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Abbreviations 

= a posteriori probability (see p. 136) 
= additive white Gaussian noise (seep. 287) 
= binary symmetric channel (see p. 6) 
= convolutional code (see p. 18) 
= central group (see p. 58) 
= convolutional self-orthogonal code (see P• 138) 
= codeword 
= definite decoding (see p. 139) 
= discarded input group (see p. 87) 
= discrete memoryless channel (see p. 5) 
= encoding array (see p. 220) 
= equation 
= feedback decoding (see p. 139) 
= front-end group (see P• 58) 
= feed-forward (see p. 317) 
= Figure 
= greatest common divisor (see p. 435) 
= initial array (see P• 183) 
= if, and only if 
= input group (see p. 87) 
= input 
= left-hand side 
= least significant bit 
= linear sequential circuit 
= memory group (see p. 58) 
= memory input group (see p. 87) 
= maximum likelihood decoding (see P• 10) 
= most significant bit 
= multiplexing (see P• 283) 
= output 
= pulse code modulation 
= phase-shift keying 
= rear-end group (see P• 58) 
= relation 
= right-hand side 
= syndrome array 
= signal-to-noise 
= self orthogonal 
= shift register 

(see P• 517) 
ratio 

(see p. 138) 

= syndrome register (see p. 210) 
= exclusive-or 
= with respect to 



ICDDDDDDDDDDDDDCDDDDDDDI 

A! = = 
I. = = 
.13 = = 
C(-w;) = 
C(n,k) 
r = = 
D = = 

Notation 

= number of states (Chapter 4) (see p, 89) 
= composite parity-check (Chapter 6) (seep, 135) 
= IA generating element (Chapters 7 & 8) (see p. 218) 
= autocovariance function (see p. 257) 
0:.: n!/[k!(n-k)!]' = binomial coefficient 
= signal-to-noise ratio per information-bit 
= delay operator 

d•in 
E = 

= = minimum distance of a code 

E[?] 
= = energy per received bit (see P• 4) 
= = expected value of ? 

e = = = channel-error sequence (see p. 46) 
erfc = = complementary error function (see p, 291) 
f = = = coherent demodulator 0/P (Chapter 1) (see p, 286) 
f = = = number of zero-length SRs (Chapters 3 & 4) (see P• 57) 
f(i) = = memory-density function (Chapter 4) (seep, 102) 
F(i) = = memory-distribution function (Chapter 4) (seep. 114) 
~ = = = Euler totient (Chapters 7 & 8) (see p, 436) 
G = = = net coding-gain (see p, 13) 
G = = = generator matrix (see p. 30) 
GF(q) = Galois field q (seep. 297) 
H = = = parity-check matrix (see p, 45) 
I = = = identity matrix 
J = = = number of orthogonal check-sums 
M = = = total circuit memory (see p, 55) 
m = = = memory order (see p. 19) 
M

1 
= = = length of the ith SR of a normal LSC (see p, 33) 

fi = = = single-sided noise power spectral density 
n.t. = = = actual constraint-length (see P• 20) 
11z = = = effective constraint-length (see p. 145) 
Q = = = number of input blocks (Chapter 4) (see P• 89) 
P

4
,P

4 
=probability of bit decoding error 

P = = = probability of channel error • r = = = received sequence (see p. 46) 
R( 1:) = = autocorrelation function (see p, 257) 
s = = = syndrome sequence (see p, 47) 
T = = = syndrome threshold (see p. 151) 
t = = = error-correcting capability (see p, 85) 
T

0 
= = = optimum threshold (see p, 151) 

u = = = message (or information) sequence (see p. 25) 
V = = = channel sequence (see p. 25) 



Notation 

w[?] = = Hamming weight of ? 
Y = = = • • • • • (see p. 89) 
6 = = = theta function (see P• 218) 
LxJ = = greatest integer ~x 
rxl = = smallest integer O!:x 

~ - = = = congruence symbol (see p. 441) 
= = = equal by definition 

partitioned by sets A & B (see P• 352) <A,B> __ :: 
AQB = = A is a subset of B 

' ACB = = A is a proper subset of 
(a,b) = greatest common divisor 
x/y/z = (x/y)/z = x/(yz) 

B 
of a & b (see p. ~~5~~ 
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At>P:ENDIX 1.1: THE FUNCTIONAL BLQCK-UNITS QF A 
QIGITAL COMMUNICATIONS SYSTEM 

In this appendix, the task of each of the functional 

block-units of the digital communications system of Fig. 1.1 

(p. 2) will be briefly described. The idea of such a diagram 

was borrowed from Sklar [1], from whom some of the following 

material is also taken. 

The information source is either the human or the machine 

that originates the information to be transmitted. The in

formation may be an analogue signal (i.e. a signal continu

ous both in amplitude and in time), or a sampled signal 

(i.e. a signal continuous in amplitude but discrete in 

time), or a digital signal (i.e. a signal discrete both in 

amplitude and in time). 

The information sink, or destination is the human or ma

chine that will receive an estimate of the original informa

tion signal. The signal should be delivered in a format 

suitable to the particular destination. The performance of 

the whole system is judged by the quality of the delivered 

signal (an ideal system would deliver an estimate which is 

identical to the original signal), by the delay involved, by 

the cost of transmission (or storage) and, for some applica

tions, by the security against interception. 

The source formatting unit converts the source signal 

into a bit stream (since the system is digital). For exam

ple, the source formatting unit for an analogue source (au

dio, etc) may be a PCM encoder, while for a digital source 

(computer terminal, etc) an ASCII (or similar) encoder (in 

the case of the computer terminal this is incorporated in 

the keyboard) • 

The destination formatting unit converts the received 

bit-stream into a signal suitable to the particular destina

tion. In the case of audio signals the formatting device may 

be a PCM decoder, while in the case of digital signals it 
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may be the appropriate part of a VDU or a printer, 

The source encoder compresses the information signal. The 

ratio of the bit rate out of the encoder over the bit rate 

in the encoder is called the compression ratio. Compression 

techniques for analogue sources include differential PCM, 

adaptive delta modulation and linear predictive quantiza

tion; these are both source-formatting and source-coding 

techniques. Digital sources are compressed by variable

length coding techniques, like the Huffman and Li v-Zempel 

ones. The latter algorithm is adaptive in the sense that it 

requires no prior knowledge of the source statistics. 

The source decoder performs the reverse operation. It 

assumes that no errors have occured. The validity of this 

assumption depends on the particular system. Usually, a sin

gle bit in error may appear with probability less than, say, 

10"8 , In most of the cases the source decoders are able to 

recover*, in which case the user experiences a short or long 

burst of erroneous data, 

Encryption prevents unauthorized users from extracting 

information from the channel (privacy) and from injecting 

information into the channel (authentication). The message 

is encrypted with an invertible transformation, to produce 

the ciphertext which is then transmitted over a public chan

nel. 

Decryption is equivalent to inverting the original trans

formation. This is easily done if a specific 

transformation-parameter is available. This parameter is 

called the key and is not available to the unauthorized user 

(cryptanalyst), The latter is assumed to have full knowledge 

of the transformation used and of the ciphertext, to have 

access to the best (specialized or not) computer systems, 

but not to have the key, The security of the system is based 

on the vast number of calculations required to decipher the 

ciphertext, without the key. 

Channel coding aims at offering a flexibility to the sys

tem-designer to 'play' with the error-rate performance, the 

power requirement or the bandwidth requirement. So, for a 

* In B08e applications. this •ay not be desirable. 
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given input data-rate one of these three parameters can be 

improved, at the expense of the other two. This is achieved 

by introducing controlled redundancy, into the encoder in

put-stream, which for this purpose is broken into blocks of 

k; the introduction of redundancy results in an increased 

bit-rate at the 0/P of the encoder (for every k bits, n bits 

are transmitted by the encoder, where k<n). 

The channel decoder uses the received bit-stream to ei

ther detect the presence of errors (and ask for a retrans

mission) or to correct them. Error detection & retransmis

sion is called automatic request for retransmission (ARQ), 

while error correction is called forward error-control 

(FEC). Note that ARQ results in a variable throughput, but 

it is expected to offer superior error-performance. 

Multiplexing (MUX) is the sharing of a communications 

resource (CR). Mux of bit streams is achieved by sharing the 

CR in time (time-division mux- TDM). TDM may be static (as 

used in telephony) or dynamic (usually called statistical 

mux). Another very common type of mux is frequency-division 

mux (FDM), but this operates on waveforms, hence it would be 

located somewhere after the modulator. 

Demultiplexing separates the multiplexed bit-stream into 

its constituent parts. 

The modulator is the interface between the bit-stream and 

the waveform parts of the system. The modulator-demodulator 

pair is the most essential part of the whole system. The 

modulator superimposes the bit-stream onto a carrier (usual

ly a sine-wave). This is done because the frequency charac

teristics of an, appropriately designed, (modulated) carrier 

better match the channel characteristics. A sine-wave is 

completely defined by its three parameters, amplitude, fre

quency and phase. In amplitude modulation (AM) the carrier 

amplitude is made to vary in sympathy with the message sig

nal; in frequency modulation (FM) the parameter which is 

altered is the (instantaneous) frequency of the carrier; in 

phase modulation (PM) it is the carrier phase that changes 

in sympathy with the message signal. If the message signal 
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is digital (as in Fig, 1.1), these three techniques are 

called ASK, FSK & PSK, respectively (the initials "SK" stand 

for shift-keying), A hybrid combination of ASK & PSK is 

called quadrature amplitude modulation (QAM), In essence, a 

modulator maps blocks of k bits into an alphabet of 2k wave

forms. 

Demodulation is the process of extracting the message 

signal from the received modulated carrier. The received 

signal may be demodulated in a coherent or noncoherent way. 

A coherent demodulator multiplies and integrates (corre

lates) the received signal with each of the prototype wave

forms and chooses the one which better satisfies a certain 

criterion (usually the minimum Euclidean distance), For this 

processing to be successful, the demodulator must have 

knowledge of the carrier's phase reference. Noncoherent de

modulators do not require knowledge of the carrier phase; 

this results in simpler implementation (there is no need for 

carrier tracking), but in worse error-rate performance. 

Multiple access is, like mux, a CR sharing technique. The 

two differ in that multiple access usually involves the re

mote accessing of a resource and a guard-time overhead (re

quired to make the controller aware of the user's demand). 

In MUX the CR controller has instantaneous knowledge of all 

the users demands. 

The transmitter (XMT) includes a power amplifier, a fre

quency-up conversion stage (optional) and an antenna (or, in 

general, XMT-to-channel interface). 

The receiver (RCV) includes an antenna (or, in general, a 

channel-to-RCV interface), a front-end amplifier and a fre

quency-down conversion stage (optional), 

Synchronization (SYNC) is the alignement of the time 

scales of spatially separated time-processes, Bit SYNC is 

involved with the extraction of a clock signal, at the 

pulse-repetition frequency. Frame SYNC is involved with the 

detection of frame-timing slips and the recovery from such 

slips. Carrier SYNC is involved with the extraction of car-
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rier phase information. 

Channel is the medium between the XMT and the RCV anten

nae (or equivalent). 

APPENDIX 1,2: BINARY PSK WITH COHERENT QEMODULAIIQN 

A1.2.1. fSX M9dulgtion 

Consider a PSK modulator with output alphabet 

{s
0
(t),s1(t)}, where 

s 0(t) = {(2E/T)sin(2nf
0
t+n/2) 

s
1
(t) = {(2E/T)sin(2nf

0
t-n/2) 

/O~t~T 

/O~t~T 

(A1.2.1a) 

(A1.2.lb) 

(A1.2.1c) 

From the identity sin(a+b) = sin(a)cos(b)+sin(b)cos(a) 

and eqns (Al. 2 .1) : 

-s
1
(t) = s 0(t) = {(2E/T)cos(2nf

0
t) /O~t~T (A1.2.2) 

The modulation rate is 1/T baud and, since transmission 

is binary, the data signalling rate is 1/T bps. 

is 

The energy of s
0
(t), or s 1(t), in the time interval [O,T] 

Energy= J~2 (t)dt 
0 1 

= (2E/T)J~os2 (2nf t)dt 
0 0 

[using (A1.2.2)] 

Hence, 

= (2E/T)J{£1+cos(4nf t))/2}dt 
0 0 

= (E/T)J~t + 
0 

4af 

(E/T)Jco;xdx/(4nf ) 
0 0 

= E + [E/4nf
0
T)) [sin(4nf

0
T)-sin0] 

* 

= E [since f
0
T=integer, by (A1.2.1c)] 

* Use was aade of the identity cos2x = [l+cos(2x)]/2. 
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Energy/bit = J~~(t)dt = J~~(t}dt = E (Al.2.3) 

Then, 

Power = E/T (Al. 2, 4) 

Note also that, by (A1.2.3): 

-J~~(t)dt = 
0 

-E (Al.2.5) 

Hence, s 0 (t) & s 1(t) are not orthogonal. 

A1.2.2. The Outpu~ of a fSK Qoberent Qemodulator 

A coherent demodulator for PSK multiplies the received 

signal, r(t), by s
0
(t) [or s 1 (t) = -s0(t)], integrates the 

product from time t=O and samples the integrator's 0/P at 

time t=T (see Fig. A1.2.1). 

s (t) 
0 

f(t) r-------, f(t) 

l--+IIN1EGRATOR 1---i 

Sample 
at t=T 

Figure A 1 . 2. 1 : Coherent demodulator for binary PSK. 

Assuming a channel suffering from additive noise, n(t), 

r(t) = s
1
(t)+n(t) /i = 0 or'l (Al.2.6) 

From Fig, A1.2.1 and eqn (A1.2.6): 

f(t) = r(t)s0 (t) = s
1
(t)s0 (t) + n(t)s

0
(t) -> 

f(t) = ±s~ ( t) + n(t)s
0
(t) -> 

f(t) = Jl±s~ (x) + n(x)s
0
(x)]dx -> 

' 
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I(T) -I = tJ~~(t)dt + J~(t)s0 (t)dt 0 0 

[and using (A1.2.3)1, I = ±E+ne (Al.2.7) 

where (Al.2.8) 

Note that ne is a random variable because the waveform 

n(t) /O~t~T is random. Hence the demodulator 0/P is E+ne if 

s 0 (t) was transmitted, or -E+ne if s 1 (t) was transmitted. 

Note also that I is a real random variable, which has to be 

further processed in order to be determined whether s 0 ( t) , 

or s
1 

( t), was transmitted. Of course such a decision will 

not always be error-free, due to the random nature of ne. 

In order to determine the optimum way to further process 

I, one has to examine the statistical properties of ne. 

Al. 2.3. Statistical Properties of n
0 

If the additive noise n(t) is Gaussian, then n(t) is a 

Gaussian stochastic process, hence n(t') is a Gaussian ran

dom variable. Since s 0 (t') is a constant, then n(t')s0 (t')6t 

is also a Gaussian random variable (with different mean and 

variance - see Papoulis [31, p. 127), where 6t is a small 

time interval. 

Consider the sum, 

T/6t 

~n[ 6t/2+6t ( i -1) 1 s 0 [ 6t/2+6t ( i-1) 16t (A) 
i•l 

Let the additive Gaussian noise be also white, with power 

spectral density (double-sided) fi/2 (this means that the 

noise power from f=f0 to f=f0+B is 2Bfi/2 = fiB). Since the 

power spectral density, Gn(f), is constant over all frequen

cies*, the autocorrelation function, Rn(•), of the Gaussian 

white noise process is impulsive, because Rn(•) & Gn(f) form 

a Fourier-transform pair (see Papoulis [31, p. 338): 

(Al.2.9) 

This means that E[n(t1 )n(t
1
+6t) 1 = O, hence the factors 

in summation (A) are statistically independent Gaussian ran-

* In practice. up to about 1013 Hz. 
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dom variables. Then, their sum is also a Gaussian random 

variable (see Davenport [4], pp. 188-90). If one lets 

8t ---> 0, the summation in (A) tends to the integral, in 

(A1.2.8), which defines ne. Hence, ne is a Gaussian random 

variable. 

E[ne], the expected value of ne, may be obtained from 

(A1.2.8): 

From (B), E[ne] is the ensemble average over the noise 

voltages, n(t), from all statistically independent noise 

sources. If nj ( t) denotes a noise sample-function from the 

jth source, the RHS of (B) may be written as (N is the num

ber of noise sources), 

and using (A), 

LIM 
!t->0 
I-HI 

= 

LIM 
I-HI 

N 

{1/N) [ ~ 
j:l 

T/6t 

~ 
1•1 

T/6t N 

-> 

lt2>~ ~ [\'2>¥_<1/N) ~ nj(t1 l] s 0 (t1 )8t (C) 

The summation in the brackets in (C), is the ensemble 

average of noise samples at time t=t1 , over all noise 

sources. Then: 

LIM 
1-Ht 

N 

(l/Nl[~nj(t1 l] 
j:l 

(D) 

Since the Gaussian noise process is stationary, the sta

tistical averages are independent of time and E[n(t
1
)] = 

E[n(t)] = 0. Then: 

(A1.2.10) 

Finally, consider the mean square value, E[n~], of ne. 

From (Al. 2. 8) : 
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-> 

-- - I 

E[n~] = E[
0
J:JTn(t)n(x)s0(t)s0 (x)dtdx] 

and since the operations of integratfon [ ' * . •:- & expec~ation are 
I 

!interchangeable , 

Since, for ensemble averaging, s 0 ( t) & s 0 ( x) are con

stants (the ensemble average is over all noise sample-func

tions, at a fixed time): 

E[n~] = JTJT E[n(t)n(x)]s0 (t)s0 (x)dtdx (E) 

E[n(t)n(x)] is the autocorrelation function Rn(t,x) of 

the noise process, which is a function of only the differ

ence t-x, because the process is stationary (see Davenport 

[4], pp. 322-3). Hence, from (A1.2.9): 

E[n(t)n(x)] = Rn(t-x) = (ii/2)8(t-x) (F) 

From ( E ) & ( F) : 

-> 

If f(x) is any function, continuous at the origin, then 

the shifting property of Dirac's delta function is (see Pap

oulis [3], p. 97): 

... 
Jf(x)B(x-a)dx = f(a) 

-· 
Since x ranges from 0 to T, the value t=x is within the 

range of variation of t, hence the range (-m,+m) may be re

placed by [O,T]: 

(H) I 

'* See Papoulis [3], Chapter 9; see also the argument leading to result (A1.2.10). I 
--~---- - --- - - ___ .------.---J 
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From (G) 1 (H) & (Al. 2. 3): 

inJ~~(x)dx = !fiE 
0 

(Al. 2.11) 

Al. 2 .4. Hard-Oecisjon PeiD9dylation 

The coherent demodulator's output is 

zero-mean Gaussian random variable with 
;-Efi/2. The hard-decision thr~hold, T, 

±E+ne, where ne is a 

variance E[n~] = a• 
is set at 0. *, 

- -- -- ----~- - -
Hence, if s

0
(t) is transmitted, E+ne is received, while 

if s 1 (t) is transmitted -E+ne is received. Then, the optimum 

hard-decision demodulation rule is: 

f = -c: (A1.2.12) 

A1.2.5. probabilitY of Error 

A demodulation error will occur if ne exceeds certain 

limits. Specifically, 

Error, !£ s 0(t) is transmitted and f<O, 
OR, i£ s 1(t} is transmitted and f~O. 

Error~ i£ s 0(t} is transmitted and n~<-E, 
OR, i£ s 1(t) is transmitted and nc~+E. 

From (Al. 2. 13 ) , 

Since P(ne:!:+E) = P(ne<-E), 

(A1.2.13) 

(A1.2.14) 

Since ne is a zero-mean Gaussian random variable with 

variance a•, then: 

j *- tf-the: b1~- ~r~or rate,-; , is expres~ed as P = P(-sn-)p(f<T)-+P(s )P(f>T) = P(s0)P(n <T-E): 
+[1-P(s0)]P(nc>T+E), diff~rentiated with resp~ct to T and set eqAal to 0, it is fouJid l 
that T, the optimum threshold, is 0. 
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Let x/(a{2) = z. Then, 

p = e 

... 
1/{ ( 2na2

) J e·z
2 
a{2dz 

!((o{Zl 

•• 
= i(2/{n) Je-z

2
dz 

!((o{Zl 

-> 

P
8 

= lerfc[E/(a{2) 1 

•• 
where erfc(z) ~ (2/{n) Je""

2
dx 

z 

Using (A1.2.11) in (A1.2.15): 

Pe = lerfc[{(E/fi) 1 

Al. 2. 6. Bounds on. and Approximat.ion to. e. 

Page 291 

(A1.2.15) 

(A1.2.16) 

(A1.2.17) 

The following theor~m was taken from Feller [51 (p. 175): 

Theorem A1.2.1: If Q(x) is the complementary normal 

(Gaussian) distribution, defined by 

•• 
Q(x) ~ Jf(z)dz 

" 
(Al.2.18) 

where f(z) is the, zero-mean, unit-variance, normal den

sity-function, given by 

then: 

Proof: 

2 
f(z) = e·z 12/{(2n) 

(1-1/x2 )f(x)/x < Q(x) < f(x)/x 

Q(x) "' f(x)/x as x->+co 

For all z>O: 

(A1.2.19) 

(A1.2.20) 

(A1.2.21) 

1-3/z4 < 1 < l+l/z2 (A) 

Since, f(z)>O, from (A): 

(1-3/z4 )f(z) < f(z) < (1+1/z2 )f(z) (B) 

From (B) and (A1.2.18), for all x>O: 

•• •• •• 
J<1-3/z4 )f(z)dz < Jf(z)dz < J<1+1/z2 )f(z)dz ---> 

" " " 
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•• 
where J<1-3/z4 )f(z)dz 

" 
(D) 

•• 
and J (1+1/zZ)f(z)dz 

" 
(E) 

From ( A1. 2 .19) : df(z)/dz = -zf(z) (A1.2.22) 

From (E), (A1.2.18) & (A1.2.22): 

+• +• 

Iz(x) = Jf(z)dz + J[f(z)/z2 ]dz ---> 
>< X 

•• 
Iz (x) = Q(x) + Jf(z)d(-1/z) -> 

" 
•• 

Iz (x) = Q(x) - [ (1/z)f(z) ( + J (1/z)df(z) -> 

•• 
Iz(x) = Q(x)- [0-f(x)/x] - Jf(z)dz ---> 

" 

Iz(x) = f(x)/x (F) 

Also, from above, 
•• 

X 

J[f(z)/z2 ]dz = f(x)/x- Q(x) (G) 

From (D), (A1.2.18), (A1.2.22) & (G): 

tCD +• 
I 1 (x) = Jf(z)dz- 3J[f(z)/z4 ]dz ---> 

" " 
•• 

= Q(x) - 3Jf(z)d[-1/(3z3
)] 

" 
---> 

•• 
= Q(x) - 3[-f(z)/(3z3 l]•• + 3J[-1/(3z3 )]df(z) 

" " 
---> 

•• 
11 (x) = Q(x) + [ f(z)/z3 1:• + J[f(z)/z2 ]dz -> 

I 1 (x) = Q(x) + [O-f(x)/x3 ] + f(x)/x- Q(x) -> 

I 1 (x) = (1-1/x2 )f(x)/x (H) 

From (H), (F) & (C), (A1.2.20) follows readily. 
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Note that the difference between the upper and the lower 

bound on Q(x) [from (A1.2.20)1 is 1/x2 , which tends toO, as 

x-->+m. Then, Q(x) ~ f(x)/x, as x-->+m, 
QED 

The results of Theorem A1.2.1, will be used now to obtain 

bounds on, and an approximation to, Pe' 

Lemma A1.2.1: The probability of a bit-error, for bi-

nary PSK transmission over the AWGN channel and coherent 

demodulation with hard-decisions, is bounded by 

(A1.2.23) 

where r .::. E/fi (A1.2.24) 

E is the energy per received bit and fi/2 is the double

sided noise power spectral density, 

Furthermore: 
(A1.2.25) 

Proof: From the definition of Q(x) & erfc(x) [see 

(Al. 2.18) & (Al. 2.16) 1, the following relationship is ob

tained: ... 
Q(x).::. [1/.f(2n)]Je·•"tzdz 

X 

(let y=z/.[2) 

•• 
= H 2/.f ( 2n) 1 r e·Y\f2dy 

xtlz 
•• 

: t(2/.f1t) re-Y
2
dy = ierfc(x/.[2) -> 

xtlz 

Q(x) = ierfc(x/{2) (A1.2.26) 

From (A1.2.26) & (A1.2.20): 

(1-1/x2 )f(x)/x < ierfc(x/{2) < f(x)/x -> 

[1-1/(y{2) 2 )1f(y{2)/(y{2) < ierfc(y) < f(y{2)/(y{2) ---> 

• 2 
[1-1/(2y2 )1e"Y /[y{2{(2n)1 < ierfc(y) < e"Y /[y{2{(2n)1 

[from (A1.2.19) - let now y={r1 
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Approximation (Al.2.25) & bounds (A1.2.23) follow readi

ly. 

APPENJ)!X 1.3: AVERAGE ERROR-BATE FQR A' SIMPLE 
CHANNEL WITH MEMQRY 

QED 

If P(b) = 1-P(g) is the probability that the channel will 

be found in the 'bad' state, then from Fig. 1.4, the proba

bility, P(g), that the channel will be found in the 'good' 

state is: 

P(g) = P(g) ( 1-q
1
)+P(b)q2 = P(g) (1-q1 )+[1-P(g)]q2 -> 

(A1.3.1) 

Since P(b)=1-P(g), 

(A1.3.2) 

The average probability of error for this channel is 

PE= P(g)p1+P(b)p2 -> 

-> PE= {q2pl+qlp2)/(ql+q2) "' pl+(ql/qz)Pz (Al. 3. 3) 

APPENJ)!X 1.-4: ASYMPTOTIC CODING GAIN FOR A BLOCK CODE 

Consider the calculation of the asymptotic coding-gain 

for a t-error correcting code, of rate R, with BPSK trans

mission over the AWGN channel and coherent demodulation-with 

hard decisions. 

Let p denote the probability of a bit in error over the 

BSC (made of the BPSK modulator, the AWGN and the coherent 

demodulator). From eqn (1.7), the probability of erroneous 

decoding, P(E), is 

n 

P(E) = ~p1 (1-p)n·ic(n,i) 
i=nJ3+1 
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Since at high SNRs, p is very small, only the first term 

of the above summation is significant*, Also ( 1-p )n-t-l "' 1, 

so P(E) "' Kpt+l, where K is a constant. For the same reason 

as above, given that a block is erroneously decoded [and 

that happens with probability P(E)1, the probability that it 

contains more than t+1 errors is close to zero (because p is 

very small at high SNRs). Hence, P(E) is approximately equal 

to the probability of t+l errors. So, the bit error-rate, 

Pb, at the decoder 0/P is: 
(A1.4.1) 

p is the channel error-rate as 'seen' by the decoder. 

Hence, p is given by (1.4), but the SNR per information-bit, 

r, is reduced by a factor of R: 

Pb"' K( t+l ){lerfc[.{(rR) ]}t+l (A1.4.2) 

For uncoded transmission, the bit error-rate, P~, is 

P~ = lerfc(.{r') (A1.4.3) 

The expressions in eqns (Al. 4. 2) & (Al. 4. 3), for high 

SNRs, can be approximated by (1.5c). Then, to achieve the 

same bit error-rate (P~=Pb): 

K( t+l ){e<-rR) /[ 2.{ ( nfR) 1 }t+l = e-r• /[ 2.{( nr') 1 -> 

ln[K(t+1)1 + (t+1){-rR-ln[2.{(nrR)]} = -r'-ln[2.{(nr')1 ---> 

r• = Rf(t+1)+(t+1)ln[2.{(nfR)1-ln[2.{(nr')]-ln[K(t+1)1 ---> 

r• = Rr(t+1 )+i-ln[ (rR)t•1tr' ]+tln(2.{n)-ln[K(t+1)] 

Since all logarithmic factors are small, for r-->m: 

r• tr "' R(t+l l -> G
8

"' 10log[R(t+1)] (A1.4.4) 

* This is the i=t+l term, since ne = t. 
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APP:lml)lX 2.1: INTRQDUCTIQN TO ABSTRACT ALGEBRA 

This appendix is intended to serve as a 'look-up table' 

for basic definitions and theorems of abstract algebra. 

The part of convolutional-code theory, covered by this 

thesis, is inherently algebraic. Consequently, the reader is 

expected to be familiar with the most common elements of 

abstract algebra. 

More information can be found in chapter 2 of most 

textbooks on error-correcting codes. 

Definition A2.1.1: A setS, together with an operation 

* defined in the elements of S, forms a group G if the fol

lowing properties are satisfied: 

i) Closure: For every a, b in S, a*b is in S. 

ii) Associativity: For every a,b,c in S, a*(b*c) = 
( a*b) *c. 

iii) Identity: S contains an element e such that, for 

all b in S, b*e = b. 

iv) Inverse: For every b in S there is an element c, 

in s, such that b*c = e. c is called the inverse 

of b and is denoted by b-1 • 

I 
Theorem A2.1.1: In every group, the identity element is 

unique. Also, the inverse of each group element is unique, 

and (a-1 )-1 = a. 

I 
Definition A2.1.2: If a group G satisfies the commuta-

tive property, i.e. if for every a,b in G, a*b = b*a, then 

the group is called commutative or abelian. 

I 
Definition A2.1.3: If a group G has a finite number of 

elements, it is called a finite group and the number of ele

ments in G is called the order of G. 

I 
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Definition A2.1.4: A set S, together with an operation 

* defined on the elements of S, forms a semigroup if * is a 

closed associative operation. 

I 
Definition A2.1.5: A setS together with two operations 

on S, addition (denoted by +) and multiplication (denoted by 

juxtaposition), forms a ring if: 

i) S together with addition forms an abelian group. 

ii) S together with multiplication forms a semigroup. 

iii) The distributive laws a(b+c) = ab+ac and (b+c)a = 
ba+ca, hold. 

I 
Definition A2.1.6: A set S together with two operations 

on S, addition and multiplication, forms a field if: 

i) S together with addition forms an abelian group 

with additive identity denoted by 0. 

ii) S' = {s : seS & s # 0} together with multiplica

tion forms an abelian group. 

iii) The distributive law a(b+c) = ab+ac holds for all 

a,b,c in s. 
I 

Definition A2.1.7: A field with q elements, if it ex-

ists, is called a finite field, or Galois field, and is de

noted by GF(q). 

I 
Definition A2.1.8: Let F be a field. The elements of F 

will be called scalars. A set V is called a vector space and 

its elements are called vectors if there is defined an oper

ation called vector addition (denoted by +) on pairs of ele

ments from V, and an operation called scalar multiplication 

(denoted by juxtaposition) on an element from F and an ele-

ment from V, provided the following hold true: , 
( 

i) V is an abelian group under vector addition. 

ii) Distributive law: For any vectors v1 & v2 and any 

scalar c, c(v1+v2 ) = cv1+cv2 • 
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iii) Distributive law: For any vector v and any scalars 

c
1 

& c 2 , (c1+c2 )v = c 1v+c 2v. 

iv) Associative law: For any vector v and any scalars 

c 1 & c 2 : (c 1c 2 )v = c 1 (c2v). 

v) If 1 is the multiplicative identity of F, lv = v, 

for all v in V. 

I 
Definition A2.1.9: Let S be an non-empty subset of a 

vector space V. S is a vector subspace if it forms a vector 

space under the original vector addition and scalar multi

plication. 

Definition A2.1.10: 

form 

I 
In a vector space V, a sum of the 

where the a
1 

are scalars, is called a linear combination 

of the vectors v1,v2, .•• ,vk. 
A set of vectors {v1 ,v2 , ••• ,vk} is called linearly depend

ant if there exist scalars a 1 ,a2 , ••• ,ak such that 

I 
Definition A2.1.11: If a

1
eF /i=1,2, ••• ,k, where F is a 

field, the quantity (a1 ,a2 , ••• ,ak) is called a k-tuple of 

elements from the field F. Under the operations of compo

nentwise addition and componentwise scalar multiplication, 

the set of k-tuples of elements from a field F forms a vec

tor space over F, which is denoted by F t. 

I 
Definition A2.1.12: A set of vectors is said to span a 

vector space if every vector in the space equals at least 

one linear combination of the vectors in the set. A vector 

space that is spanned by a finite set of vectors is called a 

finite-dimensional vector space. 

I 
Definition A2.1.13: The number of vectors in a set that 

spans a finite-dimensional vector space V is called the di-
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mension of V. A set of k linearly independent vectors that 

span a k-dimensional vector space V is said to form a basis 

of V. 

I 
Note A2.1.1: Any finite-dimensional vector space V can 

be represented as an n-tuple space: If the set of vectors 

{V1 ,V2 , • •• ,vn} forms a basis of V then every veV can be ex

pressed as V = a 1v1+a2v2+• • •+anvn, hence one may represent v 

·by the n-tuple of coefficients (a1 a 2 • • • an) = v. 

I 
Definition A2.1.14: A single-valued mapping of a set S 

into a set T is a correspondence (f:s--->sf) that associates 

with each ses a unique element teT. Two mappings f & g, of S 

into T, are equal (f = g) iff sf = sg for all seS. A mapping 

of S into T is a mapping of S onto T, if for each teT there 

exists at least one seS : sf = t. f is a one-to-one mapping 

iff for each a,beS : a # b ---> af # bf, [6] 

I 
Definition A2.1.15: Let S & T be any two sets. The set 

S X T = {(s,t) : seS,teT} is called the cartesian product of 

the sets S & T. [6] 

I 

APPENDIX 2,2; "' INTROPUCIIQN TO LINEAR ALGEBRA' 

This appendix is intended to give a few definitions and 

theorems that will be used throughout the thesis. The reader 

may find more information in chapters 1 & 3 of Noble & Dan

iel [7], 

Definition A2.2.1: An m x n matrix over a ring R is 

made of mn elements of R, arranged in a rectangular array of 

m rows and n columns. If the elements of A are denoted by 

a
1

j I i=1,2, ... ,m & j=1,2, ... ,n, then the matrix can also be 

denoted by A = [ a 1 j] • 

I 
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Definition A2.2.2: The transpose of the m X n matrix A 

= [ a 1 j 1 is the n X m matrix AT = [ aij 1, such that aij = aJi /i= 

1,2, ... ,n & j=l,2, •.• ,m. 

I 
Theorem A2.2.1: Properties of the transpose matrix [71: 

i) (A+B)T =AT+ BT 

ii) (AT)T = A 

I 
Definition A2.2.3: A matrix G such that GA = I, if such 

a matrix exists, is called a left-inverse of A. A matrix H 

such that AH = I, if such a matrix exists, is called a 

right- inverse of A [71. 

I 
Theorem A2.2.2: If both the right-inverse and the 

left-inverse of a matrix A exist, they are the same; this 

common inverse is called the inverse of A, is unique and is 

denoted by A-1• 

I 
Theorem A2.2.3: Properties of the inverse [71: 

i) A square matrix possesses an inverse or it does 

not posses either a left- or a right-inverse. 

ii) If A & B are square matrices that posses an in

verse (in which case they are called nonsingular): 

iii) 

1. (K1)-1 = A 

2. (AB)-1 = s-1A-1 

3. (AT)-1 = (A-1)T 

The results in (ii) imply that if A & Bare 

singular, so are AT, A-1 &. AB. 

non-

I 
Definition A2.2.4: Elementary row operations on ma-

trices are defined as following: 
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i) Interchange of any two rows. 

ii) Multiplication of any row by a non-zero element. 

iii) Replacement of any row by the sum of itself and a 

multiple of any other row. 

Elementary column operations are defined by replacing the 

term "row" by the term "column", above.[8] 

I 
Definition A2.2.5: An m X n matrix is said to be canon-

ical or in row-echelon form if: 

i) Certain columns numbered c 1<c 2<•••<crare precisely 

the unit vectors e 1 ,e2 , ••• ,er; the unit vector e
3

, 

of order m (l~j~m), is the m x 1 matrix with the 

jth element unity and all other elements zero. 

ii) For a column numbered c, where c 1~c<c1• 1 (l~i~r), 

its last m-i elements are zero. 

From (i) & (ii) above, it follows that: 

iii) The last m-r rows of the canonical matrix are 

zero; the first r rows are non-zero. 

iv) The lower triangle of elements in the (i,j) posi

tions, where i>j, is all zero. 

v) For row i (l~i~m): 

1. The first c -1 i elements are zero. 

2. The c 1th element is 1. 

3. The cjth element is zero, for i;!j. 

I 
Theorem A2.2.4: Any elementary row (column) operation 

on an m X n matrix A, can also be achieved by forming the 

product HA (AK). H (K) is the corresponding elementary ma

trix, obtained by performing the row (column) operation on 

I• (In)• An elementary matrix is nonsingular. 

I 
Definition A2.2.6: An elementary operation is any oper-

ation that is either an elementary row operation or an ele

mentary column operation. If a matrix A can be transformed 

into a matrix B by means of one or more elementary opera-
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tions, we write A ~ B and say that A is equivalent to B. In 

particular, we may say that A is row equivalent (or column 

equivalent) to B if only elementary row (or column) opera

tions are involved in the transformation. [8] 

I 
Theorem A2.2.5: The row-echelon form of a matrix is 

unique. 

I 
Definition A2.2.7: The number of non-zero rows in the 

row-echelon form of a matrix is known as its rank. 

I 
Definition A2.2.8: By means of elementary transforma-

tions any matrix A of rank r>O can be reduced to one of the 

forms 

called its normal form. A zero matrix is its own normal 

form [ 9]. 

I 
Theorem A2.2.6: 

[ 8] • 

Equivalent matrices have the same rank 

Theorem A2.2.7: Two matrices A and B are 

there exist two nonsingular matrices P and Q 

PBQ. 

I 
equivalent iff 

such that A = 

I 
Theorem A2.2.8: If A is an n X n matrix and if [A,In] 

can be transformed to the equivalent matrix [I
0

,B] by ele

mentary row operations, then B is the inverse of A [8]. 

I 
Theorem A2.2.9: Let A be a square m X m matrix of rank 

m. Then, [ 7] 

i) The row-echelon form of A is I •• 
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ii) A is the product of elementary matrices. 

iii) A is nonsingular. 

I 
Theorem A2.2.10: If A is a general m x m matrix and B 

is an m X n matrix of rank m, the rank of [B,A] is m [7]. 

I 
Theorem A2.2.11: Let A be an m x n matrix of rank r. 

Then, [7] 

i) 

ii) 

A has a 

A has a 

right-inverse R 
left-inverse L 

r = m S n 

r = n S m 

I 
Theorem A2.2.12: Let A be a square m X m matrix. A is 

' 
nonsingular iff the rank of A is m. [7] 

I 
Theorem A2.2.13: If A & B are m x m matrices and AB is 

nonsingular, both A and Bare nonsingular [7]. 

I 
Theorem A2.2.14: If A is nonsingular, the rank of AB 

(and also of BA) is that of B [9]. * 
I 

Theorem A2.2.15: The rank two ma-

trices cannot exceed the rank of 

of the product of 

either factor [9]. 

I 
Theorem A2.2.16: If the m X p matrix A is of rank r and 

the p x n matrix B is such that AB = 0, the rank of B cannot 

exceed p-r [9]. 

