Table 16, which also shows the change in aircraft mass.  

Table 16: Sample mission. Changes in cg and aircraft mass 

Time (s) dxcg (m) Δmass (kg) 

10 0.1 -400 

120 -0.05 -210 

180 -0.05 -210 
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There is a constant reduction in mass of 2kg per second to simulate fuel burn, taking no 

account of engine thrust. This continual reduction gives a total reduction in aircraft mass of 

20% over the 500 second simulation. This is an unrealistic reduction in mass but has been 

used to minimise simulation time. 

Figure 52 shows the cg estimate, z, mass and nz. 

 

Figure 52: Sample mission (dxcg, z, mass and nz). 

Figure 53 shows more aircraft data during this sample mission: Mach, AoA, yaw, bank, p and 

tss.  

 

Figure 53: Sample mission (Mach, α, yaw, tss, bank, p). 
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At all times the cg estimate stayed within the specified dynamic limits. It strayed outside the 

static limits on two occasions, between 5 and 7 seconds and between 17 and 20 seconds when 

the aircraft was accelerating. A more accurate correction for the effect of active afterburners 

should improve the estimate, because in the first deviation engine thrust was increasing 

sharply and in the second deviation the afterburners were becoming active when tss was 

around 0.8. 

6.5  Modified Lateral CG Estimator for Manoeuvres 

6.5.1  ADMIRE Rolling Moment Non-Linearities 

In this section the non-linearities in the rolling moment are investigated to see if the same 

selective coefficient correction approach can be used to design an accurate lateral cg 

estimator. 

In (80) it can be seen that the unexpected roll acceleration 𝑝̇𝑢𝑛𝑒𝑥 needs to be estimated to 

calculate changes in the lateral cg, and the roll acceleration p is determined by the rolling 

moment and to a lesser extent by the yaw moment, see (72). 

As before the coefficient data is obtained by trimming the aircraft at Mach 0.4 and 5000m 

altitude at different AoA and then obtaining a linear model. The coefficients affecting p are 

illustrated in Figure 54. 



97 

 

 

Figure 54: ADMIRE roll coefficients – measurements. 

From the size of the coefficients it is clear that the key measurement coefficients affecting 

roll acceleration are beta (sideslip) and p (roll rate). The changes in Clβ and Clr are relatively 

regular which means that linear interpolation between the two data end points of +/- 12° 

should provide  sufficiently accurate coefficients. The graph of the Clp coefficient is curved 

and Clφ has a noticeable kink between an AoA of -6° to 6°.  

The variation in the values of the Clp and Clφ coefficients should have a negligible effect 

upon the estimate of p for the following reasons. If two data point sets are used at 12° and -

12° AoA then in the worst case at -5° AoA the coefficient for Clp used in the estimator will 

be approximately -1.43 instead of the correct value of approximately -1.415, giving a 

coefficient error of 0.015. Since the maximum roll rate ‘p’ from the manoeuvre requirements 

in section 3.1 is 30°/s ( 0.52 radians/s) then this will give a maximum error in estimated 𝑝̇ of 

0.0078 radians/s2 (0.015 multiplied by 0.52), which would give an acceptable error in 

estimated lateral cg. The kink in Clφ will have even less effect upon the lateral cg estimate. 

For example at an AoA of 0° the coefficient used in the estimator will be approximately 0 but 

the correct value is about -0.0025 giving a coefficient error of 0.0025. At a bank angle of 45° 

(0.785 radians) this would give an error in the estimated  𝑝̇ of approximately 0.002 radians/s2.  
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This analysis has shown that for the measurement data then only two data points at 12° and -

12° AoA should be necessary to give acceptable results. 

 

Figure 55: ADMIRE roll coefficients – commands. 

Figure 55 shows the important command coefficients which affect 𝑝̇. The change in the 

canard and rudder coefficients are regular down to -10° AoA, therefore the estimator should 

provide accurate estimates if data points were selected at -12°, -10° and 12° and linear 

interpolation was performed to obtain the coefficient values. The graphs for the inner and 

outer elevon coefficients both show a curved shape. The effect of this curve in the elevon 

coefficients upon the estimate of 𝑝̇ depends upon the size of the elevon commands into the 

aircraft, a similar scenario for the effect of the elevon non-linearities on the pitching moment 

was described in section 6.3.  

It should be noted that data was not obtained when the aircraft was banked because the trim 

routine only worked with the aircraft in level flight. 

Providing that the elevon commands are not large then the results in Figure 55 suggest that 

fewer data points are required to estimate 𝑝̇ with changes in AoA, compared with 𝑞̇.  
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6.5.2  Lateral CG Estimator – Selective Coefficient Correction 

As described in section 5.3 the lateral cg estimator is based upon using a Kalman-Bucy filter 

to estimate 𝑝̇𝑢𝑛𝑒𝑥.  

A similar approach to that described in section 6.4 is applied to the lateral cg estimator, in 

which the coefficients used to estimate p are selectively modified when the aircraft 

manoeuvres. These coefficients are listed in Table 17 and were chosen because they had the 

largest effect upon roll acceleration. 

Table 17: ADMIRE lateral cg estimator corrected coefficients 

Commands Cldlc Cldrc Cldloe Cldroe Cldlie Cldrie  

Measurements Clβ Clp Clr Clφ 

 

A lateral cg estimator was tested with two different configurations. The first was configured 

using data points for AoA at 12° and -7°, the second was configured using the full set of AoA 

data points specified in Table 13. 

The testing of the lateral cg estimator revealed that the largest error in the dycg estimate 

occurred during a roll manoeuvre. This is expected because the estimator is only configured 

with data obtained when the aircraft is in level flight. Figure 56 provides a comparison of the 

roll manoeuvre results when the estimator had the different configurations for the data points. 
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Figure 56: Estimate of lateral cg using different data point tables. 

During the roll manoeuvre the larger set of data points is required to satisfy the estimator 

requirements and remain within the static estimation error limits. Since the estimator is only 

configured with data obtained when the aircraft is in level flight then, despite the analysis in 

section 6.5.1, the lateral cg estimator used the larger data set contained in Table 13. This 

larger data set provided the small improvements needed to keep the estimate within its static 

limits. 

The structure of the lateral cg estimator is shown in Figure 57 and is similar to Figure 44. The 

output from the Kalman-Bucy filter is 𝑝̇𝑢𝑛𝑒𝑥  which is then divided by a calculation involving 

normal force, longitudinal force and moments of inertia to complete the dycg calculation 

given in (80).  
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The “Get design point” and “Get A & B matrices” blocks operate in a similar manner to those 

described for the longitudinal cg estimator in section 6.4. The changed coefficients are 

defined in Table 17, the 6 command coefficients are inserted into the B matrix of the 

Kalman-Bucy filter and the 4 measurement coefficients are inserted into the A matrix in the 

Kalman-Bucy filter. 

6.5.3 Modified Lateral CG Estimator - Results 

dycg 

Unex 
pdot 

Commands 
+ 

+ 

- 

+ 

- 
- 

(Ix.Iz-Ixz.Ixz)/Ixz 

(Ix.Iz-Ixz.Ixz)/Iz 

Kalman-
Bucy 
filter 

Div 

Measurements 

Get A & B 
matrices 

Mach 

AoA 

Get design 
point 

nx 

mass 

g 

mass 

g 

nz 
X 

X 

Figure 57: Lateral cg estimator structure 



102 

 

The results in this section were obtained when the Kalman-Bucy Q matrix was populated 

with the values in (54). As before the R matrix was populated based upon the noise data 

defined in Table 8. 

𝑄 = 𝑑𝑖𝑎𝑔([10  0.02  0.02  0.02  0.01  0.1  0.01  0.01  0.01  10  0.1])            (88) 

The full set of data points defined in Table 13 was used in the interpolation tables. 

This section displays sample results for the different aircraft manoeuvres. The manoeuvres 

are identical to those in section 6.4. Each aircraft manoeuvre occurs when the aircraft is 

trimmed in straight and level flight at Mach 0.4 and at 5000m altitude, and after 10 seconds 

there is a lateral cg shift of 0.05m. Note that for clarity measurement noise has not been 

added to the signals making the results less noisy than they would otherwise be. 

The lateral cg estimate is displayed in the top left graphs, the other graphs display aircraft 

characteristics which are related to the manoeuvre. 

In all of the tests the lateral cg estimate stayed within its static upper and lower limits. 

6.5.3.1 Acceleration 

 

Figure 58: Acceleration test. 
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Figure 59: Lateral acceleration test. 

6.5.3.3 Roll 

 

Figure 60 : Roll test. 

6.5.3.4 Pitch down 
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Figure 61: Push down test. 

6.5.3.5 Sample Mission 

In a sample mission the aircraft accelerates from Mach 0.2 at 20m altitude to about Mach 0.5 

at 4500m altitude. It then levels off and performs a couple of banked turns changing direction 

by about 60°, and then descends to about 700m. During this mission there are four step 

changes in the lateral cg as shown in Table 18, which also shows the change in aircraft mass.  

Table 18: Sample mission. Changes in cg and aircraft mass 

Time (s) dycg (m) Δmass (kg) 

40 0.05 -205 

60 0 -205 

110 -0.05 -205 

120 0 -205 

 

There is a constant reduction in mass of 2kg per second to simulate fuel burn, taking no 

account of engine thrust. This continual reduction gives a total reduction in aircraft mass of 
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20% over the 500 second simulation. As before, this unrealistic rate of reduction in mass has 

been done to minimise simulation time. 

Figure 62 shows the cg estimate, z, mass and nz. 

 

Figure 62: Sample mission (dycg, z, mass and nz). 

Figure 63 shows Mach, AoA, yaw, bank, p and tss.  
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Figure 63: Sample mission (Mach, alpha, yaw, tss, bank p). 

Figure 64 provides a zoomed in view of the dycg estimate in Figure 62.  

 

Figure 64: Sample mission dycg estimate. 

During the mission, and other manoeuvre tests, the dycg estimate stayed within its static 
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6.6 Recovery from manoeuvres exceeding specification 

This section provides two examples of the performance of the cg estimator when the aircraft 

manoeuvre exceeds the limits specified in section 3.1. It is acceptable for the estimate to 

exceed its maximum dynamic error limits of 0.5% mac (26mm in the ADMIRE model) for an 

out of range manoeuvre, but when the aircraft returns to an acceptable manoeuvre then the 

estimator should then provide an accurate estimate within one second. 

Figure 65 provides an example when the aircraft push down command exceeds requirements. 

The lower middle graph shows the pitch stick command when the maximum push down is 

commanded immediately after 12 seconds without a 5 second delay. After 22 seconds the 

pitch stick immediately returns to level, again without the 5 second delay. The cg estimate 

(top left graph) show the estimate exceeding the static limits but then returning within limits 

after about 24 seconds, when the out of range manoeuvre has ceased. 

 

Figure 65: Out of range push down test. 

Figure 66 provides an example of the results when an out of range roll acceleration 

manoeuvre is performed. The aircraft bank angle approaches 80° and the roll acceleration p 

exceeds the 30°/second limit, for example after 18 seconds p exceeds -40°/second. As before 

the estimate exceeds its static limit but returns within limits when the manoeuvre has 

completed. 
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Figure 66: Out of range roll acceleration test. 

 

6.7 Robustness Tests 

All of the tests have so far assumed that the estimator is designed based on a perfect model of 

the aircraft. However in practice the estimator model will never be perfect so it is useful to 

assess the impact of inaccuracies in it. This assessment is performed by amending the aircraft 

parameters to differ from the estimator. The list of parameters that are assessed, and the size 

of the variation between aircraft and estimator, are defined in Table 19. The size of the 

parameter changes were decided after consultation with BAE Systems and limited by the 

restrictions of the ADMIRE model (Forsell and Nelson, 2005: 35).  

The linear aircraft model is used for the robustness tests when the aircraft coefficients are 

varied, because the coefficient derivative is only valid around a small range and at higher 

positive/ negative AoA the contribution from the error is increased. The non-linear model is 

used when the inertias and mass are varied because the effect of changes in inertia and mass 

is unaffected by changes in AoA. 

The aircraft was configured at Mach 0.4 5000m altitude in straight and level flight, and a 
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performed using the longitudinal estimator described in section 6.4 and the tests for the effect 

upon dycg were performed using the lateral estimator described in section 6.5. 

Table 19: ADMIRE robustness tests. Longitudinal cg % error. 

Pitch 

coefficients 

Change 

(%) 

Straight-level 

final estimate 

% error % static 

tolerance 

level 

Model 

Cmα 10 0.0987 1.3 8.3 Linear 

Cmq 10 0.1 0 0 Linear 

Cmdne 10 0.0991 0.9 5.8 Linear 

Cmdei 10 0.0955 4.5 28.8 Linear 

Cmdey 10 0.0972 2.8 17.9 Linear 

Ix 20 0.1 0 0 Non-linear 

Iy 5 0.1 0 0 Non-linear 

Iz 5 0.1 0 0 Non-linear 

Mass 5 0.104 4 25.6 Non-linear 

 

Table 19 summarises the results from this testing. In straight and level flight the Cmα 

coefficient has the biggest effect of the measurements upon the final estimate. For example a 

10% change in Cmα resulted in the estimate for a 0.1m cg change being in error by 0.0013m 

which is a 1.3% error, and uses up 8.3% of the static error tolerance defined in the BAE 

requirements in section 3.2. The control surface coefficients for the elevons Cmdey and Cmdei 

have a larger effect than the canard Cmdne upon the estimate. The percentage error due to 

mass is very similar to the actual percentage error in mass, which is not surprising because in 

(70) there is a division by mass to convert the estimate of the unexpected pitch acceleration 

into an estimate of dxcg. 
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In straight and level flight changing the inertia values had no noticeable effect upon the 

estimate, therefore push-down and roll manoeuvre tests were performed when the inertias had 

been varied. The results of these tests are shown in a number of graphs (see Appendix G), an 

example is provided in Figure 67. 

The results from varying the inertias reveal that during a push-down manoeuvre the inertias Ix 

and Iz had no visible impact upon the estimate but Iy had a transient effect. This is to be 

expected because during a pitch manoeuvre it is the error in the pitching moment of inertia 

that would affect the estimate. During a roll manoeuvre Ix and Iz have a small transient effect 

upon the estimate, the effect of the error by Iy is negligible. 

 

Figure 67: Estimate of longitudinal cg change of 0.1m. Aircraft in push down 
manoeuvre. Iy increased by 5%. 

In the tests applied to the lateral cg estimator a cg change of 0.1m was injected into the linear 

aircraft model. The tests applied for the changed inertias and mass used the non-linear aircraft 

model and used a smaller lateral cg change of 0.05m. This smaller cg change was used to 

ensure that the non-linear aircraft model generated acceptable manoeuvres. No control 

surface coefficients were altered for the rolling moment because this facility is not available 

in ADMIRE. 

Table 20 summarises the test results for the lateral cg estimator. 
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Table 20: ADMIRE robustness tests. Lateral cg % error 

Roll  

coefficients 

Change (%) Straight-level 
final estimate 

% error % static 
tolerance level 

Model 

Clβ 10 0.0974 2.6 16.7 Linear 

Clp 10 0.0963 3.7 23.7 Linear 

Clr 10 0.1012 1.2 7.7 Linear 

Ix 20 0.049* 0 0 Non-linear 

Iy 5 0.049* 0 0 Non-linear 

Iz 5 0.049* 0 0 Non-linear 

Mass 5 0.052* 6 19.2 Non-linear 

* Based upon 0.05m change in lateral cg 

In straight and level flight the error in the Clp coefficient had slightly more effect upon the 

estimate than Clβ or Clr. For example the 10% change in Clp resulted in the estimate for a 

0.1m cg change being in error by 0.0037m which is a 3.7% error, and uses up 23.7% of the 

static error tolerance defined in the BAE requirements in section 3.2. 

As before the percentage error due to mass is very similar to the actual percentage error in 

mass, because in (80) the unexpected roll acceleration is divided by mass to convert it into an 

estimate of dycg. 

The changes to the moments of inertias had a negligible effect upon the estimate of dycg 

during straight and level flight. During a push-down manoeuvre the changed inertias did 

affect the estimate, during a roll the errors in Iy and Iz had no noticeable effect upon the dycg 

estimate. 

The results of these tests are shown in a number of graphs (see Appendix G), an example is 

provided in Figure 68. 
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Figure 68: Estimate of 0.05m lateral cg change. Mass increased by 5%. 

6.8 Summary 

This section has shown that a Kalman-Bucy filter will not give accurate cg estimates when 

the aircraft is at a different speed to the one that the estimator was configured for. It explained 

that dynamic pressure 𝑞� increases with speed and that the estimator could be modified to take 

into account changes in 𝑞� but that the estimator would still not satisfy its requirements. Some 

of the non-linearities affecting the pitching and rolling moments were then examined and it 

was demonstrated that a technique to selectively modify some of the pitching and rolling 

moment coefficients based upon the aircraft speed, altitude and angle of attack can produce 

an accurate estimator. 

The results from a series of tests based upon the manoeuvre requirements have been provided 

and the cg estimates generally stayed within its static limits. The one test failure occurred 

during high aircraft acceleration in the sample mission and this could be corrected by a more 

accurate engine model.   

Some example tests were provided when the aircraft manoeuvre exceeded the requirements. 

The cg estimate was inaccurate during the excessive manoeuvre but quickly corrected itself 

when the manoeuvre completed. 
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A sequence of robustness tests have been performed upon the estimator by varying the 

aircraft parameters and then examining the results when the aircraft was in straight and level 

flight, or performing a pitch or roll manoeuvre. The main points from these tests were: 

• Inaccurate values for the inertias only affected the cg estimate during a manoeuvre, 

and even then only had a relatively small effect. 

• An incorrect value of mass in the estimator coefficients had a proportional effect upon 

the cg estimate. 

• The most important coefficients affecting the longitudinal cg estimate are Cmα, Cmdei 

and Cmdey. The most important coefficients affecting the lateral cg estimate are Clβ, 

Clp, Cmdei and Cmdey. 

The scaling method described in this chapter is a general approach that should be suitable for 

expanding to cover the full flight envelope. The coefficient data tables currently only contain 

data for the aircraft covering the speed, altitude and angle of attack defined in Table 13, 

therefore when the aircraft exceeds these limits the coefficient data is inaccurate. However 

there is no reason to assume that at greater speeds, angle of attack or altitude that this 

approach should not work providing that sufficient data points are obtained to cater for any 

non-linearities in the aircraft dynamics. Note that since the Kalman gain used in the estimator 

is fixed then the correction by the Kalman-Bucy filter is non-optimal and becomes 

increasingly non-optimal as the aircraft deviates from the design point for the Kalman gain.  

