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Abstract 

This thes1s explores the possibility of measuring the movement of an underground 

transmitter usmg electromagnetic waves. The displacement of the transmitter was 

estimated based on the magnitude and phase of the received electromagnetic wave, using 

rece1ver antennas at fixed locations. Electromagnetic wave propagatiOn underground was 

dependent on the frequency used, sml type, soil moisture content and environmental 

conditions. An extens1ve mvestigation has been conducted m measunng the soil dielectric 

constant and conductivity When the sample mmsture was mcreased, its dielectric 

constant mcreased, bemg d1sperse for clays, but fauly linear for sands. Clays show a 

higher conductivity. The optimum antennas to use underground were d1electnc loaded 

electnc monopole and d1pole antennas. A method was developed to predict the admittance 

of insulated monopole antennas m sml usmg measured data of the amb1ent medium The 

field tnals have shown that propagatiOn of an electromagnetic wave from a transmitter 

underground to a receiver underground was poss1ble over a distance of up to 30 m and to 

a depth of I 5 m. A Simulation model was developed to pred1ct the electromagnetic wave 

propagatiOn from the source underground using the measured e, and cr Its predictions 

compared well w1th the measured results. The model pred1cted that the lateral wave was 

the strongest mode of propagatiOn in the majority of the field tnals. The field trials 

confirmed these findings. The lateral wave starts at the source underground, travels to the 

boundary, follows the a1r-ground boundary and then propagates back into the ground to 

the rece1ver antenna. As the wave travels a significant part of Its path in air, It was less 

susceptible to megulantles underground. Measurement of the phase has shown It to be 

sensitive to errors caused by reflectiOns. This was the reason why reliable m formatiOn of 

the phase was not always available dunng the measurements. The field trials have shown 

the possibility of usmg electromagnetic waves to track a movmg transmitter underb'round. 

Any system that estimates the underb>round displacement of the transmitter should have 

two or more receiver antennas. The expenments have shown a possible accuracy of such a 

system of approximately 2 m or less. 

Nico J P Tiilema 

June 2000 
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1.1ntroduction 

Tius thesis was im!ially mspired by the need for a system that can locate and trace the 

movements of an underground m1cro-tunnel dnlhng machme. Th1s machme IS used for 

laymg pipes and cables. Its directwn can be steered by an operator. Use of a micro

tunnelling machine makes it unnecessary to dig a trench m the road. As the financial cost 

and also the socml cost of th1s type of roadwork is high, there is a growmg demand for 

'trenchless' p1pelaying. Furthermore, laymg an underground p1pe or cable that crosses a 

railway line or a nver can be very difficult w1th conventwnal techmques. The best system 

available to locate the dnll is based on magnetic induction, m whiCh a coil on the dnll 

generates a magnetic field underground that IS received by a cml on the ground surface, 

above the dnll. The reqUirement of the rece1ver to be positwned above the dnll is its 

hm1tation. The work described m th1s thesis is an exammatwn of the poss!bihty of usmg 

electromagnetic waves to trace the underground dnll. In additiOn the thes1s descnbes the 

analyses the problem of underground nav1gatwn usmg electromagnetic waves through 

experiments and simulations. The simulatiOn model and the measurement procedures 

developed in the research are tools that can be used m the development of a commercial 

system. 

1.1. Background 

The project descnbed in this thes1s aims to research mto a method of remote positional 

control for steerable dnlls and surface duectlonal drilling techmque, by radical 

development of existing locatwn technology and research into new techniques. At 

present, location of the dnllhead is effected by a transml!ter fitted mto the drilling head 

transm1ttmg a signal to a hand-held rece1ver placed directly above the line of the dnllmg 

operation. The maximum distance between drillhead and receiver IS 6 m, which is the 

limitation of the system. 
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INTRODUCTION 

There are different systems for the position control of a micro-tunnelling machme. Many 

of them are based on the use of different sensors to detect the drill's pos1t1on. Some 

position control systems are based on measunng the displacement of the dnlhng machine 

mechanically [1]. The use of magnetic mduction 1s most common. [2-3] In such a system, 

two coils, w1th their ax1s perpendicular to each other, are attached to the drill. The 

magnetic field generated by these coils is detected by an operator above the ground. The 

position of the different coils makes 1t poss1ble to also detect the rotatwn and the 

elevatwn. The strength of the magnetic field IS a measure of the depth of the dnll. The 

maximum range IS approximately 6 m, up to a depth of approximately 2 m. Addmg a 

gyroscope to the magnetic mductlon system w1ll1mprove 1ts accuracy [4]. 

Another proposed method of positioning control1s based on measunng the earth's gravity 

and magnetic field vectors [5,6]. But the v1bratwn no1se during the dnlhng and the 

Circular movement of the dnll makes 1t difficult to s1gnal process the output of actuators. 

One method of solving that problem 1s the use of fuzzy reasonmg m combmatwn w1th the 

above mentioned sensors [7]. However, th1s system has been shown to work only in very 

hm1ted Situations. Hence, m 90% of the dnlhngs, the dnll1s located using the magnetic 

inductiOn system. Long range bonng rigs workmg on a 2 or 3 km long bore under a 

ra1lway or nver can give an electromagnetic transm1tter mfonnatwn system in addition to 

the traditional, accelerometers, magnetometers and mclinometers [8]. The transmitter is 

sw1tched on when the bore 1s nearly completed so that the tool can be gu1ded to a set end 

positwn. The h terature survey confirms the need for an accurate system that can position 

the drill remotely 

An apphcatwn related to underground positiomng IS radar. Georadar is based on 

electromagnetic wave propagation in soil [20-23]. The frequency used is in the range of 

500 MHz to 2 GHz. In some cases more frequencies are used when surveymg a particular 

s1te. The depth of penetration m the !,'I'Ound ranges from 3 m to 6 m, dependmg on the 

mo1sture content of the s01!, when using power levels up to 2 W. The radar has to be 

positioned on the !,'I'Ound surface, above its target. Penetration depths of I km or more 

have been achieved m the desert for water detection. The transmitter antenna IS positioned 

very close to the rece1ver antenna to ach1eve an angle of incidence With the boundary 

between a1r and !,'I'Ound of"~ 1t for both the incident and the reflected waves. 
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INTRODUCTION 

1.2. Aim of the Thesis 

The main objective of this thesis IS to analyse and explore the possibilities for measunng 

the displacement of an underground transmitter using electromagnetic waves. In this 

system 1! IS assumed that the starting pos1tion 1s known The thesis reports on the results 

of a Significant number of field trials. The areas exammed are: optimum antennas for use 

underground, dielectric constant and conductiv1ty of sods, propagatiOn modes of 

electromagnetic waves underground and their attenuatiOn and the optimum frequency to 

use. 

The objective of developmg tools that can be used to predict underground propagatiOn 1s 

for the development of a commerc1al system and also to a1d future exammations of th1s 

fascmating field and other s1milar areas. 

1.3. Work Done 

One objective of the study was the reception of an electromagnetic wave from a source 

underground at up to 30 m distance and up to 1.5 m deep To ach1eve this, careful study of 

the s01l d1electnc constant and conductlVlty, the characteristics of an antenna underground 

and the modes of propagatiOn underground, was done. 

For understandmg the modes of propagatiOn of the electromagnetic wave underground, it 

was necessary to know the environmental conditions of the medmm the wave travels m. 

One of the major problems m the study of underground propagatiOn was the uncertainty 

of what is underground. Chapter 2 discusses a method that has been developed in which 

the d1electnc constant and conductivity was detennmed on-s1te. The research shows that 

when the sample was wet, the water bonds w1th the soil particles and changes 1ts 

dielectric behaviour. The magnitude of the complex dielectric constant increases and 

becomes frequency dependent. An extensive site survey was done in which samples are 

taken to a depth of 2 m. The results were used in simulations of the perfonnance of 

dielectnc loaded w1re antennas and m the prediCtions of underground electromagnetic 

wave propagatiOn. 

3 



INTRODUCTION 

The antennas used m thts proJect were thm wtre antennas such as the monopole and the 

dtpole. Usmg a wtre antenna in a lossy dwlectnc, hke soil, resulted m current leaking out 

mto the medmm, changing the current dtstnbution, and hence the antenna gam, antenna 

pattern and Impedance which became a functiOn of the surroundmg medmm. Thts effect 

was reduced by placing a dtelectric shield around the antenna filament. Dielectric loaded 

wtre antennas are analysed m chapter 3. Vanous dtfferent antennas were constructed and 

tested The measured results showed good agreement wtth the stmulatwns. 

CalculatiOns showed that the attenuation of a plane wave underground was approximately 

I 0 to 15 dB per m, except at VLF when the attenuation ts less. Chapter 4 ts an 

exammatwn of the modes of propagatiOn of the electromagnetic wave underground 

Although the attenuation was high, an electromagnetic wave was recetved from an 

underground transmttter located at 30 m distance. Thts chapter further analyses the modes 

of propagation and finds an optimum frequency range. A stmulation tool was developed 

and used to understand the results from the field tnals. Based on the field tnals and 

predtctions a feastbthty study was done on underground navigation and location usmg 

electromagnetic waves. 

Concludmg remarks and tdeas for future work are outlined in chapter 5. Appendtx A 

descnbes the stte survey in which the dtelectnc constant and conductivtty of samples were 

measured. Appendix B further explams the co-ordmate systems used in the thesis The 

condttions and environment m which the field tnal took place are explamed m appendix 

C for underground propagatiOn, appendtx D for underwater propagation and appendix E 

for measurements of wue antennas underground. 
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2. Dielectric Constant of Soils and Rocks 

2.1. Introduction 

To mvestigate the propagation of electromagnetic waves in the ground, 1! was necessary 

to have a method available to measure the electncal properties of soils m the frequency 

domam, espec~ally the loss, m the search for an optimum frequency for transmitting a 

VHF rad10 wave through different layers of sml usmg low power. As sml matenals, 

whether mmst or not, were usually m-homogeneous mixtures, often contammg more than 

one substance, it was d1fficult to understand the1r electncal behaviour. It was not the a1m 

to understand th1s process completely, but the soil electrical propertws were investigated, 

as these were mput parameters for the SimulatiOn model for antennas m the ground and 

underground electromagnetic wave propagation. The d1electnc constant and conductivity 

of the soil determines the strength of the strongest s1gnal rece1ved, the veloc1ty at which 1! 

propagates and the path 1! travels. The propagatiOn loss and the frequency dispersiOn are 

calculated m chapter four, based on the results presented m th1s chapter. 

Three methods were developed whereby the dielectnc constant was estimated by usmg a 

coax1al probe, coaxial sample holder and wave-gu1de. Results were presented for a 

number of known sml matenals. The coaxial probe measurement method was used m the 

field for a comprehens1ve survey at the site where underground propagatiOn stud1es were 

done. 

2.2. Dielectric Constant theory 

All matter consists of molecules that contain charges. When the matter is exposed to an 

electric field there is force actmg on these charges. An 1deal dielectric contains only 

bound charges that influence the field m which they are placed. To denve the dielectric 

constant from Maxwell 's field equation, the first step is the separation of the vectors E 
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DIELECTRIC CONSTANT OF SOILS AND ROCKS 

and H in the equatwns. Then ddTerentiate the equatwns wtth respect to time and 

substitute the one equation into the other gives the wave equatiOn for a homogeneous 

plane wave: 

d'H , , d 2H 
--=t: f.l --
dx2 dt 2 

(2.1) 

The wave propagates m the x-dtrection. The equation is stmphfied by assuming that E 

and H are a function of x and t only. Solutions of the wave equations are in the form: 

E = EoeJa> t-r x (2 2) 

The wave propagates m the x-dtrection with a complex propagation constant: 
,........... 

Y=JOhJef.l =a +;{3 (2 3) 

The real part of the propagation constant a is the attenuatiOn factor and the tmaginary part 

~ ts the phase factor of the wave. The complex dtelectric constant E' and magnetic 

permeabthty Jl• determme the storage and dtsstpation of electnc and magnetic energy in a 

medium. The ratio of the coupled electric and magnetic field vectors, mdependent of x 

distance, for a plane wave is. 

E 
H- (2.4) 

Thts ratto Z ts the intrinsic impedance of the dtelectnc. The propagation factor y is 

proportional to (e'Jl')I12, whtle Z ts equal to (J.1'/e') 112. These parameters are measured to 

find e' and Jl• mdtvtdually. For this, both magnitude and phase of Z and y have to be 

evaluated. The definition of the mtnnstc tmpedance makes it clear that this value may 

depend not only on the physical properties of the medmm, but also on the nature of the 

field, which propagates m the dtelectnc. In this study, the samples were assumed to be 

non-magnetic. 

The complex dtelectric constant e; is normalised to the dtelectnc constant of vacuum Eo= 

8.85xto-12 F/m, hence: e' = e,'eo= (e,'- j e,")eo. In this equation e," is the loss factor. The 

conducttvtty ts defined as a = Ol::" (!). The conductivity quantifies ions of opposite 

polanty in pairs moving in the electnc field accordmg to Ohm's law. In the Maxwell 

equations and the associated boundary condttwns e and a always appear in the following 

combmation [2]: 

7 



DIELECTRIC CONSTANT OF SOILS AND ROCKS 

( CF") a+ jms = a'+ms"+ jm s'- m = CFe + jm&e (2 5) 

From (2.5) the real effective conductivity cr. = cr'+coc" and the real effective dielectric 

constant e.==e' -cr"/ro are defined and w1ll be used here. The conductlVlty 1s a measure of all 

the losses in the dielectnc caused by the migration of charge earners or the friction of 

aligmng polar molecules A damped microscopic oscillator emits a spectrum of 

frequencies because the osc1llahon d1es out m a finite time To cons1der the relations 

between E and H in time, the wave can be expressed m the space domam at t1me to as: 

(2 6) 

ExpressiOn (2 6) 1s graphically analysed m figure 2 I. The wave amplitude attenuates 

exponentially w1th a bemg the attenuatiOn factor m figure 2.l.a. The polar diagram m 

2.l.b shows the wave as a vector rotatmg m the clockwise direction and the displacement 

is expressed m rad1ans. The attenuation per rad1an 1s called index of absorptiOn and is 

defined as: 

(2.7) 

The phase relatiOn between the E and H field vectors can be derived from the impedance: 

H = H 0elfi, , then (2 8) 

When the d1electnc 1s non-magnetic, I; is the advance of the E field vector. When Jl"=O, 

the mdex of absorption IS equal to the phase advance and tan I;= k [I]. Hence the phase of 

the intnns1c 1mpedance is the arctan of the mdex of absorption When a conductor ts 

placed in an external electric field the free charges move to the surface and make the 

intenor charge density and electnc field vamsh. The dielectnc constant of a conductor can 

be modelled as (I - J oo ). 

An tdeal dtelectnc does not contam free charges but the bound charges have an effect on 

the electnc field. All molecules constst of atoms that compnse postttve nucleus 

surrounded by negative charged electrons. Electric forces on these charge carriers results 

m small displacement of the positive and negative charges m opposite directions. 

Although on a macroscopic level the dielectric is neutral, the dtsplacement causes 

polarisation of the dtelectric. These charge earners can be electrons around the nuclei 
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DIELECTRIC CONSTANT OF SOILS AND ROCKS 

(electromc polarisatiOn) or the displacement of atoms m molecules w1th an uneven charge 

d1stnbutwn (atomic polarisation). Some molecules, hke water, have permanent dipole 

moments, due to asymmetric charge d1stnbut10n around the molecules. These particles 

ahgn to the incident E field polansation. This is called orientatiOn polansatwn. Another 

form of polansation occurs when the matenal exists of particles that have charges bmlt up 

at their interfaces Th1s is the space-charge polansatwn. 

Debye [3] gave the theoretical analys1s of the behaviOur of a dielectric matenal contammg 

molecules w1th a permanent dipole moment. This theory pred1cts that when such a 

matenal IS placed in a DC electric field, the polarisation moment caused by the dipoles 

alignmg to the field does mcrease exponential w1th a time constant 't. In the trans1tion 

region of anomalous dispersion there is an absorptiOn conductivity and the s1tuatwn may 

be described m terms of a complex d1electnc constant E • =£' -j£". The relaxation process 1s 

descnbed by Debye by the equation [3]-

, e0 -e_ 
e -e0 = 

I+ jwr0 

(2.9) 

where E • 1s the complex d1electnc constant with a value of Eo at low frequencies and E- at 

high frequencies and 'to is a charactenstlc constant which IS called the relaxatwn t1me. 

Thts suggests that the relaxatiOn is independent of the frequency. However, expenmental 

data of so1ls [ 4,5] has shown the dtsperswn frequency range to be narrower than predicted 

by (2.9) and the dtspersion maximum to be higher. Their behaviour can be descnbed w1th 

two relaxatiOn processes· 

, e, 0 -e,_ e20 -e,_ 
e = e, 0 + (1 . )l-a, + e, 0 +..,(!__....:..::.._..:.).::., __ a, 

+ Jwr, + 1wr, 
(2.1 0) 

where subscnpts I and 2 refer to the two separate relaxation processes. The effect of a ts 

to broaden the relaxatiOn. D1spers10n and absorption can also occur in non-homogeneous 

matenals. Many dielectric materials do not show the behaviour as descnbed by Debye 

However, the relaxatiOn process of water is very close to the one predicted by Debye and 

the contnbution of water to the dielectric constant of moist soil is significant. 

