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Abstract 
 

The IEEE 802.11 networks are vulnerable to numerous wireless-specific attacks. 

Attackers can implement MAC address spoofing techniques to launch these attacks, 

while masquerading themselves behind a false MAC address. The implementation of 

Intrusion Detection Systems has become fundamental in the development of security 

infrastructures for wireless networks. This thesis proposes the designing a novel 

security system that makes use of metrics from multiple layers of observation to 

produce a collective decision on whether an attack is taking place. 

The Dempster-Shafer Theory of Evidence is the data fusion technique used to 

combine the evidences from the different layers. A novel, unsupervised and self-

adaptive Basic Probability Assignment (BPA) approach able to automatically adapt its 

beliefs assignment to the current characteristics of the wireless network is proposed. 

This BPA approach is composed of three different and independent statistical 

techniques, which are capable to identify the presence of attacks in real time. Despite 

the lightweight processing requirements, the proposed security system produces 

outstanding detection results, generating high intrusion detection accuracy and very 

low number of false alarms. A thorough description of the generated results, for all the 

considered datasets is presented in this thesis. The effectiveness of the proposed 

system is evaluated using different types of injection attacks. Regarding one of these 

attacks, to the best of the author knowledge, the security system presented in this 

thesis is the first one able to efficiently identify the Airpwn attack.  
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Chapter 1  

Introduction 

1.1 Background 

Wireless Local Area Networks (WLANs) have experienced a tremendous growth in 

popularity over the last decade. WLANs, based on the IEEE 802.11 standard, have 

become very affordable and have been increasingly deployed in businesses of any 

kind, educational institutions, governmental buildings, public places, and private 

properties. They offer to users significant mobility advantage, usage flexibility, fast 

and cheap network deployment, and easier scalability than conventional wired 

networks. More recently, 4G technology has gained relevance in the mobile and 

broadband connectivity market. Two 4G wireless technologies, Long Term Evolution 

(LTE) and Worldwide Interoperability of Microwave Access (WiMAX), based on the 

IEEE 802.16 standard, are forecasted to dominate the broadband connectivity market. 

The number of mobile broadband subscribers is expected to reach 9.3 billion by 

2018 [1]. Despite the growth in popularity of the 4G technologies, IEEE 802.11 

networks, known as WiFi, still attracts great interest among companies that provide 

Internet access, and final users. Infonetics explains that mobile operators want to see a 

closer integration of WiFi with mobile networks in coming years. The mobile 

operators perceive WiFi as a key solution for more intelligent mobile offload [2]. This 

market research firm forecasts that mobile WiFi access points will experience in 2016 
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a growth rate of the 86%, as mobile operators want a closer integration between WiFi 

and the mobile networks [3]. Private users of wireless-ready electronic devices still 

perceive WiFi as the main source of data connectivity for their smartphones and 

tablets. According to the report in [4], 58% of smartphone users and 93% of tablet 

owners use WiFi for Internet access, rather than using mobile broadband connectivity. 

1.2 Insecurity of Wireless Networks 

Unfortunately, the fast change in technology, the general trend towards mobility and 

Internet accessibility anytime-anywhere are playing a very important role in the 

insecurity of wireless devices. The vulnerabilities present in the wireless standard 

protocols have exposed wireless network users to an increasing number of 

sophisticated, easy to launch and untraceable attacks [51]. A discussion about the 

security of wireless network is presented in [53]. 

The IEEE 802.11 standard proposed different security protocols, establishing 

traffic encryption and integrity protection to the network infrastructure [5], as well as 

avoiding unauthorised access to the wireless networks. However, wireless networks 

cannot rely on these security protocols to protect the content of the communications. 

All these security protocols are vulnerable to decryption analysis processes [7] [8] 

[10]. In addition to be vulnerable to attacks and intrusion attempts that generally affect 

the devices connected to the wired networks such as viruses, malware, spam, web-

based attacks, Denial of Service (DoS), Distributed DoS (DDoS), identity theft, etc., 

the wireless network users suffer also from new types of attacks that specifically 

affects the wireless networks. These attacks are known as Wireless-Specific attacks. 

The wireless-specific attacks target the wireless vulnerabilities in the two lower layers 

of the network protocol stack, the Physical (PHY) and the Medium Access Control 

(MAC) layers. In contrast to the cyber-attacks that come from the core of the network 

and reach the wireless devices through the Access Point (AP) for WiFi networks 

(eNodeBS for LTE and Base Station for WiMAX), wireless-specific attacks are those 

that are launched with a third party device and reach the wireless devices through the 

wireless link of the network. 
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The difficulty of launching cyber-attacks that specifically compromise the 

wireless communications is decreasing fast. The required knowledge, software and 

devices to launch these attacks are very easily available [9]. Both the software tools 

and the essential instructions can be easily found on the Internet. Similarly, the 

appropriate wireless Network Interface Controller (NIC) can be bought and the precise 

chipset driver can be also found on the Internet. 

Bringing together the fact that the wireless networks are significantly more 

unsecure and easier to compromise by cyber-attacks than wired networks, the 

forecasted increase in the number of users that will make use of wireless networks to 

access to the Internet, and the fact that the number of cyber-crimes has experienced 

tremendous growth in recent years, creates the perfect scenario possible for hackers to 

carry out their malicious actions. The authors of [12] present a complete taxonomy of 

the most common threats that WLANs may encounter. Currently, the number of 

attacks that specifically target mobile devices remains small. However, information 

security experts have alerted that it is only a matter of time before these figures change 

[6]. It is expected that the next generation of wireless networks, particularly those 

serving a wide range of users (e.g. open/public wireless networks) will have to operate 

during prolonged periods of time under threat of attack or facing long periods of active 

attacks. Therefore, it is clear that special effort must be made to provide more reliable 

protection mechanisms to such networks and the devices that access to them. 

1.2.1 Mechanisms to Enhance Wireless Networks Security 

The design of secure and reliable wireless networks presents a major challenge to 

security system designers. Security mechanisms that have been commonly used to 

protect the networks, and especially wireless networks, have not been completely 

efficient. Whichever the implemented security mechanisms, it has been a matter of 

time before these mechanisms have been circumvented or overpassed by attackers. All 

the security mechanism should be designed with the following security objectives in 

mind. These security objectives have been nicely documented in [10] [12]. 
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 Confidentiality 

The network security systems should ensure that only authorised users have access 

to transmitted information, and safeguard the privacy of the transmitted 

information from unauthorised users and attackers. Encryption, authentication and 

access control mechanisms are the most commonly utilised approaches to provide 

confidentiality to the wireless communications [13]. Authentication and access 

control mechanisms prevent unauthorised access to the wireless network resources. 

Encryption mechanisms prevent attacker or unauthorised users from reading 

transmitted information. 

 Integrity 

The wireless devices within the WLANs should be aware of any intentional or 

unintentional modification in the transmitted information. The network security 

systems also should guarantee that unauthorised users and attackers do not modify 

the transmitted information, and indicate whether the information has been 

replayed. Cryptographic hashes are commonly utilised to provide integrity for 

wireless communications. 

 Availability 

The wireless network should guarantee that legitimate devices could always be 

accessed and be able to use the network resources, upon demand. Network security 

systems should ensure that unintended users or attackers could not block the access 

to the wireless network resources. Because the availability of a network could be 

compromised by attacks of diverse nature, different security mechanisms might be 

required to safeguard the availability of the network. 

Traditional network security mechanisms, such as cryptography protocols, firewalls or 

antivirus, are not efficient enough to protect the wireless network infrastructure. These 

static mechanisms are unable to dynamically adapt their detection capabilities to either 

the changing characteristics of the protected communication systems or the constantly 

changing complexity of the cyber-attacks. Although different amendments of the 

wireless technology standards have been released and modified to provide stronger 



 

 

CHAPTER 1: INTRODUCTION 

5

cryptographic mechanisms and more robust security policies, there are still numerous 

attacks able to compromise the privacy of the wireless communications. Antivirus 

systems are intended to protect Personal Computers (PCs) from viruses, malware or 

Trojan horses, mainly at the application layer. These systems are effective identifying 

and removing from the systems infections that have already occurred, but 

inappropriate to protect wireless networks and wireless devices at the lower layers of 

the protocol stack. The firewalls, commonly allocated between the local network and 

the Internet Service Provider (ISP) backbone, cannot protect wireless networks from 

wireless-specific attacks because the lack of physical boundaries allows the attacker to 

directly interact with the wireless devices without passing through the firewall. 

Therefore, an improved or alternative solution for securing the wireless networks is 

required. 

1.2.2 Intrusion Detection Systems 

Performing an analysis of the vulnerabilities of the wireless networks it is easy to 

conclude that there exist three main characteristics that make the implementation of 

the wireless-specific attacks feasible. These are the ability to intercept and analyse the 

wireless communications content, the capability to inject malicious information into 

the wireless communication, and the capacity to impersonate the identity of legitimate 

wireless members of the network. An attacker can easily implement techniques of 

MAC address spoofing. These characteristics allow the attackers to implement an 

immense number of attacks that compromise the confidentiality, integrity and 

availability of the wireless communications and wireless networks infrastructure. The 

efforts to provide reliable security to the wireless networks should focus on 

discovering the real identity of the device that transmits the frames, even if the 

attacker masquerades itself behind a false identity. 

The implementation of wireless network monitoring tools, such as Intrusion 

Detection Systems (IDSs), able to identify the presence of attackers intercepting and 

injecting information, as well as impersonating the identity of legitimate wireless 

devices, has become fundamental in the development of security infrastructures for 
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wireless networks. IDSs are security systems designed to protect networks or 

computer systems by constantly monitoring and detecting malicious actions that 

compromise the resources of the monitored system [14]. In [86], the authors describe 

the main functions performed by IDSs as gathering activity information from the 

monitored system, analysing the gathered information and assessing the nature of this 

information, and raising an alarm if the outcome of the detection process indicates the 

presence of attack. These systems incorporate sophisticated information analysis 

techniques that allow processing diverse types of information. 

IDSs outperform the protection capabilities of cryptography protocols, firewalls or 

antivirus. As will be explained in Chapter 4, certain types of IDSs dynamically update 

their detection capabilities, enhancing the network protection capabilities against 

attacks [15], in contrast to the traditional static security mechanisms; in particular, the 

anomaly-based IDSs. Different mechanisms could be utilised by the IDSs to analyse 

the datasets. Some mechanisms would produce more efficient results than others, 

depending on the different factors, such as the behaviour of the monitored system, the 

type of attacks, or the gathered metrics. An approach that has gained wide interest 

among the research community is the use of Data Mining techniques in tasks of 

intrusion detection [36]. 

The utilisation of data mining techniques has been proved to improve the 

detection capabilities of IDSs, making the datasets analysis process more efficient. 

Data mining techniques are able to identify previously unknown and useful 

information in datasets applying different mathematical and statistical analysis. 

However, almost every single data mining technique used in tasks of intrusion 

detection suffers from important drawbacks that need to be overcome. For instance, 

some of these techniques require preprocessing the analysed datasets to produce 

acceptable results, or require performing a thorough training process before carrying 

out the data analysis. 
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1.2.3 Multi-Layer Detection and Data Fusion 

IDSs can make use of any observable and measurable metric of the monitored system 

to detect attacks. According to [16], common sources to extract these metrics are audit 

logs, network traffic, user commands or system calls. Focusing on wireless networks, 

the different features could be extracted from the frame headers, the frames payload or 

constructed traffic Netflow data. There is no restriction in the number of layers from 

which the metrics could be extracted. Either a single metric or multiple metrics could 

be extracted from one or multiple layers throughout the whole protocol stack. These 

gathered metrics compose the dataset analysed by an IDS to detect the presence of 

attacks or evidence of intrusion attempts. 

The utilisation of an appropriate number of metrics is a very important step for 

IDSs towards an efficient intrusion detection process. Although there are cases in 

which IDSs that utilise information from a single metric might give precise detection 

results, the presence of attacks is rarely accurately detectable by examining a single 

metric from one layer of the protocol stack. As many researchers have previously 

demonstrated [37] [38] [39], the combined use of multiple metrics from the same or 

different protocol layers may result in higher detection accuracy rate with lower 

numbers of false alarms. Hence, utilising a multi-layer approach may help towards 

improving the process of detecting and mitigating wireless network attacks. 

Using the information from multiple metrics from multiple layers could be 

managed in different ways. One of the mechanisms is the utilisation of data fusion 

methods to make a combined use of the information from the different metrics. Data 

fusion can be defined as the process of collecting information from multiple and 

heterogeneous sources, and combining them towards obtaining a more accurate final 

result [39]. Among different data fusion methods that could have been utilised, the 

Dempster-Shafer (D-S) Theory of Evidence has been chosen in this work. One of the 

reasons for this selection is the ability of managing uncertainty, which allows tackling 

a large range of problems. 

The D-S theory has been previously used in the intrusion detection field to 

enhance the detection accuracy of IDSs [39] [40] [41]. Despite been proven as a 
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powerful and efficient technique, a very important step to allow D-S theory to be used 

in practice remains to be investigated. This is to find an automatic and self-adaptive 

process of Basic Probability Assignment (BPA), based on the measured characteristics 

of the network. The major challenge for applying D-S theory in IDS is to 

automatically determine the beliefs assigned to each of the considered hypothesis, 

based on the information extracted from the network measurements [42]. None of the 

previous works that use D-S has found an efficient solution to this challenge. 

Among all the works on IDS that investigate the use of the D-S theory, there exist 

multiple ways of assigning belief to each of the considered hypotheses. However, few 

of them could be used off-the-shelf without either prior thorough training or fine 

tuning period. Furthermore, most of the alternative techniques have to be trained with 

completely clean datasets. Expert opinion to manually assign the belief probabilities is 

often the utilised approach, which is inadequate for automatic and self-adaptive IDSs. 

The utilisation of fixed functions or linear functions to assign the belief is another 

approach often utilised, which cannot automatically adapt to changes. Other group of 

approaches to assign belief to each of the hypotheses is based on the uses of data 

mining techniques, which require the gathering of large amounts of data traffic and the 

completion of a training period before being able to perform BPA tasks. These 

systems may be unable to automatically adapt to changes in real time. 

1.3 Motivation and Objectives 

Despite the development of many mechanisms to provide security for the wireless 

networks, these networks remain insecure. Wireless communications still suffer from 

security vulnerabilities [10]. Designing a security system that could provide better 

levels of protection for the wireless networks is one of the principal objectives of this 

thesis. Any effort to provide an extra level of protection to a network has become an 

issue of critical importance. In an optimum situation, security system should be 

autonomous and unsupervised, able to work with the intervention from a system 

administrator. Designing a system with these characteristics has become one of the 

objectives of this research work. 
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Security systems that work in off-line or nearly real time are one step behind the 

attackers. In order to provide significant security protection against attacks, the 

proposed security mechanism should work in real time, analysing network frames as 

soon as they arrive to the protected system. The security system should be capable of 

detecting the presence of attacks without the need for thorough training process and 

the computational cost of the system should be lightweight to be applied in real time. 

Therefore, the proposed system should be computationally low cost. In addition, it is 

desirable for a security system to be scalable and applicable to other wireless 

technologies. 

As explained previously, the utilisation of multi-layer approaches may help 

towards improving the process of detecting and mitigating wireless network attacks. 

Hence, in order to maximise the accuracy of the security system, this system should 

implement multi-layer and data fusion techniques to increase the intrusion detection 

capabilities. The D-S theory has been chosen in this work, for the ability of managing 

uncertainty that this technique provides. In order to utilise the D-S theory as part of an 

autonomous and unsupervised security system, able to perform the detection in real 

time, an automatic and self-adaptive BPA must be found. Currently, there exist 

multiple ways of assigning belief to each of the considered hypotheses. However, few 

of them could be used off-the-shelf without either prior thorough training or fine 

tuning period. Therefore, the implementation of novel BPA techniques able to 

automatically adapt their beliefs assignment to the current characteristics of the 

wireless network, without intervention from an IDS administrator became another of 

the most important objectives of this thesis. 

1.4 Design Challenges 

The experiments for the development of this thesis have been implemented using 

wireless network traffic datasets gathered in a live operational wireless network. WiFi 

has been the wireless network technology selected for the development of this work. 

This decision has been taken for different reasons. Firstly, the IEEE 802.11 standard 

still attract great interest among companies and final users. As explained previously, 
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despite the growth in popularity of the 4G technologies, it is expected that wireless 

networks based on this standard will experience an 86% growth rate by 2016 [2]. 

Second, the wireless equipment based on the IEEE 802.11 standard was more easily 

accessible than WiMAX equipment. A limited number of WiMAX cards using open 

source drivers were available, making the implementation of wireless-specific attacks 

in a live operational WiMAX network unfeasible. Also, the compatibility of TShark 

[17] gathering network traffic is more advanced and better integrated with the IEEE 

802.11 standard than the 4G technology standards. 

Attempts were made to evaluate the proposed methodology on a WiMAX 

network. Although a base station emulator was used for this purpose, the capabilities 

of this emulator were highly restricted, and did not allow the implementation of the 

wireless-specific attacks that have been examined in this thesis. The level of restriction 

of this WiMAX network emulator made it difficult to acquire real WiMAX network 

traffic, and the experiments that have been implemented in this work were therefore 

very limited. However, the potential of the approach for use on a WiMAX network has 

been investigated to some degree. 

It should be noted that the LTE and WiMAX network traffic datasets required 

could not have been created directly utilising the different network simulation 

software available. This option was discarded because of two main reasons. On the 

one hand, the network simulation software tools are unable to take into account all the 

parameters and environmental conditions that wireless communication may experience 

in a physical network testbed. The simulated network traffic datasets would lack 

relevant information to implement the experiments and to conduct the attack 

detections. On the other hand, the available network simulation software tools do not 

allow direct implementation of the wireless-specific attacks that are examined in this 

thesis. Therefore, the main experiments for the development of this thesis have been 

implemented in a physically deployed WiFi network testbed. 
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1.5 Thesis Contributions and Outcomes 

 Novel BPA methodology 

The most important contribution of this thesis is a novel BPA methodology able 

to automatically adapt its probabilities assignment to the current characteristics of 

the wireless network, without intervention from an IDS administrator. The novel 

automatic, unsupervised and self-adaptive BPA methodology developed for this 

thesis is composed of three different and independent statistical techniques, able of 

generating predictions regarding the presence of attacks, based on historical 

parameters. 

 Multi-layer security system 

Another major contribution of this thesis is the development of a novel automatic 

and self-adaptive security system, based on multi-layer data fusion architecture, 

which provides real time protection to the wireless networks against wireless-

specific attacks. The security mechanism developed for this thesis makes use of 

metrics from multiple layers of observation to protect IEEE 802.11 networks from 

wireless-specific attacks. The developed anomaly-based IDS provides high level of 

protection to the wireless networks against this type of attacks. In addition, the 

system has been proved scalable and applicable to other wireless technologies. 

 Real time protection 

The presented security system only requires a lightweight process for generating a 

baseline profile of normal utilisation. The lightweight processing requirements of 

the three proposed techniques allow implementing the BPA process for the 

detection in real time, concluding the real nature of each single analysed frame is 

just a few μseconds. This timeframe allows the presented system to perform any 

countermeasure action before a new incoming frame reaches the protected system. 

 High intrusion detection accuracy 

Despite the lightweight processing requirements, the proposed security system 

produces outstanding detection results, generating high intrusion detection 



 

 

CHAPTER 1: INTRODUCTION 

12

accuracy and very low number of false alarms. It also ratifies the improvement in 

the intrusion detection process provided by the combined use of information from 

multiple protocols stack layers. The complete description of the IDS framework 

and the detailed description of the three developed BPA methodologies are 

presented in this thesis. 

 Detection of different injection attacks 

The effectiveness of the presented security system has been evaluated using 

different types of injection attacks. Regarding one of these attacks, to the best of 

the author knowledge, the security system presented in this thesis is the first one 

able to efficiently identify the Airpwn attack [18]. Still there has not been reported 

evidence that cyber-attackers are using the Airpwn attack actively. Nonetheless, in 

this thesis it is speculated that cyber-attackers might see in this tool an effective 

and easy to implement mechanism to gain substantial economic benefit. 

 Publicly available datasets 

A series of network traffic datasets have been gathered from a live operational 

IEEE 802.11 network, physically deployed in the laboratory of the High Speed 

Network Group, at Loughborough University. The network traffic was gathered 

and stored in the form of pcap files [19], using TShark. These datasets have been 

made accessible and publicly available in [20]. Considering the lack of publicly 

available network traffic datasets with which different IDSs can be evaluated, the 

gathered datasets is another contribution of this thesis. 

 Source code 

The presented security system has been written in the C language, during the 

completion of this thesis, which provides great flexibility to be easily adapted or 

integrated to other security implementations. 
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1.6 Thesis Outline 

The outline of the thesis is organised as follows: 

Chapter 2 provides an overview of the most important published works in the 

field of wireless security and intrusion detection. Existing detection methodologies to 

identify attacks in WLANs that make use of MAC spoofing are central to the content 

of this chapter. Different data mining techniques are described. Additionally, systems 

that use of multi-layer approach and data fusion methodologies are also discussed. 

This chapter also describes the different methods to determine the BPA values in D-S 

theory present in the IDS literature. 

Chapter 3 presents a description of the security protocols recommended by the 

IEEE 802.11 standard, along with a brief description of the current security systems. 

This chapter also presents an extensive overview of the most common wireless-

specific attacks. These are the attacks that more commonly compromise to wireless 

networks, in order to find a common implementation pattern that could help to identify 

a common detection or countermeasure mechanism against these attacks. The chapter 

finishes with a description of the particular wireless-specific attacks that have been 

practically evaluated in this thesis. 

Chapter 4 introduces the concept of IDSs. This chapter presents a detailed 

taxonomy of the most relevant characteristics considered when an IDS is designed, as 

well as the pros and cons of each of the characteristics. Next, this chapter describes the 

characteristic included in the final architecture design of the IDS presented in this 

thesis, and discusses the principal reasons for selecting each of the characteristics that 

have been included in the final architecture of the system. The purpose of this chapter 

is to find the most convenient architecture for the presented detection system. 

Chapter 5 introduces a thorough description of the detection techniques and 

internal architecture design of the IDS presented in this thesis. It describes the way the 

information if administrated within the IDS, and explains the sliding window 

technique developed to implement the IDS training process. It also introduces the 

concepts of multi-layer intrusion detection and data fusion techniques. The chapter 
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concludes with the description of a novel BPA methodology able to automatically 

adapt its probabilities assignment to the current characteristics of the wireless network, 

without intervention from an IDS administrator. 

Chapter 6 provides a thorough analysis of the wireless network traffic datasets 

analysed in this thesis. This chapter starts with a decision of whether utilise well-

known network datasets, synthetically generated dataset, or network traffic datasets 

gathered from a live operational network. It also describes the testbed from which the 

different datasets have been gathered. Then, all the metrics used to carry out the 

intrusion detection are individually described. For each of the datasets, a thorough 

statistical analysis of each of the metrics is presented. The chapter concludes with a 

brief description of the concept of feature selection and curse of dimensionality. 

Chapter 7 evaluates the effectiveness of the unsupervised anomaly based IDS 

framework presented in this thesis. This chapter presents a series of experiments and a 

thorough description of the generated results, for all the considered datasets and all the 

possible metric combinations. The experiments compare the detection results 

generated using the multi-layer approach (i.e. when all the considered metrics are 

used) against the same methodology utilising different sets of metrics. Also, the 

experiments evaluate the system configuration that best result generates, as well as the 

most appropriate sliding window length. The presented results empirically prove the 

efficiency of the proposed IDS and the different BPA techniques. In addition, the 

results empirically prove the intrusion detection can be implemented in real time. 

Finally, Chapter 8 provides the conclusions of this thesis and discusses the 

possible future research work. 
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Chapter 2  

Related Work 
 

The research literature based on network security and IDSs is extensive. This chapter 

starts with an overview of the most important works published in the field of wireless 

security. It also provides an overview of the most important published works in the 

field of intrusion detection. Next, a brief description of some of the most widely used 

intrusion detection techniques is presented. Different techniques could be utilised by 

the IDSs to analyse network traffic and to identify attacks. Given that the efficiency of 

the IDSs depends on these techniques, it is important to consider the available 

intrusion detection techniques that could have been used in this thesis. For each 

technique, some advantages and disadvantages have been listed. This chapter pays 

special attention to the techniques mainly used by anomaly IDSs. Additionally, 

systems that use a multi-layer approach and data fusion methodologies are also 

discussed. Finally, the chapter concludes with the description of the different methods 

to determine the BPA values in D-S theory present in the IDS literature, and their 

inadequacy in being determined automatically and in real time, based on the measured 

characteristics of the analysed network traffic. 
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2.1 Wireless Security Background 

The insecurity of IEEE 802.11 networks has been addressed in multiple research 

works. The authors of [12] present a complete taxonomy of the most common threats 

that WLANs may encounter. A number of wireless-specific attacks are described, 

along with a series of countermeasures. In [49], the authors address the insecurity of 

WiFi networks, describing some of the security protocols included in the IEEE 802.11 

standard and some of the vulnerabilities. Similarly, the authors of [50] also describe 

some of the vulnerabilities of the IEEE 802.11 standard. 

One of the most relevant works about the WiFi network vulnerabilities is 

presented in [51]. The authors describe a series IEEE 802.11 network vulnerabilities 

that could be exploited by an attacker. Then, the feasibility of implementing some 

wireless-specific attacks and the effect that these attacks produce on the wireless 

networks are studied with practical experiments. Finally, a number of countermeasures 

are also suggested. Other research work that describes an overview of the 

vulnerabilities in WiFi networks is presented in [52]. 

A discussion about the security of wireless network is presented in [53]. In this 

work, the authors discuss concepts about the security mechanisms of both, 3G and 

WiFi networks, and describe some of the standards vulnerabilities. Another research 

on the insecurity of wireless networks is presented in [5]. Similar to [53], this work 

discusses concepts about the security mechanisms of 3G and WiFi networks. A wide 

description of different security mechanisms described in the IEEE 802.11 standard is 

presented. 

2.2 Research on Intrusion Detection Systems 

IDSs have been a very active research topic for more than a decade. There are 

numerous publications that propose novel IDS approaches, for instance, to increase the 

detection efficiency of IDSs or to design more effective architecture of these systems. 

In [55], an extensive description of multiple concepts about IDSs is presented. The 
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authors provide a complete guidance about the design, implementation and 

deployments of IDSs. 

In [56], the authors describe multiple general concepts in the field of IDSs. This 

work describes some of the most common categories of IDS, provides some detection 

techniques, and presents the concept of data fusion in IDSs. Similarly, an extensive 

description of multiple concepts of IDSs is presented in [57] and explains some of the 

issues that remain open in the field of IDSs. Multiple concepts about IDSs are also 

presented in [58]. IDS categories, advantages and disadvantages of some of these 

categories and detection techniques are described in this work. 

One of the most complete researches on IDSs is presented in [10]. This 

dissertation initially introduces the IEEE 802.11 standard, describes some of the 

vulnerabilities and feasible attacks, and gives a complete taxonomy of IDSs. Then, the 

author proposes a novel detection approach to detect intrusion in WLANs, using 

information from the PHY and MAC layers. In the PHY layer, the difference between 

consecutive Received Signal Strength Indication (RSSI) values is calculated and 

compared against a defined threshold. In the MAC layer, [10] measures the Round 

Trip Time (RTT) that takes to complete the Request-to-Send (RTS) - Clear-to-Send 

(CTS) handshake between the AP and the wireless client. This approach would be 

ineffective if the wireless devices do not implement the RTS-CTS process. 

Additionally, the detection threshold is calculated using averages of historical 

information. In contrast to the work presented in this thesis, both approaches operate 

independently. An alarm is raised after both approach consider there is an attack. 

2.2.1 Detecting Attacks 

A complete description of DoS attacks has been presented in [59]. The authors make a 

short description of IEEE 802.11 networks before describing a number of DoS attacks 

at the PHY and MAC layers. This work also presents a series of countermeasures that 

could be implemented against this type of attack. In [60], the authors present a brief 

description of different DoS that can be implemented in wireless networks. DoS 

attacks in WiFi networks, launched at the PHY and MAC layers, have been studied in 
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many other research works. In [61] [62], the authors practically demonstrated the 

effect of the DoS attacks at both layers, stopping the legitimate wireless 

communication. Other researches have used simulation environments to study the DoS 

attacks in WiFi networks. For instance, [63] [64] [65] present works that use OPNET 

network modeller [66] to simulate DoS attacks. These works also propose 

countermeasure mechanisms against this type of attacks, and describe possible 

drawbacks for the proposed mechanisms. 

In [67], another type of DoS attacks is presented. The authors have practically 

evaluated the effect of authentication request and association request flooding on the 

network performance. The solution against this attack proposed by the authors, MAC 

address filtering, may work against the legitimate network users. 

One of the research works that employs the monotonic increment of the sequence 

number value to identify spoofing attacks is presented in [68]. Initially this work 

presents an extensive study about the change pattern of the sequence number in non-

malicious situations. This is compared against the change pattern of the sequence 

number when spoofing attack takes place. Then, the authors propose and practically 

evaluate a methodology that uses sequence number value to identify attacks. Although 

the results show this is an effective approach, the authors explain that the proposed 

methodology is unable to detect spoofed frames if the attacker replicates the sequence 

number value of the last legitimate frame transmitted. 

The methodology proposed in [72] also conducts the analysis of the sequence 

number to identify the presence of MAC spoofing attacks. Initially, the proposed 

detection system computes the theoretical maximum number of frames that can be 

transmitted per second. Through the use of the sequence number and the frame arrival 

time, the proposed methodology calculates whether the theoretical maximum number 

of frames is surpassed. In that case an alarm is reported. As highlighted by the authors, 

the effectiveness of this methodology relies on an arbitrary threshold defined by the 

system administrator, which is a major drawback. In addition, this methodology is 

unable to manage retransmitted frames, which, according to the authors, always 

produce false alarms. The authors of [72] also describe the utilisation of MacSpoof, a 
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sequence number analysis tool. MacSpoof identifies gaps between the sequence 

numbers of two consecutive frames. If a certain number of gaps occur within a 

specified time period, an alarm is reported. This is another example of an inefficient 

detection mechanism that identifies the presence of attacks counting the number of 

times that the protected system has been attacked during a defined period of time. 

In [69], the authors tackle the detection of spoofing attacks in a wireless ad hoc 

network. This work describes a method to detect MAC spoofing attacks, using the 

sequence numbers at the MAC layer and the interarrival time between frames. 

Described by the authors, in a situation in which the spoofing device transmitted 

before the legitimate wireless device, the detection system that uses the sequence 

numbers would consider that the legitimate device is implementing a spoofing attack. 

Additionally, the presented methodology makes uses of a sliding window scheme. For 

the implementation of the experiments, the authors explain that the length of the 

window ‘should be large enough’. However, the appropriate window length is never 

specified. In addition, the implementation of the severity region proposed in this work 

requires the administrator to specify the threshold levels. 

Another approach that proposes using the sequence number to detect MAC 

spoofing attacks is presented in [70]. The authors present an adaptive threshold 

methodology to identify abrupt changes in the sequence number sequences. This 

approach is enhanced using timestamps of the monitored frames. Once more, the 

proposed system makes use of a threshold, which is empirically specified by the 

authors. Besides, the timestamp analysis is applied only on Beacon or Probe 

management frames. 

The authors of [71] also present a methodology to detect MAC spoofing attacks 

using the sequence number and . This work requires generating a profile of 

normal behaviour in advance only with non-malicious information. The authors 

assume that the attacker is not present during the profiling period, and it is also 

assumed that the legitimate device is positioned in a fixed geographical location. 

Similar pieces of information are used in [72] to detect identity spoofing attacks. 
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In [73], the authors also tackle the detection of spoofing attacks in wireless 

networks using the single metric  to detect MAC spoofing attacks. Their 

approach requires the wireless devices to monitor the  value of communication in 

both directions of the communication between two legitimate devices in order to 

detect spoofing attacks. Also, the detection methodology requires the legitimate 

devices to keep and exchange records of the measured . Both parties compare 

their own records with the received information to detect the presence of identity 

spoofing attacks. This approach implementation exposes the exchanged information to 

be compromised by an attacker. Additionally, presented experiments involve ICMP 

protocol communication between the wireless devices. Whilst this type of information 

may be useful for the evaluation of the proposed methodology, this may not be 

representative of a real wireless network communication. 

The authors of [74] also show that individual  fingerprints can be used to 

identify the presence of MAC spoofing attacks. The presence of separate  

fingerprints generated by a single MAC address indicates the presence of MAC 

spoofing attack. The authors of [75] also make use of the , along with the 

geographical location of the wireless device, to detect the presence of identity 

spoofing attacks. After measuring the mean value of the  at multiple specific 

locations, the proposed methodology makes use of K-means clustering technique to 

identify the attack. The authors need to define the particular threshold value of the 

distance between centroids in the clusters to discriminate between non-malicious and 

spoofed information. The main drawback of this methodology is the assumption that 

the geographical location of the devices is accurately known. Additionally, the 

detection threshold needs to be empirically specified. 

The authors of [76] make a critic against the mechanisms that use the sequence 

number and  to identify spoofing attacks. As an attempt to overcome the 

drawbacks of these methodologies, the authors propose an alternative methodology 

that associates the sequence number with some Quality-of-Service (QoS) parameters, 

with different wireless devices manufacturers, along with location parameters. 
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2.3 Detection Technique for Intrusion Detection Systems 

The efficiency of the detection systems depends on the detection engine and the 

intrusion detection technique that it employs. Over the years, researchers and private 

companies have proposed and developed numerous techniques, which allow IDSs to 

analyse datasets and categorise the network traffic instances either as normal or 

malicious [77]. Some of the techniques would produce more efficient results than 

others, depending on different factors, such as the behaviour of the monitored system, 

the type of attacks, or the gathered metrics. 

This section is not intended to describe in detail all the available detection 

techniques, but to give a brief insight into some of the most widely used intrusion 

detection techniques that could have been used in this thesis. For each of the 

techniques, the advantages that make them appropriate for intrusion detection, and the 

disadvantages that make these techniques inadequate for intrusion detection have been 

listed. The authors of [57] [58] indicate that the three most common techniques used 

by the anomaly-based IDSs are statistical methods, machine learning and data mining 

techniques. The most common techniques used by misuse-based IDSs are pattern 

recognition, implication rules and data mining techniques. Since the system proposed 

in this thesis is primarily an anomaly IDSs, this chapter pays special attention to the 

techniques used by this type of detection systems, and leaves aside the techniques 

mainly used by misuse IDSs. 

2.3.1 Statistical-based Detection Techniques 

Statistical-based IDSs are the most widely used systems [78]. Generally, these systems 

construct two models or profiles [58], along with an alarm threshold. The first of these 

profiles is the reference of normal network traffic behaviour, constructed during the 

training process or training phase. Statistical techniques are used to generate a 

stochastic model that represents the behaviour of previously gathered information 

[36]. The second profile is the statistical representation of the currently analysed 

information, during the detection process. The amount of data required to generate this 
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profile should not be as predominant as for the profile of normal network traffic 

behaviour. In addition, the alarm threshold is a value that establishes the boundary 

between normal and malicious information [55]. 

Two of the main difficulties for statistical-based IDSs are the creation of accurate 

profiles and accurately comparing both profiles. Statistical-based IDSs compare both 

profiles and calculate the level of deviation. An intrusion is identified if the level of 

deviation between the two profiles exceeds the alarm threshold. The level of deviation 

is usually calculated based on a distance function [78] such as the Euclidean distance, 

Manhattan distance or Hamming distance. In frequently changing environments such 

as wireless networks, new statistical profiles for the current analysed information 

should be repeatedly generated. The reference of normality requires a good training 

process. Whilst it is not always necessary to implement the training highly frequently, 

the statistical profile of the currently analysed information requires to be constantly 

updated every time a new frame is gathered. Also, the procedure of defining the alarm 

threshold represents high difficulty [79]. The value of the alarm threshold has an 

important and direct impact on the performance of the detection system. If the alarm 

threshold was not large enough, the IDS would tend to generate False Positives (FPs). 

In contrast, if the alarm threshold was too large, the IDS would tend to produce a high 

number of False Negatives (FNs) [78] [80]. 

In [36], the authors highlight that statistical-based IDSs do not require prior 

knowledge about the normal behaviour of the protected system. Based on the 

assumption that the normal traffic is predominant in the network traffic, the model 

representing the behaviour of previously gathered information would represent, in 

turn, the behaviour of non-malicious network traffic. This property gives the 

statistical-based IDSs the ability to adaptively learn the normal behaviour of the 

protected network traffic [56]. 

However, this type of approach is not exempt of disadvantages. Statistical-based 

IDSs require gathering network traffic over a period of time [79]. If the time required 

for gathering the information is excessively large, detection could not be implemented 

in real time. Another disadvantage highlighted by the authors of [36] is that the 
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reference of normality that these systems generate is susceptible to gradual 

modification over a period of time by the attacker. This modification causes an IDS to 

believe that the properties of the malicious information represent normality. In 

addition, [81] suggest that traditional statistical methods perform well when analysing 

homogeneous data measurements but their efficiency decreases when non-

homogeneous data measurements are analysed. 

2.3.1.1 Counting Repeated Events 

Not all statistical-based IDSs implement the intrusion detection similarly. A 

differential aspect of the statistical-based IDSs is the method employed to generate the 

reference of normality. In the intrusion detection literature diverse numbers of 

statistical methods have been proposed. A particular type of technique implemented by 

numerous IDSs is counting repeated events during specific periods of time. 

For example, in [82], the authors present an intrusion detection framework based 

on statistical detection techniques to detect attacks at the MAC layer in WiFi networks 

and the presence of wireless devices not following the indication of the IEEE 802.11 

standard. According to [55], this is a methodology able to detect, for instance, DoS 

attacks such as virtual jamming. The methodology presented in this work is based on 

detecting intrusions by counting events during periods of time. It establishes a set of 

alarm thresholds to some metrics. Then, the detection system calculates how often a 

particular event occurs during the defined period of time. The frequency value is 

compared to the alert threshold. If the frequency value exceeds the predefined 

threshold value, the attack has been identified and an alarm is flagged. The IDS needs 

to identify the evaluated event repeatedly before considering the presence of attack. 

Using a very similar methodology to the one implemented in [82], the authors of [37] 

present a framework that detects intrusions by counting events during a period of time 

and identify the attacks if the values of some predefined thresholds are exceeded. The 

authors of [67] also consider utilising a similar statistical detection technique to detect 

authentication and association frame flooding attacks. This work establishes an alarm 

threshold of 5 authentication or association frames per second. If the monitored AP 
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receives more than 5 authentication or association frames with the same source MAC 

address within a second, the detection system considers the presence of a flooding 

attack. This particular work filters out any frame with source MAC address similar to 

the one detected as the source of the authentication and association flooding attack. 

Another example of an IDS that detect intrusions by counting events during periods of 

time is the one presented in [83]. This methodology sets a timer for each received 

deauthentication frame. When the detector has captured at least 2 consecutive 

deauthentication frames from a given MAC address within 6 seconds, it reports an 

alert. A different statistical detection technique also based on the same concept of 

counting events is mentioned in [36]. The IDS collects information during a given 

period of time, and counts the number of times some particular events have been 

repeated. If the number of occurrences of the events is too low, it is considered 

abnormal. 

This intrusion detection methodology is very intuitive methodology and relatively 

easy to implement, and would not require a high computational cost for the detection 

engine. Although it is widely used, this method entitles fundamental drawbacks. After 

all, this detection methodology identifies attacks by counting the number of times that 

the protected system has been compromised during specific periods of time. 

2.3.2 Data Mining 

Traditionally, the security system administrators were in charge of manually 

generating the signatures utilised by the misuse IDSs to identify intrusions [15]. 

Similarly, security experts were in charge of manually the training datasets to train the 

supervised IDSs. Currently, the advances in data gathering technologies means that 

databases contain hundreds of thousands of data traffic records to be processed. The 

vast amount of data generated by current networks makes it impossible to perform 

manual analysis to detect network intrusions. A feasible solution to automate the data 

analysis process could be to employ data mining techniques. 

Data mining is an approach that has gained wide interest among the research 

community in tasks of intrusion detection [36]. The concept of data mining describes a 
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group of data analysis techniques used to automatically extract descriptive knowledge, 

identify previously unknown and useful information, predicting data relationships, and 

discovering behaviour patterns and trends from large amount of audited data [84]. 

These techniques can include different mathematical algorithms, statistical analysis 

and machine learning methods [85]. However, the use of data mining techniques 

mostly focuses on processing large amounts of audit data traffic rather than 

performing real time detection. 

Many IDS administrators use data mining techniques to automatically generate 

intrusion detection models to be used by IDSs. This approach has become very useful 

to improve IDSs performance [86] because it can automate the analysis of large 

datasets and finding process of important information [58]. Many researchers have 

made use of data mining techniques to label training datasets and to train supervised 

IDSs [87]. In the last few years, the concept of data mining has been slightly diluted 

because, according to the authors of [36], now almost every processing mechanism 

able to analyse dataset is nowadays considered a data mining technique. 

The advantage of applying data mining with IDSs lies in the fact that these 

techniques can automatically generate accurate intrusion detection models and 

signatures, which can be used to effectively distinguish between normal and abnormal 

network behaviours [88]. In the case of anomaly IDS, the data mining techniques can 

automatically create the reference of normal behaviour from the analysed information 

and implement the posterior intrusion detection. Similarly, data mining can be applied 

to automatically generate new signatures that will allow identify attacks or intrusion 

attempts, in the case of misuse IDS. However, almost every single data mining 

technique used on intrusion detection tasks requires, firstly, to have datasets for prior 

analysis, and, secondly, preprocessing of the dataset to produce acceptable results. The 

period of time required to gather the datasets is a drawback for real time systems. 

Also, most data mining techniques require training datasets [36], or require performing 

thorough training. Additionally, these techniques are generally computational 

intensive [58], and time consuming. 
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There exist many data mining techniques for intrusion detection. Based on the 

implemented task, these techniques can be divided into association rule analysis, 

sequence pattern analysis, classification analysis and cluster analysis [15] [88] [89]. 

2.3.2.1 Association Rule Techniques 

The association data mining techniques were the earliest techniques used in task of 

intrusion detection [15]. This type of data mining techniques finds relations between 

data instances in the datasets [88] [90] and generates correlation logical rules in the 

form of if ~ then [89] from a training dataset by employing rule extraction algorithms. 

Each rule should be mutually exclusive to avoid classification conflicts. The outcome 

rules of the association analysis data mining techniques can be used as signatures by 

the misuse IDSs. One of the main advantages of this approach is its simplicity. Instead 

of manually generating the if ~ then rules, the association data mining techniques 

could automatically generate these rules. 

One of the first research works that applied association data mining techniques in 

the task of intrusion detection was [90]. The detection methodology presented in this 

work requires labelled training datasets to generate the if ~ then rules. After a 

supervised training process, the authors generate association rules that allowed 

identifying intrusions. However, this type of technique is too simplistic to be able to 

detect the attacks currently implemented. One of the reasons is that, the sophistication 

of current attacks may cause that two different types of attacks manifest similarly to 

each other. Therefore, one association rule may incorrectly classify two different 

attacks into the same category. 

2.3.2.2 Sequence Pattern Techniques 

The different stages that wireless devices pass through during their normal protocol 

operations may be represented using state transitions. A feasible approach is using a 

Markov chain. The IEEE 802.11 standard defines these stages of normal operations. 

The Markov chain is a state transition approach that uses probabilities to model the 
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chances of changing from one state to another. During a training process, this 

technique creates the different states and calculates the probabilities associated to each 

of the state transitions [36]. IDSs based on this technique, also known as sequence 

pattern IDSs, could use inconsistencies in the state transitions to recognise that the 

protected system is not behaving, as it should. 

The sequence pattern techniques present a number of drawbacks when applied for 

intrusion detection in wireless networks. Initially, it may be understood that the IEEE 

802.11 standard accurately defines the operations of the WiFi devices. However, 

different WiFi device vendors develop their own implementation of the IEEE 802.11 

standard. Therefore, IDSs using sequence pattern techniques would require the exact 

configuration of each individual monitored device. 

2.3.2.3 Classification Techniques 

The classification data mining techniques categorise instances of the dataset into 

different categories previously defined. These techniques produce a set of 

classification rules, generated after a supervised training process, that unmistakeably 

separate each category from the rest. Since the data mining techniques in this category 

are supervised, the training process requires the use of previously labelled datasets. 

2.3.2.3.1 Classification – Decision Tree 

The decision tree is one of the most efficient classification techniques, according to 

[110]. The decision tree is a hierarchical structure used to classify data instances from 

a dataset with similar features into one of the defined categories [91]. Similar to other 

classification data mining techniques, the decision trees are constructed through a 

supervised training process, using previously labelled datasets [91]. Once the decision 

tree has been built, this structure can be used to classify new pieces of information into 

the predefined categories [92]. After applying the decision tree, each data instance is 

allocated into the particular category, which attributes are more similar to the 

attributes of the analysed data. 
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2.3.2.3.2 Classification – Artificial Neural Networks 

The Artificial Neural Network (ANN) is another classification data mining technique. 

The ANNs are computational models composed of a set of internal interconnected 

processing elements or nodes, also known as neurons [9] [93]. Each of these internal 

interconnections is assigned a particular weight value, which are dynamically adjusted 

according to a supervised training process [9]. Some ANNs may also modify their 

internal structure based on the supervised training process. The effectiveness of the 

ANNs depends on the quality of the supervised training process [40]. The different 

outcomes of the ANN define the different categories into which the analysed 

information is allocated. These outcomes are based on the characteristics of the nodes, 

as well as the weights associated with the internal interconnections [94]. Instead of 

allocating the data instances into one particular category, the neural networks provide 

the resulting weight value for each of the defined outcomes [93]. 

2.3.2.3.3 Classification – k-Nearest Neighbour 

Another classification data mining technique is the k-Nearest Neighbour (k-NN). This 

technique is used by [86] in tasks of intrusion detection. The classification process of 

k-NN is based on finding the closest match of an unclassified data instance to a group 

of k instances in a training dataset [95]. The instances in the group of k instances have 

similar label. Given a data instance, k-NN measures the difference between the 

features that describe this data instance and the features of the k different instances in 

the training dataset. The difference between features is usually measured using the 

Euclidean distance [85] [95]. The data instance is classified as the instances in the 

group that generates the closer match. 

2.3.2.3.4 Classification – Support Vector Machine 

The Support Vector Machine (SVM) is an unsupervised classification data mining 

technique that generates a linear hyperplane over a dataset [13]. The SVM divides the 

instances of the evaluated dataset into two different categories, being the generated 
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linear hyperplane the separation limit between both categories. During a training 

process, the SVM generates the best hyperplane that maximises the separation 

between the two classes in the training dataset. 

2.3.2.3.5 Classification Techniques Drawbacks 

The classification data mining techniques are more appropriate to be used by misuse 

IDSs, rather than anomaly IDSs [57], because of the functions that these techniques 

implement. In fact, the data mining techniques that belong to this classification 

category act mostly as network forensics analysis rather than intrusion detection in real 

time [96]. The classification analysis techniques present a number of drawbacks. First 

of all, these are techniques that require supervised training. Unless the system is 

provided with previously labelled datasets or datasets completely composed of normal 

traffic, it will not be able to create the appropriate classification rules to categorise the 

information. Unfortunately, in real wireless networks the data traffic is not labelled, 

and even in controlled environments it is highly complicate that all the data is of non-

malicious nature [87]. This makes the use of these data mining techniques impractical. 

Also, if a new feature of the data instances needs to be analysed, a new training 

process needs to be executed to generate an updated set of classification rules, because 

it cannot be categorised as any of the previously known categories. 

In the case of a decision tree, the main complexity resides in the training process 

and defining an appropriate stop point in the construction of the tree [93], to avoid 

overtraining. This means that an excessive number of classification rules have been 

generated. The major drawback of the ANN is the high computational cost [9] and 

time consumption associated with the training process. These systems require large 

amounts of data to be properly trained [98]. For instance, the authors of [99] indicate 

that the ANNs require collecting training data for several days, before training the 

system, and perform the detection. The authors of [97] also highlight that the ANNs 

require a large period of time to train, due to its complex internal structure. In the case 

of k-NN, whilst being effective in the tasks of intrusion detection, this technique has a 

high computational cost to conduct the classification [85]. Also, the classification 
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performance of k-NN is very sensitive to the value of the parameter k [85], which 

needs to be predefined. In the case of SVM, the major drawback is the long training 

time required that limits its use in real time approaches. Also, because SVM is an 

unsupervised technique, the system administrator needs to define each of the classes 

after generating the hyperplane. 

2.3.2.4 Clustering Techniques 

Clustering has been commonly used as a data analysis mechanism, mostly focused on 

data visualisation, image analysis and pattern recognition. The clustering data mining 

techniques can also be used in tasks of intrusion detection to categorise network traffic 

instances as normal or malicious [88]. Numerous researches have used clustering in 

IDSs [24] [29] [91] [100]. 

Clustering provides an effective mechanism to automatically construct a profile of 

normal network behaviour that can be used to categorise the network traffic as normal 

or malicious [89]. Unlike other data mining techniques (e.g. Decision Tree), clustering 

is an unsupervised [101] technique that can be used to classify unlabelled instances, 

without previous training process or having previously labelled the instances of the 

datasets. This technique creates groups of data instances from a given dataset based on 

the similarity of their attributes. Instances within the same cluster have high similarity, 

whereas the attributes of the instances within a cluster have significant degree of 

dissimilarity with the instances in other clusters. 

The main advantages of using clustering are its capability to identify previously 

unknown evidences of attacks, as well as variations of known attacks [15]. IDSs that 

make use of clustering are more efficient than other techniques when implementing 

intrusion detection in real time, and require minimal interaction with the IDS 

administrator [91] [100]. 
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2.3.2.4.1 K-means Clustering Drawbacks 

There exist different algorithms of clustering techniques. One of the simplest and most 

commonly used clustering algorithms is the K-means [91]. This algorithm divides the 

data instances from a given dataset into K different clusters. The specific value of K 

has to be specified prior to the implementation of the division process. 

Despite of its effectiveness, K-means presents also some limitations. One of these 

limitations is the significant influence that the selection of the initial cluster centroids 

has over the final results. The selection of different initial centroids may lead to 

different clustering results in similar datasets. Also, the specific number of clusters K 

into which K-means divides data instances has to be specified prior to the 

implementation of the division process. However, this number may not be initially 

available and needs to be empirically defined, which is a major drawback for this 

technique to work in real time. In addition, K-means requires the empirical definition 

of the parameter µ for correctly labelling the data instances as normal or malicious. 

This parameter is used to define the threshold between normal and malicious clusters. 