The Kalman-Bucy filter was tuned to provide a reasonable performance for the manoeuvre 

requirements specified in section 3.1. The estimator was not rigorously tested when the 

aircraft underwent harsher manoeuvres but from the existing results it is possible to estimate 

the impact of more severe manoeuvres on the cg estimate. 

The results show that the estimator is most sensitive to changes in pitch and roll, therefore if 

more stringent pitch requirements were specified then the estimator may require additional 

angle of attack data points. If the aircraft manoeuvre requirements permitted a greater roll 

angle then the estimator would probably fail to meet its performance requirements unless the 

data tables were restructured to include coefficient data at different roll angles. Lateral 

acceleration had little effect upon the accuracy of the estimate, therefore the estimate should 

remain accurate if greater lateral acceleration is permitted. 
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7. Combined Longitudinal and Lateral CG Estimator  

This section describes a combined longitudinal-lateral cg estimator. To make the modelling 

of cg changes more accurate a BAE cg modifier model is included which models the effect of 

store changes and fuel sloshing on the cg position. 

7.1 Combined cg estimator 

Section 6.4 described the use of 𝑞̇𝑢𝑛𝑒𝑥 to estimate dxcg and section 6.5 described the use of  

𝑝̇𝑢𝑛𝑒𝑥 to estimate dycg. A combined estimator for both dxcg and dycg includes both values in 

its state giving [VT, α, β, p, q, r, φ, θ, φ, z, 𝑞̇𝑢𝑛𝑒𝑥, 𝑝̇𝑢𝑛𝑒𝑥]. 
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Equation (89) shows the augmented aircraft state-space equation to obtain estimates for 𝑞̇𝑢𝑛𝑒𝑥 

and 𝑝̇𝑢𝑛𝑒𝑥. The augmented state is fully observable. As before the Kalman gain for the 

Kalman-Bucy filter was obtained by using the Matlab ‘lqe’ equation. 

The value of the Q matrix used in this combined cg estimator is: 

𝑄 = 𝑑𝑖𝑎𝑔([10  0.02  0.02  0.02  0.01  0.1  0.01  0.01  0.01  10  0.1  0.2])            (91) 

The noise variance of the data contained in Table 8 is used to populate the R matrix of the 

Kalman-Bucy filter. 
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7.2 BAE cg modifier 

BAE Systems provided a model to set the cg value. This model contains two elements: a fuel 

cg model and a stores cg model. 

The stores model calculates dxcg and dycg based upon the stores carried at six stations: four 

under fuselage and two under the wings. The store locations are defined in Table 21. 

Table 21: BAE cg modifier store locations 

 X position (relative 

to cg) m 

Y position 

(relative to cg) m 

Left under fuselage (front) -1.5 -0.5 

Right under fuselage (front) -1.5 0.5 

Left under fuselage (rear) 2 -0.5 

Right under fuselage (rear) 2 0.5 

Left wing tip 1.2 -4.5 

Right wing tip 1.2 4.5 

 

The store mass depends upon the type of store selected, the options are for masses of 0, 80, 

160 or 500kg. 

The fuel model calculates dxcg and dycg based upon the amount of fuel in five fuel tanks, 

two in each wing and one in the fuselage with a maximum fuel load of 2 tonnes. The fuel 

tank locations are defined in Table 22. 
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Table 22: BAE cg modifier fuel tank locations 

 Full tank mass 

(kg) 

X position 

(relative to cg) m 

Y position 

(relative to cg) m 

Left rear wing tank 400 -0.6 -1.5 

Right rear wing tank 400 -0.6 1.5 

Left forward wing tank 200 1.2 -2.7 

Right forward wing tank 200 1.2 2.7 

Fuselage tank 800 0 0 

 

The BAE cg modifier model uses the aircraft acceleration to approximate fuel surface angles. 

The fuel angles and tank fractions are used in five 2-d lookup tables to calculate the change in 

cg due to fuel slosh within each tank. The acceleration signals into this model go through a 

one second lag filter to approximate the lag effect in the fuel movement within the tanks as 

the aircraft manoeuvres. 
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Figure 69: ADMIRE model with BAE cg modifier and estimator 
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Figure 69 shows the configuration with the new BAE cg modifier model using the aircraft 

acceleration to simulate the effect of fuel sloshing and its impact upon the cg. The stores 

configuration is internal to the BAE cg modifier model and therefore not shown in the 

diagram. The commands into the aircraft and Kalman-Bucy filter are listed in Table 9 and the 

measurements from the aircraft are listed in Table 10. The Kalman-Bucy filter is shown 

outputting the unexpected pitch and roll acceleration, the other states are output but omitted 

for clarity. The unexpected pitch acceleration 𝑞̇𝑢𝑛𝑒𝑥 and the unexpected roll acceleration 

𝑝̇𝑢𝑛𝑒𝑥 are converted into estimates of the cg change in the same way as described in section 6, 

and illustrated in Figure 44 and Figure 57.  

7.3 Results from combined longitudinal and lateral cg estimator with BAE 

cg modifier 

For tests using the BAE cg modifier the following scenarios were considered: 

a) Full stores held, fuel tanks half empty to generate fuel slosh, full set of manoeuvres 

b) Stores deployed, fuel tanks half empty to generate fuel slosh, full set of manoeuvres 

In all of the figures the top left graph contains the cg estimate, and the static upper and lower 

limits are marked in red. 
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Figure 70: CG estimate during push down test using BAE cg modifier. Fuel tanks half 
full. 

In the push down test shown in Figure 70 the cg estimate briefly exceeds its static lower limit 

at 17 seconds and between 22 and 24 seconds, this is when the estimator holds its last good 

value because nz is between plus and minus 0.4 g. These exceedances might be avoided by 

more table data points and / or a change to the rule when dxcg is held at its previous value 

e.g. hold value when nz is between +/-0.3 g instead of +/-0.4 g. The small exceedances are 

against the static limits, the dxcg estimate remains well within the dynamic limits. 
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Figure 71: CG estimate during lateral acceleration using BAE cg modifier. Fuel tanks 
half full. 

 

Figure 72: CG estimate during roll test using BAE cg modifier. Fuel tanks half full. 

The rudder test (Figure 71) generated virtually no change in dxcg, and the estimate stays 

accurate. 
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In the roll test (Figure 72) the dxcg estimate briefly exceeds its static upper limit after about 

15 seconds, but as noted for the push down test the actual cg is changing and the estimate is 

within the less restrictive dynamic upper limit. 

In the acceleration test (Figure 73) the dxcg stays within its static limits until the aircraft is at 

Mach 0.8, which exceeds the table data used in the estimator which is only configured for 

speeds up to Mach 0.6. 

 

Figure 73: CG estimate during acceleration test using BAE cg modifier. Fuel tanks half 
full. 

The tests have shown the estimate of dxcg briefly exceeding its static limits but staying 

within its dynamic limits at all times. 

In all of the above tests, with the exception of the roll test, dycg stayed at zero, or very close 

to zero, and the estimate of dycg also stayed very close to zero so therefore the results have 

not been shown. However for the roll test the estimate of dycg exceeded its static limit, see 

Figure 74. 
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Figure 74: Lateral cg estimate during roll test using BAE cg modifier. Fuel tanks half 
full. 

The final set of test results for the combined longitudinal-lateral cg estimator cover the 

scenario when stores have been deployed to effect a change in dxcg, and then deployed to 

change both dxcg and dycg. 

Figure 75 shows the results when there is a store deployment after 10 seconds when the 

aircraft is in straight and level flight. The store deployment changes dxcg but dycg remains 

unaffected. 
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Figure 75: CG estimate with store deployment. Fuel tanks half full. 

Figure 76 shows the results from a store deployment after 10 seconds when the aircraft is in 

straight and level flight. This store deployment affects both dxcg and dycg. 

 

Figure 76: CG estimate with store deployment. Fuel tanks half full. 
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The final example using the BAE cg modifier (Figure 77) covers the scenario when stores are 

deployed after 10 seconds affecting dycg and dxcg, and then a full push down is commanded 

which causes significant fuel sloshing. 

The results show the dycg estimate staying well within its static limits, and the dxcg also just 

stays within its static limits.  

 

Figure 77: CG estimate with store deployment and max push down. Fuel tanks half full. 

7.6 Summary 

This section has described the design of a combined longitudinal and lateral cg estimator. The 

potential effect of fuel sloshing upon aircraft performance was modelled by using a cg 

modifier model supplied by BAE Systems, and the cg estimator was also tested using this 

model.  

The results have met the performance requirements set by BAE in section 3.1 with the 

following exceptions: 

a) During a full push down command with fuel tanks half-empty the dxcg estimate 
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use more data points or to freeze the estimate at smaller values of nz e.g. +/- 0.3g 

instead of +/- 0.4g. 

b) During a roll command with fuel tanks half-empty the dycg estimate exceeded its 

static limit. This may be corrected by obtaining coefficient data when the aircraft is 

banked and including the bank angle as an input into the data tables used to correct 

the coefficients. 

In all of the tests the cg estimate remained within the more generous dynamic accuracy limits.  
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8. Discrete Centre of Gravity Estimator  

The previous sections have described a continuous cg estimator. This section describes a 

discrete version of the estimator that may be used in a hardware implementation. It also 

provides some sample results when this estimator is used in conjunction with a hardware fuel 

rig, and physical faults are applied to the rig causing changes in the cg. 

8.1. Discrete CG Estimator 

The discrete version of the estimator uses a digitised version of a time-invariant Kalman filter 

instead of a Kalman-Bucy filter. Section 2.1.2 provides a comparison between the Kalman-

Bucy and Kalman filters. 

A similar design process to that described in section 6 is followed to obtain the coefficient 

derivatives used in the lookup tables. However this time the Matlab ‘c2d’ function is used to 

convert the linear model into its discrete equivalent, using a sample time of 0.01 seconds. The 

set of data points contained in look up tables is defined in Table 13, and the set of coefficient 

derivatives that are modified is defined in Table 14. 

The structure of the estimator is very similar to that shown in Figure 49 except that a Kalman 

filter is used instead of a Kalman-Bucy filter. The same values are used in the Q matrix (53) 

and R matrix (see Table 8) as were used in the continuous time version, and the Matlab ‘dlqe’ 

function is used to obtain the Kalman gain.  

An 11 state estimator was created which contained the state data defined in (71). 

Zero order hold blocks are added to sample and hold the inputs into the discrete estimator, 

see Figure 78. As before the commands are listed in Table 9 and the measurements are listed 

in Table 10. The discrete estimator was tested with a sample of manoeuvres and obtained the 

same results as the continuous estimator containing a Kalman-Bucy filter. 
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BAE Systems, the project industrial sponsors, provided access to a hardware fuel rig facility 

to test the cg estimator (see Figure 79). The fuel rig can be set up in different configurations 

and can be used to test the effect of different faults in the system, its effect upon the cg, and 

the response of the estimator. 

 

Figure 79: BAE hardware fuel rig. 

The rig was configured to match the fuel tank configuration used in the BAE cg modifier 

model described in section 7. No model for stores was included in the configuration. 

Table 23 defines the tank masses and locations relative to the cg. 
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Figure 78: ADMIRE aircraft model with discrete cg estimator 



127 

 

Table 23: Fuel rig tank configuration 

Fuel tank location Fuel mass 

(kg) 

X axis 

position (m) 

Y axis 

position (m) 

Left rear wing 400 -0.6 -1.5 

Right rear wing 400 -0.6 1.5 

Left front wing 200 1.2 -2.7 

Right front wing 200 1.2 2.7 

Fuselage 800 0 0 

The hardware fuel rig is controlled using a fuel control system in Labview. This control 

facility is used to configure the rig fuel tank attributes to match Table 23. 

Fuel level readings are transmitted over the LAN to a PC running Simulink which converts 

the fuel levels into the appropriate change in cg, which is then injected into the ADMIRE 

aircraft model as described in earlier sections. The aircraft model block, see Figure 80, 

contains the ADMIRE FCS as well as the ADMIRE aircraft model.  
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Figure 80: Configuration of BAE hardware fuel rig and cg estimator 
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8.2. Discrete CG Estimator Results 

Figure 81 provides an example of the results from the estimator when a fuel leak was applied 

to the rig. Fuel was drained from a fuel tank to simulate a physical leak, however since this 

leak caused a very slow change in the cg then the fuel rig level, under the control of BAE 

personnel, was rescaled to make the change in cg more visible. 

In this test the aircraft was trimmed in straight and level flight. The initial delay before an 

estimate is obtained is caused by the delay in obtaining fuel level measurements over the 

LAN. 

 

Figure 81: CG Estimate using hardware fuel rig with a 'virtual' fuel leak. 

In a real aircraft fuel leak scenario the speed of the change in cg is obviously dependent upon 

the size of the leak and the distance of the leak from the cg. 

To identify a fault condition such as a leak the cg estimate would need to be compared with 

the expected cg value obtained via the Fuel Control System. When the cg estimate differed 

from the expected cg value by a defined error tolerance level then a fault condition could be 

said to exist.  
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Other possible fault scenarios such as a faulty valve could also be detected by the cg 

estimator because the cg location would be different to the expected location. However 

different faults could cause the same error in cg position, for example a fuel leak to the rear 

of the aircraft would cause the cg location to be more negative than expected, and a faulty 

valve (less fuel flow to that expected) at the front of the aircraft would also cause a more 

negative than expected cg location. The cg estimator would be unable to distinguish between 

different types of fault without additional data, such as aircraft mass.  

8.3 Summary 

This section has shown that the Kalman-Bucy filter based cg estimator described in earlier 

sections can be converted into a discrete Kalman filter based cg estimator.  

The hardware fuel rig has been used because it provides a more realistic example of the scale 

of centre of gravity changes that may be caused by faults in a fuel system. This part of the 

study also provided the opportunity to understand if any issues arise as a consequence of 

conversion to and implementation in discrete time. The experimentation has shown that fuel 

rig faults take a long time to manifest themselves in changes in the cg, and these cg changes 

can be quite small. Therefore in practice a cg estimator may take a long time to help confirm 

the presence of a fault. The study therefore helps in assessing the usefulness of a cg estimator 

to aid fuel system fault detection. 

The general concept of detecting unexpected acceleration could be used to provide other fault 

detection capabilities. For example, if the estimator is modified to detect the unexpected yaw 

acceleration then this could be used to detect loss of engine thrust or a problem with an 

engine generating less thrust than it should. 

A possible extension to this work would be a hardware implementation of the estimator based 

upon this discrete version, together with a more comprehensive analysis of its fault detection 

capabilities. 
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9. Extended Kalman Filter  

The final section in this thesis considers the use of an Extended Kalman Filter (EKF) to 

perform the cg estimation. The EKF was proposed by Stanley F. Scmidt and has been called 

the “Kalman-Scmidt” filter (Grewal & Andrews, 2001: 178). As noted in section 2.1 the EKF 

is the most popular approach to state estimation in non-linear systems (Simon, 2006: 396). 

Section 6.3 gave some examples of the non-linearities in the ADMIRE model, for example 

the effect of the angle of attack upon the pitching moment is non-linear, as is engine thrust 

when the engine afterburners are engaged. Therefore for a non-linear system such as the 

ADMIRE aircraft model using an EKF is a logical and standard approach that could be 

adopted for the state estimator in the cg estimation problem. 

The main disadvantage of the EKF is “the added real-time computational cost of 

linearization” (Grewal & Andrew, 2001: 170). Essentially the EKF re-linearises the model on 

every iteration and then recalculates the Kalman gain on-line, whereas for the Kalman-Bucy 

and the discrete Kalman filter described previously the Kalman gain is calculated as part of 

the design process (i.e. off-line). The other main disadvantage with the use of an EKF in this 

specific research project is the additional complexity that it would add to the certification of a 

cg estimator in a real aircraft application.  

The derivation of the EKF is not contained within this thesis but the equations of an EKF are 

obtained in numerous text books, e.g. (Lewis, 1986: 263), (Simon, 2006: 408), (Grewal & 

Andrews, 2001: 180). 

The non-linear system defined below is based upon (Ribeiro, 2004) and (Grewal and 

Andrews, 2001: 180) : 

𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1) + 𝑤𝑘−1                   𝑤𝑘~𝑁(0,𝑄𝑘)                (92) 

𝑦𝑘 = ℎ𝑘(𝑥𝑘) + 𝑣𝑘                                 𝑣𝑘~𝑁(0,𝑅𝑘)               (92) 

where 

𝑥𝑘 is the state vector at time step k 

𝑦𝑘 is the output vector at time step k 

𝑓(. ) is the system function and ℎ(. ) is the measurement function   
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𝑤𝑘 and 𝑣𝑘 are white Gaussian independent random processes with zero mean and covariance 

matrix. 

Let 𝐹(𝑘) and 𝐻(𝑘) be the Jacobian matrices of 𝑓(. ) and ℎ(. ) denoted by: 

𝐹𝑘−1 ≈
𝛿𝑓𝑥
𝛿𝑥

 and 𝐻𝑘 ≈
𝛿ℎ𝑥
𝛿𝑥

 

The following equations define the discrete time EKF. 

𝑥�𝑘− = 𝑓𝑘−1(𝑥�𝑘−1+ )                   (94) 

𝑃𝑘− = 𝐹𝑘−1𝑃𝑘−1+ 𝐹𝑘−1𝑇 + 𝑄𝑘−1                  (95) 

𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇[𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘]−1                 (96) 

𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘[𝑦𝑘 − 𝐻𝑘𝑥�𝑘−]                  (97) 

𝑃𝑘+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−                   (98) 

In simple terms the algorithm used for the EKF has the following steps: 

1. Linearise the system dynamics around the last state estimate (Matlab ‘dlinmod’ was 

used to do this). The use of the Matlab ‘linmod’ command is not a novel approach, it 

is used in EKF elsewhere, for example in (Devouassoux and Pritchett, 2001). 

2. Apply the prediction step of the Kalman filter to the new linear model (i.e. calculate 

𝑥�𝑘− and 𝑃𝑘−). 