I 
Theorem A2.2.17: If A is m x n and B is n x m with n<m, 

AB is singular [7]. 

I 
Theorem A2.2.18: Suppose that AB = o. Then [ 7] : 

i) If A is n X n & B is n X p, B = 0 or A = singular. 

ii) If A is m X n & B is n x n, A = 0 or B = singular. 

* In fact, AB & 8 have the sa-e canonical aatrix. 
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iii) If A and B are both n X n, A = 0, or B = 0, or

both A & B are singular. 

I 
Theorem A2.2.19: If two matrices are related by a sue-

cession of elementary row operations, they have the same row 

space (row space of a matrix is the set of all linear combi

nations of its rows). 

I 
Theorem A2.2.20: Let A be an m X n matrix with elements 

in GF(q). The row space of A is a vector sub-space of 

GF(q)n, with dimension equal to the rank of the matrix. The 

column space of A, the set of all linear combinations of the 

columns of A, is a vector subspace of GF(q)• with dimension 

equal to the rank of A. 

I 
Theorem A2.2.21: Let A be an m x n matrix with elements 

in GF(q). The set of n-tuples v such that AvT = 0 is called 

the null-space of A and forms a vector subspace of GF(q)•. 

NOTE: Information about 

Appendix 2.2, can be found in 

the proof of 

Appendix 2.3. 

I 

the theorems of 

Al>l>lmDlX 2.3: PRQQE OF THE !HEQREMS IN APPENDIX 2.2 

This appendix is intended to provide the reader with a 

brief sketch of the proofs of those theorems of Appendix 

2.2, for which a reference was not found. 

For Theorems A2.2.1. A2.2.2 & A2.2.3: 

iel [7], pp. 11-8. 

See Noble & Dan-

I 
For Definition A2.2,5. parts (iiil. (iv) & (v): Using 

' 
parts (i) & (ii): 

iii) If c 1:Sc<c1• 1 ( l:Si:Sr), the column numbered c has its 

last m-i elements zero. Then the last MIN{m-i} elements of 
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each column are zero, hence the last m-MAX{i} = m-r rows are 

zero. 

iv) The elements of the lower triangle are a(p,c) ~a c p, 

with p>c. From the discussion above, if i<p~m then a(p,c) = 

0, where ci~c<cit 1 and 1~i~r. Since i~ci and ci~c, if c<p -> 

i<p, hence a(p,c) = 0. 

v) Column c
1 

contains a 1 in position i. So, a.(i,c
1

) = 

1. Consider a.( i, c) /c<c
1

, Let cj~c<cj+l with j+1~i. In column 

c, elements j+1, ••• ,m are zero. Hence a(i,c) = 0. In row i, 

positions c
1
,c

2
, ••• ,cr belong to ej /j=1,2, ••• ,r, respective

ly. 

I 
For Theorem A2.2.4: See [7], pp. 85-6 for a proof for 

row operations. The proof for column operations is similar. 

The proof of the last statement is in [7], pp. 86-7. 

I 
For Theorem A2.2.5: See [7], pp. 88-90. 

I 
For Theorems A2.2.6. A2.2.7 & A2.2.8: 

pp. 130-8. 

See Campbell [8], 

I 
For Theorem A2.2.9: Let P be the row-echelon form of A. 

Then P contains the r unit vectors e 1 ,e2 , ••• ,er (Definition 

A2.2.5). Since P is m x m, of rank m, then m-r=O* and P = 

[e
1
,e2 , ... ,e.] =I •• So, P =I.= FA (by Theorem A2.2.4), 

where F is the corresponding elementary matrix. Then A has a 

left inverse, hence it is nonsingular (by Theorem A2.2.3). 

By Definition A2.2.6 & Theorem A2.2.7, P =I.& A are equiv

alent, hence there exist nonsingular matrices G & H such 

that P = I = GAH -> A = G-1w1 ( G-1 & W1 are nonsingular, • 
by Theorem A2.2.3). G & Hare elementary, since GAH = P. 

I 
For Theorem A2.2.10: Let [P1 ,P2 ] be the row-echelon 

form of [B,A]. According to Definition A2.2.5, P1 is an 

m x n canonical matrix, and by Theorem A2.2.4: [P1 ,P2 ] = 

F[B,A] -> P
1 

= FB (F is the elementary matrix), so P1 & 

* By Definitions A2.2.5 • A2.2.7. 
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B are row-equivalent, hence they have the same rank (Theorem 

A2.2.6), so P1 has rank m, and since [P1 ,P2 ] is m X (m+n), it 

has no zero rows, hence its rank is m and so is the rank of 

its row-equivalent [B,A] (ibid). 

I 
For Theorems A2.2.11 & A2.2.12: See [7], PP• 96-7. 

I 
For Theorem A2.2.13: Since AB is nonsingular, if F is 

its inverse, I = F(AB) = (FA)B ---> FA is the left-inverse 

of B ---> the rank of B is m (Theorem A2.2.11) ---> B is 

nonsingular (Theorem A2.2.12). Similarly for A. 

I 
For Theorem A2.2.14: Since A is nonsingular, I = XA (X 

is nonsingular). Let P be the row-echelon form of B; then P 

= FB (F is nonsingular, by Theorem A2.2.4) and P = (FI)B = 
F(XA)B = (FX)(AB). Since FX is nonsingular* and P is a ca

nonical matrix, P ~ AB and since P ~ B, B & AB have the same 

rank (Theorem A2.2.6). 

I 
For Theorems A2.2.15 & A2.2.16: See Ayres [9], p. 43. 

I 
For Theorem A2.2.17: Let r 1 , r 2 & r be the ranks of A, 

B & AB, respectively. Then, r1~m, r2~n<m ---> r 2 <m and 

r~MIN{r1 ,r2 } (Theorem A2.2.15), so r<m and hence the m X m 

matrix AB is singular (Theorem A2.2.12). 

I 
For Theorem A2.2.18: Let AB = 0. If any of A or B is 

nonsingular, appropriate multiplication of AB = 0 by the 

inverse matrix will leave the other matrix equal to 0; this 

means that both matrices cannot be nonsingular. 

For Theorems A2.2.19, A2.2.20 & A2.2.21: 

[10], pp. 37-9. 

* By Theore• A2.2.3 (iii). 

See 

I 
Blahut 

I 
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APPENDIX 2.4: THE POLYNOMIAL & MATRIX APPROACHES 

TO CQNVOLYIIQNAL-CODE THEQRY 

The 'quantities' in a communications system are the I/P, 

or the 0/P, of its various block units. Each quantity is 

made of digits denoted by, say, z~1 >, where j denotes time, i 

denotes input (or output) port and 

GF(q) (usually, q=2). 

(1) 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
(2) 

Block 

Unit 
(b) 

0 0 0 0 0 0 0 0 0 

, 11me 

z< 1 l takes values 
j 

from 

(1) 
0 0 0 0 0 0 0 0 

(2) 
0 0 0 0 0 0 0 0 

(c) 
0 0 0 0 0 0 0 0 

l ~ PortNo 

Figure A2.4.1: Organization of digits (o) at the I/P and the 0/P 

of a block unit. 

Each block unit has, say, b inputs and c outputs, where 

b2:1 & c2:1. The input digits x~il and the output digits y~il 

can be thought of as being organized in a rectangular array. 

Digits in the same row 'travel' towards (or out of) the same 

port, while digits in the same column belong to the same 

time-unit (see Fig. A2.4.1). 

In Figs A2.4.1, A2.4.2 & A2.4.3, the little circles (o) 

represent the digits x~il, or y~il, and are assumed to flow 

steadily with time, from left to right. To make mathematical 

expressions simple, it is necessary to introduce a more com

pact representation of the z~1 >s; this is achieved by com

bining the digits either horizontally, or vertically. 

In the matrix approach, the digits, z~1 l, z~2 l, ••• , z~dl, of 

column h are combined into a vector zh ~ [ z~1 l z~2 l • • • z~dl] 
which represents the input to (or the output of) the block 
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unit at time h (see Fig. A2.4.2a). Subsequent horizontal 

combination results naturally into a time-sequence of vec

tors: z ~ [z0 ,z1 , ••• ,zh, ••• ] (see Fig. A2.4.2b). Relations 

among this type of quantities include infinite-dimensioned 

matrices, of sub-matrices of approprite dimensions. 

~, 

o lo' 
I \ 
I I 
I I 

0 I 0 1 
I I 
{ I 

i I 
i i . ' ' ' \ i 

o 1 o I 
' I 
'f 

X X 
•+4 I •+3 

I 
I -I I 
I 
I 
I 
I • 

~, 

o /o' 
I \ 
I I 
I I 

0 J 0 1 
I I 
{ I 

i I 
\ i 
' ' ' ' \ ! 

o ' o I I I 

\( 
X X 

•+z ••1 

0 

0 

0 

X 
k 

X ~ [ · · • Xk +Z XH 1 X~· · ·] 

(1) (1) 
0 0 0 

0 0 
(2) (2) 

Block 0 

Unit 

..:.(b..:..>--;_ __ __j~ 0 0 0 

(a) -
--lJ3i'OCkL Y ~ r .•. y Y Y .. ·] 
-~ . ~ k k-1 ~-2 

(b) 

Figure A2. 4. 2: Matrix approach; formation of a) vectors and b) 

time sequence of vectors. 

I th 1 - 1 h d- - t (i) (i) (i) f n e po ynom~a approac, 1g1 s z 0 ,z1 , ••• ,zh , .•• o 

row i are combined to form a polynomial z1 1 l(D) 0::. z~1>+z~1 >D+ 

+z~1 >nz + • • • +z~ilDh+ • • • , which represents the input to (or out

put of) port i, of the block unit, during all time (see Fig. 

A2.4.3a). Subsequent vertical combination results naturally, 

into a vector of polynomials: Z(D) .::. [z< 1>(D) ,z< 2>(n), ••• , 

zldl(D)] (see Fig. A2.4.3b). Relations among this type of 

quantities involve appropriately dimensioned matrices of 

polynomials. 

One advantage of the latter approach is the use of ma

trices of finite dimensions. The inevitable 'infinite' in 

convolutional code theory (resulting of course from an infi

nitely-long message), is contained by the polynomial. Note 

' 
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(1) -------------- l(~l)-r--1~(~1)- ------- (1) 

x (D) ,::.:_.:.:.:_ _ _c: __ ~ _ _:: .. ~-9>-' (~-~--~-::_·_::;:. y (D) 

X
<z>(D) /--------------- (2) (2) ----------- <Z>(D) 

'-'-: .. • o o o o -~" Block (o o o .... ;_, Y . ------------- : --------- . 

Unit 

- (a) -
(1) (~) 

X(D) ~ [X (D) .. ·X (D)] 
(1) <•> 

Y(D)~[Y (D) ... y (D)] 
t 

(b) 

Figure A2. 4. 3: Polynomial approach; formation of a) polynomials 

and b) vectors of polynomials. 

finally that both z & Z(D), although of different form, rep

resent the same collection of variables [ z~ 1 >s]: 

Z = [ ( (1) (2) (d)) ( (1) (2) (d)) zo 'zo ' • • . , Zo ' zl 'zl ' • • • , zl , • . 

Z(D) = 

( 
(1) (2) (d)) ] 

• ' zh ' zh ' ' • • ' zh ' • • • 

•• 
"' (dlnh ] ' • • • ' ~ zh 
h=O 

(A2.4.1) 

(A2.4.2) 

DISTANCE MEASURES EQR'CQNYOLUIIQNAl CODES 

Definition A2.5.1: The ith minimum distance d 1 of a 

convolutional code is equal to the smallest Hamming distance 

between any two initial codeword segments, (i+l)-blocks long, 

that disagree in the initial block [10]. 

In mathematical language, 

!" 
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if 

and 

then, for i:!:O: 

[ u] 1 .::. [ u0 , u1 , o o , ud 
[v] 1 .::. (v0 ,v1 , .. ,v1 ) 

[u'] f. [u"]} 0 0 

Page 310 

(A2o5ola) 

(A2o5olb) 

(A2o5o2) 

I 
The most important distance measure for convolutional 

codes is the free distance, dfree' defined as following: 

Definition A2.5.2: If v' & v'' are the codewords corre-

spending to the information sequences u' & u'', respective

ly, then the :free distance, dfree' of a convolutional code is 

defined by 

d .::. MIN{d(v' ,v• ') : u' f. u• '} free 
(A2o5o3) 

If u' and u'' are of unequal length, the shortest is ap

pended with zeros, so that both have equal-length codewords 

[2]. 

Another useful distance measure is dain: 

Definition A2.5.3: The minimum distance, 

(n,k,m) convolutional code is defined to be the 

distance: 

d ~ d 
ain • 

I 

dain' of an 

mth minimum 

(A2o5.4) 

I 
Much of the earlier work on convolutional codes treated 

dain as the distance parameter of greatest interest, because 

the earlier principal decoding techniques had a decoding 

memory of one constraint-length [2]o 

Definition A2. 5. 4: The sequence d 1 , d 2 , d 3 , • , • is called 

the distance profile of the convolutional code [10]. 

I 
For convolutional codes that are linear, equations 

(A2.5.2) & (A2.5.3) can be re-written, using the weight of a 

binary word: 
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For H:O: (A2.5.5) 

dfree = MIN{w(v) : u "f. o} = MIN{w(uG) : u "f. o} (A2.5.6) 

APPENDIX 2, 6: PRooF OF RELATIQN !2.241 

The following theorem was taken from Noble & Daniel [7]: 

Theorem A2.6.1: We can multiply partitioned matrices as 

if the submatrices were ordinary (scalar) elements, provided 

that the matrices are partitioned in such a way that the 

appropriate products can be formed. 

I 
Consider relation (2,22): 

Note that the message matrix is a 1 X (m+l) one while the 

system matrix is an (m+l) x 1 one. Consequently, the product 

of the two will be a single-element matrix (in this case, 

the elements are submatrices). Note also that the message 

matrix has been partitioned into (m+l) 1 x k submatrices, 

while the system matrix has been partitioned into (m+l) 

k X n submatrices. Hence, the product will be a 1 X n subma

trix (as expected): 

V - u G + u G + .. •+ u G h - h-a • h-••1 •-1 h o 

where h=0,1,2,,,, and u = 0 if x<O. Then: 
" 

8 

Vh = ~Uh-zGz /h=O ,1, 2, , , , 
z•O 

where a~ MIN{m,h}, 

QED 
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APPENDIX 2 • 7: PBOO~ 0~ THEOREM 2. 3 

Consider eqn (2.24): 

• 
vh = ~uh_1G1 /h=0,1,2,... & uJ = 0 if j<O (A) 

i=O 

The objective is to obtain an eqn, similar to the one 

above, for the channel sequence 

/h~O & z~O (B) 

One way is to increase the limits of the summation, in 

(A) above, to include all message blocks that participate in 

the calculation of [v]~. h, in (A), can be replaced by h+x, 

with x ranging from 0 to z: 

• 
V - ""u G /O~x~z, h~O & uj = 0 if j<O (C) h+x - ~ h+x-i i 

i=O 

If x is left to range in [O,z] and i in [O,m], then w = 

h+x-i will range from a maximum of 

MAX{max[h+x-i]} = MAX{h+x -i} = MAX{h+z-i} = 
i i lltlX i 

h+z-i = h+z •in 

to a minimum of 

MIN{min[h+x-i]} = MIN{h+x 
1 

-i} = MIN{h-i} =h-i = h-m 
1 1 

an 1 aax 

So, we[h-m,h+z] and substituting in (C), h+x-i = w: 

For x=O,l, ••. ,z: 
h+z 

vh+x = ~ uw~+x-w 
w=h-• 

where: h~O, uj = 0 for j<O and GJ = 0 for j1i![O,m]. 

System (D) can be expanded to: 

vh = u G h-• • + u G h-a+l a-1 + + uh+zG-z 

vh+1 = uh-•G••1 + uh-•+1G• + ... + uh+zG-z+l > 
. . . • . . . . . . . . . . . . . • • . . . . • . 

vh+z = u G + h-• a+z ub-•+1 G••z-1 + ... + Uh+zGo 

(D) 

(E) 
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System (E), can be easily written in matrix form to 

produce eqns (2.25) & (2.26), 

~BQQF OF RELATION !2.36) 

Eqn (2.14) gave: 

• k 

v!J> = ""' ""'uU>gCil /h2:0, lSjSn & u 11> = 0 for x<O h LJ ~ h-w J 1W X 

w=O i=l 

From the above and eqn (2.35): 

•• .. k 

= ~ [ ~ ~ /lSjSn & u<il = 0 if x<O 
X 

h=O w=O i=l 

Interchanging the order of summation: 

m +• k 

= ~~~ /lSjSn & u< 1> = 0 if x<O 
X 

w=O h=O i=l 

Substituting h=y+w: 

ID +• k 

= ~~~ /lSjSn & ulil = 0 if x<O 
X 

w=O y=•w 1=1 

Because u<il = 0, for y<O, y should be non-negative: 
y 

11 +• k 

= ~~~ /lSjSn 
w=O y=O i=l 

Interchanging the order of summation: 

k .. 
= ~[ [ ~ g~~~nw] /lSjSn 

i=l w=O 

By eqn (2.34), the 1st bracket above is u< 1>(n), while the 

2nd bracket is g~il (D), according to eqn ( 2. 37): 

k 

v<J>(n) = ~ u<i>(n)g~i>(n) /lSjSn 
i=l 

QED 
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APPENDIX 2 , 9 : EXAMPLES OF NQRMAL-ENCQOER CQNSTRUCTIQN 

To illustrate the discussion in Section 2.14, three exam

ples are considered. In them, given G(D), the associated 

normal encoder is constructed. 

Ex amp 1 e A2. 9. 1 : Consider the generator-polynomial ma-

trix: 

[ l~D D ';"] G(D) = 
1 

It is obvious that it corresponds to a (3,2,m) code. 

Since the maximum power of D is 1 ' then m=l. The normal en-

coder is made of 2 SRs and 3 X-OR gates. Both SRs have 

length 1, because the highest power of D along any row of 

G(D) is 1. The number of non-zero polynomial terms along the 

three columns (&hence the number of inputs for gates 1,2 & 

u<1>(D) -..---->~ A 

B 

Figure A2. 9. 1 : The normal encoder for a (3, 2,1) binary convolu

tional code. 

3) is 3 1 2 & 3 1 respectively. The connections are easy to 

deduce. For example, the contribution to the 3rd gate, from 

the 1st SR, is the row-1, column-3, polynomial l+D which 

indicates two connections, one from the 0/P of the Oth stage 

(i.e. the I/P of the SR) and one from the 0/P of the 1st 
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stage. The diagram of the encoder is shown in Fig. A2.9.1. 

Ex amp 1 e A2. 9 . 2: 

trix: 

I 
Consider the generator-polynomial ma-

G(D) = 

1 1 

0 l+D 

0 D 

1 1 

D 1 

l+D2 l+D2 

It is obvious that it corresponds to a (4,3,m) code. 

Since the maximum power of D is 2, then m=2. The normal en

coder is made of 3 SRs and 4 X-OR gates. Note that the high

est powers of D along each of the rows of G(D) are 0, 1 & 2; 

hence these are the lengths of the three SR's. Note also 

that the number of non-zero polynomial terms along the four 

columns is 1,4,4, & 4. The connections are easy to deduce. 

Note finally that an SR of length 0 or a gate with one I/P 

do not exist. The normal encoder for the above code is shown 

in Fig. A2.9.2. 

I 

u<l)(D) --------~=---------

u(2)(D) _..._--! A 

B 

Figure A2.9.2: The normal encoder for a (4,3 1 2) binary convolu

tional code. 
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Example A2.9.3: Consider the (3 1 2,2) systematic convo-

lutional code with generator-polynomial matrix G(D) = 

[It 1 P(D)] (for a discussion on the generator-polynomial ma

trix of systematic codes, see§ 2.17.5., p. 39), 

where P(D) = 

The normal encoder is made of 2 SRa and n-k=l X-OR gate. 

Both SRshave length 2 because the highest power of D, along 

each row of P(D) is 2. The number of non-zero polynomial 

terms along the only column (and hence the number of 1/Ps 

for the only gate) is 3+2=5. The connections are easy to 

deduce. The normal encoder for the above code is shown in 

Fig. A2.9.3. 

I 

'--4 A B 

~ ..... 
c D cb 

Figure A2.9.3: The normal encoder for a (3,2,2) binary systemat

ic convolutional code. 
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CATASTROPHIC CQDES 

Definition A2.10.1: Codes for which an information se-

quence of infinite Hamming weight may result in a codeword 

of finite Hamming weight, are called catastrophic codes and 

they are said to suffer from catastrophic error propagation. 

I 
It has been shown that (see Lin & Costello [2], Sec. 

10.3), 

For non-catastrophic codes, LIM {di} = dfree 
i->to 

(A2.10.1) 

Usually, as i increases, d 1 reaches dfree after 3-4 con

straint-lengths [2]. 

The following theorem, and its proof, appear here in an 

original form. Nevertheless, the result has been estab

lished, long ago, by Massey & Sain [22]. 

Theorem A2.10.1: A code is non-catastrophic if, and 

only if, its encoder has a feed-forward (FF) inverse. 

Proof: 

a) Sufficiency: Let the encoder have an FF inverse. This 

means that there exists an n-input, k-output, linear sequen

tial circuit (LSC), which if it is cascaded with the encod

er, they will result in a pure delay-line of h time-units, 

where h~O (Massey & Sain [22], Sec. I). 

Assume that the corresponding code is catastrophic. Ac

cording to Definition A2 .10 .1 there exists an information 

sequence u, of infinite Hamming weight, which if fed into 

the encoder, it will generate a codeword, v, of finite Ham

ming weight. If v is applied at the inverse, by the nature 

of the circuit, u should be the response. Hence, the inverse 

is an LSC which produces an infinite sequence (u), in re

sponse to a finite one (V). Hence, this LSC cannot be an FF 

one. Hence, contradiction. 

Then the code is non-catastrophic. 

b) Necessity: Let the code be a non-catastrophic one. 

Since a binary LSC always has an inverse with delay h~O (see 
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Huffman [23], p. 13), the encoder for the above code will 

also have one. 

By eqns (A2.10.1), (A2.5.5) & (A2.5.6), there exists a 

non-zero k-tuple u 0 , such that u = [u0 ,0,0, ••• ,o, ... ] re

sults in a codeword V of weight dfree" V is applied at the 

inverse and after h (h~O) (block) time-units, it reproduces 

u0 , while all the subsequent k-tuples are zero. So, this LSC 

(the inverse) has a transient of only one k-tuple, hence it 

cannot have feedback loops (LSCswith finite transients have 

only FF loops- see Huffman [23], p. 7). 

QED 

The following theorem, due to Massey & Sain ([22], Sec. 

IV), gives a necessary & sufficient condition for the exist

ence of an FF inverse: 

Theorem A2.10.2: A k-input, n-output, feed-forward (FF) 

linear sequential circuit has an FF inverse either with de

lay or without delay if, and only if, 

(A2.10.2) 

for some h~O, where ~1 (D) is the determinant of the i th 

k X k submatrix of G(D). gcd stands for greatest common di-

visor, while C(n,k) 0::. . n!/[k!(n-k)!ll is the binomial coeffi-

cient. Note that there are exactly C(n,k) such submatrices. 

I 
Theorem A2.10.2 makes the Massey & Sain [22] paper a 

classical one, in convolutional code theory. Some authors 

have defined non-catastrophic codes as those which satisfy 

eqn (A2.10.2) (see for example Blahut [10], Definition 

12.2.3). 

The two theorems, given above, imply the existence of an 

n X k matrix G'(D) such that 

G(D)G' (D) = ltDh /h~O 

Note also that [by eqns (A2.10.3) & (2.41)]: 

V(D)G'(D) = U(D)G(D)G'(D) = U(D)Dh 

(A2.10.3) 

(A2.10.4) 



Appendix 2.10 Page 319 

Note A2. 1 0. 1 : Relation (A2.10.4) reveals that any gen-

erator-polynomial matrix G(D), satisfying relation 

(A2.10.2), has an inverse which if multiplied with the chan

nel sequence V(D), it will produce the original message se

quence U(D), delayed by h time-units (h~O). 

I 
Lemma A2. 1 0. 1 : The generator-polynomial matrix of an 

(n,k,m) non-catastrophic convolutional code has rank k. 

Proof: By eqn (A2.10.3), G(D) has a right inverse: 

G(D)[(1/Dh)G'(D)] = Ik 

By Theorem A2.2.11, its rank is k. 

QED 

Example A2.10.1: Consider the generator-polynomial ma-

trix of Example A2.9.1 (p. 314). The C(3,2) = 3, k x k, sub

matrices of G(D) mentioned in Theorem A2.10.2, are: 

!21 (D) = 
[ 

1D+D D1 l !22(D) = 
[ 

1D+D 1+
1

D l D,(D) • [ : l:D l 
with determinants ~1 (D) = 1+D+D2 , ~2 (D) = 1+D2 and ~3 (D) = 

1. Their greatest common divisor is ( 1+D+D2
, 1+D2

, 1) = 1 = 
D0 , hence the code of Example A2.9.1 is non-catastrophic and 

has an FF inverse with no delay. 

Consider the output eqns of the circuit of Fig. A2.9.1 

(notation is simplified): 

Then: G' (D) = 

0 0 

1 1+D 

1 D 

ul = vz+va 

u2 = v 2+Dv2+Dv3 

and G(D)G'(D) = 
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Hence, h = O, as predicted. 

I 

APPEND !X 2. 11; COMPosiTE GENEBAIQR-PQLXNQMIALS 

An expression for the encoder's serial output may be ob

tained by considering that the n (parallel) encoder output

ports are multiplexed for serial transmission (see Fig. 2.1, 

p. 19). It is obvious that the serial bit-stream must ben 

times faster than the parallel one. 

If X denotes the delay operator for the serial line, then 

one can write xn = D; this means that successive bits of a 

particular output must be n time-units apart, in the multi

plexed stream. Since also, the zth bit of 0/P sequence 

v(j) (D) is delayed by one time-unit, with respect to the zth 

bit of v(j·l>(n), sequence v(jl(D) is multiplied by xj-l 

(j=1,2, ..• ,n). So: 

by 

Note A2.11 .1: The serial output of the encoder is given 

Equation (A2.11.1) can be re-written as 

n 
V(X) = ~xj·lvW(xn) 

j=l 

and combined with eqn (2.36): 

n k 

V( X) = ~ xH [ ~ u<il(xn)g~i>(xn)] 
j=l i=l 

Interchanging the order of summation: 

t n 

V(X) = ~uU>(xn) [ ~ xj·lg~il(Xn)] 
i•l j=l 

Finally: 

k 

V(X) = ~uU>(xn)g1 (X) 
i=l 

( A2. 11.1) 

I 

(A2.11.2a) 
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n 

where g
1 

(X) .::. ~ xJ-lg~il ( xn) /i=1,2, ••. ,k (A2.11.2b) 
J=l 

Definition A2.11.1: The k polynomials g 1 (X) /i=1, 

2, ••• ,k, defined by eqn (A2.11.2b), are called composite 

generator-polynomials [2). 

I 
Note A2.11.2: The ith (1~i~k) composite generator-poly-

nomial relates the ith input sequence to the serial 

encoder output. 

I 
Example A2. 11. 1 : Consider now the encoder of Example 

A2.9.1 (p. 314), This is a (3,2,1) code, hence it has k = 2 

composite generator-polynomials, which may be obtained from 

(A2.11.2b). 

From Example A2.9.1 and the form of G(D) [see reln 

(2.41d), p. 33)], the following eqn is obtained: 

[ •l"<n I g~ll(D) •l"<n>] [ l;D D 1+D l G(D) = = g(Zl(D) g~Zl(D) g~Zl(D) 1 1 
1 

(A) 

From (A), substituting D = X3 (n = 3): 

(B) 

Using (B) in reln (A2.11.2b): 

Using (C) in eqn (A2.11.2a), the encoder's serial output 

is obtained in terms of its two inputs: 

To verify the correctness of (D), consider the following 

simple input: 
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(E) corresponds to the message sequence 

u = (1 0 1 0 0 1 0 0 •••) (F) 
1-J 1-J 1-J 1-J 

from which, the two inputs are obtained by demultiplexing 

into two streams: 

u<1l(D) = 1+D and (G) 

Substituting D = X3 in (G) and then into (D), the serial 

response of the encoder [i.e. the three multiplexed output 

bit streams, in response to the input (G)] is: 

-> 

(H) corresponds to the channel sequence 

V = (1 0 1 0 1 -Q 1 0 0 1 0 0 ••• ) (I) 
L...__...j L...__...j L...__...j L...__...j 

From Example A2.10.1, the eqns for the encoder 0/P are: 

vm (D) = (1+D)uO>(o) + Du<21 (D) 

}' v< 2>(D) = Du0 l(D) + u<Z>(D) ( J) 

v< 3>(D) = ( l+D) uO> (D) + u<2>(D) 

Substituting the input (G) into eqns ( J) : 

v<ll(D) = ( 1+D )( 1+D) +DD2 = l+D2+D3 <--> 1 0 1 1 0 .. 
v<Z>(o) = D(l+D) +D" = D <--> 0 1 0 0 0 .. 
v<3l(D) = ( l+D) ( l+D )+D2 = 1 <--> 1 0 0 0 0 • • 

> 1 o 1 o 1 o 1 -o o 1 o n o n -o ••• 

Comparing the last result, with (I), it is indeed veri

fied that V(X) gives the serial channel bit-stream of the 

(parallel-in, parallel-out) encoder. 

I 
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Al>l>ENDIX 2 .12: PROOF OF THEOREM 2.5 

Using Definition 2.10, one may write: 

V -h - [ U y(P)] 
h' h 

/h>O & v~Pl is an (n-k)-tup1e 

Page 323 

(A) 

Consider also the partition of the k X n matrix Gz [de

fined by (2.21), p. 27): 

Gz = [ G;, P z] ( B) 

where G; is k x k and Pz is k X (n-k). 

Using eqns (A) & (B), in eqn (2.24), with a~ MIN{h,m}: 

8 

[ u vCP>] 
h' h = ~ uh-z[G;,P.) (C) 

z=O 

Using Theorem A2.6.1 (p, 311), about the multiplication 

of partitioned matrices, on eqn (C): 

8 8 

uh = ~u G' h-z z <-> uh = uhG~ + ~ u G' h-z z 
z=O z=l 

8 

<-> uh( Ik + G~) + ~ u G' h-z z = 0 
z=1 

For the above eqn to hold true for all messages u1 , all 

the coefficients of u1 must be zero: 

I + G' = k 0 0 G' - I 0 - k 

G' = 0 z 
:-1--> 

Theorem 2.5 follows from eqns (B) & (D). 

COMPOSITE GENERATQR-POLYNQMIALS EQR 
SVSTEMATIC CQNYOLUTIQNAL CODES 

(D) 

QED 

Applying the results of Lemma 2.8, to the definition of 

composite generator-polyomials, one gets: 

Theorem A2.13.1: For an (n,k,m) systematic convolution-
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al code, the composite generator-polynomials have the fol

lowing form: 

n-k 
g1(X) = xk-1 [~xlg~!~<xnl]+x1-1 /i=1,2, ... ,k 

j•l 

( A2. 13 . 1 ) 

Proof: From eqn (A2.11.2b), for i=1,2, .•. ,k: 

n 
91 (X) ~ ~ x•-lg~il(xn) 

z=l 

k n 

g1(X) = ~ x•-lg~il(Xn) + ~ x•-lg~il(xn) 
z=l z=k+l 

From relation (2.49) (p. 38), g~il(D), g~il(D), ••• , gl~~(D), 

9l!~(D), ••• 1 g~1 l(D) are all zero and gfil(D) = 1 for all i=1,2, 

••• ,k. Using this, in the 1st summation of the above eqn and 

substituting z = k+j in the 2nd summation, eqn (A2.13.1) is 

obtained. 

QED 

APPENl>llC 2 .14: EXAMPLE OF A TyPE-It ENCODER 

Example A2.14.1: Consider the systematic code of Exam-

ple A2. 9. 3 ( p. 316). Its generator-polynomial submatrix 

P(D), is enough to generate the type-!! encoder: 

Since n-k=1 there is only one SR. Since the maximum expo

nent of D in P(D) is 2, the SR has length 2 (M
1
=2). 

Since the number of 'ones', along the column of P(D) is 

two, then the Oth gate has a total of 3 I/Ps. 

Since the number of Ds, along the column of P(D) is one, 

then the 1st gate has a total of 2 I/Ps. 

Since the number of D2 s, along the column of P(D) is two, 

then the 2nd (& last) gate has a total of 2 I/Ps. 

Connections are easy to determine. For example, looking 

along the 1st row, one sees three terms; this means that 

uOl(D) contributes to all three gates. Along the 2nd row 

[for connections from u< 2 l (D)] there are the terms 1 & D2 
• 

"1" means a connection to the Oth gate, while "D2 " means a 

connection to the 2nd gate. The encoder is shown in Fig. 

A2 .14 .1. 
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u<1>(D) -----<~~------------.----------

u<2>(D) ---+-..------+-----~-!---

A B 

Figure A2. 14. 1 : Type-II encoder for the ( 3, 2, 2} systematic code 

of Example A2.9.3. The normal encoder, for the 

same code, is illustrated in Fig. A2.9.3. 

APPENDIX 2,15: PROOF OF THEOREM 2.10 

Condition (2.54} and the partition of G(D}, instruct the 

following partition for HT(D} (see also Theorem A2.6.1}: 

H'(D) ~ [ ;:~: l (A) 

where Y(D} is a k X (n-k} matrix 

and Z(D} is an (n-k} x (n-k} matrix. 

Combining eqn (2.54} with eqn (A}: 

[t,,P(D) I [ ;:~: l ~ I,Y(D) • P(D)Z(D) ~ D _, 

-> Y(D} = -P(D}Z(D} and substituting in (A}: 
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= [ -P(D)Z(D) l 
Z(D) 

and using Theorem A2.2.1: 

H(D) = [-zT(D)PT(D),ZT(D)] = zT(D)[-PT(D),In-t] (B) 

The rank of H(D) (n-k) cannot exceed the rank of zT(D), 

or [-P(D),I~k] (see Theorem A2.2.15, p. 303) and since both 

have n-k rows they should both have rank n-k. Since zr(D) is 

a square matrix, it must be non-singular (see Theorem 

A2.2.12, p. 303) 
QED 

APPE:N1HX 2 .ts : PROOF OF THEOREM 2.12 

A constructive proof of Theorem 2.11 can be obtained, if 

H is seen as the limit of [H]z /z->+"'• Let h1 ,j = [Xi,j' Y1 ,j] 

(O:Si:Sz & O:Sj:Sz) where, X1 ,j is an (n-k) x k matrix and Y1 ,j is 

an (n-k) X (n-k) matrix. Then, condition (2.58) gives [see 

(2,43) & (2,25c)]: 

for z=O: 

while for z>O: 

= = 
0 

where 0 is a 1 X z matrix of k X n submatrices, 

and 

with 

K! .::0 [G!,G!_1 , ••• ,Gi) 

Rz ~ [hz,O'hz,l' • • • ,hz,z-1] 

C! .::0 [h~,z•hL, • .. ,h!-t,z) 
G = O, if z>m. z 

From eqn (B), using (A) & (2.58): 

(A) 

0 (B) 
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K CT z z = 0 (Ca) 

GeT 
0 z = 0 (Cb) 

G hT = 0 0 z,z (Cc) 

[ G ]o RT + Kz h!,z = 0 z-1 z 
(Cd) 

The system of equations (C) will serve as the set of 

conditions, [H]z has to satisfy, If the equals of Kz, C! and 

R! are used in system (C), together with the matrix parti

tions G0 = [ Ik, P 0 ] G
1 

= [ Ok, P 1 ] ( i = 1 , 2 , ••• , m) and h1 , J = 

[X1,j,Yt,j], the following results are obtained: 

pTyT : O 
i j,z /i=1,2, ••• ,z & j=0,1, ••• ,z-1 (Da) 

X~,z + P0 Y~,z = 0 I j =0 , 1 , ••• , z-1 (Db) 

XT + P yT = 0 (De) z,z 0 z,z 

[ G] 0 RT = -K hT (Dd) z-1 z z z,z 

A solution for eqn (a) is Y~,z = 0 and this combined with 

eqn (b), gives xT = 0, so that h = 0 /j=0,1, ... ,z-l, and j,z J,Z 

hence c. = 0. 

Eqn (c) will determine h zl one solution is h = z, z,z 

Yz,z[-P~,In-k], where Yz,z is any nonsingular (n-k) X (n-k) 

matrix; usually, Y = I ~· z,z n--. 

Eqn (d) will determine R!; it can be rewritten as: 

z-1-j 

X!,J + P0Y!,J + ~P1Y!,i+J = 
1=1 

-P z-j /j=0,1, •• ,z-1 (E) 

One solution for (E) is Y = 0 /j=0,1, ... ,z-1. This z,j 
gives XT = -P /j=0,1, ••• ,z-1, so that: z,j z-j 

Finally: 

Rz = - [ P! , 0, P!.1 , 0, • • • , PI , 0] (F) 

The above result concludes the construction. Note that 

the [ H] z obtained, is not unique. 
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APl>lUfOl:lC 2 .1 '1: ' PROOF OF THEOREM 2, 15 

Substitute s<jl(D) [from eqn (2.72)], e<il(D) [from eqn 

(2.69)] and g~!~(D) [from eqn (2.37)], in eqn (2.75): 

For j=1,2, ••• ,n-k: 

•• k •• • •• 
~s~jlnh = - ~ ~ ~e(i)g(i) ny+z + ~ e<k+jlnh 

y k+j,z h 
h•O i•l y•O z=O h•O 

•• k •• • •• 
~s~jlnh = - ~ ~ ~e<ilgCil Dh +~ e<k+j)Dh 

h-z k+j,z h 
h•O i•l h•O z=O h=O 

•• •• .. k 

~s~jlnh = ~{ e~k+jl - ~ ~e<ilg<il }nh 
h-z k+j,z 

h•O h•O z=O i=l 

• k 
e<k+jl _ ~ ~ e<ilg<il 

h £J ~ h-z k+j,z 
z•O i•l 

where e< 1 l=O if x<O, or otherwise: 
X 

8 k 

/h=0,1,2, ••• 

S e jl -- e<k+jl - ~ ~ eCilgCil /h-0 1 2 h h ~ ~ h-z k+j,z - 1 1 1 • ' ' 

z=O i•l 

where e ~ MIN{h,m}. 

-> 

-> 

-> 

The expression in terms of r~il is obtained in exactly the 

same way, 

QED 
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APPENDIX 3.1: SEQUENTIAL MACHINES & STATE TBANSITIQNS 

The following definitions are taken from Booth [6] (chap

ter 3) : 

Definition A3.1.1: A sequential machine is a system 

that has the following properties: 

i) Its internal behavior is described in terms of a 

set, Q, of possible states the system might enter. 

ii) The possible inputs to the system are assumed to 

be sequences of symbols selected from a finite 

set, I, of input symbols. 

iii) The possible outputs of the system are assumed to 

be sequences of symbols selected from a finite 

set, Z, of output symbols. 

iv) The system produces an output symbol whenever an 

input symbol is applied, 

I 
Definition A3.1.2: A sequential machine is called a 

Mealey machine if it is characterized by the following: 

i) A set of Q states. 

ii) A finite set, I, of input symbols. 

iii) A finite set, z, of output symbols. 

iv) A mapping*, f, of I X Q into Q, called the next-

state function. 

v) A mapping, g, of I X Q onto z, called the output 

function. 