2.3. Background 

Research mto dielectric properties of rocks and mmerals is focussed on vanous 

applications and the measured data published is vahd for a hmited frequency range. In 
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many calculations the electric properties of a sml are estimated Knowledge of the 

electrical properttes of a soil is of great Importance for underground radar or 

commumcations, remote sensmg and geophystcal prospectmg. Remote sensmg is used to 

estimate the mOisture content of the sml m order to predtct quantities like crop ytelds. The 

skm depth of the electromagnetic radiation in the ground can be calculated from 

knowledge of the dielectnc properties. In contrast to vistble and mfrared, mtcrowave 

sensors are not affected by clouds, especially m the lower microwave frequencies and can 

function independently of weather or sunhght level. In geophysical prospecting the 

conductivity of the earth ts Important to measure the detatled structure of the ground. The 

corrosion of buned structures is due to an mterchange of current between the corroding 

conductors and the environment. The current mterchange is a result of potential 

differences causmg stray currents m the earth. Also, the probabthty of a lightmng stnke 

htttmg a particular pomt depends, among other factors, on the conductivity of the earth 

Hence, pubhcations m CIVIl engmeenng JOUrnals focus on soil conductivity at low 

frequency 

In 1934 Smtth and Rose [6] measured the dtelectnc constant of moist soil at f-=50 Hz and 

concluded that E, = I 00 000 at thts frequency. Electrodes were used m the measurement. 

For a long time dielectric constant measurements of moist soil samples were dtfficult to 

make and the high values of the moist samples have been attnbuted to measurement 

errors caused by electrochemtcal processes at the electrodes. Measurements [7] conducted 

with an electrode m a spectally destgned sample holder were in the frequency range of 

I 00 Hz - I MHz. The resistance of earth vanes wtthin extremely wide hmits between I 

and I 0000 rum. The dielectric constant of dry sOil samples varies from 2 to 15 at I 00 Hz 

[7]. For samples with higher water content, the dielectnc constant and the conductivtty 

increase over the measured frequencies [7]. The dielectric constant of moist sand 

(w=2.34%), ts reported to be significantly htgher at 0.1 Hz (E,=l.65*I06) while low at 5 

MHz (E,=3.94) [8]. Measurement of the sand after heatmg and vacuum drying alters the 

electncal properties of the sample significantly. In the frequency range of 0.3 - I 3 GHz, 

the real part of the dielectric constant ts frequency mdependent, while E" decreases with 

frequency between 0.3 and 0 5 GHz and is constant above 0.5 GHz. The dependence ofE' 

and E" on sot I texture composition (sand, silt and clay fractions) is a consequence of the 

role played by bonded water. 
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Much of the pubhshed work on dielectnc constant measurements of soils and civil 

engmeenng has been related to road construction. In part1cular the measurement of 

dielectric constant of base course aggregates in roads can be related to mo1sture content 

[9, I 0]. Also the dielectric constant IS related to the strength and defonnation propert1es of 

base coarse aggregates [9]. There appears to be a very good correlatwn between the 

d1electnc properties and strength and defonnation properties of all types of so1ls and 

aggregates These results were based on DCP (Dynam1c Cone Penetratwn) test and 

res1lient modulus measurements on various matenals ranging from iron ore graves to 

gran1tes. As the strength of a soil depends m part on mter-part!Cle attractions [I I]: it 

would be expected, therefore, that the strength would also be mfluenced by the dielectric 

constant. The d!electnc constant w1ll change w1th mmsture content for vanous reasons 

including the physwchemlcal properties of the soil, the proportwn of solid, hqmd and air 

pha'c~ and also the structure and vmd ratio of the solid phase [I I]. Thus the relatwnship 

of d1electnc constant of a sml sample to moisture content will be non-hnear and 

dependent on sml type. It IS mvestigated [ 12, 13] to what extent the electncal properties of 

smls could be used to charactense the mineralogy, state of packmg and area of contact for 

pred1ctmg cngmeenng properties, explaming sml behavwur, and developing a 

classification of so1ls based on both composition and environmental parameters. 

Experiments earned out show that there 1s a strong relatwnship between d1electnc 

constant and clay mineralogy [12,13]. It IS known that the catwn-exchange capacity of 

clays mcreases in the sequence· kaohmte < 1llite < montmonllomte. Th1s sequence 1s also 

clearly shown when dielectnc constant 1s plotted against frequency. It IS also mvestlgated 

how the d~electnc constant IS affected by different sand -clay mixtures, changes m water 

content, and the effect of addmg sodium chloride to the water w1thin the soil. The sand

clay mixtures showed a decrease in dielectric constant with increase m sand content. The 

d1electnc constant decreases w1th decreased water content The addition of sodmm 

chloride to the water decreases the dielectnc constant. 

2.4. Measurement techniques 

Various methods for measuring the d1electnc constant of materials have been proposed, in 

which the sample is put into a sample holder [ 14-16] The disadvantage of using a sample 

holder 1s that the preparatiOn of the sample has to be done very carefully m order not to 

d1sturb the sample dens1ty and to avoid any air gaps between the sample and the holder. In 
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[ 17] a coaxial probe is used to measure the dtelectric constant of sot! m the frequency 

range of 0 3 - 1.3 GHz. In this method a semt-empmcal model ts used to predtct the 

complex dtelectric constant of a sample. The modelts shown to be valid for three types of 

clay samples with various moisture contents. The method proposed by A they [ 18] also ,, 

makes use of a coaxial probe to measure the complex dielectric constant ofhtgh loss and 

low loss materials. The complex dtelectric constant is derived from the measured probe 

Impedance which makes thts method more straightforward compared to [ 17]. 

2.4.1 . Coaxial probe 

For this study, the method proposed by A they[ 18] was used The probe used was made of 

a semi-ngid cable wtth a specific length. The open-ended probe capacitance was modelled 

as a two parallel capacitance's cucutt to ground. These represent the transmiSSIOn !me 

capacitance and the fnnging field capacitance Thts fnngmg field capacttance,Cr, models 

the reactive near-field, which was the electromagnetic field at the interface with air at the 

probe end. When the probe was terminated wtth the sample, the relative dielectric 

constant can be calculated from the reflection coefficient using the equation [ 18]: 

t-r c, 
JmZ'oCo(l+f) Co (2.11) 

where E; ts the complex relative dielectnc constant, 

f' IS the complex reflectiOn coefficient, 

Zo is the transmissiOn line Impedance, 

Cr IS the fringing field capacitance and 

Co ts the transmission line capacttance at the open end. 

At frequencies below 2.0 GHz, Cf can be assumed to be neghgtble small and Er can be 

found from the reflectiOn coefficient, when Zo and Co are known. The coaxial probe used 

m the measurement was a 3 6 mm diameter open-ended semt-ngid cable wrth a length of 

0.049 m. The semi-rigid cable was a standard cable used in microwave measurements. 

The probe was made by connectmg a standard SMA (Semi Mimature-A) connector to one 

end of the cable and then tnm the cable's length The magnitude of f' at the point of 

measurement also depends on the probe's length Three probes were made with lengths 

of 0 049 m, 0.055 m and 0.106 m. The one with 0.049 m length gave the best results, 

based on the measurement of drsttlled water and methanol, which were compared with 
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published results. A probe w1th these dimensions was smtable for measunng high-loss 

matenals at frequencies up to 2.0 GHz. The dimensions of the probe have to be small 

compared to the wavelength, so the open end does not radmte out other than the fringmg 

field. The end of the probe was polished to get a slight tapered end to ensure good contact 

w1th the sample, but also to mcrease the fringmg field. The conductivity was calculated 

from the dielectric loss factor. 

Calibration 

Two vector analysers, the HP8410 and HP4195 were used to measure the reflection 

coefficient. Before the measurement started, a 'three standard' error correction model was 

used to Improve the accuracy of two vector analysers. These standards were a 

conventiOnal matched load, an open/short c1rcmt and the probe m contact with a known 

dielectric. These standards were used as the outcome of these measurements could be 

calculated and, therefore, the accuracy of the measurements could be deterrmned. The 

matched load was used to deterrmne the directivity error. Then, the probe was connected 

and the 'probe-open' and 'probe-short' were measured to find the source mismatch and 

the frequency trackmg errors. Inittally, an open Circmt capacitance was assumed. In the 

calibration procedure th1s value was adjusted m order to find the smallest difference 

between the measured and theorettcal values of the dielectric constant of distilled water. 

The theorettcal values were calculated usmg the Debye equation for disttlled water. For 

our probe two values of the transm1sswn !me open-end capacity Co, 0.0185 pF and 

0 0215 pF, gave the smallest error, when using the HP8410 and HP4195 respecttvely The 

comparison between the measured and predicted value is shown in Figure 2 3 The 

dielectric constant of methanol was measured and compared w1th published data [9] as an 

additional test m the calibration. The maximum error was under 4%. A reason for this 

might have been the mismatch between the connector and the probe, as the magnitude of 

the reflectiOn shows a rippled pattern. The Imagmary part of the dielectric constant of 

disttlled water shows an error at frequencies above 300 MHz. Therefore, the HP4195 

ANA was used in the frequency range of 1.0 MHz to 300 MHz, taking a total of 200 

measurement points The frequency range of 60 MHz to 2.0 GHz was covered by the 

HP8410 ANA, taking 250 pomts. The dielectric constant of distilled water was measured 

as a part of the calibratiOn procedure, before every measurement. As movement of cables 
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resulted m different measurement results, the probe was fixed in a clamp. The 

measurement set-up was used on-s1te for field measurements. 

2.4.2.Sample preparation 

The samples used in the measurement are taken from various s1tes or prepared in the 

laboratory. The samples were kept m airtight containers to maintam their mmsture content 

constant. After the measurement the mmsture content was established by measuring the 

mass of the moist sample: placmg it in an oven for 16 hours, and finally measunng the 

mass of the dry sample. The gravimetric water content was calculated as: 

w =mass H20 I mass dry sample (2.12) 

Clay samples were prepared in the laboratory by mlXlng dry clay w1th distilled water to 

create samples w1th vanous moisture content. The granular nature of dry samples makes 1t 

difficult to achieve a homogeneous dens1ty Vanatwns m dry dens1ty and, therefore, m 

volumetnc water content were unavOidable. At least three probe measurements were 

taken from every sample and the average was taken as the final result. 

2.5. Measurement results 

The soil samples used were prepared from known materials with different gravimetric 

mo1sture content. The samples were: Wyoming bentomte clay, keuper mar! clay, English 

Chma clay, Le1ghton Buzzard sand and river sand. The mam difference between the 

samples was that the particle s1ze of clay was smaller than that of sand, which has an 

effect on the binding forces between particles This mterparticle attraction was the result 

of two types of forces on soil part1cles that are related to 1ts s1ze: surface forces, like 

Coulomb forces, are proportwnal to the surface area, whereas gravitational forces are 

proportional to its part1cle volume. As part1cle size decreases, as with the clays, the 

surface forces become more dommant. As With clays, electric charges dominate the 

bondmg of the partiCles, they were expected to be electromechamcally more active than 

sands. Samples were prepared w1th a different moisture content. Due to the h'i"anular 

nature of soils, the dielectric constant IS also a functwn of the eqUJhbrium void rat1o at 

different pressures in the sample. The pressure m the sample was very difficult to control, 

resultmg m a hm1ted repeatability of the measurements Therefore, from the substantial 

number of data some typical results have been selected to illustrate the dependence of the 

complex dielectric constant on the frequency, soil type and moisture content. 
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In figure 2.5, the plots for keuper mar! and English China clay with moisture content of 

approximately 20% are compared with plots of clay-loam [20] The lines for the dielectnc 

constant m figure 2.5 presents the Weighted Least Square of the measurement data The 

dielectnc constant of the samples with a very Similar mmsture content differs m 

magnitude, but show a similar curve. The d~electnc behaviour of soils below I 00 MHz 

was attnbuted to the orientation polansation of the sml particles. Above I 00 MHz, the 

speed of the particle alignment was falling behmd the electromagnetic wave polansatwn 

resulting in a decrease m the effective dielectric constant. At frequencies above I 00 MHz, 

the response of the sample to an mc1dent electromagnetic wave was mainly wmc 

polansation. This explams the mcrease m conductivity at the higher frequencies, shown m 

figure 2.5. 

In these measurements, keuper mar! shows the highest dielectric constant, which suggest 

that the partiCle size of keuper mar! was smaller than that of Chma clay and therefore the 

particle alignment was slower as the Coulomb forces were stronger But the dielectric 

constant of sml also depends on sml density [20]. Dunng the measurements the density of 

the samples was kept constant. Nevertheless, a smaller particle size may result in less air 

gabs between them, resultmg m a higher density, which will be measured as a higher 

effective dielectric constant. Figures 2.5 shows that there is good agreement between the 

measurements and the published data. Especially the trend of an mcreased d1electnc 

constant with decreasmg frequency from 200 MHz down to 60 MHz was seen m all the 

clay measurements The samples in figure 2.5 have similar moisture content. The line for 

the conductiVIty IS the average value of the measurement pomts. The conductiVIty 

represents all loss m the dielectric. This may be caused by m1gratmg charge earners as 

well as energy loss associated with the frictiOn accompanying the orientation of dipoles. 

Charge carriers m soils can be magnesmm, calcium or sodium. Figures 2.6 shows the 

measurement results for keuper mar! samples w1th different mmsture contents. When the 

sample is wet, the water bonds w1th the sml particles and changes Jts dielectnc behaviOur. 

The magnitude increases. The curve is steeper between 1.0 MHz and 400 MHz, when the 

mOisture content mcreases. More water molecules bond to the sml particles. The plots 

show that the bondmg of water makes the sml electncal properties frequency dependent as 

only relatively dry sml show a fairly constant dielectnc constant and conductivity. For all 

the samples examined in the experiment, the dielectric constant increased with moisture 

content. The dielectric constant of wet clay reached about 40 at 1.0 MHz, while its value 
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is about 36 at higher frequencies. At 2.0 GHz the highest conductivity measured was 0.7 

S/m. The measurement results of English Chma clay confirmed these observatiOns. The 

drelectnc constant of Bentomte was very hrgh at low frequencres, bemg near I 00 at 

MHz, when the sample is wet. The conductivity increased with frequency. 

The real part of the dielectnc constant of Rrver sand was not frequency dependent. 

Increasing the water content mcreases the dielectric constant also When the sand was wet 

the imaginary part was frequency dependent, being near 50 at frequencies below I 00 

MHz. The conductivity increased wrth frequency, bemg near 0.02 S/m when the sample 

was mmst (w=20%). The plots of Leighton Buzzard sand show a very srmrlar result. The 

dielectnc constant of dry samples, both clays and sands, vanes between 4 - 8, whrle the 

conductivity was close to zero. 

2.5.1. Relaxation model 

Analysis of the graphs for moist soil show a trend towards a relaxation curve as descnbed 

by one or two De bye relaxation models. The relaxation process of water IS very close to 

the one predicted by Debye and the contnbutron of water to the drelectnc constant of 

moist soil is significant. Thrs suggests a major contnbution of the relaxahon process to 

the dielectric constant Therefore, rt was mvestigated what relaxatiOn curve fits the data 

by estimatmg Eo and 'to and takmg Eoo from the measured data at 2 GHz. 

As shown in figure 2.8 there was a good agreement between the measured data for the 

keuper mar! sample wrth a moisture of 21.3% and the relaxation curve. In this graph, the 

relaxation process was modelled as one relaxation, as grven by equation (2.9), with 'to= 

6* I o·10
, EQ= I 00 and eo.,= 26. At f= 2GHz, the relaxation model predrcted e" to reduce to 

ml At this frequency the nature of the relaxation process changes, as ronic polansation 

becomes dominant. The relaxation trme of water is 'twatcr= 0.25*10. 10s [I]. A relaxation 

time longer than that of water suggest that the rotating umt involved in the relaxatiOn 

process was bigger than the water molecule. Figure 2.9 shows the measured data for 

keuper marl with a moisture content of 11.3%. The curve fits the measured data only 

when the dielectnc constant was predicted using two relaxation processes For thrs sample 

't10 = 5*10. 111s, E10 = 220, Er~= 5 and 't2o = l*IO·His, E2o = 28, E2~ = 13. Samples wrth 

mtermed1ate moisture content tend to be mhomogeneous for particle size. Clay particles 

clumped together where the mOisture was, while other parts remam dry. A d1stnbution m 
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the sizes and shapes of the granules will tend to extend the losses over a large frequency 

band. Therefore the relaxatwn was modelled with two relaxation processes. Fmdmg a 

relaxatiOn curve to fit data of a relatively dry sample, as m figures 2.10 and 2.11 where 

the moisture content of keuper mar lis w= 1.5% and w = 6 5% respectively, was difficult. 

Between I MHz and 300 MHz the curve fits the measurement pomts in the graph The 

discontmmty in the measured data above 300 MHz was caused by a measurement error. 

Due to the granular nature of m particular these samples, the repeatab1hty of the 

measurement IS reduced The dielectric constant bentonite clay was predicted with two 

relaxation processes as IS shown m figure 2.12. For this prediction 'tw= 4*10"11 s, Ew= 35, 

EI~= 4 and 'tzo= 8*10"11 s, Ezo= 12, Ez~= 6. The moisture of the sample IS 9.6% Figure 

2.13 shows the d1electnc constant for Chma clay sample with a moisture content of 

22.8%. This prediction was done with two relaxatiOn processes with the parameters: 'tw = 

2*10.9, Ew= 150, EI~= 3 and 'tzo= 9*10"1Is, Ezo= 17, Ez~ = 10. 

2.5.2.Site Survey 

Environmental factors are uncertainties in the research of underground propagation. 

Seldom It IS known what is underground, what is the structure and type of the soil at a 

given locatwn. A thorough Site survey was therefore undertaken at the location where the 

underground propagation expenments were conducted. The distnbutiOn of the sOil 

dielectric constant and conductlVIty were determmed so as to be able to estimate general 

underground conditions. 