3. Linearise the observation dynamics measurement equation. 

4. Apply the update cycle of the Kalman filter to obtain 𝐾𝑘, 𝑥�𝑘+, and 𝑃𝑘+ (i.e. calculate 

the Kalman gain, correct the estimate by applying the Kalman gain to the residual, 

and then recalculate the error covariance matrix).  

 

A full listing of the Matlab code is included in Appendix I. 

 

The EKF that has been developed contains the 11 states defined in (71). The noise RMS used 

to obtain the variances used in the R matrix is defined in Table 8, and the values in the Q 

matrix are defined in (87). 
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The earlier Kalman-Bucy and Kalman filters used the Matlab ‘lqe’ or ‘dlqe’ commands to 

obtain the Kalman gain, this time the Kalman gain was calculated using (94) through to (98), 

although ‘dlqe’ could still have been used. 

The extended Kalman filter is used to obtain an estimate for unexpected angular acceleration, 

which is then converted into an estimate of the cg change, see (70). 

The structure of the longitudinal cg estimator is shown in Figure 82. 

 

 

9.1 EKF Results 

The next sequence of diagrams shows the results from the EKF. The top left graphs show the 

cg estimates and the static upper and lower acceptable limits specified by BAE Systems. 

Each aircraft manoeuvre occurs when the aircraft is trimmed at Mach 0.4 and at 5000m 

altitude, and after 10 seconds there is a cg shift of 0.1m, identical to the tests applied in 

section 6.4.1. Note that for clarity measurement noise has not been added to the signals 

making the results less noisy than they would otherwise be. 

9.1.1 Pitch down 

A maximum push down is commanded at 15.5 seconds over 5 seconds, and then the pitch 

stick is pulled back to level flight over another 5 seconds. The AoA and nz both pass through 
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Figure 82: Structure of extended Kalman filter for longitudinal cg estimator 
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zero and since dxcg is calculated by dividing by nz (70) then as nz decreases this magnifies 

any errors. The cg estimate stays within its static limits. 

 The comparison between the EKF and earlier coefficient-correction approach shows that the 

EKF is slightly more accurate. 

 

Figure 83: EKF – push down test. 

9.1.2 Roll 

The roll is commanded after 11 seconds and the aircraft banks at a rate of approximately 21 

degrees/second and -29 degrees/second. The aircraft bank angle reaches about 50 degrees. As 

before the cg estimate remains well within specified limits. 

The EKF estimate is very accurate compared to the coefficient-correction approach, because 

the EKF contains much more accurate coefficient derivatives during the bank manoeuvre. 
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Figure 84: EKF – roll test. 

9.1.3 Acceleration 

The aircraft accelerates from Mach 0.4 to Mach 0.75.  The cg estimate remains well within its 

static error limits and its estimate is superior to the coefficient-correction approach at speeds 

above Mach 0.6.  
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Figure 85: EKF – Acceleration test. 

9.1.4 Lateral Acceleration 

A rudder command occurs after 11 seconds and generates a value for vdot (lateral 

acceleration) of approximately -1.4 m/s2. The effect upon the estimate of the cg is negligible, 

and the estimate remains well within limits. 

In this scenario both the EKF and coefficient-correction method provide very good results. 
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Figure 86: EKF – Lateral acceleration test. 

9.2 Computational complexity comparison of EKF with coefficient 

correction approach 

The computational load of the EKF version of the cg estimator is compared with the earlier 

coefficient correction approach. 

It is assumed that the final EKF version of the estimator would not calculate its coefficients at 

run-time using a linearisation routine but would use pre-calculated data tables. The 

coefficient correction estimator in section 6.4 processed 10 data lookups for 7 command 

coefficients (B matrix) and 3 measurement coefficients (A matrix), see Table 14. The EKF 

version of the estimator would recalculate all of the matrices: 121 data lookups for the A 

matrix (11 by 11) and 110 data lookups for the B matrix (11 by 10), totalling 231 data 

lookups i.e. the EKF version will have approximately 23 times the number of extra data 

lookups to perform. 

Most of the computation in both versions involves matrix operations, the following 

assumptions have been made about the computational complexity of matrix operations: 

Square matrix multiplication of 2 nxn matrices    O(n3) 
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Rectangular matrix multiplication of nxm matrix by mxp matrix  O(mnp) 

Matrix inverse of one nxn matrix     O(n3) 

Matrix transpose : access same data but in different order 

 Matrix addition and subtraction has been ignored because it is low in comparison with 

multiplication. 

These computational complexity values are based upon normal matrix multiplication. There 

are algorithms that provide improved matrix multiplication performance, for example for 

square matrix multiplication the Coppersmith-Winograd algorithm is O(n2.376). The values for 

general matrix multiplication should be sufficient for a basic comparison between the two 

types of cg estimators. 

The calculations are based upon the following sizes for the matrices: 

F : nxn matrix 

G : nxm matrix 

H : mxn matrix 

P : nxn matrix 

Q : nxn matrix 

R : mxm matrix 

K : nxm matrix 

x : nx1 vector 

u : mx1 vector 

y : mx1 vector 

a) Coefficient correction estimator 

This version uses a fixed Kalman gain, therefore only (7) and (10) of the discrete Kalman 

filter are applicable. Table 24 provides the equations for the discrete Kalman filter used in the 

selective coefficient correction version of the estimator, and its associated computational 
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complexity. 

Table 24: Selective coefficient correction complexity 

Equations Computational complexity 

𝑥�𝑘+1− = 𝐹𝑘𝑥�𝑘 + 𝐺𝑘𝑢𝑘 O(n2) + O(mn) 

𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘[𝑦𝑘 − 𝐻𝑘𝑥�𝑘−] 2O(mn) 

Total O(n2) + 3O(mn) 

 

b) EKF 

Table 25 provides the equations for the EKF and its corresponding computational 

complexity. 

Table 25: EKF complexity 

Equations Computational complexity 

𝑥�𝑘+1− = 𝐹𝑘𝑥�𝑘 + 𝐺𝑘𝑢𝑘 O(n2) + O(mn) 

𝑃𝑘− = 𝐹𝑘−1𝑃𝑘−1+ 𝐹𝑘−1𝑇 + 𝑄𝑘−1 2O(n3) 

𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇[𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘]−1 O(n3) + 4O(mn2) 

𝑥�𝑘+ = 𝑥�𝑘− + 𝐾𝑘[𝑦𝑘 − 𝐻𝑘𝑥�𝑘−] 2O(mn) 

𝑃𝑘+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘− 2O(mn2) 

Total 3O(n3) + 6O(mn2) + 3O(mn) + O(n2) 

 

In this thesis the matrix sizes have been m = 10, n = 11. For these matrix sizes the coefficient 

correction approach gives a computational complexity for matrix multiplication of 451 

compared with the EKF value of 11704. Therefore matrix multiplication in the EKF version 

of the estimator is approximately 26 times more time complex compared with the coefficient 

correction approach. 
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9.3 Summary 

Overall the EKF gave superior results compared to the coefficient correction approach, 

particularly with regard to the acceleration and roll manoeuvres. This was expected because 

the repeated re-linearisation in the EKF provides more accurate values for the coefficient 

derivatives in the estimator. This is particularly noticeable when the aircraft banks because 

the coefficient correction approach only contained data when the aircraft was in level flight. 

It is also particularly noticeable when the aircraft accelerated sharply and its afterburners 

were activated, again this is because the data tables in the coefficient correction approach did 

not contain data when the afterburners were engaged.  

The main disadvantages with the EKF are the additional processing overheads involved with 

obtaining a linearised model at each iteration, and recalculating the Kalman gain and 

associated error covariances. However, in a practical implementation it is likely that the 

derivatives would be pre-computed and contained within tables to reduce the run-time 

processing overhead. An important disadvantage of the EKF for this specific research is the 

more complicated certification route (identified by BAE Systems) caused by the variable 

Kalman gain, in comparison to the coefficient-correction approach where the Kalman gain 

was precomputed.  

The main advantage of the EKF is that it gives more accurate results and does not require the 

additional corrections that were applied to the coefficient-correction approach. The accuracy 

of the coefficient-correction approach could be improved by obtaining coefficient data when 

the aircraft is banked and when the afterburners are activated. 
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10. Conclusions and Future Work  

This thesis has proposed the use of a Kalman filter to estimate the in-flight aircraft centre of 

gravity. The Kalman filter has been augmented to estimate unexpected aircraft acceleration 

and this has then been converted into an estimate of the change in longitudinal or lateral cg. 

This approach has been applied to increasingly complex models and estimators. The first 

estimator used a linear model of the longitudinal state-space equations for a Phantom aircraft. 

This estimator was used to demonstrate that the augmented Kalman-Bucy filter could 

accurately estimate unexpected aircraft acceleration even when the aircraft went through a 

sequence of pitching manoeuvres. 

The second model used was the more complex non-linear ADMIRE aircraft model, and the 

cg estimator demonstrated that it was still capable of estimating the cg despite the additional 

aircraft model complexity. Some of the non-linearities in the ADMIRE model were then 

investigated and the estimator was modified to use pre-calculated data tables to mitigate the 

effect of these non-linearities. The approach taken was to selectively modify some of the  

coefficients in the Kalman-Bucy filter based upon Mach, altitude and angle of attack, and this 

version of the estimator accurately estimated the cg (satisfying BAE Systems requirements) 

when the aircraft went through a variety of manoeuvres (apart from small deviations during 

high aircraft acceleration and sharp aircraft banking). 

The estimator was also tested when the aircraft exceeded its specified manoeuvre limits. On 

this occasion the cg estimate went out of range but became accurate again when the out of 

range manoeuvre ended.  

In practice a real cg estimator would not achieve the results shown because the model would 

not be an exact representation of the actual aircraft, therefore the effect of using incorrect 

aircraft coefficients, inertia and mass was examined to assess its effect upon the estimate. 

A combined longitudinal and lateral cg estimator was then developed and used in conjunction 

with a BAE cg modifier model to assess its performance during the release of stores or during 

fuel sloshing. Again the cg estimator satisfied its performance requirements. 

A discrete version of the estimator was developed and used with a hardware fuel rig to assess 

the performance of the estimator during various fault scenarios. The discrete cg estimator still 

obtained accurate estimates but it was noted that faults affecting the cg took a long time to 
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manifest themselves. The discrete version of the estimator could be used in a hardware 

implementation of the estimator. 

The final version of the cg estimator used an Extended Kalman Filter. This version provided 

more accurate estimates compared to the earlier coefficient-correction approach but at the 

cost of more run-time computation and a more complex route to certification for flight use. 

The literature survey did not specify the accuracy of many existing cg estimation techniques, 

see section 2.3, but it did indicate that any system should be accurate to at least 1% mean 

aerodynamic chord, and according to van Els (2007) any on-ground cg estimation system 

should be accurate within 1% of the mean aerodynamic chord. The requirements set by BAE 

Systems, see section 3.1, defined a static accuracy limit of 0.3% mac and a dynamic accuracy 

limit of 0.5% mac. 

A key feature of this research has been the collaboration with BAE Systems who provided 

flight test data to obtain realistic measurement noise, and also specified the cg estimator 

requirements. In a military environment the deployment of stores and sloshing of fuel in its 

tanks can have a big effect upon the cg, therefore BAE provided a model for this which was 

used in the testing and development of the cg estimator. 

This thesis has described the use of model based techniques to estimate aircraft cg. In 

particular it has described the novel method of using Kalman filters to obtain the unexpected 

angular acceleration caused by a change in cg, and then converting this unexpected angular 

acceleration into a cg estimate. The literature survey described different approaches taken to 

estimate the cg, with the more recent research focussing upon using neural nets, and Abraham 

and Costello (2009) using an extended Kalman filter to estimate the weight and cg of a 

helicopter. To the authors knowledge the research described in this thesis is the first research 

based upon using Kalman filters which have been augmented to estimate unexpected aircraft 

acceleration, which is then converted into an estimate of the change in longitudinal or lateral 

cg. 

This thesis has also described a solution to the estimation problem applied to a non-linear 

aircraft model by selectively modifying the estimator pitch and roll moment coefficients 

based upon angle of attack, Mach and altitude, as opposed to the more traditional approach of 

using an Extended Kalman Filter (EKF). Throughout this thesis the static accuracy limit of 
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0.3% mac has been used in the results, and many examples have been provided. The results 

demonstrate the potential for a Kalman filter based cg estimator to provide accurate cg 

estimates for an in-flight aircraft. 

10.1 Future Work 

Before this technique could be implemented on an aircraft further study is required. In 

particular the following issues have been identified: 

1. The effect of wind gusts on the estimate should be assessed by incorporating a model 

for the atmosphere. It is anticipated that wind gusts would affect the estimate but one 

approach to mitigate the effect may be to include a first order lag on the estimate. 

2. A hardware implementation of the estimator should be developed to ensure that the 

design is practical. 

3. A formal design process for the estimator should be investigated together with an 

understanding of the verification and validation issues that need to be satisfied so that 

the estimator is suitable for flight clearance. 

Other potential areas of future work could involve: 

1. Reducing the number of states to reduce the computation. For example the 

longitudinal cg estimator may be sufficiently accurate with just the α and q states, and 

the lateral cg estimator may be sufficiently accurate with just the β and p states. 

2. Expanding the estimator to work in supersonic flight 

3. Investigating the fault finding capabilities of an estimator and other potential uses 

from an accurate estimate of unexpected acceleration, for example estimating the 

unexpected yaw acceleration may be useful to detect engine problems. 
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Abstract— The centre of gravity (cg) of an aircraft is of 
fundamental importance to its stability, but it is difficult to 
measure precisely in-flight because it will vary as the aircraft 
manouevres and fuel is consumed and sloshes in its tanks. This 
paper describes the development of a longitudinal cg estimator 
using Kalman filters. An example is provided using a linear 
Phantom F4-C aircraft model in which an unexpected moment 
representing a cg change is injected into the aircraft and then 
estimated using a Kalman filter. The work is then extended to 
use a more comprehensive aircraft model, ADMIRE, and the 
same approach is demonstrated using a linearised version of 
this model. 

 

I. INTRODUCTION 
HE aircraft centre of gravity (cg) location is an important 
piece of data because it is the location about which an 
aircraft rotates [1]. The aircraft performance is 

dependent upon the cg location because all moments are 
derived with respect to the cg. The ideal location for the 
centre of gravity is carefully determined by aircraft 
designers as it affects aircraft stability. The longitudinal cg is 
important due to its effect upon aircraft stability, the lateral 
cg is also important due to its effect upon aircraft 
performance. Uneven loading of fuel or cargo may cause the 
aircraft to be heavier on one side which requires additional 
lift on the heavy side of the aircraft. However this has the 
disadvantage of producing additional drag so the aircraft is 
less fuel efficient. 
 

This paper describes the use of Kalman filters to estimate 
the aircraft cg location. The potential benefits of this 
approach are, in general, enhanced flexibility in the Flight 
Control System (FCS) design, and in particular : 
a) It provides an additional method to estimate the cg 

when other methods e.g. accelerometers, fuel flow 
measurements, have failed. 

b) It provides an additional piece of data to the FCS to 
improve fault detection e.g. confirm presence of a fuel 
leak. 

c) It potentially allows for cg position dependent design 
scheduling, resulting in a less conservative FCS design 
that has to accommodate much smaller cg changes. 

d) It provides the possibility to improve aircraft handling 
with cg, e.g. forward cg configurations are typically 
more sluggish in pitch manouevres. 
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II. CURRENT TECHNIQUES AND RESEARCH 
This section describes current techniques that are used to 

estimate the cg, both on the ground and in-flight. 
When the aircraft is on the ground the aircraft can be 

weighed on scales. The arms (distance between the cg of the 
item and a datum point) of the weighing points are specified 
for the aircraft [2]. The moment is the weight multiplied by 
the arm. The cg is calculated as: 

weighttotalmomenttotalcg /=  (1) 
 

There are different systems for obtaining the weight and cg 
of an aircraft on-ground, for example by measuring the 
pressure within landing gear struts, however this paper will 
concentrate on in-flight cg estimation.  

When the aircraft is in flight a number of different 
approaches have been used to estimate the cg. The simplest 
method involves dividing the aircraft into nodes and 
specifying the weight and cg location for each node. As the 
aircraft flies fuel is consumed which reduces the weight in 
the fuel tank nodes and the cg is recalculated using (1). This 
approach is described in [3] and then updated in [4] to make 
an allowance for fuel sloshing. 

An alternative method for in-flight estimation is to use 
accelerometers at the front and rear of the aircraft [5]. The 
accelerometer signals undergo band-pass and low-pass 
filtering and are combined to obtain a signal representing the 
cg. 

A method patented by Boeing [6] describes a cg estimation 
system used when a commercial aircraft is descending to 
land. This method uses many parameters to estimate the cg: 
angle of attack, flap setting, aircraft weight, elevator and 
stabilizer positions, load factor and dynamic pressure on 
aircraft, reference wing area. An obvious limitation of [6] is 
that it is only useful when the aircraft is in a stable 
configuration in its landing phase. 

The most recent research in this field has focused upon 
using neural networks to estimate aircraft weight and cg. 
One paper [7] describes a neural net trained to estimate the 
weight and longitudinal cg for a small business jet in 
trimmed flight. It provides the theory to show that the 
longitudinal cg is a function of the dimensionless total pitch 
couple CM and normal force CZ, and these in turn are 
functions of the Mach number, angle of attack, elevator 
deflection, flight path angle, and normal cg zcg. The authors 
claims the neural net achieved an accuracy of 1.6% of mean 
aerodynamic chord (mac) and 99% of the points were within 
1% mac. 

Alternatively [8] describes using a neural net to estimate 
the weight and cg in a V-22 tilt-rotor aircraft. The authors 
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claim the cg estimate had a root mean square (rms) error of 
4.318mm (0.17 inches).  

III. METHODOLOGY 
It has already been noted that an aircraft rotates about its 

centre of gravity. The model-based method described in this 
paper is essentially based upon detecting unexpected angular 
acceleration. Providing that all possible causes of the 
acceleration (apart from the cg change) have been allowed 
for in the model then there is a relationship between the 
unexpected acceleration and a change in the cg. 

Fig. 1 shows the structure of the system.  
 

An aircraft operates in a noisy environment i.e. its 
measurements will be subject to noise. A Kalman filter is the 
optimal estimator for linear systems with stochastic noise. 
The Kalman filter [9] has been used in many aerospace 
applications [10], [11]. The Kalman filter was extended to 
work in continuous systems with the Kalman-Bucy filter 
[12]. A Kalman-Bucy filter has been used as the estimator in 
this paper, and such a filter is shown in Fig. 2. 