A particular machine is denoted by the 5-tuple 

(I,Q,Z,f,g). 

I 
Definition A3.1.3: A sequential machine is called a 

Moore machine if it differs from a Mealey machine only in 

that its output mapping g is restricted to a mapping of Q 

onto z. 
I 

* For a definition of the various types of mapping. see Definition A2.1.14. 
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Note A3. 1 . 1 : Transition diagrams provide a graphical 

representation of the operation of a machine. Each diagram 

consists of a set of labelled boxes (or circles) that corre

spond to the states of the machine. 

For each ordered pair of states Sa and Sb a directed edge 

will connect state Sa to state Sb if, and only if, there 

exists an input symbol ia in I such that f(ia,Sa) = Sb. 

If a directed edge connects state Sa to state Sb when the 

input is ia, the edge is labelled as ia/g(ia,Sa)' 

The boxes (or circles) of the transition diagram corre

spond to the current state of the system; the label on the 

edge indicates the current input and the current output. The 

arrowhead on each edge indicates the next state of the ma

chine. 

If more than one input symbols cause a specific transi

tion from, say, Sa to Sb then a multiple-edge representation 

is used: A single directed line with a multiple label. 

I 
Example A3 .1 .1: Consider the ( 3, 2,1) encoder of Fig. 

A2.9.1 (p. 314). Its state diagram contains 4 states, S0 , 

S1 , S2 & S3 • Due to the special configuration of this encod

er, it is easy to construct the state diagram. Note that the 

encoder memory is completely reset after each transition, 

because the 'depth' of its SRs is only one. This means that 

the current I/P block uh will become the next state. From 

the encoder circuit-diagram, the following equations are 

obtained (in simplified notation): 

Current state ~ S = {nA] 

For each of the four current states S, the above eqns are 

modified for the particular values of A & B (as shown 

below). Following that, each of the four sets of simplified 

eqns is used to produce the next state and the output, by 

letting [u
1
u2 ] assume each of its four values. 



~------------------------------------------------------------------------

Appendix 3,1 Page 331 

s = [BA] s = [BA] s = [BA] s = [BA] 

so = [00] sl = [01] Sz = [10] sa = [11] 

vl = ul vl = ul vl = ul vl = ul 
-

vz = uz vz = uz vz = uz vz = uz 

va = ul +uz va = ul +uz v3 = ul +uz v3 = ul +uz 

ul uz S' vl Vz v3 S' vl vz v3 S' vl vz va S' vl Vz va 

0 0 so 0 0 0 so 1 1 1 so 1 0 0 so 0 1 1 

0 1 Sz 0 1 1 sz 1 0 0 Sz 1 1 1 Sz 0 0 0 

1 0 sl 1 0 1 sl 0 1 0 sl 0 0 1 sl 1 1 0 

1 1 sa 1 1 0 sa 0 0 1 sa 0 1 0 sa 1 0 1 

The results are summarized in the encoder state

transition diagram of Fig. A3.1.1: 

I 0!01 0 

I 0/101 

00/100 01!011 11/001 I 0/110 

01!000 

11/010 

01/111 11/101 

Figure A3. 1 • 1 : State-transition diagram for the ( 3, 21 1) normal 

encoder of Fig. A2.9.1 (p. 314), 

I 

Example A3.1:2: Consider the normal (4,3,2) encoder of 

Fig. A2.9.2 (p. 315). It has 3 SR stages, hence 8 states 

(see Example 3.2, p. 56). The next-state and output eqns are 

obtained from the circuit diagram, and are shown below: 
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Current state ~ S ~ {C~Al 

A -> XXX 

E -> XXX 

x = O, or 1 

B -> XXX 

F -> XXX 

C -> XXX D -> XXX 

G -> XXX H -> XXX 

Page 332 

Figure A3.1.2: State-transition diagram for the (4,3,2) normal 

encoder of Fig. A2.9.2. All labels are double

edge ones (one for each value of x). u~1 l = x = 0 

or 1. The output is a logical function of x and 

has the form xXYZ, where XYZ e {A,B, ••• ,H}. 

For each of the eight current states S = [CBA], the set 

of eqns above is simplified, and then used to obtain the 

next state and the output, by letting [u1u 2u 3 ] assume its 

eight possible values. The resulting state-transition dia-
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gram is shown in Fig. A3.1.2. 

I 
Example A3.1.3: Consider finally, the type-II encoder 

of Fig. A2.14.1 (p. 325). Its next-state and output eqns 

are: 

Cu~rent state ~ S ~ {~A] 

Following the same procedure as before, the state

transition diagram of Fig. A3.1.3 is produced. 

I 

1 0/1 01 

00/001 11/110 01/011 10/100 

11/111 01/010 

Figure A3.1.3: State-transition diagram for the (3,2,2) type-II 

encoder of Fig. A2.14.1 (p. 325). 

Al>~:EN:DlX: 3 • 2; PROOF QE THEOREMS 3.1. 3. 2 ! 3. 3 ' 

A3.2.1. er00f of Theorem 3.1 

According to Note 2.9, the ith row of the generator

polynomial matrix G(D), determines the contributions (to the 

encoder 0/P) from the ith SR (lSiSk). In particular, a con

nection from the hth stage (OShSM1 ) of the ith SR to the jth 

X-OR gate (lSjSn) exists, iff the coefficient of oh in 

g~1 >(D) is non-zero. It follows easily then that the exist-
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ence of a non-zero coefficient for oh, in any of the polyno

mials of the ith row, implies that the 0/P of the hth stage 

of the ith SR contributes to the encoder 0/P. By the same 

token, the highest power in the polynomials of the ith row, 

is M
1

; consequently, if this highest-power term is 1 then M1 

= 0. So, for the normal encoder, f[G(D)] equals the number 

of zero-length SRs. 

QED 

A3.~.~. proof of Theorem 3.2 

According to Theorem 3.1, f of the k SRs* have zero 

length (i.e. are non-existent), say SRs number a( 1), 

a(2), ••. ,a(f). Then f of the k input digits, specifically 

digits u~•O>J, u~•(Z)], •.• , u~•<fll cannot be stored in the memory 

of the encoder, hence they do not participate in the forma

tion of the new encoder state. As a consequence, there are 

qlt·f different ways of altering the encoder state in a single 

time-unit, so in a state-transition diagram there are qk·f 

transitions out of each state. 

Let the next state be S( h+1) =Sn. Sn can be reached from 

the current state S(h) within a single time-unit. How many 

states can 'act' as current state S(h)? Or, to put it other

wise, what are the restrictions on S(h) so that the next 

state is S ? n· 

Note from Fig, 3. 2 that to reach Sn with one transition, 

F(h) & C(h) (the current state of FEG & CEG, respectively) 

must have a unique and specific composition, because they 

will form C(h+1) & R(h+1) - the next state of the CEG & REG, 

respectively; to be precise, if FEGnREG # ~ then the digits 

of F(h) that are common with the ones of R(h) can assume any 

value. In contrast, R(h) may have any composition (during 

the transition this group will leave the encoder). 

So the format of the current state S(h), from which Sn 

can be reached with one transition, is: "Specific F(h) & 

C(h) and any R(h)". Since R(h) contains k-f digits (see 

Definition 3.1), there are qlt·f states from which another 

state can be reached with one transition. 

Consider now the labelling of each transition with the 

* A q-ary encoder is aade of q-ary SR stages and GF(q) gates. 



Appendix 3.2 Page 335 

I/P block (a k-tuple) that caused it. It was mentioned ear

lier that f of the k source digits cannot be stored in the 

encoder memory and hence they do not participate in the for

mation of the next state. This means that for each (k-f)

tuple that causes a state transition there are f I/P digits 

that can have any value, hence to any transition there cor

respond qf source blocks. 

QED 

A3 .2 .3. proof of Theorem 3.3 

According to Theorems 3. 2 & 3.1, there are qk·f transi

tions entering any particular state*. Consider the transi

tion S(h) ---> S(h+l). What are the restrictions on uh, the 

I/P k-tuple at time-unit h, if the next state is Sn? 

It is obvious from Fig. 3.2 (p. 59) that F(h+l)=Fnde

pends entirely on uh. Specifically, all the k-f digits of uh 
that correspond to SRs of length more than one (i.e. those 

that will reside in the circuit memory during the next 

time-unit) will form F . Consequently, these k-f digits are 
n 

completely specified, once Sn is given. By the same token, 

though, the rest f digits can have any value. 

The conclusion from the above discussion is that in order 

for the next state, S(h+l), to be state Sn, only f of the k 

digits of the current I/P block uh can be chosen freely (the 

rest are determined by Fn); hence there are qf different I/P 

blocks that can trigger the previously considered transi

tion. The above conclusion holds true for the transition 

S(h) ---> Sn, which means that it holds true for all the qk·f 

states that can change to Sn" 

QED 

APPENDIX 3,3; EXAMPLE OF TRELLIS DIAGRAM 

Ex amp 1 e A3. 3. 1 : 

polynomial matrix G(D) 

shown in Fig. 

Consider the code with generator

= [l+D2 l+D+D2 ]. Its transition dia

A3. 3 .1. The trellis diagram follows gram is 

readily (Fig. A3.3.2). Note that the central portion of the 

trellis extends from time-unit 2 to time-unit 7. 

* A q-ary encoder is made of q-ary SR stages and GF(q) gates. 
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1/01 

Figure A3.3.1: State-transition diagram for a (2,1,2) normal 

encoder. 

1ime Unit 

0 1 2 3 4 5 6 7 8 9 

\oJo\otoo\otoo-r:;:otooAotooAoJooAotoofotoofotoof 

\ \ \ 0/~~ \ Oil~ \ Oil~ \ 0/~l \ 0/11 0/11 0/11 
1111 1111 1/11 1/11 1/11 1111 1/11 

Figure A3. 3. 2: Trellis diagram for the (2, 1, 2) normal encoder 

with the state-transition diagram of Fig. A3.3.1. 
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During the remaining time-units (8 & 9), the encoder is 

reset (i.e. only zero-I/P is permitted). 

I 

APPENDIX 3.4: EXAMPLE OF VITERBI DECODING 

Example A3.4.1: Consider the normal encoder for the 

(2,1,2) code defined in Example A3.3.1 (p. 335). Its trellis 

diagram is shown in Fig. A3.3.2 (p, 336), Assume that trans

mission is over the binary symmetric channel. Consider the 

source sequence u = (O 1 0 0 1 1 1) made of L = 7 I/P k

tuples (here, k = 1). This is appended with mk Os (to reset 

the encoder - here mk = 2) producing the channel sequence V 

Received Sequence r 

1 

2 

---- Time Unit 

2 

3 

1/10 

\ 
3 

3 4 5 6 7 8 

11 o 11 2 oo 2 oo 2 m 3 

I\0/00--0/00--0/00--0/007 

0/1~ \ 0/11 

11

\

0 

,0110 

~1/01-
2 3 

1/11 

3 

1/10 

\ ,0110 0/10 

lL11o1J 
1 2 

9 

11 2 

I 
0/11 

Figure A3.4.1: Example of Viterbi decoding using the encoder 

with the trellis diagram of Fig. A3.3.2 (p. 336) 

and assuming transmission over the binary symmet

ric channel. 
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= (0 o, 1 1, 0 1, 1 1, 1 1, 1 o, 0 1, 1 o, 1 1). 

Let the channel error sequence e = (0 0, 0 0, 0 0, 0 O, 0 

0, 1 0, 0 1, 0 0, 0 0), giving rise to the received sequence 

r = ( 0 0, 1 1, 0 1, 1 1, 1 1, 0 0, 0 0, 1 0, 1 1). This is 

used by the Viterbi decoder to produce its best estimate of 

the transmitted sequence v, which in this case coincides 

with the original; in other words, the decoder successfully 

corrected the two errors. 

Note that at each time-unit, there is one survivor per 

state. For instance, at time-unit 5, the following paths 

have survived: 

Corresponding to s~, {0 1 0 0 .0) with metric 2. 

Corresponding to s 1 , {0 1 .0 0 1) with metric o. 
Corresponding to Sz, {0 1 0 1 0) with metric 3. 

Corresponding to Sp (0 1 0 1 1) with metric 3. 

c 
Received Sequence r 

1imeUnit 

1 2 3 4 5 6 7 8 9 

0 11 2 01 3 11 0 11 2 00 2 00 2 11 2 01 3 

So \0/00\/00\0/00- ~/00--0/00--0/00- r0/007 
0/1 0/11 0/11 

sl 

1/11 1/11 

2 

3 

1/11 

\ 

11y ,0110 

¥-1/01-
2 3 

1/11 

3 

f 

0/01 

2 

1/10 

\ jt10 0/10 

\£_1/01-
3 1 2 

Figure A3. 4. 2: Example of Viterbi decoding, similar to the one 

in Fig. A3.4.1, but with four channel errors. 
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The final survivor (0 1 0 0 1 1 1 0 0) has metric 2 (i.e. 

it corresponds to a received sequence which is assumed to 

have been corrupted by two channel errors). 

On occasion, a tie occurs, i.e. more than one paths en

tering a state have the same metric. In the case of a final 

tie, one path is arbitrarily selected. See for example in 

Fig. A3.4.2 a decoding case similar to the current one, but 

with four (instead of two) channel errors. 

Note that there is a tie at time-unit 9. This gives rise 

to two final survivors, of which one has to be chosen: 

~-~-~~----~----~----~----~---;!~=::I!~---~----~1--
v = (0 o, 1 1, 0 1, 1 1, 1 1, 1 o, 0 1, 1 0, 1 1) 
-------------------------------------------------Q- = (0 0, 1 1, 0 1, 1 1, 1 1, 1 0, 1 o, 1 1, 0 0) fro• tl 
-------------------------------------------------V = (0 0 1 1 1, 0 1, 1 1, 1 1, 0 1, 0 0 1 0 1, 1 1) froe t2 
-------------------------------------------------e = (0 0, o o, o o, o o, 0 o, 1 0, 0 1, o 1, 1 O) 
-------------------------------------------------! = (0 o, 0 o, 0 o, 0 o, 0 0, 0 o, 1 1, 0 1, 1 1) 
-------------------------------------------------! = (0 o, 0 o, 0 o, 0 o, 0 o, 1 1, 0 1, 1 1, 0 0) troe U 

-------------------------------------------------
~-~-~~----~----~----~----~---~!~~z;~~---~----~1 __ fro• #1 

~U = JO 1 0 0 1 ,._,...---''-'""'le" " 0) \ ;;,,u --V;-, -_ --:..; v troe •2 
Note that the last two bits of u & Q are used to reset 

the encoder. Comparing u & 0 one sees that four channel 

errors, in a span of 14 channel bits, are too much for this 

code, hence there is a single-bit decoding error. 

I 

A:PP!NDIX 3.5; :S!;QU Et!TIAL tYECQt)It!G 

Viterbi decoding has two important disadvantages: i) It 

can be used only with short constraint-length convolutional 

codes, because of limitations in the total encoder memory, 

M. ii) The number of computations per decoded source block 

is independent of the channel conditions (i.e. even if the 

channel is noiseless, the Viterbi decoder will do the same 

amount of computing). The number of computations of a se

quential decoder on the other hand, depends on the noise 

level of the channel and is essentially independent of M. As 
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a result, long constraint-length codes can be used and so 

arbitrarily low probabilities of (decoding) error can be 

achieved. 

Wozencraft [30] introduced sequential decoding in the 

late fifties. In 1963, Fano [31] introduced a new sequential 

decoding algorithm and a few years later Zigangirov [32] (in 

1966) and Jelinek [33] (independently, in 1969) introduced 

the third version, known as ZJ or stack algorithm. The easi

est to use is the ZJ algorithm, while the Fano one is the 

most popular (see Clark & Cain [13], P• 298). 

A sequential decoder does not follow the optimum proce

dure of the Viterbi decoder; instead of delaying decisions 

until some late level (time-unit), it looks at the first 

received block, makes a decision (based on some suitable 

metric) and proceeds to a point (state) at the next level. 

This procedure is repeated. 

At each level the decoder is at a single node; since qk-f 

qf-label branches (see Theorem 3.2, p. 60) emerge from this 

node, the decoder chooses the one 'closest' to the received 

information and follows it to the next level. Any channel 

error will deflect the decoder from the correct path, but 

this will become apparent later on, because of the abnormal 

accumulation of errors; the decoder then backs-up, level by 

level, until it finds a suitable path and goes on as before. 

Due to memory limitations the decoder can process only a 

finite portion of the trellis, say b levels at a time (the 

same applies to Viterbi decoding). Hence, at every level it 

makes irrevocable decisions about an old information block. 

The main disadvantage of sequential decoding is that the 

processing time per decoded block is a random variable with 

high deviation from the average; this can cause buffer over

flow. 

The Fano algorithm uses the tilted distance, t(L), to de 

tect incorrect paths. In particular, t(L) = p'nL-d(L), where 

p' is a channel parameter (usually slightly larger than the 

channel error-rate, p) determined by simulation, L is the 

level (time-unit) and d(L) is the Hamming distance between 

the received sequence and the current path through the trel

lis. If decoding is correct, d(L) = pnL, hence t(L) = 
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nL(p'-p) > 0 and increasing. If the tilted distance starts 

to decrease, the decoder backs-up. 

The Fano algorithm is more time-consuming, while the ZJ 

one is more memory-consuming (see Lin & Costello [2], p. 

360). 

Al>l>E:NDIX 3.6: TABLE LQQK-UP DECQDING 

This type of decoder has been employed where a very sim

ple implementation is desired and only one to two dB coding 

gain* is required. Usually, hard-decision demodulator out

puts are used and moderate constraint-lengths are necessary, 

to keep the size of the decoding table manageable [13]. 

The decoder is based on a table which relates 

___ l'atterns with_channel_error patterns. ~-

syndrome 

The pairs are chosen so that the probability of decoding 

error, for the given channel, is minimized. 

-~-----~~ ------~------ -----

* See Section 1.4 (p. 13), 
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APPENDtX 4 .1: " PROOF OF THE THEORY U1 SECTION 4.1 

A4.1.1. proof of Lemma 4.1 

According to Lemma A2.10.1, the generator-polynomial ma

trix G(D) of an (n,k,m) non-catastrophic convolutional code 

has rank k. By means of elementary row operations (see Defi

nition A2.2.6) G(D) can be transformed into one of its row

equivalents. If this row-equivalent is [Ik,O], it is called 

a normal form (see Definition A2. 2. 8). Note that both ma

trices have the same rank (by Theorem A2.2.6). Then, by The

orem A2.2.7, there exist two nonsingular matrices A(D) & 
B(D) such that G(D) = A(D)[Ik,O]B(D). 

QED 

A4.1.2. Proof of Theorem 4.1 

According to Definition 2.12 ( p. 44), the parity-check 

polynomial matrix associated with the k x n generator-poly

nomial matrix G(D) is any full-rank (n-k) X n matrix of 

polynomials which satisfies G(D)HT(D) = 0. 

The rank of Y~(D) is n-k because, from Note 4.1: 

[ 

X1 (D)Y1 (D) 

Xz( D )Y1 (D) 

From ( A4 • 1. 1 ) : 

X1 (D)Yz(D) 

Xz(D)Yz(D) ]· [ :· .:. l (A4.1.1) 

Hence, Y~(D) is an (n-k) X n matrix which has a right

inverse. So, it has rank = n-k < n (by Theorem A2.2.11). 

Consider the product G(D)[Y~(D)]T = G(D}Yz(D). Using the 

Smith normal form and the partition of B(D} (see Lemma 4.1 & 

Note 4.1, p. 76}, 
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-> 

A4.1.3. Proof of Theorem 4,2 

Page 343 

[by eqn (A4.1.1)] 

QED 

With the help of Theorem 4.1, the syndrome equation can 

be written as 

S(D) = E(D)Y2(D) (A) 

Also, from eqn (4.2): 

S(D) = E(D)B"
1
(D) [ ~n-1<] 

> <-> 
Let W(D) .::. E(D)B"1 (D) 

S(D) = W(D)[ O ~ 
In-k 

E(D) = W(D)B(D) > 

S(D) = ( w< 11 (D) ,w<2l(D), ••• ,w<nl(D)] [ ~ ] 
n-k 

> <-> 

E(D) 

<{ 
S(D) = ( w<t+ll(D) ,w<k+2l(D)' • • • ,w<nl(D)] (C) 

<-> E(D) = ( w<ll(D) ,w<2l(D)' ••• ,w<"l(D) ]xl (D) 

+ ( w<~<+ll(D) ,w<~<•2l(D), ••• ,w<nl(D) ]x2(D) (D) 
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Since [w< 1 l(D) ,w<2 l(D), •• ,w<kl(o)] is arbitrary, one can let 

T(D) .;;. [ wUl(o) ,w12l(o), ••• ,w(kl(o)] (E) 

Note though that, from the definition of W(D) above and 

the partition of e-1(0) (Note 4.1, P• 76), 

-> T(D) = E(D)Y1 (D) (F) 

From eqns (C) 1 (D) & (E) : E(D) = T(D)X
1
(D) + S(D)X2 (D). 

QED 

A4.1.4. Proof of Theorem 4.3 

Eqn (4.5), the result of Theorem 4.3, can be obtained 

from the result of Theorem 4.2 [eqn (4.4)] by providing ex

pressions for X1(D) & X2 (D). 

From eqns (A4.1.1) & (4.3), 

X
2
(D)Y

2
(D) = X

2
(D)HT(D) = 

-> H(DJX!(D) = In-k 

I -> n-It 

-> X~(D) is the right-inverse of H(D), denoted by H'(D): 

(A4.1.2) 

From eqns ( 4 .1 ) & ( 4. 2) , 

[ I O] [ X1 (D) ] 
t' Xz(D) = (A4,1.3) 

Substituting eqns (A4.1.2) & (A4.1.3) into eqn (4.4) 1 

E(D) = T(D)A-1(D)G(D) + S(D)H'T(D) 

By Theorem 4.2, T(D) is a 1 X k matrix. Then, 

(A4 .1.4) 

and from the last two eqnsthe final result follows. 

QED 
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A-4.1.5. proof of Lemma 4.2 

The result of Lemma 4.2 follows easily from eqn (4.5) and 

eqn (2.71) [the definition of S(D)]: 

E(D) = Z(D)G(D) + R(D)HT(D)H'T(D) 

Substituting HT(D) = Y2(D) [from eqn (4.3)] and H'T(D) = 
X

2
(D) [from eqn (A4.1.2)] the result of Lemma 4.2 is ob

tained. 

QED 

A-4.1.6. proof of Theorem 4.4 

For systematic convolutional codes (see Lemma 2.9, p. 39) 

G(D) = [Ik 1 P(D)] and using the Smith normal form (see Lemma 

4.1) and the partition of B(D) (see Note 4.1), 

-> ( A4 .1. 5) 

From eqns (2.54) & (4.3), letting Y~(D).::. [Y~1 (D},Y~2 (D)]: 

-> (A4.1.6} 

Let: 

& 

where X22 (D} & Y11 (D} are square submatrices. 

From (A4.1.1) & (A4.1.5): 
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-> 

From (A4 .1.1): 

-> 

X21 (D)Y11 (D) + X22 (D)Y12 (D) = 0 

From (A4.1.1) & (A4.1.6): 

-> 
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(A) 

(B) 

I n-k 

(C) 

The next step is to solve the above system of matrix 

eqns, for the submatrices of B(D) & B"1 (D). Of the eight sub

matrices, X
11

(D), X12 (D), X21 (D), X22 (D), Y11 (D), Y12 (D), Y21 (D) 

& Y
22

(D), three are already known: X11 (D) & X12 (D), from 

(A4.1.5) and Y
21

(D), from (A4.1.6). With three eqns available 

it is obvious that two of the submatrices should be arbi

trary. 

X
21

(D) is a submatrix of X
2
(D), which is (n-k) x n (see 

Note 4.1, p. 76), with X22 (D) being square, hence 

(n-k) X (n-k). So, X21 (D) is an arbitrary (n-k) X k matrix: 

From Note 4.1 (p. 76), Y2 (D) is n x (n-k). Hence, Y22 (D) 

is (n-k) X (n-k) [see also (A4.1.6)] and so its rank cannot 

exceed n-k (see Definition A2.2.7, p. 302). On the other 

hand Y~(D) = H(D) (by Theorem 4.1, p. 76), so Y~(D) has rank 

n-k. From (A4.1.6), Y~(D) is the product of two matrices non 

of which may have rank less than n-k (by Theorem A2.2.15, p. 

303). So the rank of the square matrix Y~2 (D) is n-k and, by 

Theorem A2.2.12 (p. 303), this matrix is nonsingular. Hence, 

Y~2 (D) is an (n-k) X (n-k) nonsingular matrix and so is its 

transpose, Y
22

(D) [see Theorem A2.2.3 (iii), p. 300]: 
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From eqns (A) - (E) 1 and since A( D) & F(D) are nonsingu

lar: 

Y11 (D) = A(D) - P(D)YlZ(D) (F) 

C(D)Y11 (D) = -X22 (D)Y1Z(D) (G) 

X
22

(D) = F-1 (D) + C(D)P(D) (H) 

Substituting (F) & (H) in (G): 

C(D)A(D) - C(D)P(D)Y12 (D) = -F-1 (D)Y1Z(D) - C(D)P(D)Y12 (D) 

<-> YlZ(D) = -F(D)C(D)A(D) (I) 

Substituting (I) in (F): 

Y
11

(D) = A(D) + P(D)F(D)C(D)A(D) (J) 

From Note 4.1 (p. 76) 1 (A4.1.5), (D) & (H), B(D) can be 

pieced togeher: 

[ 

A-1 (D) 
B(D) = 

C(D) 

A-1 (D)P(D) ] 

F-1(D) + C(D)P(D) 
(4.7a) 

From Note 4.1 (p. 76), (A4.1.6), (E), (I) & (J), e-1(D) 

can be pieced togeher: 

1 

[ 

A(D) + P(D)F(D)C(D)A(D) 
e- < D > -

- -F(D)C(D)A(D) 

A4.1.7. Proof of Theorem 4.5 

-P(D)F(D) ] 

F(D) 

From eqn (4.4): E(D) = T(D)X1(D) + S(D)X2(D) 

From partition (4.2) and eqn (4.7a): 

From eqna (A) & (B): 

(4.7b) 

QED 

(A) 

(B) 
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E(D) = T(D) [ A"1 (D) ,A"1 (D)P(D) ]+S(D) [ C(D), F"1 (D)+C(D)P(D)] -> 

E(D) = [T(D)A"1 (D), T(D)A"1 (D)P(D)] + 

+ [s(D)C(D),S(D)F"1 (D)+S(D)C(D)P(D)] = 

= [T(D)A"1 (D)+S(D)C(D), T(D)A"1 (D)P(D)+S(D)F"1 (D)+S(D)C(D)P(D)] 

Using Z(D) ~ T(D)A"1 (D) + S(D)C(D) in the above eqn: 

E(D) =[ Z(D) ,Z(D)P(D)+S(D)F"1 (D)] (A4 .1. 7) 

and since T(D) is arbitrary, so is T(D)A"1 (D) + S(D)C(D) 

= Z(D). The theorem is proved by letting F(D) =In-k [recall, 

from§ A4.1.6., that F(D) is an arbitrary nonsingular 

(n-k) X (n-k) matrix]. 
QED 

M.t.a. Proof of Theorem 4.6 

From the basic eqn of the additive-noise channel [eqn 
N 

(2.70)], R(D) = V(D) + E(D). Then the best estimate, V(D), 

of the channel sequence is (using Lemma 4.2, p. 77), 

V( D) = R(D) - E(D) = R(D) - [i(D)G(D)+R(D)Y2 (D)X2 (D)] (A) 

Since G(D) is a k x n matrix of rank k (see Lemma 

A2.10.1, p. 319), it has a right-inverse (see Theorem 

A2.2.11, p. 303) denoted by, say, G'(D). From the Smith nor

mal form (see Lemma 4.1, p. 76), it can be easily verified 

that, 

If G(D)G'(D) = It -> G'(D) = B"1(D{ ~k ] A"1 (D) (A4.1.8) 

From the fundamental eqn V(D) = U(D)G(D), post-multiply

ing with G' (D), V(D)G' (D) = U(D) and using (A), 

N N 

U(D) = R(D)G'(D) - Z(D)G(D)G'(D) - R(D)Y2 (D)X2 (D)G'(D) 

N N 

-> U(D) = R(D)G'(D) - Z(D) - R(D)Y2 (D)X2 (D)G'(D) (B) 

From eqns ( A4. 1. 8) & ( 4 • 2) , 
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-> [by eqn (A4.1.1)] 

From the last result & eqn (B), Theorem 4.6 is proved. 

QED 

A4.1.9. proof of Theorem 4,7 

Substituting B"1(D) (from Theorem 4.4, p. 78) in the ex

pression for the right-inverse, G' (D), of G( D) [see eqn 

( A4 .1. 8)] : 

G' (D) 
= [ A(D) + P(D)F(D)C(D)A(D) 

-F(D)C(D)A(D) 

-P(D)F(D) 

F(D) 

-> G' (D) = [ It+ P(D)F(D)C(D)] 
-F(D)C(D) 

(A4 .1. 9) 

Also, since the right-inverse of G(D) exists, eqn (2.41a) 

(p. 33) can be inverted to give 

~ ~ 

U(D) = V(D)G'(D), or using eqn (A4.1.9), 

~ 

U(D) 
~ [ It+ P(D)F(D)C(D)] 

- V(D) 
-F(D)C(D) 

(A) 

~ ~ 

From eqn (2.70) V(D) = R(D) - E(D) and combining with 

eqn (A) 

U(D) [ ~ 1 [ It+ P(D)F(D)C(D)] = R(D) - E(D) -F(D)C(D) (B) 

From Lemma 2 .11: R( D) = [ RC•> (D), R(Pl (D)] (C) 

From eqn (A4.1.7): E(D) = [z(D),Z(D)P(D)+S(D)F"1 (D)) (D) 

~ 

From eqns (B) , (C) & (D) , U(D) = 
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~ ~ [I + P(D)F(D)C(D)] 
= (R!•>(D)-Z(D) ,R!Pl(D)-Z(D)P(D)-S(D)F"1 (D)] k 

-F(D)C(D) 

-> U(D) = R(a)(D) - Z(D) + R(•l(D)P(D)F(D)C(D) -

~ ~ 

- Z(D)P(D)F(D)C(D) - R!Pl(D)F(D)C(D) + Z(D)P(D)F(D)C(D) + 

+ S(D)F"1 (D)F(D)C(D) 

~ ~ 

-> U(D) = R!•>(D) - Z(D) + S(D)C(D) + 

+ (R!•l(D)P(D) - R(Pl(D) jF(D)C(D) (E) 

From eqn (2.71) (the definition of S(D), p. 48) and eqn 

(4.3) (p. 76), S(D) ,;. R(D)HT(D) = R(D)Y
2
(D). From Theorem 

4.4 (p. 78) the general expression for Y2 (D) is obtained, 

while from Lemma 2.11 (p. 48) the partition of R(D) is used: 

S(D) = (R!•l(D) R!Pl(D)J[ -P(D)F(D)] 
' F(D) 

-> 

-> S(D) = -R(•l(D)P(D)F(D) + R(Pl(D)F(D) (F) 

From eqns (E) & (F) : 

U(D) = R(•>(D) - Z(D) - [RI•>(D)P(D)F(D) - RIP>(D)F(D) jc(D) + 

+ (R!•>(~)P(D)F(D) - R!Pl(D)F(D) jc(D) -> 

-> U(D) = RI•>(D) - Z(D) 

QED 

A:Pl>ENl>IX 4.2: SET THEORY ANJ) PARTITIONS 

The basic operations on sets are the operations of union 

and intersection (which are assumed to be well known). A 

third operation is introduced below: 

Definition A4.2.1: Let A & B be any two sets. Then, the 

relative complement of B in A is denoted by A-B and is de

fined to be the set of all the elements of A that do not 

belong to B: 
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A-B ~ {x I xeA & x~B} (A4.2.1) 

I 
Definition A4.2.2 In many applications, all sets are 

subsets of a large set which is called the universal set and 

is denoted by S. The complement of B can be defined to be 

the set 5-B which, by Definition A4.2.1, is 

-B ~ 5-B = {x I xe5 & x~B} (A4.2.2) 

I 
The following set-theory identities can be found in any 

set-theory chapter or book (see for example Enderton [34]): 

Note A4.2.1: "The following identities, which hold true 

for any sets, are some of the elementary facts of the alge

bra of sets" [34]: 

Commutative laws: 

A U B = B U A 

Associative laws: 

A u (B 

A n (B 

Distributive laws: 

A n (B u C) = 
A U (B n C) = 

De Horgan's laws: 

c - (A u B) = 
c - (A n B) = 

IfC = 5: 

Identities involving the 

A U 121 = A & A n 121 = 121 

and A n B = B n A 

u C) = (A u B) u c 
n C) = (A n B) n c 

(A n B) u (A n C) 

(A u B) n (A u C) 

(C - A) n (C - B) 
(C - A) u (C - B) 

-(A U B) = -A n -B 
-(A n B) = -A u -B 

empty set, 121: 

& A n (C - A) = 121 

(A4.2.3) 

(A4.2.4a) 

(A4.2.4b) 

(A4.2.5a) 

(A4.2.5b) 

(A4.2.6a) 

(A4.2.6b) 

(A4.2.6c) 

(A4.2.6d) 

(A4.2.7) 

Identities involving the universal set, 5, (if A~ 5):* 

A U 5 = 5 & A n 5 = A & A U -A = 5 (A4.2.8) 

I 
Definition A4.2.3: Non-empty sets X1 ,X2 , ••• ,Xn are said 

* Remember, ACB denotes "A is a subset of B". 
1 1 ________ - __ - - -- --- -
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if, their union equals Y and their intersection in pairs is 

the empty set: 

]-> 
/for all i,je[1 ,n] : i#j 

(A4.2.9) 

I 
Theorem A4.2.1: Let A,B be any two non-empty subsets of 

the universal set, S. Then: 

A u B = (A, B-A) (A4.2.10a) 

If A CB -> B = (A,B-A) (A4.2.10b) 

Proof: From Definition A4.2.1, one may write: 

B-A = {x I xeB & xiA} = B n -A (A4.2.11) 

Consider the set A n (B-A) and use eqns ( A4. 2. 11 ) , 

(A4. 2. 3) (the commutative law), (A4. 2. 4b) (the associative 

law) and (A4.2.7): 

A n (B-A) = A n (B n -A) = A n (-A n B) ---> 

A n (B-A) = (A n -A) n B = ~ n B = ~ (A) 

Consider the set A U (B-A) and use eqns (A4.2.11), 

(A4.2.5b) (distributive law) and (A4.2.8): 

A U (B-A) = A U (B n -A) = (A U B) n (A U -A) -> 

A U (B-A) = (A U B) n S = A U B (B) 

It is clear from eqns (A) & (B) and Definition A4.2.3 

that A & B-A partition A U B (A,B are of course non-empty). 

It is also clear that if A C B then A U B = B. 
QED 

Theorem A4.2.2: Let A, B & C be any two subsets of the 

universal set S. Then: 

(C-A) - (B-A) = C - A U B (A4.2.12a) 

-A - (B-A) = -A U B (A4.2.12b) 
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If A Q B then -A - (B-A) = -B (A4.2.12c) 

Eroof: Let X = (C-A) - (B-A) • From eqns (A4.2.11) & 

(A4. 2. 6d): 

X = (c n -A) n [-(B n -A)] = (C n -A) n (-B U A) 

-> X = [ (C n -A) n -B] u [(C n -A) n A] [by ( A4, 2. 5a)] 

-> X = [ (C n -A) n -B] u [Cn(-AOA)] = (C n -A) n -B 

-> X = c n (-A n -B) = c n -(A U B) [by (A4.2.6c)] 

-> X = (C-A) - (B-A) = C - A U B (A) 

If C =Sin eqn (A), result (b) is readily obtained. 

If A CB, then A U B =B. This proves result (c). 
QED 

Al'PEN1>IX 4.3; PROOF OF THEOREMS 4.9 & 4.10 

A4.3.1. Proof of Theorem 4.9 

Since A
1

,A
2

, •• , ,A
4 

partition B they are non-empty sets 

(see Definition A4.2.3). If 13(i) .::0 IA1 1 (=the number of 

elements of A
1
), the A1s can be listed in the usual way: 

For all i=1,2, ••• ,a: - { (1) (1) (1) } Ai - al 'a2 ' • • • 'aa(i) (A) 

Also, and for the same reason as above, they are mutually 

disjoint, hence their union can be listed in a similar way: 

A UA U•. •UA - { Ul Ul <Zl <Zl (4) (4) } 
1 2 o.- 8 1 •••• 8 at1> 18t 1 '''

8 et2> 1 '' 18t •••• 8 ata) (B) 

Finally, and for the same reason as above, their union 

equals B, hence eqn (B) can be re-written: 

B = { (1) (1) (Z) (2) (4) (4) } al , ... ,aaU>'al , ... ,aat2l'''''al , ... ,aata) (C) 

Then: 

13(1) + 13(2) + • • • + 13(a) = IBI (D) 

The state of {a part of) an LSC, at a time-unit h, is 

defined to be the IB!-tuple of the contents of its memory, 

that is, the ordered set of the IBI bits that occupy its 
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memory, The particular order used is arbitrary, hence of no 

importance for the current discussion; consequently, one may 

write 

For all i=1,2, ••• ,~: (F) 

Since the LSCs are assumed to be binary, the Hamming 

weight of an x-tuple is simply the algebraic sum of its com

ponents: 

w[B(h)] = a<1> + a<1> +" •+ aO> + a<2> + a<2> +" •+ a<2> + .. •+ 1 2 8(1) 1 2 8(2) 

+ a<•> + a<"> +" •+ a<"> (H) 
1 2 P(Cl) 

From eqns (G) & (H), the final result is obtained: 

QED 

A4.3.2. Proof of Theorem 4.10 

By Definition 3.1 (p. 58), the memory group MEG of the 

regulator circuit is made of a collection of past I/P bits. 

Specifically, from eqn (3.5a): 

MEG(h) = {z~~~,z~~~' ... ,z~~~1 /i=1,2, ... ,k : M12:1} (A) 

Since M1~m for all i=1,2, ••• ,k [see eqn (3.1)] then from 

eqn (A): 

C { u> <1 > <1> I· -1 2 k} * MEG(h) _ zh_1,zh .. z' .•. ,zh-• 1- , , ... , 

(MEG(h) U ING(h)) 

w[S(h) U zh] ~ 

C { (1) ( 1) <1> /'-1 2 k} _ zh , zh-l, ... , zh-• 1- , , •.. , -> 

(B) 

Reln (B) follows from Lemma 4.6, noting that S(h) is the 

state of MEG and zh is the state of ING, at time-unit h. 