2.4 Multi-layer Data Fusion 

Previous approaches on cross-layer/multi-layer data fusion have used simplistic 

combination techniques, such as averaging or majority voting [102], which does not 

require training or complex calculation. Data fusion can be defined as the process of 

gathering information from multiple and heterogeneous sources about diverse events, 

activities or situations, and combining them towards obtaining a more accurate final 

result [14] [39]. In [103], a study of the benefits and limitations of the cross-layer 

designs in the field of intrusion detection is presented. This research compares two 

different IDS architectures. Another interesting study is presented in [38], which 

experimentally compares the detection performance of cross-layer IDSs with the 

performance of single layer IDSs. The authors of [104] propose a novel collaborative 

detection approach that combines the final outcome of multiple IDSs. Similar 
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approach is used in [80], in which the authors propose the use of neural networks to 

combine the outcome of three different IDSs. 

In the field of intrusion detection, the combined utilisation of multiple metrics, 

extracted from a diverse number of sources is a very important step towards an 

efficient intrusion detection process. Previous researches [105] [106] use data fusion 

techniques in order to enhance the performance of their systems. The information from 

different layers could be sent to a shared database, and an IDS could infer the presence 

of intrusions using this common set of information. This is the structure that a 

centralised IDS would implement. In another cross-layer architecture, IDSs can also 

implement the task of intrusion detection independently, utilising information from 

only one source of information. Then, the decision of each individual IDS could be 

sent to a data fusion system to merge the individual decisions and reach a combined 

final result. In [80], the authors present a method that combines the outcome of 

multiple IDSs using data fusion techniques. Each IDS conducts independent detection 

processes and the individual decisions are combined to produce a collective final 

decision. Similarly, in [106] the authors present an approach that combines the 

outcome of three heterogeneous IDSs. In this particular work, the three classification 

data mining techniques are decision tree, Naïve Bayes [13] and ANN. In fact, a double 

data fusion process is implemented. The three detection techniques are initially used to 

analyse three independent features. The fusion outcome for each individual of the 

piece of information is initially combined. Then the three outcomes are successively 

combined to reach a final detection result. 

2.4.1 Researchers Using Dempster-Shafer Theory 

The application of D-S theory for improving the performance of IDSs is a very active 

research topic. This data fusion method has been previously used in multiple 

publications. In [102], one of the most thorough descriptions of D-S is presented. The 

authors present a comparative study between D-S theory and Bayesian inference as 

data fusion algorithms. Another complete description of the D-S theory is presented in 

[75]. The mathematical foundation of D-S theory, along with a description of the 
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advantages and disadvantages of this data fusion approach is presented in this work. In 

[39], the authors present a prototype for DDoS detection over wired links, based on D-

S theory. The system, periodically, fuses the knowledge collected from different 

sensors within the network, in order to infer the current state of the monitored 

network. The authors in [41] present and evaluate an IDS for detecting DoS attacks in 

a wireless network. The authors use the D-S theory to fuse the information from 

distinct nodes running two different algorithms. In [39] [102], the authors present a 

comparative study of different data fusion methods and conclude that D-S theory is 

more promising than Bayesian inference. 

2.4.2 Current Basic Probability Assignment Methodologies 

The BPA process is crucial to the effectiveness of D-S theory [107]. The BPA value 

should be based on the measured characteristics of the monitored environment. With 

regards to the topic of this thesis, the major challenge for applying D-S theory on IDS 

is to automatically determine the BPA values should be based on the characteristics of 

the wireless network traffic measurements [42]. 

In the IDS literature there exist multiple ways of assigning probabilities to each of 

the hypotheses in D-S theory, ranging from data mining techniques to empirical 

approaches. For instance, [108] utilises expert opinion to manually assign the belief 

probabilities to each of the hypotheses. This BPA process is completely subjective and 

might not be adequate for automatic and self-adaptive IDSs. The authors in [41] 

present a methodology that seeks changes in the Signal-to-Noise Ratio (SNR). The 

value of this single metric is measured from distinct nodes running two different local 

algorithms, single threshold and cumulative sum. Based on the measured information, 

their system generates the BPAs through the use of a linear function. One of the 

drawbacks of this methodology is that both local algorithms require the utilisation of 

diverse tuning parameters. In [98], the authors also present an IDS that make use of 

the D-S theory. In order to assign the BPAs, this work defines a specific equation 

based on the utilisation of thresholds. Apart from using fixed functions, which is a 

limited mechanism to calculate the beliefs, the authors do not provide either an explicit 
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definition of how the thresholds are calculated, or a clear explanation of how the BPAs 

are assigned. A similar approach is used in [39], which uses fixed functions to define 

the BPA value after a fine-tuning process. Another example, [75] proposes two 

different ways of assigning belief probabilities, for two different datasets. In the first 

case, their method calculates a threshold based on the length of the dataset, and then 

utilises that threshold and fixed functions to assign the belief probabilities. In the 

second case, a scaled approach with pre-defined beliefs is used. Since the beliefs are 

assigned using fixed functions and pre-defined thresholds, the mechanisms proposed 

in this work would be unable to automatically adjust to changes in the dataset profile 

without the intervention of the IDS administrator. In [40], the authors use multiple 

manually defined thresholds, empirically defined after analysing non-malicious data. 

The authors do not describe the way the thresholds are defined. One last example, the 

methodology employed by [42] uses data mining to proceed with the BPA tasks. 

From the presented results, all of these methods are effective in increasing the DR 

and reducing the number of false alarms of the IDSs. However, none of the referred 

works investigate methods to find an automatic and self-adaptive process of BPA, and 

few of them could be used off-the-shelf without a previous training or fine tuning 

period. On the one hand, systems that make use of data mining techniques for BPA 

require the gathering of large amounts of data traffic, processing it and to complete a 

training period before being able to perform intrusion detection tasks. These systems 

are unable to automatically adapt to changes in the network traffic behaviour in real 

time. On the other hand, systems that have been empirically assigned fixed probability 

values by the IDS administrator, or systems that employ fixed functions to assign the 

belief probabilities are unable to automatically adjust to changes in the network traffic 

behaviour, without the intervention from the IDS administrator. 

2.5 Wireless Network Monitoring 

The task of wireless network traffic monitoring has been addressed in [8] [44]. The 

authors of these works present extended researches about different issues in deploying 

wireless network monitoring systems, and the process of implementing the actual 



 

 

CHAPTER 2: RELATED WORK 

35

monitoring of the IEEE 802.11 networks. Diverse concepts, such as the advantages of 

wireless monitoring, placement of the monitoring devices or merge of information 

from multiple monitoring devices, are all addressed in these papers. The authors of 

[83] describe a detection system in WiFi networks. The approach followed in this 

research is to monitor all possible transmission channels using numerous monitoring 

devices. Then the information is merged to proceed with the detection analysis. 

In [44], the authors discuss the correct number of monitoring sensors. This is 

whether to deploy a large number of sensors or a reduced number of these devices, 

close to the different devices in the protected wireless network. This work argues that 

deploying a reduced number of sensors is harmful for the correct monitoring of the 

network traffic, because of the severe network traffic measurement loss that the 

wireless sensors might experience. The authors of [116] highlight that traffic loss is a 

critical occurrence that could yield to undetected attacks. According to the authors of 

[44], multiple sensors would reduce the amount of traffic loss. The authors of [83] 

aggress that multiple sensors should be deployed to reduce or avoid traffic loss. 

2.6 Summary 

As it has been presented in this chapter, there are multiple research works that address 

the insecurity of IEEE 802.11 networks. These works mainly focuses on describing 

vulnerabilities of the wireless communication protocols, proposing enhanced security 

protocols, and describing attacks. Similarly, there are several published research works 

in the field of intrusion detection that propose more effective IDS approaches, and 

novel detection techniques to increase the detection efficiency of IDSs. A brief 

description of some of the most widely used intrusion detection techniques has been 

presented in this chapter. Special attention has been given to approaches designed to 

identify spoofing attacks in WLANs, and to techniques mainly used by anomaly IDSs. 

These are statistical methods, machine learning and data mining techniques. A brief 

description of some of these intrusion detection techniques has been presented, along 

with a list of some advantages and disadvantages. 
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The classification data mining techniques are more appropriate to be used by 

misuse IDSs, rather than anomaly IDSs. The classification analysis techniques present 

a number of drawbacks. Most of the described data mining techniques are supervised, 

and require extensive training process, as well as labelled datasets, to be effective. 

Unless the system is provided with previously labelled datasets, it will not be able to 

create the appropriate classification rules to categorise the information. This makes the 

use of these data mining techniques impractical for IDSs designed to implement the 

intrusion detection autonomously and in real time. Clustering is an unsupervised 

technique that can be used to identify previously unknown attacks without previous 

training process. This makes clustering an adequate technique when implementing 

intrusion detection autonomously. However, this technique also presents some 

limitations, such as the significant influence that the selection of the initial cluster 

centroids has over the final results. Statistical-based detection techniques are also 

adequate when implementing intrusion detection autonomously. These techniques are 

unsupervised and do not require prior knowledge about protected system. Traditional 

statistical methods perform well when analysing homogeneous data. However, their 

efficiency decreases when non-homogeneous data is analysed. 

The chapter concludes discussing systems that use of multi-layer approach and 

data fusion methodologies as part of the detection system. Among different data fusion 

methods, special attention has been given to the D-S theory. A description of the 

different methods to determine the BPA values present in the IDS literature has been 

presented. Few of these methods could be used autonomously, off-the-shelf without 

either prior thorough training or fine tuning period, and able to automatically adapt to 

changes in real time. Therefore, this chapter highlights the need for the 

implementation of a novel BPA methodology able to automatically adapt its 

probabilities assignment to the current characteristics of the wireless network, without 

intervention from an IDS administrator. 



 37

 

 

 

Chapter 3  

Protecting Against Wireless-Specific Attacks 

3.1 Introduction 

There exist different types of wireless-specific attack that can compromise wireless 

networks. Despite the diversity of these attacks, their objective can be still the same 

for different attacks. Similarly, there exist several mechanisms to protect wireless 

networks against these attacks. Some of these mechanisms will be better than others in 

protecting certain components of the wireless network or protecting against certain 

types of attacks. In some cases, a particular security mechanism will be the only 

mechanism able to effectively protect the wireless networks against a certain type of 

attack, or a particular intrusion attempt. 

If the attacks that the wireless network is being protected from were known 

beforehand, a security mechanism that provided better protection against this 

particular attack could be implemented. In that case, the wireless network would suffer 

the least damage or even no damage at all. Unfortunately, this is nearly impossible for 

legitimate users and the security mechanisms of the network. Only the attacker knows 

the particular attack that will be launched. The devices in the wireless network and the 

security mechanisms are unable to know which attack will be launched until this had 

already been occurred. 
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Occasionally, some of the countermeasure security mechanisms that have been 

proposed to protect the network against certain type of attacks could produce 

undesirable results or even further damage to the protected network. For instance, the 

use of access control lists can prevent unwanted wireless devices from joining the 

wireless network, but the access control lists can also prevent legitimate wireless 

devices from joining the network if their identity has been compromised. Hence, a 

security mechanism to provide consistent security to the wireless networks, regardless 

of the attack that these are being protected from should be implemented. 

This chapter presents an overview of a number of wireless-specific attacks. These 

are the attacks that more commonly compromise wireless networks. The purpose of 

this chapter is to find, if possible, a common implementation pattern, which could help 

to identify a common detection or countermeasure mechanism against these attacks. 

Prior to describing the attacks, a brief and simple description of the security protocols 

recommended by the IEEE 802.11 standard is given. The purpose of this description is 

to make the reader aware of the efforts that the IEEE 802.11 standard has made to 

safeguard the confidentiality, integrity and availability of the wireless network. In 

addition, some of the traditional network security mechanisms are also described. 

3.2 Traditional Wireless Network Security Mechanisms 

3.2.1 The IEEE 802.11 Security Mechanisms 

A complete description of these security protocols is out of the scope of this thesis. For 

a more detailed description of these protocols, refer to the IEEE 802.11 standard 

definition [111], or other works such as [5] [10] [112]. 

The IEEE 802.11 standard proposed different security protocols, establishing a 

traffic encryption framework at the MAC layer and integrity protection to the network 

infrastructure [5], as well as avoiding unauthorised access to the wireless networks. 

These are the Wired Equivalent Privacy (WEP), the WiFi Protected Access (WPA) 

and the WPA2 (WPA Version 2), also known as the IEEE 802.11i standard. These 
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security protocols provide a framework for communication encryption, devices or user 

authentication, and communication content integrity protection. 

WEP was the first of the three security protocols defined by the IEEE 802.11 

standard. This protocol provides confidentiality protection using the stream cipher 

protocol Rivest Cipher 4 (RC4) to encrypt the frames. The devices at both ends of the 

wireless communication must share the same secret key to communicate. In order to 

stop undesirable devices from joining the wireless network, WEP implements two 

different authentication mechanisms, the Open System Authentication and the Shared 

Key Authentication. Additionally, WEP enhances the integrity protection of the 

wireless communications by including Cyclic Redundancy Check (CRC) checksum 

protection to the encrypted frames. 

WPA provides confidentiality protection to the wireless communications using 

the Temporal Key Integrity Protocol (TKIP), a new encryption protocol based on the 

stream cipher protocol RC4 [10]. Similar to RC4, the TKIP protocol requires a shared 

secret key to protect the transmitted information [5]. WPA supports two different 

authentication mechanisms, the Shared Key Authentication and the IEEE 802.1x 

Server Based Authentication. Additionally, WPA also enhances the integrity 

protection to the wireless communications including Message Integrity Codes (MICs), 

replacing the previously used CRC checksum [5]. 

WPA2, also known as the IEEE 802.11i standard, is the security protocol most 

recently recommended by the IEEE 802.11 standard to provide authentication, 

confidentiality and integrity protection to the wireless communications. The IEEE 

802.11i standard provides stronger cryptographic protection than WEP and WPA, 

using the Advanced Encryption Standard (AES) algorithm [113]. Additionally, the 

IEEE 802.11i protocol also specifies the use of TKIP as encryption protocol, similar to 

WPA. In order to stop undesirable users from joining the wireless network, WPA2 

uses the IEEE 802.1x server based authentication mechanism [10]. 
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3.2.1.1 The IEEE 802.11 Authentication Mechanisms 

Authentication can be considered as the first security barrier that the wireless devices 

have to surpass before joining the wireless network. Every wireless device willing to 

join a network uses the authentication process to identify itself to the network. The 

wireless network relies on this identification process to ensure that only the authorised 

devices can join the network. Authentication occurs every time a user tries to join a 

wireless network. Each wireless device can be authenticated with multiple APs at the 

same time [59]. There is not restriction on the number of APs that a single device can 

be authenticated with. 

The IEEE 802.11 standard defines three different authentication mechanisms. 

These are the open system authentication, the shared key authentication and the IEEE 

802.1x server based authentication [70]. The former is a two-step process that grants 

authentication to any wireless device that requests so. The shared key authentication is 

a four-step process that requires the use of common cryptographic material between 

the AP and the wireless device willing to join the network. If both parties in the 

communication share the same secret key, the wireless network grants the 

authentication. The AP uses the source MAC address in the request frames to 

determine the identity of the wireless device, in both open system authentication and 

shared key authentication. The downside of these mechanisms is that none of the two 

implement mutual authentication between both ends of the communication. The 

wireless devices are authenticated to the AP but these nodes have not the capability to 

authenticate the identity of the AP. In addition, both frames involved in authentication, 

authentication request and authentication response, are sent in the clear, without any 

encryption mechanism [114]. 

The IEEE 802.1x server based authentication mechanism is the third 

authentication mechanism recommended by the IEEE 802.11 standard. In contrast to 

the previous mechanisms, IEEE 802.1x provides mutual authentication to both parties 

of the wireless communication [10]. In this authentication mechanism, an 

authentication server (e.g. a RADIUS server [115]) is the responsible to manage the 

authentication process between the AP and the wireless users [70]. The authentication 
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server decides whether to grant authentication or not, based on the credentials of the 

wireless users requesting authentication. The actual authentication method is 

implemented using the Extensible Authentication Protocol (EAP), which provides 

mutual authentication to both, the AP and the wireless users [70]. 

3.2.1.2 The Insecurity of IEEE 802.11 Security Protocols 

The described security protocols were supposed to make the WLANs more reliable 

and assure cryptographic protection to the transmitted information that traverses the 

wireless medium. The utilisation of these security protocols forces the attacker to 

crack the cryptographic material and decrypt the protected communication in order to 

access to the transmitted information. It is down to the efficiency of these security 

protocols and how well implemented these protocols are, to prevent an attacker from 

decrypting and accessing to the content of the frames. 

However, wireless networks cannot rely on these security protocols to protect the 

content of the communications. All the security protocols previously presented are 

vulnerable to decryption analysis processes. If the attacker is able to obtain the 

cryptographic material used to encrypt the wireless traffic, the attacker is free to 

monitor the entire communication in the wireless network [116]. WEP is probably the 

most unsecure security protocol that could be used to protect the WLAN 

communications. WEP suffers from well-documented security vulnerabilities [49] 

[55]. All these security vulnerabilities have been identified and demonstrated in many 

research publications [8]. There are numerous software tools able to crack the 

cryptographic material used in WEP or WPA. An attacker using the right tools can 

easily obtain the shared secret key in a matter of minutes [7]. Additionally, the author 

of [10] indicates that frames can be modified despite including integrity protection 

such as CRC checksum. 

The IEEE 802.11i standard was proposed to address the vulnerabilities 

experienced by WEP [112] and WPA, providing stronger cryptographic protection 

than its predecessors. Although WPA2 has not been cracked until now, researchers 

from Air Tight Networks found the so-called ‘Hole 196’ vulnerability in the security 
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protocol WPA2 that allows malicious devices with knowledge of the Group Temporal 

Key (GTK), to transmit spoofed group addressed data frames to other wireless devices 

in a WPA2-protected WiFi network [118]. This vulnerability exposes the legitimate 

users of a WPA2-protected WiFi network to a diverse number of attacks, such Man-in-

the-Middle (MitM) or DoS. Explained by the same researchers, this vulnerability is 

also presented in the WPA security protocol. 

Moreover, the security protocols do not encrypt the whole communication of the 

network. All the management and control frames are transmitted unauthenticated and 

unencrypted [114], leaving IEEE 802.11 networks vulnerable to numerous type of 

attacks [119]. The IEEE 802.11w standard is the first and only amendment of the 

IEEE 802.11 standard to include protection to the management frames [67] [70]. 

Additionally, the header of the frames is never encrypted. Besides, regardless of which 

security protocol is used, an attacker can easily compromise the availability and 

integrity of the wireless networks. For instance, none of these protocols can protect the 

wireless communications certain type of attacks, such DoS [5] [113], which directly 

compromise the availability of the networks. 

The utilisation of authentication mechanisms or encryption techniques certainly 

helps to secure the network, making the implementation of attacks or intrusion 

attempts more difficult to some extent. However, none of these security protocols have 

been able to effectively and completely protect the wireless networks. Despite the 

different amendments of the IEEE 802.11 standard that have been released to provide 

more secure and reliable security protocols, still there exist numerous security 

vulnerabilities in the protocols that makes the wireless communications insecure 

[119]. The level of security of the wireless communications can also be enhanced at 

higher layers using end-to-end encryption mechanisms, such as Internet Protocol 

Security (IPSec) or Virtual Private Network (VPN). However, according to [5], these 

mechanisms cannot protect the network from the wireless-specific attacks. 

Due to the capabilities of the attacker to surpass the security protocols, the 

feasibility to crack and obtain the cryptographic material, and the numerous 

vulnerabilities in the security protocols, it is evident that cryptographic protection 
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cannot stop the attacker from carrying out the attacks and intrusions in WLANs. 

Therefore, all the wireless-specific attacks that are going to be described in the 

following Section 3.3 are described assuming that the attacker has complete access to 

the transmitted information, and assuming that the attacker is able to modify the 

content of the network traffic without being noticed. 

3.2.2 Network Firewalls 

One other security mechanism that is commonly employed to provide protection to the 

networks is the firewall. A firewall is a mechanism that controls the traffic that is 

allowed to pass through it. Firewalls can be utilised as security systems to protect local 

networks from Internet-based attacks and control the access to the network [79]. These 

network security systems are commonly allocated between the local network and the 

ISP backbone, which allows the network nodes to communicate with other network 

nodes through the Internet. 

Firewalls filter network traffic based on a set of rules and known access control 

policies. Information extracted from the header of the network frames is analysed by 

the firewalls. One or more pieces of information, e.g. source/destination address or 

source/destination port, are used to determine whether or not to stop the frames [120]. 

Firewalls provide a level of security to the local networks, but these systems are 

not effective security mechanisms for WLANs, and are unable to provide perfect 

protection to these type of networks against attacks [120]. Although many attacks 

from the Internet can be stopped by a properly configured firewall, not all the attacks 

from outside the network can be stopped by firewalls due to the difficulty in 

generating correct and precise filtering rules. Firewalls are unable to protect the 

network against attacks that have bypassed the system [79]. Another major drawback 

is the fact that firewalls cannot protect the network from attacks originated inside the 

network, because these attacks do not pass through the firewall. Additionally, the use 

of VPNs and wireless networks introduce new challenges to firewalls. The VPNs 

utilise encryption protection in both the header and the payload of the transmitted 

frames, making impossible the analysis of the header of the network frames. Besides, 
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the lack of physical boundaries in the wireless networks communication allows the 

attacker to directly interact with the wireless network users without passing through 

the firewall. 

3.2.3 Antivirus Software 

According to [55], an antivirus is a software used on PCs to identify viruses, malware 

and spyware files, and to prevent the effect that these files may cause to the protected 

system. This security software uses signature databases to identify the malicious files. 

These are commonly designed to monitor critical components of the Operating 

Systems (OSs) and to disinfect the malicious files [55]. Antivirus alone is not enough 

to provide reliable protection against current Internet threats [11]. The main drawback 

of these systems is that an antivirus is unable to identify malicious files for which 

signature has not been defined. These systems rely on the frequent update of the 

signature databases to be efficient. 

3.3 Wireless-Specific Attacks 

Wireless networks are vulnerable to similar threats to the wired networks. Cyber-

attacks and intrusion attempts that come from the ISP backbone core of the network, 

and reach the devices connected to the networks, affect similarly both type of 

networks. These attacks can be implemented remotely from any geographical location. 

Apart from being vulnerable to viruses, malware, spam, Internet-based attacks, DoS, 

DDoS, or identity theft attacks, the wireless network users suffer also from wireless-

specific attacks. These are attacks that specifically affect the wireless networks. 

In contrast to the cyber-attacks that come from the wired part of the network and 

reach the wireless devices through the AP for WiFi networks (eNodeBS for LTE and 

Base Station for WiMAX), the wireless-specific attacks are attacks that reach the 

wireless devices through the wireless part of the network; the wireless link. The 

attacker acts as a third party transmitter device to launch this type of attacks. The 

wireless-specific attacks require the attacker to be located in a position in which the 
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victim will be within its transmission range. Similarly, the attacker should be located 

within the transmission range of the victim in most of the attacks. However, there are 

some attacks that can be implemented with the attacker being off the transmission 

range of the victim. 

The following sections describe the most common type of wireless-specific 

attacks that the wireless communications and wireless networks infrastructure. After 

performing an analysis of these attacks, it is easy to conclude that there exist three 

main characteristics that make the implementation of the wireless-specific attacks 

feasible. First, the ability to intercept and analyse the wireless communications 

content. Second, the capability to inject malicious information into the wireless 

communication. Third, the capability to conceal the identity of the attackers to avoid 

being identified when launching attacks. 

3.3.1 Eavesdropping 

Eavesdropping is the process through which attackers and unauthorised users 

illegitimately intercept and analyse transmitted information within a wireless network. 

Any device within the transmission range of the wireless network, with the capability 

to monitor the wireless medium, could access the transmitted information. An attacker 

could intercept the transmitted frames, perform an analysis of the content of these 

frames, and extract information about different parameters of the wireless network. 

In order to implement the eavesdropping attack, the attacker requires a receiver 

device able to monitor the traffic in the wireless network or wireless NIC configured 

in monitoring or promiscuous mode. The attacker does not actively interact with the 

wireless network traffic at all. The fact that eavesdropping does not actively interact 

with the wireless network traffic makes this attack impossible to detect [116]. 

Although the eavesdropping attack only compromises the confidentiality of the 

transmitted information, this attack is an initial step towards more dangerous attacks. 

Usually, the interception of information about the wireless network and the 

communication content is a prerequisite for the attackers to perform more severe 

active attacks over the wireless network. 
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The only countermeasure against eavesdropping is making use of reliable 

cryptographic mechanisms. However, as explained previously in Section 3.2, all the 

cryptographic mechanisms proposed by the IEEE 802.11 standard are vulnerable to 

decryption analysis processes. Eavesdropping is also a feasible attack because the 

wireless communications are not entirely protected by cryptographic mechanisms. The 

payload of the data frames is usually encrypted but the header of the data frames is 

never encrypted, for delivery reasons, exposing all the information to be analysed by 

an attacker. From the data frame header, an attacker can obtain, for instance, the MAC 

addresses, frames type and subtype, or Network Allocation Vector (NAV) value. On 

top of that, the management frames and the control frames are entirely unencrypted 

[59]. Therefore, the attacker would be able to intercept lots of information, even if the 

legitimate user made every possible effort to protect the wireless communication. 

Eavesdropping does not only allow the attacker to obtain information directly 

from the content of the frames. The information can also be composed of different 

statistical parameters from the characteristics of the wireless network and the wireless 

communication, in the form of Netflow data. Much more difficult to protect than the 

content of the frames is to hide the information that an attacker could extract from the 

characteristics of the wireless network communication, such as the signal power, 

transmission timing patterns, number of wireless devices in the network, or periodicity 

of the transmission. Despite utilising cryptographic mechanisms to protect the wireless 

communication, the legitimate user cannot hide all these parameters from the attacker. 

3.3.2 Active Attacks 

The term active attack represents all the attacks that actively interact with wireless 

communications, illegitimately injecting traffic or electromagnetic signals into the 

wireless medium. The attacker needs also to be able to create fully formed IEEE 

802.11 frames or modify previously captured frames and inject them into the wireless 

network. Moreover, the attackers should be able not to follow the indications of the 

IEEE 802.11 standard, and to inject whenever is needed. 
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3.3.2.1 Denial-of-Service 

Denial-of-Service (DoS) is one of the most common types of active attacks used 

against wireless networks. Also, it is the most harmful attack that the wireless 

networks may suffer [60]. This type of attack actively prevents legitimate devices in 

the network from successfully transmitting or receiving any frame. DoS attacks target 

the availability and the integrity of the legitimate communications in the wireless 

network, and can be launched at multiple network layers of the protocol stack. For this 

work, only the DoS attacks that belong to the category of wireless-specific attacks are 

considered. These are the DoS attacks that can be launched either at the PHY layer or 

the MAC layer of the protocol stack. None of the cryptographic mechanisms can 

protect the wireless networks from this type of attacks [5] [113]. 

3.3.2.1.1 Physical Jamming 

Physical jamming is a particular type of DoS attacks launched at the PHY layer that 

exploits the functionality of the physical carrier sensing functions of the IEEE 802.11 

standard, in the legitimate users. By injecting a suitable level of radio frequency noise 

into the wireless medium, an attacker is able to make the wireless network devices 

conclude that the wireless medium is being used. The legitimate devices defer any 

transmission if the physical carrier sensing functions detect signal activities in the 

medium. Therefore, the wireless network devices affected by the physical jamming are 

prevented from transmitting, and the IEEE 802.11 standard does not provide any 

mechanism that could stop it. 

In [61], the authors state that there is no conventional security mechanism able to 

entirely protect wireless networks from physical jamming. Every wireless device 

within the transmission range of the attacker is vulnerable to this attack. Moreover, 

physical jamming can be implemented even if the attacker is not a member of the 

wireless network [63]. On the other hand, this type of attack can be detected by 

examining the wireless medium with a signal analyser. The attacker only requires a 

transmitter device able to inject electromagnetic noise signals or a wireless NIC able 
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to inject illegitimate traffic into the wireless medium. The wireless NIC does not 

follow the specifications of the IEEE 802.11 standard and the MAC protocol. 

There exist four different types of physical jamming attacks. These are brute 

force, periodic, random, and precision jamming. 

3.3.2.1.1.1 Brute Force Jamming 

Brute force jamming is the most simple of the physical jamming modes. The attacker 

continuously injects radio frequency noise into the wireless communications and 

disrupts any communication. Legitimate users are prevented from transmitting, as well 

as receiving frames. 

The effectiveness of brute force jamming is strongly correlated with diverse 

parameters, such as the used frequency channel and the transmission power level of 

the injected noise. Also, the attackers are able to directly target specific users using 

directional antennas. The authors in [37] have empirically demonstrated that the 

distance between the attacker and the legitimate wireless nodes is a parameter directly 

correlated with the effectiveness of any mode of physical jamming attack. The shorter 

the distance between the attacker and the legitimate users, the higher the effectiveness 

of the attack. 

This attack can be easily detected using wireless medium monitoring tools, such 

as signal analysers. There have been proposed diverse methods as countermeasure 

actions against brute force jamming. For instance, increasing the signal strength of the 

legitimate wireless communications could reduce the effect of this type of jamming 

attack on the communication. The physical carrier sense mechanism would consider 

the transmitted signal of the attacker launching the brute force attack as background 

noise if the legitimate wireless device uses stronger signal strength than the attack 

signal. This would practically depend on the receiver sensibility. Another 

countermeasure method would be to raise the threshold that determines whether there 

exists any transmission in the wireless medium. Consequently, the legitimate users in 

the wireless network would be able to initiate a communication despite the presence of 
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activity in the wireless medium. The authors of [62] demonstrated that the wireless 

transmission modulation plays an important role in the effectiveness of a jamming 

attack over the wireless network. Therefore, utilising the most appropriate modulation 

to each attack scenario could be a possible countermeasure technique. Dynamically 

negotiated radio frequency hop sequences is also proposed as countermeasure 

technique by [62]. Nevertheless, the authors of this work also explain that radio 

frequency hop sequences is not appropriate because informing all stations to change to 

a specific frequency during a DoS attack would be unfeasible. One last proposed 

countermeasure technique is the use of spread spectrum techniques [123]. All these 

countermeasure actions could reduce the effect of the brute force jamming attacks. 

3.3.2.1.1.2 Periodic Jamming 

Another modality of physical jamming is periodic jamming. Instead of continuously 

injecting radio frequency noise, the attacker intermittently injects high levels of 

interference into the wireless medium during short and periodic intervals. The attacker 

alternates between constant injection and silence periods. 

This attack may prevent legitimate network users from transmitting and receiving 

frames. However, periodic jamming is less efficient than brute force jamming. Since 

the attacker alternates injection and silence periods, some wireless users would be able 

to continue the communication during the attack silence periods. The duration of both 

periods would affect the effectiveness of the periodic jamming. The authors of [122] 

have demonstrated that attackers using shorter silence periods cause greater impact 

over the communication than attackers using larger silence periods. 

Detecting the presence of periodic jamming is more difficult than detecting brute 

force jamming. The periodic behaviour of this attack reduces the exposition time of 

the attacker to be detected by monitoring tools. Nonetheless, if it was detected, the 

monitoring tools could deduce the periodicity of the injection periods and circumvent 

the attack transmitting during the silence periods of the attacker. 
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The authors of [64] demonstrated that transmitting small frames are more 

probable to be successfully delivered than large frames if a periodic jamming attack is 

taking place. Then, one feasible countermeasure mechanism against this attack would 

be reducing the size of the transmitted frames. In addition, the countermeasure 

mechanisms proposed previously for brute force jamming are also applicable against 

other physical jamming attack modalities. 

3.3.2.1.1.3 Random Jamming 

Random jamming is another modality of physical jamming in which the attacker 

arbitrarily injects high levels of interference into the wireless medium, for short 

intervals. The duration of the injection and silence periods in random jamming is 

arbitrary. Similar to the periodic attack, the larger the injection period, the greater is 

the damage that the attack produces over the communication. 

The random behaviour of this attack reduces the exposition time of the attacker to 

be detected by any monitoring tool. Detecting the presence of random jamming is 

more difficult than detecting brute force or periodic jamming. Even if a monitoring 

tool is able to detect the presence of the random jamming, the random pattern 

behaviour of this attack makes circumventing the effect of attack extremely difficult. 

The countermeasure mechanisms proposed for brute force jamming and periodic 

jamming could still be utilised. 

3.3.2.1.1.4 Precision Jamming 

In precision jamming, the attacker targets specific components of the legitimate 

wireless communication. These components could be either frames transmitted 

to/from specific users, certain types of transmitted frames, or specific interframe space 

times. The attacker remains silent while monitoring the wireless medium and injects as 

soon as it detects a legitimate transmission. 

Overall, precision jamming could be the most effective mode of physical 

jamming, in terms of exposition time to be detected by any monitoring tool, and 
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effectiveness compromising the availability and integrity of the wireless network. 

Again, this attack may prevent legitimate users from starting transmitting or prevent 

the destination users from receiving frames. Since the attacker injects radio frequency 

noise during short period of time at the precise moment, this attack is very difficult to 

detect. On the other hand, precision jamming requires a more complex functionality 

from the attacker, which requires knowing the MAC protocol and needs to predict the 

precise moment that it has to inject. The countermeasure mechanisms proposed for the 

previous modalities of physical jamming could be similarly utilised to reduce the 

effect of the precision jamming attacks. 

3.3.2.1.2 Virtual Jamming 

Virtual jamming is another type of DoS attack. This attack, launched at the MAC 

layer, exploits the Carrier Sense Multiple Access with Collision Avoidance 

(CSMA/CA) protocol and the virtual carrier sensing function of the IEEE 802.11 

standard, in the legitimate users. The virtual jamming attack is based on the fact that 

the wireless network users defer any transmission if the virtual carrier sensing function 

indicates that the medium is being occupied. 

Assuming the capability of an attacker to create and inject fully formed IEEE 

802.11 frames, an attacker can create frames with a very high NAV value. By 

injecting frames with NAV set to its maximum value (32767 µseconds [114]) an 

attacker is able to make all the wireless devices in the network postpone any 

transmission. An attacker can use all MAC control frames (e.g. RTS), MAC 

management frames (e.g. Probe Request) and data frames to launch this attack. An 

attacker that persists in injecting these frames with high NAV value can stop the 

communication of the entire wireless network. In [51], the authors estimate that 

injecting 30 crafted control frames a second with the maximum NAV value is enough 

to stop the whole wireless communication. 

The effectiveness of this attack varies depending on the targeted objective. The 

authors in [61] have demonstrated that if the attacker targets the AP, the average 

transmission rate in the entire wireless network is deteriorated. However, all the 
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wireless devices could continue communicating during the attack. On the other hand, 

if the attacker injects the control frame destined to one specific wireless device, all the 

components in the network are unable to communicate. Unfortunately, the authors of 

this work do not explain the reasons of these dissimilar results, when the targeted 

device changes. Additionally, the authors in [62] also explained that if the crafted 

control frames are destined to a non-existing device, all the components in the network 

are also unable to communicate. In that case, the authors concluded that the cause of 

this behaviour resides in the fact that the wireless devices do not properly implement 

the indications of the IEEE 802.11 standard. Moreover, the effectiveness of virtual 

jamming is also related to the type of control frame used. According to [61], RTS 

frames produce more effective attack results than CTS and ACK frames. By using 

RTS frames, the wireless users propagate the effects of the attack to further number of 

users, which are outside the transition range of the attacker. The same propagation 

effect cannot be achieved using either CTS or ACK frames. 

One possible countermeasure mechanism against virtual jamming attack could be 

filtering out the crafted control frames. This could be implemented by using access 

control lists. The access control lists are based on the MAC address of the devices 

connected to the network [50] [53]. If the MAC address of a device is included in the 

access control list, all the traffic transmited by this device can be ignored. By filtering 

out the frames from the attacker and ignoring the NAV value in these frames, the 

legitimate components of the network would be able to continue communicating. This 

countermeasure mechanism would be effective if the attackers did not modify their 

MAC address. But, since the MAC addresses can be easily spoofed, the use of access 

control lists can affect to those legitimate devices whose MAC address had been 

spoofed. Another countermeasure mechanism proposed by the authors of [65] is to 

modify the IEEE 802.11 standard. After receiving a RTS frame and replaying with a 

CTS frame, the AP monitors the wireless medium. If the device sending the RTS does 

not start transmitting after a given period, the AP transmits another control frames 

with NAV set to 0. The authors of the same work also describe possible drawbacks for 

the countermeasure mechanism that they propose. 
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3.3.2.1.3 Frame Flooding 

Attackers could implement another type of DoS attack by injecting large amount of 

frames in a relatively short period of time. This is known as the frame flooding attack. 

Frame flooding actively works against the availability and the integrity of the wireless 

network resources. 

The wireless nodes that compose the wireless networks are generaly devices with 

limited operational resources. Frame flooding intends to exhaust the computational 

resources of these devices, preventing legitimate users in the wireless network from 

communicating. There exist diverse modalities of flooding attacks, based on the type 

of frame transmitted by the attacker. The most common modalities of this attack are 

probe request flooding, authentication request flooding, and association request 

flooding, according to [67]. 

3.3.2.1.3.1 Probe Request Flooding 

Legitimate wireless devices utilise the probe request frames to discover the presence 

of wireless networks and to request specific information about the transition properties 

of the AP. According to the IEEE 802.11 standard, every AP that receives a probe 

request frame has to respond with a probe response frame. Given that the AP responds 

to the received probe request frames, the probe request flooding attack tries to exploit 

this active scanning mechanism. 

In probe request flooding, the attacker injects multiple probe request frames in a 

very short period of time. An attacker flooding the AP with a large number of probe 

requests will exhaust the resources of the AP. As long as the attacker keeps sending 

probe request frames, the AP will be unable to process all requests from legitimate 

devices being served. These devices will be deprived of an efficient service, and the 

communication quality in the entire wireless network will be deteriorated. 

One feasible solution to this attack is that the AP would not process repeated 

requests from the same MAC address. The authors of [67] explain the utilisation of 

MAC address filtering or access control filter as countermeasure mechanisms against 
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different types of frame flooding attacks. Similar to the case of virtual jamming, this 

countermeasure mechanism would be effective if the attacker did not modify its MAC 

address. However, the use of access control lists can affect to those legitimate devices 

whose MAC address had been spoofed. 

3.3.2.1.3.2 Authentication / Association Request Flooding 

Authentication request and association request flooding follows similar 

implementation to probe request flooding. Wireless clients willing to join the wireless 

network use the authentication process to identify themselves to the network. In 

response, the AP transmits an authentication response frame to the devices, approving 

or disapproving the authentication for each received authentication request frame. 

Similar to the authentication request, the AP responds to each received association 

request frame. 

Processing the authentication requests and association requests involves the 

utilisation of memory and computational resources of the AP. The AP uses a buffer to 

store information about the wireless users during the authentication process. When the 

buffer is full, the AP would not be able to accept any new authentication request [67]. 

An attacker injecting large amount of consecutive authentication/association request 

frames in a short period of time will exhaust the resources of the AP, and would not be 

able process any other incoming request. Additionally, the communication quality of 

the already associated users will be deteriorated, or even lost [113]. 

The authors in [67] have conducted practical experiments to demonstrate the 

effect of these attacks against a wireless network. From the results that this work 

presents, both attacks are able to drop the communication throughput in an entire 

wireless network down to zero. 

Again, MAC address filtering could be a solution to this attack. Another 

countermeasure could be the utilisation of a counter or a timer, along with an 

established threshold. For each new received authentication/association request frame, 

the AP initiates the counter or a timer. If the number of incoming authentication / 
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association request frame surpasses the established threshold, the AP stops processing 

any other incoming request. However, this countermeasure mechanism can also affect 

legitimate wireless devices that request authentication/association after the established 

threshold has been reached. 

3.3.2.2 Frame Replay 

Frame replay is another attack that compromises the availability and the integrity of 

the legitimate communications in the wireless network. An attacker could retransmit 

intercepted frames; this is known as a frame replay attack. The attacker can retransmit 

any type of frame without a considerable level of difficulty. The device, to which the 

intercepted frame was destined to in first instance, either the AP or one of the wireless 

users, receives the replayed frame and will assume that this is a legitimate frame. 

The real threat of this attack against the wireless network resides on the type of 

frames that the attacker replays. For instance, if the attacker replays a deauthentication 

frame or a disassociation frame, it could force legitimate devices to leave the wireless 

network. As long as the attacker keeps replaying these frames, the legitimate devices 

will be unable to reauthenticate with the AP. Mutual authentication between both 

parties of the wireless communication would make frame replay attacks more difficult 

to succeed [12]. However, this attack is feasible because both management and control 

frames are unauthenticated. Also, the correct utilisation of sequence numbers in the 

transmitted frames would also make frame replay attacks more difficult to succeed. 

3.3.2.3 Frame Modification 

The success of the frame replay attack relies on the information included in the 

intercepted frames. The attacker needs to replay particular type of frames, such as a 

deauthentication frame, in order to succeed in the attack attempt. In order to achieve 

the maximum potential of the frame replay attack, the attacker should be also able to 

modify the content of certain fields in the intercepted frames before being replayed. 
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Using frame modification, attackers compromise the integrity of the legitimate 

communications in the wireless network. 

An attacker could modify beacon frames or probe responses from the AP, and 

advertise some wireless communication properties that are not suitable to accomplish 

an efficient communication. The attacker could make the nodes in the wireless 

network leave the network if the communication properties advertised by the AP are 

not the optimum. Similarly, the attacker could modify the information in the beacon 

frames or probe response frames, indicating that the AP only supports the weakest 

security protocol, e.g. WEP. 

The frame modification attack can be implemented since the attackers can easily 

surpass the security protocols implemented by the IEEE 802.11 standard to provide 

confidentiality, integrity and availability to the wireless communication. These 

protocols cannot stop the attackers from modifying the content of the network frames. 

One possible countermeasure mechanism against the frame modification attack is to 

implement mutual authentication between the AP and the wireless users [12]. 

3.3.2.3.1 Identity Spoofing 

Every Ethernet card and wireless NIC is assigned a unique MAC address, at the time 

of manufacture, to be unequivocally identified. However, this value can be arbitrary 

changed using an appropriate software tool. There are plenty of options available on 

the Internet that allow easily changing of the MAC addresses of the NICs. The 

capability of an attacker to modify the source MAC addresses in the injected frames, 

and masquerade itself behind a fake MAC address is known as Identity Spoofing or 

MAC address Spoofing. The attackers can spoof any MAC address. It could use not 

only the MAC address of legitimate user of the wireless network, but also the MAC 

address of non-existing devices within the wireless network. 

MAC address spoofing is among the most serious threats that wireless networks 

may face [73]. An attacker that spoofs its MAC address is able to perpetrate a diverse 

number of attacks. For instance, an attacker may be able to surpass the access control 
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mechanisms of the security infrastructure by spoofing the MAC address of legitimate 

users [124]. There exist numerous attacks, ranging from DoS to session hijacking that 

can be implemented because an attacker may masquerade itself as a legal user [69]. 

Utilising MAC spoofing is not completely necessary to implement most of the 

wireless-specific attacks described in this chapter, but the effectiveness of these 

attacks will be increased if the attacker utilised MAC spoofing. Many other wireless-

specific attacks need to conceal the identity of the attacker to avoid being identified. 

The different examples of spoofing attacks presented in this section can be 

launched because both management and control frames are unauthenticated. The 

different frames used for these attacks can be easily spoofed. If the IEEE 802.11 

standard provided a robust and secure authentication mechanism for the management 

and control frames, MAC spoofing could not be used to launch any type of attack. 

3.3.2.3.1.1 Deauthentication Request 

Deauthentication request attack is one of the attacks that require identity spoofing to 

be successfully implemented. The IEEE 802.11 standard defines the deauthentication 

management frames for requesting the deauthentication of a specific wireless device 

from the network either, in case the authenticated device wanted to leave the network, 

or the AP wanted a specific device to leave the network. In deauthentication request 

attacks, an attacker forces legitimate devices to leave the wireless network. This attack 

can be implemented because the IEEE 802.11 standard does not provide any 

mechanism for validating the authenticity of the deauthentication frames [51]. 

An attacker can inject deauthentication frames, destined to the AP, using the 

source MAC address of a wireless device already authenticated or associated. The AP 

will process the spoofed deauthentication frames and accept the deauthentication 

request because the source MAC address corresponds to a legitimate device. After 

leaving the network, the victims might reinitiate the entire authentication and 

association process. As long as the attacker keeps sending spoofed deauthentication 

frames, the victims will be unable to reauthenticate with the AP. Similarly, the attacker 

can also spoof the source MAC address of the AP and inject this deauthentication 
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frames, destined to a particular wireless device. Upon receiving the spoofed 

deauthentication frames, the targeted wireless devices will automatically leave the 

network. In one final attack scenario, the attacker can also inject deauthentication 

frames destined to the broadcast address [10]. As a consequence, all the authenticated 

or associated wireless devices have to leave the wireless network. However, the 

authors of [9] found that some wireless devices do not follow the indications of the 

IEEE 802.11 standard and could ignore this type of deauthentication frame. 

3.3.2.3.1.2 Disassociation Request 

The IEEE 802.11 standard states that each wireless user could be authenticated to 

different APs at the same time. However, these users are only allowed to be associated 

with a single AP at a time [112]. In order to stop the association with the AP, the IEEE 

802.11 standard defines disassociation frames. 

In disassociation request attacks, an attacker utilises spoofed disassociation frames 

to force legitimate devices to disassociate from the currently associated AP. Similar to 

the deauthentication request attack, this attack can be easily implemented because the 

IEEE 802.11 standard does not provide any mechanism for authenticating the 

authenticity of the disassociation frames [51]. An attacker can inject disassociation 

request frames using the source MAC address of an already associated wireless 

device, destined to the AP. The victim of this attack will be forced to disassociate from 

the associated AP. Similarly, the attacker can also inject disassociation request frames 

destined to a particular wireless device or destined to the broadcast address, using the 

spoof MAC address of the AP. As long as the attacker keeps sending spoofed 

disassociation request frames, the victims will be unable to reassociate with the AP. 

Similar countermeasure mechanisms can be implemented to protect wireless 

networks against both attacks. MAC filtering out may eliminate the effect of these 

attacks [67], but this solution may also cause a DoS attack on the legitimate device 

whose MAC address has been spoofed. Another countermeasure mechanism proposed 

is to authenticate the management and control frames [51]. The authors of [59] [51] 

have also proposed to modify the IEEE 802.11 standard. For instance, the authors of 
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[51] propose queuing the deauthentication or disassociation requests for a short period 

of time (i.e. 5-10 seconds) before processing them. If a data frame arrives from the 

same source MAC address as the deauthentication/disassociation request, during the 

queuing time, the request frame is discarded. Although the results presented by [51] 

prove this countermeasure mechanism efficient, there exist some drawbacks associated 

to this mechanism. First, the queuing mechanism adds an undesirable delay to wireless 

devices that are roaming between APs. Also, this countermeasure would be ineffective 

if any data frame is received during the queuing time. 

3.3.2.3.1.3 Rogue Access Point / Network Hijacking 

Rogue AP, also known as network hijacking, is a type of attack through which the 

attacker is able to take over the communication between the legitimate AP and 

wireless devices. This attack can be implemented as an extension of the 

deauthentication and disassociation attacks. Initially, the attacker spoofs the identity of 

the legitimate AP and forces the victim to leave the wireless network. Then, the 

attacker makes the wireless device authenticate and associate with itself rather than the 

legitimate AP. In order to achieve this, the attacker start transmitting spoofed beacon 

frames, including the MAC address of the AP and the same Service Set Identity 

(SSID) value. Probe response frames containing the same information, the spoofed 

MAC address and SSID, can be used to make the wireless device associate with the 

attacker [125]. The attacker needs to inject the frames using stronger signal strength 

than the AP, since the wireless devices try to associate to the AP with the strongest 

signal strength [125]. Before completely accomplishing this attack, the attacker needs 

to make sure that the wireless device does not reassociate back with the legitimate AP. 

Once the attacker has taken over the wireless communication, it has complete 

control of the communication [91]. The attacker would be able to freely access the 

information transmitted from or destined to the victim wireless client. It would be able 

to deliberately filter out and modify transmitted information, and it would be able to 

inject completely fake information to the wireless client. 
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The attackers can implement this attack since the management frames are 

unencrypted and unauthenticated, and by taking advantage of the identity spoofing 

capability [10]. One feasible countermeasure mechanism against the network hijacking 

attack is the implementation of mutual authentication between the legitimate AP and 

the wireless users [12]. Another countermeasure mechanism proposed by [114] is to 

increase the transmission signal strength of the AP to provide better wireless 

communication properties than the attacker, making the wireless devices authenticate 

with the AP again. 

3.3.2.3.1.4 Energy Saving 

The energy saving attack also requires identity spoofing to be efficiently implemented. 

The IEEE 802.11 standard provides a functionality to allow the wireless devices to 

save their generally limited energy resources. The wireless devices can enter an energy 

saving mode during which they are unable to transmit or receive any frame [51]. The 

energy saving mode leads to great power savings in wireless devices. The AP 

periodically transmits beacon frames containing the Traffic Indication Map (TIM) 

[59]. The TIM is used by the AP to indicate which wireless users in the energy saving 

mode have data buffered for them [112]. The wireless users must leave the energy 

saving mode to receive the beacon frames, and examine the TIM. If there is any 

buffered data at this time, the users send a PS-Poll control frame to the AP to retrieve 

the buffered data [112]. The AP sends the buffered data to the users that requested it 

and, subsequently, removes the contents of its buffer [51]. 

An attacker could spoofs the source MAC address of the PS-Poll control frames to 

launch the energy saving attack. An attacker can cause the AP to remove the buffered 

data destined to the wireless devices in the network. Taking advantage of the identity 

spoofing capability, the attacker is able to inject a PS-Poll control frame destined to 

the AP and to retrieve the buffered data of a legitimate user, while this user is sleeping 

[51]. After transmitting the buffered data the AP removes the contents of its buffer. 

Therefore, the legitimate user will never receive that information. Similarly, the 

attacker is able to inject beacon frames, spoofing the MAC address of the AP, 



 
 

  

CHAPTER 3: PROTECTING AGAINST WIRELESS-SPECIFIC ATTACKS 

61

including a modified TIM value. If the TIM value indicates that there is not buffered 

data to be retrieved, the user will return back to the sleeping mode [51]. Given that the 

legitimate user does not retrieve the buffered data, the AP may collapse the buffering 

resources of the AP. One final attack that could compromise the implementation of the 

energy saving mode aims to break the synchronisation between the AP and the 

wireless device. The wireless devices in energy saving mode relies on its 

synchronisation with the AP to wake up and been able to receive TIM values. Before 

entering into the energy saving mode, the wireless device synchronises with the AP 

when to wake up. Given that the synchronisation information is transmitted in the 

clear, using unauthenticated management frames, an attacker can inject spoofed 

management frames to make the wireless device to wake up at the inappropriate times, 

falling out of synchronisation with the AP [51]. 