 

A Kalman filter executes on a prediction-correction cycle. 
It contains a model of the system and uses the control inputs 
‘u’ to make a prediction of the system state. It then uses 
measurements from the system to correct its state. 

The Kalman gain is derived from the Q and R matrices that 
have been defined for the Kalman filter. A good introduction 
to the Kalman filter and explanation of the Q and R matrices 
is contained in [15]. The data in the R matrix are based upon 

the variance of the measurement noise. The data in the Q 
matrix are more subjective and were obtained on an iterative 
trial and error basis, starting from sensible initial values to 
obtain the desired performance. The values in the Q and R 
matrices are used to calculate the Kalman gain: low values 
in Q (or high values in R) result in a small Kalman gain 
which gives more emphasis to the model, whereas a large 
gain gives greater emphasis to the measurements. 

The Kalman gain used in this paper has been obtained by 
using the Matlab ‘lqe’ function. 

This paper will describe the creation of the estimator and 
the calculation of the unexpected moment which is 
representative of a cg shift. 
 

A. Theory and Assumptions 
This section will develop the theory which has been used 

to relate a change in the longitudinal centre of gravity to 
unexpected pitch acceleration. The aircraft is assumed to be 
trimmed and in straight and level flight, therefore the forces 
of weight, lift, thrust and drag balance each other out. Any 
deviation from trimmed flight is caused by an unexpected 
moment. The unexpected moment may be caused by forces 
external to the aircraft such as a gust of wind, but for now 
the unexpected moment is assumed to be caused by a 
movement in the longitudinal cg. The effects of external 
forces will assessed at a later date. 

Fig. 3 shows the forces and moments applied to a trimmed 
aircraft in straight and level flight. The variables in the 
figure and the pitching equation (2) are based on data 

contained in [13].  
TTTw MlLchhLMM +−−+= )( 00  (2) 

where 
M0 = wing pitching moment about aerodynamic centre 
MT = tailplane pitching moment 
LW = wing lift at aerodynamic centre 
LT = tailplane lift 
c = mean aerodynamic chord 
W = weight 
h0c = aerodynamic centre on mac 
hc = cg position on mac 
lT = distance from tailplane lift to cg 
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Fig. 2.  Kalman-Bucy Filter. 
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Fig. 1.  Aircraft Model with model-based Estimator. 
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The assumption is made that both M0 and h0 are constants. 
It is also assumed that the tailplane aerofoil is symmetric so 
MT is zero.  

In a trimmed aircraft the pitching moment is zero. 
0)( 00 =−−+ TTw lLchhLM  (3) 

 
Equation (3) can be rearranged to give the cg location. 

wTT LMlLchhc /)( 00 −+=  (4) 
 
In the trimmed horizontal flight condition it is assumed 

that the distance from LT to h0 is fixed. Let d equal the 
distance from LT to h0 which allows the term LTlT to be 
redefined.  

))(( 0 chhdLlL TTT −−=  (5) 
 
Equation (5) is substituted into (4) to give (6). 

)/()( 000 TwTTW LLMdLchLchLhc +−++=  (6) 
 
The aircraft is stable and trimmed but now encounters a 

pitching moment M due to a cg shift. 
MlLchhLM TTW =−−+ )(( 00  (7) 

 
If the definition for LTlT in (5) is substituted into (7) it can 

be rearranged to give (8) to define the new cg location. 
)/()( 000 TwTTW LLdLchLchLMMhc ++++−=  (8) 

 
If we assume that the lifts LW, LT and length d are 

unchanged then a comparison between (8) and (6) shows 
that the longitudinal centre of gravity has moved by 
M/(LW+LT). 

)/( TW LLMcg +=∆  (9) 
 
In trimmed straight and level flight LW+LT equals the 

weight of the aircraft which is its mass multiplied by gravity. 
)/( gmassMcg =∆  (10) 

 
From Newtonian mechanics the moment can be defined in 

terms of angular acceleration and moment of inertia (11). 
qIM y =  (11) 

where 
M = pitching moment 
Iy = pitch moment of inertia 
q =pitch acceleration 

 
Equation (11) is a simplified pitching moment equation 

which only considers the effect of q  on M. The complete 
pitching moment equation defined in [13] considers forces 
acting in all three axes and is more complex. The ADMIRE 
model contains the complete pitching moment equations, 
therefore the full equations will be analysed using the 
ADMIRE model.  

Equation (11) is substituted into (10) to define the cg 
change in terms of angular acceleration, moment of inertia 
and mass. 

)/( gmassqIcg y =∆  (12) 

 
Therefore, given the assumptions and simplifications that 

have been described, a change in the longitudinal cg can be 
estimated from the pitch acceleration, pitching moment of 
inertia and mass of an aircraft.  

B. Phantom F4-C CG Estimation – Open Loop 
A McDonnell F4-C Phantom aircraft model defined in [13] 

was used to evaluate the use of Kalman filters to detect and 
estimate unexpected pitch acceleration, and hence estimate 
the cg change. This model was chosen because the aircraft 
mass and pitching moment of inertia required in (12) are 
defined, and also the dimensionless longitudinal derivatives 
are defined which can be varied to test the estimator. The 
state-space equation for the Phantom model contained in 
[13] is shown in (13).  

The mass of the Phantom aircraft is specified as 17642 kg, 
and the pitching moment of inertia is 165669 kg m2. 
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where 
u =axial velocity 
w =normal velocity 
q =pitch rate 
θ =pitch angle  
η =elevator angle 
 
The aircraft model was configured to accept the injection 

of an unexpected moment as shown in Fig. 1, except in this 
scenario the aircraft is open-loop. The unexpected moment is 
calculated from the cg shift and the mass of the aircraft (10). 

Equation (12) is reordered to give the unexpected pitch 
acceleration caused by a cg shift, and the mass and pitching 
moment of inertia for the Phantom aircraft are used. 

cg
cgq

∆=
∆×=

04466146.1
165669/81.917642  (14) 

 
The Kalman filter contains the Phantom F4-C aircraft 

model and is augmented to estimate the change in the centre 
of gravity using (14), to convert the unexpected pitch 
acceleration to a change in cg. This method for modeling the 
unknown acceleration is adapted from an example contained 
in [16], in which unknown acceleration is modeled as a 
random process. 
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 (15) 
The data in Table 1 were used to tune the Kalman filter. 

The maximum and average values were selected as a best 
guess to progress the development of the filter. The 
measurement noise defined in Table 1 was added to the 
aircraft model. 

 

The R matrix in the Kalman filter was calculated from the 
noise variance of the measurement noise. 

])660.00000109660.000001090.00360.04([diagR =  (16) 
 
The Q matrix in the Kalman filter was originally based 

upon the average values defined in Table 1 but amended in 
an iterative manner to improve the filter performance. 

])0.001 0.00008 0.00008 10 40([diagQ =  (17) 
 
Fig. 4 provides an example of the performance of this 

estimator. In this example there is a 0.5m change in the 
centre of gravity after 1 second, and then after 10 seconds 
the elevator moves by 0.2 radians. 
 

The estimate of the change in cg can be seen to climb to 
0.5m after 1 second and it is unaffected by the elevator 
movement at 10 seconds. Fig. 4B provides a zoomed in view 
of the estimate to show the effect of noise. 

Robustness tests were performed to examine how the 
estimator behaves when the model is not an exact 
representation of the aircraft. The dimensionless derivatives 
defined in [13] were increased in turn by 10% and the 
estimate repeated and measured after 20 seconds. 

 The X and Z derivatives had no effect upon the final 
estimate that was obtained. However the M derivatives, and 
data used to calculate the matrix coefficients, namely 
velocity, mass and moment of inertia, can be seen to affect 
the estimate, as shown in Table 2. 

 Fig. 5 gives an example of the transient performance of 
the estimator when the parameters are varied one at a time. 

The estimate is most sensitive to changes in velocity, Mn, 
mass and Mw, the other changes reduced the accuracy of the 
estimate by less than 1%. There is a transient effect upon the 
estimation and this is clearly illustrated by the effect of the 
pitching moment of inertia Iy. 

 

Fig. 4.  Estimation of centre of gravity change from open-loop Phantom 
F4-C Aircraft Model 

 

Fig. 5.  Robustness tests of cg estimation on open-loop Phantom F4-C 
model.. 

TABLE 1 
PHANTOM F4-C KALMAN FILTER TUNING DATA 

 u 
(m/s) 

w 
(m/s) 

q (°/s) θ (°) 

Max value 100 30 30  
(0.5236 rad/s) 

30  
(0.5236 rad) 

Average value 20 10 5  
(0.08727 rad/s) 

5  
(0.08727 rad) 

Measurement 
Noise (0.2% of 
Maximum) 

0.2 0.06 0.06  
(0.0010472 
rad/s) 

0.06 
(0.0010472 
rad) 

Noise variance 0.04 0.036 0.036 
(1.0966x10-6 
rad/s) 

0.036 
(1.0966x10-6  
rad) 

 
 
 
 
 
 
 
 

TABLE 2 
PHANTOM F4-C MODEL ROBUSTNESS TESTING RESULTS 

Dimensionless 
Derivative 

Original 
Value 

Test 
Value 

Final 
Δcg 

Final value 
% error 

Mu 0.034 0.0374 0.4978 0.44 
Mw -0.2169 -0.23859 0.5379 7.58 
Mw-dot -0.591 -0.6501 0.5017 0.34 
Mq -1.2732 -1.40052 0.503 0.6 
Mn -0.5581 -0.61391 0.4069 18.62 
Velocity 178 195.8 0.3606 27.9 
Mass 17642 19406.2 0.5505 10.1 
Moment of 
Inertia 

165669 182235.9 0.5005 0.1 
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The robustness tests have shown that special care should 
be taken to obtain accurate M derivatives, specifically Mn 
and Mw, and also the values for velocity and mass.  

C. Phantom F4-C CG Estimation – with control 
A PID pitch rate controller was added to the model and the 

pitch rate was ramped up and down as shown in Fig. 6A. 
The Q and R matrices used to obtain the Kalman gain were 
the same as those defined in (16) and (17), and the noise 
added to the measurements is defined in Table 1. 

A moment corresponding to a cg shift of 0.2m was inserted 
after 3 seconds, and the cg estimate is shown in Fig. 6B.  

The estimation results using the Phantom F4-C aircraft 
model have demonstrated that a Kalman-Bucy filter can be 
easily augmented to provide an accurate estimate for the 
unexpected pitch acceleration. The theory provided the logic 
to convert the unexpected acceleration into a cg shift. The 
next section will use a comprehensive aircraft model so that 
the effects of a cg change are more accurately modelled and 
incorporated into the estimator. 

D. ADMIRE 
The ADMIRE [14] (Aero-Data Model In a Research 

Environment) aircraft model is a generic model of a small 
single-seat fighter aircraft with a delta-canard configuration. 
It contains twelve states ( velocity (VT), angle of attack (α), 
sideslip (β), roll rate (pb), pitch rate (qb), roll angle (φ), pitch 
angle (θ), yaw angle (ψ), longitudinal coordinate (xv), lateral 
coordinate (yv), normal coordinate (zv)) plus additional states 
for sensors, actuators and FCS. 

The work with the Phantom model assumed that a 
longitudinal cg change only affected q , however a cg 
change will affect other state derivatives and with the 
ADMIRE model it will be possible to more accurately assess 
this impact and generate a more realistic estimator.  

In the ADMIRE model the pitching moment caused by a 
cg shift is dependent upon the vertical force Fz, which in turn 
affects the angular acceleration. 

zFcgM ∆=∆  (18) 
 
Equation (18) is substituted into (11) and rearranged to 

give (19). 
zy FIqcg /=∆  (19) 

 
The vertical force Fz is a variable in ADMIRE, therefore 

this equation is non-linear but can be linearised using a 
Taylor series approximation. Note that although Fz is an 
output in the ADMIRE model nz has been used instead, 
because ADMIRE provides a sensor model for nz . 

The relationship between Fz and nz is given in (20). 
)/( gmassFn zz −=  (20) 

 
The Taylor series approximation is in (21).      

2
0000000 /)(/)(// yyycxyxxcycxycx −−−+≈  (21) 

where 
c = Iy/(mass g) 
x = q  
x0 = q  operating point 
y0 = nz operating point 
 
For a trimmed aircraft the pitch acceleration q is zero, 

therefore the operating point x0 is zero which simplifies (21) 
to (22). 

0// ycxycx ≈  (22) 
 
In terms of the cg shift this is 

)/( 0nzgmassIqcg y≈∆  (23) 

 
A linear version of the ADMIRE model was used with the 

cg estimator, and a moment was injected into the aircraft 
model based upon a cg shift. The complete model contains 
the aircraft Flight Control System (FCS) as shown in Fig. 7. 

 
The moment injected into the model is factored by nz, as 

per (18) and (20). 
In the following example the aircraft was first trimmed at 

mach 0.8 in straight and level flight at an altitude of 3000m 
before the model was linearised. In this scenario the 
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Fig. 7.  Linear ADMIRE model with Injected Unexpected Moment. 

 

Fig. 6.  Phantom F4-C pitch rate with PID controller included. 
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operating point used for nz was 0.9242 “g”. The estimator 
was created by augmenting the 12 state ADMIRE model 
with an additional state for Δcg, in the same way as the 
Phantom F4-C model in (15). The new cgq∆ matrix 

coefficient value was calculated from (24). 
yIgmassnzcgq /0∆≈  (24) 

where 
nz0 = 0.9242 g 
mass = 9100 kg 
g = 9.81 m/s2 
Iy = 81000 kg m2 
 
The noise added to the ADMIRE aircraft model 

measurements is defined in Table 3. The noise variance is 
used to populate the R matrix of the Kalman-Bucy filter. 

As before the Q matrix (25) was obtained by trial and error 
from a sensible initial set of values. 
 ])0.1 1 1 1 1 0.05 0.05 0.05 0.01 0.01 0.01 0.05 0.05 1([diagQ =  (25) 

 
Fig. 8 shows the estimator response when an unexpected 

moment corresponding to a cg shift of -0.1m is injected into 
the linear ADMIRE aircraft model after 5 seconds. 

This section has shown that the concept of inserting an 
unexpected moment representative of a cg change, and then 
estimating the cg change from the actual and expected 

measurements can be applied to a complex linear aircraft 
model. 

IV. CONCLUSIONS 
This paper has presented the idea of using Kalman-Bucy 

filters to estimate changes in aircraft cg by measuring 
angular acceleration, and then comparing it with the 
expected angular acceleration. 

It gave examples using Phantom F4-C and ADMIRE 
aircraft models, and described the state augmentation 
necessary to estimate the cg change. The Kalman-Bucy 
filters have shown promising results in detecting unexpected 
acceleration and converting this to an estimate of a cg 
change. 

Future work will use the non-linear ADMIRE model 
which contains the cg as an input, thus removing the need 
for the artificial injection of an unexpected moment. The 
estimator will require modification to operate in the full 
flight envelope, possibly by scaling estimates based upon 
changes in the dynamic pressure or by upgrading to an 
Extended Kalman filter. 

A particulare feature will be the need to accommodate the 
effect of aircraft trim offsets upon the accuracy of the 
estimation process. 

Future work will also consider the sensor models in the 
estimator so that the measurements more realistically match 
those of an actual aircraft. 

The final area of research will be to include an estimate for 
the lateral cg, and to investigate the coupling of the 
longitudinal and lateral axes. 
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Estimation of the Centre of Gravity of a Manoeuvring Aircraft using Kalman 
filters and the ADMIRE aircraft model 
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Systems and Control Group, Loughborough University, LE11 3TU 
UK ( e-mail: A.J.Stanley@lboro.ac.uk, R.M.Goodall@lboro.ac.uk). 

 

Abstract: Previous work has shown that the centre of gravity (cg) of an aircraft can be estimated using a 
Kalman-Bucy filter. This paper will adopt a similar approach but use a non-linear aircraft model, and 
will demonstrate the estimation of the cg when the aircraft undergoes a series of manoeuvres. To cope 
with the non-linearities in the aircraft model the Kalman-Bucy filter coefficients for the pitching 
moment are modified when the aircraft manoeuvres. A number of examples are provided using the non-
linear ADMIRE aircraft model, which is a complex model of a delta-canard military aircraft. 
Keywords: aircraft control, centre of mass, estimators, Kalman filters. 

1. INTRODUCTION 

The aircraft centre of gravity (cg) is the location about which 
an aircraft rotates (NASA, 2008), and it is an important 
piece of data because it affects aircraft stability. The cg will 
vary in-flight as fuel is burnt or sloshes in its fuel tanks, or 
when stores are deployed. 

Previous work (Stanley and Goodall, 2009) described how 
state augmentation could be applied to a Kalman-Bucy filter, 
(Kalman and Bucy, 1961) to accurately estimate unexpected 
angular acceleration of an aircraft, where the unexpected 
angular acceleration is caused by a cg shift. It also showed 
how the estimate of unexpected angular acceleration could 
be used to obtain an estimate of a change in an aircraft cg. 
However, Stanley and Goodall (2009) only considered 
estimating the cg when the aircraft was trimmed in straight 
and level flight, and it only gave results from using a linear 
aircraft model. This paper will investigate the development 
of a cg estimator which is used with a non-linear aircraft 
model when the aircraft goes through a sequence of 
manoeuvres. The success of the estimator will be measured 
against a set of pre-determined performance requirements. 

It was noted in Stanley and Goodall (2009) that the potential 
benefits of accurately estimating the aircraft cg are, in 
general, enhanced flexibility in the Flight Control System 
(FCS) design. In particular an accurate cg estimate provides 
: 

a) an additional method to estimate the cg when other 
methods have failed. 

b) an additional piece of data to the FCS which may be 
used to improve fault detection. 

c) the potential for cg position dependent design 
scheduling, resulting in a less conservative FCS design. 

d) the possibility of improving aircraft handling with cg 
changes. 

 
2. CURRENT TECHNIQUES AND RESEARCH 

The previous paper (Stanley and Goodall, 2009) described a 
number of existing techniques used to estimate the cg, both 
on the ground and in-flight. 