From (B): 

• 
w[S(h) U zh] ~ ~w[ zh_1] ~ t (by Theorem 4.8, p. 86) 

1=0 

I * Re~ember, AQB d..:_notes "A is a subset of B11
,' 
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Note that MEG(h) & ING(h) are disjoint sets by construc

tion: ING(h) is made of the components of zh, while MEG(h) 

is made of the components of zh-l' ••• ,zh-•" Hence, MEG(h) n 
ING(h) = ~. Consequently, MEG(h) U ING(h) = <MEG(h),ING(h)> 

(by Definition A4.2.3) hence, by Theorem 4.9: 

w[S(h) U zh] =w[S(hl] +w[zh] 

From the last two results: w[~] S t - w[S(hl] 

QED 

APPmffilX: 4.4; PROOF OF It!EOREM 4, 11 

The above results are based on the fact that the number 

of combinations of k things, taken i at a time, is C(k,i) 

(see, for example, S. Lipschutz [35], Section 8.6). 

Then, £(i) is the number of M-tuples of weight i and this 
• is C(M,i). Furthermore, according to Lemma 4.7 (p. 88), the 

weight of a state may vary between 0 and t, inclusive. 

Similarly, assume that the current state has weight w. 

Then, by Theorem 4.10 (p. 88), the weight i of the current 

1nput-block must not exceed t-w. Furthermore, there are 

C(k,i) k-tuples of weight i. 

Finally, according to the above, if the current state has 

weight w, there are Q(i,w) (where OSiSt-w) different permit

ted input blocks, hence there are as many ways to change 

state. If all k SRs have non-zero length, then each new in

put block leads to a new unique state. If though, f SRshave 

zero length (i.e. they do not exist - see discussion in Sec

tion 3.2) then some of the input blocks lead to the same 

state. For example, if the 3rd row of G(D) contains only 

'ones' or 'zeros' then the 3rd SR does not exist. Two I/P 

blocks that differ only in the 3rd bit will lead to the same 

state. Hence, the input-block bits that participate in a 

state change are k-f and there exist C(k-f,i) (k-f)-tuples 

of weight i. 

QED 
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APl>ENnlX: -4,5; EXAMPLE 0~ QQNSTRAINEQ BEGVLAIQR TRELLIS 

Example A4.5.1: Consider the regulator circuit with 

transfer-function matrix: 

[ 

1+D+D
2

] 

P(D) = 1+D 

l+D2 

Obviously, n-k=1, k=3 & m=2, hence it is the transfer 

function of a (4,3,2) regulator circuit. The total memory is 

5, i.e. the state-transition diagram has 32 states. 

The diagram of the regulator circuit is shown in Fig. 

A4. 5 .1. 

E D 

c ~+ 
~ 

q(D) 

B A 

Figure A4.5.1: Circuit diagram of a (4,3,2) regulator circuit. 

The free distance, dh-' of the associated code equals 

the weight of the minimum-weight codeword which is non-zero 

in its first block (see Appendix 2.5, p. 311 & Appendix 

2.10, p. 317). dfreecan be obtained from the trellis dia

gram, by finding that sequnce of output blocks which has 

minimum weight and is non-zero in its first block. Whatever 

this sequence, there will be a time-unit at which it will 

remerge with state S0 and remain in the S0 --> S0 transi-
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tions, which exist (by Lemma 3.3, p. 67) and which occur 

with an all-zero input and (hence) with an all-zero output 

(ibid.). So, dfree will assume a finite value at some point. 

Nevertheless, the trellis has 32 states, hence it is diffi

cult to determine dfree this way. 

From the transfer-function matrix, v<il(D) = u<il(D) 

/i=1 1 2 1 3 and v< 4 l(D) = (l+D+D 2 )u< 1l(D) + (1+D)u< 2 l(D) + 

(1+D2 )u<31 (D). Since V( D) = [vUl(D) ,v<2 l(D) ,v<3l(D) ,v<4 l(D)], 

the minimum-weight V(D) which is non-zero in its first block 

must contain at least one 1 and the minimum possible number 

of powers of D. Clearly, at least one of the u(il(D)s must 

contain one 1. If u< 2 l(D) = 1 and u< 1 l(D) = u< 3l(D) = 0, then 

w[V(D)] = w[0,1,0,1+D] = 3. The only way w[V(D)] = w[u< 1 l(D)] 

+ w[u< 2l(D)] + w[u< 3l(D)] + w[v<4 l(D)] < 3, is if the I/P con

tains one or two terms (of which one must be 1) and v<4 l (D) 

contains one or no term, respectively. 

If u< 1 l(D) = 1 [and u< 2 l(D) = u< 3l(D) = 0], then V(D) = 

[1,0,0,l+D+D2 ], while if u<3l(D) = 1 [and u< 1>(n) = u< 2 >(n) = 

0], then V(D) = [0,0,1,1+D2 ]. 

If U(D) is to contain one 1 and another term, then v<4l(D) 

must be zero so that a free distance of 2 is obtained. In 

other words, u< 1l(D), u<2 l(D) and u< 3l(D) must satisfy: 

v< 4 l(D) = (l+D+D2 )u(ll(D) + (1+D)u< 21 (D) + (1+D2 )u<3l(D) = 0 

<-> 

+ n• [u< 1>(n) + u< 3>(n) 1 = 0 <-> 

<-f 
u<I>(n) + um(D) + u<3l(D) = 0 

u<ll(D) + u<Z>(n) = 0 

u<I>(D) + u<3l(D) = 0 

<-> uU>(n) = u<2> (D) = u<3l(D) = 0 

The last solution is not acceptable, hence dfre• = 3. This 

agrees with Blahut [10] and Reed & Truong [24] (the latter 

use this code to illustrate their technique). Then, the er

ror-correcting capability is t=1. 

r 
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The transition diagram of the regulator circuit is con

structed following the directions of Note 4.5 and the expe

rience of the examples of Chapter 3. 

Note here that Reed & Truong [24) (who use this example) 

talk about and use a regulator circuit with 6 SR stages: 

"•••the number of internal states ••• of the regulator cir

cuit can be limited to seven out of a possible 64." This 

happens because they assume a circuit realization which uses 

3 SRs each of length 2. Note also that the total memory of 

the regulator circuit could have been reduced to 2, hence 

giving rise to 4 states (for the unconstrained case), if a 

type-!! realization was to be used. Nevertheless, in this 

case, all the preceding analysis wouldn't have been valid. 

According to Lemma 4.7, the following states are permit-

ted: 

TABLE A,4.5~1 ,, 

A B c D E sj 
0 0 0 0 0 so 
0 0 0 0 1 sl 
0 0 0 1 0 Sz 
0 0 1 0 0 s3 
0 1 0 0 0 s4 
1 0 0 0 0 ss 

The following results are easily obtained, from Fig. 

A4.5.1. To simplify notation, let z<1l(D) = z 1, z<2l(D) = z 2, 

z< 3l(D) = z3, q(D) = q and let the next state be s•. Then: 

S = [ABCDE) 

and q = z 1 + z 2 + z 3 + A + C + D + E 

If the current state is S = S0 = [00000), then the above 

eqns are simplified to: 

and 

According to Theorem 4.10 (p. 88), w[S) + w[z1 ,z2 ,z3 ) S t 

= 1 -> 
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TASL£ /.4.5.-2 

~1-Zz--z3 g S' 

0 0 0 0 so 
0 0 1 1 s, 
0 1 0 1 s3 
1 0 0 1 sl 

If the current state has weight 1, then according to The-

orem 4.10 (p. 88), w[S] + w[z1,z2 ,z3] S t = 1 ---> 

w[z1,z2 ,z3] = 0 

simplified to: 

S' = 

s 

sl 

Sz 

s3 

s. 

ss 

000/1 

---> 

[BOOEO] 

= [ABCDE] 

= [00001] 

= [00010] 

= [00100] 

= [01000] 

= [10000] 

10011 

000/1 

z1 = z
2 

= z3 = 0. The above eqns are 

and q = A + c + D + E 

TASLE A4.5.3 

g S' = [BOOEO] 

1 Sz = [00010] 

1 so = [00000] 

1 so = [00000] 

0 ss = [10000] 

1 so = [00000] 

000/0 

000/1 
So 

01011 000/1 

Figure A4.5.2: Constrained state-transition diagram (t=1) for 

the regulator circuit of Fig. A4.5.1. 

The transition diagram of the constrained regulator cir

cuit is shown in Fig. A4.5.2. 
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The corresponding trellis (see Fig. A4. 5. 3) follows 

readily from Fig. A4.5.2. Note that all transitions, except 

those originating from 80 , are caused by the all-zero 1/P 3-

tuple. 

T1me Ullit 

0 1 2 3 4 5 6 7 8 9 

0/0 

3/1 

-
3/1 

-
3/1 • 3/1 

-
3/1 • 0/1 0/1 0/1 0/1 0/1 

0/1 

1/1 1/1 1/1 l/1 1/1 

Notation for ~: [000) = 0 [001) = 1 [010) = 2 [100) = 3 

Figure A4. 5. 3: The trellis diagram corresponding to the con

strained state-transition diagram of Fig. A4.5.2. 
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Ex amp 1 e A4 . 6 • 1 : Consider the ( 4, 3, 2) code of Example 

A4.5.1; its trellis diagram is shown in Fig. A4.5.3 (p. 

360). Let the following source polynomial: 

This is appended with mk zeros, to reset the encoder. 

Since this code is systematic, V(O) = [U(O),U(O)P(O)], where 

P(O) is given in Example A4.5.1 (p, 356). Then: 

[ HD>D' l U(O)P(O) = [ 0+02+05+06 , 0+02+05+06 , 0+02+05+06 ] 1+0 <-> 
l+Oz 

U(O)P(O) = [0+02+05+06 ][(1+0+02 )+(1+0)+(1+02 )] <-> 

U(O)P(O) = [0+02+05+06 ](1] = [n+02+05+D6
] -> 

This code is one-error correcting, hence it can correct a 

single error anywhere within a 12-bit sequence [= actual 

constraint-length, nA~ n(m+l)], Consider two channel er

rors, say, in the 3rd bit of the 3rd block and the 1st bit 

of the 7th block. Then, the error polynomial is: 

E ( 0) = [ 0 6 
, 0 , D2 

, 0] ( C ) 

According to the decoding algorithm (see Note 4.6, P• 

91), the decoder needs the syndrome S(O). Since the code is 

systematic, according to Lemma 2.11 (p. 48), S(D) = E(Pl(o) -

el•>(o)P(O). Then: 

[ 

l+O+Oz l 
S(O) = [ 0] - [o6 ,0,02

] l+D 

1+02 

<-> 

S(O), from (D), corresponds to the syndrome sequence 

(note that since n-k = 1, the syndrome sequence is organized 
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in one-bit 

0 

0 

So 

Notation 

Figure 

Page 362 

blocks): 

8 = ( 0 0 1 0 1 0 1 1 1 0 0 0 ••• ) 

Syndrome sequence s 

Tune Unit 

1 2 3 4 s 
0 1 0 1 

0 0 1 1 

3 

1/1 1/1 1/1 

3 

6 

0 1 
1 

1/1 

7 

2 

3/1 '2 0/1 

3 

1/1 

8 

1 

2 

\\ ·~·\ "~·\ \ 
2 3 1 4 2 4 3 

for zh: [000] = 0 [001] = 1 [010] = 2 [lOO] = 

A4. 6, 1 : Error-trellis syndrome decoding or a 36-bit 

nel sequence corrupted by 2 errors (for the 

with the trellis of Fig. A4.5.3). 

(E) 

9 

1 
2 

3 

chan-

code 
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Using (E) with the trellis of Fig. A4.5.3, the hyperchan

nel error sequence may be obtained (see Fig. A4.6.1). 

The final survivor is the path with z-label 0-0-1-0-0-0-

-3-0-0 (highlighted). 

The best estimate of the hyperchannel error sequence is 

found to be ! = (000 000 001 000 000 000 100) (the last six 

zeros are not part of the message sequence), which corre

sponds to the hyperchannel error polynomial: 

Comparing (F) with (C), it becomes obvious that the de

coder located both errors. 

APPENDIX -4.7; PflOOE QF IH!: THEORY IN PARAGfV,pJf 4.4.1. 

A4.7.1. Proof of theorem 4.12 

From eqns ( 3 . 5 ) ( p. 58 ) : 

FEG U CEG U REG = {u<1l u<il uU> 
h·l 1 h-j 1 h-Hi 

/i satisfies X, je[2,M1 l} 

FEG U CEG U REG = {u<il h-j /i satisfies X, je[1,M1 1} (A) 

where condition X is: ie[1,k] & M12:1 OR 

ie[1,k] & M12:1 OR 

ie[1,kl & M12:3 

Condition X above is obviously equivalent to condition 

ie[1,k] & M
1
2:1, hence eqn (A) above gives: 

FEG U CEG U REG = {u~~~ /i=1,2, .. ,k : M12:1, j:1,2, .. ,M1 } = MEG 

by eqn (3.5a). From eqns (3.5b) & (3.5d): 

FEG = {uU> h-j 

CEG = {u<il h-j 

/ie[1,k] & M1 2:1, 

/ie[1,k] & M1 2:3, 

je[1,1l} ~> 

je[2,M1 l} 
-> 

-> FEG n CEG = { u~~~ /ie[ 1, k] & M12:3, j=l & 2SjSM1-1} = ~ 

From eqns ( 3. 5c) & ( 3. 5d) : 
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REG = { u<il /ie[1,k] & M1 ;!::1, je[M1 ,M1 1} ~> h-j -> 
CEG = {u<il /ie[l,k] & M

1
;!:3, je[2,M1 l} h-j 

-> REG 0 CEG = {u<i) 
h-j 

/ie[1,k] & M
1
;!:3, j=M & i 2~j~M1-1} 

From eqns ( 3. 5b) & ( 3. 5c) : 

FEG = { u<il /ie[l,k] & M
1

;!:1, J=1} ]-> h-j -> 
REG = {u<il /ie[1,k] & M

1
;!:1, J=Mi} h-j 

-> FEG 0 REG = {u~~~ /ie[l,k] & M1;!:1, j=1=M1 } -> 

FEG 0 REG = {u~~~ /ie[1,k] & M1=1} 

= Ill 

QED 

A4.7.2. Proof of Theorem +.13 

Consider the set X = FEG U CEG U REG' and use eqn 

(A4.2.11) and the distributive law [eqn (A4.2.5b)]. 

X = FEG U CEG U (REG-FEG) = FEG U CEG U (REG 0 -FEG) 

= [(FEG U CEG) U REG] 0 [(FEG U CEG) U (-FEG)] 

= (FEG U CEG U REG) 0 [(CEG U (FEG U -FEG)] (A) 

by the associative (A4.2.4a) and commutative (A4.2.3) laws. 

In eqn (A), the 1st parenthesis gives MEG (by Theorem 

4.12), while the 2nd, CEG U MEG [by eqn (A4.2.8)]. 

X = MEG 0 (CEG U MEG) = MEG 0 MEG = MEG -> 

-> FEG U CEG U REG' = MEG (B) 

Consider now the intersections of CEG, REG' & FEG: 

From eqn (4.31b): FEG 0 CEG = Ill (C) 

FEG 0 REG' = FEG 0 (REG - FEG) = FEG 0 (REG 0 -FEG) 

= FEG 0 (-FEG 0 REG) [by eqn (A4.2.3)] 

= (FEG 0 -FEG) 0 REG [by eqn (A4.2.4b)] 

= Ill 0 REG = Ill [by eqn (A4.2.7)] -> 
-> FEG 0 REG' = Ill (D) 

CEG 0 REG' = CEG 0 (REG 0 -FEG) 
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= (CEG n REG) n -FEG [by eqn (A4.2.4b)] 

= fZI n - FEG = fZI [by eqns ( 4. 31 b) & ( A4. 2. 7 ) ] 

-> CEG n REG' = fZI (E) 

It is evident from eqns (B), (C), (D) & (E) and Defini

tion A4.2.3 that HEG = <FEG,CEG,REG'>. Reln (b) is proved 

similarly. 

QED 

A-4..'1.3. ftOOf of Theorem 4.14 

Because FEG' is a subset of FEG and FEG & CEG are parts 

of the encoder memory, while HIG is not, 

HIG(h) n FEG'(h) = fZI (A) 

HIG(h) n CEG(h) = fZI (B) 

Also, by Definition 3.1 (p. 58), CEG "•••contains the 

stages that do not belong to either the FEG or the REG.". 

Hence, since FEG' is a subset of FEG, 
' 

FEG'(h) n CEG(h) = fZI (C) 

What remains to be done is to prove that the union of the 

three mutually exclusive sets is HEG(h+1). 

From eqns ( 4. 33) & (A4. 2.11), 

FEG' = FEG - REG = FEG n -REG 

and using Definition 3.1 (p. 58), 

FEG' = {u~~~ /i=1,2, ••• ,k : H1H, j=1 & j<H1} -> 

FEG' = {u~~: /i=1,2, ••• ,k : H1~2} 

From eqns (4.23b), (4.35) & (3.5d): 

(4.35) 

HIG(h) U FEG' (h) U CEG(h) = { u<il 
h-j /ie[1,k], (j=O & M1~1) I 

L> OR (j=1 & M1~2) OR (je[2,M1) & M1~3)} -> 
MIG(h) U FEG' (h) U CEG(h) ., . 

L { u<il /ie[1,k], je[O,M1 ) & M1H} (4.36) h-j 

From eqn (3,5a) (see p. 58): 
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MEG(h+l) 

MEG(h+1) 

= {uli) 
h+l-J 

= {uli) 
h-A 

/ie[1,k], M1~1 & je[1,M1 1} 
/ie[1,k], M1~1 & BE[O,M1 )} 

From the last expression and eqn (4.36), 

MIG(h) U FEG'(h) U CEG(h) = MEG(h+1) 

A-4..7.4. proof of Lemma 4. to 

From Theorem 4.14, 

Page 366 

(let j-l=B) 

QED 

MEG(h+1) U DIG(h) = MIG(h) U FEG'(h) U CEG(h) U DIG(h) 

= [MIG(h) U DIG(h)] U FEG'(h) U CEG(h) 

= ING(h) U FEG'(h) U CEG(h) 

Note also that, FEG'(h) & CEG(h) are mutually exclusive, 

since they partition a set (see Theorem 4.14), and that ING 

n FEG' = ING n CEG = ~. because ING does not belong to the 

circuit memory, of which FEG' & CEG are parts. 

QED 

APl>:!NDIX:, 4 • 8 : PROOf OF THEOREM 4.15 

It is known, from Lemma 4.9 (p, 89), that the total num

ber of different states that can be reached within one 

time-unit from a state of weight w, is denoted by ~Y(w) and 

an expression is given by eqn (4,30c), The task therefore is 

to prove that the total number of states from which a state 

of weight w can be reached is also ~Y(w), 

From Lemma 4.10, 

MEG(h+l) U DIG(h) = (ING(h),FEG'(h),CEG(h)) (A) 

Since DIG(h) contains bits that are not stored in the 

memory, then DIG(h) n MEG(h+l) =~hence, from eqn (A), 

(MEG(h+l),DIG(h)) = (ING(h),FEG'(h),CEG(h)) (B) 

Applying Theorem 4.9 (p, 87) into eqn (B), 



Appendix 4.8 Page 367 

From Theorem 4.10 (p. 88), 

Since w[S(h+1)] = w, from (C) & (D), 

Consider Partition II of MEG(h) (see Theorem 4.13, p. 93) 

and apply Theorem 4.9 (p. 87): 

MEG(h) = (FEG'(h),CEG(h),REG(h)) -> 

From (E) & (F), since w[•••] ~ 0: 

( 4. 38) 

Note from Theorem 4.14 (p. 95) that, the bits that make 

up the state at time-unit h+1 are those belonging to 

MIG(h), FEG'(h) & CEG(h). Since FEG'(h), CEG(h) & REG(h) 

partition MEG(h) then the only memory bits, of the current 

state, that do not participate in the formation of the next 

state are the REG(h) ones, and only those. Hence, the states 

from which one can reach a specific next state, S(h+1) = SY, 

should equal the total number of different R(h)s. Note that 

the Hamming weight of R(h) is bounded by (4.38). 

If w[R(h)]=i, since REG has k-f elements, there are 

C(k-f,i) different R(h)sof weight i, and since there are 

t-w 
~C(k-f,i) 
i•O 

different R(h)s in all, there are as many states from which 

S(h+1) = SY, a state of weight w, can be reached. 

Note that the above analysis is valid only within the 

central portion of the trellis, i.e. not for time-units S m 

or ~ L. This is so because in calculating the number of 

states from which any particular state S(h) can be reached, 

one considers a transition S(h-1) ---> S(h), where h-1 ~m 

-> h > m. Also, in calculating the number of states that 

can be reached from any particular state S(h), one considers 

transitions of the type S(h) ---> S(h+1), where h+1 S L -> 
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h < L. 
QED 

.APl>ENDlX: 4.9: THE INTEBMEOIAU RESULTS Of I {4.§.3. , 

A4.9.1. Proof of Theorem 4.2§ 

Relna (a) & (b) follow easily from Definition 4.8. Reln 

(c) is based on Theorem 4.19: 

• 
~ij'{i) = M 
1=1 

Substituting j'(i) = F(i) - F(i-1) [(4.55a)], 

• • 
~iF(i) - ~iF(i-1) = M 
1=1 1=1 

• •-1 •-1 

~iF(i) - ~jF(j) - ~F(j) = M 
1=1 j=1 j•O 

• 
mF(m) - ~F(j) + F(m) = M 

j•O 

Since F(m) = k [ reln (b)] 

• 
~F{j) = (m+l)k- M 
j=O 

QED 

A4.'9.2. Proof of Lemma +· t3 

• 
Let A(~) ~ ~ij'(i) and use eqn (4.55a): 

1•1 

• • 
A(~) = ~iF(i) - ~iF(i-1) 

1•1 1•1 

• ...1 ~1 ~1 

A(~) = ~iF(i) - ~jF(j) - ~F(j) = ~F(~) - ~F{j) 
j•O j•O 

Relation {b) is easily proved using the above result and 
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reln (4.42e): 

• • 
~if(i) = ~if(i) - A(~-1) = M- A(~-1) 
1=11 1•1 

QED 

A4.9,3. ecoof of Lemma 4. t + 

For any two sets X & Y, it is accepted that: 

if X n y = ~. then lXI + IYI = IX u Yl (4.58) 

For a proof of eqn (4.58) (which is trivial anyway) see 

Biggs [36], p. 44. 

From Theorem A4.2.1, A U B is partitioned into A-B & B. 

So, 

and 

(A-B) n B = ~ 

(A-B) U B = A U B 

(A) 

(B) 

From eqn (B): lA U Bl = I(A-B) U Bl and using eqn (A) 

in (4.58): I (A-B) U Bl = lA - Bl + IBI, from which eqn (a) 

follows, Eqn (b) is a special case of (A), because if B ~A, 

then A U B =A.* 

QED 

APPENDIX 4.10: CQNSTRAINED A SIMPLIEIEQ STAIE-TRANSITIQN 
QIAGBAMS fOR A t<=2 NORMAL LS(), 

Example A4.10.1: Consider the state-transition diagram 

of Fig. A3.1.2 (p, 332). It corresponds to a (4,3,2) normal 

LSC, with total memory M=3, shown in Fig. A2.9.2 (p, 315). 

Let a weight-constraint of 2 be imposed on it. Then, in 

its transition diagram, the sum of the Hamming weight of the 

current state plus the current input-block should not exceed 

2 (see Theorem 4.10, p. 88). 

Hence, state S7 is removed. For the remaining states, 

only those transitions (out of each state) satisfying 

w[S(h)] + w[zh] S 2 are kept. Hence, from the weight-2 

states ( S3 , S5 & S6 ) only one transition is kept (correspond

ing to zh = [000]). From the weight-1 states (S1 ,S2 & S4 ), 
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only transitions of weight 0 or 1 are kept. From S0 , transi

tions of weight O, 1, or 2 are kept (see Fig. A4.10.1). 

Figure A4. 10. 1 : t=2 constrained state-transition diagram, for 

the (4,3,2) normal LSC of Fig. A2.9.2 (p. 315). 

Consider now the application of Theorem 4.29, on the 

above diagram. From the circuit diagram: 

S = [CBA] R(h) = [CA] f = 1 k = 3 & M = 3 

There is one state of weight 0, S0 , 

with one transition to itself [o = 1+C(f,1)+C(f,2) = 

1+C(1,1)+C(1,2) = 2], 

k-f=2 transitions to the weight-1 region [o=1+min{l,f}=2] 

(to S1 & S2 ) and 

if k-f=2~2, (k-f)(k-f-1)/2=1 transition to the weight-2 

region [o=1] (to S3 ). 

There are M=3 states of weight 1 ( s
1

, S
2 

& S4 ). 
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M-k+J=1 of them has one transition to a weight-1 state 

[a= 1+min{1,f} = 2]: 

S2-->S4 ; S2=[CBA]=[010] ---> R(h)=[CA]=[OO] ---> ~=0 (a=2) 

and k-!=2 transitions to the weight-2 region [a=1] (S 5 & 

ss>· 
The rest, k-!=2, states have one transition, each, to S0 

[a= 1+min{2,f} = 2]: 

S1-->S0 ; S1=[CBA]=[001] --> R(h)=[CA]=[01] --> ~=1 (a=2) 

S4-->S0 ; S4=[CBA]=[100] --> R(h)=[CA]=[10] --> ~=1 (a=2) 

and k-!=2 transitions, each, to a weight-1 state [a=1]: 

S1-->S1 ; S1=[CBA]=[001] --> R(h)=[CA]=[01] --> ~=1 (a=1) 

S1-->S2 ; S1=[CBA]=[001] --> R(h)=[CA]=[01] --> ~=1 (a=1) 

S4-->S1 ; S4=[CBA]=[100] --> R(h)=[CA]=[10] --> ~=1 (a=1) 

S4-->S2 ; S4=[CBA]=[100] --> R(h)=[CA]=[10] --> ~=1 (a=1) 

There are M(M-1)/2=3 states of weight 2 (S3 ,S5 ,S6 ), with 

one transition each [a=1]: 

Provided that M-2~k-J ---> 1~2, (M-k+J)(M-k+f-1}/2 states 

transit to another weight-2 state. 

Provided that M-1~k-J ---> 2~2, (k-f)(M-k+J)=2 states 

transit to a weight-1 state: 

S3-->S4 ; S3=[CBA]=[011] --> R(h)=[CA]=[01] --> ~=1 (a=1) 

S6-->S4 ; S6=[CBA]=[110] --> R(h)=[CA]=[10] --> ~=1 (a=1) 

Provided that k-!=2~2, the remaining, (k-f)(k-f-1)/2=1, 

state transits to S0 : 

S5-->S0 ; S5=[CBA]=[101] --> R(h}=[CA]=[11] --> ~=2 (a=1) 

Hence, the results of Theorem 4.29 were verified via the 

above example. If the total number of transitions/diagram is 

considered as a complexity measure [= (transitions/state) x 

(No of states)], then: 

The unconstrained transition diagram has (see Fig. 

A3.1.2, p. 332} 2 X 4 X 8 = 64 transitions. 

The t=2 constrained state-transition diagram has (count

ing state-by-state, starting from S0 ,S
1

, ••• ,S6 - see Fig. 

A4.10.1), (2+2+2+1) + (2+1+1) + (1+1+1) + (1) + (2+1+1) + 

(1) + (1) = 21 transitions, or about 1/3 of the uncon

strained. 

I 
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Ex amp 1 e A4 . 1 o . 2 : Consider the constrained state-

transition diagram of Fig. A4 .10 .1. The simplified diagram 

is easily constructed following the instructions of Note 4.7 

(p. 99). The result is shown in Fig. A4.10.2. 

Figure A4. 10. 2: t=2 simplified state-transition diagraa, for the 

(4,3,2) normal LSC of Fig. A2.9.2 (p. 315). 

Since the circuit is a (4,3,2) one, according to Theorem 

4.18, its longest transition is m+1, only if the LSC con

tains at least t=2 SRs of length m. Hence, the simplified 

state-transition diagram will not contain transitions of 

length 3, as can be verified from Fig. A4.10.2. Hence, the 

only long transitions are the ~=2 ones. 

Consider the application of Theorem 4.27. The states to 

be examined may have weight we[O,t], i.e. w = 0,1,2. 

The memory details are (from Fig. A2.9.2, p. 315): 
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F(O) = F(1) = F(2) = 1 M = 3 & k = 3 

i) The number of states of weight w, from which a tran

sition of length P = 2 may start is 

(I-REG~2-1,ll) 
2-2 

(4.60a) 

where: I-REG(2-1,)1 = 3- (2-1)3 + ~F(i) (4.60b) 
1=0 

1-REG(l, )j = 3 - 3 + F(O) = 1. Hence w = 0 or 1. Then: 

There is ( 6) = 1 state (so) ' of weight o, from which P=2 

transitions may start (to s 4 ). 

There is (l) = 1 state ( Sz) ' of weight 1, from which P=2 

transitions may start (to S0 & S4 ). 

ii) (4.60c) 

states, of weight w, from which 

(
I-DIG(2-2,ll) = (3-F(2-2)) 

2-w 2-w (4.60d) 

transitions of length P=2 start, where: 

I-REG(2,)1 = I-REG(2-1,)1 + F(2-1)- 3 (4.60e) 

I-REG(2,) I = 1 + 1 - 3 = -1. Hence the 2nd term of 

(4.60c) drops, and since I-REG(1,)1 = 1: 

There is (I-REG~2 - 1 •>1) = 1 state of weight w (=0,1), 

from which 

P=2 transitions start: 

One state of weight 0 (S0 ) from which 2/(2-0) = 1, P=2 

transition starts (to s.). 
One state of weight 1 (S2 ) from which 2/(2-1) = 2, P=2 

transitions start (to S0 & S4 ). 

iii) There are (4.60f) 

states, of weight w, from which 

(1-DI~!~-2,)1) _ (1-DI~!~-1,)1)--, 

I 
( 3-F(2-2)) _ (3-F(2-1)) 

2-w 2-w (4.60d) 
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transitions of length P = 2 start. 

Since I-REG(2,ll = -1, there is no P=2 transition, under 

this category. 

Hence, Theorem 4.27 was verified by the above example. 

I 

A4.11.1. Proof of theorem 4.30 

Since all SRs have the same length, this length is the 

maximum, i.e. m. Then I = 0 and M = km. Substitution of 

these values to the results of Theorem 4.21 (p. 107), gives 

the constrained trellis results. 

Since all SRahave the same length, I= I(O) = f(1) = ••• 

= f( m-1 ) = 0 and f (m) = k. Also, F( 0) = F( 1 ) = • • • = F( m-1 ) 

= 0 and F( m) = k. 

From Theorem 4.18 (p. 101), Pe[2,m+1] and D = m+1, only 

if there exist at least t SRs of length m, which in the 

present case is equivalent to t~k. 

From (4.60b) & (4.60e) 1 for Pe[2,m+1]: 

1-REG(P-1,)1 =km- k(P-1) + 0 = k(m-P+1) (A) 

1-REG(P,ll = k(m-P+1) + F(P-1)- k = k(m-P) + F(P-1) (B) 

From {4.60d): 

and 

1-DIG(P-2,)1 = k- F(P-2) = k 

1-DIG(P-1,)1 = k- F(P-1) 

From the above, for P = m+1: 

I De [ 2 ,m+1] 

/Pe[2,m+1] 

(C) 

(D) 

1-REG(m,)l = I-REG(m+1,)1 = 0 (E) 

1-DIG(m-1,)1 = k and 1-DIG(m,) I = k - F(m) = 0 (F) 

From (E) & (F), above, the 2nd part of Theorem 4.27 

drops, because the number of states under this category is: 
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Similarly, the number of states under the 3rd category 

is: 

(I-REG~m+1,ll) = (e)= 1 if w=O, and= 0 if w>1. Then, 

there is only one state, s 0 , from which transitions of 

length P=m+1 start. There are 

transitions from S0 • This proves part (iii) of the the theo-

rem. 

If Pe[2,m], from (C) & (D), 1-DIG(P-2,)1 = 1-DIG(P-1,)1 = 

k, since F(D-1) = 0. Hence there are no transitions from the 

states of the 3rd category (see Theorem 4.27). From the 2nd 

category, using (A), (B) & (C), there are 

states with 

transitions each. This proves part (iv) of the theorem. For 

the last part, let D = m, above. For w=O, there are C(k,O) -

C(O,O) = 1- 1 = 0, hence state S0 does not have transitions 

of length m. For w>1, there are C(k,w) - C(O,w) = C(k,w) 

states, each with C(k,t-w) transitions. 

QED 

A4.11.2. Proof of Theorem +.31 

Theorem 4.31 is an application of Theorem 4.30, for the 

special case of k = 1. Part (i) is straightforward. 

For part (ii): For each • e (max{O,Q-m+l} , min{l,Q}], 

there are states of weight Q, each of which has 

single-edge transitions, to the weight-n region, 

where: Q-• S w[S(h+1l] ~ fi S MIN{t-•,1+Q-•} <---> 

0 S n+•-Q S MIN{t-Q,l}. 

Since • = 0 or 1, C(1,•)=1. Since, also, n+•-Q = 0 or 1, 

C(l,n+•-Q)=l. Hence: For each • e (max{O,Q-m+1} , min{l,Q}], 

there are ( m-1) Q-• states of weight Q, each of which has 
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one single-edge transition, to the weight-fi region, where: 

Q S fi + • S MIN{t 1 Q+1}. 

If Q=O, then •e[max{O,-m+1},min{1,0}] ---> •=0. There 

is C(m-1,Q-•) = C(m-1,0) = 1 state of weight 0 1 with one 

single-edge transition to the weight-fi region, where: 

Q S fi+• S MIN{t,Q+1} <---> 0 S fi S MIN{t,1} <---> fi = 

0 or 1. If fi=O, the next state is S0 , while if fi=1, the next 

state will be [00•••01] = S1 • 

For the case Q<m, if QE[1,t], for each • e [max{O,Q-m+1}, 

min{1 1 Q}] <---> • e [0,1] (because, Q<m ---> Q-m+1<1) there 

are C(m-1,Q-•) (which is non-zero because • ~ Q-m+1 ---> 

m-1 ~ Q-•) states with one single-edge transition, each, to 

the weight-fi region, where: Q S fi+• S MIN{t 1 Q+1}. With re

spect to the last inequality, there are three possibilities: 

Either t~Q+1, or t=Q, or t<Q. Since QE[1,t] 1 either t~Q+1, 

or t=Q• Hence, if QE[1,t) then Q-• S fi S Q+1-•, and if t=Q 

then fi = t-•· 

If •=0, there are C(m-1 1 Q) states of weight QE[1 1 t) with 

two single-edge transitions, each, to states of weight Q & 
Q+1 and C(m-1,t) states of weight t, with one single-edge 

transition to a state of weight t. 

If •=1, there are C(m-1,Q-1) states of weight QE[1,t) 

with two single-edge transitions, each, to states of weight 

Q & Q-1 and C(m-1,t-1) states of weight t, with one single

edge transition to a state of weight t-1. 

For the case Q~m (assuming of course that t~m), only the 

Q=m case is meaningful. Then, for each • /max{O,Q-m+1} S • S 

min{1 1 Q} <---> •=1, there is C(m-1 1 m-1) = 1 state with one 

single-edge transition to the weight-fi region, where: Q S 

fi+• S MIN{t 1 Q+1} <---> m S fi+1 S MIN{t,m+1} <---> m-1 S fi S 

MIN{t-1,m}. Hence, if t=m there is one transition to a 

weight-(m-1) state, while if t~m+l there are two transi

tions, to states of weight m-1 and m. 

With respect to the central portion of the simplified 

trellis: 

iii) There is (~} = 1 maximum-length transition 



Appendix 4.11 Page 377 

(~ = m+l), starting from state S0 • Since C(l,t) = 0 for t>l, 

such a long transition exists only if t=1. 

iv) There are states of weight 

Q1 with (t~Q) = 1 (only if 1 ~ t-Q <---> Q ~ t-1 ---> Q 

= tor t-1) transition of length ~each, where ~ e [2,m]. 

For any states to exist, m-~+1 ~ Q <---> ~ S m+l-Q. 

v) From above, if the current state has weight Q the 

longest transition is m+1-Q 1 and because the smallest Q is 

t-1, the longest transition is m+2-t, starting from a state 

of weight t-1. Hence, the I/P must be 1, as well, in order 

to bring the memory into a weight-t state and hence start a 

long transition. Finally, for the longest transition to take 

place, the SR must have t-1 ls in the first t-1 stages, and 

that corresponds to state S41 where a=2t·1-1. 

QED 
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f!BQQE OF THE THBCSHOIJH)!;®I)ING THEOREMS 

A5.1.1. Proof of Theorem 5.1 

Assume that x of the error digits are non-zero, where 0 S 

x S lJ/2J. Since either e.= 0, or e.# 0: 

i) If e. = 0, then x other error digits are non-zero. 

Hence no more than x composite parity-checks are affected 

(i.e. become non-zero). All the rest eia are zero, hence the 

rest J-x Alia are zero. Since x S lJ/2J S J/2 -> J-x ~ 

J/2 -> x S J-x. So, the majority vote is 0, unless x = 

J-x in which case there is a tie which is resolved in favour 

of 0. Hence, decoding is correct if conditions are satisfied 

and e.= 0. 

ii) If e.= V ¥ 0, then x-1 other error digits are 

non-zero. These x-1 digits affect at most x-1 Alia. The rest 

J-x+1 Alia are affected only by e., hence their value is V. 

Now, since x-1 < lJ/2j S J/2 -> J-x+1 > J/2 > x-1, hence 

the majority of the composite parity checks, vote for V, so 

decoding is correct if conditions are satisfied and e. = V 

# o. 

From (i) & (ii), above, the theorem follows. 
QED 

A5.1.'2. Proof of Ibeorem 5 1 2 

According to Definition 5.3, the APP rule maximizes the 

conditional probability P(e.=VI{A!i}). Consider 

Baye 's rule: P(AIBl = P(BIA)P(A)/P(B) ( A5 .1.1) 

Then, (A) 

Since the error digits are statistically independent and 

the composite parity-checks A!i are all orthogonal on e., 

J J 

P(e.=VIUil) = nP(A!ile.=V)P<e.=V) I [nP(A!il] 
i=1 1=1 

-> 
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J 

-> logP( e.=V) + ~logP( Rd e.=v} -
1•1 

J 

- ~logP(£i) (B) 
i=1 

Note that the 3rd term in the RHS of eqn (B) does not 

depend on e., i.e. varying the value of this digit will have 

no effect on this term. Hence, maximizing the conditional 

probability P(e.l {£i}) is equivalent to maximizing its log 

(since the latter is a continuously increasing function of 

its argument) which is equivalent to maximizing the RHS of 

(B); since also varying e. has no effect on P(£1 ), the last 

term of the RHS of (B) may be ignored. 

QED 

A5.1.3. proof of Theorem 5 • .a 

Assume that x of the error bits are 1, where 0 ~ x ~ 

lJ/2J. Since, either e.= 0 or e.= 1: 

i) If e. = 0, then x other error bits are non-zero. 