Previous studies [21] show that the 24 hour average volumetnc water content can be 

accurately found by samplmg one hour before solar noon. Diurnal vanatwn depends 

strongly on depth, 1mgation times and other factors. The spatial soil moisture variability 

decreases With depth [22]. Published results [21, 22] suggest that the number of samples 

reqmred to get accurate informatiOn on mOisture decreases with depth, being 25 - 35 

samples at d=l-2cm depth to 7-10 samples at d=30 cm in a field of 40 acres. In 

conductmg the site survey at Loughborough Umvers1ty campus a hollow pipe was drilled 

into the ground at 12 locatiOns as shown in figure 2.15, to a depth of 2 m. Then the pipe 

was pulled out of the ground and samples were taken from inside It through a Side-slot. 

The samples were virtually undisturbed. The samples were taken at locatwns that 

correspond to depths of: 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 m. Two 

samples were taken at every depth and the average d1electnc constant was taken as the 

17 



DIELECTRIC CONSTANT OF SOILS AND ROCKS 

final value for that depth and location. The area of the site is 600 m2 or 0.15 acre The 

samples were taken between 11 a m. and 3 p.m. on two consecutive days m March 1996. 

The results for the Site survey are Illustrated in the form of contour graphs m figures 2.16 

to 2 20, as listed m table 2.1. 

Figure Parameter Range Frequency 

2.16 (J 0.34 S/m <a< 0.41 S/m I MHz 

2.17 Er 31 <er< 65 I MHz 

2.18 (J 0.34 S/m <a< 0 41 S/m 146MHz 

2 19 Er 9<Er<24 146 MHz 

2 20 (J 0 34 S/m <a< 0.41 S/m 300MHz 

2 21 Er 3 <Er<20 300MHz 

Table 2.1 Range of the d1electnc constant and conductlVlty as denved from the results of the s1te survey 

The graphs show the soil electric properties m the vertical plane usmg results from 

locations AI to A4, as shown on the map m figure 2 15. The results for the vertical plane 

at locations B and C and the horizontal graphs for different depth are mcluded m 

Appendix A. At the start of the research It was anticipated that the soil consisted of 

stratified layers of dielectric medmms. However, figures 2.16 to 2.21 show that this was 

not correct for the Site under mvestigation. The soil structure here had a more circular 

character, with the highest conductivity in its centre, as shown in figure 2.16. For all 

graphs the conductiVIty vanes between 0.34 S/m and 0.41 S/m. The relative dielectnc 

constant changes per frequencies, the range being the smallest at 300 MHz. This suggests 

that the wave Impedance for an electromagnetic wave travelling through the medium 

changed less at 300 MHz, compared to the discontmuihes at lower frequencies. Hence 

less reflection and refraction was expected at this frequency. Many mtrinsic and extnnsic 

factors were responsible for this vanat10n because bulk density, soil texture and water 

content have the same level of vanation [23]. These results (for a field considered to be 

generally uniform) indicate the mtnnsic level of variability of s01l water properties. The 

distnbution of the dielectnc constant and conductivity are shown m figures 2.22 and 2.23. 

At I MHz, 80% of the samples have a dielectric constant m the range of Er= 26 - 65 (a 

variation of 39). At 146 MHz this is Er= 5 - 26 (21) and at f=300 MHz 80% of the 
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samples are in the range of e, = 3 - 22 ( 19). The distnbutwn of the relative d1electnc 

constant was narrower at the h1gher frequenc1es. Th1s means that the propagatiOn constant 

vanes less at higher frequencies, reducmg the probability of reflections underground The 

survey results were obtamed at temperatures between 5°C and 20°C. Pubhcalions have 

shown the temperature dependence of the electrical properties of water, as are shown in 

figures 2.22 and 2.23. The conductivity shows a significant decrease at temperatures 

above 30°C at m1crowave frequencies It is therefore expected that the conductivity of 

soils decrease w1th temperature because water plays an important role m 1ts electncal 

properties. Measurements of moist sml samples at 10 GHz [4] md1cated a temperature 

dependence of the dielectric constant and conductivity. The measurements were done in 

the temperature range of -20°C and 25°C. Between -20°C and JUst below 0°C, both the er 

and cr were fairly constant. For wet samples, er and cr mcreased sharply at 0°C, to level 

out in the temperature range from JUSt above 0°C to 25°C. The change at 0°C was more 

apparent for wet samples. At subzero temperatures and also above 30°C, cr measured was 

lower than at 5°C - 20°C at which the samples m th1s study were measured. It IS well 

poss1ble that m the 150 - 300 MHz frequency range the same process takes place, 

resulting m a lower attenuation of the electromagnetic wave at these temperatures. 

2.6. Conclusion 

The coaxial probe used in the expenments was suitable for measunng the dielectnc 

constant of high loss and low loss sml samples in the frequency range of I MHz to 2 GHz. 

The measurement system was portable, makmg 1t possible to conduct a survey on-s1te. No 

sample preparation was necessary. The dielectric constant of dry soil was not frequency 

dependent and was rated m between 4 - 8. Its conductlVlty was very low Th1s applies 

both to clays and sands. When the sample moisture was mcreased, 1ts dielectnc constant 

increases, being disperse for clays, but fauly linear for sands. Wet samples exhibit a 

higher dielectric conductivity, being dispersed for both sands and clays. Clays showed a 

higher d1electnc conductivity. The dielectric constant of sml may be as high as 50 at 1.0 

MHz. Soil moisture content was an important factor of its dielectnc behaviOur, as was 1ts 

!,'!"am s1ze. A site survey had been conducted at the location where the under!,'I"Ound 

propagation measurements were undertaken. The dielectnc constant and conductivity was 

measured at 12 different locations and to a depth of 2 ms. The Jso-dwlectnc bars m the 

19 



DIELECTRIC CONSTANT OF SOILS AND ROCKS 

graphs for the vertical plane show that the soil structure here had a circular character, with 

the htghest conductivity and highest dielectnc constant in tts centre. The dtstnbution of 

the relative dielectnc constant was narrower at the htgher frequencies Thts suggests that 

the wave tmpedance for an electromagnetic wave travelhng through the medmm changes 

less at 300 MHz, compared to the changes at lower frequencies. Hence, less reflection and 

refraction was expected at this frequency. The dielectnc constant and conductivity of sot! 

was temperature dependent. 
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3.1nsulated Wire Antennas in a Lossy 
Dielectric Medium 

In applications where transmitter power IS limited, the antenna efficiency may be a critical 

parameter m determming the feasibility of a system In this chapter, the characteristics of 

subsurface insulated linear antennas are investigated. Insulated antennas are used m a 

wide area of applicatiOns such as submanne communicatiOns, microwave hyper-thermal 

treatment, telemetry and geophysical exploration. These experiments were part of a study 

of an underground navigation system, using electromagnetic waves. The applicatiOn IS to 

develop a system that IS able to locate a micro-tunnel dnlling machme, used for laymg 

cables, underground. In principle, an antenna was mounted on the drill, transmitting an 

electromagnetic wave through the ground. Both transmitter and receiver antennas were 

positioned underground. The transmitter was powered by battery and therefore 

transmission through sand, clay or rock has to be achieved using low power. As the signal 

attenuatiOn was high, the antenna electrical length may be a critical parameter m 

determmmg the feasibility of the overall system. The aim of this work was to study the 

effects of soil type and sml moisture content on antenna design. 

Many numencal computational codes exist for calculatmg the characteristics of wire 

antennas Some of the numencal models for insulated antennas are valid for antennas in a 

h1gh loss dielectric only [1,2]. Transmission !me theory can be applied to insulated 

antennas in matter [3,4) by expansion of the wall thickness of the tubular metal shield of 

the conventiOnal coaxial !me. This theory has shown to be valid for msulated antennas m 

seawater (high loss) [3) and sand (low loss dielectric) [4]. In the measurements of antenna 

charactenstlcs published [3,4), the sml constitutive parameters are fairly constant 

functions of frequency. In the predictions the soil electncal parameters are assumed to be 

constant. However, previous investigations show that this assumptiOn IS not correct for 

sml samples [5]. The constitutive parameters of smls vary significantly with soil condition 
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and frequency. In th1s study, the prediCtiOn of antenna Impedance was based on the 

measured s01l constitutive parameters, which were used as mput data mto the computer 

simulation program. The aim of this work was to study and predict the influence of soil 

type and soil moisture content on subsurface antenna admittance and, m particular, on 1ts 

effective length. 

3.1. Theoretical Fonnulation 

The charge and current distnbution of a bare wire antenna in the ground was changed by 

the ground constitutive parameters, makmg the antenna performance a function of the 

ambient medmm The current m the antenna element leaks mto the lossy dielectric and 

that result in a high loss as well as a significant change in the current distnbutwn. When 

using a matchmg network, a part of the impedance change can be compensated for, but 

the loss m the matchmg network IS a functwn of the antenna termmal Impedance. By 

placing a dielectnc sheath around the antenna element, the effect of the ambient medmm 

on the antenna characteristics can be reduced substantially. The current distribution in 

d1electnc msulated antennas m h1ghly conductmg d1electnc matenals can be calculated 

usmg transrnJssJon !me hke equations [3,4]. The antennas are modelled as mfimtely long, 

perfectly conductmg tubes m an msulatmg cyhnder. When the cross sectwn of the 

msulatwn tube IS sufficiently small, the wave will propagate in a TEM mode. The antenna 

consists of a conductmg w1re of radius a, surrounded by two layers of dielectnc msulat10n 

w1th outer radii b and c. The d1electncs of the msulatlon regions 2 and 3 have 

wavenumbers k2=ro(j.loE2) 112 and k3=ro(j.loE3)
112 respectively. The lossy ambient medium, 

regwn 4, has a wavenumber 14=ro[J.4(f4+icr4/ro)] 112 in which e=(Er'-iE,")Eo 1s the d1electnc 

constant, Jl=j.lo 1s the magnetic permeability and cr=o:e,"Eo is the conductivity of the 

medium. The amb1ent medmm and the msulation are assumed to be non-magnetic. The 

wave number in the antenna element h and the charactenstic Impedance per m Z, can be 

calculated usmg the equations [4]: 

(3.1.1) 

with 

I "0)/ l! zL =z -1 +z +z12 ; (3.1.2) 

Here, z1 is the internal impedance per unit length, defined by: 
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(3.1.3) 

in which ro=(1ta2a!)-l ts the charactensttc resistance of the conductor. The senes 

mductance per unit length is gtven by: 

l= llo ln[b] 
27t a , (3 I 4) 

and the senes external impedance per umt length ze is' 

• iOJflo ( H0[k,b] ) 
z•=r•-tx·=~ k,bH

1
[k,b] (3 1.5) 

The position of the antenna in a half space at a dtstance d from the boundary causes a 

reflection of the radtated wave Thts wave creates a eo-directional current m the antenna 

element. Thts reflects the characteristic tmpedance and ts included in the model as the 

mutualtmpedance ZI2 

• lOJflo ( H0[2k,d] ) 
Zl2 =rl2 -IXI2 =-~ k,bH,[k,b] (3.1 6) 

The shunt admittance is defined as follows. 

t21dci 
YL = gL -IOJL = OJflo ln[b/a] 

(3.1.7) 

The current dtstnbution of the open-ended Imear insulated cylindncal dipole antenna of 

length 2h or monopole antenna oflength h is well approximated by 

where (3.1.8) 

The charge per unit length along the antenna element ts calculated from the continuity 

equatton [3]. The current and charge distribution of msulated monopole antennas in lake 

water and in salt water, have been measured and shown to be in very good a!,'l'eement wtth 

the theory [7]. As the published measurements [7] and the calculated distributions of 

charge are in good a!,'l'eement and as the slope of these distnbutions also a!,'l'ees, the entire 

near field and far field can be calculated from the theoretical dtstnbutwn of current A 

Fortran computer pro!,'l'amme based on [8] was used to calculate the field m the 

dissipative mediUm. 

37 



INSULATED WIRE ANTENNAS IN A LOSSY DIELECfRIC MEDIUM 

3.1.1. Theory Constraints 

For the theory to be valid, the antenna ambtent medmm should satisfy the equations. 

(3.1.1.1) 

When the antenna ts of finite length, thts constraint can be wntten as: 

(3 1.1 2) 

Th1s constraint means that the ambient medmm ts requtred to have a higher d1electnc 

constant and conducttvtty than the insulating d1electnc The wavenumber kt is at a 

minimum for a gJVen medmm when its dielectnc constant and conductivtty are relatively 

small, or at low frequencies. 

3.1.2.Antenna Effective Length 

The effective he1ght he of an antenna 1s one of the parameters in measuring its 

performance When an antenna has the same polansation as the incident wave E(p,<p,z), 

the output voltage IS. V = he *E(p,<p,z) The effective length of antenna can be found by 

multiplymg tls phys1callength with the normahsed average current The effective length 

of the receiver antenna 1s a functiOn of angle of mc1dent of the incommg wave and can be 

calculated from the current distnbutton: 

= (2kJ -k,(l-cos[2~0 ])sin[hk1 ]) 
2k1 cos[hk1 ]-lk4 sm[hk1 -~0 ]-lk4 sm[hk1 +~0 ] 

(2kJ - k, (1- cos[2~0 ])sm[hk1 ]) 

In the direct1on of maximum field <po=O the equation reduces to: 

e-,hk,kL -kL cos[kLh]-ik4 sin[kLh] 

<ki -kbsin[kLhl 
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3.2. Experiments 

3.2.1.Antennas used in Experiments 

The antennas used m the experiment were monopole and dipole wire antennas The 

antennas wires were made of alumimum and had a diameter of 5 mm. The conductivity of 

alummmm was found m literature to be 3.0*107 S/m. The antenna feed point was an 

alummium nng with an outside diameter of 37 mm, with m Its centre a 29 mm diameter 

PVC nng that holds the antenna element m Its place. The relative dielectric constant of 

the PVC was measured in the frequency range of 8 - 12 GHz using wavegUide reflectiOn! 

transmiSSIOn techmque and was found to be constant at 2.7. As publications show [ref. I, 

chapter 2] that the dielectnc constant of PVC is fairly frequency mdependent, It was 

assumed that the dielectnc constant of the PVC used was 2.7 m the frequency band of 

100-300 MHz A foam sheath with a radms of 17 mm was used as msulation around the 

antenna element. This foam was measured to have a relative d1electnc constant of I 0, 

using the same measurement technique. The PVC tube with a radms of 19 mm holds the 

foam m place The monopole antenna element was a aluminium wire of length h and 2.5 

mm radius, on a ground screen consisting of 6 equal spaced radial wires of 0.69 m length 

and of 2 5 mm radius as shown in figure 3.1. These dimensions were used in the 

simulations. When modelling the feed point as an infimte transmiSSIOn !me, its 

charactenstic impedance was calculated to be 50 Ohm, based on these radii and d1electnc 

constant. The ground screen was defined m the model as 6 fimte wires of 0. 719 m, mstead 

of using the mfimte ground screen option in Mmmec. The 0.719 m Ienh>th accounts for the 

wire length plus the radms of the aluminium ring, holdmg It. Four monopole antennas 

were made with m-au resonant frequencies of 125, 150,175 and 200 MHz. Figure 3.2 

shows that the ah'!"eement between measurement and simulatiOn in Mininec is very good 

up to 200 MHz. The anti-resonance was measured at a higher frequency than expected. 

This is due to the antenna feeding that was not included in the simulation. For antennas m 

a lossy dielectric, if R is the radius of the ground plane and A.l is the wavelength in air, 

then ifRIA.o > 0.2 the effect of the h'l"Ound plane on the monopole admittance IS negligible 
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[8]. At 300 MHz, RJ~ = 0 69 as R=O 69m and therefore m these experiments the effect of 

the ground screen on the admittance IS neghg~ble. 

3.2.2.Experimental Results 

The problem of measuring and predicting the characteristics of antennas underground was 

made difficult by the fact that m most cases the s01l was not homogeneous. Also the 

granular properties of most so1ls makes 1t more complicated to pos1tton the antenna m the 

ground without d1sturbmg the soil density. Therefore to evaluate the expenmental 

method, the admittance of antennas submerged m an m-door water basm was predicted 

and measured. The dielectric constant and conductivity of the water was measured in the 

frequency range of I 00 - 300 MHz using a coaxial probe and was used in the simulation. 

3.2.3.Antennas Underwater 

F1gure 3 3 shows the comparison between measurement and prediction. The difference in 

the magnitude of the admittance suggests a mismatch between the antenna and the feeder 

or water leaking mto the insulatiOn. However when the antenna was deeper in the water, 

the resonant frequency was measured to be slightly lower than predicted. The effect of the 

distance between the antenna and the water-air boundary on antenna charactensttcs 1s 

Illustrated m figure 3 4 which compares the complex admittance, defined as Y = G + IB, 

at 0.5 m deep with the same measurement at 0.1 m deep For both depths there was a good 

agreement between theory and measurement. The radiated field reflects against the 

ground-air boundary and generates an additional component of the antenna admittance. 

The measurements mdicate that the radiation admittance changes With depth. The high 

mput conductivity of the antenna at resonance makes the antenna at this particular 

frequency a relative efficient radiator. In anti-resonance the reactance and susceptance 

were zero, as in resonance, but the conductivity was near a mimmum. To achieve a high 

efficiency the antenna was to be used at its resonance frequency. Therefore, a further 

study examined the effect of a changing environment on the resonant frequency. 