When the aircraft is on the ground the aircraft can be 
weighed on scales (Federal Aviation Administration, 2007). 
The arms (distance between the cg of the item and a datum 
point) of the weighing points are specified for the aircraft. 
The moment is the weight multiplied by the arm. The cg 
position is calculated as: 

weighttotalmomenttotalcg /=                              (1) 

When the aircraft is in flight a number of different 
approaches have been used to estimate the cg. The simplest 
method involves dividing the aircraft into nodes and 
specifying the weight and cg location for each node. As the 
aircraft flies fuel is consumed which reduces the weight in 
the fuel tank nodes and the cg is recalculated using (1). This 
approach is described by Brockman (1980) and then updated 
by Blakely and Hedges (1998) to make an allowance for fuel 
sloshing. 

An alternative method for in-flight estimation is to use 
accelerometers at the front and rear of the aircraft, see 
Glover (1985). The accelerometer signals undergo band-pass 
and low-pass filtering and are combined to obtain a signal 
representing the cg. 

A method patented by Boeing in Wu (1996) describes a cg 
estimation system used when a commercial aircraft is 
descending to land. This method uses many parameters to 
estimate the cg. An obvious limitation of Wu (1996) is that it 
is only useful when the aircraft is in a stable configuration in 
its landing phase. 
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More recent research has used neural networks to estimate 
aircraft weight and cg. The paper by Idan et al (2004) 
describes a neural net trained to estimate the weight and 
longitudinal cg for a small business jet in trimmed flight. 
The authors claim the neural net achieved an accuracy of 
1.6% of mean aerodynamic chord (mac) and 99% of the 
points were within 1% mac. 

Alternatively Bi et al (2004) describe using a neural net to 
estimate the weight and cg in a V-22 tilt-rotor aircraft. The 
authors claim the cg estimate had a root mean square (rms) 
error of 4.318mm (0.17 inches).  

Research by Abraham and Costello (2009) has used an 
Extended Kalman Filter (EKF) to estimate the weight and cg 
of a helicopter. The EKF is constructed with the rigid state 
of the helicopter and augmented with the weight and the 3 
components of the cg (x, y and z axis). 

The research described here uses an enhanced estimator 
structure but preserves the use of the more simplistic 
Kalman-Bucy filter. 

3. THE ADMIRE AIRCRAFT MODEL 

In this paper the ADMIRE aircraft model is used to model 
an aircraft and the changes to its cg position. The ADMIRE 
(Aero-Data Model In a Research Environment) model is a 
generic model of a small single-seat fighter aircraft with a 
delta-canard configuration. It contains twelve states : 
velocity (VT), angle of attack (α), sideslip (β), roll rate (pb), 
pitch rate (qb), roll angle (φ), pitch angle (θ), yaw angle (ψ), 
longitudinal coordinate (xv), lateral coordinate (yv), normal 
coordinate (zv) plus additional states for sensors, actuators 
and FCS. The model is fully described by Forsell and 
Nilsson (2005). 

The ADMIRE aircraft model can model a variety of 
parametric uncertainties, amongst them are changes in the 
longitudinal cg position xcg and also aircraft mass. This 
facility has been used to inject cg changes into the ADMIRE 
aircraft model. 

In ADMIRE the pitch acceleration equation is defined in (2). 

ybbbbb MCrpCrpCq ⋅+−−⋅⋅= 7
22
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bq is the pitch acceleration 

br is the yaw acceleration 

bp is the roll acceleration 

yM is the pitching moment 

xI is the x body moment of inertia 

yI is the y body moment of inertia 

zI is the z body moment of inertia 

xzI is the x-y body axis product of inertia 

The total pitching moment equation is defined in (3). 

zx

xcgzcgtotrefrefy

TT
FzFxCmcSqM

5.515.0 +−

⋅+⋅−⋅⋅⋅=                    (3) 

where 

q is the dynamic pressure 

refS is the wing surface area 

refc is the mean aerodynamic chord 

totCm is the pitching moment coefficient 

zF is the total force in body-fixed z axis 

xF is the total force in body-fixed x axis 

cgx is the centre of gravity along the x axis 

cgz is the centre of gravity along the z axis 

xT is the engine thrust along the x axis 

zT is the engine thrust along the z axis 

It can be seen in (3) that the effect on the pitching moment 
of a cg shift along the x axis is dependent upon the normal 
force Fz. 

zy FcgM ⋅∆=∆                                                                   (4) 

 
The change in the moment can be calculated from the 
change in the pitch acceleration as : 

qIM yy ∆⋅=∆                                                                    (5) 

 
Substituting (5) into (4) : 

z

y

F
qI

cg
∆⋅

=∆                                                                     (6) 

Note that although Fz is an output in the ADMIRE model nz 
has been used, because ADMIRE provides a sensor model 
for nz. The relationship between Fz and nz is : 
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)/( gmassFn zz ⋅−=                                                           (7) 
 

Therefore the equation used with the ADMIRE model to 
estimate changes in longitudinal cg is : 

gmassn
qI

cg
z

y

⋅⋅−

∆⋅
=∆

                                                         (8) 

 
4. PERFORMANCE AND MANOEUVRE 

REQUIREMENTS 

This research is sponsored by BAE Systems who supplied 
the performance and manoeuvre requirements for a cg 
estimator. The performance requirements specify an 
acceptable level of estimation error whereas the manoeuvre 
requirements specify the operational manoeuvres under 
which the estimator should work correctly. 

Performance requirements 

1. Output updated at 10Hz 
2. Maximum static error 0.3% mean aerodynamic chord 

(mac) 
3. Maximum dynamic error 0.5% mac 
4. Static error accuracy within 1 second 
5. Transient exceedance of static error allowed as long as 

it does not exceed 20% of the static error level, the static 
performance is recovered within 1 second, no further 
exceedance of static performance requirement occur 
whilst the system remains undisturbed.  

Manoeuvre  requirements 

1. Maximum roll rate +/-30 deg/s 
5. Maximum lateral acceleration +/- 1.5m/s2 
6. Maximum speed acceleration +/- 0.03 Mach/s 
7. Maximum pitch rate obtained from full pull up or push 

down command in 5 seconds 
 

5. METHODOLOGY 

It was previously described by Stanley and Goodall (2009) 
how a Kalman-Bucy filter can be augmented to estimate 
unexpected angular acceleration, and how this can be 
converted into an estimate of the change in cg.  

In this paper the Kalman-Bucy filter contains the 10 aircraft 
states in x (9), which are used in the linear differential 
equations of the aircraft (10). 

[ ]zrqpVx t ,,,,,,,,, ϕθφβα=                                       (9) 

BuAxx +=                                                                   (10) 
 

The state x has been augmented with the unexpected pitch 
acceleration unexq to give x~ : 

[ ]unexqxx ,~ =                                                                  (11) 

 

The state-space equation in (12) illustrates how unexq is 
obtained. All states, apart from q, retain their original A and 
B matrix values as shown by the ‘ ’ to denote no change.  
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This method of modelling the unknown acceleration is 
adopted from an example contained in Friedland (1986: 
421), in which unknown acceleration is modelled as a 
random process. The new augmented state x~ is fully 
observable. 

The Kalman gain in the filter was obtained using the Matlab 
‘lqe’ function on the augmented state x~. The filter is used to 
obtain unexq which is then scaled by the moment of inertia Iy 
and divided by nz and mass, as defined in (8) to obtain the 
change in cg. 

One approach that can be used when estimating non-linear 
systems is to employ an Extended Kalman Filter (EKF). An 
EKF is essentially the same as a Kalman filter except that 
the filter is continuously re-linearised around the state 
estimate. The EKF has found use in applications such as 
navigation or GPS, however there are known problems with 
it regarding stability and divergence, see Bar-Shalom et al 
(2001: 385). Since there are known difficulties 
implementing an EKF, and given the restricted manoeuvre 
range requirements, an alternative structure to mitigate the 
effects of the non-linearities was adopted. 

Fig. 1 shows the structure of the estimator which uses 
commands into the aircraft, and measurements from the 
aircraft to estimate aircraft state. 

 
Fig. 1. Aircraft model and estimator. 

Fig. 2 illustrates some of the non-linearities in the ADMIRE 
aircraft model and the changing effect of the angle of attack 
(AoA) on the pitching moment. The values were obtained 
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with the aircraft trimmed at different AoA. For example at 
8° AoA the value of Cmα (pitching moment coefficient 
derivative with respect to α) is approximately 8 and at 4° 
AoA the value of Cmα is approximately 4.8. In other words a 
change in the AoA at 8° has nearly double the effect on the 
pitching moment compared to when the aircraft is at 4° 
AoA. 

 
Fig. 2. CMα at Mach 0.4 at various AoA. 

 

Changes in speed also affect the pitching moment, and 
although there is a close relationship with the changing 
dynamic pressure q it was found that simple scaling of 
estimates for changes in q did not give sufficiently accurate 
results. 

To cater for the aircraft non-linearities a set of derivative 
data was obtained at a number of points in the flight 
envelope. The data points are given in Table 1, so for 
example the derivative data was obtained for the linear 
aircraft model at Mach 0.5, at an AoA of 6° at 3000m 
altitude.  

Table 1.  ADMIRE data points 
AoA (degrees) 
Mach 
Altitude (m) 

[-7, -6, -1, 0, 1, 2, 3, 6, 9, 12] 
[0.2 0.3 0.4 0.5 0.6] 
[20 1000 3000 5000] 
 

 

The data points in Table 1 were selected to reduce the effect 
of the non-linearities in the aircraft. For example at Mach 
0.4 Cmα is fairly constant at an AoA between 0° and -6°, and 
between 3° and 6°, see Fig. 2, so these data points were 
selected. However when nz approaches zero this magnifies 
any estimation error, see (8), therefore additional data points 
were selected at low AoA to reduce this error. 

The derivative data is used to correct the pitching moment 
coefficients in the estimator, as detailed in Table 2. 

 

Table 2.  ADMIRE corrected coefficients 
Commands 
 
Measurements 

Cmdlc, Cmdrc, Cmdloe, Cmdroe, Cmdlie, 
Cmdrie, Cmtss 
Cmα, CmVt, Cmq 
 

 

The corrected coefficients are obtained by linear 
interpolation using Mach, AoA and altitude. Obviously any 
remaining non-linearities between data points will be missed 
with this method. The delta inputs into the estimator are 
similarly obtained from the difference with an interpolated 
value for the trim point. 

Since the estimator has been configured when the aircraft is 
in level flight it will not accurately estimate the effect of ‘p’ 
and ‘r’ on the pitch acceleration, see (2). Therefore a 
correction is applied to unexq to compensate for this : 

)(_ 22
65 bbbb rpCrpCcorrectionpr −−⋅⋅=          (13) 

 

The overall structure of the estimator is shown 
diagrammatically in Figure 3. The output from the Kalman-
Bucy filter is unexq  which is corrected for changes in ‘p’ and 
‘r’, scaled by Iy and then divided by vertical acceleration nz, 
‘g’ and the mass of the aircraft. The actual implementation 
includes a divide by zero check, and holds the value of dxcg 
when nz is between +0.4 g and -0.4 g. 

 
Fig. 3. CG estimator structure. 

Note that the thrust command (tss) is shown as a separate 
input. A simple modification to Cmtss was implemented to 
estimate the pitching effect when the afterburners were 
engaged, which occurs when tss is greater than 0.8.  

Figure 4 shows engine thrust versus tss, in which engine 
thrust increases more sharply when tss is greater than 0.8. 
Since the estimator is generated from trim data points when 
the afterburner is inactive it will underestimate thrust at large 
values of tss. The correction for the active afterburners in the 
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estimator is a single value gain applied to the interpolated 
value of Cmtss.  

 
Fig. 4. Engine thrust output from tss command, aircraft at 
Mach 0.5 and 4000m altitude.  

The measurement noise added to the ADMIRE aircraft 
model is defined in Table 3 – taken from typical sensor 
specifications. The noise variance is used to populate the R 
matrix of the Kalman-Bucy filter. 

Table 3.  ADMIRE noise data 

  Measurement Noise 
(RMS) 

Velocity (m/s) 
α, β (rad) 
p (rad/s) 
q, r (rad/s) 
φ (rad) 
θ, ψ (rad) 
z (m) 

0.034 
0.0000698 
0.00244 
0.00087 
0.00034 
0.0000698 
1.0 

 

The Q matrix in the Kalman-Bucy filter was obtained by 
trial and error from a sensible initial set of values (which 
were based upon the values of the average measurements) : 

 ])0.2100.0110.00.010.010.010.010.010.0201([diagQ =      (14) 

 

6. RESULTS 

This section displays sample results for different aircraft 
manoeuvres. Each aircraft manoeuvre occurs when the 
aircraft is trimmed at Mach 0.4 and at 5000m altitude, and 
after 10 seconds there is a cg shift of 0.1m. Note that for 
clarity measurement noise has not been added to the signals 
making the results less noisy than they would otherwise be. 

6.1 Acceleration 

The aircraft accelerates from Mach 0.4 to Mach 0.75, see 
Figure 5. The top left graph shows the cg estimate, note that 
the cg estimate drifts off at speeds above Mach 0.6 because 
the estimator is only set up for a maximum speed of Mach 
0.6.  However the cg estimate remains within its static error 

limit. The other graphs show the change in nz, Mach and 
commanded thrust. Note that the engine afterburners are 
activated after about 15 seconds. 

 

 

Fig. 5. Acceleration test. 

6.2 Lateral Acceleration 

A rudder command occurs after 11 seconds and generates a 
value for vdot (lateral acceleration) of approximately -1.4 
m/s2. The effect upon the estimate of the cg is negligible, see 
Figure 6, and the estimate remains well within limits. 

 
Fig. 6. Lateral acceleration test. 

6.3 Roll 

A roll is commanded after 11 seconds and the aircraft banks 
at a rate of approximately 21 degrees/second and -29 
degrees/second, see Figure 7. The aircraft bank angle 
reaches about 50 degrees. As before the cg estimate remains 
within specified limits. 
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Fig. 7. Roll test. 

6.4 Pitch down 

A maximum push down is commanded at 15.5 seconds over 
5 seconds, and then the pitch stick is pulled back to level 
flight over another 5 seconds. This test is more demanding 
of the estimator because changes in the AoA have a big 
effect upon the pitching moment. The AoA and nz both pass 
through zero. Since dxcg is calculated by dividing by nz (8) 
then as nz decreases this magnifies any errors. The cg 
estimate still stays within acceptable limits, see Figure 8. 

During this test the aircraft speed increases to over Mach 0.6 
and altitude drops from 5000m to about 3500m (not shown 
in the graph). 

 
Fig. 8. Push down test. 

 

The results from this section have shown that selective 
modification of the coefficients in the Kalman-Bucy filter 
have enabled the estimator to satisfy its requirements, even 
when the aircraft goes through various manoeuvres. 

7. SAMPLE MISSION 

In a sample mission the aircraft accelerates from Mach 0.2 at 
20m altitude to about Mach 0.55 at 4500m altitude. It then 
levels off and performs a couple of banked turns changing 
direction by about 60°, and then descends to about 1000m. 
During this mission there are three step changes in the cg as 

shown in Table 4, which also shows the change in aircraft 
mass.  

Table 4.  Sample Mission.Change in cg and aircraft mass 

Time (s) Δxcg (m) Δmass (Kg) 
10 
120 
180 

0.1 -400 
-0.05 -210 
-0.05 -210 
  

 

There is a constant reduction in mass of 2kg per second to 
simulate fuel burn, taking no account of engine thrust. This 
continual reduction gives a total reduction in aircraft mass of 
20% over the 500 second simulation. This unrealistic rate of 
reduction in mass has been done to minimise simulation 
time. 

Figure 9 shows the cg estimate, z, mass and nz. 

 
Fig. 9. Sample mission (dxcg, z, mass and nz). 

Figure 10 shows Mach, AoA, yaw, bank, p and tss.  

 
Fig. 10. Sample mission (Mach, alpha, yaw, tss, bank, p) 

At all times the cg estimate stayed within the specified 
dynamic limits. It strayed outside the static limits on two 
occasions, between 5 and 7 seconds and between 17 and 20 
seconds when the aircraft was accelerating. An improved 
engine model in the estimator should improve this because 
in the first deviation engine thrust was increasing sharply, 

0 5 10 15 20
0

0.05

0.1

0.15

Time (s)

dx
cg

 (m
)

Roll command at 11 seconds

 

 

0 5 10 15 20
-20

0

20

40

60

Time (s)

ba
nk

 (d
eg

)

0 5 10 15 20
-30

-20

-10

0

10

20

30

Time (s)

p 
(d

eg
/s

)

0 5 10 15 20

0.7
0.8
0.9

1
1.1
1.2
1.3

Time (s)

nz
 (g

)

Est dxcg
Actual dxcg
Static upper limit
Static lower limit

0 10 20 30

0

0.05

0.1

Time (s)

dx
cg

 (m
)

Full push down at 15.5 seconds over 5 seconds then return to zero over 5 seconds.

 

 

0 10 20 30
-10

-5

0

5

10

Time (s)

al
ph

a 
(d

eg
)

0 10 20 30

0.35
0.4

0.45
0.5

0.55
0.6

0.65

Time (s)

M
ac

h

0 10 20 30
-2

-1

0

1

2

Time (s)

nz
 (g

)

Est dxcg
Actual dxcg
Static upper limit
Static lower limit

0 100 200 300 400 500
-0.05

0

0.05

0.1

0.15

Time (s)

dx
cg

 (m
)

Sample Mission.

 

 

0 100 200 300 400 500
-5000

-4000

-3000

-2000

-1000

0

Time (s)

z 
(m

)
0 100 200 300 400 500

7000

7500

8000

8500

9000

9500

Time (s)

M
as

s 
(k

g)

0 100 200 300 400 500
-1

-0.5

0

0.5

1

1.5

2

Time (s)
nz

 (g
)

Actual dxcg
Est dxcg
Static upper limit
Static lower limit

0 200 400
0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

M
ac

h

Sample mission - aircraft parameters.

0 200 400
-5

0

5

10

15

Time (s)

al
ph

a 
(d

eg
)

0 200 400
-20

0

20

40

60

Time (s)

ya
w

 (d
eg

)

0 200 400
0

0.2

0.4

0.6

0.8

1

Time (s)

ts
s

0 200 400
-20

0

20

40

60

80

Time (s)

ba
nk

 (d
eg

)

0 200 400
-30

-20

-10

0

10

20

30

Time (s)

p 
(d

eg
/s

)



Appendix B 

 

B-7 

 

and in the second deviation the afterburners were becoming 
active when tss was around 0.8. 