Hence no more than x composite parity-checks are 1. All the 

rest eis are zero, 

~ lJ/2J ~ rJ/21 

ii) If e = • 
and at most x-1 

hence the rest J-x £is are zero. So, I ~ x 

-> e = 0, • 
1, then all £is have one bit equal to 1 (e.) 

of them also have another bit equal to 1, 

which cancels out the e.=1. So, at most x-1 £is are zero or, 

the same, at least J-x+1 are 1. Hence, 

Since X ~ lJ/2J -> -x ~ -lJ/2J 

-> J-x+1 ~ J-lJ/2J+1 > J-lJ/2J 

and combining with reln (A), 

-[ J-J/2 = J/2 = rJ/21 
I > J-lJ/2J 

(J+1)/2 J-(J-1)/2 = = 

-> I > rJ/21 -> 

I ~ J-x+1 (A) 

-> 

/J=even 

rJ/21 

e = 1 • 

/J=odd 
]-> 

Note that application of the decoding criterion, (5.4), 

- -------------------------------------------------------------------------~ 
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coupled with a restriction on the number of errors, led to 

correct decoding. 
QED 

A5.1.4. Proof of Thaprem 5.4 

According to the definition of pi, the probability that 

JEi = 0, given that e.= 1, equals the probability of an odd 
number of 'ones' in the rest of the error bits that partici

pate in the formation of JEi, i.e. equals pi. Similarly, 

P( JEi=O 1 e.=1) = P( !Ei=ll e.=o) = p1 

P( !Ei=11 e.=l) = P( !Ei=O 1 e.=o) = qi 

From Theorem 5. 2, because e. = 0 or 1, the APP decoding 

rule becomes: 

Choose e = 1, iff • 
J J 

logP(e.=1) + ~ logP(1Eile.=1) ) logP(e.=O) + ~ logP(JEile.=O), 
i=l ~1 

J 

<-> ~log[P(JE1 Ie.=1)/P(JE1 Ie.=O)] ) log(q0 /p0 ) 
i=l 

(A) 

Consider now the ratio P(1Eile.=1)/P(JE1 Ie.=O). 

If JEi = 0 then: 

If JEi = 1 then 

Then, one may write: 

From results (A) & (B), the condition becomes 

J 

(A) ~(21Ei-1)log(qi/p1 ) > log(q0/p0 ) 

i=l 

from which condition (5.4) follows. 
QED 
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APPENDIX 5.2: OEEINIIE PiQQQING PAIUIY SQUARES 

In this appendix, the general case of estimating a given 

error block e
4 
/a~m will be discussed. From Theorem 2.15 (p. 

50), with e ~ MIN{h,m}: 

lt 8 
s<Jl = e<t+Jl + "" ""e<ilgUl h h ~ ~ h-z lt+J,z /l:SjSn-k (A5.2.1) 

1==1 z=O 

In order to consider all syndrome blocks that check on 

e
4

, one must require h-z = a, hence h should vary between 

MIN{a+z} and MAX{a+z}, i.e. from a to a+e = a+MIN{h,m}: 

aShSa+MIN{h,m} and since h~a~m, 9=m and h should be allowed 

to range from a to a+m. Hence, the set of syndrome bits that 

may check on error bit eh•l are· 4 • 

lt • 
s<Jl = e<k+Jl + :E 

:Ee(ilg!il 
4 4 a-z k+j,z 

i•1 z•O 

lt • 
s<Jl 

4+1 = e<t+Jl 
4+1 + :E :EeU> (il 

Cl+ l•Zgk+ j ,z 
i•1 z•O 

. . 
lt • 

8 <Jl = e<t+n + "" ""e(il gUl 
a.+• CL+• ~ ~ a.+•-z: k+j,z 

1=1 z•O 

In general: 

s<Jl = e<t+Jl + 
A+X a+x 

/l:Sj:Sn-k 

/lSj:Sn-k 

/l:Sj:Sn-k 

/
lSj:Sn-k 
O:Sx:Sm 

Let m-z = w and rearrange the terms: 

lt • 
s<Jl = e<t+Jl + "" ""gUl eUl /l:Sj:Sn-k 

c•x a+x L,J ~ k+J,•-w a.+x-•+w O:Sx::Sm 
i•1 .... o 

(A5.2.2a) 

(A5.2.2b) 

(A5.2.2c) 

(A5.2.2d) 

(A5.2.3) 

The 2nd summation, in the above eqn, may be written in 

matrix form: 



Appendix 5.2 

• 
"'gUl eUl -
~ k+ j ,a-w o+x-a+w -
w=O 

Page 382 

= [gtU+j>,. gtli+jl,a-1' • • gl1l ] [elil elil • • • e(1l]T (A) k+j,O o+x-a o+x-a+l «+x 

Comparing the generator sequence 9~!~ (see Definition 2.5, 
p. 23) with the first vector, in the RHS of (A), one may see 

that the vector is nothing more than the generator sequence 

with its elements arranged in the reverse order: 

!!(1) 
k+j 

A - ( gl1l glil ••• gkl+1j>,o) 
k+j,a k+j,a-1 

Then, (A) may be written as: 

!j11l(e<1l elil • , , ei1)]T 
lr.+j Cl+x-a A+x-•+1 Cl+X 

Using (B) in (A5.2.3), for 1~j~n-k & OSx~m: 

k 
s<n + e<t•jl = "'!!(1l [ e<1l e<il • • • e<il ]T 

Cl+X Cl+X ~ k+j a.+x-a a.tx-a+l A+X 
1•1 

(A5.2.4) 

(B) 

(A5.2.5) 

= [ "(1) "(2) "(k)] [ (ll (1) , , • e<ll e<2) e<2l , , , e<2l , , 
~ktj J ~ktj I 1 1 1 I \fktj eCltX-a eG.tX-a+l G.+X Cl+X-a Cl+X-a+l Cl+X 

, , e<t) e<tl , , , elk) ]T 
u+x-a o+x-a+l Cl+X 

(A5.2.6) 

In (A5.2.6) the g-coefficient vector is independent of x. 

The error vector may also be made to be independent of x, if 

it is allowed to vary between its maximum & minimum values 

(0 & m), Then, the error vector will be made of the k error 

bits of blocks a-m,a-m+1, ••• ,a+m. In such a case, the vector 

of g-coefficients must be modified, by interspersing Os in 

between the !!~!~s, 
In (A5.2.6), the 1st bit of !j<1l multiplies e<ll 

k+j a.+x-• If the 

1st error bit of the- error vector is elll 1 then- e<1.l - will be a.-a a. z-a 

the (x+1)th bit of this vector, hence x Os must precede !!~!~· 

Similarly, the last bit of !!~!~multiplies e~!! and the next g

coefficient [the 1st bit of !!~!~l multiplies e~!! •• • while in the 

d . f. d t b. t { (1) (1) (1) (2) mo 1 1e error vec or, m error 1 s e 4 +x+l,eA+x+Z' •. ,e•••'e•-•' 
e< 2>.1 1 , •• 1 e<.2> 1}, will be placed in between. Hence, m Os must a.-• a. x-•-
be placed in between !!~!~ & !!~!~. For the same reason, 111 Os must 

be placed between any two of !!~!~ & !!~!j~l Finally 1 m-x Os must be 

placed after !!g~, so that the vector has the appropriate di

mensions. From the last eqn: 
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e<ll e<Zl e<Zl ••• e<Zl ••• e<~<> e<kl 
a. a-• Cl-a+ 1 a. Cl-a a.-a+ 1 (A5.2.7) 

Consider now the following notation: 

8 111 s<Zl s<Zl ••• s<2l •• 
a a. 4+1 a 

• • s<n-k) s<n-kl • • • s
11
<n-t) 1 

a a.+l (A5.2.8a) 

[ E'"]ll.::, (e<l> e<l> ••• e<ll e<Zl e<Zl ••• e<Zl 
" a. a.+l a a. a.+l a 

(A5.2.8b) 

e<k+1l e<k+2l e<t+Zl ••• e<k+2l •• 
J1 4 a.+l I 

e<nl e<nl • • • e~n) 1 
a. a.+l ,. (A5.2.8c) 

From (A5.2.8b) & (A5.2.7) 1 for l~j~n-k & O~x~m:: 

<.ll (lt+.ll _ [o .. u> 0 ,.(2) 0 ,.<t> 0 ]{[E'"1u•}T 8 a.tx + ea+x - .z' ~k+j' •' ttk+j' • • ' a' ~.t+j' •-x a.-• (A5.2.9) 

where, Ox is a 1 X x row vector of Os. 

Eqn (A5.2.9) represents a system of m+l eqna, for each 

j=1,2, ••. ,n-k: 

s<.ll 4+1 
= 

Oo 

01 

o. 

!!(1) 
k+j o. 

!!(1) 
k+j o. 

!jUl k+j o. 

. . . . 
!!(2) 

k+j 

!!(2) 
k+j 

. . . . . 
!!(2) 

k+j 

(A5.2.10) 
. . . . . . . . . 

o. o. !!(k) 
k+j o. 

o. o. !j(k) 
0•-1 k+j 

E + . . . . 
. . . . . 

o. o. !j(k) 
k+j 00 

In the above matrix eqn (of which only a part is shown), 

'big' E represents the error vector of eqn (A5.2.9). The 

system matrix (of which only a part is shown) may be suit

ably partitioned in parity squares. Each parity square is 

made of a column of m+l !!~!~s, each of which is displaced to 

the right (with respect to the one above) by one hit, the 

'gaps' being filled by Os. For i=1,2, ••• ,k & j=l 1 2, ••• ,n-k: 
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00 ~(1) 
k+.j 0 • 

01 ~(1) 
k+j 0 •-1 

r.J ~ • • • • • (A5. 2.11) - • 
1 • • • 

• • • • • 

o. ~(1) k+.j 00 

Using the definition of parity squares [ ( A5 • 2 • 11 ) ] I in 

the last (incomplete) matrix eqn [(A2.5.10)]: 

(A5.2 .12a) 

sU> 4 
eO> 

4-· 
e<k+1) 

4 

sl1) 
4+1 

eU> 
G•a+l 

e<k+1) 
4+1 

• • • • r1 r1 ••• r1 •••• • • • • 1 2 k 

s<1> e<1l elk+1) 
4+• 4+• u• 

s<z> 
4 

e<Z> 
4-· 

e<k+Zl 
4 

s<Z> 
4+1 

e<Z> 
Cl-a+l 

e<k+Z) 
4+1 

• • • • rz rz ••• r2 .... . . . . 
= 1 2 k + 

s<2> e<Z> e<k+2l 
u• 4+• u• 

•••• . . . . • • • • 
• • • • • • • • • • • • • • • • . ... 
• • • • • • • • •••• 

• • • • • • • • • • 

s<n-k) • • • • • • • • • • e<kl e<n> 
4 4-· 4 

s<n-k) 
4+1 

e<k> 
"'"'••1 

e<n> 
4+1 

• • • • rn-k rn-k ••• rn-k • ••• • ••• 1 2 k 

s<n-k) e<kl e<n> 
u• u• ••• 

Matrix eqn (A5.2.12a) can (and needs to) be written in a 

more compact form. If notation (A5,2.8) is used and H(r) 

denotes the system matrix in eqn (A5.2.12a), then the latter 

can be written as: 
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(A5.2.12b) 

If the transpose of both sides in the last eqn is ob

tained (see, also, Theorem A2.2.1, p. 300), then: 

(A5.2.12c) 

The dimensions of the matrices in eqn (A5.2.12c) are as 

following: 

[s]:•• is a 1 x (n-k)(m+1) matrix, 

[ E•]«+• is a 1 X k(2m+1) matrix, ·-· 
(H(r)]T is a k(2m+1) x (n-k)(m+1) matrix and 

(EP]: .. is a 1 X (n-k) (m+l) matrix. 

Consider any error bit, say, e!Pl /-m~~~m & 1~p~k and exa•-P 
mine if any particular syndrome bit, say, s!a+> /O~•~m, 1~a~n-k . ' 
checks on it. By inspection of eqn (A5.2.12a) one may con-

clude that the error bit belongs to the pth group of error 

bits and within this group it is the (m+1-~)th bit, i.e. it 

is the [(p-1)(2m+l)+m+l-~]th bit of the message error vec

tor. The syndrome bit, on the other hand, belongs to the ath 

group of syndrome bits and within this group it is the 

(•+1)th bit, Le. it is the [(a-1)(m+1)+•+1]th bit of the 

syndrome vector. Then, these two bits are linked via the 

[(a-1)(m+1)+•+1]th row, [(p-1)(2m+1)+m+1-~]th column, g

coefficient of the system matrix H(r). Since the latter is 

organized in an (n-k) X k matrix of rs, each of which is an 

(m+1) X (2m+1) matrix [see (A5.2.11)], the above mentioned 

g-coefficient belongs_to the ath row of raand pth column of 

r-., -i-.~. to r:, which contains shifted versions of ~~:!• Within 

this parity square, the g-coefficient belongs to the (•+1)th 

row, (m+1-~)th column. If one expands the parity square, one 

may see that g!Pl is found in rows & columns satisfying: z = k+a,z 

= m + row - column. Hence, z = m + (•+1) - (m+1-~) = •+~. 
Hence, if -m~~~m, 1~p~k, O~•~m & 1~a~n-k, then: 

s(a) checks on e(P) iff g!P) = 1 
A+~ a-P t+a,~tl 

(A5.2.13) 

Also, from the discussion preceding reln (A5.2.13), the 

syndromes checking on error bit e~~~ are determined by the 
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[(p-1)(2m+l)+m+l-~)th column of H(r); in particular, the 

laalong this column indicate the positions, within the syn

drome vector, of the syndrome bits checking on e~~ (the top 

bit is in position 1). Similarly, the message error bits 

checked by s~:! are determined by the [(a-l)(m+l)+•+l)th row, 

of H(r); in particular, the la along this row indicate the 

positions, within the message error vector, of the error 

bits checked by s<cr>, 
4 .. 

Consider now the problem of determining J , the number p,4 

of syndrome bits checking on error bit e~Pl, Matrix equation 

(A5.2.12) contains, by design, all the syndromes that check 

on this bit. By (A5.2.13), for ~=0, the number of syndromes 

checking on this bit equals the number of g<P> a that are k+CJt't 

equal to one, where p is fixed, but a & • are allowed to 

vary over their range. Hence: 

n-k • n-It 

Jp,4 = ~ ~g~~!., = ~w[ 9~~!] (A5.2.14) 
a=l 't=O a=l 

Note, from ( A5, 2.14) that Jp,
4 

depends only on the bit 

number p (within a block) and not on the time-unit a (pro

vided that a~m, as initially assumed), Hence a may drop from 

Finally, the size, cj,h' of syndrome s~j) /h~m and l:Sj:Sn-k 

may be calculated from eqn (A5,2.1). Because h~m, then G=m 

and the size of the syndrome bit equals the number of g

coefficients that are equal to 1, plus 1 (for the parity

check): 

k • k 

c = 1 + .,.., .,.,gU> = 
3rh ~ ~ k+j,z 1 + ~w(g~m (A5.2.15) 

1=1 z=O 1•1 

Note, again, that cj,h depends only on j, so h may drop. 

The following theorem has been proved: 

Theorem A5.2.1: Consider an (n,k,m) systematic convolu-

tional code with generator sequences 9~!~ /i=l, 2, •• , k & j=l, 2, 

,,,,n-k. Then, under definite decoding, for a~O: 
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(A5.2.12c) 

where if a<m, the message error vector is suitably trun

cated. If -m~~~m, 1~p~k, O~~~m & 1~o~n-k, then: 

s<a> checks on e<P> iff g<P> - 1 
Cl+'t a.-a t+a,'t+JI -

(A5.2.13) 

The syndromes checking on 

[(p-1)(2m+l)+m+l-~]th column 

e~~!• correspond to la along the 

of H(r). The message error bits 

checked by syndrome bit s~:!, correspond to ls along the 

[(o-l)(m+1)+~+1]th row, of H(r). 

Furthermore, if J
1 
/l~i~k denotes the number of syndromes 

checking on error bit er> /h~m and cj /1~j~n-k denotes the 

size of syndrome bit s~> /h~m, then: 

n-k 

Ji = ~w[ 9~!H /1~i~k (A5.2.14) 
j=l 

k 

cj= 1 + ~w[g~!n /1~j~n-k (A5.2.15) 
1=1 

I 
Consider an example: 

Example A5.2.1: Consider the (2,1,6) systematic code 

with generator polynomial g~l>(D) = l+D2+D5+D6 • Since n-k = 1 

there is only one syndrome bit, s~1 > /a~O, which is related 

to the error bits via matrix eqn (A5.2.12a). Furthermore, 

there is only one parity square, r~, hence this coincides 

with the system matrix H(r). 

Let us consider the application of the results of Theorem 

A5.2.1, to the above example: 

According to reln (A5.2.13), s<a> checks on e<P> iff 
Cl+'t a.-a' 

g<P> = 1, where -6~~~6, 1~p~1, 
1+0',1:+8 

0~•~6 and 1~o~2-1. Hence, 

sO> checks on e< 1 > if and only if g<1 > = 1 
a.+'t •-8 ' ' 2 -~·~ ' 

where,-6~~~6 & 

0~•~6. From the given generator polynomial: 

gO> = g<l> = gU> = g<l) = 1 
2,0 2,2 2,5 2,6 

g<U = g<U = g<ll = 0 
2,1 2,3 2,4 

From above: For, say 13=2 & ~=5 g<l> = 0 hence s 0 > 
' ' 2,5+2 ' Cl+S 

not check on For, say, 13=2 & •=0, g~~~+Z = 1, hence 

does 
s<l> 

Cl 
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does check on e<1> For sav 13=-1 &. ,;=5 g<ll = 0 hence s<l> 
11-2 • t " ' ' 2,5-1 1 a.+S 

does not check on e<1> For, sav, 13=-5 &. ,;:5, g<l> = 1 hence a.+l. "' 2,5-5 ' 

s~!~ does check on e~!~. These 'predictions' can be verified 

from the matrix eqn, below. 

Furthermore, J 1 denotes the number of syndromes checking 

on error bit e~1 > /a.2:6 and c 1 denotes the size of syndrome 

bit sr> /a.2:6. From (A5.2.14) and (A5.2.15), and since the 

weight of the, only, generator sequence is 4: J 1 = 4 &. c 1 = 

5, which may be verified from the matrix eqn, below. 

Eqn (A5.2.12a) gives: 

e<l> 
a-6 

e<ll 
a-5 

e<l> 
a-4 

sll) 
a 1 1 0 0 1 0 1 e<l> 

a-3 
e<Z> 

a 

sO> 1 1 0 0 1 0 1 e<l> e<Z> 
a+l a-2 a+l 

sll> 
a+Z 1 1 0 0 1 0 1 ell) 

a-1 
e<Z> 

a+2 

s(l) = 1 1 0 0 1 0 1 e<l> + e!2> 
a+3 a a+3 

s<l> 1 1 0 0 1 0 1 ~ ell> e<Z> 
a+4 -- a+l a+4 

sO> 
a+S 1 1 0 0 1 0 1 e<l> 

a+2 
e<Z> 

a+S 

sll) 
a+& 

1 1 0 0 1 0 1 ell) 
a+3 

e<Z> 
a+& 

e<ll 
11+4 

-e(l) 
11+5 

e<ll 
a+& 

I 
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AP~END:IX: 5, 3: , fi;Em}ACK QECOOI$ - PARITY TRIANGLE$ , , 

For FD, it is enough to consider the decoding of r 0 , 

since all subsequent blocks are decoded in exactly the same 

way (assuming no error propagation). Consider the following 

rearranged version of eqns ( 5. 8). 

11: 
s<j) 

0 = e<t+J) 
0 + ~eU>g<1> 

0 k+j,O /lSjSn-k (A5.3.1a) 
1=1 

k 1 
sU> = 1 

e<t+j) 
1 + ~ ~eU>g<il z k+j,l-z /lSjSn-k (A5.3.1b) 

1=1 z:O 

• • • • • • 

• • • • • 

/lSjSn-k (A5.3.1c) 

Consider the expansion of the above eqns (i=1,2, •• ,k): 

s<3> = • • • + g<i) e<il + ••• ···+ e<t+j) 
0 k+j,O 0 0 

s<j) = • • • + g<il e<il + g<i> e<U + • • • ••• + e<k•J> 
1 k+j,1 0 ktj ,o 1 1 

• • 

• • • • • 

• • • • • • • • 

s<j) = ••• + g<il e<il + g<i> eU> +• •• + gU> e<1> +• ••••• + e<t+j) 
• k+j,• 0 k+j.a-1 1 k+j,O • a 

The above eqns can be written in matrix form: 

= 

. . g(1) 
k+j,1 

. . gUl g<ll ... 
ktj 1a k+j,a-1 

(1) 
gk+j,O 

~ . . . . . . . . . . . . . 

( A5-. 3. 2) 

+ 

e<t+j) 
0 

e<k+j) 
1 

e<k+j) 
• 
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Note that in eqn (A5.3.2) the spaces denote zeros. It is 

obvious that the matrix of the generator coefficients is 

made of 'triangles' of g •• 

Definition A5.3.1: The general jith parity triangle 

where i=1,2, ••• ,k & j=1,2, ••• ,n-k, is defined as following: 

(A5.3.3) 
• • • • • • • • 

••• 

I 
Eqn (A5.3.2) can be written as following: 

(A5.3.4a) 

s<1> 
0 

e<1l 
0 

e(k+1l 
0 

s (1) 
1 

e<ll 1 
e(k+1) 

1 

• • • • ••• • • • .... 
sill 
• 

e<ll e(k+l) 
• • 

s<2> 
0 

e<2l 
0 

e(k+2) 
0 

s!2l 
1 

e<2l 
1 

e<t+2l 
1 

• • • • ••• ••• • • • • 
= + 

s!2) 
• 

e<2l 
• 

e!k+2l 
• 

• • • • • • • • ••• 
• • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • . . . . 

• • • • • • • • • • 
s(n-t) 

0 
• • • • • • • • • • e<tl 

0 
e<nl 

0 

s<n-t) 
1 

e<kl e<nl 
1 1 

• • • • • n-k • • • u. 
k • • • •••• 

s<n-t) 
• 

e<kl 
• 

e<nl 
• 
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Matrix eqn (A5.3.4a) can (and needs to) be written in a 

more compact form. Using the notation introduced by (A5.2.8) 

and letting H(~) denote the system matrix: 

If the transpose of both sides in the last eqn is ob

tained (see, also, Theorem A2.2.1, p. 300), then: 

(A5.3.4c) 

The dimensions of the matrices in eqn (A5,3.4c) are as 

following: 

[s]~ is a 1 x (n-k)(m+l) matrix, 

[E•]~ is a 1 X k(m+l) matrix, 

[H<~>]T is a k(m+l) x (n-k)(m+1) matrix and 

[ EP]~ is a 1 x (n-k) (m+l) matrix. 

From the definition of the parity triangle [eqn 

(A5.3.3)] 1 one may conclude that it is made of (m+1)(m+2)/2 

g-coefficients. Furthermore, a comparison of the 1st column 

of the parity triangle with the coefficients of the genera

tor sequence g~!~ (see Definition 2.5), reveals that they are 

identical. Also, if the 1st column is shifted downwards by 

one position and truncated in the bottom-end (by one ele

ment) the 2nd column is obtained. In fact every column is a 

shifted/truncated version of the 1st. The following note 

summarizes the findings. 

Note AS . 3 . 1 : Consider an (n,k,m) systematic convolu-

tional code. This code has k(n-k) parity triangles, each of 

which contains (m+1)(m+2)/2 elements. The 1st column of 

parity triangle ~f (i=1 1 2, •• ,k & j=1,2, •• ,n-k) is [g~!~JT, i.e. 

the transpose of the (i,k+j)th generator sequence [or, the 

same, the column of the elements of the (i,k+j)th generator 

polynomial, g~!~(D)], The hth column (1~h~m+1) of the triangle 

is obtained by a downward shift of the 1st column by h-1 

positions and a truncation of its bottom end, by h-1 ele

ments. 

I 
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Consider now any error bit, say, e~Pl /O~a~m & l~~~k and 

examine if any particular syndrome bit, say, s~o> /O~•~m & 
l~a~n-k checks on it. By inspection of eqn (A5.3.4a) one may 

conclude that the error bit belongs to the ~th group of er

ror bits and within this group it is the (a+l)th bit, i.e. 

it is the [(~-l)(m+l)+a+l)th bit of the message error vec

tor. The syndrome bit, on the other hand belongs to the ath 

group of syndrome bits and within this group it is the 

(•+l)th bit, i.e. it is the [(a-l)(m+l)+•+l)th bit of the 

syndrome vector. Then, these two bits are linked via the 

[(a-l)(m+l)+•+l)th row, [(~-l)(m+l)+a+l)th column, g-coeffi

cient of the system matrix H(~). Since the latter is organ

ized in an (n-k) X k matrix of ~s, each of which is an 

(m+l) X (m+l) matrix [see (A5.3.3)), the above mentioned g

coefficient belongs to the ath row of ~s and ~th column of 

~s, i.e. to ~:. which contains shifted/truncated versions of 

g~~!· Within this parity triangle, the g-coefficient belongs 

to the (•+1 )th row, (a+l )th column. If one expands the 

parity triangle, one may see that g~Pl is found in rows and -.•a.z 
columns satisfying: z = row - column. So, z = (•+1) - (a+l) 

= •-a. Hence, if O~a~m, l~p~k, O~•~m & l~a~n-k, then: 

s<a> checks on e<Pl iff g<Pl = 1 
~ a. k+o. "C-a. (A5.3.5) 

Also 1 from the discussion preceding reln (A5. 3. 5) 1 the 

syndromes checking on error bit e~> are determined by the 

[(~-l)(m+l)+a+l)th column of H(~); in particular, the ls 

along this column indicate the positions, within the syn

drome vector, of the syndrome bits checking on e<P> (the top 
4 • -

bit is in position !);·similarly, the bits from the message 

error vector, checked by syndrome bit s~o>, are determined by 

the [(a-l)(m+l)h+l)th row, of H(~); in particular, the ls 

along thi!i row indicate the positions 1 within the message 

error vector, of the error bits checked by s~">. 

Consider now the problem of determining J 0 , the number p, 

of syndrome bits checking on error bit e~P>, Matrix equation 

(A5.3.4a) contains, by design, all the syndromes that check 

on this bit. By (A5.3.5), for a=O, the number of syndromes 

checking on this bit equals the number of g~~!,,s that are 
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equal to one, where p is fixed, but a & • are allowed to 

vary over their range. Hence: 

J = p,O 

n-k • 
"" "'g(P) : 
~ ~ k•a.'l 
o=l 't•O 

n-k 

~w[ g~~!] (A5.3.6) 
o•l 

Note, from (A5.3.6) that J 0 depends only on the bit num-p, 

ber p (within a block) and not on the time-unit 0. Hence 0 

may drop from J 0 • In any case, the equations for the decod
"' ing of the zeroth block are identical to those for any other 

block. 

Finally, the size, cj,h (/h~O & lSjSn-k), of syndrome bit 

s~Jl may be calculated from eqn (5.7). Again, under FD, the 

decoding of the Oth block is similar to that of any other 

block. Hence, the syndromes checking on any block are the 

same linear combinations of error bits, like the syndromes 

used for the decoding of r 0 • Then, hSm and hence, 6 ~ 

MIN{h,m} = h. The size of the syndrome equals the number of 

g-coefficients that are equal to 1, plus 1 (for the parity

check): 
k h 

cj,h = 1 + ~ ~g~!L (A5.3.7) 
1•1 z=O 

The following theorem has been proved: 

Theorem A5.3.1: Consider an (n,k,m) systematic convolu

tional code with generator sequences 9~!~ /i=l 1 2, ••• ,k & j=l, 

2, ••• ,n-k. Then, under feedback decoding: 

(A5.3.4c) 

If OSaSm, lSpSk, OS•Sm & lSaSn-k, then: 

s<ol checks on e<Pl iff g<Pl - 1 
't a. k+a. '1"-a. -

(A5.3.5) 

The syndrome bits checking on e~Pl correspond to la along 

the [(p-l)(m+l)+a+l]th column of H(~). The message error 

bits checked by syndrome bit s~o) correspond to la along the 

[(a-l)(m+ll+•+l]th row, of H(~). 

Furthermore, if J
1 

/lSiSk denotes the number of syndromes 

checking on error bit er> and cj,h /lSjSn-k denotes the size 
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of syndrome bit s~Jl /hl!:O 1 then: 

n-k 

Ji = ~w[ 9~!H /1SiSk (A5.3.6) 

= 1 + 

j=1 

/1SjSn-k (A5.3.7) 

I 
Consider the following two examples: 

Ex amp 1 e A5. 3. 1 : Consider the ( 2 1 1, 6) systematic convo-

lutional code with generator polynomial g~1l(D) = 1+D2+D5+D6 

(examined, under DD, in Example A5.2.1). Since n-k = 1 there 

is only one syndrome bit, s~1 l /al!:O, which is related to the 

error bits via matrix eqn (A5,3.4a). Furthermore, there is 

only one parity triangle, ~~. hence it coincides with the 

system matrix H(~). 

Eqn (A5.3.4a) gives: 

s<1l 
0 1 e<1l 

0 
e<2l 

0 

s<1> 
1 0 1 e<1> 

1 
e<Z> 

1 

s<1l 
2 1 0 1 e<1l 

2 
e<2> 

2 

s<1l 
3 = 0 1 0 1 e<1l 

3 + e<Z> 
3 

sUl 
4 0 0 1 0 1 eU> 

4 
e<Z> 

4 

s<ll 
5 1 0 0 1 0 1 e<1l 

5 
e<2l 

5 
-

sUl 
6 

1- 1 0 0 1 0 1 e<1l 
6 

e<Zl 
6 

Let us consider the application of the results of Theorem 

A5,3,1, to the above example: 

According to relation (A5.3.5) 1 s<"l checks on e<Pl iff 
~ 4 I 

g(ll) 
k+O'. 1:-a. 

= 1, where 0SaS6, 1SpS1 1 OS-.:S6 & 1SaS2-1. Hence 1 s<1l 
~ 

checks on eU> iff g<1l = 1, where 0SaS6 & OS-.:S6. From the 
Cl ' 2,'1-a. 

given generator polynomial: 
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g<ll = gUl = gUl = g<ll = 1 
2,0 2,2 2,5 2,6 

g<ll = g<ll = g<ll = 0 
2,1 2,3 z,t 

From above: For, say, a=1 & -c=5, g~~t1 = 0, hence s~ll does 

not check on e~ll. For, say, a=O & •=5, g~~to = 1, hence s~1 l 
does check on e~1 l. For, say, a=O & •=3, g~!~-o = 0, hence s~1 l 
does not check on e~1 l. For, say, a=2 & •=2, g~!~-2 = 1, hence 

s~1 l does check on e~1 >. These 'predictions' can be verified 

from the matrix eqn, above. 

Furthermore, J 1 denotes the number of syndromes checking 

on error bit e<ll 
0 and c 1 /a?:.O 

,4 
denotes the size of syndrome 

bit s (1) 
4 

/a?:.O. From (A5.3.6), and since the weight of the, 

only, generator sequence is 4, Jl = 4 which may be verified 

from the matrix eqn, above. 

From eqn ( A5 • 3. 7 ) : cl,h = 1 + gU>+ 2,0 
g<ll + ••• + 

2,1 
g<ll 

Z,b 

So, the size of s<ll 
0 is cl,O = 1 + g<ll = 2,0 2 

the size of s<ll 
3 is c1,3 = 1 + g<ll + 2,0 

g(ll 
2,1 + ••• + g(ll = 

2,3 3 

the size of s<ll 
5 is c1,s = 1 + g<ll + 2,0 g<ll +•. •+ 2,1 

gUl : 
2,5 4 

Again, these 'predictions' may be verified from the last 

matrix eqn. 

I 
Examole A5.3.2: Consider the (3,2,13) systematic convo

lutional code with generator polynomials g~1 l = 1+D8+D9 +D12 & 

g~2l = 1+D6+Du+Dl3. 

Since k = 2 & n-k = 1, H(~) is made of two parity trian

gles arranged in one row, ~~ & ~~. Eqn (A5.3.4a) for this 

example, gives (see matrix eqn overleaf): 

Let us consider the application of the results of Theorem 

A5.3.1, to the above example: 

According to relation (A5.3.5), s<"> checks on e<Pl iff 
~ 4 ' 

g (Pl = 1 where 0Sa:H3, 1SnS2, OS-c:H3 and 1SaS2-1. Hence, 
k+CJ 1 'J-4 J ... 

s<1l checks on e<Pl iff g<Pl = 1 where n:1 2 0SaS13 and 
'I Cl t 3 ,1:-Cl t If"' t I 

OS-cS13. From the given generator polynomials: 
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e(ll 

0 

e<ll 
1 

e<ll 
2 

e<ll 
3 

elll • 
e<ll 

5 

e<ll 
6 

s (1) 
0 1 1 e<ll 

7 
e(3) 

0 

sill 
1 01 01 eCll 

8 
e(3) 

1 

sill 
2 001 001 e<ll 

9 
e(3) 

2 

sCl> 
3 0001 0001 eU> 

10 
e<3l 

3 

sill • 00001 00001 ell> 
11 

e(3l 

• 
sell 

5 000001 000001 eCll 
12 

el3l 
5 

sill 
6 0000001 1000001 e(ll 

13 
e<3l 

6 

= + eC3l sCll 00000001 01000001 e(2) 
7 0 7 

s(ll 
8 100000001 001000001 e<2> 

1 
eC3l 

8 

sill 
9 1100000001 0001000001 el2l 

2 
e<3l 

9 

s<ll 
10 01100000001 00001000001 e(2) 

3 
e(3l 

10 

sill 
11 001100000001 100001000001 e<2l • e(3l 

11 

sill 
12 1001100000001 0100001000001 e(2l 

5 
e<3l 

12 

sU> 
13 0100110000000110100001000001 e<2> 

6 
e(3) 

13 

e<2> 
7 

el2l 
8 

e(2) 
9 

e12l 
10 

eC2l 
11 

eC2l 
12 

e<2l 
13 
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g<ll = gUl = gUl = gUl = g<2l = g<2l = g<2l : g<2l = 1 
3,0 3,8 3,9 3,12 3,0 3,6 3,11 3,13 

From above: For, sav, a.=1, n:1 & •-5 g<1l - 0 hence s 11 l 
<J .... - ' 3,5 ... 1 - ' 5 

does not check on e~ll. For, say, a.=2, p=2 & 1:=13, g~~~3_2 = 1, 

hence sg> does check on e~2 l. For, say, a.=7, p=1 & 1:=10, g~!~o-7 
= 0, hence s~~l does not check on e~ll. For, say, a.=7, p=2 & 

1:=13, g~~~3_7 = 1, hence s~~l does check on e~2 l. These 'predic

tions' can be verified from the matrix eqn, above. 

Furthermore, J
1 

/i=1,2 denotes the number of syndromes 

checking on error bit e~il and c 1,m /a.~O denotes the size of 

syndrome bit s~1 l /a.~O. From (A5.3.6), and since the weight 

of each generator sequence is 4, J 1 = J 2 = 4 which may be 

verified from the matrix eqn, above, 

From eqn (A5.3.7): 

c = 1 + g3<1,0) + g<2) + g<ll + g<2) + ••• + g<1) + g!2) 
l,h 3,0 3,1 3,1 3,h 3,h 

So, the size of s<1> is c - 1 + gU> + g<2l - 3 0 1,0- s.o 3,0-

the size of s 11 l is 6 

c
1

,
6 

: 1 + g!1) + gCZl + g!1) + g!2) + ••• + gUl + gC2) = 4 3,0 3,0 3,1 3,1 3,6 3,6 

the size of sl 1l is 
11 

c
1
,
11 

: 1 + g!1l + g<2l + gUl + g<2l + ••• + g<1l + g<2l = 7 3.0 3,0 3,1 3,1 3,11 3,11 

Again, these 'predictions' may be verified from the last 

matrix eqn. 

A5.4.1. Preliminary Bemta-

Theorem A5.4.1: Let two binary n-tuples a 

a.n) and 13 = ( .131 .132 • • • .13
0

) • Then, 

w[a] + w[B] ~ w[a$13] 

I 

= (a a. • • • 1 2 

(A5.4.1) 

where a~B is the 'bit-by-bit mod-2 sum' of a & B and 

a.1 ,.131eGF(2) /i=1,2, ••• ,n. 
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Proof: Let + denote ordinary real-number addition and Ell 

denote mod-2 addition. Then, for all i=1,2, ••• ,n: 

-E 
0 if Q1 = 131 = 0 3-> Q1 + 131 1 if Q1 # 131 (A) 

2 if Q1 = 13 = 1 1 

-E 
0 if Q1 = 131 = 0 3-> Q1 Ell 131 1 if Q1 # 131 (B) 

0 if Q1 = 131 = 1 

From (A) & (B): 

Q1 Ell 131 ~ Q1 + 131 /i=1,2, .. , ,n (A5.4.2) 

n 

-> :S ~(a1 + 13d = 
1=1 

-> w[a Ell B] :S w[a] + w[B] 
QED 

Lemma A5.4.1: Let a, B & ~be three n-tuples with coef

ficients in GF(2). Then the following, called the triangle 

inequality, holds true: 

d(a,B) + d(B,~) ~ d(a,~) (A5.4.3) 

Proof: Lemma A5.4.1 follows from Theorem A5.4.1: 

d(a,B) + d(B•~l = w[a Ell B) + w[B Ell ~1 ~ 

w[(a Ell B) Ell (BEll~>) = w[a Ell ~J = d(a.~) 
QED 

A5.4.2. Proof of Ibtcrem 5.7 

Assume that the 1st constraint-length [ r]. of the re-

ceived sequence r, contains no more than 

channel errors. Then, 

t 
~ -

Since the channel is assumed to be an additive-noise one, 
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Consider now another transmitted codeword v'. By the tri

angle inequality, 

d{rrJ.,[v'l.) 2: d(rv'J.,[vl.) - d(lvJ.,[rl.) -> 

d( [r]., [v' 1.) 2: d( [v' 1 •• [vl.) - w[ [el.] [using (B)] 

-> [using (A)] (C) 

Since, dain is the minimum distance between any two code

words, over the 1st constraint-length (the c/wa differing 

only in the first source block), 

and using inequality (C): 

d( [ r]., [V' J.) 2: dain- t (D) 

From (A), if dain = odd, then, dain- t = dain- (d.10-1)/2 = 
(d.10+1)/2 > t, while if dain = even, then, dain- t = dain

(dain-2)/2 = 1 + d•10/2 > t. So, from (D): d(lrl.,[v'l.) > t. 

Hence, the distance between the received truncated se

quence [ rl. and the transmitted truncated codeword [vl. is 

smaller (St) than the distance between [rl. and any other 

codeword. 

So, over the 1st constraint-length, no codeword v', that 

differs from the transmitted codeword V over the 1st source 

block ( [u' ] 0 t- [u] 0 ), is closer to r than the transmitted 

codeword v, if no more than t errors occured over the first 

constraint-length (<-> the weight of [e]. is S t). 

Consider now t+1 channel errors over the 1st constraint

length. Then relna (A) & (B) are modified, as following: 

Since dain is the minimum distance, there will be a code

word v' such that d( [v]., [V' l.) 2: d•1n' where v & v' differ 

only over the 1st source block. Then from (A5.4.3), 

-> d( [ r]., [v' 1.) 2: dain- t - 1 (F) 

If dain = odd, then, dain- t - 1 = dain- (d.10-1 )/2 - 1 = 
(d.10-1)/2 = t. If dain = even, then, dain- t - 1 = dain

(d.10-2)/2 - 1 = (d.10-2) - (dain-2)/2 + 1 = t + 1. Hence, from 

re1na (E) & (F), one concludes that there exists at least 



Appendix 5.4 Page 400 

one codeword which is as close to the received sequence as 

is the transmitted codeword [V]• (or closer, if d•in = odd). 