40 



INSULATED WIRE ANTENNAS IN A LOSSY DIELECTRIC MEDIUM 

3.2.4.Soil as Ambient medium 

In this mves!Igatwn, the soil constitutive parameters measured at the frequency range of 

I MHz to 300 MHz were used for predicting the antenna charactens!Ics. The coaxial probe 

used m the expenments was suitable for measunng the dielectric constant of high loss and 

low loss soil samples. The measurement system was portable, makmg It possible to 

conduct a survey on-site. No sample preparation was necessary. Figures 3.5 and 3.6 are 

results from Keuper marl clay and Leighton Buzzard sand The dielectnc constant of dry 

soil was not frequency dependent and was in between 4 - 8. Its conductivity was very low 

This apphes both to clays and sands. When the sample mOisture was mcreased, Its 

dielectnc constant increased, bemg disperse for clays, but fairly linear for sands. Wet 

samples exhibited a higher dielectnc conductivity, bemg dispersed for both sands and 

clays Clays showed a higher dielectric conductivity. The dielectnc constant of sOil may 

be as high as 50 at 1.0 MHz. 

3.2.5.Antenna Admittance in Various Soil Types 

Figure 3. 7 shows the difference between the prediCtiOn using a constant Er and cr taken at 

!50 MHz and Er and cr measured. Around the resonant frequency, the predictiOn based on 

the Er and cr measured was in better agreement with the actual antenna admittance. 

Therefore, the electncal properties of the antenna environment were measured mstead of 

estimated. 

To position the antenna underground, a dnll was used with a diameter equal to that of the 

antenna msulat10n, m order to minimise any sml disturbance. In all the measurements, the 

antenna element with its dielectnc shield was m the ground while the ground screen was 

on the mterface between ground and air. The antenna which was designed to resonate in 

air at 150 MHz resonated, m mOist sml, at 96 MHz as shown m figure 3.7. The agreement 

between measurement and Simulation was very good. The soil type was detennined to be 

keuper marl mixed With a small quantity of sand and humus. Its moisture constant, 

expressed as the mass of the water contained in the sample related to the sample mass, m 

percentage, was measured to be 6 5%. Resonance occurs at h=0.25A.,ooi· Figure 3.9 shows 

the resonance frequency of an antenna with length h=0.556 m, simulated with the ambient 

medium data of keuper mar! and river sand with vanous different mmsture content. A 
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h1gher moisture content of the sml resulted m a higher dielectric constant of the ambient 

medium, but also a higher conductivity and therefore a higher loss. Increasmg the 

moisture content of the sample from 5% to I 0 8% made the antenna resonant frequency 

decrease from 96 MHz to 93 MHz respectively Th1s was because the dielectric constant 

mcreases makmg the wavelength shorter for a given frequency. 

3.2.6.Antenna Effective Height 

As shown m figure 3.13 the antenna effective length he was dependent the ambient 

medmm of the antenna For antenna w1th a length of 0.441 m, as was used in the 

expenments, I he I =0.041 m in relatively dry keuper marl clay, wh1le I he I =0 015 m m 

mmst clay at its resonant frequency, when h/1.=0.25 At th1s frequency, the antenna was a 

more effective radiator in dry sml greater than a factor of two. Th1s was due to the loss m 

the ambient medmm that reduces the amplitude of the current propagatmg into the 

antenna conductor When companng the results m figure 3.1 0, a shorter antenna has a 

relative greater effective length m a h1gh loss medmm. Measurements showed that the 

predicted Q of the antenna mcreases with a h1gher sml moisture content, resultmg m more 

energy stored m the antenna, decreasmg its efficiency. It was calculated that the d1electnc 

sheath should have a d1electnc constant close to I 0 to achieve the optimum antenna 

efficiency. 

3.2.7.Radiated Field 

The standard method for descnbmg the antenna radiation pattern in au was not suitable m 

a conductmg medmm [9] because the pattern was h1ghly dependent upon the choice of the 

ongm of the co-ordmate system. Th1s was due to high dissipation of energy m the 

immediate v1cmtty of the antenna. For an antenna in a1r, part of the energy m the near 

field was stored In a conductive medium a major part of this energy was dJsstpated. In 

expenmental determmation of the radiation pattern of antennas in atr it is customary to 

rotate the transmitter antenna whtle using a fixed recetver. The mmor change m dtstance 

of the transmitter to the receiver antenna when tt rotates becomes stgmficant m a 

conductive medium. Figure 3.11 shows lEA as a function of dtstance from the centre of the 

antenna w1re. The calculated field on the conductor was zero, mcreasing to 16 dB for dry 

soil, and -8 dB for wet soil, at the msulat10n. The overall field strenh>th for dry soil was 25 
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dB below that of wet soil. In figures 3.12 and 3.13 the IEzl was predicted for dry and mOist 

soil. For dry sOil a minimum was observed at 37° from the positive p-axis The overall 

radtatwn pattern was more omnidtrectional in the htgher conductive medmm of wet sOil. 

3.3. Conclusion 

A method was developed to predtct the admtttance of an insulated monopole antenna in 

soil, using measured data of the ambtent medmm. The model was based on transmtsston 

line hke equations and can be apphed to monopole and dipole wtre antennas but was 

tested for msulated monopole antennas m sOil and water. The electrical properttes of sot! 

and water samples were measured on-site using a coaxtal probe. There was good 

agreement between the predtctwns and the measurements of the antenna tmpedance. The 

dtelectnc constant and conductivtty of sOils can vary per sOil type, sot! mOisture content 

and frequency used. An increase in the moisture content of the sample from 5% to 10.8% 

made the antenna resonant frequency mcrease. Thts was because the dielectric constant 

increases makmg the wavelength shorter for a given frequency. The msulated monopole 

antenna had a htgher effective length m a low loss dtelectric. In companson wtth dry soil 

as ambtent medtum, the dtpole antenna m wet sot! had a shorter effective length and tls 

radtatton pattern was more omnidirectional. It was calculated that the dielectnc sheath 

should have a dtelectnc constant close to 1.0 to achieve the opttmum antenna efficiency 
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4.Underground Propagation 

4.1. Introduction 

In companson with electromagnetic wave propagation m air, underground propagation ts 

hmited by the high attenuation due to the conductivity of sotls and rocks. Environmental 

factors hke soil electncal properties and soil structure are seldom known, makmg the 

prediction of underground propagation dtfficult In this study the range of depth of the 

transmitter was in between 0 0 I and 3 m whtle the receiver was at 0.05 m depth and hence 

the atr-ground boundary affected the mode of propagation 

The research atmed to have a simulation model that predtcted the path loss for an 

electromagnetic wave propagating underground. U smg the simulatiOn model and the 

results from extenstve field trials, the feastbthty of underground navigatiOn usmg 

electromagnetic waves was mvestlgated. The antenna characteristics and the soil structure 

and electncal properties discussed m prevtous chapters were used here as an mput mto the 

model. 

This problem of underground propagatiOn can be approached in two dtfferent ways. One 

approach would be by usmg numencal algorithms to calculate closed form integral 

equations of the problem. An example of this is the Numencal Electromagnetic Code 

(NEC) version 3, developed at the Lawrence Livermore Laboratory [I]. NEC combines an 

electncal field integral equatiOn for wires and a magnetic field integral equation for 

surfaces to model wire antennas in their envtronment. The equations are solved 

numerically usmg the Method of Moments (MoM) method. The other approach would be 

to derive approxtmate stmple equations that represent the different polansation of the 

wave propagatmg undeQ,'found [2]. In understandmg and optimismg under!,'fOUnd 

propagation, this second method allows the analysts of the wave components 
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mdependently and therefore gives more information. The path loss and phase velocity 

measured in the field tnals were compared wtth the predtcted results. The mvestlgatwn 

into undergrolllld navigation usmg electromagnetic waves dtscussed in thts chapter was 

based on the results of expenments of underground and underwater electromagnetic wave 

propagation 

4.2. Background 

The study of the propagation of electromagnetic waves in an imperfect dtelectric is of 

relevance to geophysical exploration, subsurface commumcation, terrestnal mobile 

commllllicatwn and medical imaging Some early pubhcatwns [I ,2] focus on 

communication through the earth's crust. The ground is assumed to constst of a flat layer 

of dry rock of approximately constant thtckness over the transmission path, surrounded on 

both stdes by wet layers ofhtgher conductivtty and a thtckness greater than the skm depth. 

The basement layer of gramte rocks in the earth's crust has a low conductivity If the 

transmttting and recetvmg antennas can be placed wtthm the basement grantte, the 

propagation attenuation is expected to be very low. Early publications on submarine 

commumcatwns described experiments m whtch electromagnetic waves transmitted from 

submannes submerged 6 m deep could be detected m atr at a dtstance of I km [3]. 

Electromagnetic waves are htghly attenuated m seawater, due to tts htgh conductlvtty, 

except at low frequenctes for whtch practical distances are in the near field. The sea can 

be assumed to be a homogeneous dielectric and the propagatiOn can be modelled as 

occurring m a dtelectnc halfspace with a dielectric constant and conductlvtty. 

Measurements m a lake [4] at 144 MHz conclude that the path loss over 100 m ts 50 dB. 

The transmttter and receiver dtpole antennas are posttioned in the lake water, just below 

the au-water boundary. The relative perrntttlvity and conductlvtty of the lake water were 

measured and found to be 81 and 0.06 S/m, respectively. This conductlvtty ts very low 

compared to that measured for sotl samples m thts study and the loss experienced in 

underground propagation are therefore expected to be much higher. The lake water can be 

assumed to be a homogeneous dielectric and, therefore, there were no retlecttons other 

than at the boundary wtth the atr. 

Other research has suggested the use of electromagnetic waves for holo&>raphtc tmagmg of 

under&>round objects [5,6]. The propagation veloctty of electromagnetic waves in soil is an 

essential parameter for reconstructing obJect images. The subject depth and the 

53 



UNDERGROUND PROPAGATION 

propagation velocity in sml can be estimated, m pnnciple, from any two transmitter

receiver tracks The depth of the object is estimated from the time between transmissiOn 

and reception of the radio burst, takmg mto account the distance between the transmitter 

and receiver. Using many of different distances between transmitter and receiver results in 

a high accuracy of the estimated velocity. The frequencies used are in the range 500 -

1000 MHz. The ground acts like a lowpass filter. Dipole antennas are used, laying on the 

ground surface or sometimes buned up to a depth of 50 cm. A Similar system was 

developed to find underground water in the desert [7]. Both the transmitting and receiving 

antennas were on the ground surface. In order to ensure the mimmum amount of 

refraction and to avmd total reflection from various underground strata, the incident wave 

should be as near to normal as possible. This means that the receivmg and transmitting 

antennas are positioned close to each other. Usmg the variable distance between 

transmitter and receiver, water can be detected at depths in the range of 100 to 2000 m. 

The frequencies used are in the between 300 Hz and 4 kHz. Stmtlar techmques are used 

to find geological faults [8]. From the reflectiOn from the air-ground boundary, the ground 

intnnstc impedance IS calculated. The sml stratified structure can be predicted from the 

impedance. The power of the reflected wave measured was lower than calculated with 

ray-optics theory that was used to find the impedance. PropagatiOn studies through dense 

forest m which both the receiver and transmitter antenna are in the vegetation concluded 

that for a constant antenna height the received field vanes inversely as the d1stance square 

[9]. The presence of the vegetatiOn causes a constant loss. The wave travels from the 

transmitter antenna to the air-vegetation boundary and travels laterally along the 

boundary. The frequenc1es of the measurements are in the range 1-1 00 MHz. These 

results are relevant to terrestrial mobile commumcatwn, for example for Terrestnal 

Trunked Radio (TETRA) m the 420 MHz frequency band 

In seismology the lateral wave is usually called the head wave. Analogous to underb>Tound 

electromagnetic wave propagation, m acoustiCS there IS a transversal wave, which IS the 

direct wave, and the longitudinal wave, which IS lateral wave. In the case of pulsed 

radiation the lateral wave reaches the pomt of observation first. Effective methods of 

seism1c exploration are based on Its recordmg and analysis [10]. The different veloc1ties 

of the direct and lateral waves makes 1t poss1ble to determine the epicentre of an 

earthquake. 
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4.3. Theory 

The study of the propagation of electromagnetic waves along the boundaries of fimte 

regtons that may have irregulanties, obstacles and dtscontinmties ts made difficult by the 

uncertamty of the sml structure and properttes. In one posstble situation the sml was dry 

sand and its electncal behaviOur could be approximated by a lossless homogeneous 

dielectric halfspace. Another sttuatwn was when the soil consisted of stratified layers of 

soil types with various dtelectnc constants and conductivities. Here, the wave propagates 

between the ground- boundary and any boundary between the strata of sml To be able to 

solve Maxwell's equations for the boundary conditions in an mhomogeneous medmm, tt 

would be necessary to model the matenal on a mtcroscoptc level From the dtelectnc 

constant and conductivity survey as reported m chapter 3, tt became clear that the sml 

structure was far too complicated to model on a mtcroscoptc level Hence the sot! was 

assumed to a homogeneous tsotropic dtelectric halfspace. On the day of the field 

measurements, soil samples were taken and the dtelectnc constant was measured on site. 

4.3.1. Modes of Propagation 

The properties and structure of what was underground allows for vanous modes of 

propagation. A smgle dtelectric interface supports a lateral wave while structures wtth 

multiple boundaries support other field varieties, known as leaky waves The energy 

shtftmg properttes of leaky waves are much stronger than these of lateral waves. Wtthm 

the half space regwn the wave must satisfy the Helmholz equatwn: 

(v' +e)97 = o, (4.1) 

where <pis any of the field components and k is the propagation constant m region 0 (atr). 

Gtven that the wave propagates m the x dtrectwn, the solutions appear in the fonn. 

(Stratton) 

'P = e'(kxx-kzz-a.r), (4.2) 

where kx and k, satisfy the dispersion equation: 

kz=~k 2 -k;, (4 3) 

These boundary conditions satisfy for complex values kp ofkx, which can be written as: 

kp=f3+w. (44) 
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The phase factor of the wave is k*sm(9), where the wave IS mc1dent or reflected at an 

angle e. There are a number of possible solutions that satisfY the boundary conditions 

[ 11]. When the wavenumber k, is m between -k and k, then the wavenumber is real and <p 

1s a homogeneous wave. In the case that lkxl IS larger than k, kz must be Imaginary 

therefore <pis an inhomogeneous wave. For discrete values ofkx the contmuity equation at 

the boundary 1s satisfied and <p is a surface wave. A surface wave propagates along an 

interface between two d1fferent media Without radmtion. This radiation is energy 

converted from the surface wave field to some other form. The wave propagates along an 

idealised surface, which IS a perfectly smooth and long~tudmal stra1ght mterface [12]. The 

surface is assumed to be smooth when any obstacle is smaller than 1116 A.. 

When kx=kp, <p is a complex gmded wave. In case of a smgle d1electnc mterface, th1s 

guided wave IS a lateral wave, while structures with multiple boundanes th1s w1ll be a 

leaky wave. When the medmm is lossless, k IS real and to satisfY equatwn (4 3), kz has to 

be complex also, resulting in an evanescent mc1dent wave. Because of th1s decay, a 

homogeneous (plane) wave cannot by 1tself exc1te a lateral wave. When vert1cally 

polarised, an inhomogeneous wave suffers an exponential delay in the z direction and 

therefore possesses a field structure w1th an evanescent d1stnbution over the wavefront. 

Therefore, a line source or point source can nevertheless exc1te a lateral wave m a lossless 

medmm. 

The entire wave splits in two groups of waves in propagating along the boundary. In the 

first group there are the usual incident wave, the correspondmg reflected wave, and the 

refracted wave, which are all exponentially decaymg waves, as IS shown m figure 4.1. In 

the second group 1s the wave refracted and propagatmg along the boundary, and the lateral 

wave. Each group propagates w1th 1ts own veloc1ty and satisfies the boundary conditions 

separately [I 0]. A way of analysmg the propagatiOn of surface waves and lateral waves 1s 

by defining the surface impedance of the guiding structure in terms of field components. 

The wave attenuatiOn depends not only on the phys1cal properties of the guiding structure, 

but also on the nature of the field For a g1ven structure there are two possible values for 

th1s impedance, one depending on the transversal electric field and longltudmal magnetic 

field and the other (for perpendicular surface waves) on the longitudinal electric field and 

the transversal magnetic field. Once the surface impedance has been defined, the decay 

factor of the surface wave can be related to it. This relatiOn also depends on the surface 
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geometry. The field must penetrate a finite distance into the guiding structure, because a 

fimte volume ts reqmred for the storage of energy [12]. In general, an increase in the 

reactance will reduce the effective spread of the surface wave field outstde the surface, 

and at the same time reduce tts phase velocity along the interface. Any increase in the 

resistance tends to tilt the wavefront (represented by an eqm-phase plane outstde the 

surface) forward, so that a larger proportion of the power is dtrected mto the surface. This 

results m mcreasmg the value of the phase veloctty in the dtrectton of the mterface. The 

higher the reactance of the supporting surface the more closely is the dense part of the 

field confined to the surface region and the smaller is the radiation arismg from any shght 

curvature m the dtrection of propagatiOn. 