8. CONCLUSIONS 

This paper has shown that a modified Kalman-Bucy filter 
can be used to accurately estimate the change in cg of an 
aircraft in manoeuvring flight. A set of performance 
requirements was specified and met, with the caveat that this 
was limited to part of the flight envelope and only limited 
testing has been performed. 

The estimator should be extendable with a larger data set to 
cover more of the flight envelope. It is anticipated that 
different or additional modelling is required for transonic 
and supersonic speeds. 

The estimator was found to be sensitive to changes in AoA, 
and therefore additional data at more AoA points should 
improve its performance. 

It should be noted that an EKF would remove the need for 
the data points in Table 1, and should produce superior 
results since the filter is linearised on every iteration.  

Future work will perform robustness tests by varying the 
moments of inertia, mass and pitching moment coefficients 
such as Cmα. There will also be a practical validation of the 
estimator by using a hardware fuel rig as the source of 
changes in the cg. 
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Appendix C – Phantom model robustness test script 
 
This section of the appendix contains the Matlab script used to generate the cg estimator and Kalman-
Bucy gain. 

a) Phantom script 

% Define the Phantom cg estimator state-space matrices 
 estA = [0.0007181 0.00457 -29.072 -9.678 0; 

-0.0687 -0.2953 174.868 -1.601 0;  
0.00173 -0.0105 -0.4462 0.001277 1.04466146;  
0   0   1   0   0; 
0   0   0   0   0]; 

  
estB = [1.041;  

-6.294; 
-4.888;  
0; 
0]; 

  
estC = [1  0  0  0  0;  

0  1  0  0  0;  
0  0  1  0  0;  
0  0 0  1  0]; 

  
estD = [0;  

0;  
0;  
0]; 

  
G = eye(5); 
  
% Initial Q matrix used to generate Kalman gain 
Q = [400  0  0   0   0; 

0  10  0   0   0; 
0  0  0.00076  0   0; 
0  0  0   0.00076  0; 
0  0  0   0   1]; 

 % Final Q matrix used to generate Kalman gain 
Q = [40  0  0   0   0; 

0  10  0   0   0; 
0  0  0.00008  0   0; 
0  0  0   0.00008  0; 
0  0  0   0   0.001]; 

% R matrix contains estimated noise variance   
R = [0.04  0   0    0; 
  0  0.0036  0    0; 

0  0   0.0000010966  0; 
0  0   0    0.0000010966]; 
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% Matlab command ‘lqe’ is used to calculate Kalman gain contained within L 
[L,P,E] = lqe(estA,G,estC,Q, R); 

  
b) Matlab used in Phantom Robustness tests to generate revised state-space matrices 

This code is based upon data contained in Cook on pages 81 and 88. 

vel = 178;   %velocity (m/s) 
mass = 17642;  %aircraft mass (kg) 
air_d = 0.3809;  %air density (kg/m3) 
S = 49.239;   %wing area (m2) 
mac = 4.889;  %mean aerodynamic chord (m) 
iy = 165669;  %pitch moment of inertia (kg/m2) 
g = 9.81;   %acceleration due to gravity (m/s2) 
  
mtick = mass/(air_d*vel*S/2);  %see p88 Cook 2007 
Iytick = iy/(air_d*vel*S*mac/2); %see p88 Cook 2007 
 
% Values taken from p81 Cook 2007  
Xu = 0.0076;  
Xw = 0.0483;  
Xwdot = 0;  
Xq = 0;  
Xn = 0.0618;  
Zu = -0.7273; 
Zw = -3.1245; 
Zwdot = -0.3997; 
Zq = -1.2109; 
Zn = -0.3741; 
Mu = 0.034; 

Mw = -0.2169; 
Mwdot = -0.591; 
Mq = -1.2732; 
Mn = -0.5581; 
 

% Calculate values in M (p88 Cook 2007)  
m1 = (Xwdot*mac/vel); 
m2 = mtick - (Zwdot*mac/vel); 
m3 = -Mwdot*mac/vel; 
  
M = [mtick m1 0 0; 0 m2 0 0; 0 m3 Iytick 0; 0 0 0 1]; 
 
% Calculate values in steady symmetric flight (p88 Cook 2007) 
% Body incidence is 9.4 degrees  
We = vel*sind(9.4); 
Ue = vel*cosd(9.4); 
 
% Calculate derivatives of Atick  
a1 = Xq*mac - mtick*We; 
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a2 = -mtick*g*cosd(9.4); 
a3 = Zq*mac + mtick*Ue; 
a4 = -mtick*g*sind(9.4); 
a5 = Mq*mac; 
  
Atick = [Xu  Xw  a1  a2; 

Zu  Zw  a3  a4; 
Mu  Mw  a5  0; 
0  0  1  0]; 

  
Btick = [vel*Xn; vel*Zn; vel*Mn; 0]; 
 
% Obtain A and B state-space matrices  
A = inv(M)*Atick; 
B = inv(M)*Btick; 
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Appendix D – Flight test measurement noise data 

 

Figure 87: Flight test data used for measurement noise (2) 

 

Figure 88: Flight test data used for measurement noise (3) 
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Figure 89: Flight test data used for measurement noise (4) 
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Appendix E - Manoeuvre test results using uncorrected cg estimator 

This appendix provides the manoeuvre test results for the unmodified longitudinal cg estimator defined 

in section 5.  

Figure 90 to Figure 92 show the estimator results when the aircraft goes through different manoeuvres. 

In all cases the estimator is configured at the same speed and altitude as the aircraft, which is Mach 0.4 

5000m altitude.  

In all of the figures the cg estimate is in the top left graph and the acceptable static upper and lower 

limits are marked on the graph. The other graphs show the aircraft commands or relevant aircraft data 

pertaining to the manoeuvre. 

The BAE pitching manoeuvre requirement for a push down (see section 3.1) is illustrated in Figure 90. 

In this manoeuvre the pitch stick is pushed down to its maximum over a five second period, and then 

returned to its neutral position after a further five seconds. The top left graph in Figure 90 shows that the 

dxcg estimate quickly becoming unacceptable. The other graphs show the pitch stick command, the 

increase in aircraft speed to over Mach 0.6 and the change in the AoA as the aircraft pitches down and 

then back up.  

 

Figure 90: Uncorrected dxcg estimator. Push down test. 
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was little change in aircraft speed during the manoeuvre. The maximum roll rate (not shown in Figure 

91) was 29° per second, just under the maximum roll rate of 30° per second specified in the 

requirements in section 3.1. Figure 91 shows that the estimator exceeded its static upper limit for about 3 

seconds during the manoeuvre. 

 

Figure 91: Uncorrected dxcg estimator. Roll test. 
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Figure 92: Uncorrected dxcg estimator. Rudder test. 
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Appendix F - ADMIRE trim and linearization script to generate cg estimator 

The ADMIRE model used in this research was ADMIRE release 4.1.  

This release contained two scripts to trim and linearise the bare aircraft and the flight control system: 

Admtrim_sl.m – used to trim and linearise the aircraft in straight and level flight, takes Mach number 

and altitude as inputs. 

Admtrim_aoa – used to trim and linearise the aircraft at a specified angle of attack, takes Mach number, 

altitude and angle of attack as inputs. 

These trim routines calculate the initial conditions for the aircraft inputs, aircraft state and also the rate 

of deceleration e.g. 

EDU>> admtrim_sl 
 
Mach number [-] : 0.4 
Altitude    [m] : 5000 
 
Trimming ADMIRE complete trim.......... DONE! 
u0new(1)  = -0.00561 deg ( Canard deflections , + = trailing edge down ) 
u0new(3)  =  1.04693 deg ( Elevon deflections , + = trailing edge down ) 
u0new(7)  =  0.00000 deg ( Rudder deflection  , + = trailing edge left ) 
u0new(8)  =  0.00000 deg ( Leading edge defl. , + = leading edge down  ) 
u0new(10) =  0.14090     ( Throttle setting                            ) 
 
After trimming for AoA: 
x0(1)  = 128.21176 ( Vt    [m/s]   ) 
x0(2)  =  5.65143 ( AoA   [deg]   ) 
x0(3)  =  0.00000 ( Beta  [deg]   ) 
x0(4)  =  0.00000 ( P     [deg/s] ) 
x0(5)  =  0.00000 ( Q     [deg/s] ) 
x0(6)  =  0.00000 ( R     [deg/s] ) 
x0(7)  =  0.00000 ( Psi   [deg]   ) 
x0(8)  =  5.65143 ( Theta [deg]   ) 
x0(9)  =  0.00000 ( Phi   [deg]   ) 
x0(10) =  0.00000 ( X     [m]     ) 
x0(11) =  0.00000 ( Y     [m]     ) 
x0(12) = -5000.00000 ( Z     [m]     ) 
 
Decelerating:   -0.2885 m/s^2 
Run simulations with 'admire_sim.mdl' and view the results with command 'trimplot' 

 

After trimming the aircraft a linear model is generated using a cut down Simulink model to generate a 

12 state linear aircraft model. The 12 state linear aircraft model is then modified to remove the 

redundant ‘x’ and ‘y’ states. 
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% Linearise aircraft to generate 12 state linear model 
[Areduced,Breduced,Creduced,Dreduced] = 
linmod_nnt('admire_bare_reduced',x0(10:21),zeros(16,1)); 
 
% 11 state dxcg estimator (no X or Y) 
estA = Areduced; 
estA(10,:) = [];  % delete row 10 X 
estA(10,:) = []; % delete row 10 Y 
estA(:,10) = [];  % delete column 10 X 
estA(:,10) = [];  % delete column 10 Y 
for i=1:11, 
    estA(i,11)=0; % Add 11th row for unexpected q-dot 
end 
estA(5,11) = 1; 
estA(11,1:11) = 0; 
  
estB(1:12,1:10)=Breduced(1:12,1:10); 
estB(13,1:10) = 0; 
estB(10,:) = [];  % remove X 
estB(10,:) = [];  % remove Y 
  
estC = Creduced; 
for i=1:12, 
    estC(i,13)=0; 
end 
estC(10,:) = []; % remove X row 
estC(10,:) = []; % remove Y row 
estC(:,10) = []; % remove X column 
estC(:,10) = []; % remove Y column 
  
for i=1:12, 
    estD(i,1:10)=Dreduced(i,1:10); 
end 
estD(10,:) = []; % remove X 
estD(10,:) = []; % remove Y 
  
estG = eye(11); 
  
estQ = [ 
10 0 0 0 0 0 0 0 0 0 0;  %Vt 
0 0.02 0 0 0 0 0 0 0 0 0; %alpha 
0 0 0.01 0 0 0 0 0 0 0 0;  %beta 
0 0 0 0.01 0 0 0 0 0 0 0;  %p 
0 0 0 0 0.01 0 0 0 0 0 0;  %q 
0 0 0 0 0 0.01 0 0 0 0 0;  %r 
0 0 0 0 0 0 0.01 0 0 0 0;  %phi (bank) 
0 0 0 0 0 0 0 0.01 0 0 0;  %theta (pitch) 
0 0 0 0 0 0 0 0 0.01 0 0;  %psi (yaw) 
0 0 0 0 0 0 0 0 0 10 0;  %z 
0 0 0 0 0 0 0 0 0 0 0.2];  %unexpected qdot 
 
estR = [ 
0.001156 0 0 0 0 0 0 0 0 0;   %Vt 
0 0.00000000487 0 0 0 0 0 0 0 0;  %alpha 
0 0 0.00000000487 0 0 0 0 0 0 0;  %beta 
0 0 0 0.00000595 0 0 0 0 0 0;  %p 
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0 0 0 0 0.00000076 0 0 0 0 0;  %q 
0 0 0 0 0 0.00000076 0 0 0 0;  %r 
0 0 0 0 0 0 0.00000019 0 0 0;  %phi (bank) 
0 0 0 0 0 0 0 0.00000000487 0 0;  %theta (pitch) 
0 0 0 0 0 0 0 0 0.00000000487 0; %psi (yaw) 
0 0 0 0 0 0 0 0 0 1];    %z 
 
% Calculate Kalman gain   
[L,P,E] = lqe (estA,estG,estC,estQ,estR) 
 
% Generate Kalman-Bucy filter to correct q-trim  
estAtrim = [0 1; 
         0 0]; 
estBtrim = [0; 0]; 
estCtrim = [1 0]; 
estDtrim = [0]; 
  
estGtrim = eye(2); 
  
estQtrim = [1 0; 
      0 10]; 
  
estRtrim = [0.00000076];  %q 
  
[Ltrim,Ptrim,Etrim] = lqe (estAtrim,estGtrim,estCtrim,estQtrim,estRtrim) 
 
The following Matlab script was used to generate the Kalman-Bucy filter for the lateral cg estimator. 

% 11 state dxcg dyestimator (no X or Y) 
dyestA = Areduced; 
dyestA(10,:) = []; % delete row 10 X 
dyestA(10,:) = [];  % delete row 10 Y 
dyestA(:,10) = [];  % delete column 10 X 
dyestA(:,10) = [];  % delete column 10 Y 
for i=1:11, 
    dyestA(i,11)=0;  % Add 11th row for unex q-dot 
end 
dyestA(4,11) = 1; 
dyestA(11,1:11) = 0; 
  
dyestB(1:12,1:10)=Breduced(1:12,1:10); 
dyestB(13,1:10) = 0; 
dyestB(10,:) = [];  % remove X 
dyestB(10,:) = [];  % remove Y 
  
dyestC = Creduced; 
for i=1:12, 
    dyestC(i,13)=0; 
end 
dyestC(10,:) = [];  % remove X row 
dyestC(10,:) = [];  % remove Y row 
dyestC(:,10) = [];  % remove X column 
dyestC(:,10) = [];  % remove Y column 
  
for i=1:12, 
    dyestD(i,1:10)=Dreduced(i,1:10); 
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end 
dyestD(10,:) = [];  % remove X 
dyestD(10,:) = [];  % remove Y 
  
dyestG = eye(11); 
  
dyestQ = [ 
10 0 0 0 0 0 0 0 0 0 0;  %Vt 
0 0.02 0 0 0 0 0 0 0 0 0;  %alpha 
0 0 0.02 0 0 0 0 0 0 0 0;  %beta 
0 0 0 0.02 0 0 0 0 0 0 0;  %p 
0 0 0 0 0.01 0 0 0 0 0 0;  %q 
0 0 0 0 0 0.1 0 0 0 0 0;  %r 
0 0 0 0 0 0 0.01 0 0 0 0;  %phi (bank) 
0 0 0 0 0 0 0 0.01 0 0 0;  %theta (pitch) 
0 0 0 0 0 0 0 0 0.01 0 0;  %psi (yaw) 
0 0 0 0 0 0 0 0 0 10 0;  %z 
0 0 0 0 0 0 0 0 0 0 0.1];  %unexpected pdot 
  
dyestR = [ 
0.001156 0 0 0 0 0 0 0 0 0;   %Vt 
0 0.00000000487 0 0 0 0 0 0 0 0;  %alpha 
0 0 0.00000000487 0 0 0 0 0 0 0;  %beta 
0 0 0 0.00000595 0 0 0 0 0 0;  %p 
0 0 0 0 0.00000076 0 0 0 0 0;  %q 
0 0 0 0 0 0.00000076 0 0 0 0;  %r 
0 0 0 0 0 0 0.00000019 0 0 0;  %phi (bank) 
0 0 0 0 0 0 0 0.00000000487 0 0;  %theta (pitch) 
0 0 0 0 0 0 0 0 0.00000000487 0; %psi (yaw) 
0 0 0 0 0 0 0 0 0 1];    %z 
  
[dyL,dyP,dyE] = lqe (dyestA,dyestG,dyestC,dyestQ,dyestR) 
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Appendix G – Robustness test transient results 

This appendix contains a set of graphs showing the transient behavior of the estimator when the non-

linear aircraft model is changed to be different to the cg estimator configuration. 

The same tests were performed on both the longitudinal and lateral cg estimator described in section 6. 

In all tests the aircraft was first trimmed for straight and level flight at Mach 0.4 and 5000m altitude. In 

straight and level flight the only graphs displayed are those for the change in mass because there was no 

visible effect when any moment of inertia was altered. The tests were also performed when the aircraft 

performed a push down and a roll manoeuvre, as described in section 6.4.1. 

 

Table 26: ADMIRE robustness test. Changed mass and inertia values. 

Aircraft 

parameter 

% change 

Ix 20 

Iy 5 

Iz 5 

Mass 5 

 

a) Longitudinal cg tests 
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Figure 93: Robustness test, straight-level, dxcg, mass increased by 5% 

 

Figure 94: Robustness test, push down, dxcg, Ix increased by 20% 
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Figure 95: Robustness test, push down, dxcg, Iy increased by 5% 

 

Figure 96: Robustness test, push down, dxcg, Iz increased by 5% 
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Figure 97: Robustness test, push down, dxcg, mass increased by 5% 

 

Figure 98: Robustness test, roll, dxcg, Ix increased by 20% 
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Figure 99: Robustness test, roll, dxcg, Iy increased by 5% 

 

Figure 100: Robustness test, roll, dxcg, Iz increased by 5% 
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Figure 101: Robustness test, roll, dxcg, mass increased by 5% 

 

b)  lateral cg tests 

 

Figure 102: Robustness test, straight-level, dycg, mass increased by 5% 
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Figure 103: Robustness test, push down, dycg, Ix increased by 20% 

 

Figure 104: Robustness test, push down, dycg, Iy increased by 5% 
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Figure 105: Robustness test, push down, dycg, Iz increased by 5% 

 

Figure 106: Robustness test, push down, dycg, mass increased by 5% 
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Figure 107: Robustness test, roll, dycg, Ix increased by 20% 

 

Figure 108: Robustness test, roll, dycg, Iy increased by 5% 
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Figure 109: Robustness test, roll, dycg, Iz increased by 5% 

 

Figure 110: Robustness test, roll, dycg, mass increased by 5% 
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Appendix H – ADMIRE lookup table data 
 
The cg estimator described in sections 6 and 7 contained lookup table data to amend the coefficient 

derivatives depending upon Mach, altitude and angle of attack. This appendix contains examples of this 

data. Note that for conciseness this appendix only contains a subset of the full dataset. 

The table data contains data obtained at the data points defined in Table 13. It consists of trim data 

which is used to obtain the delta values input into the estimator, and also the coefficient data which is 

used to alter the coefficients inside the Kalman-Bucy filter. The data is structured such that each block 

of data is for a specific Mach number, and is indexed by row for altitude and column for angle of attack. 