QED 

AS.-4.3, Proof of Theorem 5.& 

Majority-logic decoding is based on the 1st constraint

length. If at least J parity checks can be formed on the 

error bits of the 1st block, then this decoder can correct 

LJ/2j or fewer errors in the 1st constraint-length. Obvious

ly, this capability cannot exceed t: 

LJ/2J s L( dain -1) /2j -> 

-c: L( d•in -1) /2J + (-J/2) i!: 0 /J=even 

L( dain -1) /2J + [-(J-1)/2] i!: 0 /J=odd 

-c: L( dain -1) /2-J /2J i!: 0 /J=even 

L<d.b-1)/2-(J-l)/2J i!: 0 /J=odd 

-c: d -1-J i!: 0 /J=even .]--> a in J s dain - 1 
d -J i!: 0 /J=odd a in 

(A5.4,4) 

QED 

API"ENDIX: 5.5; PROOF OF THEOREM 5 ,ft 

i) The syndrome bits that check on e~1 l are orthogonal 

on e~1 l /i=1,2, ••• ,k & hi!:O. Then this will be true for h=O, 

hence according to Definition 5.4*, the code is a CSOC. 

ii) The code is a_CSOC, Assume that there exists an ai!:O 

for which, the syndrome bits that check on e~Pl (1SpSk) are 

not orthogonal on e~>. Then, there will exist two syndrome 

bits, say, s~al & s~~· l that will check on e~Pl and on some 

other error bit, say, e~~'l (where, either a~a', or p~p', or 

both). Consequently: 

= 
(a') = 

s~, 

e<Pl + e<P' l + • • • [sum of other error bits] " ... 
e<Pl + e<P' l + • • • [sum of other error bits] 
" ". 

(A) 

(B) 

Comparing with the general syndrome eqn [(5.7), p. 138] 1 

* See P• 138, 
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one can deduce the following results: 

From eqn (A) : (Jl) 
gk+o .~-a. = (Jl') 

gk+CJ. '1-G.. = 1 (C) 

From eqn (B): g!Jl) 
k+o' ,'1"'-CL = (Jl') 

gk+o','t'-a.' = 1 (D) 

where [again from eqn (5.7)], 

l~p,p'~k. l~o,o'~n-k and =r-> (E) 
OS•-a,T-a'SMIN{T,m} & 0~•'-a,T'-a'SMIN{T',m} 

Without loss of generality, one may assume that: 

Consider now syndrome bits 

syndrome eqn [(5.7)], 

s<"> = e (k+a) 
<-a •-a 

where: a A MIN{m,•-a}. -
( .,. ) 

= e (k+o') 
s"~, -a. 't. •Cl 

where: a• A MIN{m,•'-a}. -

+ 

+ 

Consider eqn (A5.5.1); from 

a'i!:a (F) 

(0) (0'') 
s't·Cl & s't'•a.. From the general 

8 k 

~ ~e<il (il 
't•a.-z gk+a,z (A5.5.1) 

z=O i=l 

8' k 

~ ~eU> Ul 
't • -a.·zgk+o', z (A5.5.2) 

z=D 1•1 

(E) • 0 s •-a ~ MIN{•,m}. So 

•-a ~ m and hence, a = "t'-a. Then z = •-a is a permitted val-

ue because 0 ~ z s e. Also, from (F)' a' 2: a <-> T-a' ~ 

,;-a. Since, from (E) 0 s ,;-a.' ' z = •-a• is also a permitted 

value. With respect to eqn (A5,5.1), consider the two terms 

defined by z = •-a & i = p and z = •-a• & i = p': 

... ] -> 

-> + [ ... ] (G) 

Similarly, from eqn (A5.5.2), using the same arguments as 

above, z = •'-a & z = •'-a' are permitted values of z, Con

sider the terms z = •'-a & i = p and z = •'-a' & i = p': 

s!~:! = [ e!~~a-zg~!!•,z]!:~'-a + [ e!~~.-zs~!!•,z]!:~:-a.• + [ • • • ] -> 

-> s!~~! = ( e~lllg~!!•,,•-a] + ( e~~~!g~::! ,<'-a'] + ( .. • ] (H) 

Note that the four g-coefficients shown explicitly in 
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eqns (G) & (H) are all equal to 1 [according to eqns (C) & 

(D)]. Then, 

s(a) ·-· = e!Pl 
0 + (p') 

ea.' -Cl + [ ••• ] (I) 

(0'') 
s" • ... a. = e<Pl 

0 + (p') 
ea. • •Cl + [ ••• ] (J) 

Syndrome bits s<al & s<a') both check on e<Pl but they also 
't-a. 't. -a. 0 ' 

check on e!~' l. Since, by hypothesis, a' -a. ;. 0, or p ;. p' , the . _., 
code is not a CSOC which contradicts the initial hypothesis, 

hence the assumption was not correct, hence the syndrome 

bits that check on e!Jll are orthogonal on e!Pl for all a2:0. . " . 
QED 

API>ENl>IX: 5 , 6 : PABITY-TBIANGLES'& PARITY-SQUARES FOR CSOC.' 

The fact that a code which is self-orthogonal for FD is 

also self-orthogonal for DD, may be exploited to limit the 

discussion to parity-triangles, 

For a code to 

bit e~il ( l:Si:Sk) 

apart from e(i) 0 • 

error bit twice. 

be a CSOC, all syndromes that check error 

must be orthogonal on e~il, This means that 

these syndromes should not check any other 

According to Theorem 5,6 [see reln (5.16)], if O:Sa:Sm, 

l:Sp:Sk, O:S-r:Sm & l:Sa:Sn-k, then s<al checks on e!Pl iff g<Pl = 1. 
"t Cl k+a, 1:-a. 

Then, the syndromes that check on e~il /l:Si:Sk, correspond to 

lsalong the first column of parity triangles ~i /j=1,2, •• 

• ,n-k. If the triangle matrix, H(~), is considered and, 

say, an arrow indicates the rows that contain ls along the 

1st column of these triangles, then these arro~s_indicate, 

in effect, the syndrome bits that check on e~il. Any ls along 

the 'arrowed' rows, apart from ls in the 1st column, indi-

cate other error bits that are checked by the corresponding 

them with •· syndrome and 

According to 

are 'marked' by, say, replacing 

Definitions 5.4 & 

should be checked twice, hence no 

5.2, no other error bit 

two •• should appear along 

the same column. If this is the case, the code is self-or

thogonal and this has to be the case if the code is to be a 

self-orthogonal one. 

/' 
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The following examples will help clarify these ideas. 

Example A5.6.1: Consider the (2,1,6) systematic code 

with generator polynomial g~1l(D) = l+D2+D5+D6 , already exam

ined in Examples A5.2.1 & A5.3.1. Since k = 1, there is only 

one bit in e
0

• From the previous analysis its (only) parity 

triangle, complete with its arrows and •a, appears below: 

-> 'lf 
' 0 1 

-> 1! 1) I 
U' 1 0 1 

i 0 1 0 1 
-> ' '1) 0 I 0 I 
-> =· I' 0' 0 'I 0 "I,' 

where the position of the error bit on which the syn

dromes (whose position is arrowed) are orthogonal, has been 

highlighted. 

Note that each column contains no more than one •• hence 

all J = 4 syndromes checking on e~1 l are orthogonal on this 

bit. The size of the four syndromes is 1,2,3 & 4, hence the 

effective constraint-length, n
1

, is 1+(1+2+3+4) = 11. Hence, 

this code will correctly estimate the error bit e~1 l whenev

er LJ/2J = 2 or fewer errors occur among the 11 bits of the 

effective constraint-length, which are confined of course 

within one actual constraint-length nA = (m+l )n = 14. 

Although it is not necessary, one may repeat the above 

for the parity square. According to Theorem 5. 5, the syn-

dromes checking on e~lll, 

column of parity squares 

A5.2.1: 

-> ·1~ 1 o o 1 o 1 
1 1 0 0 1 0 1 

-> ,I I' o 0 I 0 I 
1 1 0 0 1 0 1 

correspond to la along the (m+l )th 

r! /j=1,2, ••• ,n-k. From Example 

1 100101 

-> 11 o:o 1-0,1' 

-> '110010 .) 
where highlighted is the position of the error bit on 

which the syndromes are orthogonal. 

The above arrangement shows that the code is self-orthog-
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onal under DD (as expected), and it also, graphically, il

lustrates, the reason. 

I 
Examole A5.6.2: Consider the (3,2,13) systematic convo

lutional code with generator polynomials g~1 l = 1+D8+D9 +D12 & 

g~2 l = 1+D6+D11+D13 
1 examined also in Example A5. 3. 2. Since k 

= 2, there are two arrangements of the parity triangles to 

be considered, one for each of e~ll & e~2 l: 

The arrangement for e~1 l: 

->~ , I 
u 1 0 1 
0 0 1 0 0 1 
0 0 0 1 0 0 0 1 
0 0 0 0 1 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 0 1 
0000001 1000001 

->~q & & & & & & 6 I ' 8 fi i 8 ,3 & & 6 I 
-> I' 0 0 "0 ~H) 0"'0 I '''" "'''" 0 '0 '0 "1"0 '0' 0"0 0 • 

u 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 
Q 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 

->~ 0 Q I I 0 0 0 0 0 0 0 I 0 I 0 0 0 0 I 0 0 0 0 0 I 
u 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 

The arrangement for e~2 l: 

->1 £ 
0 1 0 1 
0 0 1 0 0 1 
0 0 0 1 0 0 0 1 
0 0 0 0 1 0 0 0 0 1 
0 0 0 0 0 1 0 0 0 0 0 1 

->0 0 0'0 0 0'1 J 0 0 0 0 0 I 
0 0 0 0 0 0 0 1 U'1 0 0 0'0 0 1 
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 
0 1 1 0 0 0 0 0 0 0 1 i 0 0 0 1 0 0 0 0 0 1 

->0 0 I I 0 0 Q 0 0 0 0 I Uf'O 0'0 0 I 0 0 0 Q 0 I ->a i & 6 i i &-& & & & & a_1 ~a i & & & A i & & & & a 1 

Note that each of eUl and e1 2l is checked by J=4 syn-o 0 
- - - -

dromes; furthermore, these sets of four syndromes are or-

thogonal on their corresponding error bits, because no two 

lo can be found along any of the columns of the triangles. 

Hence the code is a CSOC and can correct 2 or fewer errors 

from among the n
1 

error bits of its effective constraint

length. 

The actual constraint-length is nA = (m+1 )n = 14 X 3 = 42. 

Note that n
1

, for the decoding of a certain error bit, 

equals the sum of the sizes of all syndromes checking on 
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that bit plus one (see Definition 5.5). From the triangles 

above, the size of each syndrome equals the number of Is 

along the 'arrowed' row plus 1 (for the corresponding parity 

error bit). So for each of the two cases, n1 should equal 

the total number of arrows, which is 4 (that accounts for 

the parity error bits) plus the total number of Is, which is 

14 for e~1 l and 15 for e~Zl (that accounts for the total num

ber of message error bits) plus one (that accounts for the 

error bit checked by the set). Then the effective con

straint-length for e<1 l is 19 and for e<Zl is 20. 0 0 

I 

APP!tmlX'5.7: BLOCK EFFECTIVE OONSTBAINT-LENGIH FOR A CSQC 

With Definition 5.9 in mind, let us now try to determine 

the N
1 

of a CSOC, under FD. Note from the general syndrome 

eqn (A5.3.4a) that each column of H(~) corresponds to a 

specific information error bit; for example, a 'one' any-

where along the first column of H(~), implies that 

checked by a syndrome bit (in fact by the syndrome 

e 01 is 0 

bit of 

the row in which this 'one' appears). In general, according 

to Theorem 5.6, for pe[l,k], ae[O,m], ae[l,n-k] &. "te[O,m] 

syndrome bit s<al checks on error bit e<Pl, iff g<Pl = 1, i.e. 
't a. k+o tt-a. 

if the element of H(L,) in the [(p-1)(m+1)+a+l]th column &. 

[(a-1)(m+l)+"t+1]th row, of H(L,), is 1. Also, by inspection 

of eqn (A5.3.4a), syndrome bit s!al checks on parity error 

bit e!k+al; hence one parity error bit must be considered, i ff 

the corresponding syndrome bit is a member of an orthogonal 

set. Taking into account the above conclusions, the follow

ing set of instructions may be proposed for the calculation 

of the N
1 

of a CSOC. 

Note A5.7.1: Let an (n,k,m) systematic CSOC, with tri-

angle matrix H(~). To calculate the block effective con

straint-length of this code, under FD: 

i) Inspect column [(p-l)(m+l)+l] /p=1,2, ••• ,k of H(L,); 

the 1o indicate the syndromes orthogonal on e~Pl. For p=l, 2,. 

-- ------------------------------------------------------------------------~ 
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•• ,k, let the set of ordered pairs RP~ {(a,•) /1~o~n-k & 
O~•~m : position [(o-l)(m+1)+•+1] of column [(p-l)(m+1)+1] 

is 'one'}. By (A5.3.5): 

/1~o~n-k & o~.~m} /1~p~k (A5.7.1) 

Let IRPI, the number of elements of RP, be JP. JP is the 

number of syndromes orthogonal on e~Pl and RP indicates both 

the set of syndromes orthogonal on e~Pl and the set of pari

ty error bits that are checked by this set of syndromes. In 

other words, RP is concerned with the 1st column of the pth 

column of parity triangles (i.e. with the 1st column of \! 
/j=l 1 2, ••• ,n-k). Specifically, (a,"t)ERP if there is a 'one' 

in \:, in column 1 and row •• where • ranges from 0 to m. 

Conversely, if (a,•) e RP, then error bit e~Pl is checked by 

syndrome bit s(o) ~ . 
ii) Let the union of the RPs: R ~ R1 U R2 U • • • U Rk. 

R indicates both the complete set of distinct syndromes that 

check on the 1st information error block e 0 and the set of 

distinct parity error bits that are checked by this set of 

syndromes. Hence, IRI is the contribution of the parity er

ror bits towards NE. R is the set of rows of H(\) that are 

'involved' in the estimation of e 0 • From (A5.7.1): 

R = { (o,•) : g~~!.~ = 1 /Hp~k, 1~o~n-k & O~•~m} (A5.7.2) 

iii) Consider now the set, c, of message error bits, 

exclusive of e
0

, that are checked by the set of syndromes 

indicated by R. Inspect all columns of H(\), apart from 

columns [(a-l)(m+1)+1] (i.e. apart from the 1st column of 

each parity~triangle),_for at least one 'one' in a position 

(row) specified by R. A row of H(~) can be written as 

(o,•), where a is the row of triangles (lSo~n-k) and • is 

the row within the triangle (O~•~m). Similarly, a column may 

be written as (~ 1 a) (1~~~k & O~a~m). Then, C may be defined 

as the set of those columns (~ 1 a) which contain a 'one' in 

at least one of the rows of R: C ~ {(~ 1 a) /l~~~k & OSa~m : 

element [(a,•),(~ 1 a)] of H(\) is 'one', for all (a,"t)ER}. 

From the discussion in Appendix 5.3: 
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C = {<13,a) /1:!:.13:!:k & O:!:a:!:m : g(Pl = 1 & (a,"t)eR} t+<r. ~-a. (A5.7.3) 

Then, !Cl is the contribution of the message error bits, 

exclusive of the ones that are checked (i.e. of e0 ), towards 

NE' C is the set of columns of H(~) that 'participate' in 

the estimation of e0 • 

iv) Then: (A5.7.4) 

I 
Example A5.7.1: Consider now the calculation of the 

block effective constraint-length (under FD), NE, for the 

( 3, 2, 13) systematic code with generator polynomials g~ll = 1 + 

+D8+D9+o12 and g(2l = 1+D6+D11+D13 , examined also in Examples 
3 i 

A5.3.2. & A5.6,2. 

From above: 

g(ll = g(ll = gUl = gUl = g(Zl = g(Zl = g(Zl = g(Zl = 1 
3,0 3,8 3j9 3,12 3,0 3,6 3,11 3,13 

Using the instructions of Note A5.7.1: 

R = {<a,"t) gh•l 
k+o,l: = 1 /1:!:p:!:2, HaS1 & 0S"tS13} -> 

R = { (l,"t) g(P) : 
3,~ 

1 /p=1,2 & 0S"t:!:13} -> 

R = {(l,"t) /1:=0,6,8,9,11,12,13} -> IRI = 7 

Hence, the rows of H(~) to be examined, are along the 

1st row of triangles, and specifically rows 0, 6, 8, 9, 11, 

12 & 13. Then, excluding columns (1,0) & (2,0) (i.e. the 1st 

column of each of the two parity triangles), columns (1,x) 

/x=1,2,3,4,5,6,8,9,11,12,13 & (2,y) /y=1,2,3,5,6,7,8,9,11, 

12,13 contain a 'one' along at least one of the rows of R 

(see pp. 396 & 404), Hence, !Cl = 22. Alternatively: 

c = {<.13,a) /1SJ3S2 & 1SaS13 g(ll) = 
3,'1-4 1 & (1, 1:) eR} -> 

c = {<.13,a) /1SI3:!:2 & 1Sa:!:13 (11) 
g3,'t-a. = 1 & 1:=0,6,8,9,11,12,13} 

-> c = { (1,a) /1Sa:!:13 grl = 1 & 1:=0,6,8,9,11,12,13} • 't-a. 

u { (2 1 a) /1Sa:!:13 : g(2) = 
3,'t-a. 1 & 1:=0,6,8,9,11,12,13} -> 

C = {<1,a) /1:!:aS13 : 1:-a = 0,8,9,12 & 1:=0,6,8,9,11,12,13} U 

U {<2,a) /1:!:a:!:13 : 1:-a = 0,6,11 1 13 & 1:=0,6 1 8,9,11,12,13} 

u 
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-> 
C = {<1,a) /a~1 a=•·•-8,.-9,•-12 & •=0,6,8,9,11,12,13} U 

U {<2,a) /a~1 : a=•·•-6,•-11,•-13 & •=0,6,8,9,11,12,13} 

-> 
C = {<1,a) /a=6,8,9,11,12,13,1,3,4,5,2,3,4,1} U 

U {<2,a) /a=6,8,9,11,12,13,2,3,5,6,7,1,2} 

-> 
C = {(1,a) /a=1,2,3,4,5,6,8,9,11,12,13} U 

u {<2,a) /a=1,2,3,5,6,7,8,9,11,12,13} 

-> 1°1 = 11+11 

Then, from ( A5, 7, 4 ) : N = 2 + 7 + 22 = E 
31 

In order to verify the above results consider the syn-

dromes checking on block e 0• From Example A5.3.2 (p. 395): 

s<ll 0 = e~l) 
0 + e<Z> 

0 + e<3l 
0 

s<ll 
8 = etll 

0 + e<l> 
8 + e<Z> 

2 + e<Z> 
8 + e<3l 

8 

s<1> = etl) + 9 0 
eU> 1 + e<1l 

9 + e<Zl 
3 + e<2l 

9 + e<3> 
9 

s<l> 12 = ettl 
0 

+ e<ll 
3 + e<1l 

4 + eU> 
12 + e<2l 

1 
+ e<2l 

6 + e<2l 
12 + e<3l 

12 

s<l> 0 = e<1l 
0 + etll) 

0 + e<3l 
0 * 

s<l> = e<1> 
6 6 + etll) 

0 + e<2l 
6 + e<3l 

6 

s<l> 
11 = e<1l 

2 
+ e<1l 3 + eO> 

11 + e12) 
0 + e<2l 

5 + e<2l 
11 + e<3l 

11 

s<1> 
13 = e<1l 

1 + e<ll 
4 + e<1> 

5 + e<ll 
13 + e~ll) 

0 + e<2l 
2 + e<2l 

7 + e<Z> 
13 + e<3l 

13 
-

The above equations wjll now verify the predictions. The 

syndrome bits that check e0, check 19+20 = 39 error bits, 

while N1 was found to be 31. Then, 39-31 = 8 error bits must 

be found to be duplicated, in the above equations. Further

more, the actual constraint-length is 42, hence 42-31 = 11 

bits of the actual constraint-length must be found to be 

missing from the above eqna. The error bits that participate 

in the eqna above are: 

* This eqn is identical with the 1st one, but is repeated for a~try. 
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~!~l /~ = 0,8,1,9,3,4,12,0,6,2,3,11,1,4,5,13. 

e!ll /ll = .0,2,8,3,9,1,6,12,0,6,5,11,2,'1,13. 

e!ill 1~ = 0,8,9,12.,.0,6,11,13. 

Page 409 

From e<ll 
A I a. = 0,1,3,4 are duplicated and a.= 7,10 are 

missing, 

From e~Zl, a. = 0 1 2 1 6 are duplicated and a. = 4 1 10 are mis

sing, 

From e~3 l, a. = 0 is duplicated and a. = 1,2,3,4,5,7,10 are 

missing. 

Then, indeed 8 bits are duplicated and 11 are missing. 

I 

APPENDIX 5.8: QISTANC£ PBQPEBTIES OF QSOCt 

A5.8.1, Proof of Theorem 5.11 

According to eqns (A2.5.4) & (A2.5,5) (pp, 310-1), 

(A5.8.1) 

Recall from eqn (2,67) that, if vis a codeword (c/w), 

then vHT = 0, Consider [vJ., the 1st constraint-length of v; 

this is a 1 X n(m+1) row vector. Consider, also, a suitable 

truncation of H; from Definition 2.13 1 [Hl. is an 

(m+1) X (m+1) matrix of (n-k) X n submatrices, i.e. [HJ! is 

an (m+l)n X (m+1)(n-k) matrix. So: 

If v is a c/w, then [v].[H]! = 0 

where 0 is the 1 X (n-k)(m+l) zero row-vector. 

(A5.8.2) 

Note from eqn (A5.8.2) that the matrix product equals the 

sum of the rows of [HJ! that correspond to 'ones' in [vJ •• 

Since this product is zero, any sum of rows of [HJ! or, the 

same, any sum of columns of [H].that is zero corresponds to 

a codeword. Furthermore, one may require that this c/w is 

such that its 1st information block [u] 0 is non-zero; this 

restriction is imposed so that one will be able to calculate 

d•in [see eqn (A5.8.1)], The restriction that [u] 0 'I 0 is 
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equivalent to [ v"] 
0 

'1- 0, since ya = u, for systematic codes. 

Hence, any sum of columns of [H]., including at least one of 

the first k, that is zero, corresponds to a c/w which is 

non-zero in its first information block. 

QED 

A5.8.2. progf of Theorem 5.12 

From the general form of H for an (n,k,m) systematic con

volutional code (see Theorem 2 .11), and the directions for 

the construction of [Hl. (see Theorem 5.11): 

pT I 
0 

pT 0 
1 

• 
pT 0 
• 

pT I 
0 

pT 0 
1 

PT 0 
•-1 

pT I 
0 

• 
P!_2 0 • • • pT 

0 
I 

(A5.8.3) 

According to Theorem 5.11, to calculate dab one would 

have to consider at least one 

at least one of the columns of 

According to Theorem 2.6: 

of the first k 

( p p "• p )T • 
0 1 • 

For all z=0,1, •• ,m: p = z 

(1) (1) 
gk+l,z gk+2 ,z 

(2) 
gk+1,z 

(2) 
gk+2,z 

• • - . • • 
• • • • • 

(k) llt) 
glt+1,z glt+2,z 

••• gl1) 
n,z 

• • • gl2) 
n,z 

• . -- . - • 
• • • • 

••• gilt) 
n,z 

columns, i.e. 

(A5.8.4) 

From eqns (A5.8.3) & (A5.8.4) ell, the pth column of [Hl •• 
contains the following elements (1SpSk): 

e ,::0 (gill) giP) , , gill) giP) giP) , , giP) , , giP) giP) , , giP)) 
p. k+l,O k+2,0 n,O k+l,l k+2,1 n,l k+l,a k+2,a n,a 

If the weight of ell is considered, a rearrangement of the 

elements is permissible: 
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w[c
11
): w[g(P) g<P) •••g(P) g(Jl) g<Pl •••g(Jl) •••g(P) g(P),,,g(P)] 

k+l,O k+l,l k+l,• k+2,0 kt2,1 .k+2,• n,O n,l - n,• 

-> w[cP] = w[g<P> g<P> g<P>] lr.+l' k+2'•••t n 
n-k 

-> w[ cp] = ~ w[ g~~n /p=1,2, ••• ,k (A5.8.5) 
j=l 

The theorem follows from eqn (A5.8.5) and Theorem 5.6. 

Note, also, that H & [Hl. are identical in their first n 

columns [compare eqns (2.59) & (A5.8.3)]. 

QED 

A5.8.3. proof of Theorem 5.13 

Let any of the first k columns of [Hl., say CP. According 

to Theorem 5.12, its weight is JP, There are always J
11 

more 

columns of [Hl. that together with CP sum-up to zero. This 

can be seen from eqn (A5.8.3). Columns k+1, ... ,n,n+k+1, .. 

• ,2n,2n+k+1, •• ,3n, ••• ,hn+k+1, ••• ,(h+1)n, ••• ,mn+k+1, •• ,(m+1)n 

correspond to the elements of the identity matrix In-k' hence 

they contain exactly one 'one'. Furthermore, from (A5.8.3), 

there are exactly (m+1)(n-k) such columns, each one with its 

'one' in a different row and there are (m+1)(n-k) rows in 

[HJ •• Hence, [Hl. has always J
11 

columns which sum up to zero 

together with CP, hence d•in cannot be greater than J
11 
+ 1. In 

fact, since J = MIN{JP /p=1 1 2 1 ... ,k}, d•in:!: J+l. 

QED 
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APPENniX 15,1 t PROOF OF THE THEORY PI UCIION § • 1 

A6 .1.1. Proof of Lemma § • 1 

Let ~1 /i=1,2, ••• ,J be the bits orthogonal on e •• Then 

£
1
+e. /1SiSJ depends entirely on error bits other than e., 

because each ~1 /i=1,2, ... ,J checks on e •• Let P(I=p.le.=O) = 

P. Then, P is the probability that exactly p., of the {~1 }, 
are 1, given that e.=o or, the same, P is the probability 

that exactly 11 of the {~1+e.} are 1, where e.=o or, the same, 

P is the probability that exactly J-p. of the {~1+e.} are 0, 

where e.=o or, the same, P is the probability that exactly 

J-p. of the {£
1
1 - are o, where e.=O or, the same, P is the 

probability that exactly J-p. of the {£1 } are 1, given that 

e =1. Hence: • 

A6.1.2. Proof of Theorem 6.1 

/T<X /T<X 

If X=integer, by hypothesis: 

If X=integer, because lXJ = X: 

T < X <-> T = 1,2, ... , LXJ-1 

From (A) , (B) & (C) : 

If X=integer: 

• • • 

8P4 (X) = 0 

> P4 (LXJ-1) = P4 (lXJ) 

/T<X & 

If X#integer, because lXJ < X: 

T < X <-> T = 1, 2, ... , lXJ -1, lXJ 

From (A) & (E): 

QED 

(A) 

(B) 

(C) 

(D) 

(E) 
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If Xiinteger: /T<X 

P
4
(0) > P4 (1) > .. • > P4 ( lXJ-1) > P4 ( lXJ) 

From ( D ) & ( F ) : 

/T<X] & /X=integer] 

Consider now the 3rd condition: 

/T>X /T>X 

T > X T = J,J-1, ... ,LXJ+l > X 

From ( H ) & ( I ) : 

/T>X 

<-> P
4
(J) > P4 (J-1) > ... > P4 (lXJ+1) > P4 (lXJ) 

From (G) & ( J) : 

[8P4 (T) < 0 /T<X] & [8P4 (T) > 0 

& [8P4 (X) = 0 /X=integer] <-> 

<-> T = LXJ 
0 

As.t.a. Proof of Theorem §.2 

/T>X] & 

MfN {P4 (T)} = 

Page 413 

(F) 

(G) 

(H) 

(I) 

( J) 

QED 

Clearly, the mod-2 sum of c bits is 1, iff any combina

tion of an odd number of them is 1. 
Since there are C ( c, i) = ,_ c!/[i!(c.:i)!] ,_ combinations of- i 

things out of c, then there are C(c,i) distinct patterns of 

c bits of which i are 1. Because a bit assumes its value (0 

or 1) independently of the other bits, then the probability 

that exactly i of the c bits are 1, and of course c-i are 0, 

is p1(1-p)c-1; this is the probability of one of the C(c,i) 

patterns mentioned above. Then, 

c 

p = ~{r}p1(1-p}c-1 (A) 

1•1 
1=odd 
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Let: f(i) ~ -c>> 
0
1 /i=odd ~ 

/i=even ~> 

From eqns (A) & (B): 

c 

Page 414 

(B) 

P = ~ (I}!< i )pi( 1-p )c-1 (C) 

-c 
1=1 

[1-(-1)]/2 = 1 /i=odd ~> 

[1-1]/2 = 0 /i=even _____r--
(D) 

Then, from (B) & (D): f(i) = [1-(-1) 1]/2 and combining 

with (C): 

c 
p = i ~C( c' i )[ 1- ( -1)1]p1( 1-p )c-1 -> 

i•l 

c c 

P = t[~c(c,i)p1 (1-p) 0"1 - ~C(c,i)(-p) 1 (1-p) 0"1 ] 
1:1 1~~:1 

where the binomial expansion was used [see (A6.1.3), be

low]. 

QED 

A6.1.4. APproximations to <t-2pl0 

Theorem A6.1.1: Let p be a small positive real number 

and c a positive integer. Then: 

Proof: · · Let 

LIM ( 1-2p ) 0 = e·Zpc 
p->0 

X = ecln(l-Zp) 

It is well known that (see Kreyszig [40], p. 579) 

•• 

( A6. 1.1) 

(A) 

ez = ~ z 1/i! (B) 
i=O 

Applying (B), in (A): 
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•• •• 
X = ~[cln(l-2p)] 1/i! = 1 + ~ [cln(l-2p)] 1/i! -> 

i=O i=l 

•• 
-> LIM {x} = 1 + LIM { ~[cln(1-2p)] 1/i! } -> 

p->0 p->0 i=l 

•• 
-> = 1 + ~(1/i!l[c{LIM ln(1-2pl}] 1 

1=1 p->O 

From Kreyszig [40], p. 580: LIM {ln(1-zl} = -z 
s->0 

From (c) &. (D) : .. 
LIM {x} = 1 + ~(1/i!)(-2pc) 1 = e-Zpc [by (B)] 
p->O i=l 

(C) 

(D) 

QED 

Theorem A6.1.2: Let p be a small positive real number 

and c a positive integer. Then: 

(1-2p)c~ 1-2pc /pc«l (A6.1.2) 

Proof: 

69): 

It is known that (see for example Biggs [36], P• 

n 

(a+IW = ~ail3n-i(~) 
1=0 

(A6.1.3) 

From (AS. 1. 3 ) : 

c c 

(1-2plc = ~(-2pl 1 (r) = 
i=O 

1- 2pc + ~(-2pl 1 (I) 
1=2 

(A) 

Consider the magnitude of the ratio of the (i+1)th, over 

the ith, term of the summation in the RHS of (A), where 

ie[1,c-1]: 

R(i).::. l(-2p)1+1c(c,i+1)/(-2p) 1/C(c,i)l -> 

R(i) = 2pc!i!(c-i)(c-i-1)!/[c!(i+l)i!(c-i-1)!] -> 

R(i) = 2p[(c-i)/(i+1)] 

Since (c-i)/(i+l) is a decreasing function of ie[1,c-1]: 

R(i) S R(1) = 2p[(c-1)/(1+1)] = p(c-1) < pc 
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Hence, the terms in the summation in (A) decrease by a 

factor of at least pc (if pc<l), as i increases in steps of 

1. For pc«l, the summation may be eliminated: 

(1-2p)c"' 1-2pc /pc«l 
QED 

A6.1.5. Example& of tbe Calcylation of f{I·utt.=Ol 

Example A6.1.1: 

(6.18) (p. 155): 

Assume that J=4 & p=3. Then, from eqn 

P( I=31 e.=O) = ( QlQ2Q3Q4) ~ Kx(l)Kx(2)Kx(3) -> 
X(i) 

li><(i) Ut( 1+1)i4 
li1i3 

P(I=3Ie.=O) = (Q1Q2Q3Q4 ){K1K2K3 + K1K2K4 + K1K3K4 + K2K3K4 ) (A) 

Alternatively, from eqn (6.19): 

P(I=3Ie.=O) = (P1P2P3P4 ) ~ [Ky(l)]-1 -> 
y(j) 

liy(j)<y(j+l)i4 
liJi4-3 

P(I=3Ie.=O) = (P1P2P3P4 ) {K1-
1 + Ki

1 + K;
1 + K;1

) (B) 

I 
Example A6.1.2: Consider now some figures for the case 

of Example A6 .1.1. Let p=l0-4 and c 1=1, c 2=3, c3=6 & c 4=12 · 

Then, using Theorem 6.2: 

TAf!L£ At$.1 ·L 

i - ci ~pi Qi- Ki 

1 1 l.OOOOOxl0-4 0.99990 1. 00010x10-4 

2 3 2. 99940xlo-• 0.99970 3 ,00030x10-4 

3 6 5. 99700x1o-• 0.99940 6, 00060x10-4 

4 12 1.19868x10-3 0,99880 1. 20012x10-3 

From TABLE A6.1.1: 

-> (A) 

From eqn (B) of Example A6.1.1: 
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P(I=3Ie.=o) = (2.15708x10-14 )(9999 + 3333 + 1666.5 + 833.25) 

-> P(I=3Ie.=o) = 3.41504x1o-10 

I 
Example A6.1.3: Consider the case of the previous two 

examples, for P(I=pje.=O) /p=0,1,2,4. 

Obviously: 

P(I=4je.=O) = P1P2P3P4 = 2.15708x10-14 (A) 

P(I=Oje.=O) = Q1Q2Q3Q4 = 0.99780 (B) 

From (6.18): 

P(I=lje.=O) = (Q1Q2Q3Q4) ~Kx<1l -> 
x(i) 

1,ix( i) <x( i+ 1),14 
1.il.i1 

P(I=1je.=O) = (Q1Q2Q3Q4) (K1+K2+K3K4) = 2.19538x10-3 (C) 

From ( 6 • 18 ) : 

P(I=2je.=O) = (Q1Q2Q3Q4) ~Kx(1)Kx(2l -> 
x(i) 

1,ix(i)<x(i+lli4 
1,11,!.2 

P( I=2j e.=O) = ( Q1Q2Q3Q4) ( K1K2+K1K3+K1K4+K2K3+K2K4+K3K4) 

-> P(I=2je.=O) = 1.46706x10-6 (D) 

I 
Example A6.1.4: Consider now the details of Example 

A6.1.3 and the calculation of P4 • Since J=4, (J-1)/2 = 1.5. 

From (6.23b): 

4 3 

P4 (T) = ~ P(I=pje.=O) + (1-p) ~P(I=pje.=O) /T=O -> 
ll•f < )1•1 

P4 = P( I=41 e.=o )+< 1-p) [ P( I=lj e.=o )+P( I=21 e.=o )+P(I=31 e.=o)] 

-> P4 = P(I=4je.=0)+(1-p)[1-P(I=Oje.=O)-P(I=4je.=O)] 

-> P4 = pP(I=4je.=O) + (1-p)[1-P(I=Oje.=o)] 

-> (A) 
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Similarly, from (6.23b}: 

4 2 

P4 (T} = ~ P(I=ple.=O) + (1-p} ~P(I=ple.=O) /T=l -> 
p:s3 p=Z 

-> P4 = P(I=3Ie.=o) + P(I=41e.=o) + (1-p}P(I=2Ie.=O) 

-> 

From ( 6 • 2 3 a} : 

4 2 

P4 (T} = ~ P(I=ple.=O) + p ~P{I=ple.=o) /T=2 -> 
p=3 p=2 

P4 = P(I=3Ie.=o) + P(I=41e.=O) + pP(I=2Ie.=O) 

-> 

Similarly, from (6.23a}: 

4 3 

P4 (T} = ~ P(I=ple.=O) + p ~P(I=ple.=O) /T=3 -> 
~4 ~1 

P4 = P(I=4Ie.=o) + p[P(I=lle.=O)+P(I=21e.=O)+P(I=3Ie.=O)] 

-> P4 = (1-p}P(I=41e.=O) + p[l-P(I=Oie.=O)] 

-> 

Finally, from (6.21): 

P
4
(3} = 2.200xlo-7 

P4 (4} = 10 -4 

(B) 

(C) 

(D) 

(E) 

I 

In this appendix, the term channel capacity will be in

troduced, together with any other related concepts. The 

channel between two devices (usually between a pair of com

plementary devices like encoder & decoder, modulator & de

modulator, etc} is understood to mean the collection of 

hardware and physical media between the 0/P of the 1st and 

the I/P of the 2nd. In communications, channels are usually 

'noisy', i.e. they distort the message signal in a random 

fashion. This undesirable effect destroys some of the infor-
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mation contained in the message signal. It becomes clear, 

therefore, that a measure is required, of the amount of in

formation about the message signal contained in the observed 

0/P of the channel. Shannon defined the concept of mutual 

information between events A & B: 

Definition A6. 2. 1 : The mutual information between 

events A & B, denoted by I(A;B), is the information provided 

about event A by the occurence of event B. 

I 
A measure for I(A;B) should satisfy the following two 

intuitive properties (see, for example, Viterbi & Omura, 

[ 26]): 

i) If A & B are independent events, then the occurence 

of B should provide no information about A. 

ii) If the occurence of B indicates that A has definite

ly occured, then the occurence of B should provide 

us with all the information about A. 

With the above specifications in mind, the following 

measure is proposed: 

I(A;B) ~ logP(AIBl/logP(A) (A6.2.1) 

Consider now a discrete memoryless channel (DMC - see 

Paragraph 1.1. 4. ) with input alphabet X, output alphabet Y 

and conditional probabilities P(ylxl, where the ys are let

ters of the 0/P alphabet and the xaof the I/P alphabet. Let 

furthermore q(x) denote the probability of occurence of the 

I/P letter x. 

The main interest, with respect to a channel, is the 

average amount of information, the 0/P of the channel pro

vides, about the I/P. 