3.3.2.4 Man-in-the-Middle 

Man-in-the-Middle (MitM) is a type of attack that works against the integrity of 

communication. By implementing this attack, the attacker is able to access the 

communication between two of the nodes in the network, and is capable of modifying 

the content of the transmitted information. 

MitM attack can be implemented using different methodologies. One of these 

methodologies is implementing this type of attack at the application layer. An attacker 

could initially install a computer virus, malware, or Trojan horse in the victim 

machine. Although an attacker could use these pieces of information to carry out many 

other malicious actions, these can also be used to have access to the system, and 

acquire, modify or delete information. This methodology of MitM attack is not 

exclusive of wireless nodes. It also affects nodes connected to an Ethernet network. 

Another methodology of MitM attack is implemented very similarly to network 

hijacking attack. In fact, this methodology, which affects only to the nodes in a 

wireless network, could be interpreted as a double implementation of the network 

hijacking attack. As part of this methodology, the attacker has to spoof the identity of 

both end devices of the wireless communication. On the one hand, after making the 
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wireless devices leave the network, the attacker spoofs the identity of the AP and starts 

transmitting spoofed beacon frames. These frames include the MAC address of the AP 

and similar SSID value to make the wireless device to associate with the attacker. On 

the other hand, the attacker spoofs the identity of the wireless device and tries to 

associate with the AP. At this moment, both legitimate devices believe that they are 

directly connected with each other. However, both are connected to the attacker. The 

attacker will receive all the frames that each end device transmits to the other wireless 

device. The attacker has now the freedom to let the information reach its destination, 

modify the content of the transmitted frames or discard any frame [126]. Finally, the 

attacker must assure that there is no direct communication between both legitimate 

wireless devices to succeed in the implementation of the MitM attack. In order to 

achieve that, the attacker must assure that each wireless device is off the transmission 

range of the other device. Alternatively, the attacker must assure that both wireless 

devices start using different frequency channels [52]. 

Another methodology of MitM attack can be implemented by intercepting the 

wireless communication and injecting crafted information, using the spoofed MAC 

address of a legitimate device. Similar to the previously explained MitM attack, this 

methodology affects only to the nodes in a wireless network. The attacker 

intentionally replaces the content of the website that the wireless clients receive. This 

methodology is one of the attacks that have been evaluated in this thesis. Further 

description of this implementation can be found in the following section 3.4.3. 

3.4 Evaluated Wireless-Specific Attacks 

As will be presented in forthcoming chapters, the effectiveness of the IDS proposed in 

this thesis will be evaluated using five different wireless network datasets, generated 

with two particular wireless-specific attacks, as well as a dataset with non-malicious 

information. These are deauthentication request and a particular implementation of 

MitM. The attacks have been practically implemented in a live operational IEEE 

802.11 network, physically deployed in the laboratory of the High Speed Network 

Group, at Loughborough University. 
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3.4.1 Deauthentication Attack 

One of the evaluated attacks is the deauthentication attack. This attack has been 

previously described in detail. The attacker launches a succession of deauthentication 

frames with the purpose of disrupting the connection between the AP and the wireless 

client, encrypted using WPA2. Although the wireless communication between the AP 

and the wireless client was WPA2 encrypted, this attack has been able to disrupt the 

communication. The attacker spoofed the source MAC address in the management 

frames used in this attack, utilising the MAC address of the AP. Aircrack [121] is the 

suite of penetration testing tools that has been used to implement this attack. 

3.4.2 Man-in-the-Middle Attack 

Another attack that has been implemented in this thesis is the MitM attack, launched at 

the PHY layer. In fact, two different versions of the same attack have been 

implemented using the software tool Airpwn [18], which can be found as part of the 

suite of penetration testing tools Aircrack. Both implementations require the attacker 

to be physically located between the AP and the wireless device, intercepting the 

wireless communication. 

First of all, Airpwn intercepts the transmitted frames and looks for HTTP requests 

from the legitimate wireless nodes. As soon as the attacker eavesdrops a website 

request from a legitimate node in the wireless network, it injects its own crafted frame. 

For instance, the crafted frames may contain illegitimate HTML code onto the 

wireless channel, using the spoofed MAC address of the AP. Airpwn takes advantage 

of the RTT that a web server takes to respond to legal website requests to inject its 

own crafted HTML code. Since the attacker is physically located closer to the victim 

than the AP, it takes the attacker much less time to respond to the HTTP requests than 

the website server. When the victim receives the data, it will assume the original 

request was answered and process the fabricated HTML code from the attacker. In the 

first version of the attack, referred as 01݇ܿܽݐݐܣ , the attacker replaces the whole 

content of the authentic website to a custom one. In the second version of the MitM 
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attack, referred as 02݇ܿܽݐݐܣ, Airpwn replaces only the images in the website. The 

attacker listens for images requests, as part of the HTTP requests, and injects its own 

fabricated images. 

By replacing the content of the website that the wireless nodes receive, Airpwn 

could cause harm of varying severity. For instance, an attacker could cause less 

dangerous effects such as replacing the adverts of a specific website with different 

ones, with the economic benefit that this change could provide. An attacker could also 

include disturbing images that could produce psychological distress to the wireless 

network users. In the other extreme, an attacker could also cause more dangerous 

activity such as redirecting the wireless device to a phishing website. Figures 3.1 and 

3.2 show the effect caused by Airpwn to the website that the wireless client receives. 

Figure 3.1 shows the legitimate content of the Chinese website ‘Dict’ 

(http://www.dict.cn), when Airpwn is not active. This is how the legitimate website 

looks like in normal conditions. Figure 3.2 shows the same website. This time, the 

Airpwn is active and the figure shows the effect that the 02݇ܿܽݐݐܣ produces in the 

wireless client web browser. In this example, it is easy to identify the crafted injected 

content. The banner “Hello Defcon! Your” in red replaces the legitimate images in the 

original website. However, the crafted injected content could be more elaborated and 

the wireless client might not distinguish the difference between legitimate and 

malicious images. To make things clearer, Airpwn does not attack the website content 

at the web server. The attacker never targets the web servers. The attack occurs in the 

last link of the wireless network, before reaching the wireless client. 

3.4.2.1 Malvertising Using Airpwn 

There exist several Airpwn implementations that attackers can benefit from. Special 

attention has been given to this type of attack in this thesis because of its capability to 

modify the content of the websites presented to the wireless client. The capability of 

Airpwn to replace the adverts of a specific website with different ones could provide 

substantial economic benefit. 
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Figure 3.1 Website ‘Dict.cn’ Normal Content. 

 

 

Figure 3.2 Website ‘Dict.cn’ Injected Malicious 02݇ܿܽݐݐܣ Content. 
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Currently, advertising in websites has become a high profitable business. In the 

last few years, cyber-attackers have gained presence in this billion-dollar environment 

trying to gain substantial economic benefit using illicit mechanisms. The authors of 

[25] explain that hackers can use the adverts embedded in websites to carry out 

malicious and fraudulent activities. This paper refers to this type of attack as 

malvertising. The authors highlight the fact that malvertising has become a very 

profitable illegitimate business, and they present an extensive study on the 

malvertising infrastructure. This work also shows that illicit adverts can be used by 

attackers to inject viruses, malware or Trojan horses into the devices accessing to the 

websites. Similarly, in 2013, a security research team exposed the existence of two 

software tools that injected unauthorised adverts in websites [26] [27] [28]. Some of 

these unauthorised adverts would lead users to malicious websites, or would even 

allow viruses and malware to gain access to the user devices [26]. In this particular 

case, the user is actively involved in the success of this attack. The user needs to install 

specific software prior the unauthorised adverts could be injected in the websites. 

Otherwise the malicious content could not be imbedded in the information displayed 

in the web browsers. Since the images used in these illegitimate adverts are, in some 

cases, the corporative brand logo of well-known multinational companies, users have 

no suspicion of this malvertising content appearing in their web browsers. In fact, this 

attack has passed undercover for a long time. It is of the interest of many parties to 

stop this type of actions, since it damages the reputation of both the websites in which 

the unauthorised adverts are injected and the brands which corporative image is used 

unauthorised, along with the damage caused to the final users. 

Currently, there is no reported evidence that cyber-attackers are actively using the 

Airpwn attack in malvertising. However, this attack could achieve the same goal than 

the attack presented in the previous paragraph that injects unauthorised adverts in 

websites. In contrast to the previously presented attack, Arpwn does not require to 

install any specific software. Arpwn injects the crafted content into the wireless 

communication, spoofing the identity of a legitimate AP. This is just one of the 

multiple usages that could be given to this particular penetration testing tool. The lack 

evidences about Airpwn being actively used does not necessarily mean that cyber-
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attackers are not currently making use of it. Nonetheless, it has been practically 

demonstrated that Airpwn can be used in malvertising. 

In this thesis it is speculated that cyber-attackers might see in this tool an effective 

and easy way to implement malvertising, as a mechanism to gain substantial economic 

benefit. Fortunately, this work presents a novel methodology that allow identify this 

attack, and allow the possible application of countermeasure techniques to jeopardise 

the success of Airpwn. To the best of the author knowledge, this is the first 

methodology able to efficiently identify this particular attack. 

3.5 Discussion 

In this chapter, several types of attacks have been described. The main purpose of this 

description has been to highlight the fact that, although many of these attacks can also 

affect wired devices connected to an Ethernet network, there exist a number of attacks 

specifically focused on wireless devices and WLANs. Traditional security systems 

that were initially designed to provide security to wired networks cannot provide a 

complete level of security to current wireless networks. 

From the different wireless-specific attacks explained above, the most commonly 

proposed countermeasure mechanisms in this chapter are access control filters or 

MAC address filtering. It is easy to realise that the success of these mechanisms relies 

on the unequivocally identification of the attacker. The MAC address in the frames 

determines the identity of the wireless device. Unfortunately, this is not a reliable 

approach to assess the real identity of the wireless device. An attacker can easily 

implement techniques of MAC address spoofing, and masquerade itself behind a fake 

MAC address. 

The efforts to provide reliable security against these attacks should focus on the 

identification of the device that has transmitted the frame. A possible solution might 

be using, not only the MAC address, but also multiple other parameters or metrics 

from the wireless device or the wireless communication to infer the real identity of 

these devices. The most effective approach would be to analyse features or metrics 
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from every layer of the protocol stack, and try to unequivocally differentiate between 

legitimate wireless devices in the network and the attacker; starting from the PHY 

layer. This would still not be the definite solution. In order to succeed in its purpose, 

the attacker may try to imitate as many characteristics of a valid wireless client as 

possible throughout the entire protocol stack. If the attacker had the capability to 

replicate all the characteristics of a legitimate wireless client, the different security 

systems would not be able to provide protection, and the attacker would finally 

succeed. However, it is highly unlikely that the attacker could mimic every single 

feature of the legitimate devices. Therefore, the higher the number of parameters or 

metrics used to identify the real identity of the wireless devices, the higher the 

probability to identify any attempt of an attacker to masquerade itself behind the 

spoofed identity of a legitimate wireless device. 

As will be explained in the following chapters, wireless network monitoring tools, 

such as IDSs, are the most appropriate network security mechanisms to identify the 

difference between a legitimate wireless device and an attacker impersonating the 

legitimate wireless device. If these network security mechanisms were able to 

unequivocally identify whether the frame has been transmitted by an attacker or by a 

legitimate node, then the most appropriate countermeasure mechanism could be 

applied. In order to prove that IDSs are appropriate mechanisms to protect networks 

against wireless-specific attacks, the deauthentication request and MitM attacks have 

been practically implemented in a live operational IEEE 802.11 network and 

evaluated. There might be a concern about whether the number of experiments is large 

enough to prove the efficiency of this security mechanism. Whilst evaluating all the 

existing wireless-specific attacks would be the most appropriate decision to assure that 

the IDSs can identify all these attacks, research wise, evaluating all these attacks 

would be impractical. The attacks implemented in this thesis are an adequate sample to 

showcase the efficiency of the IDSs. 

Lastly, during the implementation of this thesis, a third type of attack was also 

implemented. This was the rogue AP in which the attacker tries to take over the 

wireless communication between the AP and wireless client. Similar to the previous 

two attacks, the attacker spoofed the source MAC address in the injected frames 
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utilising the MAC address of the AP. The rogue AP attack was fully capable of getting 

sensitive information from the victim. The attack was implemented using the attacking 

tool HostAP [128]. However, the results of these experiments have not been included 

in this thesis for different reasons. The testbed in which the experiments were 

implemented was similar to the one in the deauthentication attacks. Therefore, these 

new results would not add to the idea that changes in the proximity of the attacker 

from the victim may have on the final results of the proposed detection system. Also, 

the experimental results using deauthentication and Airpwn attacks prove that the 

proposed methodology is able to efficiently detect different types of wireless-specific 

attack without making any adjustments to its implementation configuration, regardless 

of the implemented attack. Including the rogue AP experiment results would not add 

to prove the methodology efficiency. The experiment results for this type of attack, 

using the methodology proposed in this thesis have however been previously 

presented in [43]. The results published in this paper also prove the efficiency of the 

proposed detection system detecting this type of attack. 
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Chapter 4 

Detection System Definition 

4.1 Introduction 

Due to the increasing number of attacks and intrusion attempts that target wireless 

networks, the implementation of wireless network monitoring tools, such as IDSs, has 

become fundamental in the development of security infrastructures for wireless 

networks. These systems outperform the protection capabilities of cryptography 

protocols, firewalls or antivirus software. IDSs incorporate sophisticated information 

analysis techniques that support the processing of any observable and measurable 

metric of the monitored system to detect attacks. 

Different mechanisms could be utilised by IDSs to analyse the datasets. Similarly, 

multiple design configurations could be applied to the IDS architecture. Designing an 

IDS requires the consideration of multiple characteristics that define the final 

architecture of the system. The correct selection of these characteristics would 

establish the difference between an efficient and a poor detection process. This chapter 

introduces in detail the concept of IDSs, and provides a detailed taxonomy that 

describes the most relevant characteristics that need to be considered when an IDS is 

designed, as well as the pros and cons of each of the characteristics. Next, this chapter 

describes the characteristic included in the final architecture design of the IDS 
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presented in this thesis, and discusses the principal reasons for selecting each of these 

characteristics. The purpose of this chapter is to find the most convenient architecture 

for the detection system presented in this thesis and to discuss the reasons for selecting 

each of the characteristics. 

4.2 Intrusion Detection Systems 

Intrusion Detection Systems (IDSs) are security systems that constantly monitor 

information from the protected environment, e.g. a computer or a network system, to 

identify evidence of attacks or intrusion attempts. The principal role of these systems 

is to detect malicious actions that compromise the confidentiality, integrity and 

availability of the resources of the protected systems [14]. In [86], the authors describe 

the main functions performed by IDSs as gathering activity information from the 

monitored system, analysing the gathered information and assessing the nature of this 

information, and raising an alarm if the outcome of the detection process indicates the 

presence of attack. The authors of [57] simplify the concept of IDS to just a 

classification problem in which a given piece of information is identified as normal or 

malicious. In my opinion, this last definition is excessively simplistic. The functions 

that IDSs implement are particularly complex to be defined as just a classification 

problem. 

IDSs have become essential components of the security mechanisms. These 

systems should be an indispensable part of any security infrastructure, complementing 

and supplementing the weakness that the traditional security mechanisms may have. 

Although IDSs could operate independently, similar to other security systems, IDSs 

should not be considered an alternative for current security mechanisms that are 

currently widely deployed, such as firewalls or anti-virus. IDSs outperform the 

detection capabilities of traditional network security mechanisms. This is because 

IDSs incorporate more sophisticated information analysis techniques, able to analyse 

more diverse type of information. In addition, as is explained later in this chapter, 

certain types of IDSs are able to dynamically adapt their detection capabilities to the 
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current characteristics of the resources being protected, in contrast to the traditional 

static security mechanisms. 

It is important to understand that IDSs are not designed to prevent intrusions from 

occurring. Nonetheless, some IDSs allow the system administrator to specify a set of 

actions to be automatically implemented in case an attack is detected [55]. Based on 

the nature of the actions, IDSs that include response actions can be categorised as 

Intrusion Prevention Systems (IPSs) and Intrusion Tolerant Systems (ITSs). IPSs 

actively respond to the identified attacks by applying countermeasure techniques, 

attempting to stop them from persisting and preventing the attacks from succeeding 

[55]. However, actively stopping the attacks from persisting is not always possible for 

the detection systems. That is the main difference with ITSs. Instead of attempting to 

stop the attacks, the ITSs provide resilience against these attacks. ITSs adapt the 

operational capabilities of the protected system and allow the system to correctly 

continue working, despite the presence of the attacks [131]. 

4.2.1 Intrusion Detection Systems Classification 

Designing an IDS requires considering multiple characteristics that define the final 

architecture of the system. The correct selection of these characteristics has direct 

effect on the final performance of the system, establishing the difference between an 

efficient and a poor detection process. 

Different researchers in the field of intrusion detection have described numerous 

of these characteristics. The most widely utilised in the literature are the source where 

the information is gathered from, the methodology from which IDSs learn the 

difference between legitimate and malicious information, and the methodology utilised 

to conduct the intrusion detection. An extensive IDSs characteristics classification has 

been presented in [124]. This section provides a detailed taxonomy that, according to 

the author of this thesis, describes the most relevant characteristics for an efficient 

intrusion detection process. These characteristics are summarised in Table IV.I. 
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4.2.1.1 Source of Information 

Central to the intrusion detection process is the information analysed to infer the 

presence of attack. IDSs can make use of any measurable metric from a variety of 

sources. Based on the source of information, IDSs can be broadly divided into two 

main categories, network-based and host-based intrusion detection [56]. Router-based 

intrusion detection is another category described in [132], which is not generally used. 

TABLE IV.I.  CONSIDERED IDS CHARACTERISTICS. 

CHARACTERISTIC DEFINITION CATEGORY 

Source of Information 
Defines from where the 

information used by IDSs is 
gathered. 

Network-based 

Host-based 

Router-based 

Learning Approach 
Defines how IDSs learn the 
difference between normal 
and malicious information. 

Supervised 

Unsupervised 

Detection Systems Cooperation 
Defines the level of 

cooperation between 
different IDSs. 

Autonomous 

Cooperative 

Cooperative Systems 
Deployment 

Defines the way cooperative 
IDSs share the information. 

Centralised 

Hieratical 

Distributed 

Detection Timing 
Defines how long takes to 
implement the intrusions 

detection. 

Off-Line 

On-Line 

Detection Methodology 
Defines the methodology 
utilised to implement the 

intrusions detection. 

Misuse 

Anomaly 

Hybrid 

 

The network-based IDSs gather information from the data traffic passing through 

the network. Both wired and wireless networks can be the source of this information. 
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This type of detection system can obtain information directly from the content of the 

frames (i.e. the frame header and the frame payload) or it can generate different 

statistical parameters from the characteristics of the network in form of traffic Netflow 

data (for instance, the duration of the connection). Multiple monitoring sensors could 

be deployed in one single IDS to provide multiple data streams for a multi-layer 

approach [133]. On the other hand, the host-based IDSs gather information exclusively 

from operations that occur in individual computers (e.g. PCs), such as operating 

system audit trails, system logs and calls, sequence of user commands, application 

logs, or resource usage [80] [86]. These systems allow the identification of unintended 

and misbehaving activity locally to the personal devices. 

The host-based IDSs require be installed in the monitored PC. Current OSs have 

become highly complex [78]. Hence, for the proper operation of the host-based IDS, 

these systems may require great effort to be tailored to each respective system. In 

contrast, the network-based IDSs are able to protect the wireless devices in the 

network and the different components of the network from attacks, regardless of the 

specific OS installed in these systems. This type of system can operate without any 

knowledge at all or with little knowledge about the monitored network, such as the 

used network standard. In addition, the network-based IDSs do not require being 

installed in the network component devices. These systems could be installed in an 

independent monitoring device, not requiring direct access to any component of the 

monitored network. These facts make the network-based IDSs much easy systems to 

be developed. 

The router-based IDSs collect information from within the network core of the 

ISP backbone, the link between routers. However, this category is not as commonly 

utilised by researchers as the other two categories. Whilst the resources required to 

develop and deploy host-based and network-based IDSs are easy available, the access 

to either the routers in the ISP backbone or the information passing though these 

devices is highly restricted. Therefore, the deployment or utilisation of this type of 

IDSs is a decision that only the ISPs can take. For instance, one of the research studies 

that have had access to the core of a major UK ISP network is [134]. 
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4.2.1.2 Learning Approach 

Another characteristic that can be utilised to categorise IDSs is the approach utilised 

by these systems to learn the difference between legitimate and malicious information. 

IDSs can be categorised as supervised and unsupervised IDSs, based on the learning 

approach. 

The supervised IDSs are provided with a set of learning samples or training 

datasets that helps the detection mechanisms in IDSs to determine whether the 

analysed information is malicious or normal. Predefined signatures of known attacks 

directly teach the detection systems what is normal information and what is not. 

Training datasets, commonly labelled, also allow the administrators of IDSs, not only 

to learn the difference between normal and malicious information, but also to define 

the specific types of attacks that IDSs have to learn. The labelled training datasets may 

contain instances of both, normal and malicious information. On the other hand, if the 

training dataset is not labelled, the supervised IDSs assume that the dataset only 

contains instances of normal information. Therefore, IDSs can compute the reference 

of normal behaviour and consider as malicious any analysed information that outlines 

the defined reference. 

One complex task that supervised IDSs face is to assess whether the training 

datasets correctly represent the difference between normal and malicious information. 

In the case of utilising labelled datasets, the most important consideration is whether 

the instances in the datasets are correctly labelled. In addition, it is highly unlikely that 

the available labelled datasets or the attack signatures could cover all the existing 

attacks [135]. Therefore, this learning information needs to be frequently updated. In 

the case of utilising unlabelled dataset, the most important consideration is assuring 

that the dataset is completely clean, without any malicious instance. Again, obtaining 

completely clean training datasets can be extremely difficult or impossible to achieve. 

Even in a controlled testbed, assuring that the content of the training dataset is 

completely free of malicious instances is extremely hard [87]. If a supervised IDS was 

trained using an unlabelled dataset containing malicious instances, erroneously 
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considering that the dataset is completely clean, the IDS would not be able to detect 

this particular attack [57].  

The unsupervised IDSs learn the difference between legitimate and malicious 

information autonomously, solely based on the intelligence capabilities of the 

detection techniques analysing the attributes of the monitored information [100], 

without external support. The datasets used by the unsupervised IDSs to create the 

reference of normal behaviour are unlabelled, and may contain normal and malicious 

information instances. This saves the effort of assessing whether the instances in the 

datasets are correctly labelled, or whether the datasets contains any malicious instance. 

Since these systems do not make use of learning samples or training datasets as do 

the supervised IDSs, the unsupervised IDSs rely entirely on the efficiency of their 

decision algorithms to determine the difference between legitimate and malicious 

information. Finding a decision technique that could precisely differentiate between 

both types of information is the biggest difficulty when designing unsupervised IDSs. 

In addition, the lack of learning information means that, if any attack was detected, the 

unsupervised IDSs would not be able to identify the specific types of attacks. On top 

of that, two conditions must be assured for the unsupervised IDSs to be efficient; 

conditions that IDSs cannot fully control. The first condition is that the number of 

legal instances in the dataset must be larger than the malicious instances. Second, the 

difference between normal and malicious instances in the dataset must be quantifiable. 

According to the authors in [87], these two conditions will make malicious instances 

in the dataset appear as rare outliners from the more predominant normal instances. 

4.2.1.3 System Architecture 

The architecture of an IDS is composed of a diverse number of modules. The most 

common are a set of monitoring sensors, which perform information gathering 

functions, a database that stores the information gathered by the monitoring sensors, 

and a central engine that performs a set of operations to detect the presence of attacks 

[55] [136]. Many additional modules can be included to conduct efficient intrusion 

detection. For instance, it is also common for an IDS to include a preprocessing 
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module [88], data cleansing module, an administration console to monitoring console 

to control the system [136], or data fusion module, among others.  

4.2.1.3.1 Detection Systems Cooperation  

The architecture of IDSs provides numerous characteristics to categorise these 

systems. One of the characteristics is the level of cooperation between different IDSs. 

This means whether an IDS implements the detection individually or whether it 

cooperates with other detection systems. Based on the level of collaboration between 

diverse detection systems, these can be categorised as autonomous or cooperative 

intrusion detection [124]. 

One IDS can be designed with different levels of cooperation with other IDSs. In 

one end, there are IDSs primarily designed to conduct the intrusion detection using 

information shared by other detection systems. IDSs collaborate with other detection 

systems to conduct combined intrusion detection in a cooperative architecture. Sharing 

information among different IDSs can help to detect some ambiguous intrusions [137], 

reduce the number of false alarms by correlating different IDS outputs [104], and can 

help IDSs to anticipate possible attacks, previously detected by other IDSs. One of the 

best examples of this type of IDS architecture is a Wireless Sensors Network (WSN) 

looking for nodes whose internal behaviour have been compromised (i.e. Byzantine 

attack). The nodes in the WSNs share information about other nodes for the IDS to 

identify jeopardised devices. The level of cooperation among IDSs can be gradually 

reduced to the other extreme in which a single IDS would conduct the intrusion 

detection individually, without any information shared by any other IDS. In the other 

end, each IDS considered autonomous is responsible for performing the detection 

functions independently, and the effectiveness of these systems relies entirely on its 

own detection capabilities. There is no communication or information sharing with 

other IDSs. 

Cooperative IDSs provide some advantages over the autonomous IDSs. For 

instance, these IDSs posses more information and, therefore, they have a clearer 

picture of the environment which they are monitoring, and the specific type of attacks 
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that may be carried out. The authors of [104] propose a cooperative architecture in 

which multiple IDSs collaborate to make the intrusion detection more accurate and 

efficient. Despite the provided advantages, this type of system also has some 

drawbacks. First of all, the communication between IDSs may be vulnerable to 

attacks. An attacker could compromise the transmitted information, injecting faulty or 

false information, as well as colliding the communication between diverse IDSs. Also, 

a common communication language among all the detection systems should be 

defined for these systems to interpret the information received from other IDSs. This 

second requirement would not generate a great level of concern among a reduced 

number of cooperative IDSs. The administrator of these systems could agree on 

creating common communication language. However, this is not easily scalable to 

scenarios with high number of IDSs. In addition, the communication between 

cooperative IDSs increases the quantity of transmitted information, increasing the 

level of congestion in the communication bandwidth. 

On the other hand, the efficiency of an autonomous system relies entirely on its 

detection capabilities. Given that this type of systems does not have access to extra 

information, the accuracy of the autonomous systems might be lower than the 

cooperative systems. Nonetheless, the autonomous IDSs eliminate the disadvantages 

that the cooperative IDSs present. The authors of [137] correctly argue that 

autonomous IDSs could only be installed in devices with enough resources. Hence, the 

computational requirement of the different detection engines used by IDSs should be 

as low as possible for the autonomous system to be efficient. 

4.2.1.3.2 Cooperative Systems Deployment 

For IDSs using a cooperative architecture, the deployment of the systems may be also 

categorised as centralised, hieratical or distributed intrusion detection [58]. 

In a centralised system, individual monitoring sensors gather information locally 

and transmit this information to a centralised database. The sensors do not necessarily 

need to be in the same physical location. Then, the central detection engine of the IDS 

processes and analyses the information gathered by the different monitoring sensors, 
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stored in the database [124]. The central IDS would identify attacks from the 

information collectively gathered. A centralised system can also be composed of 

different IDSs that carry out individual detection processes and send information about 

any detected attack intrusion to a central correlation system to corroborate the 

detection using information from other systems [58]. Common to all the cooperative 

IDSs, the information transmitted to the central database is vulnerable to a series of 

attacks. Also, the information gathered by different sensors may be duplicated in the 

database, increasing the computational cost of IDS dealing with duplicate instances. 

Additionally, the communication between the monitoring sensors and the central 

database may create a traffic bottleneck. On top of that, the central database becomes a 

unique failing point. The entire system would be unavailable if the central database is 

inaccessible as consequence of any failure. If the database fails, the entire IDS also 

fails. 

In order to reduce the level of problem that a single central database or a single 

central detection engine may pose, a cooperative IDS can be deployed as a hieratical 

system. In this type of system deployment a diverse number of databases and detection 

engines are used. The different sensors or IDSs share information according to a 

hierarchic status. This approach can be envisioned as small cases of centralised 

systems, with similar vulnerabilities and drawbacks. However, the hieratical system 

splits the risk and reduces the probability of each database to fail, as well as reduces 

the probability of traffic bottleneck. In contrast to the centralised system, if one of the 

databases fails or is unavailable, the entire IDS do not completely fails. The 

communication between the different components is still vulnerable to attacks. 

In a distributed system, each detection system shares information directly with the 

rest of the IDSs. Either the information gathered by the sensors or information about 

local detection process is shared in a completely distributed way, without the use of 

any central database [58]. Similar to the previous two approaches, the communication 

between the different components is vulnerable to attacks. Also, the process of dealing 

with duplicate instances and its computational cost becomes redundant. In a 

centralised system, the central database processes and deletes the duplicate instances. 

In a distributed system, each system deals with duplicate instances independently. 
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Therefore, all the distributed systems may need to process and delete similar pieces of 

information. In addition, the distributed system increases the quantity of transmitted 

information, increasing the level of congestion in the communication bandwidth. 

4.2.1.4 Detection Timing 

IDSs can also be categorised according to the detection timing used by the system. 

This is whether a system works on-line or whether it works off-line [99] [124] [138]. 

The off-line IDSs work analysing network information in a non-real time manner. In 

contrast, the on-line IDSs work in real time, continuously analysing information as it 

is gathered from the monitored system, and detecting attack while they occur. The 

sooner an intrusion is detected, the less the amount of damage in infringed to the 

protected system. 

The off-line IDSs could gather information from the protected system during 

hours, days, or even weeks, either periodically or continuously, before implementing 

the intrusion detection. Once the information has been gathered, this is processed and 

analysed by the detection system. However, off-line IDSs do not always need to wait 

until the complete dataset has been gathered. The off-line IDSs could also choose to 

use time intervals models to conduct the detection process, using a specific frequency. 

The off-line approach is very convenient for researchers in the field of IDS to 

evaluate the effectiveness of the detection systems over the same dataset, or compare 

different detection approaches. However, the off-line IDSs fall into the category of 

forensic analysis. It becomes a matter of finding out whether the protected system has 

been attacked. By the time evidences of attack are found, these attacks may have 

already reached the protected system. The IDS would detect the attack after it has 

taken place. Even IDSs that work in nearly real time are one step behind the attackers. 

Urgent attack detection is crucial to provide appropriate and prompt protection. 

The IDSs have to be able to detect the attacks as soon as they occur [116]. The 

detection timing for an IDS to be defined as real time, or on-line IDS, should not be 

defined using standard time units. In contrast, the detection timing should be defined 
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by the time that an attacker needs to compromise the protected systems. The time that 

on-line IDSs need to detect intrusion attempts should be smaller than the time an 

attacker needs to compromise the protected system [139]. This would give the option 

to the protected system to implement any countermeasure action if required. 

A reduced number of publications have presented an on-line IDS, according to 

[138]. This might be because the on-line IDSs generally posse high computational 

cost. The off-line tend to be less computational demanding than the on-line IDSs. 

However, the computational cost of the IDSs should be lightweight to be applied in 

real time [90]. But lightweight detection processes are less reliable than a thorough 

detection processes. Therefore, the requirement of urgent makes the on-line IDSs less 

reliable than the off-line IDSs [99]. 

4.2.1.5 Detection Methodology 

One last characteristic to categorise IDSs is the methodology utilised to implement the 

detection. Based on the detection methodology, IDSs can be categorised as Anomaly 

or Misuse intrusion detection [13] [57]. This is the most frequently used characteristic 

to categorise IDSs. 

4.2.1.5.1 Misuse Intrusion Detection 

Similar to the antivirus, misuse IDSs make use of predefined signatures to identify 

known attacks. Misuse IDSs compare the analysed information against the signatures 

of known attacks, looking for any matching. In case any match is found, the systems 

will raise an alarm indicating the finding. A database is used to store the signatures. 

These signatures can be in the form of regular expressions or state transition models 

that characterise the implementation of particular malicious actions [10]. The attack 

signatures could be defined manually by the administrator of the detection system or it 

could be automatically defined as the outcome of an anomaly IDS. According to the 

authors in [100], the supervised IDSs are commonly used for misuse IDSs. The attack 

signatures define what normal information is and what malicious information is. 
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Traditionally, misuse IDS has been the preferred intrusion detection option for 

network security [57] [140]. Most of the commercial detection systems currently 

developed are based on misuse IDSs [78] [87] [106] [135] [141]. This is because the 

low percentage of FPs generated by this type of systems (commonly 0%), and the high 

degree of accuracy detecting known attacks. Also, the misuse IDSs are able to identify 

the specific type of attack that compromise the protected system. This fact is highly 

beneficial for the level of security provided to the protected system because, if the 

specific type of attack is known, the countermeasure mechanism that best protection 

provided against this attack can be implemented. In that case, the protected system 

would suffer low or even no damage at all. Misuse IDSs are also characterised by the 

short required time to detect the attacks. This is because it is assumed that the attack 

signatures are already stored in the signatures database before performing the intrusion 

detection analysis. The matching process carried out by these systems is done almost 

instantly. In addition, the implementation of misuse IDSs is conceptually simpler than 

anomaly IDSs. Evaluating the efficiency of these systems is also easier than assessing 

the efficiency of the anomaly IDS. 

Unfortunately, these systems are victims of their own good performance. The high 

degree of accuracy detecting known attacks and the low percentage of FPs would 

bring the user of the IDS into a false sense of security against unknown attacks. The 

misuse IDSs are unable to detected previously unknown attacks and variations of 

known attacks [104]. These systems may suffer from high percentage of FN alarms. 

The occurrence of a FN means that an attack has passed unnoticed and reached 

protected system. Another disadvantage of these systems is that, for each new type of 

attack that is identified, a new signature describing the attack should be generated and 

included into the signatures database [57]. From the time an attack is created to the 

time the respective attack signature is created, the monitored system is vulnerable to 

this particular attack [87]. Furthermore, poorly defined signatures could make the IDS 

to identify normal behaviours as malicious. In addition, the authors of [58] emphasise 

that the larger number of signatures stored in the database, the higher the 

computational cost and the longer the time required for analysing the signatures. This 

is a very interesting remark, because clearly reflect the fact that for each new attack or 



 
 
 

 

CHAPTER 4:  DETECTION SYSTEM DEFINITION 

83

modification of known attacks, a new signature ought to be generated. In an 

environment such as computer networks in which new attacks are constantly created, 

evaluating all the signatures in the database would be computational. 

4.2.1.5.2 Anomaly Intrusion Detection 

Researchers in the field of intrusion detection are mainly focused on anomaly IDS 

[36]. Anomaly IDSs create statistical references of normal behaviour of the protected 

systems using historical data [55]. Any deviation from the normal behaviour of the 

monitored systems is interpreted as an attack or intrusion attempt [40]. Anomaly IDSs 

are based on the assumption that the normal and malicious behaviour are differentiable 

from each other, and the difference must be quantifiable. If both behaviours were 

completely similar, any effort to identify the attacks would be impractical. In addition, 

anomaly IDSs require that the number of legal instances in the analysed dataset must 

be larger than the malicious instances. These two conditions are similar to the 

conditions required for the unsupervised IDSs. 

The effectiveness of an anomaly IDS relies on the technique utilised to analyse 

the information and the accuracy of the technique used to perform the training process. 

The process of creating the statistical reference of normal behaviour is considered the 

training process or training phase [78]. Numerous techniques can be employed to 

generate this reference. Once the training process has finished, the anomaly IDSs 

calculate the level of deviation of the currently analysed information from the 

reference of normality. High level of deviation between both values is likely to 

correspond to evidence of intrusion [79]. The main difficulty is to define the boundary 

between normal and malicious information. According to [104], this is one of the most 

complicated, and the most crucial tasks for anomaly IDSs. As part of the training 

process, the anomaly detection systems also have to define an alarm threshold. This 

alarm threshold defines the boundary between normal and malicious actions. If the 

deviation overpasses the defined alarm threshold, the system concludes that an attack 

is taking place and raises an alarm. 
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In contrast to misuse IDSs, this type of IDS is able to identify previously 

unknown attacks and variations of known attacks. Unfortunately, anomaly IDSs are 

known for their poor detection efficiency [36]. The anomaly IDSs tend to produce 

high number of false alarms [78] [106] [142] [143]; mainly FPs. These alarms are 

caused because normal activity is misclassified as anomalous. This is because 

information that deviates from the reference of normality does not always correspond 

to the occurrence of attacks [104]. There would be sometimes in which legitimate 

behaviour might deviate from the reference of normality, causing the anomaly IDS 

recognise this deviation as evidence of attack [144]. Another drawback presented of 

the anomaly IDSs is the inability to identify the specific type of attack that 

compromises the protected system. Also, anomaly IDSs commonly require long 

training periods to efficiently detect malicious actions [55] [78]. In addition, the 

difficulty of training this type of systems increases in dynamic environment [143]. 

4.2.1.5.3 Hybrid Intrusion Detection 

The IDSs are commonly either misuse or anomaly detection systems only [15]. 

Nonetheless, a methodology that may enhance the detection capabilities of the IDSs is 

to combine the use of misuse or anomaly detection systems [15] [78] [124]. This is 

known as Hybrid intrusion detection [15]. 

The hybrid intrusion detection combines the advantages of both systems [124]. 

This type of systems seeks to improve the overall intrusion detection performance of 

the misuse IDS, while reducing the number of false alarms suffered by the anomaly 

IDSs [36]. The anomaly detection capabilities allow the hybrid system to detect 

previously unknown attacks, as well as to generate new signatures that can be used by 

the misuse system, whereas the misuse detection capabilities provide the celerity to 

detect the attacks and the high detection accuracy of known attacks. An example of 

hybrid detection system is presented in [145]. 
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4.3 Discussing the Intrusion Detection System Designing 

There is no one final IDS design that could be efficient in every possible scenario. The 

final architecture of the detection system is subjected to any initial need required from 

the monitored system. Each decision in the design involves modify the selected 

characteristics. As can be inferred from the previous IDS taxonomy, each of these 

characteristics offers a series of benefits over the rest, such as detecting certain attacks 

that the others may ignore or substantially increasing the detection capabilities of the 

system [55]. But the offered benefit is not always the same. This is tied to the 

configuration of the protected system, and the configuration varies according to the 

context in which the IDS has been defined. A clear example of this variation is the 

particular scenario in which the IDS is going to be deployed. An IDS designed to be 

deployed in a business office, most likely would have a different architecture than an 

IDS designed to be deployed in a battlefield. The targeted scenario adds some 

constrains to the final architecture of the IDS, defines some requirements that alter the 

benefit that each characteristic offers, and in turn, alters the final selection of these 

characteristics. Hence, the effect that these characteristics may have on the final 

performance of the detection system should be predicted when designing the IDSs. 

The following section present a discussion about the specific characteristics that 

have been included in the IDS presented in this thesis, defines the architecture of the 

detection system, and offers the reasoning behind these selections. The chosen final 

architecture is the one that more efficiently adapts to the requirements defined for this 

work and best detection result produces, according to the author of this thesis. 

4.3.1 Defining the Source of Information 

The first decision about the design of the detection system presented in this thesis is to 

develop a network-based IDS. The main objective of this thesis is design a system to 

provide more reliable protection to wireless networks. Therefore, designing a network-

based IDS has been a simple and straightforward decision. The system will monitor 

the traffic in the network to identify presence of attacks. This type of IDS would allow 
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to be installed either in each of the wireless devices or in an independent third party 

monitor device. The source of information directly influences the type of information 

collected to identify the attacks. The proposed IDS has been designed to extract 

parameters only from different headers of the IEEE 802.11 frames. By doing so, the 

system is able to gather the required information, even if the traffic is encrypted, and 

does not commit any confidentiality infringement monitoring the payload content. 

4.3.2 Defining the Detection Timing 

Whereas this was not one of the initial requirements, the implementation of a detection 

system that could work in real time, or nearly real time, became one of the primary 

aims of the system proposed in this thesis. Instead of generating statistical parameters 

such as NetFlow data and SNMP statistics, or capturing network traffic datasets 

through sampling process, it was chosen for the detection system presented in this 

thesis to analyse the network traffic on a per-frame basis. This decision was taken 

because, in order to detect the wireless-specific attacks, the minimum unit of 

information that could compromise the protected system should be analysed. 

There may be situations in which the computational resources of the wireless 

network could not deal with the cost of working on a per-frame basis in real time. 

Working on a per-frame basis also poses the problem whether the detection system is 

not able to manage each frame before the next frame reaches the system. Nonetheless, 

the computational cost depends, not on whether the detection system work on-line or 

off-line, but on the used detection technique. In general, the on-line IDSs are highly 

computational demanding and less reliable than the off-line IDSs [99]. If the 

implemented detection technique were able to infer the presence of attack using low 

computational cost, working on per-frames in real time could be a feasible approach. 

4.3.3 Defining the Monitoring Sensors Deployment 

One approach that could reduce the computational demand is to reduce the amount of 

analysed data traffic. The monitoring sensors should gather only network traffic local 
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to the protected devices, and information that is transmitted in the radio frequency 

channel used by the protected device. It would not be necessary for an IDS to monitor 

network traffic in locations outside the transmission radio range of the protected 

nodes. IDSs should not consume computational resources protecting the wireless 

devices against attacks that cannot reach to the protected system. Similarly, it would 

not be necessary trying to provide protection against wireless-specific attacks launched 

in non-adjacent radio frequency channels that cannot interfere with the legitimate 

communication. The monitoring sensors should be located close or in the protected 

wireless device, monitoring the same radio channel. 

4.3.4 Defining the Detection Systems Cooperation 

For the presented detection system, it has been decided to design an autonomous IDS. 

The most important reason for designing an autonomous IDS is that information 

received from other IDSs may not be trustable. Similar to other wireless 

communication, an attacker may have compromised the communication. A similar 

situation would arise if different monitoring sensors distributed through the network 

had to transmit share information wirelessly. The communication between the 

different sensors could be compromised. In the IDS presented in this thesis, a single 

monitoring device collects all the network traffic. Therefore, it reduces the 

computational cost of merging and reorder information, cleaning duplicate frames or 

using any synchronisation method, as would occur if several sensors were used. 

4.3.5 Defining the Learning Approach 

One of the most important design requirements was that the presented IDS should be 

as independent from the system administrator as possible. Minimum or no human 

intervention should be required. Between the two possible options, using unsupervised 

IDSs is the only one that matches the requirements established for the design of the 

IDS presented in this thesis. This decision also benefits from the capability of the 

unsupervised IDSs to detect attacks using unlabelled datasets. 
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4.3.6 Defining the Detection Methodology 

One of the last characteristics to consider is the methodology utilised to detect 

intrusions. The capability of being able to identify previously unknown attacks and 

variations of known attacks provides to the anomaly IDSs great advantage over the 

misuse IDSs to protect current network systems. Therefore, the implementation of an 

anomaly IDS has been chosen over a misuse IDS in this thesis. 

4.4 Summary 

This chapter has introduced in detail the concept of IDSs. The IDSs are security 

systems that constantly monitor information from the protected environment to 

identify evidence of attacks or intrusion attempts. These systems incorporate 

information analysis techniques able to analyse diverse pieces of information. In 

particular, anomaly IDSs are able to dynamically adapt their detection capabilities to 

the current characteristics of the resources being protected. 

Designing an IDS requires the consideration of multiple characteristics that define 

the final architecture of the system. A number of characteristics that could be applied 

to the final architecture design of the IDS have been described. According to the 

opinion of the author of this thesis, these characteristics are the most relevant for an 

efficient intrusion detection process. The correct selection of these characteristics has 

direct effect on the final performance of the system, establishing the difference 

between an efficient and a poor detection process. Unfortunately, there is not a generic 

IDS architecture design that could be efficient in any situation, providing consistent 

security against any existing attack, or protecting any type of system. It has been 

obvious that when an IDS needs to be deployed, the final architecture of these systems 

must be designed very cautiously, always considering the system or device to which it 

is going to provide protection. 

Although the particular attacks that IDSs protect from cannot be known 

beforehand, it is important to anticipate the attacks more likely compromise the 

confidentiality, integrity and availability of the resources of the protected systems. On 
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the other hand, it has been clear that the IDSs must be tailored to the particular 

protected system in order to be efficient and accurate. With regards to the IDS 

presented in this thesis, the architecture design is an unsupervised network-based 

anomaly IDS that operates autonomously and on-line. The characteristic included in 

the final architecture design of the IDS presented in this thesis, and discusses the 

principal reasons for selecting each of these characteristics have been also presented in 

this chapter. 
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Chapter 5  

Proposed Intrusion Detection Technique 

5.1 Introduction 

Any IDS requires some type of intelligence, in the form of detection technique to 

determine whether the analysed information is malicious or normal. The chosen 

technique should be able to construct an accurate reference of normal behaviour [89]. 

More important than constructing an accurate reference of normal behaviour is the 

requirement for these techniques to properly define the separation boundary between 

normal and malicious information. Chapter 2 provided a brief description of some of 

the most widely used intrusion detection techniques. The majority of these techniques 

work in a supervised manner. This fact makes them inefficient for a system that is 

intended to work in an unsupervised manner, without intervention from an IDS 

administrator. 

This chapter describes the detection techniques and internal architectural design of 

the IDS presented in this thesis. This is a novel unsupervised detection system 

framework, able to automatically adapt its detection capabilities to the current 

characteristics of the wireless network, without intervention from an IDS 

administrator. This chapter also explains the sliding window technique developed to 

implement the IDS training process. Additionally, the concepts of multi-layer intrusion 

detection and data fusion techniques are also introduced. Among other data fusion 
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techniques, special attention has been given to the Dempster-Shafer (D-S) theory of 

evidence. A thorough description of the D-S mathematical framework is presented, 

along with a series of practical examples. The chapter concludes with the most 

important contribution of this thesis. This is the description of a novel BPA 

methodology able to automatically adapt its probabilities assignment to the current 

characteristics of the wireless network. 

5.2 Training Process 

For an unsupervised anomaly IDS, the statistical definition of the reference of 

normality is created using historical information from the wireless network traffic. 

Implementing a robust training process is of crucial for the effectiveness of the 

anomaly IDSs [78]. This is carried out during the training process. 

The training process starts with the monitoring sensors gathering information 

form the protected system. Then, the anomaly IDSs analyses this information to create 

a statistical reference of normality. Once the training process has finished and the 

reference of normal behaviour has been generated, the anomaly IDSs calculate the 

level of deviation of the currently analysed information from the reference. A high 

level of deviation between both values is likely to correspond to evidence of intrusion. 

If the training process is not implemented accurately, the anomaly IDS will not be able 

to define a proper reference of normality, and a large amount of false alarms will be 

generated. 

The training process commonly requires collecting large amounts of historical 

data. How much historical data is actually required to conduct the training process is a 

feature that yet needs to be discussed. In [82], the authors indicate that the system has 

to gather ‘enough information’ to make the intrusion detection. But it is dependent on 

the detection system identifying what is enough. The idea that anomaly IDSs 

commonly require long training periods to efficiently detect malicious actions is 

widely assumed. However, using a system that would requires a long period of time to 

create the reference of normality would be a major drawback for an IDS that intends to 

provide intrusion detection in real time. In addition, the characteristics of normal 
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behaviour in wireless network traffic, which is highly dynamic environment, 

frequently changes. If the system requires long training periods, the resulting profile of 

normal behaviour may be biased over time. 

5.2.1 Sliding Window Scheme 

The IDS in this thesis also builds the profile or reference of normality using historical 

data. The time and the amount of information required to effectively generate 

reference of normal wireless network traffic has been reduced as much as is possible. 

To manage the information and handle the non-stationary statistical distribution of the 

data, the proposed system operates on a sliding window scheme. Other researches, 

such as [38], also make use of a sliding window scheme. The content of the slots 

within the sliding window composes the historical data used by the IDS to conduct the 

training process. The length of the sliding window is represented by ݊. The system has 

one sliding window for each of the considered metrics and for each type of IEEE 

802.11 frame. From each new incoming frame, the different metrics are extracted and 

stored in the last available slot, within the respective sliding window. Assuming the 

number of normal frames is larger than the malicious frames, the window would be 

mostly composed of metrics values from non-malicious frames. The content of the 

sliding window is then used to generate the reference of normality. 

The sliding window scheme works as follows. The first time the IDS is run, the ݊ 

slots within the sliding window will be initially filled with frames metrics before being 

able to detecting intrusions. Once the ݊ slots within the sliding window have been 

filled, each of the ݊  frames metrics is analysed and the reference of normality is 

generated. After all the frames within the first sliding window have been analysed and 

the detection implemented, the system slides the window one single slot. The metric 

from the next incoming frame is stored in the slot that becomes empty after sliding the 

window. Then, a new reference of normality is calculated using the previous ሺ݊ െ 1ሻ 

frames along with the last stored frame. After the new reference of normality has been 

calculated, only the last stored frame is analysed, since the previous ሺ݊ െ 1ሻ frames 

have already been analysed. Next, the system slides the window one single slot again 
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and a new frame is included. The described process is constantly repeated. This 

configuration allows detecting attacks as they occur. Figure 5.1 shows a diagram 

describing how the metrics are stored in the sliding window scheme. In the figure, the 

frame #20 is considered malicious; the frame is discarded and replaced by the new 

incoming frame #21. 

5.2.1.1 Benefits of the Sliding Window Scheme 

The way this sliding window scheme is implemented is simple, robust and convenient 

to keep track of all the received frames. As an aside, it also perfectly integrates with 

the concept of array in the C programming language in which the author of this thesis 

has been developed the presented IDS. 

 

Figure 5.1 Sliding Window Scheme - 20 Slots Long. 

From the operational point of view, there are diverse reasons for using this sliding 

window scheme. For instance, let suppose that an attacker launched a flooding attack 

in which numerous frames are injected in a very short period of time. If the metrics 

from all these frames were stored in the sliding window, the statistical reference of 

normality in the sliding window would be skewed, and the malicious frames would be 

misclassified as normal and the non-malicious frames would be erroneously classified 
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as malicious. The use of the sliding window scheme avoids this from occurring by 

sliding only if the currently analysed frame has been classified as normal. Otherwise, 

if the currently analysed frame has been classified as malicious, the sliding window 

stays static, drops the frame classified as malicious and replaces the slot in the sliding 

window that has become unfilled with the next incoming frame. 