Each block of data is then concatenated together using Matlab ‘cat’ to generate the complete table for a 

specific coefficient or trim data item. 

The following data is defined: 

Trim data [VT, α, q, canard (c), outer elevon (oe), inner elevon (ie), thrust (tss)] 

Measurement data [CmVT, Cmα, Cmq, Cmc, Cmoe, Cmie, Cmtss, Cmldg] 

For the lateral cg estimator different tables were used for the coefficients. 

Measurement data [Clβ, Clp, Clr, Clφ, Clc, Cloe, Clie] 

1. Trim (velocity measurement) 
vtY0bareM02 = [68.05879761  68.05879761 68.05879761 68.05879761 68.05879761 
68.05879761 68.05879761 68.05879761 68.05879761 68.05879761; 
67.2867943  67.2867943  67.2867943  67.2867943  67.2867943  67.2867943  67.2867943  
67.2867943  67.2867943  67.2867943; 
65.71558565 65.71558565 65.71558565 65.71558565 65.71558565 65.71558565 65.71558565 
65.71558565 65.71558565 65.71558565; 
64.10587889 64.10587889 64.10587889 64.10587889 64.10587889 64.10587889 64.10587889 
64.10587889 64.10587889 64.10587889]; 
  
vtY0bareM06 = [204.1763928  204.1763928 204.1763928 204.1763928 204.1763928 
204.1763928 204.1763928 204.1763928 204.1763928 204.1763928; 
201.8603829 201.8603829 201.8603829 201.8603829 201.8603829 201.8603829 201.8603829 
201.8603829 201.8603829 201.8603829; 
197.146757  197.146757  197.146757  197.146757  197.146757  197.146757  197.146757  
197.146757  197.146757  197.146757; 
192.3176367 192.3176367 192.3176367 192.3176367 192.3176367 192.3176367 192.3176367 
192.3176367 192.3176367 192.3176367]; 
  
vtY0bare = cat(3,vtY0bareM02, vtY0bareM03, vtY0bareM04, vtY0bareM05, vtY0bareM06); 
 

2. Trim (angle of attack measurement)  
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alphaY0bare = [-0.122173048 -0.104719755    -0.017453293    0   0.017453293 
0.034906585 0.052359878 0.104719755 0.157079633 0.20943951]; 
 

3. Trim (q measurement) 
qY0bareM02 = [-0.244278635  -0.231068542    -0.165172178    -0.151815497    -
0.138247244    -0.124374406    -0.11051    -0.069052309    -0.026603827    
0.017466593; 
-0.236416977    -0.224449966    -0.164750693    -0.152649748    -0.140358682    -
0.127794343    -0.115239186    -0.07767878 -0.03922529 0.000969565; 
-0.223385317    -0.213601614    -0.164787704    -0.154894558    -0.144852619    -
0.134588336    -0.124330893    -0.093625748    -0.06219826 -0.029085358; 
-0.21440028 -0.206358734    -0.166226588    -0.158097298    -0.149859177    -
0.141430506    -0.132997536    -0.10776274 -0.081943553    -0.054744935]; 
 
qY0bareM06 = [-0.341758062  -0.304342091    -0.114469657    -0.076074145    -
0.035317242    0.004963484 0.044605343 0.16566644  0.286944995 0.411253377; 
-0.31365455 -0.279870729    -0.108497838    -0.073842554    -0.037053156    -
0.000689519    0.035094406 0.144372096 0.253847123 0.366087259; 
-0.263074908    -0.235843647    -0.097793778    -0.069875275    -0.040230247    -
0.010928094    0.017898095 0.105940915 0.194132289 0.284597744; 
-0.220917127    -0.199205789    -0.089227335    -0.066984488    -0.043360695    -
0.020006602    0.002963363 0.073132599 0.143421579 0.215572308]; 
  
qY0bare = cat(3,qY0bareM02, qY0bareM03, qY0bareM04, qY0bareM05, qY0bareM06); 
 

4. Trim (canard angle command)  
dcU0newM02 = [0.045000152   0.042274485 0.03138371  0.02928043  0.026904626 
0.024207887 0.021569351 0.013718949 0.004575514 -0.007956474; 
0.047575981 0.044950957 0.034419854 0.032384928 0.030087934 0.027492888 0.024948639 
0.01734825  0.008488121 -0.003751031; 
0.054115753 0.051718272 0.042026186 0.040151175 0.038039651 0.035663565 0.033328481 
0.026315617 0.018138438 0.006696128; 
0.063051384 0.060789671 0.051573209 0.04978822  0.047792244 0.045525881 0.043300236 
0.036631072 0.028895642 0.018056463]; 
  
dcU0newM06 = [0.010263343   0.009100928 4.15E-03    3.21E-03    2.16E-03    1.11E-03    
5.69E-05    -4.38E-03   -9.06E-03   -0.014626502; 
0.01078453  0.009570747 0.004395138 0.003413036 0.002312431 0.001220289 0.00011938  
-0.004481121    -0.009314465    -0.015097051; 
0.012521117 0.011206606 0.005583152 0.004515753 0.003324138 0.002140559 0.000947671 
-0.003970774    -0.009122563    -0.015333407; 
0.012767416 0.011453365 0.005823788 0.004755385 0.003566688 0.002385062 0.001194289 
-0.003661821    -0.008737821    -0.014901204]; 
  
dcU0new = cat(3, dcU0newM02, dcU0newM03, dcU0newM04, dcU0newM05, dcU0newM06); 
 

5. Trim (outer elevon angle command)  
doeU0newM02 = [-0.05548964  -0.047794861    -0.017049315    -0.011111586    -
0.004404497    0.003208618 0.010657419 0.032819743 0.058632404 0.094011229; 
-0.056524755    -0.048633305    -0.016974295    -0.010856824    -0.00395151 
0.003849817 0.011498437 0.034347021 0.060982683 0.097776494; 
-0.059780541    -0.051505634    -0.018053397    -0.011581796    -0.004293868    
0.003907193 0.011966735 0.036171638 0.064395177 0.103888312; 
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-0.066498459    -0.057903834    -0.022880813    -1.61E-02   -0.008512951    
9.93426E-05 0.008556907 0.033900067 0.063295095 0.104484525]; 
  
doeU0newM06 = [-0.056845764 -0.052027631    -0.031513528    -0.027620868    -
0.023248627    -0.018912239    -0.014540573    0.003869412 0.023238033 0.046320981; 
-0.057042653    -0.052119485    -0.031126924    -0.027143463    -0.022679351    -
0.018249559    -0.013784214    0.004875677 0.024479989 0.047934481; 
-0.057119355    -0.052011839    -0.030161977    -0.026014609    -0.021384606    -
0.016785822    -0.01215087 0.006959689 0.026976902 0.051109061; 
-0.057658861    -0.052350256    -0.029607453    -0.025291236    -0.020489043    -
0.015715422    -0.010904844    0.008713246 0.029219668 0.054118981]; 
  
doeU0new = cat(3, doeU0newM02, doeU0newM03, doeU0newM04, doeU0newM05, doeU0newM06); 
 

6. Trim (thrust command tss)     
tssU0new = [0.102839 0.1384 0.2879 0.5186; 
    0.03369 0.0442 0.1149 0.2176; 
    0.02803 0.0285 0.074 0.1409;  
    0.060749 0.0521 0.0764 0.1206;  
    0.103866 0.0901 0.103 0.1351]; 
 

7. Pitch velocity coefficient  (Cmvt)  
vtM02 = [-9.70E-04  -8.52E-04   -2.85E-04   -1.69E-04   -5.02E-05   8.10E-05    
1.94E-04    5.33E-04    9.35E-04    1.38E-03; 
-6.78E-04   -5.81E-04   -1.10E-04   -3.10E-05   8.33E-05    1.86E-04    2.78E-04    
5.50E-04    8.77E-04    1.24E-03; 
-9.53E-05   -3.11E-05   0.000281926 0.000307991 4.10E-04    4.79E-04    0.00053812  
0.000708454 0.000920091 0.001164256; 
0.000553917 0.000596004 8.02E-04    8.02E-04    8.86E-04    0.000931507 0.000968799 
0.001072362 1.21E-03    1.37E-03]; 
  
vtM06 = [0.007977405    0.006586224 0.001348917 0.000405191 -0.000454312    -
0.001333903    -0.002261116    -0.006524502    -0.010125671    -0.012965807; 
0.007735237 0.006440713 0.001481456 0.000580465 -0.0002588  -0.001109686    -
0.002010579    -0.006068256    -0.009581964    -0.012303732; 
0.006781378 0.005685649 0.001380943 0.000585768 -1.71E-04   -0.000939117    -
0.001749744    -0.005263916    -0.008415858    -0.010769277; 
0.005867297 0.004967305 0.001369017 0.000696769 4.08E-05    -0.000623346    -
0.001323607    -0.004308065    -0.007064843    -0.00907646]; 
  
vtModifier = cat(3,vtM02, vtM03, vtM04, vtM05, vtM06); 
 

8. Pitch α coefficient (Cmα)  
alphaM02 = [2.501781893 1.831292597 1.856276232 1.846472166 2.287811051 2.268046116 
2.312129337 2.322861867 3.296730007 3.474023765; 
2.217211539 1.625124255 1.645769458 1.639140309 2.033090623 2.010769397 2.053093642 
2.068847698 2.93642853  3.105571669; 
1.720026833 1.267185239 1.280576905 1.279552557 1.585033152 1.566110445 1.604094607 
1.622401548 2.297391754 2.458990323; 
1.316489143 0.981658602 0.989041037 0.992230269 1.215092822 1.214329577 1.247489319 
1.257067689 1.763323394 1.912934429]; 
  
alphaM06 = [14.88518477 14.65436373 13.51901275 14.98977917 14.82924721 14.65524044 
17.87350778 19.09566933 20.04850979 22.24916445; 
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13.22221904 13.00924857 11.96169959 13.2609372  13.12075268 12.97084038 15.83268315 
16.87781212 17.81584153 19.82643541; 
10.32192952 10.14445455 9.278946628 10.28521293 10.17747705 10.06722075 12.30156358 
13.04882029 13.92808523 15.58334358; 
7.986701408 7.841070657 7.131866677 7.899930751 7.819540553 7.739320177 9.461604428 
9.99272168  10.77395534 12.11732672]; 
  
alphaModifier = cat(3,alphaM02,alphaM03,alphaM04,alphaM05, alphaM06); 
  

9. Pitch q coefficient (Cmq) 
qM02 = [-0.586630986    -0.586565729    -0.586694477    -0.586799202    -0.586937598    
-0.586265983    -0.59309785 -0.627566854    -0.645594852    -0.639972958; 
-0.527746597    -0.527676113    -0.527717503    -0.527794284    -0.527900254    -
0.527172476    -0.533152181    -0.563611243    -0.578980621    -0.575573243; 
-0.422160424    -0.422079513    -0.421962133    -0.421988833    -0.422036844    -
0.421209774    -0.425665845    -0.448953597    -0.459581965    -0.456151414; 
-0.333903293    -0.333811133    -0.333564056    -0.33355215 -0.333555976    -
0.332670841    -0.33589405 -0.353360668    -0.360352585    -0.355204426]; 
  
qM06 = [-2.084723847    -2.084673754    -2.084538741    -2.08453488 -2.097160524    
-2.109793897    -2.122435008    -2.160406907    -2.198452573    -2.212008795; 
-1.875941966    -1.875900903    -1.875790224    -1.875787059    -1.887169968    -
1.898559213    -1.9099548  -1.944181399    -1.978468512    -1.990628209; 
-1.504623007    -1.504595977    -1.504523121    -1.504521038    -1.513675751    -
1.522834635    -1.531997694    -1.559513132    -1.587068478    -1.596819074; 
-1.194732198    -1.194714777    -1.194667819    -1.194666477    -1.201957385    -
1.209250981    -1.216547268    -1.238453087    -1.260384689    -1.268130415]; 
  
qModifier = cat(3,qM02, qM03, qM04, qM05, qM06); 
 

10. Pitch canard coeffiecient (Cmc)  
dcM02 = [0.744881832    0.746341064 0.77064322  0.777880061 0.790317544 0.802092896 
0.815872958 0.862551549 0.91809184  1.045960628; 
0.664273854 0.664823804 0.685633594 0.692058513 0.703115025 0.713756138 0.725941084 
0.766983987 0.815125065 0.922647949; 
0.522276721 0.521206164 0.531282404 0.537548067 0.548554457 0.557674545 0.567076739 
0.598422537 0.634195765 0.711201241; 
0.406309054 0.403860443 0.402875528 0.406240381 0.414184625 0.421211904 0.430290954 
0.459968848 0.48618189  0.542679175]; 
  
dcM06 = [6.072849917    6.110596803 6.315318453 6.356227405 6.369646256 6.381151561 
6.39259343  6.43630527  6.447394964 6.759861221; 
5.451356816 5.48509604  5.667924201 5.704468983 5.716434526 5.726690497 5.73689532  
5.776158797 5.786590268 6.061587072; 
4.345848444 4.372567195 4.517068035 4.545967021 4.555343247 4.563365037 4.571354315 
4.601494328 4.609694507 4.823043135; 
3.420207594 3.441107501 3.553934746 3.576509195 3.583765707 3.589961774 3.59613762  
3.619188171 3.624956842 3.790042883]; 
  
dcModifier = cat(3, dcM02, dcM03, dcM04, dcM05, dcM06);     
 

11. Pitch outer elevon coefficient (Cmoe)  
doeM02 = [-0.669701442  -0.666808412    -0.689791231    -0.690108294    -0.691546068    
-0.70414391 -0.716659524    -0.71892899 -0.652262048    -0.570570606; 
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-0.596408566    -0.593568849    -0.614219919    -0.614331295    -0.615466717    -
0.626534699    -0.637634313    -0.639539298    -0.576181699    -0.508182287; 
-0.466960451    -0.464399743    -0.480795977    -0.480615311    -0.481049738    -
0.489431078    -0.498039959    -0.49931513 -0.44510578 -0.396918215; 
-0.360888313    -0.358931167    -0.371905665    -0.37168646 -0.37129463 -0.377175584    
-0.383773784    -0.384610156    -0.343694315    -0.305444728]; 
  
doeM06 = [-6.318313746  -6.476353487    -6.643134627    -6.605321692    -6.552239934    
-6.481059695    -6.404298745    -6.543611944    -6.529006821    -5.526005605; 
-5.70822268 -5.850956517    -5.997931413    -5.96215914 -5.913621142    -5.848342107    
-5.777979796    -5.911909863    -5.898472983    -4.966669563; 
-4.59246123 -4.707250478    -4.818358685    -4.786979756    -4.747330409    -
4.693439637    -4.635363926    -4.756872164    -4.74592408 -3.955303067; 
-3.634280928    -3.725088436    -3.809870543    -3.783345898    -3.75123481 -
3.707455049    -3.660311031    -3.764744478    -3.755986057    -3.099657146]; 
  
doeModifier = cat(3, doeM02, doeM03, doeM04, doeM05, doeM06); 
 

12. Pitch inner elevon coefficient (Cmie)  
dieM02 = [-1.064549985  -1.060033622    -1.098161594    -1.099559549    -1.102696237    
-1.123078418    -1.142671003    -1.145325839    -1.038191094    -0.976248729; 
-0.947499121    -0.943049598    -0.977386655    -0.978470489    -0.981164448    -
0.999085136    -1.016472891    -1.018718129    -0.917106982    -0.869023279; 
-0.741102186    -0.737071593    -0.764326403    -0.764972447    -0.766626372    -
0.780390788    -0.793903141    -0.795440537    -0.708796056    -0.678841923; 
-0.572290017    -0.569207437    -0.590231094    -0.590817763    -0.591194631    -
0.601586765    -0.611961935    -0.61299823 -0.547723003    -0.522955743]; 
  
dieM06 = [-10.64706423  -10.91343901    -11.19802056    -11.13504872    -11.04649482    
-10.92753488    -10.79918245    -11.03706862    -11.01190848    -9.99251505; 
-9.556553305    -9.795558608    -10.04477169    -9.985554566    -9.905093111    -
9.796675723    -9.679757934    -9.906515032    -9.883535175    -8.922718164; 
-7.600325825    -7.790319855    -7.97670447 -7.925307853    -7.860318536    -
7.771802547    -7.676367925    -7.879071711    -7.860582233    -7.024140924; 
-5.958179324    -6.10706351 -6.24798436 -6.204918448    -6.152762634    -6.081502965    
-6.004734102    -6.176986071    -6.162346646    -5.452979824]; 
  
dieModifier = cat(3, dieM02, dieM03, dieM04, dieM05, dieM06); 
 

13. Pitch thrust coefficient (Cmtss)  
tssM02 = [-0.133394461  -0.132560028    -0.129666877    -0.12936421 -0.129063328    
-0.128839707    -0.128738995    -0.128912587    -0.129789194    -0.131354451; 
-0.115765227    -0.115033521    -0.112516767    -0.112262607    -0.112038115    -
0.111910703    -0.111857418    -0.112138328    -0.113071157    -0.114642975; 
-0.097539491    -0.097371578    -0.096527955    -0.096358946    -0.096189676    -
0.096020588    -0.095851609    -0.095345905    -0.094843245    -0.094345158; 
-0.096334142    -0.096201446    -0.095534253    -0.095400486    -0.09526649 -
0.095132601    -0.094998768    -0.094598056    -0.094199479    -0.093798605]; 
 
tssM06 = [-0.136333652  -0.135492739    -0.131170416    -0.130284503    -0.129392947    
-0.128495448    -0.127591975    -0.124851202    -0.122072043    -0.119294253; 
-0.128933279    -0.12822313 -0.124549207    -0.123792143    -0.123028289    -
0.122258164    -0.121482048    -0.119121168    -0.116718707    -0.114310606; 
-0.113951517    -0.113454222    -0.110867202    -0.110331563    -0.109789832    -
0.109242979    -0.108691005    -0.107006794    -0.105285324    -0.103551897; 
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-0.095838143    -0.095507005    -0.093790521    -0.093436195    -0.093077901    -
0.092716528    -0.092351955    -0.091240353    -0.09010474 -0.088960315]; 
  
tssModifier = cat(3, tssM02, tssM03, tssM04, tssM05, tssM06); 
 

14. Pitch landing gear coefficient (Cmldg) 
ldgM02 = [-0.056234024  -0.056885492    -0.060139424    -0.061836842    -0.064703658    
-0.067578197    -0.070452088    -0.0790146  -0.087369745    -0.095479946; 
-0.049972273    -0.050547925    -0.05342343 -0.054928922    -0.057473576    -
0.060024484    -0.062574867    -0.070173739    -0.077588579    -0.08478567; 
-0.038978224    -0.039422562    -0.041642496    -0.042812618    -0.044793255    -
0.046777897    -0.048762205    -0.054674772    -0.060444143    -0.066043558; 
-0.030031036    -0.030370298    -0.032065513    -0.032964298    -0.034487532    -
0.036013275    -0.03753881 -0.042084596    -0.046520287    -0.05082496]; 
 
ldgM06 = [-0.520647681  -0.526697685    -0.556903304    -0.572652724    -0.599240707    
-0.625877399    -0.652505633    -0.731829704    -0.809225985    -0.884362936; 
-0.461470373    -0.466801789    -0.493423083    -0.507353342    -0.530889055    -
0.554464434    -0.578032992    -0.648245485    -0.716752117    -0.783254694; 
-0.358187537    -0.362282382    -0.382733868    -0.393505582    -0.411731224    -
0.429982844    -0.448230129    -0.502594458    -0.555638717    -0.607125324; 
-0.274782746    -0.277895723    -0.293446472    -0.301683261    -0.315637193    -
0.329607918    -0.343575946    -0.385193887    -0.42580178 -0.465213356]; 
  
ldgModifier = cat(3, ldgM02, ldgM03, ldgM04, ldgM05, ldgM06); 
 
The following data is a subset of the table data used for the lateral cg estimator. The trim data is 

identical to that used for the longitudinal cg estimator and is therefore omitted. 