4.3.2.Approximate Equations for the Lateral Wave 

The first mvestigator to present a theory of ground-wave propagation over flat earth was 

Somerfeld m 1899 [13]. The wave he descnbed is exctted by a vertical dipole antenna 

above earth. Zenneck, one of Sommerfeld's students, gave the appropriate solution of 

Maxwell 's equattons for the mhomogeneous plane wave over a flat surface wtth fimte 

losses, and thts ts a surface wave In 1936, Norton published stmphfied equations for the 

lateral wave component of Sommerfield's comphcated solution [14]. Baftos [15] denved 

approxtmate equattons for subsurface dipoles in seawater. In thts model the wavenumber 

m atr, regton 0, is k0=ro(J..loE3)
112 and the sea water, regton 4, has a wavenumber 

i4=ro[J.4(£4+tcr4/ro)] 112 in which E=(E,'-ic,.")Eo is the dielectric constant, !!=J..lo IS the 

magnetic penneabthty and cr=roc,"Eo IS the conductlVlty of the medmm. The seawater is 

assumed to be non-magnetic. The radtal distance between the transmitter and receiver 

dipoles is p, whtle the transmitter and receiver are at depths d and z respectively. The 

pomt of observatiOn is specified in cylindrical co-ordinates (p,cp, z) with region 4 defined 

by z>O and region 0 (air) by z<O. The positive x-axis lies along the axis of the dipole and 

Its ongm comctdes with the origin of the cylindrical co-ordinates as is shown m figure 

4.2. The source is a dipole normalised to have an unit electric moment (I ~I = 1 Am). For 

the near field the field components for distances in between: koP < I < lk4pJ 

(4.5) 
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E4 =- iOJf.Lo smtp e•(kop+k4(d+z)) 
ffJ ldc] p3 

(4 6) 

2 
E = OJf.Loko costp e•(kop+k4(d+z)) 

4z 2 k3 2 
Jr. 4 p 

(4 7) 

The field components for the mtermediate field, for d1stances ranging from: 

l(ko/ k] )ko~ <I< k0p 

iOJf.Lok{j costp[l+z ko ~~Jdc (p)]e•(kop+k4(d+z)) 
27dc] p k4 ° 2 

(4.8) 

(4.9) 

(4.10) 

In comparing these equations for E4p the wave attenuation is proportional to l/p2 m the 

near field and approximately 1/p in the intermediate field. The attenuatiOn IS expected to 

reduce when the wave travels from the near to the intermediate field. Also in the near 

field E4z shows the lowest attenuation. The attenuatiOn as a function of depth of the 

transmitter and rece1ver 1s exponential and has a major contnbutlon to the overall 

attenuation, as 14 is h1gher for lossy matenal. The model as proposed by R.W.P. Kmg has 

shown to be accurate for propagation m sea and lake water [2] 

The lateral-wave field of electric type has the followmg components m the earth or sea: 

(4 11) 
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(4.12) 

( 4.13) 

In these equations J(p,k, ,k2 }, g(p,k, ,k2 } and h(p,k, ,k2 } are: 

2 2z zk2 " _,P 2 ( )1/2 
h(p,k1,k2)=---z+--3 +-k -k- e F(p) 

p k2P 1P 2P 

With the Fresnellntegral equation: 

I 
F(P) =z(i+i)-C2(P)-zS2(P) 

where 

p 11 

C2(P)+iS2(P) = f ~dt 
0 -v2m 

(4 14) 

(4.15) 

(4.16) 

( 4.17) 

(4.18) 

The equation C2(P)+zS2(P)can be written in the fonn of a senes expansion of the 

complex error function [16]. The parameters P, Rand Z are: 
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(4 19) 

In (4.11), (4 12) and (4.13) the radml distances r, and rz are given by: 

(4.20) 

The direct field IS g~ven by all terms with e'k4'1 , m which r1 is the direct path and 14 is 

the complex wavenumber of the electromagnetic wave in the dielectric. The reflected 

field is the sum of all terms with e'k4rz . The lateral wave field is given by all term with 

e'kop e'k4 (z+d). From this equation, it becomes clear that the magnitude of the received 

signal is exponentially attenuated with the depth of both the transmitting and recelVlng 

antennas. When z and d are constant, the lateral wave attenuates exponentially with 

distance p and with a wavenumber kO. 

In region 4, when z ~ 0 and 1141 >> lk2l' EquatiOns (4.11) to (4.13) were tested for lake 

water and seawater, whereby water, by its nature, can assumed to be homogeneous. In 

these measurements, the properttes of the dielectnc are constant m time. Electromagnetic 

wave propagatiOn underground is made difficult by the uncertainty of the compositiOn of 

the sml and Its electncal properties. Additionally, weather causes the dielectric constant 

and conductivity to change, makmg electromagnetic wave propagatiOn underground 

change with time and locatiOn. As discussed in chapter 3, an mcrease m sot! moisture 

content mcreases the dielectnc constant and conductivity and, therefore, also the 

wavenumber and the mode of propagation of the electromagnetic wave underground. This 

means that the path of the strongest signal recetved also depends on environmental 

condttions like the weather. Also, the path of the strongest stgnal vanes, as tt is a function 

of distance between the transmitter and receiver As part of this research, extensive field 

trials were undertaken to measure the amphtude and phase of the received signal. 

EquatiOns (4.11) to (4.13) were used to simulate the field trials to evaluate their validtty 

for vanous condttions. The first measurements are on underwater propagation, as the 

mediUm ts homogenous and the environmental conditions for the experiment are eastly 

controlled. The electrical properties of the medium are measured on stte at the day of the 

measurements and used m the stmulations. When the theoretical results are m good 

a1,'!'eement with the measurements, the propagation modes are analysed. Then the 

environmental parameters were changed to study posstble variations in phase and 
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amplitude of the received wave. The aim of the study was to predict the displacement of 

an underground transmitter, using one or more receiver antennas on the ground surface. 

Related publications were on underground radar, which focus on applications where the 

transmittmg and receiving antennas are a few m above the target. A situatiOn where the 

transmitter is 3 m deep underground and with a radius up to 60 m away from the receiver 

antenna is a different problem Sml aggregates, by their nature giVe a variation of 

attenuation and wavelength change of electromagnetic waves travelling through them 

Abrupt changes m dielectnc constant or underground pipes or obJects may result m wave 

reflectiOn. ReflectiOns from underground pipes will greatly depend on the locatiOn and 

orientation of the pipe relative to the wave polansatwn Also the conductivity of theu 

matenal makes a difference to the reflection The data from the field tnals are exammed 

for evidence of reflectiOns on objects. In the predictiOn of underground wave propagation, 

the sml was assumed to be a semi-mfimte homogeneous medmm. The data from the 

survey was used to find realistic values for the e, and cr used as mput parameters m the 

model The survey data was also used to explain the propagation measurements. An 

important question in the study was the strength of the lateral wave and surface wave, if 

present at all. It was expected that the megular surface of the field where the trials were 

takmg place might obstruct such a mode of propagation. 

To analyse the modes of propagation that exist near the boundary between medmm 0 (air) 

and medmm 4 (ground), first the reflection coefficient of a homogeneous plane wave 

excited by a source (I) in air and (2) underground were calculated The plane wave 

reflectiOn coefficient of magnetic type, in which the electnc field IS perpendicular to the 

plane of mcidence, IS 

(4 21) 

where y,m IS the normalised magnetic surface admittance gtven by. 

n2 =(~)2 =e,, __ j_a_, 
ku llEu 

(4.22) 

In equation ( 4.22) n is the refraction index for both types of reflection coefficient. The 

plane wave reflection coefficient of electnc type, in which the electric field is parallel to 

the plane of incidence, is 

f. =lf.ie-N" = cos(8)-zj8) 
" " cos( B)+ z.,.(8)' 

(4.23) 
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where Zse is the normahsed electnc surface impedance given by: 

(4.24) 

Figure 4.3 shows the magnitude of fer and fmr for a homogeneous plane wave in air, 

reflected on the ground. Medium 4 IS sOil and was assumed to be a homogenous isotropic 

medmm. The soil characteristics vary from relatively dry sand and clay aggregate sOil 

with a grav1metnc moisture content of w = 6 3 % to wet soil with w = 22. 7%. The 

conductivity vaned between a = 0 02 S/m and 0.17 S/m. Figure 4.4 shows the magnitude 

offer andfmr as a function of conductivity. The magnitude offer was at a deep minimum 

when the angle of mcidence is near 1t/2. When medmm 4 (ground) had the highest 

conductiVIty and dielectric constant, the reflectiOn coefficient was the lowest. This 

suggested the highest absorption of energy caused by currents at the surface. From 

geometric optics, the Brewster angle IS the cntical angle of incidence <Jlc when there is no 

reflectiOn or transmissiOn and the wave IS refracted and propagates along the surface. 

When the medmm below the surface is lossless the angle of incidence <Jlc is real. For a 

lossy dielectric hke the soils in figure 4.3 , the plane homogeneous wave can no longer 

expenence zero reflectiOn and the angle of incidence IS known as the pseudo-Brewster 

angle for which fer IS a mm1mum In these circumstances, the wave cannot be regarded as 

a characteristic mode of the surface [12]. Only an inhomogeneous wave IS capable of 

satisfYing the requirements of a pure mode supported by a lossy surface. The Zenneck 

surface wave IS an mhomogeneous plane wave in air mcident on a flat surface at the 

Brewster angle. Graphs of fer and fmr for a homogeneous plane wave m medmm 4 

(underground) reflected agamst the boundary with medmm 0 (air) are shown m figure 4.5 

The magmtude for fer shows the deepest m1mmum for the soil with the low conductiVIty. 

This mm1mum moves closer to zero when the conductivity mcreases The differences m 

fer and f,nr for a given angle of incidence IS less s1gmficant than in figure 4.3. Overall, the 

reflectiOn coefficients are high ind1catmg that httle energy IS transmitted into medmm 0 

(air) or refracted along the surface when the angle of mcidence is at the Brewster angle. 

The conditions under which the lateral surface wave exists are an inhomogeneous wave 

incident on the boundary with an angle of incidence that is near the Brewster angle. A 

lateral wave is a bundle of rays or a beam of bounded extend incident at the boundary at 

an angle $, close to cl>c A lateral wave is absent If the mcident field IS a homogeneous 

plane wave, so that the finite width of the incident field is essential m producmg a lateral 
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wave The lateral wave manifests Itself by (a) producmg a lateral shift of the bounded 

reflected wave and (b) excitmg a weak field that accompanies the reflected field. Neither 

of these two effects IS accounted for by geometnc optics [I 7]. 

Expenments have confirmed the validity of equations (4.1 I) to (4.13) by R.W.P. Kmg 

when medmm 4 is lake water. A companson between these and the approximate 

equations for the near field and intermediate field derived by Bai\os are shown in figure 

4.6. Between 0 3 m and 3 m distance the agreement between both approximations IS good. 

At close range and far distances the differences are large. Equations (4 II) and (4 13) 

have been shown to be m very good agreement with numencal solutions of the 

Sommerfeld integral equatiOns [2]. Hence they will be used m the rest of this chapter. 

4.4. Equipment for Field Trials 

4.4.1. Frequencies used 

At the start of the field trials the modes of propagation excited by a transmitter 

underground were difficult to predict. The rough terrain surface and the uncertamty of 

what is underground made the excitation of surface waves unlikely. The use of HF or 

lower frequencies would make the size of effective antennas Impractical for field tnals. 

From the measurements of soil dielectric constant and conductivity that were used to 

predict the plane wave attenuation it was clear that transmission on frequencies above 500 

MHz results in a very high attenuation. Partly from the predictions and partly from the 

practical concerns, it was decided to use frequencies in the range of 100 to 300 MHz. 

4.4.2.Antennas Used 

Unhke a conventional antenna m air, WIth parameters that are independent of the 

electromagnetic environment, reflections from the conducting surrounding media 

impinging upon an antenna underb•round can deb'fade such parameters as gam, bandwidth, 

sidelobe level. Also the absorptiOn and storage of enerb'Y m medmm 4 changes the 

antenna pattern. As was concluded m chapter 3, the positioning of a dielectnc loaded 

dipole m a conductive medium resulted m a limited gam mcrease but also m 

desensitisation. In order to create a large electrical moment, It was possible to increase the 
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current to compensate for a small electncal length, but only up to the current carrymg 

capac1ty of the conductor and the ava1lable power. It was evidently desuable to have as 

larger effec!ive length as possible and to use mm1mum power. Therefore, d1electnc loaded 

antennas were used w1th a length matched for the frequency and environmental 

parameters As m the field tnals, the circumstances in which the antennas were used 

varied greatly, dielectric loaded monopoles or dielectnc loaded dipole antennas without a 

balun were used. The charactenstics of the antennas were predicted after the field trials 

and fed into the SimulatiOn. Samples of the soil at the site were taken on the day of the 

tnals and their characteris!ics measured on-site and in the laboratory 

4.5. Underwater Propagation Experiments 

Experiments of underwater propagatiOn were conducted m the basm m the Underwater 

Acous!ics Laboratory at Loughborough University. The a1m of the experiments was to 

measure electromagne!ic wave propaga!lon m a homogeneous half-space with a smooth 

plane boundary, as 1s assumed on the simula!lon model Interference from reflections was 

very small, as the attenuatiOn of the electromagnetic wave in water is Significant. The 

measurements were done in the centre of the basm, away from the walls. The d1electnc 

constant and conductivity of water were measured to be E, = 76 4 and cr = 0 0145 S/m 

respec!lvely. Two bare dipole antennas were used with a physical length of 0.75 m. The 

power fed mto the transmitter antenna was 24 dBm. The measurement set-up IS descnbed 

m Appendix C. Both the transml!ter and receiver antennas were submerged m the water to 

a depth of 0.02 m. The distance between them was vaned between 0 10 and 2.00 m. 

F1gure 4. 7 shows the measured amplitude of the received Signal, compared w1th the 

predicted Signal, wh1le figure 4.8 shows the phase. The agreement was very good except 

for distances smaller than 0.30 m, where the predicted power level was higher. The 

attenuation between 0.10 and 0.30 m was exponential and hence very sensitive to small 

errors m measurement of the distance between the antennas or the antenna horizontal 

alignment The l/p3 attenuation was charactens!lc of the direct wave. The phase of the 

rece1ved signal is shown in figure 4.8. Between 0 I 0 and 3.50 m the phase was nearly 

linear md1catmg a pure direct wave. The wavelength seen was the wavelength in water, 

wh1ch was 0 69 m, as calculated from the electrical properties of water. Between 3.5 and 

8 m the lateral wave takes over from the direct wave, until after 8 m the lateral wave 
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becomes dominant The amplitude of the reflected wave was very small. As the antennas 

were very close to the water surface, there is no reflected field. 

4.6. Underground Propagation Experiments 

The measurements of underwater propagation have confirmed the validity of the theory m 

a Situation where the medmm m which the source was located was homogeneous and 

could be assumed to be a half-space. The study of the propagation of electromagnetic 

waves underground along the boundanes of fimte regwns that may have megularities, 

obstacles and discontinuities was expected to result in greater differences between the 

predictiOn and the actual experiment In this study the discontlnmties were not mcluded m 

the propagation SimulatiOn model, but any unexpected megulantles m the measurement 

were examined quahtahvely. Studies of the dielectric constant and conductlVlty of smls in 

Chapter 2 have shown that the path loss of a plane electromagnetic wave underground 

was on average 15 dB/m for moist soils Plane wave transmissiOn over distances larger 

than I 0 m m mmst sml was therefore not feasible. This clearly suggested that the analyses 

of the underground propagation measurements should be focussed on lateral wave 

propagation near the air-ground boundary. In the extensive field experiments conducted 

as part of this study both the transmitter and receiver antennas were Withm 2 m from the 

air - ground boundary. The measurements were done m a field on the campus of 

Loughborough University. For a dtstance of 30 m a ptpe was laid underground, using a 

mtcro tunnelling machme The maximum depth of the pipe was 1.5 m. The depth and 

location of the underground ptpe was estimated from a location system, based on the 

magnetic field exctted from a cm! m the dnll By findmg the strongest stgnal, the locatiOn 

of the dnll was found. Then the depth of the drill was estimated, usmg the strength of the 

magnetic field. This location system requires the receiver to be above the drill, which may 

not be posstble m many applications. Examples are the dnlhng under a nver or ratlway 

!me. The plastic pipe has an inner diameter of 48.5 mm and a thickness of 6 mm. A 

diab'l'am of the site and pictures are included in Appendtx B. The pipe functions as a 

micro tunnel through whtch the transmitter was moved. The aim of the proJect was to 

estimate the underb'I'Ound dtsplacement of the transmitter by measuring the amphtude and 

phase at the receiver antenna(s). There was a frequency spectrum because the osctllatwn 

dted out m a fimte time. The damped oscillations of the soils and water particles produced 

a narrow band of frequencies. In all the measurements, a dielectric loaded dipole antenna 
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underground was used as the transmitter antenna. In the expenments where the receiver 

antenna was underground, a dtelectnc loaded dtpole antenna was used. For one 

expenment a monopole m medium 0 (air) was used as a receiver antenna. 

In order to achteve a higher accuracy m locatmg the underground transmitter the phase of 

the recetved signal was measured, m addttion to the amplitude. These measurements 

proved more dtfficult as the phase measurements were more sensitive to errors as shght 

movements were detected As in the prevtous measurement, the transmitter was moved 

through the pipe on campus at Loughborough University, and measurements were taken at 

steps of 0.10 m The receiver antenna was postttoned at various locations underground 

and, for one measurement, at 0.5 m hetght above ground The measurement of both 

amplitude and phase started m December 1995 and lasted until July 1996 As thts period 

mcluded three of the annual seasons, the weather conditions dunng the measurements 

vaned between a temperature of -5 degrees Celsms and snow, to +26 degrees C. and 

sunshme. These variations were reflected m the mmsture of the sml. As the sot! electrical 

properttes were measured at the start of each field tnal, the changes m environmental 

parameters were included m the stmulattons. Equations (4 11) to (4.13) were used to 

predtct underground wave propagation. The equations were derived for dipole antennas 

with a umform current dtstribution. 

4.6.1. Field Trial 1, Receiver Antenna Underground 

The location of an underground transmitter by means of measuring the recetved amphtude 

only has shown to gtve results that compared well with the simulattons At the start and 

end of the measurements, when the transmttter was near posttlon 0 and 30 m 

displacement, there was a difference between the average power measured and predtcted. 