There is also the possibility that an attacker could slowly corrupt the profile of 

normality. An attacker may try to mimic some of the communication features of 

normal wireless devices and gradually change the parameters, skewing the reference 

of normality. But it is difficult for an attacker to be able to correctly mimic all the 

measurable features throughout the protocol stack. Attacks could be undetected if an 

IDS only uses information from a single layer [150]. As explained in Section 5.3, 

multi-layer IDSs increases the chances for the detection system to identify the 

presence of intrusions. In turn, it would be highly difficult for an attacker to corrupt 

the reference of normality. 

Despite the previous comments, still there exist one situation in which malicious 

frames could alter the reference of normality. This is the first time the IDS starts 

working, during the process of filling the initial sliding window. The system needs to 

fill the ݊ slots in the sliding window before being able to carry out the detection of 

new incoming frames. It was explained that the number of normal frames is larger 

than the malicious frames. However, if this condition is not met, the very first sliding 

window could contain more predominant number of malicious frames. In the 

unfortunate case that the number of malicious frames was larger than the number of 

non-malicious malicious frames and the detection reference of normality would be 

erroneously calculated. According to the authors in [55], including malicious 

information when the profile of normal behaviour is being created is one of the 

common problems of the anomaly IDS. Nonetheless, as will be explained in Chapter 

7, because of the general structure of the proposed IDS, the proposed methodology 

produces good detection results, even if there exist high proportion of malicious 

frames within the first sliding window. 
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5.2.1.2 Optimum Sliding Window Length 

Finding the optimum sliding window length is very important for efficient and 

accurate intrusion detection results. The length ݊ of the sliding window will influence 

the overall detection performance of the system. A long window would include, on 

average, a larger proportion of normal frames and the statistics would average out to 

represent the normal profile. However, a larger window length may create 

inconsistency in the reference of normality. The physical properties of the transmitted 

signal in the wireless networks are unstable. In a network with moving wireless 

devices, any change in the geographical location or any obstacle between two nodes 

communicating may alter the metrics collected by the monitoring node, especially the 

metrics from the PHY layer. Therefore, building models of normal wireless network 

traffic over long-term periods may cause that the metrics of the currently monitored 

non-malicious frames could deviate from the reference of normality using frequently 

changing traffic information. This situation would make the IDS generate high 

numbers of FPs. Also, a small sliding window length will allow a prompt adaptability 

to legitimate changes in the network traffic characteristics. On the other hand, if the 

sliding window size is too small, it would possibly provide very little information for 

the training to generate profiles of normal behaviour that accurately represent the 

behaviour of the network, and in turn, the generated profile of normal network 

behaviour would probably be biased. 

In addition, a large window length will also slow down the detection process. For 

each new incoming frame the reference of normality is calculated using all the frame 

metrics in the sliding window. Therefore, the processing time would increase along 

with the sliding window length. The larger the length of the sliding window, the larger 

the processing time. The IDS relies on the time required to reach a decision about the 

real nature of each single frame in order to be an on-line detection system. By using 

the sliding window scheme, if the detection process is fast enough, the frame analysed 

as malicious could be discarded from the sliding window before a new incoming 

frame arrives. As a consequence, numerous successive incoming frames would not 

saturate the detection system. 
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Through empirical experiments, it has been proved in Chapter 7 that the proposed 

IDS requires as little as 50 frames approximately to generate a reference of normality 

that produces highly accurate intrusion detection in real time. The reduced amount of 

information required to effectively generate reference of normal wireless network 

traffic also is another benefit that the sliding window scheme provides. 

5.3 Multi-layer Intrusion Detection 

In Chapter 6 it will be described that six different metrics are extracted from the 

gathered wireless network traffic datasets. All these metrics will be used by the 

detection engine to infer the presence of intrusions. Although each of these metrics are 

going to be initially treated and evaluated independently, the final decision of whether 

there exist evidences of attacks will be reached using the combination of all the 

metrics information. This method of using the combined information is known as a 

multi-layer or cross-layer approach. 

IDSs that make use of a multi-layer approach have shown outperforming results, 

against single-layer detection systems, both in terms of DR and false alarms [37] [38] 

[39]. Although there are cases in which IDSs that utilise the information from a single 

metric might give good detection results, the presence of attacks is rarely accurately 

detectable by examining a single metric from one layer of the protocol stack. Cross-

layer systems can combine information from two or more layers of the protocol stack, 

either adjacent or non-adjacent layers [103]. 

An attacker may try to mimic some of the communication features of normal 

wireless devices. It depends on the configuration of the attack, and how well this 

mimic attempt is implemented to determine if the real identity of the attacker would be 

unnoticed. As explained previously, it is difficult for an attacker to correctly mimic all 

the measurable features throughout the protocol stack. Therefore, the higher the 

number of monitored metrics, the greater the chances to identify inconsistencies in one 

of these features. Similarly, even if the attack is implemented at one layer in particular, 

this attack may have an effect on different layers of the protocol stack. Again, using 

information from the various sources that the multi-layer IDSs provide increases the 
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chances for the detection system to identify the presence of attacks. Also, the greater 

the number of metrics used, the higher the chances for one of these metrics to show a 

difference between normal and malicious nature of the information. 

In the process of combining information from multiple sources, different 

mechanisms could be used. The effectiveness of the combined approach changes from 

one mechanism to another, depending on the characteristics of information that is 

combined. Some mechanisms may produce more accurate results than others 

combining the same information. Therefore, selecting the most appropriate mechanism 

for each case is an essential step in order to obtain accurate detection results [151]. 

One of the mechanisms is the utilisation of data fusion methods to make a combined 

use of the information from the different metrics. 

5.3.1 Data Fusion 

Data fusion can be defined as the process of gathering information from multiple and 

heterogeneous sources about diverse events, activities or situations, and combining 

them towards obtaining a more accurate final result [14] [39]. In the data fusion 

framework presented in this thesis, the detection engine performs an independent 

detection process for each of the considered metrics. Then the independent decisions 

are sent to the data fusion system to merge all these decisions and reach a combined 

final conclusion. 

5.3.2 Data Fusion Techniques 

Two of the most commonly used data fusion techniques are Bayesian Theory and the 

Dempster-Shafer (D-S) theory of evidence. The former technique is based on 

probabilistic information whilst the second technique is based on evidential 

information. According to [40], Bayesian theory computes the occurrence probability 

of an event, assuming that the a priori probability of occurrence for this particular 

event is known. On the other hand, D-S theory mathematically represents evidence of 
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occurrence of an event based on current observations, without additional a priori 

knowledge. 

5.3.2.1 Bayesian Theory 

Bayesian inference is a mathematical discipline used to calculate the probability of 

occurrence of a certain event, based on the experience extracted from previous events. 

This theory uses evidences of information, from previous experience, to infer a 

combined probability of occurrence of a certain event. The operations of Bayesian 

theorem can be included into the category of conditional probability. The concept of 

conditional probability defines a probability of an event obtained using additional 

information, extracted from events that have previously occurred [22]. In tasks of 

intrusion detection, Bayesian would require the a priori probability that an attack is 

present in the analysed dataset. 

5.3.2.1.1 Bayesian Mathematic Framework 

This mathematical discipline provides the probability of an event ܣ to be true, given 

that certain evidences ܧ are already known [23]. The required evidences to calculate 

the conditional probability are extracted from previous events, which previously 

occurred under similar experimental conditions to the event ܣ . The events are 

mutually exclusive states of a system. This means that the system can be in only one 

of these states at a time [39]. The conditional probability provided by the Bayesian 

theory, also known as posterior probability, is written as in Equation 5.1: 

ܲሺܧ|ܣሻ ൌ
ܲሺܣ|ܧሻ	ܲሺܣሻ

ܲሺܧሻ
ൌ

ܲሺܣ|ܧሻ	ܲሺܣሻ
ሾܲሺܣሻ	ܲሺܣ|ܧሻ 	൅ 	ܲሺ̅ܣሻ	ܲሺܣ̅|ܧሻ	ሿ	

												ሺ5.1ሻ 

According to this definition, Bayesian theory is unable to assign probability in the 

considered event in the absence of any other knowledge. Only after evidence E is 

obtained, can the posterior probability be computed. From the Equation 5.1, three 

terms can be described. The term ܲሺܣሻ reflects the probability that a particular event is 
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true in the absence of evidence. This is generally known as the a priori probability. 

The value of ܲሺܣሻ would be updated along with the posterior repetition of the consider 

event ܣ. 

5.3.2.1.2 Bayesian Theory Implementation Issues 

Although Bayesian theory can be very efficient in certain situations, there exist some 

challenges associated with its utilisation. The main challenge that most of the 

researchers highlight is the fact that the Bayesian requires complete knowledge of both 

the prior and conditional probabilities. These probabilities are very difficult or, in 

some cases, impossible to determine in practice [102]. Furthermore, there may be 

more than one way to formulate a particular problem using Bayesian, considering 

additional or different evidences about the same event. If different or additional 

evidences are taken into consideration, the posterior probability is likely to differ from 

one case to the other. Similarly, the posterior probability may change if the evidences 

are extracted from events, which occurred under different experimental conditions to 

the considered event. In addition, Bayesian theory does not allow the assigning of a 

particular probability to uncertainty. It requires that the probabilities be assigned to the 

occurrence of a state at a time [108]. 

5.3.2.2 Dempster-Shafer Theory of Evidence 

The Dempster-Shafer (D-S) theory of evidence is a mathematical discipline that 

combines evidences of information from multiple and heterogeneous events in order to 

calculate the belief of occurrence of another event. According to [39] [40], the D-S 

theory can be considered an extension of Bayesian inference. The main purpose of the 

D-S theory is to infer the combined belief of occurrence of a certain event, just based 

on the information provided by the observed evidences. The evidences represent all 

the information available to infer the real state of the system. 

Among different data fusion methods, the D-S theory has been chosen in this 

thesis, due to a number of benefits that this data function method provides over the rest 
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of the methods. One of the benefits for this selection is the potential for managing 

uncertainty. In contrast to Bayesian, D-S theory allows assigning belief, not only to the 

principal system conclusions, but also belief to ܷ݊ܿ݁[108] ݕݐ݊݅ܽݐݎ. Another benefit is 

that D-S theory does not need a priori knowledge or a priori probability distributions 

on the possible system states like Bayesian. This is very useful in many vague and 

unknown environment scenarios [40]. The more important outcome of this property is 

that, in tasks of intrusion detection, D-S is suitable for detecting previously unseen 

attacks because it does not require a priori knowledge. The decision of using the D-S 

theory in this thesis is also supported by the conclusions presented in [39] [102], in 

which the authors present a comparative study of different data fusion methods and 

conclude that D-S theory is more promising than Bayesian. 

Nevertheless, there are three main drawbacks associated with D-S theory. Firstly 

this is the computation complexity, which increases exponentially with the number of 

possible event outcomes. If the system has ݅ possible outcomes, there will be up to 

2௜ െ 1 hypothesis to analyse. With regards to this work, the system has two possible 

outcomes; a frame could be normal or malicious. Therefore, the computational 

complexity of the algorithm would be significantly low. The second main drawback is 

the conflicting beliefs management, which is a widely known problematic situation in 

D-S theory. The conflicting belief phenomenon is nicely illustrated with an example 

from [75]. Given three events {A, B, C} and two sensors. The first sensor might assign 

the following beliefs to the three events, A = 0.9, B = 0.1 and C = 0. Similarly, the 

second sensor might assign the following beliefs to the three events, A = 0, B = 0.1 and 

C = 0.9. Applying the D-S theory on these values, the rule of combination presented in 

the next section will result in the event B having the highest belief value, which is 

clearly wrong. This situation is solved assigning only non-zero values in one of the 

proposed BPA methodologies. D-S also requires the statistical independence of the 

different evidences [40]. D-S theory also requires that the evidences should be 

completely independent. Regarding the independence of the evidences, there has been 

extended discussion whether, in practice, the independence of the evidences really 

affects the performance of D-S theory, and whether this is really necessary. In [21], 

the author explains that the independence is not necessarily assured in many cases. 
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5.3.2.2.1 Dempster-Shafer Mathematical Framework 

The D-S theory of evidence was first formulated in [30]. D-S theory starts by defining 

a frame of discernment, or universe of discourse, Θ ൌ ሼߠଵ, ,ଶߠ … ,  ௡ሽ, which is theߠ

finite set of all possible mutually exclusive outcomes about some problem domain 

[42]. All the consider observers must have the same frame of discernment when using 

D-S [39]. The power set of the frame of discernment, 2஀, refers to every possible 

mutually exclusive subset composed of the elements of Θ. Each subset of the power 

set is defined as a hypothesis. If Θ is composed of two elements, Θ ൌ ሼߠଵ,  ଶሽ, the totalߠ

number of hypotheses that it comprises is 2஀ ൌ ሼߠଵ, ,ଶߠ ሼߠଵ|ߠଶሽ, ∅ሽ. Similarly, if Θ is 

composed of three elements, Θ ൌ ሼߠଵ, ,ଶߠ  ଷሽ, the total number of hypotheses that itߠ

comprises would be 2஀ ൌ ሼߠଵ, ,ଶߠ ,ଷߠ ሼߠଵ|ߠଶሽ, ሼߠଵ|ߠଷሽ, ሼߠଶ|ߠଷሽ, ሼߠଵ|ߠଶ|ߠଷሽ, ∅ሽ. 

With regards to this work, the frame of discernment is comprised of two 

outcomes, ܣ ൌ ܰ and ݇ܿܽݐݐܣ ൌ Θ ,݈ܽ݉ݎ݋ܰ ൌ ሼܣ, ܰሽ. The presented work is able to 

classify gathered frames either as malicious or non-malicious. Therefore, there will be 

a set of four different hypotheses in this work, 2஀ ൌ ሼܣ,ܰ, ሼܣ|ܰሽ, ∅ሽ. The hypotheses 

are ݇ܿܽݐݐܣ and ݈ܰܽ݉ݎ݋, respectively. The hypothesis ∅ refers to the empty set, and 

the hypothesis ሼܣ|ܰሽ refers to ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ. According to [108], ܷ ൌ  ݕݐ݊݅ܽݐݎܷ݁ܿ݊

is caused by ambiguity in the evidences. 

Each hypothesis from the power set 2஀ is assigned a belief value, or belief, within 

the range ሾ0, 1ሿ. The belief is assigned, based on the evidence of information. This 

probability assignment is known as the Basic Probability Assignement (BPA), 

represented as the mass probability function ݉. This is: 

݉ ∶ 	2஀ → ሾ0, 1ሿ											݂݅	

ە
ۖ
۔

ۖ
ۓ 	݉	ሺ∅ሻ ൌ 0
݉	ሺܣሻ ൒ 0, ܣ∀ ⊆ Θ

෍ ݉	ሺܣሻ ൌ 1
஺	⊆	஀

																									ሺ5.2ሻ 

The function ݉ሺܣሻ is defined as the basic probability number of the hypothesis ܣ. 

This function represents the measure of total belief that is exactly assigned to the 

element [108] ܣ. If the basic probability number of the hypothesis ܣ is a non-zero 
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value, ݉	ሺܣሻ ൐ 0 , the hypothesis is also known as a focal element. Equation 5.2 

shows three conditions that need to be assured. First, the basic probability number of 

the empty set is 0: ݉	ሺ∅ሻ ൌ 0 . Second, the basic probability number of each 

hypothesis could be 0 or any other value, up to 1: ݉	ሺܣሻ ൒ 0. Third, the summation of 

the basic probability number of all the hypothesis in the frame of discernment must 

add 1: ∑ ݉	ሺܣሻ ൌ 1஺	⊆	஀ . 

In order to define the total belief given to a certain hypothesis, two functions are 

defined by the D-S theory. These are the Belief function (݈݁ܤ) and the Plausibility 

function (݈ܲ). The former is the total belief committed to all the subsets of the consider 

hypothesis. The total belief assigned to the hypothesis	ܣ equals the sum of the basic 

probability numbers for all sets	ܤ that are contained in	[108] ܣ. This is: 

ሻܣሺ݈݁ܤ ൌ 	෍݉	ሺܤሻ
஻⊆஺

ܣ∀						 ⊆ Θ																																							ሺ5.3ሻ 

One particular feature that makes the D-S theory different from probability theory 

is the absence of the Additivity Rule. If ݈݁ܤሺܣሻ ൏ 1, the remaining evidence 1 െ

ሻܣሺ݈̅݁ܤ  is not equal to ݈݁ܤሺܣሻ ሻܣሺ݈݁ܤ , ് 1 െ ሻܣሺ݈̅݁ܤ  [149]. Therefore, the ݈ܲ 

function is used to assign the total belief that does not refute the considered 

hypothesis. This is: 

݈ܲሺܣሻ ൌ 	1 െ ሻܣሺ݈̅݁ܤ ൌ ෍ ݉	ሺܤሻ
஻∩஺ஷ∅

ܣ∀						 ⊆ Θ																								ሺ5.4ሻ 

Thus, the belief committed to the hypothesis ܣ is within the interval composed by 

the Belief and the Plausibility functions, [݈݁ܤሺܣሻ, ݈ܲሺܣሻ]. This interval is also known 

as the Belief Range. The amount of belief assigned to ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is represented by 

the difference |݈݁ܤሺܣሻ െ ݈ܲሺܣሻ| [39]. Nonetheless, the authors of [47] state that the 

Belief and the Plausibility are similar in the case of pure probabilistic information. For 

this work, the amount of belief assigned to ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ represents the amount of 

belief that cannot be assigned either to the hypothesis ݈ܰܽ݉ݎ݋ or ݇ܿܽݐݐܣ. 

The main capability of D-S is combining independent evidences of information, 

from different observers with the same frame of discernment, into other single 
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evidence that expresses a common belief assigned to one specific hypothesis. Let 

݉ଵሺܣሻ  and ݉ଶሺܣሻ  be the BPAs in the hypothesis ܣ , from observer 1 and 2, 

respectively. The combination of evidences is implemented using Dempster’s rule of 

combination. Dempster’s rule of combination calculates the orthogonal summation of 

the BPAs values in one hypothesis from two different observers into a single belief, 

and is defined in Equation 5.5 as: 

݉ሺܣሻ ൌ ݉ଵሺܣሻ	⨁	݉ଶሺܣሻ ൌ 	
∑ ݉ଵሺܺሻ ∗ ݉ଶሺܻሻ௑∩௒ୀ஺

1 െ ∑ ݉ଵሺܺሻ ∗ ݉ଶሺܻሻ௑∩௒ୀ∅
ܣ	∀			 ് ∅							ሺ5.5ሻ 

The denominator of Dempster’s rule of combination is generally denoted as 1 െ

ܭ ,If the denominator is equal to one .ܭ ൌ 0, the orthogonal summation does not exist, 

and the BPAs of both sensors are said to be completely contradictory. 

Dempster’s rule of combination allows the combining of evidences of information 

from only two different observers at a time. In order to combine evidences from more 

than two observers, Dempster’s rule of combination can be used several times in 

consecutive iterations. The output results of the initial combination process are used as 

input evidences in the next iteration, along with the evidences of information from a 

third observer. 

Example 

To easily understand how to apply the D-S theory, an example is presented here. 

Let us consider one system with three sensors, Sensor 1, Sensor 2 and Sensor 3. 

These sensors monitor and gather frames from a WLAN. Using the combined 

evidences of information provided by the three sensors, the system needs to classify 

the gathered frames either as malicious or non-malicious. 

In such scenario, the frame of discernment is comprised of two possible outcomes, 

ܣ ൌ ܰ and ݇ܿܽݐݐܣ ൌ  Hence, the total number of hypotheses considered for .݈ܽ݉ݎ݋ܰ

this example would be 2஀ ൌ ሼܣ,ܰ, ሼܣ|ܰሽ, ∅ሽ. Each sensor provides an independent 

belief in each possible hypothesis. The beliefs assigned by the three sensors are 
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combined to calculate a final decision; i.e. whether the gathered frames are malicious 

or not. The basic probabilities for one of the frames are tabulated in Table V.I. 

The horizontal axis of the Table V.I represents the beliefs of the Sensor 1, for 

each hypothesis. Similarly, the vertical axis represents the beliefs of the Sensor 2, for 

all the hypotheses. The cells in the Table V.I represent the multiplication of the beliefs 

of both sensors. 

TABLE V.I.  EVENT PROBABILITIES ASSIGNED BY ݉ଵ (HORIZONTAL X) AND ݉ଶ 
(VERTICAL Y). 

݉ଵ 
݉ଶ 

݉ଵሺܰሻ
ൌ 0.25 

݉ଵሺܣሻ
ൌ 0.32 

݉ଵሺܣ|ܰሻ
ൌ 0.43 ݉ଵሺ∅ሻ ൌ 0 

݉ଶሺܰሻ ൌ 0.1 0.025 0.032 0.043 0 

݉ଶሺܣሻ ൌ 0.35 0.0875 0.112 0.1505 0 

݉ଶሺܣ|ܰሻ ൌ 0.55 0.1375 0.176 0.2365 0 

݉ଶሺ∅ሻ ൌ 0 0 0 0 0 

 

Dempster’s rule of combination is used to combine the beliefs and generate a final 

decision. The results for the first iteration of this example are: 

݉ଵଶሺܰሻ ൌ
ሺ0.025 ൅ 0.1375 ൅ 0.043ሻ

1 െ ሺ0.0875 ൅ 0.032ሻ
ൌ 0.233 

 

݉ଵଶሺܣሻ ൌ
ሺ0.112 ൅ 0.1505 ൅ 0.176ሻ

1 െ ሺ0.0875 ൅ 0.032ሻ
ൌ 0.498 

 

݉ଵଶሺܣ|ܰሻ ൌ
ሺ0.2365ሻ

1 െ ሺ0.0875 ൅ 0.032ሻ
ൌ 0.269 

Then, the output results of this initial combination process are used as input 

evidences in the next iteration, along with the evidences of information from the 
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Sensor 3. The horizontal axis of the Table V.II. represents the beliefs of the Sensor 3, 

for each hypothesis. Similarly, the vertical axis represents the combined beliefs of the 

Sensors 1 and 2, for all the hypotheses. 

TABLE V.II.  EVENT PROBABILITIES ASSIGNED BY ݉ଷ (HORIZONTAL X) AND ݉ଵଶ 
(VERTICAL Y). 

݉ଷ 
݉ଵଶ 

݉ଷሺܰሻ
ൌ 0.27 

݉ଷሺܣሻ
ൌ 0.41 

݉ଷሺܣ|ܰሻ
ൌ 0.32 ݉ଷሺ∅ሻ ൌ 0 

݉ଵଶሺܰሻ ൌ 0.233 0.063 0.0955 0.0745 0 

݉ଵଶሺܣሻ ൌ 0.498 0.134 0.2045 0.1595 0 

݉ଵଶሺܣ|ܰሻ ൌ 0.269 0.073 0.11 0.086 0 

݉ଵଶሺ∅ሻ ൌ 0 0 0 0 0 

 

The results for this iteration are: 

݉ሺܰሻ ൌ
ሺ0.063 ൅ 0.073 ൅ 0.0745ሻ
1 െ ሺ0.134 ൅ 0.0955ሻ

ൌ 0.273 

 

݉ሺܣሻ ൌ
ሺ0.2045 ൅ 0.11 ൅ 0.1595ሻ

1 െ ሺ0.134 ൅ 0.0955ሻ
ൌ 0.615 

 

݉ሺܣ|ܰሻ ൌ
ሺ0.086ሻ

1 െ ሺ0.134 ൅ 0.0955ሻ
ൌ 0.112 

According to the combined results of the evidences of information from the three 

sensors, the belief in the hypothesis ܣ  is higher than the other two hypotheses. 

Therefore, the hypothesis more likely to be true is ܣ, with 61.5% of belief in ݇ܿܽݐݐܣ. 
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5.4 Basic Probability Assignment 

D-S theory has been previously used in the intrusion detection field to enhance the 

detection accuracy. In [39] [40] [41], the authors have proven D-S as a powerful and 

efficient technique to be applied in IDSs. However, a very important step to be 

investigated remains open in D-S theory. This is to find an automatic and self-adaptive 

process of BPA. The BPA process is crucial to the effectiveness of D-S theory [107]. 

The BPA value should be based on the measured characteristics of the monitored 

environment. With regards to the topic of this thesis, the major challenge for applying 

D-S theory on IDS is to automatically determine the BPA values should be based on 

the characteristics of the wireless network traffic measurements [42]. 

In the IDS literature there exist multiple ways of assigning probabilities to each of 

the hypotheses in D-S theory, ranging from data mining techniques to empirical 

approaches. These have been previously described in Chapter 2. However, none of the 

referred works investigates methods to find an automatic and self-adaptive process of 

BPA, and few of them could be used off-the-shelf without a previous training or fine 

tuning period. This section addresses the need for an automatic BPA by proposing a 

novel methodology able to automatically provide accurate belief values and able to 

self-adapt its capabilities to the current characteristics of the wireless network, without 

intervention from an IDS administrator. The low computational complexity of the 

proposed methodology allows implementation in real time. 

5.4.1 Automatic and Self-Adaptive BPA Methodology 

Three different methodologies are proposed in this thesis in order to automatically 

assign the BPA values to each hypothesis of Θ, 2Θ = { ݇ܿܽݐݐܣ ݈ܽ݉ݎ݋ܰ , , 

 and a second method ,݇ܿܽݐݐܣ Ø}. One method generates the belief in ,ݕݐ݊݅ܽݐݎܷ݁ܿ݊

generates the belief in ݈ܰܽ݉ݎ݋. Both work concurrently and independently, in order 

to meet the requirement of the independency of the beliefs. Then, based on the belief 

in ݈ܰܽ݉ݎ݋ and ݇ܿܽݐݐܣ, a third method calculates a balanced belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ, 

which is not completely independent. The two proposed methodologies to generate the 
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belief in ݈ܰܽ݉ݎ݋ and the belief in ݇ܿܽݐݐܣ could be interchanged with each other, but 

must be independent. The decision of using one methodology for one hypothesis and 

the other methodology for the other hypothesis has been entirely empirical. The 

utilisation of a common methodology to generate the belief in different hypotheses 

would produce situations in which the BPA values are inversely correlated, and the 

independency of the beliefs would not be met. 

Special attention was given to clustering techniques in Chapter 2. The reason for 

that is that two of the three methodologies to calculate the BPA value proposed in this 

thesis are, up to some extent, based on this unsupervised data mining technique. 

Clustering could be described in two ways. First, clustering uses the dispersion of the 

data to generate the different clusters. Data instances closer to the centroid of the 

cluster could be easily categorised into the same category as the centroid. Data 

instances more distant from the centroid could cause misclassification, and be 

categorised incorrectly. Therefore, it could be said that clustering is based on the 

dispersion of the data, and the distribution level of the data within the clusters. Second, 

it could be said that clustering is based on the distance of each individual data instance 

to the centroid of the clusters; being the Euclidean distance the most common method 

to calculate the distance between instances. One of the approaches presented and 

described in the upcoming sections takes in consideration the distribution of the whole 

dataset, whilst the other takes in consideration the distance of individual data instances 

of the dataset to a particular reference point. 

A remark common to both methods, the possible belief in each hypothesis has 

been limited to a maximum of 0.5 (50%). This decision has been based on one of the 

conditions of D-S theory; all the hypotheses must add 1 (100%). Two completely 

independent methodologies assign beliefs in ݈ܰܽ݉ݎ݋ and ݇ܿܽݐݐܣ, respectively. The 

methodology to assign beliefs in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is based on the outcome of the two 

previous methods, as an adjustment parameter to satisfy the required conditions of D-S 

theory. Limiting the maximum possible belief in each hypothesis either 50% or 100% 

would not alter the final results because, for both values, the final beliefs needs to be 

adjusted to satisfy the conditions of D-S theory. 
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5.4.1.1 Method to Assign Belief in Normal 

The methodology that has been proposed to assign beliefs in ݈ܰܽ݉ݎ݋ is based on the 

degree of dispersion of the values in the dataset. This methodology implements the 

Bloxplot [127] data representation approach, which has been adapted for the purpose 

of BPA. Bloxplot is an approach used to represent how the data in a dataset are 

distributed, and is able to show the presence of outliners within the analysed dataset. 

Analogous to clustering that was initially envisioned as a methodology for data 

visualisation and currently is also used in tasks of intrusion detection, Bloxplot has 

been used in this thesis not only to represent the degree of dispersion of the values in 

the dataset, but also as a mechanism to assign beliefs. 

The Bloxplot starts by defining a certain number of parameters, based on the data 

values. These are the total number of instances in the dataset (݊), the first quartile (ܳଵ) 

that defines the boundary for the lower 25% of the data, the second quartile, or median 

 that defines the boundary for the 50% of the data, and the third quartile (ܳଷ) that ,(݁ܯ)

defines the boundary for the lower 75% of the data. To calculate these three 

parameters, the ݊ instances in the dataset are sorted from the lowest to highest value. 

The ݁ܯ is the data instance that, after being sorted, divides the dataset in half, leaving 

the lowest 50% of the dataset at one side and the highest 50% at the other side. The ܳଵ 

is the data instance that, after being sorted, leaves the lowest 25% of the dataset at one 

side and the highest 75% at the other side. The ܳଷ is the data instance that, after being 

sorted, leaves the lowest 75% of the dataset at one side and the highest 25% at the 

other side. Also, the interquartile range (ܴܳܫ ), the difference between ܳଷ  and ܳଵ 

represented in Equation (5.8), as well as the ݊݅ܯ  and ݔܽܯ  values are calculated. 

These two last parameters are calculated using the following Equations 5.6 and 5.7, 

respectively. 

By plotting all these parameters, Bloxplot provides a clean and robust method to 

represent how the values in the datasets are distributed, based entirely on the values of 

the data instances. New datasets with data similarly distributed would produce 

Bloxplot diagrams with similar shape. In contrast, new datasets with data distributed 
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differently would produce Bloxplot diagrams with different shapes. The way the 

Bloxplot is constructed provides a very dynamic method to represent the distribution 

of the dataset. The proposed methodology provides a dynamic and self-adaptive 

methodology to assign the BPA values. In this case, this methodology has been 

defined to assign beliefs in the hypothesis ݈ܰܽ݉ݎ݋. 

݊݅ܯ ൌ ܳଵ െ 1.5	 ൈ  ሺ5.6ሻ																																																ܴܳܫ	

ݔܽܯ ൌ ܳଷ ൅ 1.5	 ൈ  ሺ5.7ሻ																																																ܴܳܫ	

ܴܳܫ ൌ 	ܳଷ െ ܳଵ																																																							ሺ5.8ሻ 

Each of the parameters used to represent the Bloxplot diagrams are used to define 

the boundaries of different classes. A particular BPA value is assigned to each of these 

classes. Figure 5.2 illustrates the different classes and the belief value associated to 

each of them. If the value of the currently analysed frame metric coincides with ݁ܯ, 

the belief is 50%. If the value is falls between the ܳଵ and ݁ܯ, or ܳଷ and ݁ܯ, the belief 

in ݈ܰܽ݉ݎ݋ is 40%. Values between ݊݅ܯ and ܳଵ, or ܳଷ and ݔܽܯ will acquire belief of 

30%. The rest of the values will acquire belief of 15% in ݈ܰܽ݉ݎ݋. All these belief 

values have been empirically calculated. Considering the ݁ܯ the reference point in the 

dataset, the closer the data instances are to the ݁ܯ, the higher the belief in ݈ܰܽ݉ݎ݋. 

 

Figure 5.2 BPA Scale For Belief in ݈ܰܽ݉ݎ݋. 

Any time a new metrics value is included into the sliding window, all the 

described parameters are recalculated, the boundaries of the classes are redefined and 

the belief is assigned. The metrics of each new incoming frame are allocated within 
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one of these classes. Depending on the class that the currently analysed frame is 

allocated to, the system assigns the belief in ݈ܰܽ݉ݎ݋. Although the boundaries of the 

classes are fixed, their value changes every time a new frame is included in the sliding 

window, and the parameters are, again, calculated. This methodology always assigns a 

non-zero BPA value to the instances. Therefore, it solves the issue of the conflicting 

belief phenomenon. 

Example 

To easily understand how the proposed methodology to assign beliefs in ݈ܰܽ݉ݎ݋ 

works, an example is presented here. Let us consider a sliding window with length 

݊ ൌ 17. The gathered metric values are as follows, with the 11th value, -26, being the 

only malicious value in the sliding window. 

-36, -36, -34, -34, -36, -36, -36, -34, -36, -36, -26, -34, -36, -36, -34, -36, -36 

After sorting all the values from lowest to highest: 

-36, -36, -36, -36, -36, -36, -36, -36, -36, -36, -36, -34, -34, -34, -34, -34, -26 

where ܳଵ ൌ െ36 ݁ܯ , ൌ െ36 , and ܳଷ ൌ െ34 . Using these values, ܴܳܫ ൌ 	െ34 െ

ሺെ36ሻ ൌ 2 ݊݅ܯ , ൌ െ36 െ 1.5	 ൈ 	2 ൌ െ39 , and ݔܽܯ ൌ െ34 ൅ 1.5	 ൈ 	2 ൌ െ31 . 

Hence, the boundaries of the classes are: 

 

Figure 5.3 Example - BPA Scale For Belief in ݈ܰܽ݉ݎ݋. 

The instances with value -36 are assigned 50% belief in ݈ܰܽ݉ݎ݋  and the 

instances with value -34 are assigned 40% belief in ݈ܰܽ݉ݎ݋, whereas the malicious 
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instance with value -26 are assigned 15% belief in ݈ܰܽ݉ݎ݋. These results are in line 

with the desired BPA results to identify the malicious instance. 

5.4.1.2 Method to Assign Belief in Attack 

The methodology that has been proposed to assign beliefs in ݇ܿܽݐݐܣ is based on the 

distance from the currently analysed instance to a point of reference. It is necessary to 

start by defining a certain number of parameters. Again, ݊ represents the total number 

of instances in the dataset. It is required to identify a point of reference, as well as the 

data instance with the highest value (݅ܪ) and the instance with the lowest value (݋ܮ). 

After sorting the ݊ instances in the dataset, it is straightforward to select ݅ܪ and ݋ܮ. To 

select the point of reference, both parameters, the Mean (ܯ) and the Mode (݋ܯ), have 

been proposed and evaluated. As will be presented in Chapter 7, selecting the ܯ and 

ܯ will produce slightly different detection results. The parameter ݋ܯ  is calculated 

using the Equation 5.9. 

ܯ ൌ
1
݊
෍ܽ௜

௡

௜ୀଵ

																																																									ሺ5.9ሻ 

where ݊ is the total number of instances. 

Once the point of reference is selected, the Euclidean distances from the point of 

reference to the lowest value (݋ܮ) and the highest value (݅ܪ) are calculated. The value 

with the largest Euclidean distance (ܦ௠௔௫) from the point of reference represents the 

maximum possible belief in the hypothesis ݇ܿܽݐݐܣ. Next, the Euclidean distance from 

the point of reference to the currently analysed data instance (ܦ) is also calculated. 

Finally, the belief in ݇ܿܽݐݐܣ is assigned using a simple linear function, making use of 

the different parameters calculated. 

Similar to the previous methodology, any time a new frame is included into the 

sliding window, all the described parameters are recalculated and the new belief is 

assigned. Figure 5.4 illustrates the definition of the distance values. 
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Figure 5.4 BPA Scale For Belief in ݇ܿܽݐݐܣ Based on Distance. 

Example 

Another example is presented to easily understand how the proposed methodology to 

assign beliefs in ݇ܿܽݐݐܣ works. The considered sliding window with length ݊ ൌ 17 is 

similar to the previous example. Again, the 11th value, -26, is the only malicious value 

in the sliding window. In this example, the ܯ defines the point of reference. 

-36, -36, -34, -34, -36, -36, -36, -34, -36, -36, -26, -34, -36, -36, -34, -36, -36 

After sorting all the values from lowest to highest: 

-36, -36, -36, -36, -36, -36, -36, -36, -36, -36, -36, -34, -34, -34, -34, -34, -26 

where ݋ܮ ൌ െ36 and ݅ܪ ൌ െ26. Using Equation 5.9, ܯ ൌ
	∑ ௔೔
೙
೔సభ

௡
ൌ െ34.823. The 

distance from the point of reference to ݋ܮ is 1.177, and the distance to ݅ܪ is 8.823. 

Therefore, for this example, the ܦ௠௔௫ ൌ 8.823 and represents the maximum possible 

belief in the hypothesis 50 ,݇ܿܽݐݐܣ%. The distance to the instances with value -36 is 

ଷ଺ିܦ ൌ 1.177. For these values, the belief in the hypothesis ݇ܿܽݐݐܣ is 6.67%. The 

distance to the instances with value -34 is ିܦଷସ ൌ 0.823. For these values, the belief 

in the hypothesis ݇ܿܽݐݐܣ is 4.664%. Finally, the distance to the instance with value -

26 is ିܦଶ଺ ൌ 8.823. For this value, the belief in the hypothesis ݇ܿܽݐݐܣ assigned to 

these instances is 50%. Once more, these results are in line with the desired BPA 

results to identify the malicious instance. 
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5.4.1.2.1 Modified Method to Assign Belief in Attack 

During the implementation of the experiments presented in this thesis, it appears that, 

in some particular situations, the proposed IDS did not always generate the best 

achievable intrusion detection results. Especially when the sliding window length was 

too small. The more significant reason is that the belief in ݇ܿܽݐݐܣ is, some times, low. 

Some of the malicious frames were misclassified as non-malicious. 

During the experiments implemented to improve the intrusion detection results, it 

was decided to include an additional parameter in the method to assign the belief in 

the hypothesis ݇ܿܽݐݐܣ. This was the frequency (ܨ) of the data instances within the 

sliding window, which is the value with the highest frequency value. Using the 

previous example, the frequency value is ܨ ൌ 11 , since -36 is repeated 11 times 

within the sliding window. However, including this additional parameter requires a 

method to correlate both parameters, the distance and the frequency, and produce the 

belief in ݇ܿܽݐݐܣ. 

One feasible approach to correlate the frequency value and the distance is to use 

the angle generated by both parameters. Again, the instance with the lowest value (݋ܮ) 

and the data instance with the highest value (݅ܪ) are identified after sorting the values 

from lowest to highest. Similarly, selecting ܯ and ݋ܯ will produce slightly different 

detection results, as will be presented in Chapter 7. The parameter ܦ௠௔௫  and the 

parameter ܦ  are calculated as previously explained. Now, as an addition to the 

previous methodology, the angle that ܨ  and ܦ௠௔௫  form is calculated. This angle, 

referred as the angle alpha (α), represents the maximum possible belief in the 

hypothesis ݇ܿܽݐݐܣ. Next, the angle that ܨ and the distance to the currently analysed 

data instance (ܦ) form is also calculated. This angle is referred as the angle beta (β). 

Finally, the belief in ݇ܿܽݐݐܣ is assigned using a simple linear function between both 

angles. The angles α and β are calculated using Equation 5.10 and 5.11, respectively. 

The minimum belief in 0 ,݇ܿܽݐݐܣ%, is defined by the angle 0°. 
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ߙ ൌ cosିଵ ቌ
ܨ

൫ܦ௠௔௫
ଶ ൅ ଶ൯ܨ

ଵ
ଶ

ቍ																																						ሺ5.10ሻ 

 

ߚ ൌ cosିଵ ൭
ܨ

ሺܦଶ ൅ ଶሻܨ
ଵ
ଶ

൱																																										ሺ5.11ሻ 

Figure 5.5 illustrates the definition of the different parameters and angles. Once 

more, any time a new frame is included into the sliding window, all the described 

parameters are recalculated and the belief is assigned. 

 

Figure 5.5 BPA Scale For Belief in ݇ܿܽݐݐܣ Based on Angle. 

Example 

Similar to the previous methodologies, an example is presented to easily understand 

how the proposed methodology to assign beliefs in ݇ܿܽݐݐܣ  works. The considered 

sliding window with length ݊ ൌ 17 is similar to the previous examples. Again, the 11th 

value, -26, is the only malicious value in the sliding window. In this example, ܯ 

defines the point of reference. 

-36, -36, -34, -34, -36, -36, -36, -34, -36, -36, -26, -34, -36, -36, -34, -36, -36 
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After sorting all the values from lowest to highest: 

-36, -36, -36, -36, -36, -36, -36, -36, -36, -36, -36, -34, -34, -34, -34, -34, -26 

where ݋ܮ ൌ െ36, ݅ܪ ൌ െ26, ܯ ൌ െ34.823 and ܨ ൌ 11. The distance from the point 

of reference to ݋ܮ  is 1.177, and the distance to ݅ܪ  is 8.823. Therefore, for this 

example, ܦ௠௔௫ ൌ 8.823. To represent the maximum possible belief in the hypothesis 

݇ܿܽݐݐܣ , 50%, the angle ߙ ൌ cosିଵ ቆ ଵଵ

ሺ଼.଼ଶଷమାଵଵమሻ
భ
మ
ቇ ൌ 38°43′ . The distance to the 

instances with value -36 is ିܦଷ଺ ൌ 1.177. For these values, the angle β is ିߚଷ଺ ൌ

6°6′, and the belief in the hypothesis ݇ܿܽݐݐܣ assigned to these instances is 7.884%. 

The distance to the instances with value -34 is ିܦଷସ ൌ 0.823. For these values, the 

angle β is ିߚଷସ ൌ 4°16′, and the belief in the hypothesis ݇ܿܽݐݐܣ assigned to these 

instances is 5.523%. Finally, the distance to the instance with value -26 is ିܦଶ଺ ൌ

8.823. For this value, the belief in the hypothesis ݇ܿܽݐݐܣ assigned to these instances is 

50%. 

A comparison of the detection results generated by both methodologies, using the 

same dataset, is presented in Chapter 7. An extended discussion is presented in that 

chapter about which of the methodologies generate the best results. 

5.4.1.3 Method to Assign Belief in Uncertainty 

One last methodology to assign beliefs in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ needs to be proposed. The 

methodology that has been proposed to assign beliefs in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is based on the 

outcome of the two previous methodologies. The ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ has been considered as 

an adjustment parameter to satisfy the required conditions of D-S theory. 

The outcome of the two previous methods could provide four different and 

mutually exclusive situations: 

 Low belief in ݇ܿܽݐݐܣ and high belief in ݈ܰܽ݉ݎ݋. 

 High belief in ݇ܿܽݐݐܣ and low belief in ݈ܰܽ݉ݎ݋. 

 High belief in ݇ܿܽݐݐܣ and high belief in ݈ܰܽ݉ݎ݋. 

 Low belief in ݇ܿܽݐݐܣ and low belief in ݈ܰܽ݉ݎ݋. 
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For the first and second cases, both methods have reached consistent conclusions. 

Hence, it is expected that the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ should be low. In contrast, in the 

third and fourth cases, both methods have reached contradictory conclusions. 

Therefore, the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ  is expected to be high in both cases. The 

proposed methodology normalises the belief in ݇ܿܽݐݐܣ and belief in ݈ܰܽ݉ݎ݋ to assign 

the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ. 

The methodology to assign the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ normalises the smaller of 

the other two beliefs (݈݁݅݁ܤ ெ݂௜௡) to the largest (݈݁݅݁ܤ ெ݂௔௫). In line with the previous 

two methodologies, the maximum BPA value has been limited to 50%. The belief in 

 .is calculated using Equation 5.12 ݕݐ݊݅ܽݐݎܷ݁ܿ݊

݈݁݅݁ܤ ௎݂௡௖. ൌ
0.5 ∗ ݈݁݅݁ܤ ெ݂௜௡

݈݁݅݁ܤ ெ݂௔௫
																																										ሺ5.12ሻ 

Example 

To easily understand how the proposed methodology to assign beliefs in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ 

works, the results from the previous two examples are used. Table V.III shows the 

tabulated BPA results for the instances with value -36, -34 and -26. 

For the instances with value -36, the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is 7.884%. For the 

instances with value -34, the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is 6.903%. Finally, the belief in 

 is 15% for the instances with value -26. In the three cases, the calculated ݕݐ݊݅ܽݐݎܷ݁ܿ݊

belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is low. 

TABLE V.III.  EXAMPLE - INITIAL BPA VALUES. 

Metric Value -36 -34 -26 

Belief in ܰ15 % 40 % 50 ݈ܽ݉ݎ݋ % 

Belief in 50 % 5.523 % 7.884 ݇ܿܽݐݐܣ % 

Belief in ܷ݊ܿ݁15 % 6.903 % 7.884 ݕݐ݊݅ܽݐݎ % 
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This example represents a situation in which both methodologies reach consistent 

conclusions. The belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ  is relatively low. Now consider another 

showcasing example in which that the belief in Normal and Attack are 40% and 

49.7%, respectively. For these values, the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ  is 40.2%. As 

expected, the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ is high. 

5.4.1.4 Adjustment Value 

One of the conditions of D-S theory indicates that the summation of the three BPA 

values, for each of the hypothesis must add to 100%. This is: ∑ ݉	ሺܣሻ ൌ 1஺	⊆	஀ . None 

of the cases in the previous examples satisfy this condition. Therefore, an adjustment 

value ψ needs to be calculated. The value ψ will be subtracted to each of the three 

BPA values, and is calculated as follows: 

ψ ൌ
ܺ െ 1
3

																																																								ሺ5.18ሻ 

where ܺ  is the summation of the BPA values. Continuing with the previous 

examples, for the instances with value -36, ψିଷ଺ ൌ ሺ0.65768 െ 1ሻ/3 ൌ െ	0.1141. 

Therefore, the beliefs in ܰ݇ܿܽݐݐܣ ,݈ܽ݉ݎ݋ and ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ are readjusted to 61.41%, 

19.295% and 19.295%, respectively. For the instances with value -34, ψିଷସ ൌ

ሺ0.52426 െ 1ሻ/3 ൌ െ	0.1586 . Therefore, the beliefs in ݈ܰܽ݉ݎ݋ ݇ܿܽݐݐܣ ,  and 

 are readjusted to 55.86%, 21.38% and 22.76%, respectively. Finally, for ݕݐ݊݅ܽݐݎܷ݁ܿ݊

the instances with value -26, ψିଶ଺ ൌ ሺ0.8 െ 1ሻ/3 ൌ െ	0.067. Therefore, the beliefs in 

݈ܽ݉ݎ݋ܰ ݇ܿܽݐݐܣ ,  and ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ  are readjusted to 21.65%, 56.7% and 21.65%, 

respectively. 

To summarise, the BPA results for the instances with value -36, -34 and -26 have 

been tabulated Table V.IV. According to these results, the proposed methodology 

considers the instances with value -36 and -34 as non-malicious because the belief in 

 is the highest of the three hypotheses, which are, in fact, of non-malicious ݈ܽ݉ݎ݋ܰ

nature. On the other hand, the instance with value -26 is considered to be malicious 

because the belief in ݇ܿܽݐݐܣ is the highest of the three hypotheses. 
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TABLE V.IV. EXAMPLE - ADJUSTED BPA VALUES. 

Metric Value -36 -34 -26 

Belief in ܰ21.65 % 55.86 % 61.41 ݈ܽ݉ݎ݋ % 

Belief in 56.7 % 21.38 % 19.295 ݇ܿܽݐݐܣ % 

Belief in ܷ݊ܿ݁21.65 % 22.76 % 19.295 ݕݐ݊݅ܽݐݎ % 

 

5.4.2 Manual BPA Methodology 

Before designing the automatic and self-adaptive BPA methodologies presented in the 

previous section, multiple experiments were implemented using fixed functions. The 

graphical representation of these functions is presented in Figure 5.6. These functions 

were experimentally designed. 

These fixed functions allowed verifying the correct implementation of D-S theory, 

and proving that the combined used of multiple metrics outperforms the intrusion 

detection results of single layer approaches.  The different metrics will be described in 

Chapter 6. The first set of experiments and results generated using the manual BPA 

methodology was presented in [33]. A comparison study between the manual and 

automatic BPA methodologies, detecting wireless-specific attacks was presented in 

[32]. Although the manual BPA methodology proved effective, this approach presents 

the same drawbacks to the systems that use fixed functions, described in Chapter 2. 

This methodology is unable to automatically adjust to changes in the network traffic 

behaviour, without the intervention of the IDS administrator. 

5.5 System Framework 

The IDS proposed in this work is composed of a number of interlinked modules or 

components as shown in Figure 5.7. 
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Figure 5.6 Manual BPA Assignment Functions. 

The first of these components is the ‘Frames Collector’. This represents the 

monitoring module in which TShark [17] performs its functions, gathering the traffic 

within the wireless network. The gathered information is stored in the form of pcap 

files. The pcap files hold most information related to packets that pass through a 

network. They are the default format used when monitoring a computer network [43]. 

Although the IDS is able to implement the intrusion detection process on-line, in real 
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time, storing the data in pcap files allows further analysis of the gathered wireless 

network traffic to be performed. It also allows the detection performance of the IDS to 

be subsequently evaluated. 

 

Figure 5.7 Schematic Representation of The Proposed IDS. 

Once the raw traffic information has been gathered, the pcap files are sent to the 

‘MAC Address Filter’. This module filters out the information that does not meet the 

filtering criteria. Only frames from the AP, and destination MAC address, broadcast or 

the wireless client, are kept. The following module is the ‘Field Filter’. For the 

remaining frames in the dataset, the six metrics described in Chapter 6, along with the 

type and subtype values are extracted from each of the frames. Each metric value is 

isolated and stored in a readable format for the detection system. All these filtering 

processes have been implemented using the filtering capabilities of TShark: 

MAC Addresses Filter: 

tshark -l -T fields -R "(wlan.da==2x:xx:xx:xx:xx:x6 || wlan.da==ff:ff:ff:ff:ff:ff) 

&& (wlan.sa==0x:xx:xx:xx:xx:x3)" -r /path/… 
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Field Filter: 

tshark -l -T fields -e wlan.fc.type -e wlan.fc.subtype -e radiotap.dbm_antsignal -e 

radiotap.datarate -e ip.ttl -e wlan.duration -e wlan.seq -e frame.time_delta" - r 

/path/… 

The metric values are divided into three separate streams of information, based on 

the type of frames; IEEE 802.11 Data frames, Management frames and Control 

Frames. The module ‘Frame Type Filter’ is in charge of implementing this division. 