Definition A6.2.2: The average mutual information be-

tween inputs and outputs of the DMC is defined to be: 

I(X; Y) ~ E[I(x;y)] (A6.2.2) 

I 
I(X; Y) is defined in terms of the P(ylxls and q(x)s. It 
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is possible to maximize I(X;Y), over all I/P-letter proba

bility distributions, q(x): 

Definition A6.2.3: The channel capacity of a DMC is 

defined to be the maximum average mutual information, where 

the maximization is over all possible input probability dis

tributions: 

(A6.2.3) 

I 
By symmetry, the capacity of the BSC, is achieved when 

its two inputs are equally probable [q(O)=q(1)=1/2]. Then it 

can be shown that (see for example Viterbi & Omura, [26]) if 

p is the channel error probability: 

CDsc = 1 + plog2p + (1-p)log2 (1-p) bits/symbol (A6.2.4) 

When using the BSC (or any channel for that matter), one 

has to take into account the maximum permissible code rate 

R. Specifically, in assessing the performance of a rate-R 

code, for various channel error probabilities p, one should 

not exceed the channel capacity C, or for a given p one 

should not use codes with rate R>C (see Theorem 1.3). Hence: 

R < 1 + plog2p + (1-p)log2(1-p) (A6.2.5) 

The maximum code rate for various channel error probabil

ities, p, is given below: 

TABLi A§.2.1 ' ' 

p R --
""" 

p Rlllllt 

0.000001 0.99998 0.010000 0.91921 

0.000010 0.99982 0.020000 0.85856 

0.000100 0.99853 0.050000 0.71360 

0.001000 0.98859 0.070000 0.63408 

0.002000 0.97919 0.100000 0.53100 

0.005000 0.95459 0.200000 0.27807 

0.007000 0.93983 0.500000 0 
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TABWi At$.2.2 

R pll&l< R pa&l[ 

1/10 3 .160x10-1 7/8 1. 713xlo-z 

1/9 3. 063x10-1 8/9 1. 479xlo-2 

1/8 2. 949xto-1 9/10 1. 299x10-2 

1/7 2. 812xlo-1 10/11 1.155x10-2 

1/6 2. 644x1o-1 11/12 1. 038xl0-2 

1/5 2. 430x10-1 12/13 9. 420x10-3 

1/4 2 .145x1o-1 13/14 8. 610x10-3 

1/3 1. 740x10-1 14/15 7. 920x10-3 

1/2 1.100x10-1 15/16 7. 327x10-3 

2/3 6 .149x1o-2 16/17 6. 812x10-3 

3/4 4 .169x1o-2 29/30 3. 468x10-3 

4/5 3 .112x1o-z 49/50 1. 910x10-3 

5/6 2. 462x10-2 99/100 8. 602x10-4 

6/7 2. 025x1o-2 999/1000 6. 515x1o-s 

APPENDIX 6, 3; STUDY OF H(p.1l/H(p~ 

Let F(p,c) ~ H(p,1)/H(p,c) (A6.3.1) 

From eqn (6.34b), with P ~ 1-2p (A6.3.2) 

(A6.3.3) 

At first, the two derivatives of H, dH/dp & dH/dc, will 

be calculated: 

dH/dp = (dH/dP)(dP/dp) -> dH/dp = 
= {[ (1+Pc)/(1-Pc) ][ (-cpc-1) (l+Pc)-(1-Pc)(cPc-1) ]/(l+Pc)2}(-2) 

-> dH/dp = {[0+P0)/(1-P0>](-cP0-1 }(l+P0+1-P0)/(l+P0)2}(-2) 

-> dH/dp = 4cP0-1 /(1-P20 ) (A6.3.4) 

Also, since pc = eclnP -> 

dH/dc: {[(1+P0)/(1-P0)][-(1+P0)-(l-P0)]/<1+P0}2}P0lnP 

-> dH/dc = -P0lnP( l+P0+1-P0) /( 1-P20 ) 

(A6.3.5) 
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The following two theorems are concerned with the varia

tion of F(p,c) with p & c: 

Theorem A6.3.1: F(p,c) is a continuously increasing 

function of p, for O<p<0.5. 

Proof: From (A6.3,1) & (A6.3.4): 

dFidp = d[H(p,l)IH(p,c)]ldp 

= {H(p,c)[dH(p,l)ldp] - H(p,1)[dH(p,c)ldp]}I[H(p,c)] 2 

-> dFidp = ln[ (1-Pc) I ( l+Pc>)4 I ( 1-P2) /[ H(p, c >) 2 -

- ln[ (1-P) I ( l+P) ]4cPc-1 I ( 1-P2c) I [ H( p, c) )2 

-> (dFidp)/{4/[H(p,c)) 2} = 

ln[ (1-Pc) I ( l+P0
)] I ( 1-P2) - ln[ (1-P) I ( l+P) ]cPc-1 / ( 1-P2c) (A) 

Obviously, the sign of dFidp ~s the sign of the RHS of 

eqn (A), An inequality will be constructed that will deter

mine this sign: 

Let O<q<l -> for k=1,2, .. , 

c-1 c-1 
-> 0 < ~qk < c-1 lc>1 -> ~qk < c 

1<•1 k•O 

c-1 c-1 c 
-> (1-q)~q .. < c(1-q) -> ~qk- ».. < c(1-q) 

1<=0 k=D 1<=1 

1-q0 < c( 1-q) -> c(l-q)l(1-q0
) > 1 IO<q<1 & c>1 

Also, for O<q<l & k=0,1,-.- .. :-

From (B) & (C), for q=P2 (O<P<l): 

-> c[ (1-p2)1( 1-P2c) ]pc-1p2kH > 

c[ ( 1-P2) I ( 1-p2c) ]pc-1[ p2k+11( 2k+1)] 

-> 

(B) 

(C) 
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•• 
-> 2~c( ( 1-P2) I ( 1-p2c) ]pc·l[ p2k+ll ( 2k+1)] > 

k=O 

•• 
> 2~(Pc)2k+ll(2k+1) 

k=O 

•• 
-> c( 1-P2) I ( 1-P2c)pc·l~2P2k+ll ( 2k+1) > 

1<=0 

•• 
> ~2(Pc) 2k+ll(2k+1) 

k•O 

From Kreyszig [40], p. 580: 

•• 
~2z2k+ 11(2k+1) = ln( (1+z)l(1-zl] 1lzl<1 
k=O 

Then, since O<P<1 & O<Pc<1 lc>1: 

c[ ( 1-P2) I ( 1-P2c) ]pc·l{ -ln[ ( 1-P) I ( l+P)]} > -ln[ ( 1-Pc) I ( 1+Pc)] 

-> [11(1-P2)]ln[(1-Pc)I(1+Pc)] > 

> [ cPc-11( 1-P2c) ]ln[ ( 1-P)I( 1+P)] 

for O<P<1 <-> 0<1-2p<1 O<p<0.5. 

From the last result and eqn (A): 

dFidp > 0 for O<p<0.5. 
QED 

Theorem A6.3.2: 

function of c, c~1. 

F(p,c) is a continuously increasing 

Proof: From eqn (A6.3.1), 

dF(p,c)ldc = H(p,1)(-1)[H(p,c)] 2dH(p,c)ldc = 
= -H(p,1)[H(p,c)] 2[dH(p,c)ldc] 

From eqn (A6.3.3), H(p,1) < 0 

From eqn (A6.3.5), dH(p,c)ldc > 0 

Then, dF(p,c)ldc > 0. 
QED 
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Consider now the limit value of F{p,c) as p--->0. 

From eqns ( A6. 3 • 1 ) , ( A6. 3. 2) & ( A6. 3. 3) : 

F{p,c) = ln(p/(1-pl]/lnK ---> 

---> ~r{F<p,c>} = ln{~r(p/{1-pl]}/ln[~r<K>] 

From eqns (D) & (6.28): 

LIM{F(p,c)} = ln{p)/ln(pc) = 1/(1+lnc/lnp) 
p->0 

/pc«1 

(D) 

(E) 

Since, by Theorems A6.3.1 & A6.3.2, F{p,c) is a continu

ously increasing function of p & c, 

Hence, F{p,c) ~ 1; the following lemma has been proved: 

Lemma A6.3.1: F(p,c) ~ 1 (A6.3.6a) 

LIM {F(p,cl} = 1/(1+lnc/lnp) 
p->0 

/pc«1 (A6.3.6b) 

I 
Consider now the limit values of F(p,c), as c --->+m and 

p -> 0.5. 

For p constant and O<p<0.5, P=1-2p is also constant and 

O<P<1. Then lnP<O and hence, 

pc : eclnP ---> 0 as c->+m (F) 

Then, 1-Pc ---> 1 as c-->+m 

and, 1+Pc -> 1+ as c-->+m 

Hence, (1-Pc)/(1+Pc) -> 1_11+ as c->+CD 

and H(p,c) = ln[(1-Pc)/(1+Pc)] ---> o_ as c-->+m 

Finally: F(p,c) = H(p,1)/H(p,c) -> +m as c->+m (G) 

Let c constant /c>1. As p-->0.5, P-->0. Then: 

H(p,c) = ln((1-Pc)/{1+Pc)] ---> 0 as P ---> 0, so 

F{p,c) = H(p,1)/H{p,c) -> 0/0 as P -> 0. 
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Using the derivatives of H(p,1) & H(p,c) [from eqn 

(A6.3.4)]: 

~r{F<p,c>} = ~r{[dH(p,1)/dp]/[dH(p,c)/dp]} 

= ~r{[ 4/(1-Pz) ]/[ 4cpc-l/( 1_pzc>]} 

= LIM{(l-P20 )/(1-P2 )}LIM{1/cP0
"

1
} = +CD 

P->0 P->0 

Hence, the following theorem has been proved: 

Theorem A6.3.3: 

F(p,c) ---> +m as c ---> +CD (A6.3.7a) 

F(p,c) ---> +CD as p ---> 0.5 (A6.3.7b) 

I 
Consider now the range of values of F. Note that T

0 
= 

LJ/2+F/2J. Hence, asp increases from very small values, F 

also increases and T
0 

increases in steps of 1. Since F/2>0.5 

(see Lemma A6. 3.1), the values of interest of F are those 

for which F/2=k, where k=1,1.5,2,2.5, ••• Let F/2=k. Then 

from eqn (A6.3.1): 

H(p,1)/H(p,c) = 2k (H) 

Eqn (H) is very difficult (if not impossible) to solve 

analytically for p. So, it will be solved for c. From (H): 

H(p,c) = H(p,1)/2k -> 

-> (I) 

-> 

P0 = (1-A)/(1+A) -> c = ln[(1-A)/(1+A)]/lnP (J) 

From eqn (I): A~ exp[H(p,1)/2k] = exp{ln[p/(1-p)]/2k} 

-> A= [p/(1-p)](l/Zt>. Hence: 

Theorem A6.3.4: If A~ [p/(1-p)](l/Zk>, the value of c 

which makes F/2=k /k=1,1.5,2,2.5, ••• is given by: 

c = ln[(1-A)/(1+A)]/ln(1-2p) (A6.3.8) 

I 
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Consider now an approximate solution of F/2=1. From eqn 

(A6.3.1): 

F = 2 

-> 

-> ln[(1-P)/(1+P)] = 2ln[(1-P0 )/(1+P0
)] 

(1-P)/(l+P) = (1-P0
)

2 /(l+P0
)

2 = (1+P20-2P0 )/(1+P20+2P0
) 

-> 

-> (K) 

Consider now an approximation for pD: 

n 

P0 = (1-2p)0 = ~(-2p) 1 (~} (L) 
1=0 

Because pis very small (p«1), P0 will be approximated by 

the first three terms of the above summation. From (L): 

-> (1-2p) 0
"' 1 - 2pn + 4p2n(n-1)/2 (A6.3.9) 

From (A6.3.9) & (K): 

-> 

-> 

Hence: 

Lemma A6. 3. 2 :_ 

1/c2 • 

From ( 6. 3 Bb) : 

-> -> 

The_ value of p which makes F=2, is p ~ 

I 

= (6.38b) 
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J 

= QJ~Kil(~) 
p=To+1 

J J-To-1 

+ pQJ[ ~Kil(~) - ~K11 (~) 
p=O p=O 

J 

( 1-p) ~K11 
( ~) ] 

paT +1 
0 
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-> 

(A) 

Let T = J-p, in the last summation in the RHS of (A). 

Note, also, that C(J,J-p) = C(J,p): 

J J·To-1 J-To-1 

: p ~ QJ·Ppll( ~) - QJ[P~ K11 (~) - ( 1-p) ~ KJ., ( ~ ) ] 
<•0 

-> 
p=O p•O 

J-To-1 
P4 (T

0
) = p(P+Q)J- QJ ~(~) [pKil- (1-p)KJ·P] -> 

p•O 

J-T -1 
P

4
(T

0
) = p - QJ ~(~)[ pK11 - ( 1-p)KJ·p] (B) 

p=O 

Consider now the sign of the quantity in brackets, in the 

summation in the RHS of (B): 

From Theorem 6.5 (F is defined in Theorem 6.6): 

T
0 

= l(J+F)/2J ~ (J+F)/2 < T
0
+1 

-> 

-> 

-> 2p < J-F -> 

(A6.4.1) 

(A6.4.2) 

F < J-2p 

->- -ln[p/(1-p)]/1nK < J-2p -> ln[p/(1-p)] > lnKJ-Zp 

-> p/(1-p) > KJ-Zp = KJ"11/K11 -> pK11 > (1-p)KJ-p 

-> (C) 

Hence, from (B) & (C): for T
0 

< J 
QED 
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APPENDIX 6.6: GENERALIZED MEANS 

A6.5.1. pr00f of Theorem 6.9 

From Definition 6.1, for p=1 & p=J: 

J-1+1 J•1tZ J 

A1 ~ {[ ~Kx<1l ~Kx<Z> ••• ~ Kx<1l] I {!)} 111 
-> 

x(1)=1 x(Z)•x(1)+1 x(1)•x(1-1)+1 

J 

-> A - (1/J) ""K - arithmetic mean 1 - ~ X(1) -
x(1)=1 

J-Jt 1 J-JtZ J 

AJ~ {[ ~Kx(1) ~Kx(Z) ••• ~ Kx(J)] I {~)}1/J -> 
x(1)=1 x(Z)=x(1)+1 x(J)=x(J-1)+1 

-> 

It is known that the arithmetic mean of J positive num

bers is always greater than their geometric mean, if these J 

numbers are not all the same (see Barnard & Child [41]). 

Then, since (AP)P is the arithmetic mean of C(J,p} num

bers [the C(J,p} products Kx( 1)Kx(Zl•••Kx(p)], (A) 11 is greater 

than their geometric mean. The latter is the C(J,p}th root 

of the product of C(J,p) distinct products of p Ks. 

Given any specific K
1 
(1~i~J), there are C(J-1,p-1} dis

tinct ways to form a product of p Ks, hence as many distinct 

products of p Ks that include K 1 • Hence each specific K 1 ap

pears C(J-1,p-l} times in these products. Then: 

because: 

(~:l) 1 (~) = [<J-1}!p!(J-p>'li[J'(p-1}!(J-1-p+1>'1 = p/J 

Then: A > ( K 'K • • • K ) 1/J = A 
p 1""2 J J 

QED 

A6. 5 .'2. Proof Qf Theorem 6 • 1 o 

The following, forms the basis of Theorem 6.10. 

Theorem A6.5.1: Consider J positive real numbers K1 ,K2 
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, ••• ,KJ, and all C(J,p-1) distinct products of p-1 K1s, as 

well as all C(J ,p) distinct products of p K1s. Let collec

tion Cl be made of J-p+l replicas of the products of p-1 K1s 

and collection C2 be made of p replicas of the products of p 

K
1
s. Then, the two collections have the same number of ele

ments, and for each element, [ K,.< 1>Kx( 2l • • • Kx( 11_11 ], from Cl 

there is an element in C2, of the form [Kx(llKx< 2l • • • Kx< 11_11KY], 

where l~x(l)<x(2)<•••<x(p-l)SJ, while y; x(i) /i=l,2, •• 

• ,p-1 & l~y~J. 

Proof: Cl is made of J-p+l replicas of C(J,p-1) distinct 

elements, while C2 is made of p replicas of C(J,p) distinct 

elements. 

:(J-p+ll{p~l) = (J-p+l)J!/[(p-l)!(J-p+l)!] = 
I 
I 

I 
I 

= J!/[(p-l)!(J-p)!] = pJ!/[p!(J-p)!] = P(~) (A) 

- - ---------
From eqn (A), collections Cl & C2 contain the same number 

of elements. 

A method will be proposed to generate C2 from Cl. 

Cl contains J-p+l [Kx( 1)Kx< 2l • • •Kx(ll-11 ]s. Multiply each of 

the identical [ Kx( 1 )Kx( 2 l • • • Kx< 11_11 ] s by a Kz other than 

Kx(
11

,Kx( 21 , ••• ,Kx<ll-1 l [i.e. z 7- x(i) /i=l,2, ••• ,p-l]. There 

are exactly J-p+l such Kz•• hence each [KxUl'Kx<2l' ••• ,Kx<11_11 1 
generates J-p+l distinct elements of C2. Hence, since Cl has 

C(J,p-1) distinct elements, (J-p+l)C(J,p-1) = pC(J,p) ele

ments of C2 are generated. For the generated collection to 

be C2, though, it must contain exactly p copies of each dis

tinct product of p Ks. 

Consider elements [ KY< 2l • • • KY<Il-llKY<Ill], [Ky(l) • • • Ky(11_11KY(Ill 1 ' • • • 
[ Ky( 1)Ky( 2l • • • KY(Ill) , [ Ky(1)Ky( 2l • • • KY(Il-1l) of Cl. Multiply the 1st 

with Ky(
11

, the 2nd with Ky( 21 , ••• ,the (p-l)th with Ky( 11_11 and 

the pth with KY<Ill. Hence, the generated collection contains 

at least p copies of each of its elements. 

Assume that there is at least one product of p K1s, say 

[Kz(l)Kz(2l • • • KZ(Ill], that does not belong to the generated col

lection. Then, all the p products of p-1 Kz(il"' 
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cannot belong to Cl, because multiplication of any of them 

by the appropriate Kz(i) [ Kz( 1), Kz(Z), ••• , Kz(p-1}, Kz(p}, respec

tively] , would have generated Kz( 1}Kz(Z) • • • Kz(p}. But this con

tradicts the fact that Cl contains all possible products of 

p-1 K1s. Hence, all the C(J,p) distinct products of Jl K1s are 

contained in the generated collection and, according to a 

previous conclusion, at least Jl copies of each. 

Then, the generated collection contains at least pC(J,p) 

elements but since (J-p+l)C(J,p-1) = pC(J,p) elements were 

generated, it contains exactly Jl copies of each of the 

C(J,p) distinct products of Jl K
1
s; hence the generated col

lection is C2. 

QED 

According to the generation rule of the proof of Theorem 

A6. 5 .1, each [ Kx( 1}Kx<Z> • • • Kx(p-1}] of Cl is multiplied with the 

J-p+l K
1
s which belong to 

Hence the sum of the elements of C2 that are generated 

from the J-p+ 1 [ Kx( 1)Kx(Zl • • • Kx(p-1)] s may be expressed by: 

Kx(1)Kx(2) • • • Kx(p-1} ~Kx(p) 
x(p) 

x(p}fx(i) 
O<i<p 

Hence, the sum of the elements of C2 may be written as 

J-p+3 J 

~ ... ~ Kx(1)Kx(2) • • • Kx(p-1) ~ Kx(p} 

x(1)=1 x(2)=x(1)+1 x(p-1}•x(p-2}+1 x(p) 
x(p)#x(i} 

O<i<p 

(B) 

The sum of the elements of Cl is nothing more than the 

sum of the elements of all the distinct products of p-1 K1s 

[C(J,p-1) such products] multiplied by J-p+l. Since, in the 

above multiple summation, the last sum is over J-p+l fac

tors, the sum of the elements of Cl may be expressed by: 
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J•p+2 J-p+3 J 

~ ~ ... ~ Kx(1)Kx(2l' ' 'Kx(p·1l ~ l 
x(1)=1 x(2)=x(1)+1 x(p-1)=x(p·2)+1 x(p) 

x(p)fx(i) 
O<i<p 
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(c) 

Note though that the sum of the elements of Cl, if divid

ed by J-p+l, gives the sum of all distinct products of p-1 

K
1
s; if it is further divided by C(J,p-1) it gives (AP_1 )P"1

, 

Similarly, the sum of the elements of C2 divided by pC(J,p) 

gives (AP)P, Hence, the difference of summation (C) minus 

summation (B) equals (J-p+l)C(J,p-l)(A 1 )P·1 - pC(J,p)(A )P p- p 

or, using eqn (A), pC(J,p)[(A 1 )P"1-(A )P]: p- p 

J-p+2 J-p+3 J 

= ~ ~ '•' ~ Kx(1)Kx(2)'' 'Kx(p-1) ~ [ 1-Kx(p)) 

x(1)•1 x(2)•x(1)+1 x(p·1)•x(p·2)+1 x(p) 
x(p)fx(i) 

O<i<p 

(D) 

Note, from eqn (D), that if all K1s are less than, or 

equal to, 1 with at least one K1<1 then the RHS is positive. 

Similarly, if all K
1
a are ~1 with at least one K1 >1 then the 

RHS of eqn (D) is negative. 

QED 

APPENDIX: "6,6: opTIMUM THRESHOLD FOR fiEQSAC!< QECODING 

From eqna (6.3) & (6.4) and Lemma 6.1: 

Using eqn (6.44), in the above eqn: 

8Pd(T) = pQ(J )(AJ-T)J·T(ir) -

8P4 (T) = Q(J)(~)[p(AJ-T)J·T-

( 1-p) Q ( J ) (Ay) T ( ~) 

/O<TSJ 

-> 

(A) 

Note from eqn (A) that the sign of 8P4(T) is the sign of 

p(AJ-T)J-T- (l-p)(Ay)1 • The sign of a difference, say A-B, is 

positive if A>B <-> A/B>l <-> ln(A/B)>O, negative if 
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ln(A/B)<O and zero if ln(A/B)=O. Hence, the sign of 8P4 (T) 
is the sign of 

E(T) 

-> 

A - /O<HJ 

E(T) = ln[p/(1-p)] + (J-T)lnAJ-T- Tl~ 

The following theorem has then been proved: 

(A6.6.1) 

(A6.6.2) 

Theorem A6. 6. 1: Let J syndrome bits, with sizes c 1 

/i=1, 2, ... , J checking on error bit e~ml and K1 be defined by 

eqn (6.16). If p denotes the BSC's error probability and 

P4 (T) the probability that e~ml will be erroneously estimat

ed, using a threshold T and FD, then the sign of i 4 (T) -

P4 (T-1) is the sign of 

E(T) = ln[p/(1-p)] + (J-T)lnAJ-T- TlnAr (A6.6.2) 

where AP is the 11th generalized mean of the J K1s /11=1, 2, 
••• ,J, A0=1 and O<TSJ. 

I 
It is necessary to examine the behaviour of E(T). It will 

be shown that E(T) is a continuously increasing function of 

T and that E(T)<O for T<J/2. 

Consider the difference E(T) - E(T-1). From eqn (A6.6.2): 

E(T) - E(T-1) = ln(AJ-T)J-T- ln(Ar)1 -

- ln(A )J-T+1 + ln( A )T-1 -> J-T+1 ""T-1 

E(T) - E(T-1) = ln[(A )J-T/(A )J-T•1] + ln[(A )1 - 1/(A )1 ] J-T J-T+1 ""T-1 ""T 

From Theorem 6.10, and because K1 = P1/(1-P1 ) < 1: 

(AJ-T)J-T > (AJ-T+1)J-T+1 & (Ar-1)T-1 > (Ar)T 

Hence the arguments of both logarithms are >1. Then, 

E(T) > E(T-1) (A6.6.3) 

Consider now the sign of E(T). Since p<1-p, then 

ln[p/(1-p)] < 0. E(T) will be negative if ln[(AJ_1 )J-T/(Ar)1 ] 

< 0 or, the same, if (AJ-T)J-T < (Ar) 1 • According to Theorem 

6.10, this happens if J-T > T <-> T < J/2. It follows 
then that if E(T) = 0 has a solution this will occur for T ~ 
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J/2 (this does not imply that E(T) ~ 0 forT ~ J/2). 

Theorem A6.6.2: Let E(T) be defined by Theorem A6.6.1. 

Then, E(T) is a continuously increasing function of T 

(O<T~J). Furthermore, E(T) < 0, for T<J/2. 

I 
Note, from Theorem A6.6.2, that E(T) is definitely nega

tive for T < J/2. This means that if E(T) changes sign, 

within the range [ 1, J], this will occur in the range 

[J/2,J]. The sign of E(T) is also the sign of 8Pd(T) (see 

Theorem A6.6.1). According to Theorem 6.1, if E(T) < 0 forT 

< X, E(T) > 0 for T > X and, in case E(T) = 0 has a solution 

E(X) = 0, then the optimum threshold is T
0 

= LXJ. Since E(T) 

will not change sign in the range (O,J/2), then the optimum 

threshold will be at least J/2, and since it has to be an 

integer, T
0 
~ fJ/21. 

This proves the first part of Theorem 6.11. 

Since the sign of 8Pd(T) is the sign of E(T): 

<-> 

E(T) < 0 

ln[p/(1-p)] + (J-T)lnAJ_1 - Tl~< 0 

ln[p/(1-p)] + JlnAJ-T < Tl~ + TlnAJ-T = Tln(AJ-rArl 

T < {ln[p/(1-p)] + JlnAJ-r}/ln(AJ-TAT) 

Hence, 

T < {ln[p/(1-p)] + JlnAJ-r}/ln(AJ-rArl 

Similarly, 

If 8Pd(T) = 0 has a solution, 

T = {ln[p/(1-p)] + JlnAJ-r}/ln(AJ-Al 

According to Theorem 6.1, 

l{ln[p/(1-p)] + JlnAJ_1 }/ln(AJ-rArU 

is the optimum threshold for the above case. Note though 
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that the expression above is a function of T
0 

itself, hence 

it does not give T
0

, but it has to be solved for T
0

• Also, 

since T0~J, T
0 

should not be allowed to exceed J, 

This completes the proof of Theorem 6.11. 
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APPli:Nl)lX 7.1 INTRQOUCIIQN TO ARITHMETICAL EUNCTIQNS 

This appendix will introduce the reader to the basic 

definitions and theorems on the so-called arithmetical func

tions (like the Euler function, the Mobius function, the 

greatest common divisor, etc). The material is based on the 

excellent textbook by Tom Apostol, "Introduction to Analytic 

Number Theory" [ 44]. It is the opinion of the author that 

number theory becomes increasingly important for various 

branches of electronic engineering, and as such it should be 

incorporated into the syllabuses of relevant under- & post

graduate courses. 

Unless otherwise stated, small latin & greek letters de

note integers. 

Definition A7.1.1: A real- or complex-valued function 

defined on the positive integers is called an arithmetical 

funct1on or a number-theoretic function. [44] 

I 
Definition A7.1.2: It is said that d divides n, and 

this is denoted by din, if there exists an integer c such 

that n = cd. It is also said that n is a multiple of d. d(n 

denotes that d does not divide n. [44] 

I 
Definition A7.1.3: The greatest common divisor (gcd) of 

two integers a & b is a nonnegative common divisor of a & b, 

denoted by (a., b),' such that any other common divisor of a. & 

b also divides (a.,b). It can be proved that for any a & b, 

(a.,b) is unique. If (a,b) = 1, a. & b are said to be rela

tively prime. [44] 

I 
Theorem A7.1.1: The gcd has the following properties: 

Commutative law: (a.,b) = (b,a.) (A7.1.1a) 

Associative law: (a.,(b,c)) = ((a.,b),c) (A7.1.1b) 
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Distributive law: ( ac , be ) = I c I ( a, b) 

(a,1) = (1,a) = 1 

(a,O) = (O,a) = lal 

Page 436 

(A7.1.1c) 

(A7.1.1d) 

(A7.1.1e) 

Proof: See Apostol [44], p. 16. 

I 
Definition A7 .1 .4: If n2:1 1 the Euler totient ~(n) is 

defined to be the number of positive integers not exceeding 

n which are relatively prime to n. [44] 

I 
Theorem A7.1.2: Fundamental theorem of arithmetic: Ev-

ery integer n>1 can be represented by a product of prime 

factors in only one way, apart from the order of the fac

tors. 

Proof: See Apostol [44], p. 17. 

I 
Theorem A7.1.3: If n = p~lp;z .. •p:r, where a 1 i!: 1 for i=1, 

2, ••• ,r, then the set of positive divisors of n is the set 

of numbers of the form p~lp~Z"'P~r, where 0Sc1Sa1 for i=1,2, .. 

• , r • 

Proof: See Apostol [44], p. 18. 

I 
Theorem A7 .1.4: 

the factorization 

If two positive integers a and b have 

-a = np~i 
1•1 

•• 
b = llp~i 

1•1 

where a
1
2:0 & b

1
2:0, then their gcd has the factorization 

for all i (A7.1.2) 
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Proof: See Apostol [44], p. 18. 

I 
Note that in the last theorem the products are over all 

prime numbers, but of course the products themselves are 

finite. So, p1=2, p2=3, p 3=5, ... , p15=47, ... etc. 

Theorem A7.1.5: For any two positive integers a & b: 

(a,b) = d (a/d,b/d) = 1 (A7.1.3) 

Proof: From (A7.1.1c), (a/d,b/d) = 1 ---> d(a/d,b/d) = d 

---> (a,b) = d (because d~O, by Definition A7.1.3). Let now 

(a,b) = d. If at least one of a & b is 1, then (a/d,b/d) = 

(a,b) = 1. The theorem will be proved for the case where 

a & b are >1. Let a & b have the following factorization: 

•• 
Q = np~i (A) 

i•l 

•• 
b = np~i (B) 

i=l 

where a1~0 & b1~0. From Theorem A7 .1. 3, d will have the 

factorization: 

(C) 

From (A), (B) & (C), one obtains the following factoriza

tions: 

•• 
a/d = np~i-di a1-d1~0 (D) 

i•l 

-b/d = nP~i-di b1-d1~0 (E) 
i•l 

From (D) & (E) and Theorem A7.1.4: 

•• 
(a/d,b/d) = np~i 

1=1 

(F) 

Then, (a/d,b/d)=1 ---> c 1=0 for all i , from (F) 
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-> MIN{a1 ,b1 }=d1 for all i, from (F) 

-> (a,b)=d, from Theorem A7.1.4. 

QED 

Theorem A 7 . 1 . 6: If n~1, then (n,n-1) = 1 (A7.1.4) 

Proof: Let d ~ (n,n-1). Then, there exist integers a & b: 

n=ad & n-l=bd ---> ad-1=bd -> (a-b)d=1 ---> di1• -> d~1. 

Since ad>bd -> d#O, hence d=1. 

Theorem A7.1.7: 

'runs' through the 

If m is a positive 

range [1,m], m/( m, c) 

QED 

integer, then as c 

'runs' through all 

the positive divisors of m: 

dim there exists c /1ScSm : d=m/(m,c) (A7.1.5) 

Proof: Let c /1ScSm. Then, if d = m/(m,c) -> d(m,c) = m 

-> dim• 

Let dim· Then, m=kd, where 1SkSm. Let c=m-k=kd-k=k(d-1). 

From Theorem A7.1.6, (d,d-1)=1 -> (m/k,c/k)=1 ---> (m,c)=k 

(from Theorem A7.1.5) -> (m,c)=m/d -> d=m/(m,c). 

QED 

Theorem A7.1.8: Let b be a positive integer and p its 

smallest prime factor. Then, if 1Sc<p, (b,c)=1. 

Proof: Let b, p & c, as above and d ~ (b,c). Since die 

-> dSc and because c<p ---> d<p. Assume that d>1. Let q be 

a prime factor of d. Since (b,c)=dib, q is also a prime fac

tor of b. But qSd<p, hence q is a prime factor of b, smaller 

than p. This contradicts the hypothesis, hence dS1. Since, 

by Definition A7.1.3, d is nonnegative then d=O or d=1. By 

Definitions A7.1.2 & A7.1.3, there exist integers x & y such 

that b=xd & c=yd. Since b & c are not zero, by hypothesis, 

x, y & d must also be non-zero, hence d=1. 

Theorem A7.1.9: 

(p,a)=L 

QED 

If a prime p does not divide a, then 



Appendix 7.1 Page 439 

Proof: See Apostol [44], p. 17. 

I 
Theorem A7.1.10: If albc and if (a,b)=1, then ale• 

Proof: See Apostol [44], p. 16. 

I 
Theorem A7.1.11: 

tive integers k & n: 

For any integers a & b and any posi-

(a,b) = 1 -> (A7.1.6) 

Proof: Let a, b, k & n as defined above and (a,b)=1. Let 

f ~ (at,bn). Assume that f>l. Then, there must exist a 

prime p which divides both ak & bn. 

Let q 1 , q 2 , ••• , qr be the prime factors of an integer c. 

Then c•has the same prime factors (except that they are all 

raised to power m). Hence, ak has the same prime factors 

with a and bn has the same prime factors with b. So p is a 

prime factor of both a and b and (a,b) ~ p, which contra

dicts (a,b)=l. Hence, (ak,bn) = 1. 

QED 

Theorem A7.1.12: For any integers a, b & c: 

(a+cb,b) = (a,b) (A7.1.7) 

Proof: Let (a,b) ~ h and (a+cb,b) ~ f. It will be shown 

that flh & hlf• 

Since (a+cb,b)=f, fl(a+cb) & fib, hence there exist inte

gers k & m, such that a+cb=kf & b=mf. It follows that a=kf

cmf -> a=(k-cm)f -> fla• Then fl(a,b) -> flh• 

Since (a,b)=h, hla & hlb, there exist integers n & s such 

that a=nh & b=sh. It follows that a+cb = nh+csh = (n+cs)h 

-> hl(a+cb). Then, hl(a+cb,b)=f. 

QED 

Theorem A7.1.13: For any a, b & c: 

(a,b) = (a,c) = 1 -> (a,bc) = 1 (A7.1.8) 

Proof: Let the prime decomposition of a, b & c: 



Appendix 7.1 Page 440 

a = p•1 pClz p 43• • • 1 2 3 /a1~0 for i=1,2,3, ... 

b = pb1 pb2 pb3· •• 1 2 3 /b1~o for i=1,2,3, ••• 

c = Pcl poz pc3• • • 1 2 3 /c1~0 for i=1,2,3, ... 

From (A7.1.2), since (a,b) = 1 = (a,c), it follows that: 

MIN{a1 ,b
1

} = MIN{a1 ,c1 } = 0 /i=1,2,3, ••• -> 

Either ai = 0 or bi = c = 1 0 /i=1,2,3, ••• -> 

Either ai = 0 or bi + ci = 0 /i=1,2,3, ••• -> 

MIN{a
1
,b

1
+c1 } = 0 /i=1,2,3, ••• -> 

(a, be) = 1 [by (A 7. 1. 2 ) ] 

QED 

Theorem A7.1.14: For any a, b & c, such that (a,b) = 1: 

a I c b 1 c -> ab I c (A7 .1.9) 

Proof: Since ale & blc, there exist integers q & s, such 

that c = qa = sb -> blqa. Since (a,b) = 1 -> blq (by 

Theorem A7 .1.10) 1 hence there exists integer t, such that 

q=tb. Then, c=tba -> able• 

QED 

Theorem A7.1.15: If m>1 has the prime decomposition: 

Then: 

(A7.1.10) 

Proof: See Apostol [44], p. 27. 

I 

APPENDIX 1. 2 ' IHTBQOOCTION IQ CQNGBUEHCE$ 

This appendix, like Appendix 7.1, is based on Apostol's 

textbook "Introduction to Analytic Number Theory" [44]. The 

material (definitions & theorems) has been drawn mainly from 
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Chapter 5, 

Unless otherwise stated, small latin & greek letters will 

denote integers. 

Definition A7.2.1: Given a,b & m, with m>O, it is said 

that a is congruent to b modulo m, denoted by a= b (mod m), 

if m divides the difference a-b. m is called the modulus of 

the congruence: 

a = b (mod m) <-> m I (a-b) (A7.2.1) 

I 
Theorem A7.2.1: Congruence is an equivalence relation; 

in other words it is reflective, symmetric and transitive. 

For any a, b, c & m, with m>O: 

Proof: 

a = b (mod m) -> 

a = b (mod m) --,___> 

b = c (mod m) __.--

a = a (mod m) 

b ii a (mod m) 

a = c (mod m) 

See Apostol [44] 1 p. 107. 

(A7.2.2a) 

(A7.2.2b) 

(A7.2.2c) 

I 
Theorem A7.2.2: For any a, b, c, d & m, with m>O, if a 

= b (mod m) & c = d (mod m), then: 

ac = bd (mod m) (A7.2.3a) 

For all integers x & y, ax+cy = bx+dy (mod m) (A7.2.3b) 

For all positive integers n, (A7.2.3c) 

For every polynomial f with integer coefficients, 

f(a) = f(b) (mod m) (A7.2.3d) 

Proof: See Apostol [44], p. 107. 

I 
Theorem A7.2.3: For any a, b & m, such that O~la-bl<m: 

a = b a - b (mod m) (A7.2.4) 

Proof: Obviously, if a= b -> a= b (mod m). Let a= b 
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(mod m); from (A7.2.1), ml{a-b) ---> a-b= km. On the oth

er hand, by hypothesis, OS!a-bl<m; hence 0 S lklm < m ---> 

0Sikl<1 ---> k=O ---> a=b. 
QED 

Theorem A7.2.4: For any a, b, c & m, with m>O, if ac 5 

be (mod m) and if d ~ (m,c), then a 5 b {mod m/d). 

Proof: See Apostol [44], p. 109. 

I 
Definition A7.2.2: The set of all integers x such that 

x 5 a (mod m), where m>O, is called the residue class a mod

ule m. A set of m representatives, one from each of the 

residue classes a module m /a=0,1, ••• ,m-1, is called a com

plete residue system modulo m. Hence, {0,1,2, ... ,m-1}, 

{1,2,3, ••• ,m}, etc, are complete residue systems modulo m. 

I 
Theorem A7.2.5: Assume (a,m) ~d. Then, the linear con

gruence ax 5 b (mod m) has solutions if, and only if, dlb• 

Furthermore, and if dlb, the congruence has exactly d solu

tions module m, given by t+im/d /i=O ,1, •• ,d-1, where t is 

the solution, unique modulo m/d, of the congruence a/d 5 b/d 

{mod m/d). It is understood that 'a solution of a congruence 
module m' means a number within a complete residue system 

modulo m, say {0,1, •• ,m-1}, satisfying that congruence. 

Proof: See Apostol [44], pp. 111-2. 

I 
Definition A7.2.3: Any set of ~(m) integers, incongru-

ent modulo m, each of which is relatively prime to m, is 

called a reduced residue system modulo m. 

I 
Theorem A7.2.6: Euler-Fermat theorem: For any a & m, 

with m>O, if (a,m)=l then 
a•<•> = 1 (mod m) (A7.2.5) 

Proof: See Apostol [44], P• 113. 

I 
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Theorem A7.2.7: For any a, b & m, with m>O, if (a,m}=1 

then the solution (unique modulo m} of the linear congruence 

ax = b (mod m} is given by 

(A7.2.6} 

Proof: See Apostol [44], p. 114. 

I 
Theorem A7.2.8: For any a, b & m, with m>O and a = b 

(mod m}, if dim and dla, then dlb• 

Proof: See Apostol [44], p. 109. 

I 
Theorem A7.2.9: For any a & m, with m>O: 

(a,m} > 1 -> an;. 1 (mod m} /n=1, 2, ••• (A7.2.7a} 

(a,m} = 1 -> (A7.2.7b} 

(A7.2.7b} is known as the Euler-Fermat Theorem.* 

Proof: (A7.2.7b} is Theorem A7.2.6, included here to com-

plete the case. 