The radial field component E4p(p,<p,z) was measured due to a honzontal dipole at various 

locations in the p1pe underh'I'Ound. Figure 4.9 shows the magnitude of the rece1ved s1gnal 

when the rece1ver antenna was located in posi!lon A3 (see appendix C). In this position 

the receiver antenna was 2.5 m away from the starting posttton of the transmttter and 

ahgned perpendicular to the transmttter antenna. The starting positiOn of the transmitter 

was 2 m behmd the transceiver. F1gure 4.9 shows a max1mum at 2 m displacement when 

the dtstance between the transmttter and receiver is a mtmmum. The measurements were 

done at f = 146.5 MHz. The receiver antenna was a dielectric loaded dipole antenna at 
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0.02 m depth underground wh1le the transmitter was moved through the p1pe m steps of 

0.10 m. The dielectric constant and conductivity of the soil were measured to be e = 15 

and cr = 0.012 S/m. The antenna effic1ency he was predicted from the antenna phys1cal 

dimensiOn, 1ts depth and the soil electncal properties. From th1s, he= -0.0074 + 0.1315j. 

From the wavenumber of the soil !4, the wavelength underground was A4 = 0.52 m. The 

wavelength m mr was A.o = 2.0 m. There was a good agreement between the measured and 

predicted a!Uphtude. In the short distance when the displacement was m between the start 

and 6 m, the prediCtiOn shows the mterference of the direct and the lateral waves. The 

interference pattern measured was different from the prediction, but the amplitude 

vanation was m the same order of magmtude The differences were attnbuted to the 

mhomogeneous soil and inaccurac1es m the measurement of distances. At displacement 

distances greater than 6 m, the predictiOn showed no npple Figure 4.11 shows the 

predictiOn of the direct wave E4p, dorect. the reflected wave E4p, reflected and the lateral wave 

E4p, lateral of the total field E4p for !denhcal conditiOns as the measurements m figure 4.9, 

but for a dipole normalised to have an unit electric moment (I b.! = I Am). Analyses of 

figure 4.11 shows that the lateral wave component E4p,lateral was stronger at every pomt in 

the measurement When the transmitter and rece1ver were separated at a short distance, 

E4p,lateral IS still approximately 11 dB above E4p,dorect wh1le the magnitude of E4p,reflected IS 

insignificant. The m1mmum of E4p,reflected at approximately 2 m displacement was because 

at th1s pomt the transm1tter and rece1ver antennas alignment was perpendicular. Between 

6 and I 0 m displacement, the lateral wave component was 20 dB stronger than the direct 

wave and approximately 40 dB stronger than the reflected wave. The lateral wave was 

significantly stronger than the direct wave and the interference pattern seen at closer 

distances disappear after 6 m displacement. Overall the npple of the amplitude at 

distances !,'!'eater than 6 m corresponded to two wavelengths: A./2=0.26 m and A./2= 1.00 m. 

For example, between 16 and 18 m displacement the wavelength of the ripple was 

approximately 0 26 m, suggesting a standmg wave underb'I'Ound Th1s pattern was seen on 

various locatiOns evenly distributed over the b'l'aph. From th1s observatiOn 11 is hkely that 

the standmg waves were caused by d1scontmmties under!,'I'Ound or on the !,'I'Ound surface 

at vanous locations, m the form of rocks or metal objects. Between I 0 and 14 m 

displacement the npple has h1gher amplitude and Its wavelength of approximately of 2 0 

m was of that in a1r. The propagation path of the lateral wave starts at the transmitter, 
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travels to the ground - atr boundary, then followed the ground surface and travels back 

into the ground to the recetver antenna. When tt propagated along the surface in air, the 

wavelength A lateral - A.o = 2 0 m. Reflections of the lateral wave on the surface were caused 

by megulanties on the surface or obJects, hke the car with eqmpment used m the field 

tnals, that reflected the wave. 

Between 4 and I 0 m dtsplacement the phase was nearly lmear md1cating an almost pure 

travelling wave, as shown m figure 4.10. The measured wavelength A was approximately 

1.5 m. Between 3 2 m and 4.3 m displacement, A= 1.1 m, between 4.3 and 5.7 m, A= 1.4 

m, between 5.7 and 7.2 m A = I 5 m and between 7.2 m and 9.3 m A= 1.9 m. Th1s 

mcrease m A was due to the fact that while the transmitter moves away from the rece1ver, 

1t also descends deeper into the ground, makmg the distance the wave travels underground 

longer. As ~ > ko the wavelength mcreased as a result. The measured phase giVes 

information on the increase m distance between transmitter and rece1ver, but also on the 

change m depth of the transm1tter If measurements were done at two or more frequencies, 

wh1ch would mean two phase measurements w1th the transm1tter m the same pos1t1on, 1t 

would be possible to distinguish the change of depth of the transmitter from the 

displacement m the x-plane. 

The pure travelling wave stopped at I 0 m displacement. Th1s was the pomt at wh1ch the 

magmtude showed a standmg wave pattern w1th a wavelength that approx1mates Ao. Th1s 

suggests that the phase measurements were sens1tive to the obstructions in the 

propagation path in air. After I 0 m displacement, the measured penod of the phase 

change follows the prediction, but the range of phase vanatwn was less than predicted. 

Here the received s1gnal consisted of two mterfenng vectors, in which one vector rotated 

as a result of the displacement of the transmitter and the other vector was fatrly static. 

From observations during the measurements th1s was seen on the vector dtsplay of the 

HP841 0 Vector Analyser. Taking into account any posstble errors m the measurement of 

the transmitter displacement, the phase measurements showed a fairly good abrreement 

with the predictions. 

Figure 4.12 shows the total fields of E,(p,q>,z), E~(p,q>,z) and, for companson again, 

Ep(p,q>,z) for a horizontal dipole normalised to have an unit electric moment (I <11 = I 

Am). The normalisation shifted the b'l'aph of Ep(p,q>,z) approximately 20 dB down. At 

short distances, the relative magmtude of E,(p,q>,z) and E~(p,q>,z) IS larger than Ep(p,q>,z). 
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The power level of E~(p,q>,z} falls off very rapidly when the distance between transmitter 

and rece1ver mcreased The magnitude of Ez(p,q>,z} is approximately 10 dB stronger than 

Ep(p,q>,z) up to 25 m displacement. As the wave 1s c1rcular polartsed, Ez(p,q>,z) shows a 

npple that increases w1th d1stance. This ripple IS not seen on the pred1ct10ns of Ep(p,q>,z}, 

as the p-vector was ahgned w1th the Pomting vector. At longer d1stances Ep(p,q>,z) 1s 

stronger than Ez(p,q>,z} Because m the field trials the available power m the transmitter 

was hmited, Ep(p,q>,z} was measured to achieve underground transm1sswn over at least 30 

m. 

4.6.2. Field Trial 2, Receiver Antenna Underground 

This field tnal was done at the same site as tnal I. Also the antennas and equipment used 

were the same. The receiver antennas was located 2.5 m from the startmg pomt at the 

beginnmg of the pipe, at pos1tton A2 m appendix C. Compared to field trial I, the antenna 

IS 5 m. closer to the p1pe. The antenna was ahgned parallel to the pipe and therefore q> = 0 

at the start of the measurement The d1electnc constant and conductlVlty of the medium 4 

(sml) were measured to be E,= I 5 and cr= 0.012 S/m. The power fed m to the transm1tter 

antenna was measured to be 43.6 dBm (23 W). The rad1al field component E4p(p,q>,z) was 

measured due to a horizontal dipole at vartous locations m the p1pe underground. Figure 

4.13 shows the magnitude of E4p(p,q>,z} The graph shows that at the start E4p(p,q>,z) was 

approximately 14 dB stronger than at field trial I, because the rece1ver antenna was 5 m 

closer to the transmitter. Because of the shorter d1stance, the contnbution of E4p. 

dm:c1(p,cp,z) to the total field was larger, which manifested itself m an mterference pattern 

of E4p. dm.~t(p,q>,z} and E4p.latcrat(p,q>,z} up to 6 m displacement. The pred1ct1on showed that 

the mterference pattern stops after 6 m displacement. There was a good agreement 

between the measured average power and the prediction. When the distance between 

transmitter and rece1ver mcreased, the measurement showed a ripple. The nature of the 

npple suggested a standmg wave pattern with approximate wavelengths of A.4 = 0.52 m 

and A.o = 2.0 m. This was caused by reflections m a1r, for example between 12 m and 14 m 

displacement, when Anpplc = At>. or reflection from discontinuities underground, for 

example between 20 and 21 m displacement, when Anpplc = 1..4. Between 26m and 28m the 

ripple was caused by reflections both in atr and underb'l'Ound. Both the measurements m 

field trials I and 2 showed a strong reflection in air at approximately 11 m displacement. 
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Ftgure 4.14 shows the phase of E4p(p,q>,z). At mtervals the agreement between 

measurement and predtction was good, but overall the assumption of the medmm to be a 

homogeneous half space was not correct The reflections that were also visible in the 

measurement of the magnitude, gave a signtficant change m phase tf E4p(p,<p,z). Between 

11 m and 23 m displacement, the standmg wave pattern, largely caused by reflectiOns of 

the lateral wave component E4p, laternl(p,<p,z) m atr, dommated the measured phase. Its 

component dommated the phase Between 16 m and 18 m dtsplacernent, the dtsplay of the 

HP8410 Vector Analyser showed a static vector R at approxtmately-3/2 1t rad, while on 

top of this vector, a phase vector P rotated around (O,R) when the transmitter was moved, 

descnbmg a ctrcle with (O,R) as tts ongm 

4.6.3. Field Trial 3, Receiver Antenna Underground 

This field tnal was done wtth the same equipment as field trials I and 2. The frequency 

used was 145 MHz. The sot! dtelectnc constant and conductivity were measured to be£,= 

20 and cr= 0.17 S/m. The receiver antenna was ahgned parallel to the pipe, 18 m from the 

start, 2.5 m from the ptpe, as is drawn m Appendtx C, posttion B2. The conductivity of 

the sot! is htgher than m previous field trials and the predtcted magnttude of E4p(p,<p,z) in 

figure 4.15, showed no sign of interference between E4p, duec1(p,<p,z) and E4p, laternl(p,<p,z). 

The dtrect wave E4p, ct 1rec1(p,<p,z) ts htghly attenuated m wet soil. Ftgure 4.15 shows that 

there was a good agreement between the measurement and the prediction. The wavelength 

of the ripple on the magmtude of E4p(p,<p,z) is near A.4 and most reflectiOns were caused 

by irregularities underground. At 18 m dtsplacement, E4p(p,<p,z) showed a local maximum 

as the transmitter was near the rece1ver. For this field trial, there was httle agreement 

between the measured and predtcted phase, as is shown in figure 4.16. Between 12m and 

17 m dtsplacement the phase was constant -I 6 1t rad, until at 17 m it changed abruptly to 

+ 1.6 1t rad. Sensttlvtty of the phase to Interference both underground and on the !,'fOund 

surface were also apparent m the previous field trials. 

4.6.4. Field Trial 4, Receiver Antenna Underground 

F1eld trial 4 was done w1th 1.5 W signal generator and a 7 W amphfier. The power fed 

into the transmitter antenna was measured to be 38.5 dBm (7 W). The measurements were 

done at a frequency of 146 MHz. The recetver antenna was positioned 2.5 m from the 
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ptpe at 4 m from the start at a depth of 0.02 m It was aligned parallel to the pipe. The 

dtelectnc constant and conducttvtty of the medtum 4 (sot!) were measured to be e,= 20 

and cr= 0.012 S/m. The transmitter was moved in the pipe in I m steps and at every step 

the amphtude and phase of the recetved stgnal were recorded. Ftgure 4 17 shows a good 

agreement between the predtcted and measured magnitude of E4p(p,<p,z). At 4 m 

dtsplacement, the direct wave, E4p, dtrec1(p,<p,z), was 25 dB lower than the lateral wave, E4p, 

tatarnt(p,<p,z). Nevertheless, it caused an interference pattern that dtmimshed after 8 m 

dtsplacement. The mimmum seen at 12 m dtsplacement was stmtlar m as was seen m 

figures 4.9 and 4.13. Thts suggested an irregularity underground near the ground surface 

at thts posttton. The measured phase of E4p(p,<p,z) m figure 4 18, shows that after 12 m 

displacement the phase vanatton is within ~ 1t rad, stmtlar to that m figures 4.10 and 4.14. 

4.6.5. Field Trial 5, Phase Measurement 

Thts field tnal was focussed on the phase measurement. The equtpment used was the 

same as m all previous trials. The dtelectnc loaded dtpole recetver antenna was located I 

m away from the ptpe, and 7 m from the start posttion, at 0.04 m depth. The relative 

dielectric constant and conductivity of the soil were measured to be £4,= 18 and cr4= 0.055 

S/m. The power fed mto the transmitter antenna was measured to be 43.6 dBm (23 W) 

The measured and predtcted phase of E4p(p,<p,z) is shown m figure 4.19. Between 6 m and 

14 m dtsplacement the direct wave E4p. d1rcc1(p,<p,z) dommates the phase of E4p(p,<p,z). In 

thts range the transmitter was wtthm approximately 8 m distance from the receiver. The 

relatively low conductivity of the sot! allows E4p, dtrcc1(p,<p,z) to dominate over E4p. 

tatcrnt(p,<p,z). When the relative dtelectnc constant and conductivity of medium 4 (soil) was 

taken the same as m field trials 2 and 3, £4,= 18 and cr4= 0. I 7 S/m, the stmulatton 

predtcted that the phase of E4p(p,<p,z) was solely the phase of E4p. tatc-r.•t(p,<p,z). This 

measurement stopped after 17 m dtsplacement, because the signal was lost. After E4p. 

dm:ct(p,<p,z) dtmtmshes at 15 m displacement, E4p, ldlcmt(p,<p,z) dtd not take over as the 

strongest signal. Thts was probably caused by an obstruction on the surface or 

undert,'l'ound. At 5 m displacement, the magmtude of E4p, t.ucmt(p,<p,z) shows a local 

minimum, reducing the recetved power strength from -33 dBm to -56 dBm. Then E4p. 

d•n.~1(p,<p,z) increased to -34 dBm, as the transmitter was moved closer to the recetver 
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antenna. The obstructiOn of the lateral wave was probably caused by the car with 

measurement equ1pment. 

4.6.6. Scattering 

Scattenng oflateral electromagnetic waves was studied m a tank with salt water (medmm 

4) [19]. The objects were: an air square well made of foam, a water square well wh1ch 

was a Styrofoam enclosed casmg filled w1th salt water and metal cylinder. The lateral 

wave due to a submerged horizontal d1pole was studied. Metal cylinders were pos1t10ned 

perpendicular and transversal to the directiOn of propagation, submerged and partially 

submerged m the salt water. Scattering by completely submerged metal cylmders was too 

weak to prov1de an observable scattering pattern. Partial submerged metal cylinders 

resulted m a Significant reflection m front of the obstacles. The same expenments were 

done w1th wells of Styrofoam enclosed casings with air. Partial submerged wells caused 

similar results as the partially submerged metal cylinders. When deeper submerged, no 

standmg wave pattern was observed, while the propagating amplitude increased above the 

expected level. Down field from all the obstacles the curve goes through a mimmum but 

after half a wavelength (m mr) returns to a power level analogous to that predicted 

theoretically for an unbounded, unperturbed propagatmg lateral wave. The Iocahsatwn of 

effects to the vJCimty of the scattered IS of fundamental importance to propagation studies 

of lateral waves The qualitative features of the incident wave were preserved download 

form the obstacles. In the field tnals in th1s study, it was observed that the magnitude of 

E4p(p,<p,z) was preserved after a reflection underground, but the phase was distorted. An 

example IS the measured phase of E4p(p,<p,z) m figure 4.14, which shows that after 12 m 

displacement the phase variation IS w1thm Y. 1t rad, similar to that in figure 4.1 0. 

However, the magnitude of E4p(p,<p,z} follows the prediction after 12 m displacement m 

fi~,>ures 4.9, 4.13 and 4.17. Scattenng from completely submerged cylinders was too weak 

to provide an observable scattenng pattern [ 19]. Scattering from a partially submerged 

metal object resulted in a reflected and transmitted interference wave pattern. In the field 

tnals reflections of the lateral wave from metal objects on the surface were clearly seen in 

figures 4.10 and figure 4.14, when Anpplc =A.o The effects of obstacles and discontmuities 

m medium 4 (soil) are very small, relative to the reflection seen from objects in med1um 0 

(air). 
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4.6.7.Field Trial 6, Receiver Antenna in Air 

A measurement was done where the receiver antenna m medmm 0 (a1r) at 0.5 m above the 

ground m whiCh the receiver antenna was a bare monopole antenna tilted downwards, in 

the z-<j) plane at an angle of 45 deg w1th the positive y-ruus. Dielectnc loading of the 

rece1ver antenna was not necessary as the antenna was m a1r. The antenna was trimmed to 

resonate at f= 145 MHz, the frequency at whiCh the measurements were done. The total 

field measured was Eo,total(p,ifJ,z) = E5,z(p,ifJ,z)+E6,~(p,ifJ,z). The receiver antenna 

was located at a distance of 3 m from the pipe and 17 m from the start of the pipe. The 

amplitude of Eo,totaJ(p,<j),z) was measured when the transmitter was m the p1pe 

underground at 14 locations. The measured soil relative dielectric constant was Er = 30 

and the conductivity cr = 0 09 S/m. The power fed into the antenna was 33.1 dBm. F1gure 

4.20 shows the measured and predicted Eo,totaJ(p,<j),z) [ 18]. When the transmitter 

displacement is 17 m and therefore below the receiver antenna, the amplitude of 

Eo,totaJ(p,<j),z) shows a local maximum. Although at th1s pomt the absolute d1stance IS 

shortest, the propagation loss is relatively high, due to the depth of the transmitter. Th1s 

illustrates that the highest attenuatiOn was in the propagation between the transmitter and 

the boundary w1th a1r The rapid increase m rece1ved power between 23 m and 24 m 

displacement mdicated a fast surfacing of the transmitter. There was a good agreement 

between measurement and prediction, except at 8 m displacement. Any reflectwns agamst 

the megulantles on the surface, or agamst the car w1th equipment is expected to be the 

cause of th1s. The wavelength of any reflectwns cannot be detenmned because of the 

hm1ted number of measurement pomts. Figure 4.21 shows the predicted phase of 

Eo.tot•J(p,<j),z). The !,'Taph is partly symmetrical with a verticallme at 17 m displacement as 

the ax1s. Th1s represents the decrease and, after 17 m, increase in propagation distance. 