Similar to the work presented in [38], a sliding window scheme has been employed in 

this work. Figure 5.7 shows three sets of sliding windows, one for each type of WiFi 

frame. Each of these sets contains as many sliding windows as the metrics used. The 

module ‘Find Statistic Values’ is in charge of calculating the required statistical 

parameters. The same statistical parameters are calculated for each sliding window, 

each time a new frame is included. The statistical parameters are sent to the modules 

‘BPA Normal’ and ‘BPA Attack’, along with the actual content of the sliding 

windows. Intuitively, the ‘BPA Normal’ is in charge of generating the belief in the 

hypothesis that the currently analysed frame is non-malicious, whereas the ‘BPA 

Attack’ is in charge of generating the belief in the hypothesis that the currently 

analysed frame is, in fact, malicious. Using the outcome of both modules, the module 

‘BPA Uncertainty’ generates the belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ. Finally, the outcome of the 

three modules, ‘BPA Normal’, ‘BPA Attack’, and ‘BPA Uncertainty’ are fused in the 

module ‘D-S Data Fusion’, to generate final set of belief results. For each analysed 

frame, the outcome of the system is always a 3-fold result, Belief in ݈ܰܽ݉ݎ݋, Belief in 

 The hypothesis with the highest beliefs of the .ݕݐ݊݅ܽݐݎܷ݁ܿ݊ and Belief in ݇ܿܽݐݐܣ

three is considered as the most likely to be the correct hypothesis. 

The only module that has not been specifically developed for this thesis is the 

filtering module, which makes use of functions provided by TShark. The modules 

listed in the previous paragraph have been explicitly developed for this thesis. The 

flowchart of the detection methodology is presented in Figure 5.8. 
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Figure 5.8 Flowchart of The Proposed BPA Methodology. 

5.6 Summary 

This chapter has described the detection techniques used to determine whether the 

analysed information is malicious or normal, and internal architecture design of the 

presented IDS. In this thesis, a sliding window scheme is used to manage the 

information, implement the training process and construct an accurate statistical 

reference of normal behaviour. The system has one sliding window for each of the 

considered metrics and for each type of IEEE 802.11 frame. This is a simple, robust 

and convenient technique to keep track of all the received frames. One example of the 
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benefits provided by this scheme is that the use of the sliding window scheme avoids 

an attacker from altering the statistical reference of normality when launching a 

flooding attack. 

This chapter has also explained the concepts of multi-layer intrusion detection and 

data fusion techniques have also been introduced. IDSs that make use of a multi-layer 

approach have shown outperforming results, against single-layer detection systems. 

The D-S theory of evidence is the data fusion technique chosen as the most 

appropriate for the presented detection system because this technique provides a series 

of benefits over other data fusion techniques. A thorough description of the D-S 

theoretical and mathematical framework is presented, along with a series of practical 

examples describing how this technique works. D-S theory has been previously used 

in the intrusion detection field to enhance the IDSs accuracy. However, an automatic, 

unsupervised and self-adaptive process of BPA, based on the measured characteristics 

of the monitored environment, able to operate in real time has not been proposed yet. 

Such BPA approach has been presented in this chapter. 

Three different techniques have been proposed. Only two of these techniques 

work independently in order to meet the requirement of the independency of the 

beliefs. The third technique is based on the outcome beliefs of the other two. The 

decision of using one methodology that lacks of statistical independence was 

deliberate, supported by other researchers opinion (e.g. [21]), which explains that the 

independence is not necessary in many cases. Despite being rather simplistic, and 

dissimilar to well-known information management techniques, the combined 

utilisation of the three techniques applied to the different wireless network metrics 

produce a highly accurate detection system. In addition, the low computational 

complexity of the proposed methodology allows implementation in real time. The 

results presented in Chapter 7 will prove the efficiency and accuracy of the presented 

IDS. 
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Chapter 6  

Wireless Network Traffic Datasets 

6.1 Introduction 

In this chapter, the analysed real IEEE 802.11 network traffic datasets, the live 

operational testbed and the data gathering process are described. Firstly, the chapter 

addresses the decision of whether utilise well-known and publicly available network 

datasets, synthetically generated dataset using network simulation software, or utilise 

network traffic datasets gathered from a live operational and physically deployed 

network. The experiments implemented in this thesis have been tested utilising 

datasets from a live operational IEEE 802.11 network, physically deployed in the 

laboratory of the High Speed Network Group, at Loughborough University. The 

description of the pros and cons of this decision have been presented. 

The wireless network traffic is composed of numerous measurable metrics, which 

are in last instance, the information that would allow IDSs to identify the presence of 

attack. This chapter continues presenting an extensive description of the different 

metrics that have been considered for this thesis. This chapter also explains with a 

practical example the drawback that the D-S theory produces when too many metrics 

are fused. This is, the larger the number of metrics to be fused, the lower the influence 

of the Belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ  in the final results. Additionally, the statistical 

description of these metrics is presented, along with a discussion of whether these 
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metrics are appropriate for the detection of wireless-specific attacks. Lastly, the 

chapter concludes with a brief description of the concept of feature selection and the 

general need for this approach, as well as the description of the concept of curse of 

dimensionality. 

6.2 Using Real Network Traffic Datasets 

Using network traffic datasets from a live operational network to evaluate the 

proposed IDS provides a series of advantages to the system. A physically deployed 

testbed provides more realistic parameters than a simulated scenario or synthetically 

generated dataset. However, generating network traffic datasets from live operational 

networks also has some disadvantages. This environment might not properly scale to a 

real-life network containing more nodes and more external factors, out of the control 

of the network administrator. In a real-life environment, it is hard to guarantee that the 

data does not contain traces of attacks that the administrator does not know about 

[141]. Even in a controlled network, these datasets are subject to the risk of containing 

external attacks [36], especially in wireless environments. 

Also, the datasets generated in physically deployed testbeds generally contain 

large amounts of redundant and irrelevant information. Commonly, the datasets would 

require the application of preprocessing mechanisms to clean the dataset and to make 

it suitable for the analysis system. Additionally, it is important to know the real nature 

of all the instances in the datasets for training and evaluation purposes. Real network 

traffic datasets lack of labelling, which is a major drawback for the supervised 

detection systems. The real nature of all the instances in the analysed dataset must be 

known in order to evaluate the efficiency of IDSs correct detection performances. It is 

impossible to provide evaluation measurements without correctly labelled datasets. 

Collecting labelled datasets from live operational networks is highly complicated 

[146], and in many cases impossible. In normal conditions, real network traffic is not 

labelled. Currently, the task of labelling the instances in the datasets is primarily 

carried out using previous off-line forensic analysis. 



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

126

6.2.1 Lack of Public Available Network Traffic Datasets 

Despite the disadvantages, there are researchers that still prefer to generate their own 

datasets, for two particular reasons. On the one hand, the benefits explained about the 

use of real network traffic datasets. On the other hand, the lack of publicly available 

network traffic datasets. Among the research community there exists a general concern 

about the lack of publicly available network traffic datasets [57], to evaluate IDSs. 

Working with a common evaluation dataset would allow comparisons of the efficiency 

of different IDSs. The lack of an appropriate publicly available dataset impairs the 

evaluation of the efficiency of the different IDSs [147]. 

A common approach among researchers in the field of IDS has been to generate 

datasets in a controlled and deterministic environment to analyse, test, and evaluate 

IDSs [147]. In [57], the authors explain that there have been some efforts for providing 

a framework for the researchers to generate datasets in a way that these could be 

replicable by other researchers. 

Although researchers are generating their own network traffic datasets, these are 

reluctant to share such information and to make the datasets publicly available. One of 

the main problems of releasing real network traffic datasets relies on privacy concerns 

[148]. According to the authors of [147], the main reason for this reluctance is privacy 

concerns related to sharing too much private information, such as passwords contained 

in the payload of the IP packets. 

The option that has been most commonly used over the years to evaluate IDS is 

the DARPA 1999 dataset [45]. Nowadays, many researchers, e.g. [105], keep 

evaluating their systems in an off-line environment by using the DARPA 1999 dataset. 

This publicly available dataset is a common benchmark for IDSs evaluation, which 

provides a framework in which the number and type of attacks are accurately known, 

fully and correctly labelled. This dataset contains complete network traffic packets, 

stored in tcpdump format. One portion of the dataset was real network traffic, whereas 

the rest of the dataset was simulated. The fact that the background traffic of this 

dataset was simulated attracts most of the criticism that this dataset receives. During 
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the five weeks of the collection process, four main particular types of attack were 

included. Additional descriptions about these attacks can be found in [148]. 

This dataset has been useful for evaluating IDSs because it provides a framework 

in which the number and type of attacks is accurately known. However, this approach 

remains an in vitro process, and does not consider the profile of real traffic of a 

wireless network. Numerous researchers [46] [148] highlight that the main 

disadvantage of the DARPA 1999 dataset is the uncertain accuracy of the simulated 

background traffic inserted into this dataset. For instance, the authors of [148] have 

found quantitative differences between the simulated background traffic of this dataset 

and real traffic. The authors of [46] also highlight that this dataset is obsolete for 

evaluating current IDS, since it was made publicly available almost fifteen years ago. 

In fact, the DARPA 1999 dataset is not representative of current wireless networks. 

For all these drawbacks, the option of using the DARPA 1999 dataset has been 

discarded in this thesis. 

6.3 Wireless Network Testbed 

The experiments implemented in this thesis have been tested in a live operational 

IEEE 802.11 network, physically deployed in the laboratory of the High Speed 

Network Group, at Loughborough University. This is a physically deployed testbed, 

yet also a controlled networked environment that allowed the generation of network 

traffic datasets composed of real IEEE 802.11 information. None of the datasets or any 

portion of the information compressed in them has been artificially simulated. 

The principal components of this network are: 

- An Access Point (AP); 

- A monitoring node utilising the TShark software for collecting frames, and 

being responsible for performing the proposed intrusion detection; 

- An attacker implementing a series of wireless-specific attacks; 

- A client associated with the AP, accessing various websites hosted on the 

Internet across different geographical locations. 
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A schematic representation of the wireless network testbed and a picture of the 

actual testbed are presented in Figures 6.1 and 6.2, respectively. 

 

 

Figure 6.1 Schematic representation of the wireless network testbed. 

 

 

Figure 6.2 Deployed real IEEE 802.11 network testbed. 

 

Although the topology of this testbed has been modified for the implementation of 

some particular experiments, the main components of the testbed are those listed. The 

used AP is a Linksys WRT54GL AP, transmitting through channel 6 at a variable 
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transmission rate, and using the IEEE 802.11b standard. The machine used by the 

attacker is a desktop PC running the BackTrack Linux OS. In this machine, a 

PCMCIA wireless card was installed, using the Atheros AR5213A chipset. Similar to 

the attacker, the monitoring device also used a desktop PC using a PCMCIA wireless 

card with Atheros chipset. The OS was Ubuntu 12.04 Linux. Both the traffic 

monitoring software and the detection system presented and implemented for this 

thesis were installed in the monitoring device. The machine used by the wireless client 

acting as the victim of the wireless-specific attacks a MacBook Air running the Snow 

Leopard OS X, and uses the built-in wireless card. 

6.4 Wireless Network Traffic Gathering 

The gathered frames were stored in the form of pcap files [19], using TShark. This 

type of file is the default format used when monitoring a computer network [43]. 

When monitoring the wireless network, a large amount of unnecessary information is 

also gathered. The room in which the testbed network has been deployed was 

surrounded by different adjacent research laboratories, using their own wireless 

networks. Some of them were even using the same wireless transmission channel as 

the one used in the deployed testbed. Hence, once the pcap files have been gathered, it 

is highly probable that these files would contain traces of communications from 

wireless networks that are not being protected. All the gathered datasets are accessible 

and publicly available in the personal website of Dr. Kyriakopoulos [20], from 

Loughborough University. 

6.4.1 Filtering Wireless Network Traffic 

The external information from adjacent networks may be characterised by different 

parameters or configuration from the protected network. Keeping these measurement 

values in the analysed information may distort the detection results. In order to provide 

protection to wireless devices, including information only transmitted from/to the 

protected device would be necessary. It would be necessary to discard all this external 
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information that is not of the interest of the proposed detection system. Hence, a data 

cleansing process has been carried out before performing the intrusion detection. As 

part of this data cleansing process, the detection process is carried out only on the 

connection between the AP and the wireless client. The network traffic is filtered out 

using two criteria based on the source and destination MAC addresses of the network 

traffic. First, the source MAC address should be the MAC address of the AP. Second, 

the destination MAC address should be either the broadcast MAC address 

(ff:ff:ff:ff:ff:ff) or the MAC address of the wireless client. This is implemented using 

the filtering capabilities of TShark previously explained in the Section 5.5. 

The use of the MAC address filter removes the information from the adjacent 

wireless networks, and helps to reduce the total amount of information that the 

detection system needs to process and analyse. In turn, the computational cost is also 

reduced. On the other hand, the MAC address filter provides a simplistic first 

mechanism of protection. The attacker could implement the attacks using its own 

MAC address or the MAC address of a non-existing device. Although this is not 

entirely realistic because the attacker would normally take the precaution of hiding its 

identity to avoid being identified, it is a feasible situation. In a real scenario, nothing 

stops an attacker implementing the attacks using a different MAC address from the 

MAC address of the AP. Therefore, filtering out traffic external to the protected 

connection would eliminate malicious frames injected not using MAC address 

spoofing capabilities. 

In theory, the filter guarantees that the detection system analyses only information 

from the connection link between the protected devices. But the attacker is still 

capable to hide its identity by spoofing the MAC address of any of the legitimate 

devices, as explained in Chapter 3. In each of the different experiments implemented 

throughout this thesis, it is assumed that the attacker spoofs the MAC address of the 

AP. In these cases, the MAC address filter would be ineffective in filtering out the 

traffic injected by the attacker. Therefore, apart from the legitimate information from 

the wireless networks, the generated pcap files would include any malicious frames 

injected by the attacker. 
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6.5 Wireless Network Metrics 

The audited information also plays an important role for achieving efficient intrusion 

detection results [79]. Apart from the detection technique, IDSs rely on the quality of 

the information datasets to produce accurate detection results. Central to the 

implementation of the proposed IDS is the analysis of different metrics from the IEEE 

802.11 frame header. The monitoring node identifies a particular set of metrics from 

each frame, and sends the value of these metrics to the detection engine. One of the 

most important aspects about the set of metrics is that they should provide accurately 

evidence for the detection system to identify the difference between normal and 

malicious frames. The detection system would only have a limited set of metrics 

available to assess the real nature of the analysed frames. 

6.5.1 Selection of Metrics 

The presented IDS developed in this thesis obtains the information from a particular 

number of metrics extracted from the IEEE 802.11 frames. The selection of the 

metrics has been conducted experimentally, after the evaluation of all the available set 

of metrics. The relevance of the different metrics and selection of the most appropriate 

set of metrics can be evaluated empirically [94]. For instance, in the feature ranking 

techniques used in [91], the system administrator selects a specific set of metrics based 

on empirical approaches. 

Among all the available metrics, six have been experimentally selected as the 

most appropriate for detecting the attacks. The six selected metrics are the ܴܵܵܫ and 

the Frames Interarrival Time (݁݉݅ܶ߂) value at the PHY layer; the Injection Rate 

 value and the Sequence Numbers (ܸܣܰ) the Network Allocation Vector ,(ோ௔௧௘ܬܰܫ)

difference (ܵܳܧ஽௜௙) at the MAC layer; and the Time To Live (ܶܶܮ) value at the 

Network layer. These six metrics have been used in all the evaluated experiments. All 

these metrics are thoroughly described below in following sections. ܶܶܮ is the only 

metric that has not been used in the experiments with deauthentication attack, due to 

the fact that management frames lack this metric. 
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All these metrics show distinctive values between the wireless communication of 

a legitimate device and the wireless communication of an attacker spoofing the 

identity of the legitimate wireless device. This difference is based on two factors. The 

first factor is the technical implementation of the attack. Different attacking tools are 

implemented differently. Some attacking tool would be more efficient than others 

spoofing the identity of the legitimate devices. The capability to completely imitate the 

communication characteristics of a legitimate wireless relies on how well implemented 

the tool is. The second factor is the level of difficulty for an attacker to replicate the 

values of the metrics. The circumstance that five out of the six of the chosen metrics 

are collected at the two lower layers of the protocol stack makes these metrics more 

difficult to replicate than other available metrics. 

Another aspect to be considered when choosing the metrics is the privacy of the 

transmitted information. Firstly, gathering metrics from the higher layers of the 

protocol stack and analysing the payload of the transmitted frames would arise privacy 

concerns over the transmitted information of the user. In addition, the wireless 

communication between the legitimate client and the AP may be encrypted. If an IDS 

had to analyse encrypted information, this system would need to know the 

cryptographic material to decrypt the content of the frames. On top of that, the IDS 

might not always be installed in the protected devices. It might be installed in a third 

party device, or it might work as a cooperative IDS and the information shall be shared 

with numerous devices. Hence, the most optimum metrics would be from the two 

lower layers of the protocol stack, which are never encrypted. 

Using the same set of metrics repeatedly could be perceived as a risky 

implementation, in which the detection capability of the system is constrained by these 

metrics. However, as was empirically proven in [31], this set of metrics efficiently 

adapts the detection capability of the system to different attacks. There may be 

situations in which, one particular metric of the six would provide stronger evidences 

of intrusion than the rest of metrics for one particular type of attack. Although the 

evidences that the rest of metrics provide could be very weak, the strong evidence of 

intrusion of this single metric would dominate the detection decision of the IDS. 

Whereas, there may be situations in which this particular metric would be ineffective 
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detecting another type of attack, because the evidences of intrusion that this metric 

provides are very weak. In such situation, another metric or metrics should provide 

strong evidence of intrusion to achieve efficient detection. Metrics that provide poor 

evidence of attack are compensated with the rest of metrics that provide strong 

evidences. By using the combination of all these six metrics, the best results overall in 

detecting malicious injected frames are produced. 

6.5.1.1 Too Many Metrics for Dempster-Shafer 

During the development of this work, another factor has been identified that makes the 

reduction in the number of metrics necessary. It is related with the data fusion 

technique, D-S theory of evidence that has been introduced in Chapter 5. The problem 

with D-S is that the larger the number of metrics to be fused, the lower the influence of 

the Belief in ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ in the final results. One of the benefits provided by this 

fusion approach managing is not obtainable after successive fusions. Therefore, using 

the smallest possible set of metrics would take full advantage of the D-S theory, and 

its capability to manage ܷ݊ܿ݁ݕݐ݊݅ܽݐݎ. 

In order to better understand the effect of the number of metrics on the data fusion 

technique clearer, we consider the following example using real belief measurements 

extracted from one of the experiments in this thesis. These belief values are calculated 

using the different techniques presented in Chapter 5. Six independent sensors monitor 

a particular parameter, and conclude the belief values in the three hypotheses (i.e. 

 presented in Table VI.I. The belief values for the (ݕݐ݊݅ܽݐݎܷ݁ܿ݊ and ݇ܿܽݐݐܣ ,݈ܽ݉ݎ݋ܰ

three considered hypotheses are sorted by the particular sensor that provides these 

beliefs. 

The belief values of each sensor, for each hypothesis are sequentially fused to 

reach a final conclusion. Only the beliefs from two sensors can be fused at a time. The 

resulting beliefs of the current fusion are then fused with the beliefs of the next sensor. 

This process is repeated until the beliefs of the last sensor are fused. Using Dempster’s 

rule of combination, the different beliefs have been fused. The results after the fusion 

process are presented in Table VI.II. As can be seen in the highlighted bottom row of 
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the table, the values of the belief in Uncertainty follows a decreasing trend, as more 

fusion processes are implemented. This phenomenon works against one of the 

characteristics that make D-S theory attractive in the field of unsupervised IDS. This is 

the capability of managing Uncertainty, which is an advantage over other fusion 

approaches. Nevertheless, due to this phenomenon, due to the reduced value of the 

belief in Uncertainty, the D-S fusion process becomes almost similar to a process of 

Bayesian fusion. 

 

TABLE VI.I.  BELIEF VALUES - EXAMPLE. 

 
Sensor 

#1 #2 #3 #4 #5 #6 

Hypothesis 

Normal 0.3 0.217 0.667 0.667 0.217 0.217 

Attack 0.4 0.567 0.167 0.167 0.567 0.567 

Uncertainty 0.3 0.216 0.166 0.166 0.216 0.216 

 

 

TABLE VI.II.  RESULTS OF SUCCESSIVE BELIEF VALUES FUSION - EXAMPLE. 

 
Iteration 

#1 - #2 R - #3 R - #4 R - #4 Final Results 

Hypothesis 

Normal 0.262 0.857 0.187 0.746 0.475 

Attack 0.65 0.107 0.751 0.247 0.524 

Uncertainty 0.088 0.036 0.062 0.007 0.001 
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The presented phenomenon is another practical reason for selecting the smallest 

possible set of metrics that could allow the IDS detect the evaluated attacks, without 

compromising the efficiency of the system. The whole fusion process is presented in 

more detail in Figure 6.3. The column in the left hand side shows the beliefs that the 6 

different sensors assign to each of the considered hypotheses. Although these are 

independent, some of the sensors assign similar belief values to the hypotheses. The 

second column shows the succession of beliefs combination, tabulated in tables. The 

first table shows the belief multiplication of the sensor 1 and sensor 2. The second 

table shows the belief multiplication for the outcome of the previous combination and 

the beliefs of the sensor 3, and so on. The third column shows the calculation of the 

denominator of the Dempster’s rule of combination, for each of the combinations. 

Finally, the column in the right hand side shows the outcome belief values after each 

of the combinations. 

 

Figure 6.3 Complete Results of Successive Belief Values Fusion - Example. 

6.5.1.2 Received Signal Strength Indication – ۷܁܁܀ 

The ܴܵܵܫ  value is a value associated with the transmission and reception of the 

communication that represents the power level received by the wireless NIC, in dBm. 

A wireless NIC configured in monitoring mode can measure the ܴܵܵܫ value of the 

received information. The ܴܵܵܫ depends on many factors such as distance between 
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source and destination, physical obstacles, WLAN equipment, used frequency channel 

and an environmental coefficient [32]. 

Despite being a volatile value, the ܴܵܵܫ for most of the frames transmitted by a 

particular wireless device follows a fairly tight and predictable Normal distribution 

[72]. The measurement of consecutive ܴܵܵܫ  values from the same transmitter can 

generate a ܴܵܵܫ fingerprint, which could be used to unequivocally identify individual 

transmitter devices [76]. Two different wireless devices positioned at the same 

geographical location, transmitting with similar signal strength will generate different 

distributions of ܴܵܵܫ at the reception device [72]. The radio chipset and firmware of 

the wireless NIC characterises individual wireless devices with a unique ܴܵܵܫ 

fingerprint [10]. Many circumstances must converge for an attacker to be able to 

replicate the ܴܵܵܫ fingerprint of a particular legitimate wireless device, and most of 

them are out of the control of the attacker. Hence, it will be almost impossible for an 

attacker to imitate the ܴܵܵܫ fingerprint of a specific wireless device [72]. 

Detection systems that employ the ܴܵܵܫ  to identify the presence of MAC 

spoofing attacks are very sensitive to mobile devices [76]. The effectiveness of the 

IDS that make use of the ܴܵܵܫ fingerprint to detect MAC spoofing attacks may be 

reduced if the protected device is a moving wireless device. In that case, this type of 

methodology could generate a high number of FPs. 

6.5.1.3 Injection Rate – ۷ࡱࢀ࡭ࡾ۸ۼ 

The ܬܰܫோ௔௧௘  is the speed at which the information is transmitted by the wireless 

devices. Several ܬܰܫோ௔௧௘  have been standardised in the IEEE 802.11. Some are 

mandatorily supported whilst others are optional [112]. The ܬܰܫோ௔௧௘  at which each 

frame is transmitted depends on many factors such as the distance between the source 

device and destination device, physical obstacles in the propagation path of the radio 

signal, the environmental conditions and the particular selected modulation scheme 

utilised by the source of the wireless communication [32]. The ܬܰܫோ௔௧௘ directly affects 
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other parameters of the communication, such as throughput or the probability of 

packet loss. 

Multipath fading is a propagation phenomenon in which the transmitted signal 

traverses multiple different paths from the transmitter to the receiver. The effect is that 

the receiver signal is distorted by reflexion of the same transmitted signal. In order to 

deal with this phenomenon, many vendors configure their NICs to reduce the ܬܰܫோ௔௧௘ 

[112]. Using low ܬܰܫோ௔௧௘ provides higher throughput in the wireless communications. 

The lower the used ܬܰܫோ௔௧௘, the higher the probability for a transmitted signal to be 

properly received by the receiver. The approach followed by legitimate NIC vendors is 

also used by most of the attacking tools, which tend to inject forged frames at low 

 .ோ௔௧௘ in order to be more efficient [33]ܬܰܫ

Transmitting at low ܬܰܫோ௔௧௘ is not exclusive to malicious devices. A legitimate 

device would commonly transmit management frames using low ܬܰܫோ௔௧௘. However, 

the ܬܰܫோ௔௧௘ value can also be used to reveal the presence of an attacker implementing 

a MAC spoofing attack. 

6.5.1.4 Frame Interarrival Time – ઢ܍ܕܑ܂ 

The ݁݉݅ܶ߂ is defined as the time lapse between the two consecutive received frames. 

The ݁݉݅ܶ߂ has been previously used in tasks such as Internet traffic classification 

[34] or congestion bottleneck in wired networks [35]. Additionally, ݁݉݅ܶ߂ has been 

also used to identify the presence of MAC spoofing attacks [69]. 

The description presented in [69] explains the statistical distribution difference 

that would produce a non-malicious wireless device transmitting at a fixed interval and 

an attacker implementing MAC spoofing attacks. The statistical distribution of the 

time lapse between two consecutive frames, when only the legitimate device is 

transmitting, would be different from the distribution generated when both devices are 

transmitting. Using similar approach, the ݁݉݅ܶ߂ could also be used by the proposed 

IDS framework to identify the presence of MAC spoofing attacks. 
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6.5.1.5 Network Allocation Vector – ܄ۯۼ 

The ܸܰܣ value is a 16 bits-long field transmitted in the MAC header of the frames 

that indicates the amount of time a wireless node reserves the wireless medium to 

complete a communication. The wireless nodes aiming to transmit should compete 

with other nodes for the control of the transmission medium. The ܸܰܣ  value is 

specified in μseconds, with a maximum value of 32767 μseconds. A non-zero ܸܰܣ 

value informs to all the nodes in the wireless network to defer to complete a 

communication. The nodes are allowed to transmit only if the ܸܰܣ value reaches 0. 

The definition of this value is primarily based on the length of the transmitted 

frames and the ܬܰܫோ௔௧௘ [32]. Different hardware vendors and different software drivers 

define the ܸܰܣ  value differently. The different between ܸܰܣ  values could help 

towards detecting attackers spoofing the identity of legitimate wireless devices. On top 

of that, the ܸܰܣ value is central to the implementation of the virtual jamming attack 

explained in Chapter 3. An attacker intending to occupy the wireless transmission 

medium and make all the wireless devices in the network postpone any transmission 

would use ܸܰܣ values higher than for normal frames. Some publications in the field 

of IDS have analysed this metric in order to identify misbehaving wireless nodes. In 

[82], the authors compare the ܸܰܣ value against the actual duration of the current 

transmission to identify inconsistencies in both values. Therefore, finding 

inconsistency in the ܸܰܣ value in the analysed frames may evidence the presence of 

attacks. 

6.5.1.6 Sequence Number Difference – ࢌ࢏ࡰۿ۳܁ 

The Sequence Number at the MAC layer is a value included in all the management 

and data frames, which acts as a counter for each frame that is transmitted by a 

wireless device. Every single wireless device keeps its own sequence number stream. 

The sequence number value monotonically increments, from 0 to 4095, every time a 

non-fragmented data or management frame is transmitted [72]. The sequence number 

remains constant in all the retransmitted frames [70]. 
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The analysis of the sequence number stream is a common method to identity 

MAC spoofing attacks. Abrupt changes in the sequence number may indicate the 

presence of a MAC spoofing attack [10] [69] [71]. If an attacker implements a MAC 

spoofing attack, the monotonic incrementing series of sequence numbers will produce 

two different streams of sequence numbers [69] [72]. Two different streams, along 

with MAC address of the transmitting node can be used to detect this attack. 

Traditional detection systems that use the sequence number to identify MAC 

spoofing attacks are based on the analysis of the difference between the sequence 

numbers of two consecutive frames, the ܵܳܧ஽௜௙ [72]. In theory, the value of ܵܳܧ஽௜௙ 

should be constantly 1. One simple methodology is keeping tack of the monotonic 

increment of the sequence number value, and reporting an alarm if the ܵܳܧ஽௜௙ differs 

by more than 1. However, this methodology may generate excessive number of false 

alarms [68]. The occurrence of frame loss, duplicated frames or frames retransmitted 

out of order makes the ܵܳܧ஽௜௙ different from 1. Most of the ܵܳܧ஽௜௙ values are from 0 

to 2 [68]. The difference between the sequence numbers of two consecutive frames 

can also be a negative value. The authors of [68] also report that, if an AP gives 

priority to beacon and probe response frames before the data frames, the ܵܳܧ஽௜௙ could 

be -1 or -2. Therefore, alternative methodologies must be implemented if ܵܳܧ஽௜௙ is 

used for intrusion detection. The work presented in [68] proposes a MAC spoofing 

detection system based on the analysis of the sequence numbers. This system takes 

into account the fact that the ܵܳܧ஽௜௙ can be different from 1. It defines bounds in the 

 ஽௜௙ is any valueܳܧܵ ஽௜௙ and considers that a sequence number is abnormal if theܳܧܵ

between 3 and 4092. The authors of this work explain that the proposed system is 

unable to detect each spoofed frame if the attacker replicates the sequence number of 

the previous legitimate transmitted frame. 

However, some NICs allow changing the sequence number in each frame [71]. 

Attackers could try to replicate the sequence number of the previous legitimate 

transmitted frame, in order to avoid being detected. Also, the sequence number cannot 

be used to identify the attacks that utilise crafted control frames, since these frames do 

not include sequence number [10]. Additionally, the analysis of the sequence number 
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streams is ineffective in case the legitimate wireless device is not transmitting [71]. In 

addition, IEEE 802.11e-enabled devices would generate high number of false alarms 

because this standard allows multiple sequence number streams from the same 

wireless device [76]. This fact could lead this methodology to generate high number of 

FPs. Hence, the implementation of detection systems that use the only sequence 

numbers are insufficiently robust [119]. 

6.5.1.7 Time To Live – ۺ܂܂ 

Finally, the ܶܶܮ is another metric that should be analysed because it provides evidence 

of attacks exploiting HTTP sessions. The metric ܶܶܮ is an 8-bit long field in the IP 

packets that determines the maximum numbers of hops a packet can make, between 

the source and destination, before being dropped from the network. Every time an IP 

packet is forwarded by a router or switch in the network, the ܶܶܮ value is decremented 

by 1. Decrementing the ܶܶܮ  value requires modification of the header of the IP 

packet. The IP packet whose ܶܶܮ value reaches zero is dropped from the network. The 

ܮܶܶ  is a mechanism to avoid an IP packet from entering in a loop, hopping 

indefinitely between routers. The sender of the IP packet sets the ܶܶܮ  value. 

Commonly, the initial ܶܶܮ value is set to 32, 64, 128 or 255, depending on the OS of 

the sender device [109]. Different OSs define different ܶܶܮ values. Outdates OSs such 

as Windows 95 use 32 as the ܶܶܮ value. Linux OS or MacOS use the ܶܶܮ value 64, 

whereas recent versions of Windows OS use ܶܶܮ value 128, as default [134]. 

An Internet user accessing different websites generates multiple HTTP request 

packets. Although different websites may be hosted on different web servers across 

different geographical locations, the content of some websites are hosted in the same 

web server. In that case, the content of the website will follow an almost similar path 

through the Internet, before being received by the user. Therefore, all the packets will 

be assigned similar initial ܶܶܮ value, and will be forwarded by the almost similar 

number of routers through the Internet. For instance, in a simple conducted 

experiment, it was evaluated that the number of hops required to access to Google 

(http://www.google.co.uk) and the BBC website (http://www.bbc.co.uk), was in both 
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cases 14 hops. The initial ܶܶܮ value was 64, and the ܶܶܮ value of the IP packets when 

arriving to the laptop was 50. 

An attacker implementing attacks exploiting HTTP sessions may implement the 

functionality of assigning the most common initial ܶܶܮ value to the crafted packets, to 

try to replicate the behaviour of legitimate web servers. The attacker could be also 

configured to dynamically adjust the ܶܶܮ value. These mechanisms would make the 

receiver believe that the IP packets are actually received from the legitimate web 

server. Identifying gaps in the ܶܶܮ value when requesting the content of a website 

may evidence the attacks exploiting HTTP sessions. The use of the ܶܶܮ value in task 

of intrusion detection has been also implemented by [117] [134]. 

6.5.2 Analysis of the Network Traffic Datasets 

The purpose of this section is to individually analyse each of the described metrics, for 

each of the datasets and for each type of attack. The analysis will provide a clear 

understanding of the distribution shape of these metrics, and will indicate if the normal 

and malicious traffic are statistically differentiable from each other. One dataset has 

been gathered when no attackers were present in the wireless network. Three separate 

datasets have been gathered when the Airpwn attack experiments were implemented. 

Another two datasets have been gathered when the deauthentication attack 

experiments were implemented. 

6.5.2.1 Normal Dataset 

The first analysed dataset contains only non-malicious communication traffic between 

the AP and the wireless client. This experiment is used to evaluate the performance of 

the proposed detection system, in situations of normal operations. It is important that 

the proposed detection system does not produce FP alarms when no attacks exist. In 

total, 3631 network frames compose this dataset of non-malicious wireless network 

traffic information. 70.8% of this dataset, 2572 instances, is composed of data frames 

whilst 29.2% of this dataset, 1059 instances, is composed of management frames. 
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 ܴܵܵܫ 

The average value for the ܴܵܵܫ in this normal dataset is -32.54, and the standard 

deviation value is 2.52. Figure 6.4.a shows a histogram representing the frequency 

of the metric ܴܵܵܫ in this dataset free of malicious instances. The skewness and 

the kurtosis are -5.454 and 100.084, respectively. Figure 6.4.b also shows the 

distribution of the ܴܵܵܫ values. 

 
(a)      (b) 

Figure 6.4 Normal Dataset - ܴܵܵܫ: (a) Histogram, (b) Boxplot. 

 ܬܰܫோ௔௧௘ 

For the ܬܰܫோ௔௧௘, the average value is 38.5373, and the standard deviation value is 

24.0918. Figures 6.5.a and 6.5.b show a histogram representing the frequency of 

the ܬܰܫோ௔௧௘  and the boxplot representing the distribution of the ܬܰܫோ௔௧௘  in this 

dataset. The skewness is -0.917, and the kurtosis is -1.16. As can be clearly 

appreciated, the distributions of both metrics are very dissimilar. In contrast to the 

values of the ܴܵܵܫ that are mostly concentrated on one particular value, the values 

of ܬܰܫோ௔௧௘ concentrate on two distinct values, distant from each other. 
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(a)      (b) 

Figure 6.5 Normal Dataset - ܬܰܫோ௔௧௘: (a) Histogram, (b) Boxplot. 

 ܶܶܮ 

For the ܶܶܮ , the average value is 48.07, and the standard deviation value is 

48.356. Again, Figures 6.6.a and 6.6.b show a histogram representing the 

frequency of the ܶܶܮ in this dataset, and the boxplot representing the distribution 

of these values. The skewness is 2.196, and the kurtosis is 6.66. The distribution of 

this metric has a shape dissimilar to the two previous metrics. Although most of 

the measurements are also concentrated on one particular value, the values of the 

 .ܫܴܵܵ are more distributed than the values of the ܮܶܶ

 
(a)      (b) 

Figure 6.6 Normal Dataset - ܶܶܮ: (a) Histogram, (b) Boxplot. 



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

144

 ܸܰܣ 

The average value for the ܸܰܣ  is 31.17, and the standard deviation value is 

20.002. The frequency of the ܸܰܣ in this dataset is shown in Figure 6.7.a. The 

skewness is -0.917, and the kurtosis is -1.159. Figure 6.7.b also shows the 

distribution of the ܸܰܣ  values. Similar to the ܬܰܫோ௔௧௘ , the values of ܸܰܣ 

concentrate on two distinct values. However, in this case, the values are not distant 

from each other. 

 
(a)      (b) 

Figure 6.7 Normal Dataset - ܸܰܣ: (a) Histogram, (b) Boxplot. 

 ݁݉݅ܶ߂ 

The average value for ݁݉݅ܶ߂ is 0.0061, and the standard deviation value is 0.014. 

The frequency and the distribution of ݁݉݅ܶ߂  in this dataset are shown in the 

Figures 6.8.a and 6.8.b. The skewness is 12.713, and the kurtosis is 229.215. Most 

of the ݁݉݅ܶ߂ measurements are also concentrated in one particular value, similar 

to ܴܵܵܫ and ܶܶܮ. 

 ܵܳܧ஽௜௙ 

Finally, for ܵܳܧ஽௜௙, the average value is 0.38, and the standard deviation value is 

68.058. The frequency distribution of the ܵܳܧ஽௜௙  in this dataset is shown in 

Figures 6.9.a and 6.9.b. The skewness is -60.055, and the kurtosis is 3614.931. 
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Once more, most of the ܵܳܧ஽௜௙ measurements are concentrated in one particular 

value, with outliners produced by normal communication operations. 

 

 
(a)      (b) 

Figure 6.8 Normal Dataset - ݁݉݅ܶ߂: (a) Histogram, (b) Boxplot. 

 
 

 
(a)      (b) 

Figure 6.9 Normal Dataset - ܵܳܧ஽௜௙: (a) Histogram, (b) Boxplot. 

 

It is clear that the distributions of the different histograms are statistically 

dissimilar from each other. Generating a common statistical profile of normal traffic 

that could adapt to the distribution of all the considered metrics would not be feasible. 

Numerous FP alarms may be generated. Therefore, an individual statistical profile 

should be generated for each of the metrics, independently. 
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6.5.2.2 Airpwn Attack Experiments Datasets 

6.5.2.2.1 Airpwn Attack 01 Dataset 

The testbed from which the second dataset was gathered includes the attacker. This 

dataset comprises network traffic information from the attacker, and from the 

communication between the AP and the wireless client. For the following three 

datasets, the main target is to evaluate the performance of the proposed detection 

system detecting different types of attacks. 

In this particular experiment, the attacker has implemented the first type of 

Airpwn attack, 01݇ܿܽݐݐܣ. This dataset is composed of 1361 network frames in total, 

20.1% data frames and 79.9% management frames. 99.2% of this dataset, 1350 

instances, is of non-malicious nature. The wireless client sent these frames. The 

remaining 0.8% of this dataset, 11 instances, is malicious information. 

 ܴܵܵܫ 

The average value for the ܴܵܵܫ in this dataset containing both malicious and non-

malicious instances is -31.99, and the standard deviation value is 2.069. Figure 

6.10.a shows a histogram representing the frequency of the metric ܴܵܵܫ in this 

dataset. The skewness is 1.854, and the kurtosis is 12.383. Figure 6.10.b also 

shows the distribution of the ܴܵܵܫ values, based on the real nature of the frames. 

Considering only the value for the ܴܵܵܫ  of the non-malicious frames in this 

dataset, the average value is -32.1, and the standard deviation value is 1.691. 

Considering only the value for the ܴܵܵܫ of the malicious frames, the average value 

and the standard deviation value are -18.73 and 1.009, respectively. 

 ܬܰܫோ௔௧௘ 

For the ܬܰܫோ௔௧௘, the average value is 11.2028, and the standard deviation value is 

20.9038. Figure 6.11.a shows a histogram representing the frequency distribution 

of ܬܰܫோ௔௧௘ in this dataset. The skewness is 1.562, and the kurtosis is 0.439. Figure 



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

147

6.11.b shows the distribution of the ܬܰܫோ௔௧௘ values, based on the real nature of the 

frames. Considering only the value for the ܬܰܫோ௔௧௘ of the non-malicious frames in 

this dataset, the average value is 11.2859, and the standard deviation value is 

20.9685. Whilst, considering only the value for the ܬܰܫோ௔௧௘  of the malicious 

frames, the average value and the Standard Deviation value are 1 and 0, 

respectively. 

 
(a)      (b) 

Figure 6.10 Airpwn Dataset - ܴܵܵ01݇ܿܽݐݐܣ ܫ Traffic: (a) Histogram, (b) Boxplot. 

 

(a)      (b) 
Figure 6.11 Airpwn Dataset - ܬܰܫோ௔௧௘ 01݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 

Boxplot. 

 ܶܶܮ 

For the ܶܶܮ , the average value is 22.57, and the standard deviation value is 

56.249. Again, Figures 6.12.a and 6.12.b show a histogram representing the 
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frequency of the ܶܶܮ  in this dataset, and the distribution of the ܶܶܮ  values, 

respectively. The skewness is 2.881, and the kurtosis is 7.663. Considering only 

the value for the ܶܶܮ of the non-malicious frames in this dataset, the average value 

is 20.68, and the standard deviation value is 52.399. Considering only the value for 

the ܶܶܮ  of the malicious frames, the average value and the standard deviation 

value are 255 and 0, respectively. 

 
(a)      (b) 

Figure 6.12 Airpwn Dataset - ܶܶ01݇ܿܽݐݐܣ ܮ Traffic: (a) Histogram, (b) Boxplot. 

 ܸܰܣ 

The average value for the ܸܰܣ  is 11.01, and the standard deviation value is 

32.391. The frequency distribution of the ܸܰܣ in this dataset is shown in Figure 

6.13.a. The skewness is 6.803, and the kurtosis is 59.415. The distribution of the 

 .values, based on the real nature of the frames, is shown in Figure 6.13.b ܸܣܰ

Considering only the value for the ܸܰܣ  of the non-malicious frames in this 

dataset, the average value is 8.54, and the standard deviation value is 17.408. 

Considering only the value for the ܸܰܣ of the malicious frames, the average value 

and the standard deviation value are 314 and 0, respectively. 

 ݁݉݅ܶ߂ 

The average value for ݁݉݅ܶ߂ is 0.101, and the standard deviation value is 0.0129. 

The frequency of ݁݉݅ܶ߂  in this dataset is shown in the Figure 6.14.a. The 
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skewness is 10.886, and the kurtosis is 202.704. The boxplot representing the 

distribution of the ݁݉݅ܶ߂ values is shown in the figure 6.14.b. Considering only 

the value for the ݁݉݅ܶ߂ of the non-malicious frames in this dataset, the average 

value is 0.0102, and the standard deviation value is 0.0129. Considering only the 

value for the ݁݉݅ܶ߂ of the malicious frames, the average value is 0.0036 and the 

standard deviation value is 0.0009. 

 

 
(a)      (b) 

Figure 6.13 Airpwn Dataset - ܰ01݇ܿܽݐݐܣ ܸܣ Traffic: (a) Histogram, (b) Boxplot. 

 

 

 
(a)      (b) 

Figure 6.14 Airpwn Dataset - 01݇ܿܽݐݐܣ ݁݉݅ܶ߂ Traffic: (a) Histogram, (b) 
Boxplot. 
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 ܵܳܧ஽௜௙ 

Finally, for ܵܳܧ஽௜௙, the average value is -1.07, and the standard deviation value is 

361.446. Figure 6.15.a shows a histogram representing the frequency of the metric 

 ஽௜௙ܳܧܵ ஽௜௙ in this dataset, whilst Figure 6.15.b shows the distribution of theܳܧܵ

values, based on the real nature of the frames. The skewness is -1.046, and the 

kurtosis is 68.64. Considering only the value for ܵܳܧ஽௜௙  of the non-malicious 

frames in this dataset, the average value is -21.61, and the standard deviation value 

is 267.468. Considering only the value for ܵܳܧ஽௜௙  of the malicious frames, the 

average value and the standard deviation value are 2519.82 and 1034.159, 

respectively. 

 
(a)      (b) 

Figure 6.15 Airpwn Dataset - ܵܳܧ஽௜௙ 01݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

Similar to the datasets that only contains non-malicious information, the 

distributions of the different histograms are statistically dissimilar from each other. 

Comparing the distributions of the histograms of the dataset 01݇ܿܽݐݐܣ against the 

distributions of the histograms of the Normal traffic dataset, by metric have a very 

similar distribution. Focusing on the difference between the normal and malicious 

instances, both types of information are statistically differentiable. The difference is 

more noticeable in some of the metrics such as ܸܰܣ  than others. This statistical 

difference is visually represented by the boxplots. 
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6.5.2.2.2 Airpwn Attack 02 Dataset 

For the third dataset, the attacker implemented the second type of Airpwn attack, 

 ,This dataset, which is substantially larger that the two previous datasets .02݇ܿܽݐݐܣ

also comprises network traffic information from the attacker, and from the 

communication between the AP and the wireless client. This dataset is composed of 

14493 network frames in total, 90.6% data frames and 9.4% management frames. 

93.1% of this dataset, 13498 instances, is of non-malicious nature, whilst the 

remaining 6.9% of this dataset, 995 instances, is malicious information. The analysis 

of different metrics in this dataset is tabulated in Table VI.III. Histograms representing 

the frequency different metrics in this dataset, as well as bloxplot diagrams 

representing the distribution of the metrics are shown in Figures 6.16.a – 6.21.b. 

TABLE VI.III.  AIRPWN 02݇ܿܽݐݐܣ DATASET ANALYSIS RESULTS 

Dataset Content Average 
Standard 
Deviation 

Skewness Kurtosis 

 ܫܴܵܵ

Normal - Malicious -33.72 3.049 1.378 8.135 

Normal -34.37 1.894   

Malicious -24.82 1.374   

 ோ௔௧௘ܬܰܫ

Normal - Malicious 45.3609 19.566 -1.825 1.334 

Normal 48.6309 15.9778   

Malicious 1 0   

 ܮܶܶ

Normal - Malicious 73.25 67.461 1.895 2.379 

Normal 59.85 47.663   

Malicious 255 0   
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 ܸܣܰ

Normal - Malicious 58.4 70.57 3.02 8.866 

Normal 39.55 13.262   

Malicious 314 0   

 ݁݉݅ܶ߂

Normal - Malicious 0.0023 0.0094 29.526 1285.574 

Normal 0.0019 0.0079   

Malicious 0.0077 0.0204   

 ஽௜௙ܳܧܵ

Normal - Malicious -0.05 410.425 -0.397 43.102 

Normal 9.05 302.615   

Malicious -123.49 1093.643   

Dataset Content Average St. Deviation Skewness Kurtosis 

 

 
(a)      (b) 

Figure 6.16 Airpwn Dataset - ܴܵܵ02݇ܿܽݐݐܣ ܫ Traffic: (a) Histogram, (b) Boxplot. 
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(a)      (b) 

Figure 6.17 Airpwn Dataset - ܬܰܫோ௔௧௘ 02݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

 
(a)      (b) 

Figure 6.18 Airpwn Dataset - ܶܶ02݇ܿܽݐݐܣ ܮ Traffic: (a) Histogram, (b) Boxplot. 

 
(a)      (b) 

Figure 6.19 Airpwn Dataset - ܰ02݇ܿܽݐݐܣ ܸܣ Traffic: (a) Histogram, (b) Boxplot. 
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(a)      (b) 

Figure 6.20 Airpwn Dataset - 02݇ܿܽݐݐܣ ݁݉݅ܶ߂ Traffic: (a) Histogram, (b) 
Boxplot. 

 

 
(a)      (b) 

Figure 6.21 Airpwn Dataset - ܵܳܧ஽௜௙ 02݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

The distributions of the different metrics in the dataset 02݇ܿܽݐݐܣ  have apparent 

similarities to the previous two datasets. The difference in the amount of information 

contained in this dataset does not significantly change the statistical characteristics of 

the metrics distributions. Focusing on the difference between the normal and malicious 

instances, both types of information are also statistically differentiable, similar to the 

dataset 01݇ܿܽݐݐܣ. This statistical difference is visually represented by the different 

boxplots. 
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6.5.2.2.3 Mixed Airpwn Attack Dataset 

One last dataset contains both network traffic information from the attacker and from 

the wireless communication between the legitimate devices. In contrast to the previous 

datasets, this experiment alternates periods of only normal wireless traffic with periods 

in which the attacker implements attacks. An initial period of only normal wireless 

traffic was followed by a defined period of time in which the attacker implemented the 

 Then, another period of normal traffic was followed by another period of .01݇ܿܽݐݐܣ

malicious activity. This last time, the attacker implemented the 02݇ܿܽݐݐܣ. 

The main purpose was to evaluate the performance of the proposed detection 

system in situations in which different attacks were present. The adaptability of the 

proposed detection system to different attacks is verified through this experiment. This 

dataset is composed of 12130 network frames in total, 88.1% data frames and 11.9% 

management frames. 99.1% of this dataset, 12016 instances, is of non-malicious 

nature. The remaining 0.9%, 114 instances, is malicious information. Focusing on the 

particular type of attack, 6.14% of the malicious information in this dataset, 7 

instances, corresponds to the 01݇ܿܽݐݐܣ , whereas 93.86% of this dataset, 107 

instances, corresponds to the 02݇ܿܽݐݐܣ . Figure 6.22 provides a graphical 

representation of the proportion of the instances present in the dataset. 

 

Figure 6.22 Mixed Airpwn Attack Dataset Information Proportion. 

The analysis of different metrics in this dataset, ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ, is tabulated in 

Table VI.IV. Histograms representing the frequency different metrics in this dataset, 

as well as bloxplot diagrams representing the distribution of the metrics are shown in 

Figures 6.23.a – 6.28.b. 



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

156

TABLE VI.IV.  AIRPWN ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ DATASET ANALYSIS RESULTS 

Dataset Content Average 
Standard 
Deviation 

Skewness Kurtosis 

 ܫܴܵܵ

Normal - Malicious -32.11 2.606 -1.176 34.203 

Normal -32.21 2.354   

Malicious -21.53 5.065   

 ோ௔௧௘ܬܰܫ

Normal - Malicious 47.1866 17.7299 -2.22 2.933 

Normal 47.6248 17.2308   

Malicious 1 0   

 ܮܶܶ

Normal - Malicious 62.76 54.651 2.268 4.89 

Normal 60.93 51.584   

Malicious 255 0   

 ܸܣܰ

Normal - Malicious 41.3 30.137 6.659 60.459 

Normal 38.72 14.304   

Malicious 314 0   

 ݁݉݅ܶ߂

Normal - Malicious 0.0022 0.0072 24.358 858.046 

Normal 0.0021 0.0072   

Malicious 0.0066 0.0049   

 ஽௜௙ܳܧܵ
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 ஽௜௙ܳܧܵ

Normal - Malicious -0.11 159.712 -6.792 227.98 

Normal 5.31 127.928   

Malicious -571.83 815.421   

Dataset Content Average St. Deviation Skewness Kurtosis 

 

 
(a)      (b) 

Figure 6.23 Airpwn Dataset - ܴܵܵ݀݁ݔ݅ܯ ܫ	݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

 

 
(a)      (b) 

Figure 6.24 Airpwn Dataset - ܬܰܫோ௔௧௘ ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 
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(a)      (b) 

Figure 6.25 Airpwn Dataset - ܶܶ݀݁ݔ݅ܯ ܮ	݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

 
(a)      (b) 

Figure 6.26 Airpwn Dataset - ܰ݀݁ݔ݅ܯ ܸܣ	݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

 
(a)      (b) 

Figure 6.27 Airpwn Dataset - ݀݁ݔ݅ܯ ݁݉݅ܶ߂	݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 
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(a)      (b) 

Figure 6.28 Airpwn Dataset - ܵܳܧ஽௜௙ ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ Traffic: (a) Histogram, (b) 
Boxplot. 