15. Roll β coefficient (Clβ) 
  
betaM02 = [-0.162027722 -0.164891702    -2.222342025    -3.138159387    -4.058392272    
-4.975395177    -5.880919682    -8.349737516    -10.7027275 -12.37735004; 
2.515289275 2.066351287 -1.989523176    -2.804880905    -3.624628755    -4.44053894 
-5.246814041    -7.445164861    -9.541200464    -11.03393647; 
1.951797839 1.599684265 -1.575007832    -2.213481466    -2.856222881    -3.496125745    
-4.127759663    -5.850038555    -7.493412926    -8.667737178; 
1.499671595 1.228077643 -1.223673268    -1.717266773    -2.214779827    -2.714163991    
-3.202786469    -4.534769615    -5.806117385    -6.717460826]; 
  
betaM06 = [30.00993677  24.94810629 -16.97434045    -26.01113893    -35.01898888    
-44.02234872    -53.02185105    -79.12864992    -99.79294125    -110.4419417; 
26.7407878  22.23957465 -15.02814823    -23.06091923    -31.06808278    -39.07118122    
-47.07074519    -70.25824872    -88.62081372    -98.09235147; 
20.95791378 17.44369846 -11.64254567    -17.91132478    -24.16023508    -30.40586212    
-36.64858432    -54.71727134    -69.03605347    -76.42310908; 
16.28805672 13.57532294 -8.860705759    -13.69563921    -18.51565794    -23.33304215    
-28.14809115    -42.07090451    -53.11379616    -58.82117551]; 
  
betaModifier = cat(3,betaM02, betaM03, betaM04, betaM05, betaM06); 
 

16. Roll p coefficient (Clp)  
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pM02 = [-1.267641913    -1.26503159 -1.259530137    -1.258720666    -1.257895977    
-1.25706553 -1.256244318    -1.253838371    -1.254865836    -1.256709978; 
-1.141054656    -1.138705355    -1.133735706    -1.133002711    -1.132256117    -
1.131504356    -1.130760959    -1.128581713    -1.129484352    -1.131102476; 
-0.914109029    -0.912224013    -0.908197162    -0.907599534    -0.906991305    -
0.906378728    -0.905772784    -0.903994689    -0.904671453    -0.905898352; 
-0.72451549 -0.723012992    -0.719754188    -0.719266118    -0.718770172    -
0.718270053    -0.717774687    -0.716320413    -0.716800191    -0.717707442]; 
 
pM06 = [-3.890236326    -3.889071541    -3.883138104    -3.881933596    -3.880578745    
-3.879622133    -3.879071   -3.879551316    -3.883346861    -3.910300201; 
-3.519745766    -3.518689945    -3.513315147    -3.512224061    -3.510997641    -
3.510128702    -3.509624119    -3.510025662    -3.513403459    -3.537573245; 
-2.845864031    -2.845007123    -2.840649377    -2.839764732    -2.838771251    -
2.838062824    -2.837645427    -2.837917985    -2.840562356    -2.859778314; 
-2.271887466    -2.271199721    -2.267706765    -2.266997663    -2.266201978    -
2.265630976    -2.265289823    -2.265466975    -2.267513443    -2.282623948]; 
  
pModifier = cat(3,pM02,pM03,pM04,pM05, pM06); 
 

17. Roll r coefficient (Clr)  
rM02 = [-0.069670453    -0.000636213    0.285430819 0.339633474 0.368475291 
0.39552178  0.422321488 0.502513176 0.608023698 0.728469684; 
-0.047864865    0.014374752 0.272292045 0.321160731 0.347258895 0.371730416 
0.395997185 0.468711138 0.564386472 0.674008783; 
-0.008576225    0.041344135 0.248171879 0.2873584   0.308393336 0.328143564 
0.347741752 0.406583337 0.484034933 0.573532901; 
0.023944948 0.063353076 0.226523711 0.257431699 0.274000346 0.289636597 0.305132315 
0.351620029 0.412842722 0.483977413]; 
  
rM06 = [-0.218359872    -0.076333373    0.615129709 0.752034252 0.828300333 
0.90483576  0.982098559 1.297333464 1.741093628 2.112063285; 
-0.191206553    -0.063260871    0.559556391 0.682850711 0.751618934 0.820633043 
0.890307163 1.17423747  1.573697046 1.908288804; 
-0.141058218    -0.038538845    0.460412836 0.559161511 0.614366388 0.669779977 
0.725734899 0.953213424 1.27284391  1.541601771; 
-0.100249397    -0.018980833    0.376376485 0.454597714 0.498432804 0.542438163 
0.586880787 0.767217388 1.020282797 1.233908212]; 
  
rModifier = cat(3,rM02, rM03, rM04, rM05, rM06); 
  

18. Roll φ coefficient (Clφ)  
phiM02 = [-0.00074647   -0.002540531    -0.004566493    -0.004604347    -0.004640802    
-0.004675824    -0.004709382    -0.004800933    -0.007920561    -0.011324908; 
-0.000679027    -0.002310983    -0.00415379 -0.004188202    -0.004221342    -
0.004253178    -0.004283682    -0.004366894    -0.007204382    -0.010300757; 
-0.000555804    -0.001891592    -0.003399823    -0.003427959    -0.003455052    -
0.003481079    -0.003506014    -0.003574026    -0.005896173    -0.00843007; 
-0.000450357    -0.00153271 -0.002754688    -0.002777464    -0.002799395    -
0.002820462    -0.002840643    -0.002895682    -0.004776983    -0.00682975]; 
 
phiM06 = [-0.003315811  -0.003322411    -0.003340203    -0.003340712    -0.003847905    
-0.00435367 -0.004857541    -0.00635318 -0.007815199    -0.014239432; 
-0.00301599 -0.003021993    -0.003038176    -0.003038639    -0.003500012    -
0.00396008 -0.004418423    -0.005778892    -0.007108742    -0.012952026; 
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-0.00246848 -0.002473394    -0.002486639    -0.002487018    -0.00286461 -0.003241129    
-0.003616229    -0.004729575    -0.005817805    -0.010599648; 
-0.002000025    -0.002004007    -0.002014738    -0.002015045    -0.002320963    -
0.002626007    -0.002929897    -0.003831855    -0.004713424    -0.008587326]; 
  
phiModifier = cat(3,phiM02, phiM03, phiM04, phiM05, phiM06); 
  

19. Roll canard coefficient (Clc)  
dcM02 = [-0.085984776   -0.044417768    0.163111263 0.204600813 0.246090596 
0.287580612 0.329070862 0.453543015 0.578152718 0.702842154; 
-0.076409436    -0.039470959    0.144943096 0.1818113   0.218679693 0.255548275 
0.292417045 0.403024488 0.513743111 0.624526176; 
-0.059596497    -0.030785288    0.11304455  0.141798897 0.170553364 0.199307951 
0.228062658 0.314327502 0.400663316 0.487040258; 
-0.045913561    -0.02371682 0.087086602 0.109238183 0.131389839 0.15354157  
0.175693376 0.242149243 0.308649407 0.37517524]; 
  
dcM06 = [1.054953604    1.054953604 1.054953604 1.054953604 1.611268021 2.167621971 
2.724015462 4.178987884 5.205328929 5.907169026; 
0.937898265 0.937898265 0.937898265 0.937898265 1.432135223 1.926404135 2.420705004 
3.713359356 4.625343082 5.249106908; 
0.731462546 0.731462546 0.731462546 0.731462546 1.116924405 1.502406661 1.887909314 
2.896013978 3.60720091  4.093195743; 
0.563482386 0.563482386 0.563482386 0.563482386 0.860428796 1.157387936 1.454359808 
2.230933421 2.778753664 3.152826405]; 
  
dcModifier = cat(3, dcM02, dcM03, dcM04, dcM05, dcM06);     
 

20. Roll outer elevon coefficient (Cloe)  
doeM02 = [-3.008565944  -3.084747796    -3.116496999    -3.09835469 -3.090796884    
-3.081220532    -3.071548531    -3.004259221    -2.898760233    -2.737335335; 
-2.678379593    -2.747851222    -2.776041209    -2.759571143    -2.752515227    -
2.743668047    -2.734707567    -2.673527442    -2.576914971    -2.429988518; 
-2.093906425    -2.150694254    -2.175413554    -2.16237016 -2.156377233    -
2.148945129    -2.141394808    -2.091621246    -2.012419335    -1.892649209; 
-1.612355318    -1.657347944    -1.685304073    -1.675940355    -1.67108535 -
1.664996522    -1.658817243    -1.619299659    -1.557190402    -1.462301457]; 
  
doeM06 = [-22.69262835  -23.05253896    -24.02286489    -24.2308755 -24.38402593    
-24.51464024    -24.32223088    -22.91670776    -21.21970409    -19.18297172; 
-20.64589705    -20.97364893    -21.85072524    -22.03900586    -22.17648601    -
22.29328384    -22.11597938    -20.83020723    -19.27791123    -17.40349244; 
-16.83892241    -17.10688389    -17.80836526    -17.96052029    -18.06948393    -
18.16133612    -18.01338814    -16.95269776    -15.67266359    -14.11037842; 
-13.48779712    -13.7030106 -14.25964664    -14.38009593    -14.46502134    -
14.53603197    -14.41493374    -13.55561748    -12.51853373    -11.23960402]; 
  
doeModifier = cat(3, doeM02, doeM03, doeM04, doeM05, doeM06); 
 

21. Roll inner elevon coefficient (Clie)  
dieM02 = [-2.594651561  -2.661140856    -2.685862118    -2.668144706    -2.66054783 
-2.651052472    -2.641473547    -2.579692071    -2.486504388    -2.345873399; 
-2.309119947    -2.369726606    -2.391587764    -2.375524103    -2.36845887 -
2.359708643    -2.350857848    -2.294693292    -2.209486845    -2.081522832; 
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-1.804213556    -1.853712785    -1.87304803 -1.86032639 -1.854364022    -1.847048406    
-1.839626154    -1.793942859    -1.724218937    -1.619949406; 
-1.388739056    -1.427913511    -1.450591352    -1.441382006    -1.436571527    -
1.430603574    -1.424552661    -1.388288074    -1.33351684 -1.250913384]; 
  
dieM06 = [-20.16305718  -20.48948104    -21.38605179    -21.57844251    -21.72175441    
-21.8448421 -21.67798463    -20.43271332    -18.91317432    -17.08501185; 
-18.27422956    -18.57032189    -19.37790641    -19.55145028    -19.67968715    -
19.78943839    -19.63624013    -18.50150066    -17.11687988    -15.44046638; 
-14.80194763    -15.04232789    -15.68442307    -15.82381078    -15.92489029    -
16.01078704    -15.88379624    -14.95424041    -13.820344  -12.43211075; 
-11.78884561    -11.98077313    -12.48765573    -12.59746089    -12.67590758    -
12.74208223    -12.63870085    -11.88997242    -10.97652888    -9.846141819]; 
  
dieModifier = cat(3, dieM02, dieM03, dieM04, dieM05, dieM06); 
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Appendix I - Extended Kalman filter Matlab code 

function [tot_unex_qdot] = EKF(y, u, u0) 
% y = measurement vector 
% u = command vector 
% u0 = initial command vector from trim 
% tot_unex_qdot = estimate of the unexpected qdot 
 
eml.extrinsic('dlinmod'); 
% 
% The function returns an Extended Kalman Filter update. 
% 
  
n=11; %number of states 
 
% Define persistent data to store between calls  
persistent P 
if isempty(P) 
    P = eye(n); 
end; 
  
% Previous set of inputs 
persistent old_u 
if isempty(old_u) 
    old_u = u0; 
end; 
 
% Estimate of unexpected qdot  
persistent tot_qunex 
if isempty(tot_qunex) 
    tot_qunex = 0; 
end; 
 
% EKF state (always a delta from last linearisation point) 
persistent x 
if isempty(x) 
    x = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; 
end; 
 
% Previous state estimate stored for linearisation 
persistent old_state 
if isempty(old_state) 
    old_state = [128.2118; 0.0986; 0; 0; 0; 0; 0; 0.0986; 0; 0; 0; -5000]; 
end; 
  
  
G = eye(n); 
  
Q = [ 
10 0 0 0 0 0 0 0 0 0 0;   %Vt 
0 0.02 0 0 0 0 0 0 0 0 0;   %alpha 
0 0 0.01 0 0 0 0 0 0 0 0;   %beta 
0 0 0 0.01 0 0 0 0 0 0 0;   %p 
0 0 0 0 0.01 0 0 0 0 0 0;   %q 
0 0 0 0 0 0.01 0 0 0 0 0;   %r 
0 0 0 0 0 0 0.01 0 0 0 0;   %phi (bank) 
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0 0 0 0 0 0 0 0.01 0 0 0;   %theta (pitch) 
0 0 0 0 0 0 0 0 0.01 0 0;   %psi (heading) 
0 0 0 0 0 0 0 0 0 10 0;   %z 
0 0 0 0 0 0 0 0 0 0 0.2];   %unexpected qdot 
  
R = [ 
0.001156 0 0 0 0 0 0 0 0 0;   %Vt 
0 0.00000000487 0 0 0 0 0 0 0 0;  %alpha 
0 0 0.00000000487 0 0 0 0 0 0 0;  %beta 
0 0 0 0.00000595 0 0 0 0 0 0;  %p 
0 0 0 0 0.00000076 0 0 0 0 0;  %q 
0 0 0 0 0 0.00000076 0 0 0 0;  %r 
0 0 0 0 0 0 0.00000019 0 0 0;  %phi (bank) 
0 0 0 0 0 0 0 0.00000000487 0 0;  %theta (pitch) 
0 0 0 0 0 0 0 0 0.00000000487 0; %psi (yaw) 
0 0 0 0 0 0 0 0 0 1];    %z 
  
  
% Get data to linearise aircraft model for next iteration 
 
% Delta from trim inputs used for linearisation  
temp_u = old_u - u0; 
  
Ared = zeros(12,12); 
Bred = zeros(12,16); 
Cred = zeros(12,12); 
Dred = zeros(12,16); 
 
% Linearise aircraft model at new estimated state  
[Ared,Bred,Cred,Dred] = dlinmod('admire_bare_reduced',0.01,old_state(1:12),temp_u); 
  
AdisEst = zeros(11,11); 
BdisEst = zeros(11,10); 
CdisEst = zeros(10,11); 
DdisESt = zeros(10,10); 
  
% Create Kalman filter state-space matrices and strip out X and Y states 
% Add extra state for unexpected qdot 
AdisEstA = zeros(11,11); 
AdisEst(1:9,1:9) = Ared(1:9,1:9); 
AdisEst(10,1:9) = Ared(12,1:9); 
AdisEst(1:9,10) = Ared(1:9,12); 
AdisEst(10,10) = Ared(12,12); 
AdisEst(5,11) = 0.01; 
AdisEst(11,11) = 1; 
 
% Strip out X and Y states  
BdisEst = zeros(11,10); 
BdisEst(1:9,1:10) = Bred(1:9,1:10); 
BdisEst(10,1:10) = Bred(12,1:10); 
 
% Strip out X and Y states  
CdisEst = zeros(10,11); 
CdisEst(1:9,1:9) = Cred(1:9,1:9); 
CdisEst(10,1:9) = Cred(12,1:9); 
CdisEst(1:9,10) = Cred(1:9,12); 
CdisEst(10,10) = Cred(12,12); 
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DdisEst = zeros(10,10); 
  
% Calculate delta measurements (difference from old state) 
delta_y = zeros(10,1); 
  
delta_y(1:9) = y(1:9) - old_state(1:9); 
delta_y(10) = y(12) - old_state(12); 
  
% Calculate delta command, difference from linearisation point command 
delta_u = u(1:10) - old_u(1:10); 
 
% Predict state  
y1 = CdisEst*x; 
x = AdisEst*x + BdisEst*delta_u(1:10); 
 
% Predict plant covariance 
P = AdisEst*P*AdisEst' + Q; 
S = CdisEst*P*CdisEst' + R; 
  
% Calculate Kalman gain 
K = P*CdisEst'*inv(S); 
  
% Update estimate with measurement correction 
x = x+K*(delta_y-y1); 
 
% Correct plant covariance  
P = (eye(n)-K*CdisEst)*P; 
  
% Calculate estimated aircraft state to use as linearisation point on next 
iteration 
ac_state = zeros(12,1); 
ac_state(1:9) = old_state(1:9) + x(1:9); 
ac_state(10) = 0; 
ac_state(11) = 0; 
ac_state(12) = old_state(12) + x(10); 
  
old_state = ac_state; 
  
old_u = u; 
 
% Update estimate of unexpected qdot  
tot_qunex = tot_qunex + x(11); 
 
% Set output to unexpected qdot 
tot_unex_qdot = tot_qunex; 
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