The transmitter started to submerge faster after 4 m displacement. Hence, the irregularity 

m the phase seen in the figure. Th1s measurement showed a strong correlation between the 

amplitude of the received s1gnal and the depth of the transmitter. The phase was a 

measure of the length of the propagation path. The dJscontmUltJes at 5 m and 20 m 

displacement were caused by the functions used to est1mate the depth. Th1s was done 

using 3 different exponential functions, where function I ranged from 0 to 5 m, functiOn 2 
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from 5 to 20 m and function 3 from 20 to 30 m. The depth function IS shown m figure C2 

in appendix C. 

4.6.8. Field Trial 7, Two Receiver Antennas 

In the use of electromagnetic waves for the underground location of a transmitter, the 

accuracy was improved by usmg two receiver antennas were used simultaneously. The 

receiver antennas were positiOned 4 m away from the p1pe, at the starting position The 

amplitude of E4p{p,q>,z) was measured with the axis of the d1pole antennas parallel to the 

directiOn of the transmitter antenna The receiver antennas were dialectically loaded 

dipoles, located at a depth of 0.02 m. The power fed m to the transmitter antenna was 31.7 

dBm. The sOil electncal properties were measured to be. e,= 15 and cr = 0.017 S/m. The 

frequency was 145 MHz. The magnitude ofE4p{p,q>,z) at both receiver antennas, shown in 

figure 4.22, was very similar. The difference between the prediction and measurement 

indicate that the soil is not as homogenous as was assumed Some of the variations in 

E4p{p,q>,z) were not predicted, but nevertheless were consistent m both measurements. For 

example E4p{p,q>,z) is higher than predicted between displacement distances 20 m and 22 

m for both measurements. The limited number of measurement points does not give much 

information on the wavelength of a possible standing wave The ripple had an amplitude 

of approximately 5 dB. The difference m powers received at both antennas is shown in 

figure 4.23. Antenna d2 received no Signal when the transmitter was at 12 m 

displacement. As the transmitter moves in the pipe between antennas d I and d2, any 

differences in received amplitude of E4p{p,q>,z) was expected to be an error caused be 

megulanties in medium 4 (the soil) or on the surface. The maximum error was -9.10 dB, 

at 22 m displacement. From the prediCted signal, this error relates to approximately 7 m 

displacement of the transmitter. The average difference between the power levels received 

at antennas d I and d2, which is the median error, IS -0.84 dB which confirms that the 

transmitter was m the middle. As was seen in field trials I and 2, reflectiOns m medium 4 

(underground) and medmm 0 (air) cause standmg wave pattern with wavelen&>ths 

corresponding to A. 4 and "-<>· Hence the average error was less than I dB. This corresponds 

to approximately 2 m honzontal displacement or approximately 0.5 m change in depth. 

The alternatmg nature of positive and negative errors in figure 4.9 mdicates that the error 

was caused by the ripple. Its maximum and mimmum on antenna dl were 2 m delayed on 
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antenna d2. Taking the average of two measurement point reduces the error in locatmg the 

transmitter and Will result m an accuracy closer to medmm error. 

4.7. Optimum Frequency 

To transmit an electromagne!Jc wave underground usmg low power, 1t was essen!ial to 

use the optimum frequency, 1fthere was one. Chapter 2 has shown that the conductlVlty of 

soil increases with frequency and hence the attenua!Jon at h1gh frequencies 1s high The 

lateral wave mode of propagatiOn made finding an op!Jmum frequency more complex. 

The mode and the path of propagation of the strongest signal depends on the cons!itu!ive 

parameters, e, and cr, of the so1l. F1gure 4.24 shows the magnitude of E4p, d~rec1(p,cp,z), E4p, 

JaternJ(p,cp,z) and E4p, reflected(p,cp,z) due to a horizontal dipole at a depth of 1.0 m as a 

functiOn of frequency. The position of the observer was 0 05 m underground and at a 

radms of 1.0 m The soil type was keuper mar! w1th a moisture content of 6.5 %. At the 

frequency of 145 MHz, the rela!ive d1electnc constant and conductivity of the sml were 

et,=I4 6 and cr=O 0084 as is shown m figure 2.6 m Chapter 2. Figure 4 24 shows that at 

I 0 MHz, when e,;=22 and cr"' 0 0 I S/m, the magnitude of E4p, dm:ct(p,cp,z), E4p, JateraJ(p,cp,z) 

and E4p, reflected(p,cp,z) was rela!ively h1gh, mcreasmg to a max1mum at 200 MHz. At 300 

MHz the magn1tude falls off sharply, th1s decrease bemg more rapidly for E4p, d1rec1(p,cp,z) 

and E4p, rcn,octcd(p,cp,z). The figure shows a local mimmum at 5 GHz. Th1s minimum for 

E4p, Jatcral(p,cp,z) was at least 60 dB stronger than for E4p, d1rec1(p,cp,z) and E4p, reflectc'<l(p,cp,z). 

Hence, at the h1gher frequencieS, the lateral wave, E4p, JatcraJ(p,cp,z), was Significantly 

stronger. Note that at I 00 MHz the direct wave was the strongest because 1t travels the 

shortest path and the conductivity of the soil was relatively low. When the sml has a 

higher moisture content, the path loss of E4p, dm.'l.t(p,cp,z) was higher than that of E4p. 

l•tcraJ(p,cp,z) and the advantage of a shorter propagation path was ehmmated as IS shown in 

figure 4 25 The moisture content of medium 4 w= I 1.3%. The conductlVlty of the soil cr"' 

0.08 S/m at I 0 MHz mcreasmg to cr"' 0.0 I S/m at I 0 GHz. The magnitudes of both E4p, 

dm.'l.t(p,cp,z) and E4p, rcllcct,>d(p,cp,z) are ms1gmficant. This shows that the lateral wave, E4p, 

l•tcraJ(p,cp,z), is the only mode of propagation in wet soils m given condJ!ions. The knee

curve m figure 4.25 shows a maximum at 200 MHz. Figures 4.24 and 4.25 show a clear 

optimum range of frequencies of I 00 MHz to 300 MHz. The sml acts hke a Jowpass filter 

with a cut-off frequency of 300 MHz for the current sJmulatwns As the magmtude of the 
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direct wave has shown to be very sensitive for soil condt!ions, the results illustrate the 

importance of the depth of the transmitter and rece1ver antennas, because for the lateral 

wave E4p, lateral(p,q>,z), the Jm!ial path from the transmitter m medmm 4 (sml) to the 

boundary With medmm 0 (air) has an attenuatiOn Similar to the duect wave E4p, 

duec1(p,q>,z). Figures 4.26 and 4.27 show the same sJmulatwns for different depths and 

rad1al distances. The posJ!ion of the observer is 0.05 m underground with radial distances 

ofO I m, 0.5 m, 1.0 m, 10 m, and 50 m. The graphs ford= 1.0 m, when the transmitter IS 

I 0 m deep underground, show a local max1mum at approximately 200 MHz. The 

wavelength decreases w1th frequency and therefore the rad1al distance from the 

transmitter antenna to the border between the near- and the far-field decreases w1th 

frequency. Figure 4.26 shows three d1stmctive regwns. At frequencies below 200 MHz 

the point of observation is in the reactive near-field of the antenna. Between 200 MHz and 

2 GHz, 1t was m the mtermed1ate field the rapid decrease of E4p, (p,q>,z) was due to 

exponential attenuation. The far-field started at approximately 2 GHz The mterference 

patterns of E4p, lateral(p,q>,z)+ E4p. duec1(p,q>,z), for d=O.l m resemble those for d= 1.0 m. At 

the higher frequenc1es sml behaves more hke a good conductor and the attenuatiOn was 

very high when the transmitter is I .0 m deep. When d=O I m, the rece1ved power was 

approximately mdependent of frequency This clearly suggested that the major attenuatiOn 

was when the lateral wave propagates in medium 4 between transmitter and the boundary 

with medium 0 (air). From figures 4 24 to 4 27 1t was apparent that the best frequency to 

use 1s m the range of 100 MHz to 300 MHz. 

4.8. Underground Navigation 

The field trials have shown a clear poten!ial for measunng the displacement of an 

electromagne!Jc wave transmitter underground it was shown that an electromagne!ic 

wave was received from a transmitter that was up to 1.5 m deep underground and at a 

distance of up to 30 m away from the rece1ver. For the majonty of environmental 

condt!ions, the strongest s1gnal rece1ved was the lateral wave, except for very short 

distances where the direct wave was dominant. In not all field trials propagation of 

E4p(p,q>,z) was achieved over a distance of 30 m. Th1s was due to Jrregulan!Jes 

underground and on the ground surface. U smg more than one receiver antenna would 
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increase the possibility of a s1gnal receptwn significantly. Also the theory suggested that 

E4z (p,<p,z) was stronger than E4p(p,<p,z) at distances less than 20 m, as IS shown in figure 

4.12. The use of a Vertical antenna, for example a vertical electnc monopole antenna, will 

further mcrease the probability of recelVlng a signal. Any algonthrn that calculates the 

transmitter displacement should be based on the prediction of the propagation of the 

lateral electromagnetic wave The difference between the pred1cted and measured signal 

strength was the expected error m predicting the displacement of an underground 

transm1tter. The field trials show a good agreement between the pred1ctwn and 

measurement. Accurate knowledge of the dielectric constant E.!r and conductlVlty cr4 have 

been shown crucial m predicting the modes of propagatiOn. The1r estimation at the field 

trials was therefore important for the accuracy m calculating the displacement of the 

transmitter. Therefore any commercial system should mclude a coax1al probe for 

determming the constitutive parameters of the soil on-s1te. Alternatively, the d1electnc 

constant and conductivity could be calculated by transmittmg at more than one frequency 

at the start of the trial when both the transmitter and receiver are at a fixed position 

In paragraph 4.4.2.3, where two receiver antennas were used to locate the transmitter 

antenna, The med1an error was -0 84 dB, which m the worst case corresponded to 

approximately 2 m honzontal displacement or 0.5 m change of depth of the transmitter. 

The worst case 1s when the power of rece1ved signal changes very slowly w1th 

displacement of the transmitter, and hence the function displacement -received power IS 

a nearly flat !me. This IS the case between 22 m and 26 m displacement in figure 4.22 

F1gure 4.28 shows the pred1cted magn1tude of E4p(p,<p,z) m the XZ-plane, due to a 

horizontal dipole normalised to have an unit electric moment (I D.! = I Am), at (0,0,0.1) in 

Orthogonal co-ordinates. The d1electnc constant and conductlVlty of the soil are f.!r= 15 

and 0"4=0.012 S/m. The magnitude is shown from 3 m deep to 3 m above the !,'found. At 

the transmitter d1pole, a depth of 0.1 m, the magmtude was at a maximum. When the 

!,'faph was followed from z = 3 m under!,'fOund to z = -3 m m air at x = 0, the decrease of 

E4p(p,<p,z) With distance was significant. The mterference of the direct wave and lateral 

wave was seen under!,'found near the transmitter, but not in air as the direct wave is 

reflected against the boundary and propagates back under!,'found. As the lateral wave 

propagates along the surface m air, there was a sharp mcrease m power at the boundary 

between mediUm 4 (soil) and medium 0 (a1r) The phase of E4p(p,<p,z) in figure 4.29 IS for 
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the same prediction as figure 4.28 and shows that the wavelength m rur was 

approximately A.o, wh!le underground the wavelength was much smaller. In a system 

where the phase IS used for estimating the displacement of an underground transmitter, 

the samphng rate should be higher when the receiver antenna IS underground. Figure 4.30 

shows E4p(p,<p,z) in the z-plane (horizontal) when z = -1 m (I m above ground). The 

transmitter antenna was a horizontal dipole at (0 0, I). At observation pomt (0 0-1) the 

magmtude of E4p(p,<p,z) was at a minimum. The lateral wave travels to the boundary at 

the Brewster angle and hence the cone shaped mmimum around the locatiOn of the 

transmitter antenna As the transmitter was I m deep 1t was expected that the magnitude 

of the refracted wave m a1r would be very low. The top rim of the cone was created by the 

lateral wave incident on the boundary at the Brewster angle Figure 4.31 shows the phase 

of E4p(p,<p,z) for the simulation m figure 4.30. Next the result from th1s simulatiOn were 

viewed at z = 1.0 m, underground. The magnitude and phase of E4p(p,<p,z) were shown m 

figure 4 32.and 4 33 respectively. In the area were the cone was seen m figure 4.30, the 

magnitude shows an interference of the lateral and direct waves underground. Away from 

the transmitter, the magmtude is more flat, compared w1th E4p(p,<p,z) m air (figure 4.30) 

The field tnals have shown that reflections were an important cause of error. An example 

IS figure 4.9, where the npple caused by reflectiOns is a major cause of error m the 

measured magnitude of E4p(p,<p,z). As the wavelengths of the standmg wave were known, 

mtelhgent signal processing could eliminate this error. An Improvement m accuracy of 

locating the transmitter would be achieved by averagmg the measurement points over a 

m1mmum distance equal to A.o, wh1le taking measurements at mtervals where the 

transmitter has moved over a distance that IS a fractiOn of A.o. When disregardmg the 

npple caused by reflections, the results of field tnal 2 show a maximum difference 

between prediCtion and measurement of 6 dB, shown in figure 4.13. Th1s corresponds to 

approximately 3 m horizontal displacement at th1s locatiOn As the lateral wave 

propagated most of its path in au along the boundary between medmm 4 (s01l) and 

mediUm 0 (air), reflection in underhrround were expected to be hm1ted. Previous studies 

[ 19] have shown a metal object on the ground causes reflections of the lateral wave, but 

the qualitative features of the incident wave were preserved away from the obstacle. In the 

field trials in this study, 1t was observed that the magnitude of E4p(p,<p,z) was preserved 

after a reflection underhrround, but the phase was distorted. The use of more than one 
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receiver antenna will limit the errors m estimating the displacement of an underground 

transmitter caused by reflectwns. Tracmg the movement of the transmitter usmg the phase 

of E4p(p,<p,z) proved to be more difficult. The phase was more sensitive to reflections 

caused by Irregularities underground and on the ground surface. However, good phase 

mformation was obtamed during intervals in the measurements. Hence phase mformatwn 

when available, can be used to enhance the accuracy of estimating the movement of the 

transmitter. 

In CIVIl engmeenng, remote steered micro-tunnelling machines are used for laymg pipes 

or cables underground. This makes it possible to lay pipes or cables under a road, canal or 

railway, Without the necessanly of dtggmg a trench. The social cost of dtggmg trenches in 

Cities IS Sigmficant. Hence, there IS a growing interest m trenchless technology. A problem 

with this system IS the uncertainty of where It IS underground. Obstacles underground can 

divert the tunnelling machme and sometimes this IS unnoticed by the driver. An 

apphcatwn of the system descnbed in this thesis IS to mount a transmitter on the dnll. 

It IS recommended that a commercial system should consist of four antennas placed m 

holes in the ground, m two pairS on either side of the transport route. The depth to which 

the antennas should be placed should tnitially be the same as the depth of the proposed 

drilling operatiOn, although with expenence of the techmque this is likely to prove 

unnecessary Three receivers should be positioned accordmgly and a transmitter should 

imtially be placed in the fourth hole to ensure that signal receptwn at that depth is 

possible. If no signal Is received, then an obstruction or other adverse condition is present. 

Adjustment of the depth, either by raising or lowering the proposed !me of operation 

could be examined by ra1smg or lowering the transmitter/receivers until signals are 

received. TransmiSsion across the other diagonal should be assured by swapping over the 

receiver and transmitter on one side of the transport route. Analysis of the signals 

(received at known separatiOns directly across the line of the mole's path) will assist with 

subsequent analysis of the dnllhead locatwn. In addition samples of sOil taken from the 

four receiver location holes Will allow sOil classification, measurement of water content, 

and determination of dtelectnc constant. (This can be done either directly using the 

eqUipment developed herem or mdirectly from the sOil classification and water content 

measurements in conjunction with the dielectric constant measurement database compiled 

as a result of this project.) These data together will permit an accurate model to be 

generated for subsequent location analysis. 
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With all four receivers in position, the steerable dnll should be positioned at the start of 

the proposed crossmg, Its location measured and the signals at the antennas recorded 

Height control should be effected using an accurate tiltmeter. (An investigation of the 

possibilities of usmg the same technique to monitor the change in depth proved that 

measurements would be relatively Imprecise due to the onentation of the antennas and 

although a possible development for the furure was not practical from the data recorded in 

this srudy ) The progress of the dnllhead should be tracked by haltmg the operatiOn after 

every I m advanced (or less as reqmred) and allowmg a short signal from the transmitter 

to be recorded Without vibratiOn caused by the mole. The progressive advance of the drill 

would be tracked by the signals received and adJustments to the steenng made 

accordmgly. 