6.5.2.3 Deauthentication Attack Experiments Datasets 

6.5.2.3.1 Short Distance Datasets 

Another attack implemented in this thesis was the deauthentication attack. For this 

type of attack, two separate datasets were gathered. In the first dataset, the attacker 

was placed close to the AP, around 1.5 metres away. This dataset is composed of 203 

network frames in total. 139 instances, 68.5% of the dataset, are normal frames from 

the communication between the AP and the wireless client. The remaining 31.5% of 

the dataset, 64 deauthentication frames, is malicious. The analysis of different metrics 

in this dataset is tabulated in Table VI.V. 

TABLE VI.V. DEAUTHENTICATION SHORT DISTANCE DATASET ANALYSIS RESULTS 

Dataset Content Average 
Standard 
Deviation 

Skewness Kurtosis 

 ܫܴܵܵ

Normal - Malicious -37.41 10.295 -0.075 -1.69 

Normal -42.78 7.877   

Malicious -25.75 1.447   
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 ோ௔௧௘ܬܰܫ

Normal - Malicious 1.7833 6.411 8.102 64.284 

Normal 2.1439 7.7296   

Malicious 1 0   

 ܸܣܰ

Normal - Malicious 129.03 154.301 0.37 -1.878 

Normal 43.87 108.066   

Malicious 314 0   

 ݁݉݅ܶ߂

Normal - Malicious 0.0499 0.0487 0.105 -1.976 

Normal 0.0711 0.0446   

Malicious 0.0038 0.0095   

 ஽௜௙ܳܧܵ

Normal - Malicious 0.86 23.246 -1.025 20.039 

Normal -4.12 20.905   

Malicious 11.67 24.531   

Dataset Content Average St. Deviation Skewness Kurtosis 

 

Histograms representing the frequency different metrics in this dataset, as well as 

bloxplot diagrams representing the distribution of the metrics are shown in Figures 

6.29.a – 6.33.b. 
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(a)      (b) 

Figure 6.29 Deauthentication Attack - ܴܵܵܫ Short Distance Traffic: (a) Histogram, 
(b) Boxplot. 

 
(a)      (b) 

Figure 6.30 Deauthentication Attack - ܬܰܫோ௔௧௘ Short Distance Traffic: (a) 
Histogram, (b) Boxplot. 

 
(a)      (b) 

Figure 6.31 Deauthentication Attack - ܸܰܣ Short Distance Traffic: (a) Histogram, 
(b) Boxplot. 
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(a)      (b) 

Figure 6.32 Deauthentication Attack - ݁݉݅ܶ߂ Short Distance Traffic: (a) 
Histogram, (b) Boxplot. 

 
(a)      (b) 

Figure 6.33 Deauthentication Attack - ܵܳܧ஽௜௙ Short Distance Traffic: (a) 
Histogram, (b) Boxplot. 

6.5.2.3.2 Long Distance Datasets 

In the second experiment, a similar deauthentication attack was implemented. 

However, the testbed from which the second dataset was gathered included a 

modification in the distances between the attacker and the AP. The attacker was placed 

farther away from the AP, around 10 metres away. This modification of the position of 

the attacker will alter the metric values of the network traffic datasets. Therefore the 

main objective for this change is to evaluate how changes in the testbed topology 

might affect the performance of the proposed detection system. This dataset is 
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composed of 229 network frames in total. 72.1% of this dataset, 165 instances, is of 

non-malicious nature. The remaining 27.9%, 64 instances, is malicious information. 

The analysis of different metrics in this dataset is tabulated in Table VI.VI. 

Histograms representing the frequency different metrics in this dataset, as well as 

bloxplot diagrams representing the distribution of the metrics are shown in Figures 

6.34.a – 6.33.b. 

TABLE VI.VI.  DEAUTHENTICATION LONG DISTANCE DATASET ANALYSIS 
RESULTS 

Dataset Content Average 
Standard 
Deviation 

Skewness Kurtosis 

 ܫܴܵܵ

Normal - Malicious -39.91 8.495 0.879 -0.976 

Normal -45.04 1.072   

Malicious -26.67 1.448   

 ோ௔௧௘ܬܰܫ

Normal - Malicious 1.6943 6.0395 8.621 72.956 

Normal 1.9636 7.1028   

Malicious 1 0   

 ܸܣܰ

Normal - Malicious 111.64 150.115 0.613 -1.635 

Normal 33.15 95.656   

Malicious 314 0   

 ݁݉݅ܶ߂

Normal - Malicious 0.0558 0.0484 -0.137 -1.947 

Normal 0.0761 0.0417   

Malicious 0.0035 0.0096   



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

164

 ஽௜௙ܳܧܵ

Normal - Malicious 0.93 461.067 -0.035 7.625 

Normal -97.99 372.782   

Malicious 225.97 562.039   

Dataset Content Average St. Deviation Skewness Kurtosis 

 

 
(a)      (b) 

Figure 6.34 Deauthentication Attack - ܴܵܵܫ Long Distance Traffic: (a) Histogram, 
(b) Boxplot. 

 

 
(a)      (b) 

Figure 6.35 Deauthentication Attack - ܬܰܫோ௔௧௘ Long Distance Traffic: (a) 
Histogram, (b) Boxplot. 
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(a)      (b) 

Figure 6.36 Deauthentication Attack - ܸܰܣ Long Distance Traffic: (a) Histogram, 
(b) Boxplot. 

 
(a)      (b) 

Figure 6.37 Deauthentication Attack - ݁݉݅ܶ߂ Long Distance Traffic: (a) 
Histogram, (b) Boxplot. 

 
(a)      (b) 

Figure 6.38 Deauthentication Attack - ܵܳܧ஽௜௙ Long Distance Traffic: (a) 
Histogram, (b) Boxplot. 
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Similar to the evaluated datasets when the Airpwn attacks were launched, the 

distributions of the different histograms generated when the Deauthentication attack 

was implemented are statistically dissimilar from each other. Again, trying to generate 

a common statistical profile of normal traffic that could adapt to the distribution of all 

the considered metrics may cause numerous FP alarms. 

With the statistical results presented through this section, it has been evidenced 

that all of the metric measurements follow non-homogeneous distributions. The 

characteristic measures for each of the six used metrics are statistically dissimilar from 

each other. In addition, there are no statistical distributions that the different metrics 

values could adapt to. Therefore, trying to generate a common statistical profile of 

normal traffic that could adapt to the distribution of all the considered metrics may 

cause numerous FP alarms. Hence, for all the evaluated datasets, all the metrics should 

be analysed and treated independently. 

In order to simplify the analysis of the parameters that describe the different 

datasets, a summary is presented in Table VI.VII. Figure 6.39 represents the number 

of frames within each dataset. Figure 6.40 represents the proportion of the frames 

within each dataset. 

TABLE VI.VII.  DATASETS CHARACTERISTICS. 

Attack 
Type of 
Attack 

Number of Frames Proportion 

Normal Malicious Normal Malicious 

Normal n/a 3631 n/a 100% n/a 

Airpwn 

Attack01 1350 11 99.2% 0.8% 

Attack02 13498 995 93.1% 6.9% 

Mixture 12016 114 99.1% 0.9% 

Deauthentication 

Long 
Distance 

165 64 72.1% 27.9% 

Short 
Distance 

139 64 68.5% 31.5% 
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Figure 6.39 Number of Frames In Each Dataset - Bar Chart. 

 

Figure 6.40 Proportion of Frames In Each Dataset - Bar Chart. 
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6.5.3 Metric Conditions 

Previously, it was explained that anomaly IDSs require that the number of normal 

frames must be larger than the malicious frames, and the difference between metrics of 

the normal and malicious frames in the assessed datasets must be statistically 

differentiable and quantifiable. 

Regarding the first condition, the authors of [80] indicate that the number of 

normal data instances is more predominant than malicious data instances in real 

network data traffic. The analysis of the network traffic datasets in the previous 

section has proven that the generated datasets are, in fact, composed of more normal 

data instances than malicious. Therefore, the first of the condition does not entitle a 

problem for the proposed detection system. Regarding the second condition, in the 

next section, it has been also presented the results of the unpaired ݐ-test analysis 

conducted to prove that both type of metrics are statistically differentiable. This 

statistical analysis has been implemented with the statistical analysis software ‘IBM 

SPSS Statistics’ [152]. 

6.5.3.1 Unpaired ࢚-Test for Metric Analysis 

The ݐ -test is a parametric test used to determine whether the means of two 

uncorrelated data samples differ from each other [153]. Since the instances evaluated 

in this method are independent, the particular type of test is the unpaired ݐ-test. 

Two hypotheses have been defined as part of the Hypothesis Testing Framework. 

The Null hypothesis ܪ଴  assumes that the means of the normal and anomalous 

instances of the metrics to be analysed are not statistically differentiable. On the other 

hand, the Alternative hypothesis ܪ஺  assumes that the means of both instances are 

statistically differentiable between each other. The significance level considered in the 

following analyses is 5%, which is the default value for the ݐ -test in IBM SPSS 

Statistics. The results of the unpaired ݐ-test for each metric and each dataset have been 

tabulated in the following tables. 
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The first dataset to be analysed is the Airpwn 01݇ܿܽݐݐܣ dataset. The results of 

this analysis are presented in the Table VI.VIII. For most of the metrics (ܴܵܵܮܶܶ ,ܫ, 

ܸܣܰ  and ܵܳܧ஽௜௙ ) there exist evidence of a difference between the instances of 

malicious and non-malicious nature. The significance level (0 = ݌) is lower than 5%. 

Hence, these four metrics can provide evidence of distinction between both types of 

information, for this dataset. However, the significance level for the metrics ܬܰܫோ௔௧௘ 

 are both higher than 5%. Hence, these two metrics (0.095 = ݌) ݁݉݅ܶ߂ and (0.104 = ݌)

cannot provide evidences of distinction between both types of information, for this 

dataset. 

TABLE VI.VIII.  AIRPWN DATASET - ݐ - 01݇ܿܽݐݐܣ-TEST ANALYSIS 

 test for Equality of Means-ݐ 

Metrics Sig. (2-tailed) Mean Difference 
95% Confidence Inter. of the Diff. 

Lower Upper 

 െ13.371 െ14.373 െ12.368 0.000 ܫܴܵܵ

 ோ௔௧௘ 0.104 10.286 െ2.121 22.692ܬܰܫ

 െ234.323 െ265.327 െ203.319 0.000 ܮܶܶ

 െ305.461 െ315.761 െ295.161 0.000 ܸܣܰ

 ஽௜௙ 0.000 െ2541.429 െ2708.227 െ2374.63ܳܧܵ

 െ0.0011 0.0141 0.0065 0.095 ݁݉݅ܶ߂

 

The next dataset to be analysed is the Airpwn 02݇ܿܽݐݐܣ dataset. The results of 

this analysis are presented in the Table VI.IX. For this dataset there exists evidence of 

a statistical difference between the instances of malicious and non-malicious nature, 

for all the metrics. The significance level (0 = ݌) is lower than 5%. Hence, the six 

metrics can provide evidences of distinction between both types of information, for 

this dataset. 
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TABLE VI.IX.  AIRPWN DATASET - ݐ - 02݇ܿܽݐݐܣ-TEST ANALYSIS 

 test for Equality of Means-ݐ 

Metrics Sig. (2-tailed) Mean Difference 
95% Confidence Inter. of the Diff. 

Lower Upper 

 െ9.547 െ9.667 െ9.427 0.000 ܫܴܵܵ

 ோ௔௧௘ 0.000 47.63 46.638 48.623ܬܰܫ

 െ195.149 െ198.111 െ192.187 0.000 ܮܶܶ

 െ274.446 െ275.27 െ273.622 0.000 ܸܣܰ

 ஽௜௙ 0.000 132.534 106.194 158.874ܳܧܵ

 െ0.0057 െ0.0063 െ0.0051 0.000 ݁݉݅ܶ߂

The results of the unpaired ݐ-test analysis for the Airpwn ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ dataset 

are presented in Table VI.X. Again, there exists evidence of a statistical difference 

between the instances of malicious and non-malicious nature, for all the metrics. The 

significance level (which is ݌  = 0) is lower than 5%. Hence, the six metrics can 

provide evidences of distinction between both types of information, for this dataset. 

TABLE VI.X. AIRPWN DATASET - ݀݁ݔ݅ܯ	ݐ - ݇ܿܽݐݐܣ-TEST ANALYSIS 

 test for Equality of Means-ݐ 

Metrics Sig. (2-tailed) Mean Difference 
95% Confidence Inter. of the Diff. 

Lower Upper 

 െ10.68 െ11.122 െ10.239 0.000 ܫܴܵܵ

 ோ௔௧௘ 0.000 46.624 43.461 49.788ܬܰܫ

 െ194.069 െ203.539 െ184.598 0.000 ܮܶܶ

 െ275.284 െ277.91 െ272.658 0.000 ܸܣܰ

 ஽௜௙ 0.000 577.143 549.531 604.755ܳܧܵ

 െ0.0045 െ0.0058 െ0.0032 0.000 ݁݉݅ܶ߂
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The results of the unpaired ݐ-test analysis for the Deauthentication Short Distance 

dataset are presented in Table VI.XI. For most of the metrics (ܴܵܵܳܧܵ ,ܸܣܰ ,ܫ஽௜௙ and 

 there exists evidence of a difference between the instances of malicious and (݁݉݅ܶ߂

non-malicious nature. The significance level (0 = ݌) is lower than 5%. Hence, these 

four metrics can provide evidences of distinction between both types of information, 

for this dataset. However, the significance level for the metric ܬܰܫோ௔௧௘ (0.238 = ݌) is 

higher than 5%. Hence, this metric cannot provide evidences of distinction between 

both types of information, for this dataset. 

TABLE VI.XI.  DEAUTHENTICATION DATASET - SHORT DISTANCE - ݐ-TEST 
ANALYSIS 

 test for Equality of Means-ݐ 

Metrics Sig. (2-tailed) Mean Difference 
95% Confidence Inter. of the Diff. 

Lower Upper 

 െ17.034 െ18.993 െ15.075 0.000 ܫܴܵܵ

 ோ௔௧௘ 0.238 1.144 െ0.764 3.052ܬܰܫ

 െ270.129 െ296.801 െ243.458 0.000 ܸܣܰ

 ஽௜௙ 0.000 െ15.794 െ22.379 െ9.21ܳܧܵ

 0.0785 0.0562 0.0674 0.000 ݁݉݅ܶ߂

 

Finally, the results of the unpaired ݐ-test analysis for the Deauthentication Long 

Distance dataset are presented in Table VI.XII. Again, for the four metrics ܴܵܵܫ , 

 there exists evidence of a difference between the instances ݁݉݅ܶ߂ ஽௜௙ andܳܧܵ ,ܸܣܰ

of malicious and non-malicious nature. The significance level (0 = ݌) is lower than 

5%. Hence, these four metrics can provide evidences of distinction between both types 

of information, for this dataset. However, the significance level for the metric ܬܰܫோ௔௧௘ 

( ݌  = 0.28) is higher than 5%. Hence, this metric cannot provide evidences of 

distinction between both types of information, for this dataset. 
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TABLE VI.XII.  DEAUTHENTICATION DATASET - LONG DISTANCE - ݐ-TEST 
ANALYSIS 

 test for Equality of Means-ݐ 

Metrics Sig. (2-tailed) Mean Difference 
95% Confidence Inter. of the Diff. 

Lower Upper 

 െ18.371 െ18.946 െ17.795 0.000 ܫܴܵܵ

 ோ௔௧௘ 0.28 0.964 െ0.788 2.715ܬܰܫ

 െ280.848 െ304.441 െ257.256 0.000 ܸܣܰ

 ஽௜௙ 0.000 െ353.963 െ479.801 െ228.124ܳܧܵ

 0.0829 0.0621 0.0725 0.000 ݁݉݅ܶ߂

 

All the results presented in this section assure the two conditions described as 

necessary for the proposed methodology to be effective. 

6.5.4 Feature Selection 

Feature Selection is a widely used concept among the intrusion detection, machine 

learning and data mining systems, which refers to a group of techniques able to reduce 

the number of metrics in a given dataset to the minimum and optimise the selection 

process of the most relevant set of metric [92]. Optimising the selection of network 

traffic metrics has also a significant impact on the performance and speed of the IDSs 

[91] [142]. Analysing datasets containing irrelevant and redundant information may 

slow the intrusion detection process down [130]. In [142], the authors practically 

showcases that the utilisation of feature selection techniques contributes to improve 

overall accuracy of their system, reducing the number of false alarms and improving 

the DR. Ideally, all IDSs should implement feature selection as part of their 

framework to improve the attack detection accuracy. 
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Irrelevant and redundant metrics introduce inappropriate information in the 

training or analysis dataset, degrading the accuracy of the intrusion detector [9]. These 

metrics will cause what is known as ‘curse of dimensionality’ [48]. When 

implementing feature selection techniques, IDSs should have the precautions not to 

unintentionally delete more metrics than should be deleted. In that case, relevant 

metrics could be removed and the IDS may end up misclassifying attacks. IDSs need 

to verify that results with similar accuracy are produced using both the complete and 

the preprocessed dataset. 

The implementation of automatic feature selection techniques for unsupervised 

IDSs is still a great challenge for researchers in intrusion detection [54], especially if 

the IDSs perform the detection in real time. It requires a period of time to be executed. 

The larger the number of metrics in the dataset, the longer the required time. An IDS 

that preforms attack detection in real time may not be able to afford too much time on 

this preprocessing procedure. 

6.5.4.1 Curse of Dimensionality 

The term curse of dimensionality refers to the degrading effect that the utilisation of an 

excessive number of metrics causes to the results of data analysis, intrusion detection, 

machine learning and data mining systems. Curse of dimensionality is caused by the 

utilisation of datasets containing irrelevant and redundant information. 

One of the main characteristics for an IDS to produce accurate detection results is 

to have enough network traffic metrics to analyse [48]. IDSs rely on the relevance of 

the evidences provided by these metrics to produce accurate intrusion detection 

results. But having an excessive number of metrics could be more prejudicial for the 

results than having too few metrics to analyse. For instance, in [9], the author presents 

the results of implementing K-means clustering on a given dataset. The results that this 

work presents show that selecting 8 specific metrics out of all the available metrics 

produce the best intrusion detection results. The use of this set of 8 metrics maximises 

the accuracy of the detection systems. The author of this work assessed the results that 

would be obtained if more metrics were utilised. The results show that increasing the 



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

174

number of metrics up to 19 metrics produces a drop of 17% in the detection accuracy. 

This deterioration of the results is the direct consequence of the curse of 

dimensionality. 

6.6 Summary 

This chapter has described several aspects regarding the IEEE 802.11 network traffic 

datasets used in this thesis. Firstly, this chapter addresses the decision of whether 

utilise publicly available network datasets, dataset generated using network simulation 

software, or utilise network traffic datasets gathered from a live operational network. 

The experiments in this thesis have been implemented with network traffic datasets 

gathered from a live operational IEEE 802.11 network. Using network traffic datasets 

from this network to evaluate the proposed IDS provides a series of advantages. The 

dataset would contain more realistic parameters than a synthetically generated dataset. 

This datasets would commonly require being processed to clean it and make it suitable 

for the detection process. As part of the preprocessing process, this chapter has 

explained the filtering procedure used to remove the unnecessary information gathered 

adjacent wireless networks, and helps to reduce the total amount of information that 

the detection system needs to analyse. The network traffic is filtered out using MAC 

address of the AP and the wireless client. 

This chapter has also presented an extensive description of the different metrics 

that have been considered for this thesis. Six metrics have been experimentally 

selected as the most appropriate for detecting the attacks, after the evaluation of all the 

available metrics. The selection of the metrics plays an important role in the 

generation of accurate intrusion detection results. As it has been explained in this 

chapter, the number of the metrics is also an important to be considered. An example 

has been practically described that shows the problem with D-S using a large number 

of metrics. The influence of the belief in Uncertainty follows a decreasing trend, as 

more metrics are fused. 

The chapter has also presented the statistical description of all the used metrics in 

all the datasets, along with a discussion of whether these metrics are appropriate for 



 

 

CHAPTER 6: WIRELESS NETWORK TRAFFIC DATASETS 

175

the detection of wireless-specific attacks. This analysis proves that the number of 

normal data instances is more predominant than malicious data instances in the 

analysed network traffic datasets. On the other hand, this analysis also statistically 

proves that the metrics can provide distinction between both normal and malicious 

frames. These are the two conditions that need to be met for the anomaly IDSs to be 

accurate. In addition, the statistical distribution of each metric is dissimilar from each 

other. Generating a common statistical profile of normal traffic that could adapt to the 

distribution of all the considered metrics would not be feasible. 

Lastly, the chapter concludes with a brief description of the concept of feature 

selection and the general need for this approach, as well as the description of the 

concept of curse of dimensionality. 
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Chapter 7  

Results Evaluation 

7.1 Introduction 

This chapter evaluates the effectiveness of the unsupervised anomaly based IDS 

framework presented in this thesis. The approach followed in this chapter to 

demonstrate the effectiveness of the detection system is to compare the detection 

results generated using the multi-layer approach (i.e. when all the considered metrics 

are used) against the same methodology utilising different sets of metrics. The purpose 

is to verify whether the combined use of all the selected metrics outperforms the same 

methodology, utilising other combinations with fewer number of metrics. For the 

Normal and Airpwn datasets (i.e. Attack01, Attack02 and Mixed Attack), there exist 

2଺ െ 1 different metrics combinations, whereas for the deauthentication datasets (i.e. 

Long Distance and Short Distance), there exist 2ହ െ 1 different metrics combinations. 

The results are used to prove different aspects of the IDS proposed in this thesis. It 

is important that the detection system should be able to provide very high or even 

perfect detection capabilities. Hence, one of the aims of this results evaluation is to 

prove that the proposed IDS is accurate providing extra level of protection to wireless 

networks. Also, it is important to prove the effectiveness of the proposed system 

against different type of attacks, as well as to find the methodology that best results 
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generates (i.e. mean or mode, and distance or angle). The application of one 

mechanism or the other may directly affect the final results of the proposed detection 

system. Therefore, a fundamental part of the evaluation experiments is to assess the 

performance of the system using each of the configurations. Another aspect to be 

evaluated is the sliding window length that generates the best detection results. In 

addition, it is important to verify whether or not the proposed methodology is capable 

of being implemented in real time, and to estimate the maximum number of malicious 

frames that could be included within the initial sliding window before the accuracy of 

the detection results deteriorate. 

This chapter will present a thorough description of the generated results, for all 

the considered datasets and all the possible metric combinations. Using these results, 

this chapter will address all the points previously described. Nonetheless, before 

presenting the experiments results, this chapter introduces the evaluation functions 

used to examine these results. 

7.2 Statistical Evaluation Parameters 

The efficiency of IDSs could be evaluated using multiple parameters, such as the 

amount of resources (CPU, Memory, etc.) the system consumes, or the required time 

to conduct the detection. Nonetheless, the most important aspect to evaluate the 

effectiveness of the proposed intrusion detection methodology is its ability to make 

correct predictions [58]. This is achieved using a series of evaluation functions over 

the generated system outcome. These evaluation functions have been widely used 

among the researching community in the field of IDSs. Before listing the functions, it 

is also necessary to define four evaluation parameters utilised in the functions. These 

parameters provide quantifiable evidence of how effective are the IDSs at making 

correct detections. These are: 

 True Positive (ܶܲ) refers to one attack frame that has been correctly classified as 

malicious. 

 True Negative (ܶܰ ) refers to one non-attack frame that has been correctly 

classified as legal frame. 
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 False Positive (ܲܨ) refers to one non-attack frame that has been misclassified as 

malicious. 

 False Negative (ܰܨ) refers to one attack frame that has been misclassified as legal 

frame. 

These parameters provide quantifiable evidence of how effective are the IDSs at 

making correct detections. All these parameters are utilised to calculate the following 

evaluation functions; Equations 7.1 – 7.6: 

 Detection Rate (ܴܦ ) is the proportion of attack frames correctly classified as 

malicious, among all the attack frames. 

ሺ%ሻ	ܴܦ ൌ
ܶܲ

ܰܨ ൅ ܶܲ
																																																		ሺ7.1ሻ 

 

 False Positive Rate (ܨ ோܲ௔௧௘) is the proportion of non-attack frames misclassified as 

malicious, among all the evaluated frames. 

ܨ ோܲ௔௧௘	ሺ%ሻ ൌ
ܲܨ

ܶܲ ൅ ܲܨ ൅ ܶܰ ൅ ܰܨ
																																			ሺ7.2ሻ 

 

 False Negative Rate (ܨ ோܰ௔௧௘) is the proportion of attack frames misclassified as 

legal, among all the attack frames. 

ܨ ோܰ௔௧௘	ሺ%ሻ ൌ
ܰܨ

ܶܲ ൅ ܰܨ
																																															ሺ7.3ሻ 

 

 Overall Success Rate (ܱܴܵ) or ݕܿܽݎݑܿܿܣ is the proportion of the total number of 

frames correctly classified, among all the evaluated frames. 

ܱܴܵ	ሺ%ሻ ൌ
ܶܰ ൅ ܶܲ

ܶܲ ൅ ܲܨ ൅ ܶܰ ൅ ܰܨ
																																						ሺ7.4ሻ 

 

 ܲ݊݋݅ݏ݅ܿ݁ݎ  or ܴ݈݈݁ܿܽ  is the proportion of attack frames correctly classified as 

malicious, among all the alarms generated. 
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ሺ%ሻ	݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
																																											ሺ7.5ሻ 

 

 ܨ– –ܨ is a tradeoff between Precision and DR. The ݁ݎݑݏܽ݁ܯ–ܨ or ݁ݎ݋ܿܵ  ݁ݎ݋ܿܵ

produces a high result when ܲ݊݋݅ݏ݅ܿ݁ݎ and DR are both balanced [14] [97]. The 

higher the ܨ–  .and the DR ݊݋݅ݏ݅ܿ݁ݎܲ the better the ,݁ݎ݋ܿܵ

–ܨ ሺ%ሻ	݁ݎ݋ܿܵ ൌ
2 ∗ ݊݋݅ݏ݅ܿ݁ݎܲ ∗ ܴܦ
݊݋݅ݏ݅ܿ݁ݎܲ ൅ ܴܦ

																																			ሺ7.6ሻ 

 

The most important action for the IDSs is to generate the maximum number of 

 .is not desirable ܲܨ or ܰܨ and not generating any false alarm. Generating either ܴܦ

Both situations show decrease of the effectiveness of an IDS detecting intrusions. 

However, cost of generating ݏܰܨ is often higher than the cost of [80] ݏܲܨ. An IDS 

that generates too many ݏܲܨ works against legitimate communications. However, the 

protected system is not actually compromised by any threat. The administrator of the 

IDS might ignore the raised attack alerts [78]. On the other hand, every single ܰܨ is 

an attack that has gone undetected and reached the protected system. 

7.3 Results Evaluation 

This section describes the experiment results generated by the unsupervised anomaly 

based IDS framework presented in this thesis. The principal objective of the described 

experiments is to evaluate the effectiveness of the proposed mechanisms. There are a 

series of additional points that have been also evaluated and verified through the 

implementation of these experiments. 

One of these points is to compare the detection results generated using the multi-

layer approach (i.e. when all the considered metrics are used) against the same 

methodology utilising different sets of metrics. The purpose is to verify whether the 

combined use of all the selected metrics outperforms the same methodology, utilising 

other combinations with fewer number of metrics. 
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It is necessarily to evaluate the results that the proposed methodology produces, 

using all the possible combinations of metrics. For the Normal and Airpwn datasets 

(i.e. Attack01, Attack02 and Mixed Attack) there exist 2଺ െ 1  possible metric 

combinations, since six different metrics have been selected. Therefore, to evaluate the 

results of the proposed methodology, the same wireless network dataset is evaluated 

63 times. For the deauthentication datasets (i.e. Long Distance and Short Distance) 

there exist 2ହ െ 1 possible metric combinations, since five different metrics have been 

selected. Therefore, the same wireless network dataset is evaluated 31 times. 

Another point that needs to be addressed is to find the sliding window length that 

generates the best detection results. The same dataset has been evaluated multiple 

times varying the length of the sliding window. In the case of Airpwn attack, the 

length value has been gradually increased from one slot to a length of 200 slots, 

ሾ1 ൑ ݊ ൑ 200ሿ. In the case of the deauthentication attack, the length value increased 

only up to 135 slots, ሾ1 ൑ ݊ ൑ 135ሿ. This is because the number of instances in both 

datasets, Deauthentication Long Distance and Deauthentication Short Distance, is too 

small. Using ݊ ൌ 200 would not allow the sliding window to slide. For each of the 

different values of the sliding window length, the same evaluation parameters are 

calculated evaluating the same dataset. 

Another objective of the experiments presented in this section is to verify whether 

or not the proposed methodology is capable of being implemented in real time. A 

challenging requirement of the intrusion detection mechanism proposed in this thesis 

is to operate in a per-frame basis. As already mentioned in Chapter 5, the length value 

of the sliding window has a direct impact on the required time to implement the 

detection. Therefore, in order to prove that the system can operate in real time, the 

time required to assess each captured frame has been calculated. 

In addition, the results of the experiments that use the automatic BPAs 

methodologies have been used also to evaluate the maximum number of malicious 

frames that could be included within the initial sliding window before the accuracy of 

the detection results were affected. An attacker could alter the first statistical reference 

of normality if an attack were launched before the initial sliding window is completed 
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with captured frames. In that case, the characteristics of the malicious frames would 

dominate the sliding window and the detection system would classify normal traffic as 

malicious. This vulnerability makes it necessarily to assess the percentage of malicious 

frames that could be included within the initial sliding window, in correlation with the 

sliding window length, before the accuracy of the detection results were affected. 

Also, it is important to find the methodology that generates the best detection 

results. As have been explained in Chapter 5, there are four possible system 

configurations that could be implemented to assign belief in ݇ܿܽݐݐܣ. One of these 

configurations uses the Euclidean distance of the current frame from the current 

reference of normality. The modified configuration uses the angle generated by the 

Euclidean distance and frequency of the data. The application of one mechanism or the 

other may directly affect the final results of the proposed detection system. Therefore, 

a fundamental part of the evaluation experiments presented is to assess the 

performance of the system using each of the configurations. Another parameter that 

needs to be evaluated through the implementation of the following experiments is the 

reference of normality. It is necessarily to assess whether the mechanism to determine 

the reference of normality is adequate or not to provide efficient results. Two simple 

statistical parameters (i.e. mean or mode) have been used to define this reference. 

7.3.1 Deauthentication Attack Experiment Results 

One of the implemented attacks is the deauthentication attack. The detection was 

possible only using management and control frames, and data frames information from 

the two lower layers of the protocol stack. Firstly, because the network was encrypted 

with WPA2, and with the assumption that the monitor node does not have the key, it 

was not possible or necessary to retrieve information above the MAC layer. 

Two sets of experiments, using the same attack have been implemented. In a first 

experiment (Long Distance), the attacker is placed 10 metres away from the victim. In 

the second experiment (Short Distance) the attacker is placed 1.5 metres away from 

the victim. The experiment results presented in this section assess the effect of changes 

in the proximity of the attacker from the victim on the final results. The testbed for the 
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detection of the deauthentication attack is the generic testbed described in Chapter 6. 

All the devices are located in a stationary geographical location. Since five metrics 

have been selected, the same wireless network dataset has been evaluated 31 times. 

7.3.1.1 Deauthentication Attack Results – Long Distance 

The multi-layer results for the deauthentication Long Distance dataset, using the five 

considered metrics for the four assessed system configurations, are presented in Figure 

7.1. The figure represents the ܨ ோܲ௔௧௘ results, modifying the length value of the sliding 

window. In the figure, the Y-axis of the graph represents the percentage of ܨ ோܲ௔௧௘. 

The X-axis of the graph represents the length value of the sliding window. 

All the configurations provide completely perfect detection for any sliding 

window length larger than 3 slots. 100% of ܴܦ is constantly achieved for 3 ൑ 	݊. In 

terms of ܨ ோܲ௔௧௘, the detection system using the mean as reference of normality and 

Euclidean distance, distance-mean, always generates results lower than 2% for any 

sliding window length larger than 3 slots, 11 ൑ ݊. After the sliding window reaches 

31 slots long, 31 ൑ ݊, the ܨ ோܲ௔௧௘ is constantly reduced to 0.87%, and for 79 ൑ 	݊ the 

ܨ ோܲ௔௧௘  is constantly reduced to 0.43%. Using the configuration angle-mean, the 

detection ܨ ோܲ௔௧௘  results are slightly higher than the previous case. Only after the 

sliding window length reaches 81 slots long, 81 ൑ ݊, the ܨ ோܲ௔௧௘ is constantly reduced 

to 0.43%. The ܨ ோܲ௔௧௘ results for the distance-mode and angle-mode outperform the 

results of both, distance-mean and angle-mean for any length value of the sliding 

window. The percentage of ܨ ோܲ௔௧௘ does not reach 1.75% for any ݊ value. Also, the 

ܨ ோܲ௔௧௘ is constantly reduced to 0.43% in both configurations for 79 ൑ ݊. 

As a method to compare the four different assessed configurations, Table VII.I 

shows the results for each of the four configurations when the length value of the 

sliding window is ݊ ൌ 29 . The results show that the distance-mode configuration 

produces the best results overall for this dataset. Nonetheless, the difference with the 

other three methodology configuration variations is very small, almost unnoticeable. 

The value of the sliding window length that best results produces is 68 ൑ ݊. However, 
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selecting a sliding window length ݊ ൌ 29 can be considered a good option, because 

the results 100% ܴܦ and 0.87% ܨ ோܲ௔௧௘ can be considered an acceptable result. 

TABLE VII.I.  DEAUTHENTICATION LONG DISTANCE - 5 METRICS RESULTS - 29 SLOTS 

Configuration ܨ ܴܦ ோܲ௔௧௘ ܨ ோܰ௔௧௘ ݊݋݅ݏ݅ܿ݁ݎܲ ܴܱܵ ሻܿ݁ݏሺμ	݁݉݅ܶ ݁ݎ݋ܿܵܨ

Distance // 
Mean 

100 0.87 0 0.99 0.969 0.98 25 

Distance // 
Mode 

100 0.87 0 0.99 0.969 0.98 20 

Angle//Mean 100 1.74 0 0.98 0.941 0.97 17 

Angle//Mode 100 1.3 0 0.98 0.955 0.98 27 

 

Figure 7.2 shows the average processing time required to provide a final decision 

for each frame. The four assessed configurations require almost the same processing 

time. For ݊ ൌ 29, the average processing time is between 17µsec and 27µsec, being 

20µsec for the distance-mode configuration. For ݊ ൌ 68, the average processing time 

would increase to 76µsec. This average processing time represents the time from the 

moment a frame is captured to the moment a final decision is reached. Since the 

average interarrival time between two consecutive frames is 55msec, the intrusion 

detection can be implemented in real time. 

Figures 7.3 – 7.6 represent the ܨ ோܲ௔௧௘ results of any possible combination of four 

metrics when the system uses the methodology configurations distance-mean, 

distance-mode, angle-mean and angle-mode, respectively. The only set of 4 metrics 

that outperforms the combination of all the considered metrics is ܴܵܵܫ െ ோ௔௧௘ܬܰܫ െ

ܸܣܰ െ ܨ The .(݁݉݅ܶ߂ No) ஽௜௙ܳܧܵ ோܲ௔௧௘ is slightly lower than for the combination of 

5 metrics. The detection results in terms of ܴܦ are not shown in this graph but these 

are always 100% for any case when 12 ൑ ݊. 
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Figure 7.1 Deauthentication Long Distance - 𝐹𝑃!"#$ Results Comparison. 

 

 

 

Figure 7.2 Deauthentication Long Distance - Per Frame Detection Analysis 
Processing Time. 
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Figure 7.3 Deauthentication Long Distance - 𝐹𝑃!"#$ 4 Metrics - Distance & Mean. 

 

 

 

Figure 7.4 Deauthentication Long Distance - 𝐹𝑃!"#$ 4 Metrics - Angle & Mean. 
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Figure 7.5 Deauthentication Long Distance - 𝐹𝑃!"#$ 4 Metrics - Distance & Mode. 

 
 

 

Figure 7.6 Deauthentication Long Distance - 𝐹𝑃!"#$ 4 Metrics - Angle & Mode. 
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𝐼𝑁𝐽!"#$ − 𝑁𝐴𝑉 − 𝑆𝐸𝑄!"# combination. The 𝐷𝑅 results are not represented because 
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they are similar to the case of the 5 metrics. For 3 ≤ 𝑛, the system produces 100% 𝐷𝑅. 

The detection system does not generate 𝐹𝑃!"#$ results higher than 1.75% for any 𝑛 

value. This shows an increase in the effectiveness of the 5 metrics results. The 

configuration distance-mode produces again the best result overall. Specifically, the 

system generates 0.43% 𝐹𝑃!"#$when the sliding window is [26 ≤ 𝑛 ≤ 53], and for 

54 ≤ 𝑛, the 𝐹𝑃!"#$ result is 0%. For this particular sliding window length, the average 

processing time to produce perfect detection is 71µsec as shown in Figure 7.8. 

 

Figure 7.7 Deauthentication Long Distance - 𝐹𝑃!"#$ Results Comparison -       
4 Metrics - 𝑅𝑆𝑆𝐼 𝐼𝑁𝐽!"#$ 𝑁𝐴𝑉 𝑆𝐸𝑄!"#. 

Table VII.II shows a comparison of the evaluation results for the metric 

combination 𝑅𝑆𝑆𝐼 − 𝐼𝑁𝐽!"#$ − 𝑁𝐴𝑉 − 𝑆𝐸𝑄!"#. The top four rows of the table show 

the results when 𝑛 = 29. This is the length of the sliding window for which the 

system, using all the considered metrics, produced the best results. The bottom four 

rows of the table show the results when 𝑛 = 54, which produces the best results for 

the metrics combination 𝑅𝑆𝑆𝐼 − 𝐼𝑁𝐽!"#$ − 𝑁𝐴𝑉 − 𝑆𝐸𝑄!"# . The presented results 

prove that not including 𝛥𝑇𝑖𝑚𝑒  improves the final intrusion detection results. 

However, the length of the sliding window needs to be almost doubled to be able to 

produce these results, which also increases the probability to include malicious frames 

in the initial sliding window. 
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Figure 7.8 Deauthentication Long Distance - 𝑅𝑆𝑆𝐼 𝐼𝑁𝐽!"#$ 𝑁𝐴𝑉 𝑆𝐸𝑄!"# -  
 4 Metrics - Per Frame Detection Analysis Processing Time. 

 

TABLE VII.II.  DEAUTHENTICATION LONG DISTANCE RESULTS -   
        4 METRICS 𝑅𝑆𝑆𝐼 𝐼𝑁𝐽!"#$  𝑁𝐴𝑉 𝑆𝐸𝑄!"#  - 29 // 54 SLOTS. 

Configuration 𝐷𝑅 𝐹𝑃!"#$ 𝐹𝑁!"#$ 𝑂𝑆𝑅 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑆𝑐𝑜𝑟𝑒 𝑇𝑖𝑚𝑒   µμ𝑠𝑒𝑐  

Distance // 
Mean 100 0.87 0 0.99 0.969 0.98 21 

Distance // 
Mode 100 0.43 0 0.99 0.984 0.99 20 

Angle // Mean 100 0.87 0 0.99 0.969 0.98 18 

Angle // Mode 100 0.87 0 0.99 0.969 0.98 20 

Distance // 
Mean 100 0.43 0 0.99 0.984 0.99 45 

Distance // 
Mode 100 0 0 1 1 1 71 

Angle // Mean 100 0.43 0 0.99 0.984 0.99 54 

Angle // Mode 100 0 0 1 1 1 48 
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Figures 7.9 and 7.10 show the ܴܦ	  and ܨ ோܲ௔௧௘  results for the configuration 

distance-mean using all the possible combination of metrics, when the sliding window 

length is ݊ ൌ 29  and ݊ ൌ 54 , respectively. In order to record all the possible 

combination of metrics for the experiments with the deauthentication attack, the 

different metric combinations have been categorised in the indexes represented in 

Table VII.III. The index D1 referrers to the set that combines all the considered 

metrics, and the index D31 referrers to a single metric set. Therefore, the best results 

are to be expected from the test index D1. The Y-axis of the graphs represents the 

percentage of ܴܦ and ܨ ோܲ௔௧௘. The X-axis of the graphs represents the indexes shown 

in the table, which correspond to the different metric combinations. 

TABLE VII.III.  INDEXES OF THE USED METRICS IN DEAUTHENTICATION 
ATTACK. 

Index-Metrics Index-Metrics Index-Metrics Index-Metrics 

D1 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ - ܸܣܰ - ோ௔௧௘ܬܰܫ

D9 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ

D17 - ܴܵܵܫ - 
 ݁݉݅ܶ߂

D25 - ܬܰܫோ௔௧௘ 
 ஽௜௙ܳܧܵ -

D2 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

D10 - ܴܵܵܫ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

D18 - ܴܵܵܫ - 
 ோ௔௧௘ܬܰܫ

D26 - ܸܰܣ - 
 ஽௜௙ܳܧܵ

D3 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ - ோ௔௧௘ܬܰܫ

D11 - ܴܵܵܫ - 
 ܫܴܵܵ - D27 ܸܣܰ - ܫܴܵܵ - ஽௜௙ D19ܳܧܵ - ோ௔௧௘ܬܰܫ

D4 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

D12 - ܴܸܵܵܣܰ - ܫ - 
 ஽௜௙ܳܧܵ

D20 - ܴܵܵܫ - 
 ݁݉݅ܶ߂ - ஽௜௙ D28ܳܧܵ

D5 - ܴܵܵܬܰܫ - ܫோ௔௧௘ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

D13 - ݁݉݅ܶ߂ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

D21 - ݁݉݅ܶ߂ - 
 ோ௔௧௘ܬܰܫ

D29 - ܬܰܫோ௔௧௘ 

D6 - ܬܰܫ - ݁݉݅ܶ߂ோ௔௧௘ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

D14 - ݁݉݅ܶ߂ - 
 ஽௜௙ܳܧܵ - ோ௔௧௘ܬܰܫ

D22 - ݁݉݅ܶ߂ - 
 ܸܣܰ

D30 - ܸܰܣ 

D7 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ோ௔௧௘ܬܰܫ

D15 - ܸܣܰ - ݁݉݅ܶ߂ 
 ஽௜௙ܳܧܵ -

D23 - ݁݉݅ܶ߂ - 
 ஽௜௙ܳܧܵ

D31 - ܵܳܧ஽௜௙ 

D8 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ܸܣܰ

D16 - ܬܰܫோ௔௧௘ - ܸܰܣ 
 ஽௜௙ܳܧܵ -

D24 - ܬܰܫோ௔௧௘ - 
 ܸܣܰ
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In Figures 7.9 and 7.10, using the distance-mean configuration there are a number 

of combinations that generate extremely poor 𝐷𝑅 results, reaching 𝐷𝑅 0% in some 

cases. These metric combinations are D7, D11, D14, D16, D18, D21, D24, D25, and 

D29. One metric that is present in all the mentioned metric combinations is the 

𝐼𝑁𝐽!"#$. This is the effect of the curse of dimensionality, because the frames are 

constantly transmitted at a fixed 𝐼𝑁𝐽!"#$ of 1Mbps by the client and the attacker. This 

fact makes the 𝐼𝑁𝐽!"#$ an irrelevant metric for the intrusion detection process. 

 
Figure 7.9 Deauthentication Long Distance - 29 Slots - Distance & Mean. 

 
Figure 7.10 Deauthentication Long Distance - 54 Slots - Distance & Mean. 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 0,87 0 0,99 0,969 0,98 0,025
D2 100 5,22 0 0,94 0,842 0,91 0,018
D3 100 1,74 0 0,98 0,941 0,97 0,017
D4 100 3,91 0 0,96 0,876 0,93 0,016
D5 100 0,87 0 0,99 0,969 0,98 0,021
D6 100 2,61 0 0,97 0,914 0,96 0,016
D7 3,12 1,74 96,87 0,71 0,33 0,06 0,017
D8 100 8,7 0 0,91 0,761 0,86 0,025
D9 100 10 0 0,9 0,735 0,85 0,017
D10 100 1,3 0 0,98 0,955 0,98 0,016
D11 1,56 0 98,44 0,72 1 0,03 0,024
D12 100 1,3 0 0,98 0,955 0,98 0,019
D13 98,44 8,7 1,56 0,9 0,759 0,86 0,027
D14 0 2,17 100 0,7 0 0 0,018
D15 100 11,74 0 0,88 0,703 0,83 0,022
D16 1,56 0,43 98,44 0,72 0,5 0,03 0,019
D17 100 17,39 0 0,82 0,615 0,76 0,015
D18 0 1,3 100 0,7 0 0 0,018
D19 100 5,65 0 0,94 0,831 0,91 0,022
D20 100 4,78 0 0,95 0,853 0,92 0,018
D21 0 1,3 100 0,7 0 0 0,018
D22 100 8,7 0 0,91 0,761 0,86 0,025
D23 100 11,3 0 0,88 0,711 0,83 0,016
D24 0 1,3 100 0,7 0 0 0,017
D25 0 0 100 0,72 0 0 0,018
D26 100 3,04 0 0,97 0,901 0,95 0,018
D27 100 17,39 0 0,82 0,615 0,76 0,025
D28 100 23,48 0 0,76 0,542 0,7 0,017
D29 0 1,3 100 0,7 0 0 0,023
D30 100 8,7 0 0,91 0,761 0,86 0,016
D31 100 6,52 0 0,93 0,81 0,9 0,017

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 0,87 0 0,99 0,969 0,98 0,044
D2 100 2,17 0 0,97 0,927 0,96 0,046
D3 100 0,87 0 0,99 0,969 0,98 0,062
D4 100 3,04 0 0,97 0,901 0,95 0,059
D5 100 0,43 0 0,99 0,984 0,99 0,045
D6 100 2,61 0 0,97 0,914 0,96 0,044
D7 1,56 1,3 98,44 0,71 0,25 0,03 0,043
D8 100 8,7 0 0,91 0,761 0,86 0,042
D9 100 6,52 0 0,93 0,81 0,9 0,042
D10 100 1,3 0 0,98 0,955 0,98 0,043
D11 1,56 0 98,44 0,72 1 0,03 0,044
D12 100 0,87 0 0,99 0,969 0,98 0,043
D13 98,44 8,7 1,56 0,9 0,759 0,86 0,042
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D14 0 1,3 100 0,7 0 0 0,044
D15 100 10,87 0 0,89 0,719 0,84 0,064
D16 1,56 0,43 98,44 0,72 0,5 0,03 0,044
D17 100 14,35 0 0,85 0,659 0,8 0,04
D18 0 1,3 100 0,7 0 0 0,043
D19 100 6,09 0 0,93 0,802 0,9 0,042
D20 100 2,61 0 0,97 0,914 0,96 0,041
D21 0 1,3 100 0,7 0 0 0,042
D22 100 8,7 0 0,91 0,761 0,86 0,044
D23 100 12,17 0 0,87 0,695 0,82 0,04
D24 0 1,3 100 0,7 0 0 0,044
D25 0 0 100 0,72 0 0 0,044
D26 100 2,17 0 0,97 0,927 0,96 0,042
D27 100 9,13 0 0,9 0,752 0,86 0,045
D28 100 17,83 0 0,82 0,609 0,76 0,042
D29 0 1,3 100 0,7 0 0 0,061
D30 100 8,7 0 0,91 0,761 0,86 0,043
D31 100 6,09 0 0,93 0,82 0,9 0,043
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Comparing both figures helps to understand the effect that increasing the length of 

the sliding window produces on the detection results. In terms of ܴܦ, the results for 

݊ ൌ 29  and ݊ ൌ 54  remain are similar. In terms of ܨ ோܲ௔௧௘ , there are 13 metric 

combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, in the case of ݊ ൌ 29. Six 

out of these 13 metric combinations (D9, D15, D17, D23, D27, and D28) produce 

ܨ ோܲ௔௧௘  results higher than 10%. In the case of ݊ ൌ 54 , there are 12 metric 

combinations that produce ܨ ோܲ௔௧௘ results higher than 5% and only 4 of these 12 metric 

combinations (D15, D17, D23, and D28) produce ܨ ோܲ௔௧௘ results higher than 10%. In 

general, 15 metric combinations reduce the number of ܲܨ alarms, and only 2 cases are 

increased. These results show that increasing the length value of the sliding window 

reduces the number of ܲܨ alarms. 

The ܴܦ  and ܨ ோܲ௔௧௘  results for the configuration angle-mean, using ݊ ൌ 29 and 

݊ ൌ 54, are presented in Figures 7.11 and 7.12. In the case of ݊ ൌ 29, the utilisation 

of angle-mean makes D7 and D14 generate 100% ܴܦ, as a difference to the distance-

mean configuration that the ܴܦ results for the two metric combinations were 3.12% 

and 0%, respectively. Similarly, increasing the length value of the sliding window 

reduces the number of ܲܨ  alarms. In the case of ݊ ൌ 29 , there are 14 metric 

combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, and 5 out of these 14 metric 

combinations produce ܨ ோܲ௔௧௘ results higher than 10%. These are D9, D15, D17, D27, 

and D28. In the case of ݊ ൌ 54, there are 13 metric combinations that produce ܨ ோܲ௔௧௘ 

results higher than 5%, and only 5 out of these 13 metrics combinations produce 

ܨ ோܲ௔௧௘ results higher than 10%. These are D9, D15, D17, D23, and D28. Although the 

difference is not very large, 16 metric combinations reduce the number of ܲܨ alarms, 

and only 3 cases are increased. Again, increasing ݊ reduces the number of ܲܨ alarms. 

Comparing both configurations, the ܨ ோܲ௔௧௘ results for both sliding window length 

are substantially increased using the distance-mean configuration. Using angle-mean, 

three particular metric combinations clearly exceed a 35% ܨ ோܲ௔௧௘,  when ݊ ൌ 29 . 

These are (D17) ܴܵܵܫ െ ݊ When .݁݉݅ܶ߂ and (D28) ,ܫܴܵܵ (D27) ,݁݉݅ܶ߂ ൌ 54, there 

are also three particular metric combinations that produce a drastic increase of ܲܨ 

alarms. However, in this case, the metric combinations are (D17) ܴܵܵܫ െ ݁݉݅ܶ߂ , 
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(D23) 𝛥𝑇𝑖𝑚𝑒 − 𝑆𝐸𝑄!"#, and (D28) 𝛥𝑇𝑖𝑚𝑒. Eventually, the 𝐹𝑃!"#$ result of D27 is 

reduced to 9.13%. Hence, the presented 𝐹𝑃!"#$ results indicate that angle, instead of 

distance, increases the number of 𝐹𝑃 alarms for some combination of metrics with low 

number of metrics. 

 
Figure 7.11 Deauthentication Long Distance - 29 Slots - Angle & Mean. 

 

Figure 7.12 Deauthentication Long Distance - 54 Slots - Angle & Mean. 

Figures 7.13 and Figure 7.14 show the 𝐷𝑅 and 𝐹𝑃!"#$ results for the distance-

mode configuration, when the sliding window length is 𝑛 = 29  and 𝑛 = 54 , 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 1,74 0 0,98 0,97 0,017
D2 100 5,22 0 0,94 0,91 0,018
D3 100 2,17 0 0,97 0,96 0,022
D4 100 6,52 0 0,93 0,9 0,017
D5 100 0,87 0 0,99 0,98 0,018
D6 100 2,61 0 0,97 0,96 0,019
D7 100 3,04 0,97 0,95 0,017
D8 100 9,13 0 0,9 0,86 0,017
D9 100 14,78 0 0,85 0,79 0,017
D10 100 2,17 0 0,97 0,96 0,02
D11 1,56 0 98,44 0,72 0,03 0,018
D12 100 1,74 0 0,98 0,97 0,017
D13 100 8,7 0 0,91 0,86 0,019
D14 100 2,61 0 0,97 0,96 0,018
D15 100 13,04 0 0,87 0,81 0,016
D16 1,56 0,43 98,44 0,72 0,03 0,019
D17 100 48,26 0 0,51 0,54 0,016
D18 0 1,3 100 0,7 0 0,018
D19 100 7,83 0 0,92 0,88 0,017
D20 100 4,78 0 0,95 0,92 0,017
D21 0 1,3 100 0,7 0 0,018
D22 100 8,7 0 0,91 0,86 0,019
D23 100 8,7 0 0,91 0,86 0,019
D24 0 1,3 100 0,7 0 0,017
D25 0 0 100 0,72 0 0,017
D26 100 4,78 0 0,95 0,92 0,017
D27 100 39,57 0 0,6 0,58 0,018
D28 100 70 0 0,3 0,44 0,015
D29 0 1,3 100 0,7 0 0,019
D30 100 8,7 0 0,91 0,86 0,032
D31 100 6,52 0 0,93 0,9 0,023

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 0,87 0 0,99 0,98 0,043
D2 100 2,17 0 0,97 0,96 0,042
D3 100 0,87 0 0,99 0,98 0,043
D4 100 5,22 0 0,94 0,91 0,042
D5 100 0,43 0 0,99 0,99 0,054
D6 100 3,48 0 0,96 0,94 0,067
D7 100 2,17 0 0,97 0,96 0,043
D8 100 8,7 0 0,91 0,86 0,041
D9 100 13,04 0 0,87 0,81 0,041
D10 100 2,17 0 0,97 0,96 0,043
D11 1,56 0 98,44 0,72 0,03 0,044
D12 100 2,17 0 0,97 0,96 0,044
D13 100 8,7 0 0,91 0,86 0,043
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D14 1,56 1,74 98,44 0,7 0,03 0,043
D15 100 11,74 0 0,88 0,83 0,04
D16 1,56 0,43 98,44 0,72 0,03 0,044
D17 100 28,7 0 0,71 0,66 0,043
D18 0 1,3 100 0,7 0 0,045
D19 100 6,52 0 0,93 0,9 0,045
D20 100 2,61 0 0,97 0,96 0,045
D21 0 1,3 100 0,7 0 0,044
D22 100 8,7 0 0,91 0,86 0,05
D23 100 40,87 0 0,59 0,58 0,017
D24 0 1,3 100 0,7 0 0,043
D25 0 0 100 0,72 0 0,043
D26 100 4,78 0 0,95 0,92 0,042
D27 100 9,13 0 0,9 0,86 0,043
D28 100 69,13 0 0,3 0,45 0,04
D29 0 1,3 100 0,7 0 0,043
D30 100 8,7 0 0,91 0,86 0,041
D31 100 6,09 0 0,93 0,9 0,041
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respectively. Similar to what occurs with the distance-mean configuration, the metric 

combinations D7, D11, D14, D16, D18, D21, D24, D25, and D29 generate extremely 

poor ܴܦ results, generating 0% of ܴܦ in some cases; direct consequence of curse of 

dimensionality when using the ܬܰܫோ௔௧௘. In terms of ܨ ோܲ௔௧௘ results, there are 12 metric 

combinations that produce results higher than 5%, in the case of ݊ ൌ 29. Four out of 

these 12 metric combinations (D15, D23, D27, and D28) produce ܨ ோܲ௔௧௘  results 

higher than 10%. In the case of ݊ ൌ 54, there are 11 metric combinations which 

produce ܨ ோܲ௔௧௘ results higher than 5%, and only 5 out of these 11 metric combinations 

(D9, D15, D17, D23, and D28) produce ܨ ோܲ௔௧௘ results higher than 10%. Similar to the 

previous results, increasing the length value of the sliding window reduces the number 

of ܲܨ alarms. In total, 11 metric combinations reduce the number of ܲܨ alarms and 6 

cases are increased, after increasing the sliding window length. 

The utilisation of the distance-mode reduces the number of ܲܨ alarms compared 

to the distance-mean, for the two assessed sliding window lengths. In the case of 

݊ ൌ 29, 9 of the metric combinations produce fewer numbers of ܲܨ alarms, and 14 of 

the metric combinations produce similar number of ܲܨ  alarms to the same metric 

combination for the case of distance-mean. On the other hand, 8 cases generate higher 

number of ܲܨ alarms. In the case of ݊ ൌ 54, 5 of the metric combinations produce 

fewer numbers of ܲܨ  alarms, and 5 of the metrics combinations produce higher 

number of ܲܨ alarms than the same metrics combination when using distance-mean. 

Finally, Figure 7.15 shows the ܴܦ and ܨ ோܲ௔௧௘ results for the configuration angle-

mode, when the sliding window length is ݊ ൌ 29, and Figure 7.16 shows the same 

results for the configuration angle-mode, when the sliding window length is ݊ ൌ 54. 

Again, 5 particular metric combinations generate 0% ܴܦ (D18, D21, D24, D25, and 

D29), using both of the assessed sliding window lengths. These are the same metrics 

combinations that generate 0% of ܴܦ for the configuration angle-mean. In terms of 

ܨ ோܲ௔௧௘  results, there are 13 metric combinations that produce ܨ ோܲ௔௧௘  results higher 

than 5%, in the case of ݊ ൌ 29. Six out of these 13 metrics combinations (D9, D15, 

D17, D23, D27, and D28) produce ܨ ோܲ௔௧௘  results higher than 10%. In the case of 

݊ ൌ 54, there are 12 metric combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, 



 

 

CHAPTER 7: RESULTS EVALUATION 

194 

and only 5 out of these 12 metric combinations produce 𝐹𝑃!"#$ results higher than 

10%. These are D9, D15, D17, D23, and D28. Once more, increasing 𝑛 reduces the 

number of 𝐹𝑃𝑠. In total, 11 metrics combinations reduce the 𝐹𝑃𝑠 and only 4 metric 

combinations increased the 𝐹𝑃𝑠 after increasing the sliding window length. 

 

 

Figure 7.13 Deauthentication Long Distance - 29 Slots - Distance & Mode. 

 

 

Figure 7.14 Deauthentication Long Distance - 54 Slots - Distance & Mode. 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 0,87 0 0,99 0,98 0,02
D2 100 6,09 0 0,93 0,9 0,02
D3 100 1,3 0 0,98 0,98 0,022
D4 100 3,48 0 0,96 0,94 0,02
D5 100 0,43 0 0,99 0,99 0,02
D6 100 2,61 0 0,97 0,96 0,02
D7 6,25 2,17 93,75 0,71 0,11 0,021
D8 100 9,13 0 0,9 0,86 0,022
D9 100 7,83 0 0,92 0,88 0,02
D10 100 1,74 0 0,98 0,97 0,019
D11 1,56 0 98,44 0,72 0,03 0,02
D12 100 1,3 0 0,98 0,98 0,021
D13 98,44 8,7 1,56 0,9 0,86 0,019
D14 0 2,17 100 0,7 0 0,025
D15 100 11,74 0 0,88 0,83 0,024
D16 1,56 0,43 98,44 0,72 0,03 0,029
D17 100 9,57 0 0,9 0,85 0,019
D18 0 0,87 100 0,71 0 0,033
D19 100 4,78 0 0,95 0,92 0,025
D20 100 3,48 0 0,96 0,94 0,021
D21 0 1,3 100 0,7 0 0,021
D22 100 8,7 0 0,91 0,86 0,019
D23 100 11,74 0 0,88 0,83 0,019
D24 0 1,3 100 0,7 0 0,021
D25 0 0 100 0,72 0 0,02
D26 100 2,17 0 0,97 0,96 0,02
D27 100 26,52 0 0,73 0,68 0,018
D28 100 23,48 0 0,76 0,7 0,018
D29 0 1,3 100 0,7 0 0,02
D30 100 8,7 0 0,91 0,86 0,026
D31 100 7,39 0 0,92 0,88 0,019

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 0,87 0 0,99 0,98 0,052
D2 100 2,17 0 0,97 0,96 0,051
D3 100 0 0 1 1 0,054
D4 100 2,61 0 0,97 0,96 0,063
D5 100 0 0 1 1 0,071
D6 100 2,61 0 0,97 0,96 0,054
D7 1,56 2,17 98,44 0,7 0,03 0,051
D8 100 8,7 0 0,91 0,86 0,049
D9 100 10 0 0,9 0,85 0,048
D10 100 1,3 0 0,98 0,98 0,049
D11 1,56 0 98,44 0,72 0,03 0,05
D12 100 2,17 0 0,97 0,96 0,049
D13 98,44 8,7 1,56 0,9 0,86 0,048
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D14 0 1,3 100 0,7 0 0,053
D15 100 10,87 0 0,89 0,84 0,07
D16 1,56 0,43 98,44 0,72 0,03 0,05
D17 100 12,17 0 0,87 0,82 0,045
D18 0 1,3 100 0,7 0 0,057
D19 100 4,78 0 0,95 0,92 0,047
D20 100 3,91 0 0,96 0,93 0,046
D21 0 1,3 100 0,7 0 0,049
D22 100 8,7 0 0,91 0,86 0,047
D23 100 12,17 0 0,87 0,82 0,047
D24 0 1,3 100 0,7 0 0,078
D25 0 0 100 0,72 0 0,052
D26 100 2,17 0 0,97 0,96 0,055
D27 100 9,13 0 0,9 0,86 0,046
D28 100 18,7 0 0,81 0,75 0,053
D29 0 1,3 100 0,7 0 0,052
D30 100 8,7 0 0,91 0,86 0,054
D31 100 6,09 0 0,93 0,9 0,052
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Figure 7.15 Deauthentication Long Distance - 29 Slots - Angle & Mode. 

 
Figure 7.16 Deauthentication Long Distance - 54 Slots - Angle & Mode. 

Comparing the 𝐹𝑃!"#$  results produced by the angle-mean and angle-mode 

configurations, the utilisation of the mode improves the intrusion detection results. In 

the case of 𝑛 = 29, 11 different metric combinations produce fewer numbers of 𝐹𝑃 

alarms than using the mean, while only 4 of the metric combinations produce higher 

numbers of 𝐹𝑃 alarms than using the mean. The remaining 16 metric combinations 

produce similar number of 𝐹𝑃 alarms for both configurations. In the case of 𝑛 = 54, 9 

different metrics combinations produce fewer numbers of 𝐹𝑃 alarms than using the 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 1,3 0 0,98 0,98 0,027
D2 100 6,09 0 0,93 0,9 0,02
D3 100 2,17 0 0,97 0,96 0,02
D4 100 4,35 0 0,95 0,93 0,033
D5 100 0,87 0 0,99 0,98 0,02
D6 100 2,61 0 0,97 0,96 0,02
D7 100 2,17 0 0,97 0,96 0,02
D8 100 9,13 0 0,9 0,86 0,02
D9 100 12,17 0 0,87 0,82 0,023
D10 100 2,17 0 0,97 0,96 0,02
D11 1,56 0 98,44 0,72 0,03 0,032
D12 100 2,17 0 0,97 0,96 0,02
D13 100 8,7 0 0,91 0,86 0,02
D14 100 2,61 0 0,97 0,96 0,02
D15 100 13,04 0 0,87 0,81 0,03
D16 1,56 0,43 98,44 0,72 0,03 0,021
D17 100 18,26 0 0,81 0,75 0,021
D18 0 0,87 100 0,71 0 0,021
D19 100 5,22 0 0,94 0,91 0,02
D20 100 4,35 0 0,95 0,93 0,02
D21 0 1,3 100 0,7 0 0,021
D22 100 8,7 0 0,91 0,86 0,023
D23 100 13,04 0 0,87 0,81 0,019
D24 0 1,3 100 0,7 0 0,021
D25 0 0 100 0,72 0 0,021
D26 100 2,17 0 0,97 0,96 0,02
D27 100 30 0 0,7 0,65 0,027
D28 100 39,13 0 0,6 0,59 0,02
D29 0 1,3 100 0,7 0 0,021
D30 100 8,7 0 0,91 0,86 0,02
D31 100 7,39 0 0,92 0,88 0,02

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR Precision F9Score Processing+Time+(msec)
D1 100 0,87 0 0,99 0,98 0,05
D2 100 2,17 0 0,97 0,96 0,048
D3 100 0,43 0 0,99 0,99 0,049
D4 100 3,04 0 0,97 0,95 0,048
D5 100 0 0 1 1 0,048
D6 100 3,48 0 0,96 0,94 0,048
D7 100 2,17 0 0,97 0,96 0,048
D8 100 8,7 0 0,91 0,86 0,047
D9 100 12,61 0 0,87 0,82 0,047
D10 100 2,17 0 0,97 0,96 0,048
D11 1,56 0 98,44 0,72 0,03 0,05
D12 100 2,17 0 0,97 0,96 0,048
D13 100 8,7 0 0,91 0,86 0,047

0+

10+

20+

30+

40+

50+

60+

70+

80+

90+

100+

D1+ D2+ D3+ D4+ D5+ D6+ D7+ D8+ D9+ D10+ D11+ D12+ D13+ D14+ D15+ D16+ D17+ D18+ D19+ D20+ D21+ D22+ D23+ D24+ D25+ D26+ D27+ D28+ D29+ D30+ D31+

Deauthen(ca(on+A-ack+Results+2+Long+Distance+2+Angle/Mode+2+SW+29+Slots+

DetecHon+Rate+(%)+ False+PosiHve+Rate+(%)+

D14 1,56 1,74 98,44 0,7 0,03 0,05
D15 100 11,74 0 0,88 0,83 0,047
D16 1,56 0,43 98,44 0,72 0,03 0,051
D17 100 18,7 0 0,81 0,75 0,048
D18 0 1,3 100 0,7 0 0,051
D19 100 5,22 0 0,94 0,91 0,076
D20 100 4,35 0 0,95 0,93 0,049
D21 0 1,3 100 0,7 0 0,049
D22 100 8,7 0 0,91 0,86 0,047
D23 100 13,04 0 0,87 0,81 0,072
D24 0 1,3 100 0,7 0 0,049
D25 0 0 100 0,72 0 0,05
D26 100 2,17 0 0,97 0,96 0,048
D27 100 9,13 0 0,9 0,86 0,049
D28 100 30,43 0 0,69 0,65 0,051
D29 0 1,3 100 0,7 0 0,052
D30 100 8,7 0 0,91 0,86 0,051
D31 100 6,09 0 0,93 0,9 0,048

0+

10+

20+

30+

40+

50+

60+

70+

80+

90+

100+

D1+ D2+ D3+ D4+ D5+ D6+ D7+ D8+ D9+ D10+ D11+ D12+ D13+ D14+ D15+ D16+ D17+ D18+ D19+ D20+ D21+ D22+ D23+ D24+ D25+ D26+ D27+ D28+ D29+ D30+ D31+

Deauthen(ca(on+A-ack+Results+2+Long+Distance+2+Angle/Mode+2+SW+54+Slots+

DetecHon+Rate+(%)+ False+PosiHve+Rate+(%)+



 

 

CHAPTER 7: RESULTS EVALUATION 

196

mean, while only 1 of the metric combinations produces higher numbers of ܲܨ alarms 

than using the mean. The remaining 22 metric combinations produce similar number 

of ܲܨ alarms. Hence, based on these results, the utilisation of the mode improves the 

efficiency of the deauthentication attack detection results. Additionally, using the 

angle-mean configuration, three particular metrics combinations generated ܨ ோܲ௔௧௘ 

results higher than 28%, whilst using angle-mode reduces the number of ܲܨ alarms in 

these particular metrics combinations. The ܨ ோܲ௔௧௘ results in D17 drops from 28.7% to 

18.7%, D23 drops from 40.87% to 13.04%, and D28 drops from 69.13% to 30.43%. 

The presented results for the experiment using the deauthentication Long distance 

dataset indicate that the configuration of the methodology that produces the best 

results overall is the utilisation of the Euclidean distance along with the mode to 

establish the reference of normality (distance-mode), when the length value of the 

sliding window is ݊ ൒ 54. For this ݊ value, the required processing time per frame 

ranges between 45µsec and 71µsec. Nonetheless, any of the other three system 

configurations are able to generate highly accurate detection results. 

7.3.1.2 Deauthentication Attack Results – Short Distance 

The multi-layer results for the deauthentication Short Distance dataset experiments are 

presented in this section. The detection of spoofed frames using all methodology 

configurations is completely perfect in terms of ܴܦ, generating 100% ܴܦ for 3 ൑ ݊. 

In terms of ܨ ோܲ௔௧௘, the configuration distance-mean always generates ܨ ோܲ௔௧௘ results 

lower than 3% for any sliding window length. The best ܨ ோܲ௔௧௘ results are generated 

when the sliding window is between 58 and 72 slots long, ሾ58 ൑ ݊ ൑ 72ሿ , (0% 

ܨ ோܲ௔௧௘ ), and after the sliding window reaches 80 slots, 80 ൑ ݊ , the ܨ ோܲ௔௧௘  is 

constantly 0.98%. 

The angle-mean configuration generates ܨ ோܲ௔௧௘  results slightly higher than the 

previous case. Perfect detection (0% ܨ ோܲ௔௧௘) is never reached. Only after the sliding 

window length reaches 54 slots, 54 ൑ ݊, is the ܨ ோܲ௔௧௘ is reduced to 0.98%. The best 

ܨ ோܲ௔௧௘  results are generated when the sliding window is ሾ66 ൑ ݊ ൑ 75ሿ , which 
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generate 0.49% 𝐹𝑃!"#$. Using the distance-mode configuration, 0% 𝐹𝑃!"#$ is reached 

when the sliding window is 60 ≤ 𝑛 ≤ 76 , and for any sliding window length larger 

than 90 slots, 90 ≤ 𝑛. For any other sliding window length, the detection system does 

not generate a 𝐹𝑃!"#$ higher than 3%. 

These results evidence that utilising the mode generates better detection results 

than using the mean in terms of 𝐹𝑃!"#$. Similarly, the 𝐹𝑃!"#$ results generated using 

the configuration angle-mode also improve on the results generated utilising the angle-

mean. The system generates 0% 𝐹𝑃!"#$ when 90 ≤ 𝑛. For any other length value of 

the sliding window, the detection system generates 𝐹𝑃!"#$ results higher than 4% only 

in one case, 𝑛 = 84. 

In order to shown which of the four different assessed configurations is the most 

appropriate, Figure 7.17 represents a close comparison of the 𝐹𝑃!"#$ results of the 

detection systems for the four different assessed methodology configurations. The 

utilisation of the distance-mode configuration again produces the best results overall. 

The value of the sliding window length that best results produces is 60 ≤ 𝑛 ≤ 76. 

Table VII.IV shows the results for each of the four cases when 𝑛 = 60. For that 

particular sliding window length, the results generated by the distance and either the 

mean or the mode, are identical. 

 

Figure 7.17 Deauthentication Short Distance - 𝐹𝑃!"#$ Results Comparison. 
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The average processing time required by the detection system to provide a final 

decision is shown in Figure 7.18. The average processing time for the four different 

assessed configurations, when sliding window length is 𝑛 = 60, is between 55µsec 

and 77µsec, being the distance-mode the configuration that longest processing time 

requires. As can be seen, all the assessed configurations require almost the same 

processing time, and follow a similar increasing trend. Similar to the long distance 

experiments, the intrusion detection process can fairly be implemented in real time 

because the average interarrival time between two consecutive frames is 49msec. 

 

Figure 7.18 Deauthentication Short Distance - Per Frame Detection Analysis 
Processing Time. 

TABLE VII.IV.  DEAUTHENTICATION SHORT DISTANCE - 5 METRICS RESULTS - 
60 SLOTS 

Configuration 𝐷𝑅 𝐹𝑃!"#$ 𝐹𝑁!"#$ 𝑂𝑆𝑅 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑆𝑐𝑜𝑟𝑒 𝑇𝑖𝑚𝑒   µμ𝑠𝑒𝑐  

Distance // 
Mean 100 0 0 1 1 1 55 

Distance // 
Mode 100 0 0 1 1 1 77 

Angle//Mean 100 0.98 0 0.99 0.969 0.98 70 

Angle//Mode 100 0.49 0 0.99 0.984 0.99 59 

 

Process'Time'msec Process'Time'msec Process'Time'msec Process'Time'msec
Distance 0,004 Distance 0,008 Angle 0,002 Angle 0,007
Mean 0,004 Mode 0,004 Mean 0,003 Mode 0,007

0,004 0,005 0,003 0,008
0,005 0,004 0,004 0,006
0,004 0,004 0,004 0,008
0,004 0,005 0,005 0,006
0,005 0,007 0,005 0,006
0,005 0,008 0,005 0,006
0,006 0,007 0,007 0,007
0,006 0,008 0,006 0,008
0,006 0,007 0,007 0,008
0,007 0,007 0,007 0,009
0,006 0,008 0,007 0,01
0,007 0,008 0,008 0,013
0,007 0,009 0,008 0,01
0,008 0,01 0,009 0,011
0,008 0,01 0,01 0,011
0,009 0,011 0,011 0,012
0,009 0,012 0,011 0,012
0,01 0,012 0,012 0,013

0,011 0,013 0,013 0,014
0,011 0,014 0,014 0,015
0,012 0,015 0,013 0,015
0,013 0,016 0,014 0,017
0,013 0,016 0,015 0,017
0,015 0,018 0,02 0,018
0,015 0,018 0,017 0,019
0,016 0,019 0,017 0,02
0,017 0,02 0,018 0,022
0,023 0,021 0,018 0,024
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0,034 0,023 0,02 0,027
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0,033 0,026 0,023 0,033
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0,032 0,032 0,028 0,033
0,047 0,034 0,033 0,034
0,036 0,035 0,03 0,036
0,036 0,036 0,033 0,036
0,038 0,038 0,033 0,038
0,039 0,039 0,034 0,039
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The multi-layer results for the deauthentication Short Distance dataset present 

more inconsistent 𝐹𝑃!"#$ results than the multi-layer results for the deauthentication 

Long Distance dataset. Also, the sliding window length should be larger for the short 

distance deauthentication attack experiments than the long distance experiments to 

generate the best intrusion detection results. Hence, the average required processing 

time would also increase. This is a direct effect of the changes in the metric 

characteristics generated by the modification in the wireless network topology. It is 

also very important to highlight the fact that the 𝐷𝑅 results remain unaltered from one 

set of experiments to the other, despite the modification in the network topology. 

The intrusion detection results generated when using fewer numbers of metrics are 

shown next. Figures 7.19 – 7.22 represent the 𝐹𝑃!"#$  results of the metric 

combinations D2, D3, D4, D5, and D6, when the system uses the configurations 

distance-mean, distance-mode, angle-mean and angle-mode, respectively. Similar to 

the long distance experiments, only one metric combination outperforms the overall 

results of D1 for the four assessed methodology configurations. This is the D5 

combination of 𝑅𝑆𝑆𝐼 − 𝐼𝑁𝐽!"#$ − 𝑁𝐴𝑉 − 𝑆𝐸𝑄!"# .  The four methodology 

configurations generate similar 𝐷𝑅 results. These results are constantly 100% when 

the sliding window is 8 ≤ 𝑛 ≤ 118 . In contrast to the results for D1, the intrusion 

detection effectiveness drastically drops after 𝑛 reaches 119 slots long. 

 

Figure 7.19 Deauthentication Short Distance - 𝐹𝑃!"#$ 4 Metrics - Distance & Mean. 
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Figure 7.20 Deauthentication Short Distance - 𝐹𝑃!"#$ 4 Metrics - Angle & Mean. 

 

 

 

Figure 7.21 Deauthentication Short Distance -𝐹𝑃!"#$ 4 Metrics - Distance & Mode. 
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Figure 7.22 Deauthentication Short Distance - 𝐹𝑃!"#$ 4 Metrics - Angle & Mode. 

 

Figure 7.23 represents the 𝐹𝑃!"#$ results of D5 for the four different assessed 

methodology configurations. The detection system does not generate 𝐹𝑃!"#$ results 

higher than 2.5% for any 𝑛  value. The experiments using the distance-mode 

configuration produce the best result overall. Specifically, when the sliding window is 

42 ≤ 𝑛, the system generates 0% 𝐹𝑃!"#$. For this sliding window length, the average 

processing time to produce perfect detection is 35µsec. The experiment using distance-

mean also generates 0% 𝐹𝑃!"#$  when 42 ≤ 𝑛. However, using the distance-mean 

configuration, the system generates higher number of 𝐹𝑃 alarms when the sliding 

window 3 ≤ 𝑛 ≤ 15 .  In this case, the average processing time is 30µsec. The 

experiments that use the angle produce slightly higher numbers of 𝐹𝑃 alarms than 

using the distance. 

Table VII.V shows a comparison of all the methodology configurations for the 

two different sliding window lengths. The top four rows of the table show the results 

when 𝑛 = 42, which produces the best results for the metric combination D5. The 

bottom four rows of the table show the results when 𝑛 = 60, which is the length value 

of the sliding window that produces the best results for the metric combination D1. 
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Figure 7.23 Deauthentication Short Distance - 𝐹𝑃!"#$ Results Comparison -  

𝑅𝑆𝑆𝐼 𝐼𝑁𝐽!"#$ 𝑁𝐴𝑉 𝑆𝐸𝑄!"#. 

 

TABLE VII.V.  DEAUTHENTICATION LONG DISTANCE RESULTS -   
 4 METRICS - 𝑅𝑆𝑆𝐼 𝐼𝑁𝐽!"#$  𝑁𝐴𝑉 𝑆𝐸𝑄!"#  - 42 // 60 SLOTS. 

Configuration 𝐷𝑅 𝐹𝑃!"#$ 𝐹𝑁!"#$ 𝑂𝑆𝑅 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐹𝑆𝑐𝑜𝑟𝑒 𝑇𝑖𝑚𝑒   µμ𝑠𝑒𝑐  

Distance // 
Mean 100 0 0 1 1 1 30 

Distance // 
Mode 100 0 0 1 1 1 35 

Angle//Mean 100 0.98 0 0.99 0.969 0.98 33 

Angle//Mode 100 0.49 0 0.99 0.984 0.99 35 

Distance // 
Mean 100 0 0 1 1 1 62 

Distance // 
Mode 100 0 0 1 1 1 63 

Angle//Mean 100 0 0 1 1 1 52 

Angle//Mode 100 0 0 1 1 1 58 
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Figures 7.24 and 7.25 show the 𝐷𝑅  and 𝐹𝑃!"#$  results for the configuration 

distance-mean using all the possible combinations, using 𝑛 = 42 and 𝑛 = 60. The Y-

axis of the graphs represents the percentage of 𝐷𝑅 and 𝐹𝑃!"#$. The X-axis of the 

graphs represents the different metrics combinations indexes. Similar to the long 

distance experiments, there exist a particular number of metric combinations that 

generate extremely poor 𝐷𝑅 results, generating 0% 𝐷𝑅 in some cases. These metric 

combinations are D7, D11, D14, D16, D18, D21, D24, D25, and D29. Again, the 

𝐼𝑁𝐽!"#$ is the principal cause of these poor 𝐷𝑅 results. 

 
Figure 7.24 Deauthentication Short Distance - 42 Slots - Distance & Mean. 

 
Figure 7.25 Deauthentication Short Distance - 60 Slots - Distance & Mean. 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 1,96 0,98 0,97 0,047
D2 100 0 7,35 0,92 0,9 0,029
D3 100 0 1,47 0,98 0,98 0,033
D4 100 0 8,82 0,91 0,88 0,029
D5 100 0 0 1 1 0,03
D6 100 0 3,92 0,96 0,94 0,029
D7 1,56 98,44 1,47 0,67 0,03 0,031
D8 100 0 10,78 0,89 0,85 0,034
D9 100 0 10,29 0,89 0,86 0,029
D10 100 0 0,49 0,99 0,99 0,029
D11 1,56 98,44 0,49 0,68 0,03 0,039
D12 100 0 4,41 0,95 0,93 0,031
D13 98,44 1,56 6,86 0,92 0,89 0,029
D14 0 100 1,96 0,66 0 0,032
D15 100 0 8,82 0,91 0,88 0,035
D16 1,56 98,44 0 0,69 0,03 0,038
D17 100 0 20,1 0,79 0,76 0,034
D18 0 100 1,47 0,67 0 0,031
D19 100 0 9,8 0,9 0,86 0,033
D20 100 0 6,86 0,93 0,9 0,035
D21 0 100 1,47 0,67 0 0,033
D22 100 0 10,78 0,89 0,85 0,045
D23 100 0 11,27 0,88 0,85 0,038
D24 0 100 1,47 0,67 0 0,037
D25 0 100 0 0,68 0 0,033
D26 100 0 4,9 0,95 0,93 0,045
D27 100 0 12,25 0,87 0,84 0,032
D28 100 0 22,06 0,77 0,74 0,032
D29 0 100 1,47 0,67 0 0,03
D30 100 0 9,31 0,9 0,87 0,044
D31 100 0 7,35 0,92 0,9 0,031

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 0 1 1 0,055
D2 100 0 1,47 0,98 0,98 0,055
D3 100 0 0,49 0,99 0,99 0,055
D4 100 0 5,39 0,94 0,92 0,054
D5 100 0 0 1 1 0,062
D6 100 0 0 1 1 0,054
D7 1,56 98,44 1,47 0,67 0,03 0,054
D8 100 0 8,82 0,91 0,88 0,057
D9 100 0 9,31 0,9 0,87 0,058
D10 100 0 0,98 0,99 0,98 0,054
D11 1,56 98,44 0 0,69 0,03 0,06
D12 100 0 4,41 0,95 0,93 0,089
D13 98,44 1,56 1,47 0,98 0,97 0,06

0+

10+

20+

30+

40+

50+

60+

70+

80+

90+

100+

D1+ D2+ D3+ D4+ D5+ D6+ D7+ D8+ D9+ D10+ D11+ D12+ D13+ D14+ D15+ D16+ D17+ D18+ D19+ D20+ D21+ D22+ D23+ D24+ D25+ D26+ D27+ D28+ D29+ D30+ D31+

Deauthen(ca(on+A-ack+Results+2+Short+Distance+2+Distance/Mean+2+SW+42+Slots+

DetecHon+Rate+(%)+ False+PosiHve+Rate+(%)+

D14 0 100 0 0,68 0 0,053
D15 100 0 5,88 0,94 0,91 0,052
D16 1,56 98,44 0 0,69 0,03 0,053
D17 100 0 27,94 0,72 0,69 0,078
D18 0 100 1,47 0,67 0 0,052
D19 100 0 8,33 0,91 0,88 0,051
D20 100 0 6,37 0,93 0,91 0,051
D21 0 100 1,47 0,67 0 0,053
D22 100 0 9,31 0,9 0,87 0,054
D23 100 0 11,76 0,88 0,84 0,052
D24 0 100 1,47 0,67 0 0,053
D25 0 100 0 0,68 0 0,053
D26 100 0 7,35 0,92 0,9 0,052
D27 100 0 8,82 0,91 0,88 0,051
D28 98,44 1,56 37,75 0,61 0,62 0,067
D29 0 100 1,47 0,67 0 0,054
D30 100 0 9,31 0,9 0,87 0,055
D31 100 0 7,35 0,92 0,9 0,055
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Comparing these two graphs, the presented ܴܦ  results of both cases remain 

unchanged after increasing the sliding window length. There is a small ܴܦ drop for 

the single metric ݁݉݅ܶ߂ (D28). In terms of ܨ ோܲ௔௧௘, there are 15 metric combinations 

that produce ܨ ோܲ௔௧௘ results higher than 5%, in the case of ݊ ൌ 42. Seven out of these 

15 metrics combinations (D8, D9, D17, D22, D23, D27, and D28) produce ܨ ோܲ௔௧௘ 

results higher than 10%. In the case of ݊ ൌ 60, there are 14 metric combinations that 

produce ܨ ோܲ௔௧௘ results higher than 5%, and only 3 out of these 14 metric combinations 

produce ܨ ோܲ௔௧௘  results higher than 10%. These are D17, D23, and D28. In two 

particular cases (D17 and D28), increasing the length value of the sliding window 

makes the number of ܲܨ  alarms drastically increase from 20.1% to 27.94% and 

22.06% to 37.75%, respectively. However, 16 different metric combinations reduce 

the ܨ ோܲ௔௧௘ results by increasing the sliding window length. 

The ܴܦ  and ܨ ோܲ௔௧௘  results for the configuration angle-mean are presented in 

Figures 7.26 and 7.27, respectively. In both cases, the metric combinations D11, D14, 

D16, D18, D21, D24, D25, and D29 generate extremely poor ܴܦ results. In the case of 

݊ ൌ 42, there are 17 metric combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, 

and ten out of these 17 metric combinations produce ܨ ோܲ௔௧௘ results higher than 10%. 

In the case of ݊ ൌ 60, there are 14 metric combinations that produce ܨ ோܲ௔௧௘ results 

higher than 5%. Nine out of these 14 metric combinations produce ܨ ோܲ௔௧௘  results 

higher than 10%. In particular, D8, D15, D17, D22, D23, and D28, overpass 25% 

ܨ ோܲ௔௧௘, two of these metric combinations overpass 50% ܨ ோܲ௔௧௘. One particular metric 

that is included in all these metric combination is the ݁݉݅ܶ߂. These results show that 

increasing the sliding window length, degrades the intrusion detection results when the 

angle-mean configuration is used. In general, 11 metric combinations reduce the 

number of ܲܨ alarms and 9 cases increase the number of ܲܨ alarms, after increasing 

the length value of the sliding window. Comparing the detection results generated by 

the angle-mean against the distance-mean configuration, the utilisation of the angle 

makes the system to produce higher number of ܲܨ alarms for this dataset. 
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Figure 7.26 Deauthentication Short Distance - 42 Slots - Angle & Mean. 

 
Figure 7.27 Deauthentication Short Distance - 60 Slots - Angle & Mean. 

Figure 7.28 shows the 𝐷𝑅 and 𝐹𝑃!"#$ results for the distance-mode configuration, 

when the sliding window length is 𝑛 = 42. There are 15 metric combinations that 

produce 𝐹𝑃!"#$ results higher than 5%. Six out of these 15 metric combinations (D8, 

D17, D22, D23, D27, and D28) produce 𝐹𝑃!"#$ results higher than 10%. Comparing 

these results against the results generated by the distance-mean configuration, 7 metric 

combinations improve the distance-mean results while 5 metric combinations generate 

higher number of 𝐹𝑃 alarms. Figure 7.29 shows the 𝐷𝑅 and 𝐹𝑃!"#$ results for the 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 3,92 0,96 0,94 0,033
D2 100 0 9,8 0,9 0,86 0,029
D3 100 0 3,92 0,96 0,94 0,029
D4 100 0 13,24 0,86 0,83 0,032
D5 100 0 0,98 0,99 0,98 0,033
D6 100 0 3,92 0,96 0,94 0,029
D7 100 0 1,47 0,98 0,98 0,03
D8 100 0 11,27 0,88 0,85 0,038
D9 100 0 10,78 0,89 0,85 0,033
D10 100 0 1,47 0,98 0,98 0,031
D11 1,56 98,44 0,49 0,68 0,03 0,033
D12 100 0 5,88 0,94 0,91 0,033
D13 100 0 9,8 0,9 0,86 0,03
D14 1,56 98,44 3,43 0,65 0,03 0,03
D15 100 0 13,24 0,86 0,83 0,034
D16 1,56 98,44 0 0,69 0,03 0,038
D17 100 0 48,53 0,51 0,56 0,029
D18 0 100 1,47 0,67 0 0,034
D19 100 0 10,78 0,89 0,85 0,034
D20 100 0 8,33 0,91 0,88 0,042
D21 0 100 1,47 0,67 0 0,03
D22 100 0 10,78 0,89 0,85 0,029
D23 100 0 12,25 0,87 0,84 0,03
D24 0 100 1,47 0,67 0 0,03
D25 0 100 0 0,68 0 0,03
D26 100 0 6,86 0,93 0,9 0,032
D27 100 0 31,86 0,68 0,66 0,029
D28 100 0 67,16 0,32 0,48 0,029
D29 0 100 1,47 0,67 0 0,03
D30 100 0 9,31 0,9 0,87 0,031
D31 100 0 7,35 0,92 0,9 0,028

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 0,98 0,99 0,98 0,07
D2 100 0 1,47 0,98 0,98 0,052
D3 100 0 1,47 0,98 0,98 0,067
D4 100 0 13,24 0,86 0,83 0,051
D5 100 0 0 1 1 0,052
D6 100 0 0 1 1 0,052
D7 100 0 1,47 0,98 0,98 0,069
D8 100 0 33,82 0,66 0,65 0,068
D9 100 0 9,31 0,9 0,87 0,059
D10 100 0 1,47 0,98 0,98 0,052
D11 1,56 98,44 0 0,69 0,03 0,054
D12 100 0 8,33 0,91 0,88 0,052
D13 100 0 1,47 0,98 0,98 0,053
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D14 1,56 98,44 1,47 0,67 0,03 0,053
D15 100 0 28,43 0,71 0,69 0,078
D16 1,56 98,44 0 0,69 0,03 0,054
D17 100 0 57,84 0,42 0,52 0,056
D18 0 100 1,47 0,67 0 0,055
D19 100 0 15,2 0,84 0,81 0,055
D20 100 0 6,86 0,93 0,9 0,056
D21 0 100 1,47 0,67 0 0,053
D22 100 0 35,29 0,64 0,64 0,053
D23 100 0 28,43 0,71 0,69 0,052
D24 0 100 1,47 0,67 0 0,059
D25 0 100 0 0,68 0 0,053
D26 100 0 10,29 0,89 0,86 0,051
D27 100 0 7,84 0,92 0,89 0,055
D28 100 0 68,14 0,31 0,48 0,051
D29 0 100 1,47 0,67 0 0,059
D30 100 0 9,31 0,9 0,87 0,051
D31 100 0 7,35 0,92 0,9 0,056
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configuration distance-mode, when the sliding window length is 𝑛 = 60. Eleven of the 

metric combinations produce 𝐹𝑃!"#$ results higher than 5%, and only 4 out of these 11 

metric combinations produce 𝐹𝑃!"#$ results higher than 10%. These are D17, D23, 

D27, and D28. Again, increasing the length value of the sliding window reduces the 

number of 𝐹𝑃 alarms. In total, 18 metric combinations reduce the number of 𝐹𝑃 

alarms and the number of 𝐹𝑃 alarms generated by 13 metric combinations reaming 

unchanged. None of the metric combinations increase the 𝐹𝑃!"#$ results. 

 
Figure 7.28 Deauthentication Short Distance - 42 Slots - Distance & Mode. 

 
Figure 7.29 Deauthentication Short Distance - 60 Slots - Distance & Mode. 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 1,96 0,98 0,97 0,034
D2 100 0 8,33 0,91 0,88 0,034
D3 100 0 1,47 0,98 0,98 0,035
D4 100 0 8,82 0,91 0,88 0,036
D5 100 0 0 1 1 0,035
D6 100 0 1,47 0,98 0,98 0,035
D7 1,56 98,44 1,47 0,67 0,03 0,034
D8 100 0 10,78 0,89 0,85 0,034
D9 100 0 9,8 0,9 0,86 0,033
D10 100 0 0,49 0,99 0,99 0,034
D11 1,56 98,44 0 0,69 0,03 0,048
D12 100 0 3,43 0,96 0,95 0,034
D13 98,44 1,56 6,37 0,93 0,9 0,035
D14 0 100 1,96 0,66 0 0,037
D15 100 0 7,84 0,92 0,89 0,033
D16 1,56 98,44 0 0,69 0,03 0,036
D17 100 0 20,1 0,79 0,76 0,032
D18 0 100 1,47 0,67 0 0,034
D19 100 0 9,8 0,9 0,86 0,033
D20 100 0 7,35 0,92 0,9 0,032
D21 0 100 1,47 0,67 0 0,034
D22 100 0 10,78 0,89 0,85 0,033
D23 100 0 11,76 0,88 0,84 0,032
D24 0 100 1,47 0,67 0 0,037
D25 0 100 0 0,68 0 0,034
D26 100 0 3,43 0,96 0,95 0,033
D27 7,81 92,19 29,41 0,41 0,08 0,033
D28 100 0 22,06 0,77 0,74 0,034
D29 0 100 1,47 0,67 0 0,035
D30 100 0 9,31 0,9 0,87 0,034
D31 100 0 7,35 0,92 0,9 0,034

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 0 1 1 0,077
D2 100 0 0,49 0,99 0,99 0,062
D3 100 0 0,98 0,99 0,98 0,064
D4 100 0 3,92 0,96 0,94 0,065
D5 100 0 0 1 1 0,063
D6 100 0 0 1 1 0,062
D7 1,56 98,44 1,47 0,67 0,03 0,069
D8 100 0 9,8 0,9 0,86 0,061
D9 100 0 7,84 0,92 0,89 0,06
D10 100 0 0,49 0,99 0,99 0,062
D11 1,56 98,44 0 0,69 0,03 0,061
D12 100 0 2,94 0,97 0,96 0,061
D13 98,44 1,56 1,47 0,98 0,97 0,06
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D14 0 100 0 0,68 0 0,064
D15 100 0 3,43 0,96 0,95 0,061
D16 1,56 98,44 0 0,69 0,03 0,061
D17 100 0 14,22 0,85 0,82 0,058
D18 0 100 0,49 0,68 0 0,066
D19 100 0 8,33 0,91 0,88 0,058
D20 100 0 6,37 0,93 0,91 0,057
D21 0 100 1,47 0,67 0 0,061
D22 100 0 9,31 0,9 0,87 0,059
D23 100 0 11,76 0,88 0,84 0,076
D24 0 100 1,47 0,67 0 0,053
D25 0 100 0 0,68 0 0,06
D26 100 0 3,43 0,96 0,95 0,059
D27 100 0 11,27 0,88 0,85 0,073
D28 98,44 1,56 18,63 0,8 0,76 0,085
D29 0 100 1,47 0,67 0 0,062
D30 100 0 9,31 0,9 0,87 0,062
D31 100 0 7,35 0,92 0,9 0,06
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The utilisation of the distance-mode configuration reduces the number of ܲܨ 

alarms compared to the utilisation of the mean, for the two assessed sliding window 

lengths. In the case of ݊ ൌ 60, the ܨ ோܲ௔௧௘  results generated by the distance-mode 

configuration outperform the results by the distance-mean configuration. Ten of the 

metric combinations produce fewer numbers of ܲܨ  alarms, and 18 of the metric 

combinations produce similar number of ܲܨ alarms than the same metric combination 

for the case of distance-mean. On the other hand, only 3 cases generate higher 

numbers of ܲܨ alarms. The reduction of the number of ܲܨ alarms of the short distance 

experiments utilising the mode instead of the mean for the cases in which more 

metrics are combined, is not as noticeable as the long distance deauthentication attack 

experiment. Although very small, there is improvement in the efficiency of the 

detection results when the mode is used. 

Finally, Figure 7.30 shows the ܴܦ and ܨ ோܲ௔௧௘ results for the configuration angle-

mode, using ݊ ൌ 42, and Figure 7.31 shows the same results for the configuration 

angle-mode, when the sliding window length is ݊ ൌ 60. In the case of ݊ ൌ 42, there 

are 15 metric combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, and 11 out of 

these 15 metric combinations produce ܨ ோܲ௔௧௘ results higher than 10%. Three of these 

metric combinations overpass 30% of ܨ ோܲ௔௧௘. In the case of ݊ ൌ 60, there are 11 

metric combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, and 5 out of these 11 

metric combinations produce ܨ ோܲ௔௧௘  results higher than 10%. Only the metric 

combination ݁݉݅ܶ߂  (D28) overpasses 30% of ܨ ோܲ௔௧௘.  Once more, increasing the 

length value of the sliding window reduces the number of ܲܨ alarms. In total, 18 

metric combinations reduce the number of ܲܨ alarms and none metric combination 

increased the number of ܲܨ alarms, after increasing the sliding window length. 

Comparing the results generated by the angle-mode configuration against the 

results generated by the angle-mean configuration, 11 metric combinations improve 

the angle-mean results while 5 metric combinations generate higher number of ܲܨ 

alarms, in the case of ݊ ൌ 42 . The ܨ ோܲ௔௧௘  results generated by the remaining 14 

metric combinations are unchanged. In the case of ݊ ൌ 60, 14 metric combinations 

improve the angle-mean results while 2 metric combinations generate higher number 
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of 𝐹𝑃 alarms. The 𝐹𝑃!"#$ results generated by the remaining 15 metric combinations 

are unchanged. 

 
Figure 7.30 Deauthentication Short Distance - 42 Slots - Angle & Mode. 

 
Figure 7.31 Deauthentication Short Distance - 60 Slots - Angle & Mode. 

The utilisation of the mode as reference of normality generally improves the 

𝐹𝑃!"#$ results of the detection system, for the deauthentication Short Distance dataset 

experiment. On the other hand, comparing the 𝐹𝑃!"#$ results produced by the angle-

mode against distance-mode configuration, the utilisation of the angle to assign the 

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 2,94 0,97 0,96 0,034
D2 100 0 10,78 0,89 0,85 0,034
D3 100 0 1,47 0,98 0,98 0,035
D4 100 0 11,27 0,88 0,85 0,033
D5 100 0 0,49 0,99 0,99 0,035
D6 100 0 3,92 0,96 0,94 0,048
D7 100 0 1,47 0,98 0,98 0,035
D8 100 0 10,78 0,89 0,85 0,033
D9 100 0 10,78 0,89 0,85 0,033
D10 100 0 1,47 0,98 0,98 0,037
D11 1,56 98,44 0 0,69 0,03 0,049
D12 100 0 3,43 0,96 0,95 0,044
D13 100 0 6,37 0,93 0,91 0,035
D14 1,56 98,44 3,43 0,65 0,03 0,034
D15 100 0 9,31 0,9 0,87 0,035
D16 1,56 98,44 0 0,69 0,03 0,056
D17 100 0 30,88 0,69 0,67 0,032
D18 0 100 1,47 0,67 0 0,041
D19 100 0 10,78 0,89 0,85 0,035
D20 100 0 8,82 0,91 0,88 0,034
D21 0 100 1,47 0,67 0 0,035
D22 100 0 10,78 0,89 0,85 0,114
D23 100 0 12,25 0,87 0,84 0,033
D24 0 100 1,47 0,67 0 0,035
D25 0 100 0 0,68 0 0,035
D26 100 0 3,43 0,96 0,95 0,033
D27 7,81 92,19 38,73 0,32 0,07 0,033
D28 100 0 33,82 0,66 0,65 0,035
D29 0 100 1,47 0,67 0 0,036
D30 100 0 10,78 0,89 0,85 0,034
D31 100 0 7,35 0,92 0,9 0,033

Index Detection+Rate+(%) False+Positive+Rate+(%) False+Positive+Rate+(%) OSR F8Score Processing+Time+(msec) Precision
D1 100 0 0,49 0,99 0,99 0,059
D2 100 0 1,47 0,98 0,98 0,058
D3 100 0 1,47 0,98 0,98 0,06
D4 100 0 4,41 0,95 0,93 0,059
D5 100 0 0 1 1 0,058
D6 100 0 0 1 1 0,06
D7 100 0 1,47 0,98 0,98 0,059
D8 100 0 9,8 0,9 0,86 0,059
D9 100 0 9,31 0,9 0,87 0,059
D10 100 0 0,49 0,99 0,99 0,066
D11 1,56 98,44 0 0,69 0,03 0,06
D12 100 0 3,43 0,96 0,95 0,059
D13 100 0 1,47 0,98 0,98 0,058
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D14 1,56 98,44 0,98 0,68 0,03 0,059
D15 100 0 4,41 0,95 0,93 0,058
D16 1,56 98,44 0 0,69 0,03 0,059
D17 100 0 25,49 0,74 0,71 0,062
D18 0 100 0,49 0,68 0 0,063
D19 100 0 9,8 0,9 0,86 0,062
D20 100 0 7,35 0,92 0,9 0,062
D21 0 100 1,47 0,67 0 0,06
D22 100 0 10,78 0,89 0,85 0,224
D23 100 0 12,25 0,87 0,84 0,058
D24 0 100 1,47 0,67 0 0,059
D25 0 100 0 0,68 0 0,059
D26 100 0 3,43 0,96 0,95 0,059
D27 100 0 12,75 0,87 0,83 0,063
D28 100 0 31,86 0,68 0,66 0,058
D29 0 100 1,47 0,67 0 0,06
D30 100 0 9,31 0,9 0,87 0,077
D31 100 0 7,35 0,92 0,9 0,082
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belief in ݇ܿܽݐݐܣ reduces the effectiveness of the detection system. Most of the metric 

combinations generate higher number of ܲܨ alarms than the distance-mode results, 

when the sliding window length is ݊ ൒ 60. For this ݊ value, the required processing 

time per frame ranges between 52µsec and 63µsec. 

7.3.2 Airpwn Attack Experiments 

Airpwn is another attack that has been implemented to evaluate the proposed 

methodology. Two different versions of the same attack have been implemented. 