If the signal transmisSIOn pnor to commencmg dnvmg was unacceptably poor, then the 

technique should be deemed to be unsmtable at that locatiOn. An mvestigation of the 

reason why would be recommended m such a case to ensure that no obstacles exist. If 

Signal transmission were lost during a dnve, then reversion to overhead locatiOn would be 

necessary. However, neither of these scenanos appears likely from the research data. The 

relatively long wavelength chosen means that only large underground pipes or services 

would be likely to cause a maJor d1scontmmty in the d1electnc constant, a large steel p1pe 

bemg the worst case High voltage cables or other services would not unduly affect signal 

transmission. It is consequently only major discrepancies m water content of the sOil that 

would result in problems, and such changes are unlikely at one location under a transport 

route ( exceptmg possibly a buned nver channel). In any case this would be revealed by 

the testmg prior to drilling on the Site. Also the dominant mode of propagatiOn IS the 

lateral wave, which travels most of Its path along the ground surface, mimmismg the 

possibility of reflections underground. 

The accuracy of the system m a sOil of unknown properties usmg pairs of antennas spaced 

60m apart and usmg three received signals to locate a transmitter of unknown Initial 

position is expected to be sigmficantly better than 4 m (1 e."' 2 m). Increasing the signals 

from three to four will make a further improvement. Knowing the location of the 

transmitter prior to dnlling will improve subsequent location considerably, as will pnor 

testing across the Site smce this will serve to calibrate the analytical techniques Use of 

phase mfonnation, when available, has been shown to produce an accuracy of within 200 
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mm {t.e. "'I 00 mm), and thts was demonstrated in the field tnals on campus at 

Loughborough Universtty. 

Experiments on the effect of obstacles m and above seawater were taken in a model 

hthosphere. Metal cylinders were posttloned perpendtcular and transversal to the dtrectwn 

of propagatiOn, submerged and partially submerged in the salt water. Scattenng by 

completely submerged metal cylinders was too weak to provide an observable scattenng 

pattern. Partial submerged metal cylmders resulted in a sigmficant reflectiOn in front of 

the obstacles. The same expenments were done wtth wells of Styrofoam enclosed casmgs 

wtth atr. Parttal submerged wells caused stmtlar results as the partially submerged metal 

cylinders. When deeper submerged, no standing wave pattern was observed, while the 

propagating amplitude increased above the expected level. Downfield from all the 

obstacles the curve goes through a minimum but after half a wavelength (m atr) returns to 

a power level analogous to that predicted theoretically for an unbounded, unperturbed 

propagatmg lateral wave. The localisation of effects to the vicmity of the scatterer is of 

fundamentaltmportance to propagatiOn studt es oflateral waves. 

Instead of usmg a constant wave (CW), t! was constdered to transmtt short pulses. The 

spectrum of the o-funchon ts dommated by htgh frequencies. The pulse of the dipole in a 

homogeneous smgle medium follows the far field behavwur of the steady state and thts is 

the dtrect field with high attenuation. 

4.9. Conclusion 

The field tnals have shown that propagation of an electromagnetic wave from a 

transmitter underground to a receiver underground is possible over a distance of 30 m and 

to a depth of 1.5 m. Also, when the receiver was placed at 0.5 m above the I:,'TOund, an 

electromagnetic wave was received from the same transmitter. When under~:,'Tound, 

dielectnc loaded dtpole antennas were used. In one field trial, a horizontal monopole 

antenna was used. The antenna impedance was measured, whtch was used m stmulatwn 

together wtth antenna dimensions and posttton to calculate the antenna effictency m the 

g1ven envtronment. The dielectnc constant Er and conduc!ivtty cr were measured at the 

field tnals. A simulation model was used to predtct the electromagnettc wave propagatton 
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from the source underground, using the measured e, and cr. The Simulation outcome 

compared well with the measured results. The d1fference between the measured and 

pred1cted results was mamly because of a ripple. The average measured rece1ved power 1s 

close to the one pred1cted. The ripple showed two different standmg wave patterns. The 

wavelength of the ripple was e1ther that of the wave in a1r or underground. Th1s was 

caused by reflection due to megulanties underground or on the ground surface. Although 

reflection agamst objects on the ground surface causes a deep m1mmum at close d1stance, 

once past the object, the mc1dent wave regains 1ts characteristics. The simulatiOn model 

included the analyses of the modes of propagatiOn. It predicted that the lateral wave was 

the strongest mode of propagation in the majority of the field tnals Only at short 

d1stances was the direct wave dommant. The field tnals confirmed these findmgs, as 

examples of d1rect waves and lateral waves were seen in the measurements. The lateral 

wave starts at the source underground, travels to the boundary, follows the air-ground 

boundary and then propagates back into the ground to the rece1ver antenna. As the wave 

travels a significant part of its path in a1r, 1t is less susceptible to megulan!Jes 

underground. Measurement of the phase has shown it to be sensitive to errors caused by 

reflections. This is the reason why information of the phase was not always ava1lable 

dunng the field trials The field trials have shown the poss1b1hty of usmg electromagnetic 

wave to track a movmg transmitter underground. A poss1ble apphcatwn IS the trackmg a 

micro-tunnelhng machmes, used for laying p1pes or cables under through roads. The 

m1cro-tunnelhng drill using m Civ!l Engineenng can be steered by the dnver, but its 

pos1t1on underground is not known. Mountmg a transmitter on the dnll-head would allow 

1ts movements to be calculated from the magmtude and phase of the electromagnetic 

wave at the rece1ver antennas. Any system that estimated the underground displacement 

of the transmitter should have 2 or more receiver antennas. Field trials have shown an 

accuracy of such a system of approximately 2 m. 
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Figure 4.29 Pred1cted magmtude of E4p (p,cp,z) m the XY -plane The tran,mitter 1' located at (0,0,0.1) The 
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Figure 4.31 Pred1cted pha'e of E4p (p,cp,z) m the XY -plane The tran,mltter " located at (0,0,0 I) The 
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Figure 4.33 Predicted magmtude of E41, (p,ql,z) m the XY-plane. The tran,m•tter " located at (0,0,0 I) The 
boundary between medmm 4 and I " at z~O The ob•erver (receiver antenna) IS I 0 m deep underground 
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5.Conclusions and Further Work 

The work descnbed in this thesis IS concerned with the feasibility of a system that is able 

to transmit an electromagnetic wave from a source underground, receive it at a distance of 

up to 30 m, and calculate the displacement of the transmitter from the phase and 

magnitude of the received signal. This study has concluded that m pnnciple such a system 

IS feasible, but more work IS necessary to achieve a higher confidence level of Its 

performance. 

5.1. Summary 

A coaxial probe for the measurement of the dielectnc constant of soil samples was used 

on-site dunng the field trials, enabling the estimation of environmental parameters for the 

prediction of the antenna charactenstics and underground electromagnetic wave 

propagatiOn. The coaxial probe used m the experiments was suitable for measunng the 

dielectnc constant of high loss and low loss sOil samples m the frequency range of I MHz 

to 2 GHz. Soil mmsture content was shown to be an Important factor of Its dielectric 

behaviour as is Its gram size. Wet samples exhibit a higher dielectnc conductivity, bemg 

dispersed for both sands and clays. Clays showed a higher dielectric conductivity. A site 

survey has been conducted at the locatiOn where the underground propagation 

measurements were undertaken. The dielectric constant and conductivity was measured at 

12 different locatiOns and to a depth of 2 m. The distnbution of the relative dielectnc 

constant was narrower at the higher frequencies. This suggest that the wave impedance for 

a electromagnetic wave travelling through the medium changes less at 300 MHz, as 

compared to the changes at lower frequencies. Hence less reflectiOn and refractiOn was 

expected at this frequency, but a higher overall attenuation due to the mcreased 

conductivity of the soiL The dtelectnc constant and conductivity of soils were temperature 

dependent. 
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A method has been developed to predict the admittance of msulated monopole antennas 

m soil, usmg measured data of the ambient medium. The model was based on 

transmissiOn line like equations and can be applied to monopole and dipole wire antennas 

but was tested for insulated monopole antennas in soil and water. There was good 

agreement between the predictiOns and the measurements of the antenna Impedance. An 

increase in the mOisture constant of the sOil from 5% to I 0.8% resulted m an mcrease of 

the antenna resonant frequency. This was because the dielectric constant increased 

makmg the wavelength shorter for a given frequency The insulated monopole antenna 

had a longer effective length m a low loss dielectnc. In companson with dry sOil as 

ambient medium, the dipole antenna m wet soli had a shorter effective length and Its 

radiatiOn pattern was more ommdirectwnal. It was calculated that the dielectnc sheath 

should have a dielectric constant close to 1.0 to achieve the optimum antenna efficiency 

The field trials have shown that propagatiOn of an electromagnetic wave from a 

transmitter underground to a receiver underground was possible over a distance of 30 m 

and to a depth of 1.5 m. Also when the receiver was placed at 0.5 m above the ground, an 

electromagnetic wave was received from the same transmitter. A simulation model was 

used to predict the electromagnetic wave propagation from the source underground, usmg 

the measured e, and cr. The difference between the measured and predicted results were 

mamly because of a ripple which showed two different standing wave patterns The 

wavelength of the ripple was either that of the wave in air or underground. This was 

caused by reflection due to megulantles underground or on the ground surface. Although 

reflection against objects on the ground surface causes a deep mmimum at close distance, 

once passed the object, the mcident wave regams Its charactenstlcs. The SimulatiOn 

predicted that the lateral wave was the strongest mode of propagation in the majonty of 

the field tnals. Only at short distances was the direct wave dommant. The field trials 

confirmed these findings. The lateral wave starts at the source underh•round, travels to the 

boundary, follows the air-ground boundary and then propagates back into the h'I'Ound to 

the receiver antenna. As the wave travels a significant part of its path m air, It IS less 

susceptible to irregulantJes underground. Measurement of the phase has shown it to be 

sensitive to errors caused by reflections. The field trials have shown the possibility of 

usmg electromagnetic waves to track a movmg transmitter underh'I'Ound. A possible 

applicatiOn IS the trackmg of a micro-tunnellmg machme, used for laying p1pes or cables. 
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Mounting a transmitter on the dnll-head would allow its movements to be calculated from 

the magnitude and phase of the electromagnetic wave at the receiver antennas. Any 

system that estimated the underground displacement of the transmitter should have 2 or 

more receiver antennas. Field tnals have shown an accuracy of such a system of 

approximately 2 m. 

5.2. Sponsor Problems 

The research proJect described in this thesis started m 1993 as a lmk project between the 

Department of Trade and Industry (DTI) and PTE Ltd, which IS contractor which takes on 

'trenchless' pipelaymg orders The mput of PTE Ltd would be the sponsorship of 

eqmpment and the help m prov1dmg access to d1ggmg trials. The plan was to develop a 

prototype, which could be tested m these tnals. 

However, after 14 months of work, PTE Ltd. went into receivership The new company 

that took over PTE's business was not able to contmue the financial sponsoring of the 

project. Nevertheless, it was able to provide assistance m laYJng a 30 m and a 20 m pipe 

under the campus at Loughborough Umvers1ty. The proJeCt was continued with a very 

limited budge£l 

5.3. Recommendations for Further Work 

The research discussed in this thesis has given an understandmg of the problems 

encountered when an electromagnetic signal Is transmitted underground. 

The Simulatwns predict that, as IS shown m figure 4.1 0, the mah'llitude of E,(p,<p,z) is the 

strongest Signal at distances up to approximately 20 m from the transmitter. The 

probability of receiving E,(p,<p,z) IS therefore higher than receiVIng Ep(p,<p,z). It would be 

an enhancement of the system if E,(p,<p,z) could be measured also m the field tnals. 

The measurements have shown standing waves that suggest reflectiOn underh'I'Ound and 

on the ground surface. A further mvestlgatwn of reflections of both E,(p,<p,z) and 
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Ep(p,cp,z) by objects on the ground would give a better understanding why in some 

mstances m the field tnals a signal was not received. 

The surprismg result of the lateral wave bemg the strongest mode of propagation, despite 

the very rough terram surface, with vegetatiOn and a tree, creates the opportumty to design 

and test antennas specifically for the receptiOn of lateral waves. An example is the 

Beverage antenna, wh1ch is a w1re antenna w1th a matched load, positioned m a honzontal 

position above the ground The Beverage antenna has shown to be efficient in transm1ttmg 

an electromagnetic wave mto the ground. Also, Its locatiOn above surface makes 1t 

sensitive to lateral waves. 

There is an increased mterest m intelligent highways in the U.S A. The intelligence comes 

from sensors in the road surface that can help navigate a car. Dielectric loaded antennas 

could be used in road surfaces to detect traffic or could be used for communication. 

Communication with cars usmg lateral electromagnetic waves could be very efficient. 

Currently mobile phone coverage 1s not provided m the London Underground. Use of 

conventional Microcellis difficult because the short delay times of the bounced wave. As 

for mdoor measurement, the correlation between the arrival times is very high. One 

solution could be to use antennas embedded in the wall. The lateral wave created by It 

will propagate along the wall and attenuate very rapidly further away from It, reducing 

reflections. 
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Figure A20 Cross sect1on m the XY plane at 0 25 m depth, frequency ts 146 MHz ConductiVIty m 
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Figure A21 Cro" <ecuon m the XY plane al 0 25 m depth, frequency" 146 MHz. Reiauve 
d1eiectnc con;tant 
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Figure A22 Cross sect10n m the XY plane at I 0 m depth, frequency IS 146 MHz Conduct1v1ty m 
S/m 
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Figure A23 Cro"-•ect10n m the XY plane at a depth of I 0 m The frequency I< 146 MHz The 
graph •how• the relative d1electnc comtant 
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Figure A24 Cross-sectton m the XY plane at a depth of !.75 m The frequency IS 146 MHz The 
graph shows the Conducttvtty m S/m 
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Figure A25 Cro"-'ectton m the XY plane at a depth of l 75 m The frequency 1' 146 MHz The 
graph •how• the relattve dtelectnc comtant 
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B. Co-ordinate systems 

An Orthogonal co-ordmate system is used to express the positions of the transmitter and 

recetver antennas, while a cyhndncal co-ordmate system is supenmposed over 1t to 

calculate the lengths of the propagatiOn paths and of the polansatwn of the antennas and 

electromagnetic waves. The z-ax1s of the orthogonal co-ordmate system comctdes wtth 

the axts of the cylinder m the cyhndncal co-ordmate system. 

MedmmO 

Figure Cl. I Cyhndncal co-ordmate system on top of the orthogonal co-ordmate system Note 
that the postttve z·axts ts pomtmg downwards mto medmm 4 
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MedmmO 
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z 

--............ 
......... X 

-----1-~~~~-------~---------~ ... ~----------------------;r----------------. 
: ------~--~ ............ ,, .. ' 
: ----- -- ........... ,," y 
• z p = ~ x2 + y2 --------:::~->;<-,----1~ 

Ea,,..---7~ ~. 
~V E4v 

Figure Cl Cyhndncal co-ordmate system on top of the orthogonal co-ordmate system Note 
that the positive z-ax1s IS pomtmg downwards mto medmm 4 
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Figure C3 Mode> of propagation of the electromagnetiC wave underground 
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C. Field Trials 
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Figure C2 Depth of the transmitter as a function of the horizontal location. 
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Figure C3 Car with equipment at field trials 
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Oscillator Amplifier 
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Electromagnetic 
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.--- --'-------,..- Receiver Antenna 

Mixer 

Figure C4 Schematic diagram of the test equipment 

The field where the underground measurements were undertaken was at the back of the 
campus of Loughborough University. The picture in figure C3 was taken in December 
1995. In the summer, the &rrass in the field grows to a height of approximately I m. The 
&rround surface was irregular. Field trials I ,2 and 3 were taken in the summer of 1996. 
Problems in conducting the field trials included access to mains power supply and 
interference between instruments. A 60 m long cable was used to get to the mains supply 
from the nearest building. lnductors (acting as chokes) were included in the long DC 
power supply wires to the transmitter under&rround to reduce interference. The Printed 
Circuit Board (PCB) of the RF oscillator had to be resized to allow it to fit into the 9 cm 
diameter pipe. 
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APPENDIX 

Fi.gure CS Transmitter Antenna (ftrst version), Amplifier and Oscillator. 

3: pipe 

Figure C6 Improved version of the transmitter antenna. The dipole antenna is hold in place by a polystyrene 
structure. The relative dielectric constant of the polystyrene was measured to be 1.1. The loose wire from 
the feeder is to balance the current input. 

The picture in figure C5 shows the transmitter antenna used in the initial measurements. 
The problem with thi s antenna was that it acted like an eccentrically dielectric loaded 
dipole, which had a high gain pointing downwards in the positive z-direction. The antenna 
shown in figure C6 was used in the trials reported in this thesis. It was positioned in the 
middle of the pipe, making it nearly omnidirectional in the azimuth plane. It was 
modelled as a dielectric loaded wire antenna with the air surrounding it and the pipe 
medium acting as its dielectric sheath. Using this model, its impedance and effective 
length were calculated. 
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D. Underwater Measurements 

Figure Dl Underwater measurement in the basin at Loughborough University 

Underwater measurements were undertaken in the basin at Loughborough University. The 
power used was low, to minimise reflection against the basin boundaries. 
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Figure D2 Drawing with d imensions of the 1.8 m deep basin at Loughborough University. 
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E. Underground Antenna Measurements 

Figure E. l Measurement of input impedance of dielectric loaded monopole anteruta 
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F. Complex Dielectric Constant 
Measurements 

Network AnaJyser 

Probe holder 

Coaxial probe 

Samples 

Figure CS. I Experiment for complex dielectnc constant measurement 

128 