Similar to the deauthentication attack analysis, the experiment results have been 

evaluated using all possible combination of metrics. Six different metrics have been 

selected. Therefore, the same wireless network dataset has been evaluated 63 times. 

Additionally, for each combination of metrics, the results are plot using a sequentially 

increasing length value of the sliding window. The length value ݊ varies from one 

single slot to 200 slots. In addition, the four possible methodology configurations have 

been evaluated for each of the metrics combinations. 

All these configurations have been evaluated using the four different Airpwn 

datasets. The first dataset only contains non-malicious traffic instances. The second, 

 contain both normal and malicious network ,02݇ܿܽݐݐܣ ,and third dataset ,01݇ܿܽݐݐܣ

traffic instances. Finally, the fourth dataset, ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ  contains normal traffic 

instances, as well as malicious network traffic instances generated by both Airpwn 

attack versions. The testbed for the detection of the deauthentication attack is the 

generic testbed described in Chapter 6. All the devices are located in a stationary 

geographical location, being the attacker is placed 1.5 metres away from the victim. 

7.3.2.1 Airpwn Attack Experiments Results 

The multi-layer results for the Airpwn attack experiments, using the six considered 

metrics, are presented in the Figures 7.32 – 7.37. Figure 7.32 represents intrusion 

detection results for the multi-layer approach on the completely non-malicious dataset. 

This figure represents the ܨ ோܲ௔௧௘ for the four methodology configurations, modifying 
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the length value of the sliding window. As can be seen, none of the intrusion detection 

results overpasses 0.45% 𝐹𝑃!"#$ . The two methodology configurations that make use 

of the distance generate 0% 𝐹𝑃!"#$ for sliding window length 31 ≤ 𝑛, whilst the two 

methodology configurations that make use of the angle generate 0% 𝐹𝑃!"#$ for the 

sliding window length 54 ≤ 𝑛. 

 

Figure 7.32 Airpwn Attack - Normal Traffic Dataset - 6 metrics                                
- 𝐹𝑃!"#$ Results Comparison. 

 

 

Figure 7.33 Airpwn Attack - 𝐴𝑡𝑡𝑎𝑐𝑘01 Dataset - 6 metrics                                        
- 𝐹𝑃!"#$ Results Comparison. 
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Figure 7.33 represents the detection results for the multi-layer approach, using the 

six considered metrics, when the 01݇ܿܽݐݐܣ dataset is used. The ܴܦ results are not 

shown in this graph, but these are constantly 100% for any of the four methodology 

configurations when 4 ൑ ݊ . In terms of ܨ ோܲ௔௧௘,  the detection system using the 

distance-mean configuration generates the best results overall. Nonetheless, the 

difference with the other three methodology configuration variations is very small. 

Perfect detection is generated after the sliding window length reaches 9 slots long for 

the two methodology configurations that make use of the distance. All the metric 

configurations generate 0% ܨ ோܲ௔௧௘ for the sliding window length 31 ൑ ݊. None of the 

detection results overpass 0.45% ܨ ோܲ௔௧௘ for any sliding window length. 

Figures 7.34 and 7.35 represent the ܴܦ  and ܨ ோܲ௔௧௘  results for the multi-layer 

approach when the 02݇ܿܽݐݐܣ dataset is used, respectively. In terms of ܴܦ results, the 

four methodology configurations produce 100% ܴܦ  for 17 ൑ ݊ . For this particular 

dataset, the angle-mean configuration produces the best ܴܦ results overall. Especially 

when the sliding window length is relatively small. While the other three 

configurations drop the effectiveness of the detection system for ሾ6 ൑ ݊ ൑ 7ሿ, the ܴܦ 

results of the angle-mean configuration remain above 85%. In addition, this 

configuration outperforms the other three for ሾ7 ൑ ݊ ൑ 17ሿ. In terms of ܨ ோܲ௔௧௘, none 

of the four methodology configurations achieve 0% ܨ ோܲ௔௧௘. The two configurations 

that make use of the Euclidean distance to assign the belief in ݇ܿܽݐݐܣ generate 0.01% 

ܨ ோܲ௔௧௘  after the sliding window length reaches 89 slots long. The other two 

configurations using the angle generate 0.03% ܨ ோܲ௔௧௘ for 89 ൑ ݊. 

Figures 7.36 and 7.37 represent the ܴܦ  and ܨ ோܲ௔௧௘  results when the ݀݁ݔ݅ܯ 

 results generated by all the configurations are very ܴܦ dataset is used. The ݇ܿܽݐݐܣ

similar to each other. All the methodology configurations produce 100% of DR for 

8 ൑ ݊. In terms of ܨ ோܲ௔௧௘, none of the four methodology configurations achieve 0% of 

ܨ ோܲ௔௧௘ for 158 ൒ ݊. The distance-mean configuration, which produces the best results 

overall, generate 0.01% of ܨ ோܲ௔௧௘  after the sliding window length reaches 91 slots 

long. None of the two configurations that use the Euclidean distance overpasses 0.05% 

of ܨ ோܲ௔௧௘  for 31 ൑ ݊. The other two configurations generate slightly higher ܨ ோܲ௔௧௘ 
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results than the two configurations using the distance. Nonetheless, none of the 

configurations can be considered a good option for sliding window length ݊ ൒ 10. 

From the presented multi-layer results for the Airpwn attack experiments, the 

difference between the ܴܦ and ܨ ோܲ௔௧௘ results generated with each of the methodology 

configurations is very small. None of the configurations substantially outperforms any 

of the other three. 

 

Figure 7.34 Airpwn Attack - 02݇ܿܽݐݐܣ Dataset - 6 metrics                                        
 .Results Comparison ܴܦ -

 

Figure 7.35 Airpwn Attack - 02݇ܿܽݐݐܣ Dataset - 6 metrics                                        
ܨ - ோܲ௔௧௘ Results Comparison. 
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Figure 7.36 Airpwn Attack - ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ Dataset - 6 metrics                                        
 .Results Comparison ܴܦ -

 
Figure 7.37 Airpwn Attack - ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ Dataset - 6 metrics                                        

ܨ - ோܲ௔௧௘ Results Comparison. 

Figure 7.38 shows the average processing time required by the detection system to 

provide a final decision about the nature of each analysed frame, for the Normal 

experiment dataset. The sliding window length ݊ ൌ 31  has been selected as the 

smallest value that produces the best results overall for any of the methodology 

configurations that use the Euclidean distance. On the other hand, the length value of 

the sliding window ݊ ൌ 54 is the smallest length value that produces the best results 

overall for the methodology configurations that use the angle. For ݊ ൌ 31, the average 

processing time for the normal dataset is between 22µsec and 30µsec. Similarly, if 
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𝑛 = 54 was selected, the average processing time is between 52µsec and 72µsec. 

Since the average interarrival time between two consecutive frames is 6.11msec, the 

intrusion detection process can fairly be implemented in real time. Figure 7.39 shows 

the average processing time required by the detection system to provide a final 

decision about the nature of each analysed frame, for the 𝐴𝑡𝑡𝑎𝑐𝑘01 dataset. For 

𝑛 = 31, the average processing time for the normal dataset is between 20µsec and 

39µsec. Similarly, for 𝑛 = 54 the average processing time is between 48µsec and 

59µsec. The average interarrival time between two consecutive frames is 10.1msec. 

 
Figure 7.38 Airpwn 𝑁𝑜𝑟𝑚𝑎𝑙 - Per Frame Detection Analysis Processing Time. 

 
Figure 7.39 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘01 - Per Frame Detection Analysis Processing Time. 
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Figure 7.40 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘02 - Per Frame Detection Analysis Processing Time. 

 
Figure 7.41 Airpwn 𝑀𝑖𝑥𝑒𝑑  𝐴𝑡𝑡𝑎𝑐𝑘 - Per Frame Detection Processing Time. 

Figure 7.40 shows the average processing time for the 𝐴𝑡𝑡𝑎𝑐𝑘02 dataset. For 

𝑛 = 31, the average processing time for the normal dataset is between 23µsec and 

32µsec. Similarly, for 𝑛 = 54 the average processing time is between 54µsec and 

68µsec. The average interarrival time between two consecutive frames for this dataset 

is 2.37msec. Figure 7.41 shows the average processing time for the 𝑀𝑖𝑥𝑒𝑑  𝐴𝑡𝑡𝑎𝑐𝑘 

dataset. For 𝑛 = 31, the average processing time for the normal dataset is between 

22µsec and 28µsec. Similarly, for 𝑛 = 54 the average processing time is between 

53µsec and 68µsec. The average interarrival time between two consecutive frames for 
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this dataset is 2.18msec. The processing time results show that the intrusion detection 

process can be implemented in real time for all the Airpwn experiment datasets for the 

selected sliding window lengths. 

As a method to compare the four different assessed configurations, the following 

tables show all evaluation parameters described in Section 7.1, for each of the four 

configurations when the length value of the sliding window is ݊ ൌ 31 and ݊ ൌ 54. 

Table VII.VI corresponds to the Normal dataset; Tables VII.VII and VII.VIII 

correspond to the datasets 01݇ܿܽݐݐܣ and 02݇ܿܽݐݐܣ, respectively; and Table VII.IX 

corresponds to the ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ dataset. 

In order to verify whether the combination six metrics outperforms the 

combination of fewer numbers of metrics, Figures 7.42 - 7.57 represent the ܨ ோܲ௔௧௘ 

results of any possible combination of five metrics for the different datasets when the 

system uses the methodology configurations distance-mean, distance-mode, angle-

mean and angle-mode, respectively. The detection results in terms of ܴܦ  are not 

shown but these are always 100% for any case when 16 ൑ ݊, with the only exception 

of ܶܶܮ െ ݁݉݅ܶ߂ െ ோ௔௧௘ܬܰܫ െ ܸܣܰ െ ܴܦ ஽௜௙, which generate worseܳܧܵ  than the 6 

metrics combinations. In terms of ܨ ோܲ௔௧௘ , the four metric combinations ܴܵܵܫ െ

݁݉݅ܶ߂ െ ோ௔௧௘ܬܰܫ െ ܸܣܰ െ ,஽௜௙ܳܧܵ ܫܴܵܵ  െ ܮܶܶ െ ݁݉݅ܶ߂ െ ோ௔௧௘ܬܰܫ െ  ,ܸܣܰ

ܫܴܵܵ െ ܮܶܶ െ ோ௔௧௘ܬܰܫ െ ܸܣܰ െ ஽௜௙ܳܧܵ  and ܶܶܮ െ ݁݉݅ܶ߂ െ ோ௔௧௘ܬܰܫ െ ܸܣܰ െ

 ஽௜௙ outperform the intrusion detection results of the 6 metrics combinations, forܳܧܵ

53 ൒ ݊. For 54 ൑ ݊, the combination of 6 metrics produce the best results overall for 

all the datasets. From all these results, the methodology configuration distance-mean is 

the one that produces the best results. 
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TABLE VII.VI.  RESULTS - 6 METRICS NORMAL TRAFFIC - 31 // 54 SLOTS. 

Configuration ܨ ܴܦ ோܲ௔௧௘ ܨ ோܰ௔௧௘ ݊݋݅ݏ݅ܿ݁ݎܲ ܴܱܵ ݁݉݅ܶ ݁ݎ݋ܿܵܨ ሺμܿ݁ݏ

Distance//Mean ݊/ܽ 0 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 22 

Distance//Mode ݊/ܽ 0 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 30 

Angle//Mean ݊/ܽ 0.03 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 23 

Angle//Mode ݊/ܽ 0.06 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 26 

Distance//Mean ݊/ܽ 0 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 53 

Distance//Mode ݊/ܽ 0 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 71 

Angle /Mean ݊/ܽ 0 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 52 

Angle//Mode ݊/ܽ 0 ݊/ܽ ݊/ܽ ݊/ܽ ݊/ܽ 72 

 

 

TABLE VII.VII.  RESULTS - 6 METRICS ATTACK01 TRAFFIC - 31 // 54 SLOTS. 

Configuration ܨ ܴܦ ோܲ௔௧௘ ܨ ோܰ௔௧௘ ݊݋݅ݏ݅ܿ݁ݎܲ ܴܱܵ ݁݉݅ܶ ݁ݎ݋ܿܵܨ ሺμܿ݁ݏ

Distance//Mean 100 0 0 1 1 1 20 

Distance//Mode 100 0 0 1 1 1 30 

Angle//Mean 100 0 0 1 1 1 26 

Angle//Mode 100 0 0 1 1 1 39 

Distance//Mean 100 0 0 1 1 1 58 

Distance//Mode 100 0 0 1 1 1 59 

Angle /Mean 100 0 0 1 1 1 48 

Angle//Mode 100 0 0 1 1 1 57 
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TABLE VII.VIII.  RESULTS - 6 METRICS ATTACK02 TRAFFIC - 31 // 54 SLOTS. 

Configuration ܨ ܴܦ ோܲ௔௧௘ ܨ ோܰ௔௧௘ ݊݋݅ݏ݅ܿ݁ݎܲ ܴܱܵ ݁݉݅ܶ ݁ݎ݋ܿܵܨ ሺμܿ݁ݏ

Distance//Mean 100 0.06 0 1 0.992 1 21 

Distance//Mode 100 0.06 0 1 0.992 1 32 

Angle//Mean 100 0.17 0 1 0.975 0.99 24 

Angle//Mode 100 0.14 0 1 0.98 0.99 31 

Distance//Mean 100 0.05 0 1 0.993 1 54 

Distance//Mode 100 0.03 0 1 0.995 1 68 

Angle /Mean 100 0.08 0 1 0.988 0.99 58 

Angle//Mode 100 0.09 0 1 0.987 0.99 62 

 

 

TABLE VII.IX.  RESULTS - 6 METRICS MIXED ATTACK TRAFFIC - 31 // 54 SLOTS. 

Configuration ܨ ܴܦ ோܲ௔௧௘ ܨ ோܰ௔௧௘ ݊݋݅ݏ݅ܿ݁ݎܲ ܴܱܵ ݁݉݅ܶ ݁ݎ݋ܿܵܨ ሺμܿ݁ݏ

Distance//Mean 100 0.05 0 1 0.95 0.97 22 

Distance//Mode 100 0.05 0 1 0.95 0.97 27 

Angle//Mean 100 0.1 0 1 0.904 0.95 27 

Angle//Mode 100 0.11 0 1 0.897 0.95 28 

Distance//Mean 100 0.04 0 1 0.957 0.98 53 

Distance//Mode 100 0.04 0 1 0.957 0.98 62 

Angle /Mean 100 0.13 0 1 0.876 0.93 68 

Angle//Mode 100 0.12 0 1 0.883 0.94 64 
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Figure 7.42 Airpwn 𝑁𝑜𝑟𝑚𝑎𝑙 - 5 Metrics - Distance & Mean. 

 

 

 

Figure 7.43 Airpwn 𝑁𝑜𝑟𝑚𝑎𝑙 - 5 Metrics - Angle & Mean. 
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Figure 7.44 Airpwn 𝑁𝑜𝑟𝑚𝑎𝑙 - 5 Metrics - Distance & Mode. 

 

 

 

Figure 7.45 Airpwn 𝑁𝑜𝑟𝑚𝑎𝑙 - 5 Metrics - Angle & Mode. 
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Figure 7.46 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘01 - 5 Metrics - Distance & Mean. 

 

 

 

Figure 7.47 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘01 - 5 Metrics - Angle & Mean. 
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Figure 7.48 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘01 - 5 Metrics - Distance & Mode. 

 

 

 

Figure 7.49 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘01 - 5 Metrics - Angle & Mode. 
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Figure 7.50 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘02 - 5 Metrics - Distance & Mean. 

 

 

 

Figure 7.51 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘02 - 5 Metrics - Angle & Mean. 
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Figure 7.52 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘02 - 5 Metrics - Distance & Mode. 

 

 

 

Figure 7.53 Airpwn 𝐴𝑡𝑡𝑎𝑐𝑘02 - 5 Metrics - Angle & Mode. 
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Figure 7.54 Airpwn 𝑀𝑖𝑥𝑒𝑑  𝐴𝑡𝑡𝑎𝑐𝑘 - 5 Metrics - Distance & Mean. 

 

 

 

Figure 7.55 Airpwn 𝑀𝑖𝑥𝑒𝑑  𝐴𝑡𝑡𝑎𝑐𝑘 - 5 Metrics - Angle & Mean. 
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Figure 7.56 Airpwn 𝑀𝑖𝑥𝑒𝑑  𝐴𝑡𝑡𝑎𝑐𝑘 - 5 Metrics - Distance & Mode. 

 

 

 

Figure 7.57 Airpwn 𝑀𝑖𝑥𝑒𝑑  𝐴𝑡𝑡𝑎𝑐𝑘 - 5 Metrics - Angle & Mode. 
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Since the best intrusion detection results from the Airpwn attack datasets are 

generated using the configuration distance-mean, Figures 7.58 – 7.61 present the ܴܦ 

and ܨ ோܲ௔௧௘  results for the Airpwn attack experiments using only this particular 

configuration, when the sliding window length is ݊ ൌ 54 . The different metrics 

combinations have been categorised in the indexes represented in the Table VII.X. The 

index M1 referrers to the set that combines all the considered metrics, and the index 

M63 referrers to a single metric set. Therefore, the best results are to be expected from 

the test index M1. These figures help to understand the effect that increasing the 

number of metrics used to implement the intrusion detection. The Y-axis of the graphs 

represents the percentage of ܴܦ and ܨ ோܲ௔௧௘. The X-axis of the graphs represents the 

metric combination indexes shown in Table VII.X. 

 

TABLE VII.X.  INDEXES OF THE USED METRICS IN AIRPWN ATTACK. 

Index-Metrics Index-Metrics Index-Metrics Index-Metrics 

M1 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ - 
 ஽௜௙ܳܧܵ - ܸܣܰ - ோ௔௧௘ܬܰܫ

M17 - ܴܵܵܬܰܫ - ܫோ௔௧௘ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M33 - ܶܶܮ - 
 - ݁݉݅ܶ߂
 ோ௔௧௘ܬܰܫ

M49 - ܶܶܮ - 
 ோ௔௧௘ܬܰܫ

M2 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

M18 - ܶܶ݁݉݅ܶ߂ - ܮ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

M34 - ܶܶܮ - 
 ܸܣܰ - ݁݉݅ܶ߂

M50 - ܶܶܮ - 
 ܸܣܰ

M3 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ - 
 ஽௜௙ܳܧܵ - ோ௔௧௘ܬܰܫ

M19 - ܶܶ݁݉݅ܶ߂ - ܮ - 
 ஽௜௙ܳܧܵ - ோ௔௧௘ܬܰܫ

M35 - ܶܶܮ - 
 ஽௜௙ܳܧܵ - ݁݉݅ܶ߂

M51 - ܶܶܮ - 
 ஽௜௙ܳܧܵ

M4 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M20 - ܶܶ݁݉݅ܶ߂ - ܮ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M36 - ܶܶܮ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

M52 - ݁݉݅ܶ߂ - 
 ோ௔௧௘ܬܰܫ

M5 - ܴܵܵܬܰܫ - ܮܶܶ - ܫோ௔௧௘ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M21 - ܶܶܬܰܫ - ܮோ௔௧௘ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M37 - ܶܶܮ - 
 - ோ௔௧௘ܬܰܫ
 ஽௜௙ܳܧܵ

M53 - ݁݉݅ܶ߂ - 
 ܸܣܰ

M6 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ - ܸܣܰ - ோ௔௧௘ܬܰܫ

M22 - ܬܰܫ - ݁݉݅ܶ߂ோ௔௧௘ 
 ஽௜௙ܳܧܵ - ܸܣܰ -

M38 - ܶܶܮ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M54 - ݁݉݅ܶ߂ - 
 ஽௜௙ܳܧܵ

M7 - ܶܶ݁݉݅ܶ߂ - ܮ - 
 ஽௜௙ܳܧܵ - ܸܣܰ - ோ௔௧௘ܬܰܫ

M23 - ܴܵܵܮܶܶ - ܫ - 
 ݁݉݅ܶ߂

M39 - ݁݉݅ܶ߂ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

M55 - ܬܰܫோ௔௧௘ - 
 ܸܣܰ
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M8 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ - 
 ோ௔௧௘ܬܰܫ

M24 - ܴܵܵܮܶܶ - ܫ - 
 ோ௔௧௘ܬܰܫ

M40 - ݁݉݅ܶ߂ - 
 - ோ௔௧௘ܬܰܫ
 ஽௜௙ܳܧܵ

M56 - ܬܰܫோ௔௧௘ - 
 ஽௜௙ܳܧܵ

M9 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ - 
 ܸܣܰ

M25 - ܴܵܵܮܶܶ - ܫ - 
 ܸܣܰ

M41 - ݁݉݅ܶ߂ - 
 ஽௜௙ܳܧܵ - ܸܣܰ

M57 - ܸܰܣ - 
 ஽௜௙ܳܧܵ

M10 - ܴܵܵ݁݉݅ܶ߂ - ܮܶܶ - ܫ 
 ஽௜௙ܳܧܵ -

M26 - ܴܵܵܮܶܶ - ܫ - 
 ஽௜௙ܳܧܵ

M42 - ܬܰܫோ௔௧௘ - 
 ܫܴܵܵ - ஽௜௙ M58ܳܧܵ - ܸܣܰ

M11 - ܴܵܵܬܰܫ - ܮܶܶ - ܫோ௔௧௘ 
 ܸܣܰ -

M27 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ோ௔௧௘ܬܰܫ

M43 - ܴܵܵܫ - 
 ܮܶܶ

M59 - ܶܶܮ 

M12 - ܴܵܵܬܰܫ - ܮܶܶ - ܫோ௔௧௘ 
 ஽௜௙ܳܧܵ -

M28 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ܸܣܰ

M44 - ܴܵܵܫ - 
 ݁݉݅ܶ߂

M60 - ݁݉݅ܶ߂ 

M13 - ܴܸܵܵܣܰ - ܮܶܶ - ܫ - 
 ஽௜௙ܳܧܵ

M29 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ

M45 - ܴܵܵܫ - 
 ோ௔௧௘ܬܰܫ

M61 - ܬܰܫோ௔௧௘ 

M14 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ܸܣܰ - ோ௔௧௘ܬܰܫ

M30 - ܴܵܵܬܰܫ - ܫோ௔௧௘ - 
 ܸܣܰ

M46 - ܴܵܵܫ - 
 ܸܣܰ

M62 - ܸܰܣ 

M15 - ܴܵܵ݁݉݅ܶ߂ - ܫ - 
 ஽௜௙ܳܧܵ - ோ௔௧௘ܬܰܫ

M31 - ܴܵܵܬܰܫ - ܫோ௔௧௘ - 
 ஽௜௙ܳܧܵ

M47 - ܴܵܵܫ - 
 ஽௜௙ܳܧܵ

M63 - ܵܳܧ஽௜௙ 

M16 - ܴܸܵܵܣܰ - ݁݉݅ܶ߂ - ܫ 
 ஽௜௙ܳܧܵ -

M32 - ܴܸܵܵܣܰ - ܫ - 
 ஽௜௙ܳܧܵ

M48 - ܶܶܮ - 
 ݁݉݅ܶ߂

 

 

Figures 7.58.a and 7.58.b present the ܴܦ and ܨ ோܲ௔௧௘ results for the configuration 

distance-mean for the Normal traffic dataset. Since this dataset only contains non-

malicious information, the ܴܦ  for all the metric combinations is 0%. In terms of 

ܨ ோܲ௔௧௘, there are 13 metric combinations that produce ܨ ோܲ௔௧௘ results higher than 5%, 

in the case of ݊ ൌ 54. Seven out of these 13 metric combinations (M23, M43, M44, 

M48, M58, M59, and M60) produce ܨ ோܲ௔௧௘ results higher than 10%. The test index 

M1, six metrics, produces the best results that could be achieved, 0% ܨ ோܲ௔௧௘. Single 

metric (M58) ܴܵܵܫ and (M59) ܶܶܮ, are the two metrics that produce the worst ܨ ோܲ௔௧௘ 

results. Apart from (M60) ݁݉݅ܶ߂ , all the metric combinations that overpass 10% 

ܨ ோܲ௔௧௘ contain either ܴܵܵܫ or ܶܶܮ. It is also appreciable that the number of ܨ ோܲ௔௧௘ 

results is increased when fewer metrics are combined. 
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(a) 

 
(b) 

Figure 7.58 Airpwn Normal Traffic - 54 Slots - Distance & Mean. 

The ܴܦ and ܨ ோܲ௔௧௘ results for the distance-mean configuration and the 01݇ܿܽݐݐܣ 

dataset, when the sliding window length is ݊ ൌ 54, are presented in Figures 7.59.a and 

7.59.b, respectively. In terms of ܴܦ, all of the metric combinations using four, five 

and six metric generate 100% ܴܦ	 . The particular single metric that substantially 

reduces the ܴܦ results is ݁݉݅ܶ߂. Single metric (M60) ݁݉݅ܶ߂ is the only metric that 

produces 0% ܴܦ  results. Additionally, the only metric that is in all the metric 

combinations that do not produce 100% ܴܦ results is ݁݉݅ܶ߂. These are M23, M35, 

M44, M47, M52, M53, M54, and M60. In terms of ܨ ோܲ௔௧௘ , there are 15 metric 
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combinations that produce ܨ ோܲ௔௧௘  results higher than 5%, in the case of ݊ ൌ 54 . 

Seven out of these 15 metric combinations (M23, M43, M44, M48, M58, M59, and 

M60) produce ܨ ோܲ௔௧௘ results higher than 25%, reaching single metric (M59) ܶܶܮ up 

to 36.13% ܨ ோܲ௔௧௘ . Using this dataset, the test index M1, six metrics, once more 

produces the best results that could be achieved, 0% ܨ ோܲ௔௧௘. Similar to the previous 

results using the Normal traffic dataset, at least one of the metrics ܫܴܵܵ ,݁݉݅ܶ߂ or 

ܨ is in the metric combinations that generate that overpass 25% ,ܮܶܶ ோܲ௔௧௘. 

 
(a) 

 
(b) 

Figure 7.59 Airpwn 01݇ܿܽݐݐܣ Traffic - 54 Slots - Distance & Mean. 
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Figures 7.60.a and 7.60.b present the ܴܦ and ܨ ோܲ௔௧௘ results for the configuration 

distance-mean for the Airpwn 02݇ܿܽݐݐܣ traffic dataset and ݊ ൌ 54. In terms of ܴܦ, a 

lower number of metric combinations produce 100% ܴܦ	  than using the Airpwn 

 results ܴܦ traffic dataset. However, only four metric combinations generate 02݇ܿܽݐݐܣ

lower than 90%. These are M35, M54, M60, and M63. Either ݁݉݅ܶ߂ or ܵܳܧ஽௜௙  is 

included in these four metric combinations. The test index M1, six metrics, produces 

 the best achievable results. Additionally, none of the metric combinations ,ܴܦ 100%

using four, five and six metric generate ܴܦ  lower than 99%. In terms of ܨ ோܲ௔௧௘ , 

eleven metric combinations produce ܨ ோܲ௔௧௘  results higher than 5%. Three of these 

metric combinations (M58, M59, and M60) produce ܨ ோܲ௔௧௘ results higher than 25%, 

reaching single metric (M58) ܴܵܵܫ up to 51.68% ܨ ோܲ௔௧௘ and (M59) ܶܶܮ up to 85.11% 

ܨ ோܲ௔௧௘. In this case, the test index M1, six metrics, produces 0.05% ܨ ோܲ௔௧௘. Among 

the metric combinations using 5 metrics, only M2 and M5 generate completely perfect 

detection. Once more, it is clear that the combined use of four and above metrics 

generates better detection results overall than the combining lower number of metrics. 

Finally, Figures 7.61.a and 7.61.b present the ܴܦ  and ܨ ோܲ௔௧௘  results for the 

configuration distance-mean for the Airpwn ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ traffic dataset and ݊ ൌ 54. 

In terms of ܴܦ, five metric combinations generate ܴܦ results lower than 90%. These 

are M48, M51, M54, M60, and M63. Again, either ݁݉݅ܶ߂ or ܵܳܧ஽௜௙ is included in 

these five metric combinations. The combination of six metrics (M1) produces 100% 

 the best achievable results. Additionally, none of the metric combinations using ,ܴܦ

four, five and six metric generate ܴܦ lower than 90%. In terms of ܨ ோܲ௔௧௘, 13 metric 

combinations produce ܨ ோܲ௔௧௘  results higher than 5%. Five of these metric 

combinations (M43, M44, M58, M59, and M60) produce ܨ ோܲ௔௧௘ results higher than 

25%, reaching single metric (M58) ܴܵܵܫ up to 37.26% ܨ ோܲ௔௧௘ and (M59) ܶܶܮ up to 

ܨ 94.69% ோܲ௔௧௘. Using the ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ dataset M1 produces 0.04% ܨ ோܲ௔௧௘. Once 

more, it is clear that the combined use of four and above metrics generates better 

detection results overall than the combining lower number of metrics. 

The presented results using all the network traffic dataset while implementing 

Airpwn attack indicate that the configuration of the methodology that produces the 
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best results overall is the utilisation of the Euclidean distance along with the mean to 

establish the reference of normality, when the length value of the sliding window is 

݊ ൒ 54 . For this ݊  value, the required processing time per frame ranges between 

53µsec and 68µsec. The use of the angle methodology to define the belief in ݇ܿܽݐݐܣ 

generally increases the number of ܲܨ  alarms. The only benefit of using the angle 

methodology appears in Airpwn 02݇ܿܽݐݐܣ dataset, for ሾ7 ൑ ݊ ൑ 17ሿ, in which the ܴܦ 

results of the rest of configurations drops. 

 
(a) 

 
(b) 

Figure 7.60 Airpwn 02݇ܿܽݐݐܣ Traffic - 54 Slots - Distance & Mean. 
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(a) 

 
(b) 

Figure 7.61 Airpwn ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ Traffic - 54 Slots - Distance & Mean. 

7.3.3 Malicious Frames Within Initial Sliding Window 

The first time the proposed detection methodology starts the process of filling the 

initial sliding window, an attacker could alter the reference of normality injecting 

malicious frames into the initial sliding window. Nonetheless, even if there exist high 

proportion of malicious frames within the initial sliding window, the proposed 

methodology produces good detection results. 
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In order to calculate the maximum number of malicious frames that could be 

included into the initial sliding window before the detection performance drops, the 

detection process has been repeated several times introducing one additional malicious 

frame for each of the iterations. The results of these experiments are based on the 

percentage of ܴܦ results, the percentage of malicious frames within the initial sliding 

window, and the sliding window length. The results for these experiments were 

initially presented in [129]. The deauthentication Short Distance dataset and all the 

Airpwn attack datasets are used in these experiments. For the deauthentication attack, 

only the four metrics ܴܵܵܫ െ ோ௔௧௘ܬܰܫ െ ݁݉݅ܶ߂ െ ܸܣܰ  were used with the angle-

mean configuration, whilst the four metrics	ܴܵܵܫ െ ோ௔௧௘ܬܰܫ െ ܮܶܶ െ  were used ܸܣܰ

for Airpwn attack. 

Figures 7.62 – 7.64 show the multi-layer results using the Airpwn datasets 

01݇ܿܽݐݐܣ 02݇ܿܽݐݐܣ ,  and ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ , respectively. There exists an evident 

consistency in the detection results of all these experiments. For any sliding window 

length larger than 12 frames, ݊ ൒ 12, the detection system produces perfect detection 

with up to 43% of malicious frames within the initial sliding window. A higher 

percentage of malicious frames causes the detection accuracy to drastically drop. This 

behaviour is constantly repeated for all the Airpwn attack datasets. 

Figure 7.65 shows the multi-layer results using the deauthentication Short 

Distance dataset. The detection system produces perfect detection with up to 20% of 

malicious frames within the initial sliding window, if the length of the sliding window 

is between 31 and 90 frames, ሾ31 ൑ ݊ ൑ 90]. If the sliding window length is ݊ ൑ 90, 

the system produces 100% ܴܦ including up to 13% of malicious frames within the 

initial sliding window. If the sliding window length is ݊ ൒ 31, the system is unable to 

produce higher than 95% ܴܦ including any amount of malicious frames within the 

initial sliding window. In contrast to the Airpwn attacks results, the DR results 

gradually drop along with the percentage of malicious frames within the initial sliding 

window. 
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Figure 7.62 Percentage of Malicious Frames in The Initial Sliding Window – 
Airpwn 01݇ܿܽݐݐܣ Dataset. 

 

Figure 7.63 Percentage of Malicious Frames in The Initial Sliding Window – 
Airpwn 02݇ܿܽݐݐܣ Dataset. 
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Figure 7.64 Percentage of Malicious Frames in The Initial Sliding Window – 
Airpwn ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ Dataset. 

 

Figure 7.65 Percentage of Malicious Frames in The Initial Sliding Window –
Deauthentication Attack – Short Distance Dataset 
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7.4 Summary 

This chapter has presented a thorough description of the results that prove 

effectiveness of the unsupervised anomaly based IDS presented in this thesis. The 

results have been generated by analysing all the considered datasets using the four 

proposed IDS configurations. The approach followed to demonstrate the effectiveness 

of the detection system is to compare the detection results generated using the multi-

layer approach against the same methodology utilising different sets of metrics. 

A fundamental part of the evaluation experiments has been to assess the 

performance of the detection methodology using each of the system configurations. It 

is important to find the methodology that generates the best results. For the Long 

Distance experiments, the combination of metrics that produces the best detection 

results is ܴܵܵܫ െ ோ௔௧௘ܬܰܫ െ ܸܣܰ െ ஽௜௙ܳܧܵ . Not including ݁݉݅ܶ߂  in the detection 

process improves the final detection results. For ݊ ൌ 29, the combined use of all the 

considered metrics produces ܴܦ  100% and ܨ ோܲ௔௧௘  0.87%, whereas the ܨ ோܲ௔௧௘  is 

constantly reduced to 0.43% after the sliding window reaches 68 ൑ ݊. For ݊ ൌ 29, the 

use of the 4 metrics produces 100% ܴܦ and 0.43% ܨ ோܲ௔௧௘. However, for 54 ൑ ݊, the 

4 metrics produces ܨ ோܲ௔௧௘  0%. For this particular sliding window length, the 

combined use of the five metrics still produces 100 ܴܦ% and ܨ ோܲ௔௧௘ 0.87%. These 

results have been achieved using the distance-mode configuration, which has proven 

to outperform the detection results of the other three system configurations for this 

dataset. These results also show that increasing the length value of the sliding window 

reduces the number of ܲܨ alarms. For both set of metrics and these sliding window 

lengths, the system produces the detection results in an average time of 20µsec, when 

݊ ൌ 29, and 76µsec when ݊ ൌ 68. Since the average interarrival time between two 

consecutive frames is 55msec, the intrusion detection can be implemented in real time. 

Similar to the Long Distance experiments, the metric combination ܴܵܵܫ െ

ோ௔௧௘ܬܰܫ െ ܸܣܰ െ  ஽௜௙ outperforms the overall results of the combined use of theܳܧܵ

metrics five for the Short Distance dataset. Again, the distance-mode configuration 

outperforms the detection results of the other three system configurations for this 

dataset. For this dataset and this system configuration, the combined use of all the 
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considered metrics produces 100 ܴܦ% and 0 ܲܨ% when ݊ ൌ 60. However, the metric 

combination ܴܵܵܫ െ ோ௔௧௘ܬܰܫ െ ܸܣܰ െ ஽௜௙ܳܧܵ  generates ܴܦ  100% and ܨ ோܲ௔௧௘  0% 

when ݊ ൌ 42. For ݊ ൌ 42, the use of all the considered metrics produces 100 ܴܦ% 

and ܨ ோܲ௔௧௘ 2%. For both set of metrics, 5 metrics and 4 metrics, the system produces 

the detection results in an average time of 77µsec and 63µsec, respectively, when 

݊ ൌ 60 . Since the average interarrival time between two consecutive frames is 

49msec, the intrusion detection can be implemented in real time. 

For the ݈ܰܽ݉ݎ݋ dataset, the combination of all the available metrics produces the 

best detection results. For ݊ ൌ 31, the combined use of the six considered metrics 

produces ܨ ோܲ௔௧௘  0%, using the system configurations distance-mode and distance-

mean. For this set of metrics and this sliding window length, the average processing 

time for the normal dataset is between 22µsec and 30µsec. Since the average 

interarrival time between two consecutive frames is 6.11msec, the intrusion detection 

process can fairly be implemented in real time. 

For the 01݇ܿܽݐݐܣ  dataset, the combined use of the six considered metrics 

produces 100 ܴܦ% and ܨ ோܲ௔௧௘ 0%, using the system configuration distance-mean and 

݊ ൌ 9. This configuration has proven to outperform the detection results of the other 

three system configurations for this dataset. Nonetheless, the difference with the other 

three methodology configuration variations is very small. Only after the sliding 

window length reaches 31 slots long, all the metric configurations generate ܨ ோܲ௔௧௘ 

0%. Once more, the combined use of all the considered metrics produces the best 

detection results. The average time to process the 01݇ܿܽݐݐܣ dataset, using all the 

considered metrics ranges between 20µsec and 39µsec, when ݊ ൌ 31 . Since the 

average interarrival time between two consecutive frames is 10.1msec, the intrusion 

detection process can also be implemented in real time. 

For the 02݇ܿܽݐݐܣ dataset, all the system configurations produce	ܴܦ  100% for 

17 ൑ ݊ , but none of the four system configurations achieve 0% ܨ ோܲ௔௧௘ . The two 

configurations that make use of the distance generate 0.01% ܨ ோܲ௔௧௘ after the sliding 

window length reaches 89 slots long. The other two configurations using the angle 

generate 0.03% ܨ ோܲ௔௧௘ for 89 ൑ ݊. The different between the results for this dataset 
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and the rest is that the angle-mean configuration produces the best ܴܦ results overall 

when the sliding window length is ሾ7 ൑ ݊ ൑ 17ሿ . For 17 ൐ ݊ , the system 

configuration that generates the best results is distance-mean. Similar to all the Airpwn 

datasets, the combined use of all the considered metrics produces the best detection 

results. The average interarrival time between two consecutive frames for this dataset 

is 2.37msec, whereas the average time required to process the dataset ranges between 

23µsec and 32µsec. 

For the ݀݁ݔ݅ܯ	݇ܿܽݐݐܣ dataset, all the methodology configurations produce ܴܦ 

100% when 8 ൑ ݊, but none of the four methodology configurations achieve ܨ ோܲ௔௧௘ 

0% for 158 ൒ ݊. The distance-mean is the configuration that produces the best results 

overall, generating ܨ ோܲ௔௧௘  0.01% after the sliding window length reaches 91 slots 

long. For 31 ൑ ݊, none of the two configurations that use the distance overpasses 

ܨ ோܲ௔௧௘ 0.05%. The average time to process the dataset ranges between 22µsec and 

28µsec, whereas the average interarrival time between two consecutive frames is 

2.18msec. Hence, the intrusion detection process can also be implemented in real time. 

To summary up, the presented results have proven the effectiveness of the 

unsupervised anomaly based IDS presented in this thesis. Also, among all the system 

configurations, the use of the Euclidean distance makes the system to generate the best 

results. In the case of the deauthentication attack datasets, the mode is the best 

reference of normality. Whereas, the mean is the best reference of normality, in the 

case of the ݈ܰܽ݉ݎ݋  and the Airpwn attack datasets. In addition, the results 

demonstrate that using the multi-layer approach generates the best detection results 

overall. This is the case when analysing the ݈ܰܽ݉ݎ݋ and the Airpwn attack datasets. 

For this datasets, the multi-layer approach generates better results than the same 

methodology utilising different sets of metrics. For the deauthentication attack 

datasets, there is one particular set of metrics that outperform the multi-layer approach. 

Nonetheless, the detection results generated by the multi-layer approach are still 

highly accurate. Similarly, for the ݈ܰܽ݉ݎ݋ and the Airpwn attack datasets, there are 

cases in which the attack can be detected by using the information only from the single 

metric ܬܰܫோ௔௧௘ . However, using solely this single metric to detect deauthentication 
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attack would be highly ineffective. Therefore, for all the considered datasets, the 

combination of information from all the metrics produces the best results overall. 

The sliding window length that generates the best detection results has also been 

evaluated. All the datasets have been analysed multiple times varying the length of the 

sliding window, and the results have been compared. In the case of the 

deauthentication experiments, the minimum sliding window length that generates the 

best results is ݊ ൌ 60. For the Normal and all the Airpwn datasets, the minimum 

sliding window length that generates the best results is ݊ ൌ 31. From all the results, 

there is not a particular sliding window length that is appropriate for all the evaluated 

datasets. However, based on the results presented in this chapter, it is estimated that a 

sliding window length approximate to 60 slots long may generate good detection 

results, regardless of the attacks been analysed. The results presented have also proved 

that the proposed methodology is capable of being implemented in real time. Whilst 

the average time to process the datasets is of a few tens of µsec, the average 

interarrival time between two consecutive frames is a few msec. Therefore, the 

intrusion detection process can be fairly implemented in real time. 

In addition, the presented results have been used also to evaluate the maximum 

number of malicious frames that could be included within the initial sliding window 

before the accuracy of the detection results were affected. The results have shown that, 

for the Airpwn attack datasets and sliding window length larger than 12 frames, 

12 ൒ ݊, the detection system produces 100 ܴܦ% and ܨ ோܲ௔௧௘  0%, comprising up to 

43% of malicious frames within the initial sliding window. A higher percentage of 

malicious frames makes the detection accuracy to drop drastically. On the other hand, 

for the deauthentication attack dataset and sliding window length is between 31 and 90 

frames, ሾ31 ൑ ݊ ൑ 90 ], the detection system produces ܴܦ  100% and ܨ ோܲ௔௧௘  0%, 

comprising up to 20% of malicious frames within the initial sliding window. When the 

sliding window is 90 ൐ ݊, the initial sliding window can comprise 13% of malicious 

frames to generate 100 ܴܦ% and ܨ ோܲ௔௧௘ 0%. 
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Chapter 8  

Conclusion and Future Work 

8.1 Conclusions 

Wireless Networks based on the IEEE 802.11 standard have experienced a tremendous 

growth in popularity over the last decade. Unfortunately, these networks present 

vulnerabilities exploitable by cyber-attackers [51]. The IEEE 802.11 standard has 

proposed different security protocols, establishing traffic encryption and integrity 

protection to the network infrastructure, as well as avoiding unauthorised access to the 

wireless networks. However, all these security protocols are vulnerable to decryption 

analysis processes [49] [118]. Wireless networks cannot rely on these security 

protocols to protect the content of the communications. Therefore, the design of secure 

and reliable wireless networks presents a major challenge to security system designers. 

Any effort to provide an extra level of protection to a network has become an issue of 

critical importance. This thesis has tackled the insecurity of wireless networks and has 

proposed a novel security system able to detect wireless-specific attacks. 

There exist different types of wireless-specific attack that can compromise 

wireless networks. Initially, this thesis has presented an overview of the wireless-

specific attacks that more commonly compromise wireless networks. The purpose of 

this overview was to find, if possible, a common implementation pattern, which could 

help to identify a common detection or countermeasure mechanism against these 
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attacks. One of the countermeasures most commonly proposed in the literature is 

access control filters or MAC address filtering [50] [67]. However, it is easy to realise 

that the success of these mechanisms relies on the unequivocally identification of the 

attacker. Unfortunately, the MAC address in the frames is not a reliable approach to 

assess the real identity of the wireless device. An attacker can easily implement 

techniques of MAC address spoofing, and masquerade itself behind a fake MAC 

address. The efforts to provide reliable security should focus on the identification of 

the device that transmits the frames. The solution proposed in this thesis is to use, not 

only the MAC address, but also multiple other metrics from the wireless device or the 

wireless communication to infer the real identity of these devices. The higher the 

number of parameters or metrics used to identify the real identity of the wireless 

devices, the higher the probability to identify any attempt of an attacker to masquerade 

itself behind the spoofed identity of a legitimate wireless device. 

This thesis presents a security system that makes use of metrics from multiple 

layers of observation to produce a collective decision on whether an attack is taking 

place. Although there are cases in which IDSs that utilise the information from a 

single metric give positive detection results, the combined use of multiple metrics 

from the same or different protocol layers commonly outperform the detection of the 

single-layer IDSs. Among different methods, the D-S theory has been chosen in this 

thesis as the data fusion technique to combine the evidences from the different layers. 

Despite been proven as a powerful and efficient technique, the major challenge for 

applying D-S theory in IDS is to automatically determine the BPA values, based on 

the information extracted from the network measurements. 

The most important contribution of this thesis is a novel BPA methodology able 

to automatically adapt its probabilities assignment to the current characteristics of the 

wireless network, without requiring manual intervention from an IDS administrator. 

The current methods that perform the BPA process do not dynamically adapt to the 

measured characteristics of the monitored environment. The proposed approach is 

computationally simple, scalable and could easily applicable to other wireless 

technologies. The novel automatic, unsupervised and self-adaptive BPA methodology 

developed for this thesis is composed of three different and independent statistical 
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techniques, able of generating predictions regarding the presence of attacks, based on 

historical parameters. Only two of these techniques work independently in order to 

meet the requirement of the independency of the beliefs. The third technique is based 

on the outcome beliefs of the other two. Despite being rather simplistic, and dissimilar 

to well-known information management techniques, the combined utilisation of the 

three techniques applied to the different wireless network metrics produce a highly 

accurate detection system. The detection system is able to generate  100% and 

 0% using the considered combination of metrics. The security system has been 

written in the C language, which provides great flexibility to be easily adapted or 

integrated to other security implementations. 

The proposed security system has been evaluated with a reduced number of 

datasets and attacks. The effectiveness of the IDS proposed in this thesis will be 

evaluated using five different wireless network datasets, generated with two particular 

wireless-specific attacks (i.e. Airpwn and deauthentication attacks), as well as a 

dataset with non-malicious information. There might be a concern about whether the 

number of experiments is large enough to prove the efficiency of this security 

mechanism. Whilst evaluating all the existing wireless-specific attacks would be the 

most appropriate decision to assure that the IDSs can identify all these attacks, 

research wise, evaluating all these attacks would be impractical. Nonetheless, the 

attacks implemented in this thesis are an adequate sample to showcase the efficiency 

of the IDSs. 

The proposed approach only requires a lightweight process for generating a 

baseline profile of normal utilisation, in order to generate high intrusion detection 

accuracy and low number of false alarms. A sliding window scheme is used to manage 

the information, implement the training process and construct an accurate statistical 

reference of normal behaviour. Only a reduced number of frames are required to 

generate a reference of normal wireless network behaviour. The best intrusion 

detection results for the evaluated datasets are achieved collecting as little as 60 

frames. Four different configurations of the proposed BPA methodology have been 

described. Although there are differences in the final detection results, all the 

configurations provide very precise detection results. The sliding window length also 
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influences the final detection results, as well as the time required to implement the 

intrusion detection analysis. The results have proven that the system is able to 

implement the intrusion detection in real time. For all the evaluated datasets, the 

processing time required to analyse each frame ranges between 45µsec and 71µsec. 

The presented results have proven the effectiveness of the detection system 

presented in this thesis, generating  100% and  0% for most of the results. 

This performance is produced even if there exist a high proportion of malicious frames 

within the initial sliding window. These are, up to 43% of malicious frames within the 

initial sliding window using all the Airpwn datasets, and up to 20% of malicious 

frames within the initial sliding window using the deauthentication dataset. The used 

wireless-specific attacks have demonstrated the robustness of the detection approach 

irrespectively of the nature of the launched attack. To the best of the author 

knowledge, this is the first methodology able to efficiently identify Airpwn attack. 

8.2 Future Work 

Multiple research avenues still remain open in the field of wireless network intrusion 

detection. In the future, we would like to continue exploring some of these research 

avenues and enhancing the capabilities of the proposed IDS framework. 

One of these future researches is to implement the proposed framework in 

additional type of wireless communications. In Chapter 1 an early attempt to evaluate 

the proposed framework on a WiMAX network was discussed. This approach was not 

feasible for a number of reasons previously explained. However, the interest for 

security of this type of wireless communication technology is still very high. The need 

for further security methods is not restricted only to WiFi or WiMAX. Other wireless 

communication technologies such as LTE, WSNs, Personal Area Networks (PANs) or 

Bluetooth would also require additional level of protection against attacks. Therefore, 

evaluating the effectiveness of the proposed framework in all these wireless 

communication technologies would be desirable. 
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Another future research area is to provide strong resilience capabilities to the 

wireless networks against attacks, and make transparent to the user the presence of 

these attacks. In Chapter 4 were briefly introduced the concepts of IPSs and ITSs, 

which allow the system administrator to specify a set of reactions to be implemented 

in case of detecting an attack. In an early attempt to provide resilience capabilities to 

the proposed IDS framework, this was configured to shut the web browser of the user 

down in case an Airpwn attack was detected. Although this might seem a very crude 

defence action, malicious and spurious information is then never displayed in the web 

browser to the user. This action is a proof of concept, and an early attempt to respond 

to the attack. Other actions, such as alerting the user, changing the security 

configuration or disconnecting the wireless communication may not be effective. One 

of the defence actions for future research is to discard the frames considered 

malicious. This is a defence approach totally transparent to the users, which would 

keep the network correctly working, despite the presence of attack. In [70], researchers 

have started investigating this type of prevention approach. 

Providing active security mechanisms to IDSs is another future research that 

needs to be explored. The research presented in this thesis has obviated the fact that 

the IDS could also be compromised. However, similar to the wireless networks, IDSs 

are also targeted by attackers. This is a concern that has been previously arisen in [55] 

[139]. According to [36], these systems perform poorly defending themselves when 

they are targeted by attackers. 

Other future research includes the automatic generation of labelled datasets and 

the automatic selection of metrics. Whereas these are two different research avenues, 

both are dependent on one another. In Chapter 5, the concept of feature selection was 

introduced, along with the multiple drawbacks of current feature selection techniques. 

These techniques work as supervised implementations. These techniques work only if 

the records in the analysed datasets have been previously labelled. One possible 

research avenue to tackle this issue is to propose a feature selection technique that 

could be implemented when unsupervised. These techniques would not require 

previously labelled datasets in order to operate. Another possible research avenue to 

tackle this issue is to propose a technique that could correctly label the instances in the 



 
 

 

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

246

analysed dataset automatically. This automatically labelled dataset could then be sent 

to a supervised feature selection technique for further analysis. 

Another further research avenue would be adding the proposed framework in a 

suite of tools with additional security mechanisms, or integrating it in a more complete 

and robust security system. There always exists the option of collaborating with other 

researching groups to extend the security capabilities of the proposed system, or 

working with any company who wanted to include the proposed framework in any 

commercial tool. 
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