Let (a,m} ~ d > 1 and assume that there exist k>1 such 

that at= 1 (mod m}. Since dla -> dlat. Also, dim• Then, 

by Theorem A7.2.8, dl1 -> d=1 -> contradiction. 

QED 

Theorem A7.2.10: The Chinese remainder theorem: Assume 

m1 ,m2 , •• .,mr are relatively prime in pairs. Let b 1 ,b2 , ••• ,br 

be arbitrary integers and let a 1 ,a2 , ••• ,ar satisfy (a1 ,m1 } = 

1 /i=1, 2, ••• , r. Then the linear system of congruences a 1x 1 

= b
1 

(mod m1 } /i=1, 2, ••• , r has exactly one solution modulo 

m m • • •m • 1 2 r 

Proof: See Apostol [44], p. 118. 

I 
Theorem A7.2.11: For any a, b & m, with m>O: 

a !i b (mod m} -> (a,m} = (b,m} (A7.2.8} 

Proof: See Apostol [44], p. 109. 

I 

1 * Remember that (a, b) denotes the greatest common d1v1sor of a & b. 
I - --~-----~-----
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APPENDIX 7.3: DtTBOOOQTIQN IQ PRIMIUVi' ROOTS 

This appendix is drawn mainly from Chapter 10 of T.M. 

Apostol's "Introduction to Analytic Number Theory" ([44]). 

Unless otherwise stated, small latin & greek letters will 

denote integers. 

Definition A7.3.1: Let a & m, with m>O. The smallest 

positive integer f, such that: 
af = 1 (mod m) 

is called the order (or exponent) of a modulo m and is 

denoted by Ord.(a) [exp.(a)]. If Ord.(a) = ~(m), then a is 
called a primitive root modulo m. [44] 

I 
Theorem A7.3.1: For any a, m & k, with m & k positive: 

Proof: 

Ord.( all) = ~rd.( a) / ( Ord.( a), k} 

See Apostol [44], p. 206. 

(A7.3.1) 

I 
Theorem A7.3.2: For any k, n & m positive and any a, if 

Ord.(a) ~I, then: 

i) all:= a 0 (mod m) k E n (mod J) (A7.3,2a) 

ii) all:= 1 (mod m) k = 0 (mod J) (A7.3.2b) 

iii) I I ~<m> (A7.3.2c) 

iv) The numbers 1,a,a2 , •• ,,af·lare incongruent (mod m), 

Proof: See Apostol [44], p. 205. 

I 
Theorem A7.3.3: Let p be any odd prime and S any posi-

tive divisor of p-1. Then in every reduced residue system 

modulo p there are exactly ~(S) numbers a such that Ord.(a) 

= s. 

Proof: See Apostol [44], pp. 207-8, 

I 
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Theorem A7.3.4: Let p be an odd prime. Then, if g is a 

primitive root modulo p, g is also a primitive root modulo 

pm for all a~ 1 if, and only if: 

(A7.3.3) 

Furthermore, there is at least one primitive root g modu

le p which satisfies (A7.3.3). 

Proof: See Apostol [44], pp·. 209-10. 

I 
Theorem A7.3.5: Let any odd prime p and a positive di

visor S of p-1. If g is a primitive root modulo p, satisfy-

ing: 

(A7.3.3) 

then, for any a ~ 1, g•C•lfS (where m=pm) has order S modu

lo pb, for any b=1,2, ••• ,a. 

Proof: Theorem A7.3.3 guarantees the existence of ~(p-1) 

primitive roots modulo p. Furthermore, if one of them, say 

g, satisfies (A7.3.3), then g is also a primitive root modu

lo pm, for any a~1, by Theorem A7.3.4. According to the same 

theorem, there is at least one primitive root of p which 

satisfies (A7.3.3). Let g be the one. Then: 

From Theorem A7.3.1 & (A): 

Let 

Using Theorem A7.1.15: 

-> 

(B) 

(C) 

using (A7.1.1c), the hypothesis that bSa and the fact 

that (p-1)/S divides p-1. 

Since S I p-1 -> S < p -> (S,p) = 1 (by Theo

rem A7.1.9) -> (S,pm-b) = 1 (by Theorem A7.1.11). Then 

from (D): f = pb"1 (p-1 )/S. Then, from (B): 

* (a,b) denotes the greatest cOIIJJIIOn divisor of a & b. 
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QED 

Note A7.3.1: TABLE A7.3.1 below, lists the smallest 

primitive root modulo p, for all integers n < 607 that have 

a primitive root. The roots were calculated using subroutine 

IPRIH1 (for a flow-chart of IPRIMl see Fig. A8.1.6, p. 515). 

TADLE A1.3.1' 

n g n g n g n g n g n g n g 

1 1 47 5 118 11 199 3 289 3 386 5 491 2 

2 1 49 3 121 2 202 3 293 2 389 2 499 7 

3 2 50 3 122 7 206 5 298 3 394 3 502 11 

4 3 53 2 125 2 211 2 302 7 397 5 503 5 

5 2 54 5 127 3 214 5 307 5 398 3 509 2 

6 5 58 3 131 2 218 11 311 17 401 3 514 3 

7 3 59 2 134 7 223 3 313 10 409 21 521 3 

9 2 61 2 137 3 226 3 314 5 419 2 523 2 

10 3 62 3 139 2 227 2 317 2 421 2 526 5 

11 2 67 2 142 7 229 6 326 3 422 3 529 5 

13 2 71 7 146 5 233 3 331 3 431 7 538 3 

14 3 73 5 149 2 239 7 334 5 433 5 541 2 

17 3 74 5 151 6 241 7 337 10 439 15 542 15 

18 5 79 3 157 5 242 7 338 7 443 2 547 2 

19 2 81 2 158 3 243 2 343 3 446 3 554 5 

22 7 82 7 162 5 250 3 346 3 449 3 557 2 

23 5 83 2 163 2 251 6 347 2 454 5 562 3 

25 2 86 3 166 5 254 3 349 2 457 13 563 2 

26 7 89 3 167 5 257 3 353 3 458 7 566 3 

27 2 94 5 169 2 262 17 358 7 461 2 569 3 

29 2 97 5 173 2 263 5 359 7 463 3 571 3 

31 3 98 3 178 3 269 2 361 2 466 3 577 5 

34 3 101 2 179 2 271 6 362 21 467 2 578 3 

37 2 103 5 181 2 274 3 367 6 478 7 586 3 

38 3 106 3 191 19 277 5 373 2 479 13 587 2 

41 6 107 2 193 5 278 3 379 2 482 7 593 3 

43 3 109 6 194 5 281 3 382 19 486 5 599 7 

46 5 113 3 197 2 283 3 383 5 487 3 601 7 
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PROOF OF THEOREM 7. 2 

'-.. 

A code is not self-orthogonal, if two syndrome bits that 

check on the same error bit, say e~1 >, check also 

error bit. Consider two such syndromes, say s~> & 
From (7.5) (p. 183), the syndrome eqns are: 

on another 
s<•> w • 

s<rl = e{a(r,u+1)} + e{a(r,u)} +•. •+ e{a(r,u+1-c)} +•. •+ e{a(r,1)} + e(k+r) 
u 0 1 c u u 

s<v) = e{a(v,w+l]} + e{a[v,w]} +•. •+ e{a[v,wtl-c]} +•. •+ e{a[v,l)} + e<t+v) 
w 0 1 c w w 

Using the fact that they both check the ith bit of (e•) 0 , 

i.e. that 

a = r,u+l a = v,w+l i (A) 

s<r> = u e<il + 
0 

e{a[r,u]} + ••• + 
1 

e{a[r,u+l-c]} +•. •+ 
c 

e{a(r,1)} + 
u 

e<k+r) 
u (B) 

s<•> = 
w 

eU>+ 
0 

e{a(v,w]) + ••• + 
1 

e(a[v,w+l-c]} +· •• + 
c 

e{a(v,1)} + 
w 

e<t+v) 
w (C) 

As 'promised' earlier on, let these two syndromes check 

also on another common error bit, say e~> /c>O. Then, the 

corresponding IA elements will both be equal to b. From eqns 

(B) & (C), the coefficient of the error bit from the cth 

block, participating 

and the coefficient 

in the formation of s<r>, is a •1 c (=b) u r,u -

of the error bit from the cth block, 

participating in the formation of s<•>, is a 1 (=b). w v,w+ -c 

Since ar,u+l' av,w+l' ar,u+l-c &. av,w+l·c' are elements of an 
(n-k) x (m+l) array of integers, lSr,vSn-k and lSu+l,w+l 

,u+l-c,w+l-cSm+l. The second inequality gives OSu,wSm and 

OSu-cSm & OSw-cSm. The latter is equivalent to 

(-mSc-uSO & -mSc-wSO) <-> (u-mScSu & w-mScSw) 

and since u-m & w-m are at most O, while c has to be 

positive [see (B) or (C)], O<cSMIN{u,w}. Note also that if 

u=O, s~rl cannot check on 

hence u;o. Similarly, w;o. 

e<bl /c>O, as well [see eqn (B)]; 
c 

Hence, if the code generated by the IA is not self-or-

thogonal, there exist numbers r,u,v,w & c, such that: 

lSr,vSn-k & lSu,wSm & O<cSMIN{u,w} (D) 
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and a = a & r,u+l v,w+l (E) 

Conversely, assume that there exist numbers r 1 u 1 v 1 w & c 

such that (D) & (E), above, hold true. Then, it is noted 

from the first of (E) that 1 syndrome bits s~rl and s~vl both 

check on error bit e~11 [where i = ar,u+1 = av,w+1 ], but be

cause of the second of (E) they both check on e<bl [where b = c 

= a = a ] and because c>O 1 the corresponding code r,u+l-c v,w+l-c 

is not self-orthogonal. 

Note also that c is the positional difference between any 

two distinct elements of a row and since the IA has m+l col

umns, c ranges between 1 & MIN{u 1 w}~m. 

If u+l & w+l, in eqns (D) & (E), are replaced by u & w, 

the theorem is proved. 

QED 

APPENDiX 7.5: THE MINIMUM YALUE OF m FOR TYPE-S CQDES 

A7.5.1. Proof of Tbeorftm 7.3 

The elements of the IA denote the position of a message 

bit within a block, hence lSa Sk. Reln (7.8) restricts the x,z 
elements in the range [O,k], hence the generation of ele-

ments along a row must stop just before the generation of 

the first 0. Then the smallest integer z, in the range [l,k] 

satisfying the linear congruence za 1 = 0 (mod k+l) 1 will 
"• 

give the position of the first zero along row x. 

According to Theorem A7.2.5 the above linear congruence 

has exactly d solutions, where d ~ (k+l,ax,1 ) (because diO). 

The solutions are given by t+i(k+l)/d /i=O,l, •• ,d-1 1 where t 

is the solution of t(a 1/d) = 0 (mod (k+l)/d); according to x, 
Theorem A7.2.7, t = 0 (mod (k+l)/d), hence z = i(k+l)/d (mod 

k+l) /i=O,l, •• ,d-1. Hence the 1st zero along row xis at 

position (k+l)/(k+1 1 a 1 ) and so the number of elements of x, 

row x must be (k+l)/(k+1,ax,1 )-1. In general, the length of 

the rows of the IA will vary, between 1 & k. This means that 

the condition introduced by Definition 7.1 will not be sat

isfied, in general. Definition 7.1 requires all rows to have 

the same length, which by necessity will be the length of 
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the shortest row. 

This proves the theorem. 

QED 

A7.5.2. proof gf Theorem 7.4 

From Theorem 7. 3, in order that the IA contains no en

tries equal to zero, it is necessary that the maximum value 

of m, m~, satisfies 

m = Mi~{ (k+l )/(k+l,ax 1 )} - 2 (A) 
.ax x.=l ' 

where a 
1 

/x=1,2, ••• ,n-k are the elements of the 1st col-
"• 

umn of the corresponding IA. Let i ~ (k+l,a 1 ) <---> i(k+l) x, 
= (k+l,a 

1
)(k+l) <---> i(k+l)/(k+l,a 1 ) = k+l. Then k+l is x. x, 

divided by (k+l)/(k+l,a 1 ) and hence 1 ~ (k+l)/(k+l,a 1 ) ~ x, x, 

k+l. Assume that (k+l)/(k+l,a 1 ) = 1; then (k+l,a 1 ) = k+l x, x. 
---> (k+l)la 

1
---> a 1~k+l. On the other hand, by construc-x, x. 

tion, l~a", 1~k. Hence contradiction* and (k+l )/(k+l,ax,1 ) f. 
1. Hence, (k+l)/(k+l,a 

1
) is a divisor of k+l, which is not x, 

1, i.e. which is greater than 1. 

Then, the minimum of (k+l)/(k+l,ax, 1 ) /x=1,2, ••• ,n-k is 

the minimum of a set of non-trivial (i.e. different than 

one) divisors of k+l and obviously it cannot be smaller than 

the minimum non-trivial divisor of k+l; the latter may only 

be a prime, say, p (because, if not, there will be a prime 

diving it and, hence, k+l as well). Hence, the right-hand 

side of eqn (A) is ~ p-2. 

For (2k,k,m) codes, the first column, i.e. elements a 1 x, 

/x=1,2, ••• ,n-k, contains k distinct (mod k+l) elements, in 

the range [l,k]. Note that, if any two elements, a 1 = a 1 r, v, 

/r'f.v, are equal, the code will not be self-orthogonal, ac-

cording to Theorem 7.2, because rows r & v will be identi

cal, given the IA construction-technique introduced by Defi

nition 7. 2. Hence, a 
1 

'runs' through the range [ 1, k]. Ac-x, 
carding to Theorem A7.1.7, if a 1 'runs' through the range x, 

[l,k+l], then (k+l )/(k+l,ax, 1 ) 'runs' through the set of 

positive divisors of k+l. Since l~a 1~k, divisor x, 

(k+l)/(k+l,k+l)=l is excluded and, since no a 1<k+l can gen-x, 

erate (k+l)/(k+l,ax,1 )=1, (k+l)/(k+l,ax,1 ) 'runs' through the 

* Anyway, if (k+l)/(k+l,a 1>=1, then • =-1, hence there is no IA, or code. x, II8.X 
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set of divisors of k+1 that are greater than 1. Hence, p is 

definitely equal to one of (k+1)/(k+1,a 1 ) /1~x~n-k and m x, aax 

= p-2. 

QED 

APPENDIX 1, 6: ORJHQGQNALITY COHOITIQNS FOR TYPE-» CODES 

A7.6.1, Proof of Lemma 7.1 

Consider two elements, along row x of the IA, say ele

ments a & a , where z & c are positive integers. Then, x,z+c x,z 

from (7.8) (p. 185) and since, by Theorem A7.2.2, congru-

ences may be added, subtracted or multiplied member by mem

ber as though they'were equations: 

a -a = (z+c)a 1 - za 1 (mod k+1) z,z+c x,z x, x, 

-> a - a 5 cax, 1 (mod k+1) x,z+c x,z 

QED 

A7,6.2. Proof of Theorem 7.5 

According to Theorem 7.2, the code is not self-orthogonal 

if, and only if, there is at least one pair of elements ar ,u 

= a and at v,w least one integer c, such that ar,u-c = av,w-c' 

where O<c<MIN{u,w}. Note though that: 

a = a r,u v,w a = a <-> r,u v,w 
a = a r,u-c v,w-c 

<-> 
ar,u 5 av,w (mod k+1) 

a - a 5 a - a (mod k+1) r,u-c r,u v,w-c v,w 

The last result is obtained from Theorem A7.2.3, noting 

that the elements of the IA are always in the range [1,k], 

hence the absolute value of the difference of any two of 

them is less thank. Using (7.11), the last result gives: 

a = a r,u v,w a = a <-> r,u v,w 
a = a r,u-c v,w-c c(a 1 - a 1 ) !! 0 (mod k+1) v, r, 

Hence, a type-B code is not self-orthogonal if, and only 
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if, for any two rows, say, r & v which have a common ele

ment, in columns u & w, there exists at least one positive 

integer c, less than u & w, such that ea 1 is congruent to r, 

cav,
1 

modulo k+1. Condition ( 7, 9) is a necessary restriction 

on m, imposed by the introduction of the generation method 

of Definition 7.2. 

QED 

APPENDIX 7 • 7: PBQPERTIES OF TYPE-8 CQJ)!;S 

A7.7.1. Proof of Theorem 1.6 

Assume that there exists a row, say, x (1SxSn-k) which 

has at least one pair of equal elements, say a =a 
:K 1U X,W 

(1Su~wSm+1). Then, from Definition 7.2 & Theorem A7.2.4: 

uax, 1 5 wax, 1 (mod k+1) -> 

* u 5 w (mod (k+1)l(k+1,ax,1 )) (A) 

Note though that, from relation ( 7. 9), u ,wSm+1S 

( k+l) I ( k+1, ax, 1 )-1 -> 0< I u-w I< ( k+l) I ( k+1, ax,1 )-1 and then, 

by Theorem A7.2.3 & (A), u=w which contradicts the hypothe

sis. Hence, the first of the two results, 

Consider now any specific column, say, u ( 1SuSm+1) and 

let two of its elements, say a =a (1Sr~vSn-k), be equal. r,u v,u 

According to Definition 7.2 and Theorem A7.2.4: 

ua 
1 

5 ua 
1 

(mod k+ 1 ) r, v, -> 

-> a 5 a (mod ( k+ 1 ) I ( k+ 1 , u ) ) r,l v,l 

Conversely, let (B) hold true. From Definition A7.2.1: 

-> 

-> 

-> 

(k+1)l(k+l,u) divides (a 1-a 1 ) r, v, 

ar,1-av,1 = q(k+l)l(k+l,u) 

u(ar, 1-av,1 ) = q[ul(k+1,u)](k+l)) 

(k+l) I (uar, 1-uav, 1 ) 

(B) 

-> ua 1 5 ua 1 (mod k+l ) r, v, -> a a a (mod k+ 1 ) r,u v,u 

] * Remember that (a, b) denotes the greatest cOIJJJJOn divisor of a & b. 
1 
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From Theorem A7.2.3, and since 1 :S a ,a :S k r,u v,u -> 0 :S 

la -a I < k, r,u v,u a =a • r,u v,u 

A7.7.2. Proof of Theorem 7.7 

QED 

Let the elements of the first column, a 1 /x=1,2, ..• ,n-k, x, 

be distinct (obviously in the range [1,k]). Then for any two 

rows, say, rf.v, a 
1
-;.a 

1 
and since 1:Sar 1 , a 1:Sk, it follows r, v, , v, 

that O<la 1-a 1 1<k, a 1 'F a 1 (mod k+1), by Theorem A7.2.3. r, v, r, v, 

Let c be any integer in the range [1,m+1]. Since c:Sm+1<p, 

(c,k+1)=1, by Theorem A7.1.8. 

So, ar, 1 'F av, 1 (mod (k+1)/(k+1,c)) for all rf.v and all 

c=1,2, ... ,m+l. Then, by the corollary of Theorem 7.5, the 

code is self-orthogonal. 

Conversely, let the code be self-orthogonal and assume 

that there exist two elements in the first column that are 

equal, say elements a 
1
=a 

1
• Then they are congruent module r, v, 

anything, hence relation (7.13b) does not hold true and the 

code is not self-orthogonal. This contradicts the initial 

hypothesis, hence there are no equal elements in the first 

column. 

QED 

A7.7.3. proof of Theorem 7.8 

According to Theorem 7.7, the first column contains n-k 

distinct integers in the range [1,k]. Clearly, n-k :S k ---> 

1-R :S R ---> R ~ 1/2. 

Assume k=odd. Then k+1=even and p=2 ---> m:Sp-2=0 ---> 

m=O, hence the code is not (even) convolutional, hence ~ 

tradiction. Then k=even. 

Assume that there exists at least one column, say, u 

(1<u:Sm+1) with at least two equal elements, 

( 1:Sr:fv:Sn-k). Then, by Theorem 

(k+1)/(k+1,u)), Since 1<u:Sm+1<p, 

7.6, a 1 r, 

(k+1,u)=1, 

say ar,u=av,u 

= a 
1 

(mod v, 

by Theorem 

A7.1.8, and a 
1 

= a 
1 

(mod k+1). Because a 1 & a 1 are gen-r, v, r, v, 
erated module k+1, they are equal. But this is equivalent to 

the code not being self-orthogonal (according to Theorem 
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7, 7), which contradicts the hypothesis, Hence each column 

contains a distinct set of integers. 

QED 

A7.7.4. Proof of Theorem 7.9 

According to Definition 5, 5, the effective constraint

length, nz• for the decoding of e~1 l is equal to the sum of 

the sizes of the composite parity checks (in this case, the 

syndrome bits), that are orthogonal on e~1 l, plus one. Also, 

according to Definition 5, 4, if a code is self-orthogonal, 

all the syndrome bits checking on e~1 l are orthogonal on it. 

Furthermore, 

that for e 11 l 
0 

141], Hence, 

to the decoding circuit for e~1 l is identical 

[see discussion following equations (5,14), p, 

n -1 [for e< 1l] 
! h 

equals the sum of the sizes of 

the, say, J syndromes checking on e~1 l, 

According to Theorem 7.1, e~1 l is checked by syndrome bit 

s,1 ~11 if, and only if, a = i. So, the number of syndromes, x,w 
checking on e~1 l, equals the number of !A entries that are 

equal to i and, as a consequence, this number is equal to J, 

Then, according to the above discussion, there will exist J 

!A elements equal to i: 

a[x1,w1] = a[x2,w2] =• • •= a[xJ,wJ] = i (A) 

Then, the J syndromes checking on e<1l are s{x(j)} for j=1,2,. 
0 w(j)-1 

.. ,J [where x(j).::. xj & w(j).::. wj] and, according to eqn 

(7.6): 
w(j) 

s{x(j)} 
w(j)-1 = I;e{a[x(j),z)} + 

w(j)•Z 
e{lm<(j)} 

w(j)-1 (B) 
z•1 

Expanding eqns (B): 

s{x(l)) = eUI + e{a[x(l),w(1)-1)} + • • • + e{a[x(1),1)} + e{k+x(l)} 
w(1)-1 0 1 w(1)·1 W(1)-1 

s{x(2)} = e{il + e{a[x(Z),w(Z)-1)} + ••• + e{a[x(2),1)} + e{k+x(Z)) 
w(Z)-1 0 1 w(Z)-1 w(Z)-1 

• • • • • • • • • • • • • • • • • • • • • • • • • 

s{x(J)} = eUl + e{a[x(J),w(J)-1)} + ••• + e{a[x(J),1)} + e{k+x(J)} 
w(J)-1 0 1 w(J)-1 w(J)-1 

The size* of the above syndromes is w1,w2, ••• ,wJ, respec

tively. Then, by eqn (5.9), 

* The size excludes the checked bit - see Definition 5.5. 
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• • • (c) 

On the other hand, according to Definition 7.3 and taking 

into account (A), above, the leftwise sequences on e~11 are 

hence, the number of elements in the leftwise sequences 

is w
1 

+ wz + • • • + wJ, which equals to n1-1, according to eqn 

(c). 

QED 

APPENDIX 7.8: TYPE-B1 CQDES 

A7.8.1. Examples 

Example A7.8.1: Let the initial array for the (14,J) 

type-B1 code. Since k+1=15, then p=3 and 2~J~p-1=2 ---> J=2. 

Hence, the IA is an (n-k) x (m+1) = k X J = 14 X 2 array. 

As predicted by Theorem 7.10, there are exactly J=2 syn

dromes checking on each error bit. Hence, the above is a 

(28,14,1) systematic CSOC which can correct up to one error 

within one constraint-length [nA = n(m+1) = 28 X 2 = 56] • 

1 2 
2 4 
3 6 
4 8 
5 10 
6 12 
7 14 
8 1 
9 3 

10 5 
11 7 
12 9 
13 11 
14 13 

I 
Example A7.8.2: Let the initial array for the (24,J) 

type-B1 code. Since k+1=25, p=5 and 2SJSp-1=4. Let J=4. Then 

the IA is a 24 X 4 array: 
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1 2 3 4 
2 4 6 8 
3 6 9 12 
4 8 12 16 
5 10 15 20 
6 12 18 24 
7 14 21 3 
8 16 24 7 
9 18 2 11 

10 20 5 15 
11 22 8 19 
12 24 11 23 
13 1 14 2 
14 3 17 6 
15 5 20 10 
16 7 23 14 
17 9 1 18 
18 11 4 22 
19 13 7 1 
20 15 10 5 
21 17 13 9 
22 19 16 13 
23 21 19 17 
24 23 22 21 

The leftwise sequences, for selected error bits, are giv-

en below: 

l 13 ~ 1 ~ 15 !i 12 

.f 9 17 i 18 9 ·~ 20 10 u 16 8 
7 13 19 14 1 13 10 15 20 18 12 6 

If all left wise sequences are checked 1 it will be veri

fied that the associated code is indeed a J=4 (48 1 24 1 3) sys

tematic CSOC which can correct up to 2 errors in one con

straint-length [nA = 48 x 4 = 192]. 

I 
Example A7 .8. 3: Consider the (48,24 1 3) code of Example 

A7.8.2 and the decoding of the, say, 21st current message 

bit, rr1> [or, the same, the estimation of er1>]. The 4 syn

drome eqns that contain the 21st current message error bit 

may be deduced from the leftwise sequences for (21). 

s<7l = e<7l + e<U> 
I I 1-1 

+ e(U) 
1-2 

+ e<3l 
1-3 + e<31) 

I 

s<21) = e<U) 
I I 

+ e<17) 
1-1 

+ e<l3l 
1-2 

+ e<9l 
1-3 + e<4Sl 

I 

s<23) = e<Z3l + e{U) 
I I 1-1 + e<19) 

8-2 
+ e<17l 

8-3 + eU7l 
I 

s<24) = e<24) 
8 I 

+ e<23) 
8-1 

+ e<22) 
8-2 

+ e<U) 
8-3 + e<4B) 

I 

From the above four equations, it is obvious that the 

four syndromes checking on e~21l are described by the fol

lowing equations. 
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s(7) 
h+2 = eC7l 

h+2 + eClfl 
b+1 + e<ll) 

h + eC3l 
h-1 + eC31l 

h+2 

s (21) 
h = e(21) 

b + eC17l 
h-1 + eCl3l 

h-2 + eC9l 
h-3 + eC45l 

h 

s(23) 
h+1 = eC23l 

h+1 + e<U> 
h + eC19l 

h-1 + eC17l 
h-2 + eC47l 

h+1 

s(24) 
h+3 = eC24l 

b+3 + eC23l 
h+2 + eC22l 

h+1 + e<n> 
b + ec•s> 

b+3 

Assuming feedback decoding and no past errors (or 'genie 

decoding' - see Chapter 6, p. 157), the past error bits, 

i.e. eCil 
8 

/g<h, are correctly estimated and cancelled out. 

Then, the above four equations are modified to: 

sC21) 
h = et21) 

h + eC4Sl 
h 

s(23) 
h+1 = eC23l 

h+1 + e<n> 
h + eC47l 

h+1 

s(7) 
h+2 = eC7l 

h+2 + eC14l 
h+1 + e<21) 

h + eC3ll 
h+2 

s(24) 
h+3 = eC24l 

h+3 + eC23l 
h+2 + eC22l 

h+1 + e(21) 
h + eC4Sl 

h+3 

It is obvious that eC2ll will be correctly calculated, 
h 

using the majority-decoding algorithm (Theorem 5, 3), if no 

more than two of the 11 bits appearing in the above four 

equations have been corrupted. Hence, up to 2 errors in 11 

(selected) bits can be tolerated. 

I 

A7.8.2. JAAle gf Tvoe-St Cos!os 

TABLE A7.8.1, below, gives the 'best' type-B1 code, for 

various selected values of J, together with the correspond

ing values of k, n1, n,~. & n,~.ln.· The actual constraint-length 

of the 'best' type-B1 codes is compared with that of rate-

1/2 CSOCs constructed by Massey [18], or Wu [45], The sixth 

column (marked "%") shows how much longer the type-B1 codes 

are, compared with the Massey or Wu ones. 
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TABLE A].3.1 

J k nE nA nA/nE % 

------------------------------------------------------------
2 * 2 4 8 2.00 100.0 

3 4 7 24 3.43 

4 * 4 11 32 2.91 100.0 

6 * 6 22 72 3.27 71.4 

8 10 37 160 4.32 77.8 

10 * 10 56 200 3.57 23.5 

12 * 12 79 288 3.65 21.0 

14 16 106 448 4.23 43.6 

16 * 16 137 512 3.74 

17 18 154 612 3.97 19.5 

18 * 18 172 648 3.77 8.0 

20 22 211 880 4.17 18.9 

22 * 22 254 968 3.81 

24 28 301 1,344 4.47 22.6 

26 28 352 1,456 4.14 15.2 

28 * 28 407 1,568 3.85 7.4 

30 * 30 466 1,800 3.86 7.0 

32 36 529 2,304 4.36 17.4 

33 36 562 2,376 4.23 16.0 

36 * 36 667 2,592 3.89 

38 40 742 3,040 4.10 10.9 

40 * 40 821 3,200 3.90 

42 * 42 904 3,528 3.90 3.3 

44 46 991 4,048 4.08 7.3 

46 * 46 1,082 4,232 3.91 

48 52 1,177 4,992 4.24 13.0 

50 52 1,276 5,200 4.08 6.7 

52 * 52 1,379 5,408 3.92 

54 58 1,486 6,264 4.22 11.5 

58 * 58 1,712 6,728 3.93 

60 * 60 1,831 7,200 3.93 3.4 

62 66 1,954 8,184 4.19 8.8 

65 66 2' 146 8,580 4.00 4.7 

66 * 66 2,212 8' 712 3.94 

68 70 2,347 9,520 4.06 4.6 

70 * 70 2,486 9,800 3.94 

* Type-Bl codes aeeting the lower bound on nA [eqn (7.11)]. 
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TASLE A7.&.1 {continued} 

J k nE nA nA/nz % 

------------------------------------------------------------
72 * 72 2,629 10,368 3.94 2.8 

74 78 2,776 11 '544 4.16 8.3 

78 * 78 3,082 12,168 3.95 

80 82 3,241 13,120 4.05 5.1 

82 * 82 3,404 13,448 3.95 2.5 

88 * 88 3,917 15,488 3.95 

89 96 4,006 17,088 4.27 

90 96 4,096 17,280 4.22 8.5 

91 96 4,187 17,472 4.17 

92 96 4,279 17,664 4.13 

93 96 4,372 17,856 4.08 

94 96 4,466 18,048 4.04 

95 96 4,561 18,240 4.00 

96 * 96 4,657 18,432 3.96 

97 100 4,754 19,400 4.08 

98 100 4,852 19,600 4.04 3.8 

99 100 4,951 19,800 4.00 

100 * 100 5,051 20,000 3.96 

102 * 102 5,254 20,808 3.96 

150 * 150 11 '326 45,000 3.97 

210 * 210 22,156 88,200 3.98 

310 * 310 48,206 192,200 3.99 

520 * 520 135,461 540,800 3.99 

820 * 820 336 '611 1,344,800 4.00 

1,008 * 1,008 508,537 2,032,128 4.00 

5,002 * 5,002 12,512,504 50,040,008 4.00 -( 

9,000 * 9,000 40,504,501 162,000,000 4.00 

••••• • •••• • • • • • • • • • • . .......... 4 (?) 

APPEN:J)IX, 7, 9: OTHER CLA$SES OF IYPE-8 :§iLF-OBTf!OOQNAL CQQES 

A 1 • "9 .1. Proof of TtleoN!m 7 • t-3 

Consider the initial array of a (2k,k,m) type-B self

orthogonal code. It is obvious that if any of the IA rows 

* Type·Bl codes aeeting the lower bound on nA [eqn (7.17)]. 
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are deleted (at random) the corresponding code will still be 

self-orthogonal (see Theorem 7.7). The minimum number of 

syndromes checking on any error bit, J (which equals m+1), 

will be reduced though and also (a compensation) the value 

of n-k will be reduced. Hence, if y (1Sy<k) rows are deleted 

the IA generates a (2k-y,k,m) self-orthogonal type-B code. 

J', the new value of J, is unknown but it cannot be greater 

than J(1-y/k). This is so, because there will be J' copies 

of each of the k integers, hence at least kJ' integers in 

the IA, which has dimensions (n-k) X (m+1) = (k-y) X J, i.e. 

(k-y)J~kJ' ---> J'SJ(k-y)/k. 
QED 

A7.9.2. Proof of Theorem 7.14 

According to Definition 7.2 and the hypothesis: 

a = za 1 = zx (mod k+ 1 ) (A) x,z x, 

From (A), a + a = zx + z(k+1-x) = z(k+1) (mod k+1) x,z k+l-x,z 

---> a + a = 0 (mod k+1) x,z t+l-x,z 

---> k+1 1 a + a x,z k+l-x,z 

---> ax,z + ak+1-x,z = q(k+1) (B) 

Since 0 < a , a. 1 < k+1 x,z --k+ -x.z ---> 

0 < ax,z + ak+1-x,z < 2(k+1) and using (B), O<q(k+1)<2(k+1) 

---> O<q<2 ---> q=1, and from (B): ax,z + ~.1-x,z = k+1. 

From (A) & (B), a -zx = q(k+1) x,z <---> a = zx+q(k+1), x,z 
Let plx• Then, since p is a divisor of k+1, p also divides 

a • Let p divide a • For the same reason, p divides zx. x,z x,z 
Now, z is a column number and as such 1SzSJ<p (see Theorem 

7.10). Then, since p>z, p does not divide z, hence (p,z)=1 

(according to Theorem A7.1.9), hence p divides x (according 

to Theorem A7.1.10). 
Let b,z,w be as in the hypothesis and assume that there 

exist i & j, with 1Si¥j<(k+1)/p, 

Then, from (A): 

such that ab 1 =ab+j • + p,z PJW 

z(b+ip) 5 ab+ip,z = ab+jp,w = w(b+jp) (mod k+1) ---> 
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zb-wb = wjp-zip (mod k+1) -> (z-w)b+(zi-wj)p = s(k+1) 

and since p divides k+1, it also divides (z-w)b. Since 

b<p, p does not divide b, hence (p 1 b)=1 (by Theorem A7.1.9), 

hence p divides z-w (by Theorem A7.1.10). Then, z-w = qp. 

But since z & w are IA columns, O<z,wSJ<p -> -p<qp<p -> 

-1<q<1 -> q=O -> z=w. Hence, ab+ip,z = ab+Jp,z <-> ab+ip,l = 
ab+Jp,l (mod (k+1)/(k+1,z)) (by Theorem 7.6). Since zSJ<p (see 

Theorem 7.10) then, (z,k+l)=1 (by Theorem A7.1.8). Hence, 

ab+ip,l = ab+Jp,l (mod k+1) -> ab+ip,l = ~+Jp,l (because the two 
elements are in [1,k]). This contradicts Theorem 7.8 (ii1), 

hence the 3rd result of the theorem.• 

QED 

A7.9.3. Proo{ of Theorem 7.16 

Consider an ( n, k, p-2) type-B self-orthogonal code. Each 

row contains p-1 distinct elements, while there are 

(k+1)/p-1 distinct multiples of p. Hence, the number of rows 

that are multiples of p (and will contain only likewise ele

ments), say, x must be such that the number of elements in 

them, x(p-1) 1 is at least J times the number of the distinct 

multiples of p: x(p-1) ~ [(k+1)/p-1]J. On the other hand, x 

cannot exceed the number of multiples of p, i.e. (k+1)/p-1. 

Hence, if A~ (k+1)/p-1: AJ/(p-1) S x SA. 

x is the number of rows that contain multiples of p only, 

while, according to Theorem 7.15, the rows that do not con

tain multiples of p are exactly J(k+1)/p. Their sum is the 

total number of rows of the resulting IA, which equals n-k. 

Then, bounds for n may be obtained: 

AJ/(p-l)+J(k+1)/p S x+J(k+1)/p = n-k S A+J(k+1)/p 

-> AJ/(p-1)+J(A+1) S n-k S A+J(A+1) 

-> AJp/(p-1)+J+k S n S A(J+l)+J+k 

-> J[Ap/(p-1)+1]+k S n S [(k+l)/p-1](J+1)+J+k 

-> J[p(A+1)-1]/(p-1) S n S (J+1)(k+1)/p-J-1+J+k 

-> J[(k+1)-1]/(p-1) S n S (J+1)(k+l)/p-1+k 

- -

1 * Remember that (a, b) denotes the greatest COIIJIIIOn divisor of a & b. 
--- ------- - ---
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-> Jk/(p-l)+k S n S (J+l)(k+l)/p-l+k 

QED 

A7.9.4.. Proof of Theorem 7. t8 

Let the number of multiples of p [=(k+l)/p-1] be greater 

than the width of the array but not more than twice that 

width. In such a case, two rows are enough, if together they 

contain a distinct set of integers. Since the width of the 

row is p-1 and the number of multiples of p is (k+l)/p-1, 

then the condition on p & k is 

p-1 < (k+l)/p-1 s 2(p-1) <-> p < (k+l)/p s 2p-1 <-> 

p2 < k+l s p( 2p-l) p < (k+l)/p s 2p-1 (A) 

Of course, k+l must be an odd positive integer whose 

smallest prime factor is p. For example, if p=5, then 25 < 

k+l S 45, hence the only possible value of k+l is 35 (27, 

33, 39 & 45 are divided by 3 and 29, 31, 37, 41 & 43 are 

primes). 

It will be shown that a given value of p is suitable, 

only if (k+l)/p is a prime number. If (k+l)/p is a prime 

number, because p < (k+l)/p [see (A), above] p is the small

est prime of k+l and (A) is satisfied. If (k+l)/p is not a 

prime then it will have at least two prime factors, say q & 
r, Assume that both are not less than p. Then, 

p 2SqrS(k+l)/pS2p-1<2p -> p<2 ->contradiction, hence if 

(k+l)/p is not a prime it will have a prime factor less than 

p. Then, p & k should be such that (k+l)/p is also a prime, 

(k+1)/p ~ q, Equivalently, it is required that k+l = pq, 

where q is a prime greater than p and less than 2p. For p=7, 

q should be >7 and <14, hence possible values for q are 11 & 
13, giving a k equal to 76 & 90 respectively. 

The number of rows with elements that are not multiples 

of pis J(k+l)/p (see Theorem 7.15). The number of rows with 

elements that are multiples of p, is 2J. Hence, n-k = 

2J+J(k+l)/p = J(2p+k+1)/p ---> n = k+J(2p+k+l)/p. 

The !A construction instructions will be similar to those 

for the type-B2 codes, except for the 1st-column elements 

that are multiples of p. For the type-B2 codes, each such 
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row contained all the multiples of p, while for this class 

of codes, two such rows are required and the instruction set 

must specify the pairs. It will be shown that two rows, spe

cifically one with 1st-column element pi [1:Si:S(k+1)/p-1 = 

q-1] and another with 1st-column element (k+1)-pi, contain 

all the multiples of p once and 2p-(k+1)/p-1 = 2p-q-1 of 

them, twice. 

Consider 1st-column element x=pi /1:Si:Sq-1. Element k+1-x 

= pq-pi is also divisible by p, hence it also generates mul

tiples of p. Let api,l = pi and alt+l-pi,l = k+1-pi. According to 

Theorem 7.14 1 api,z + alt+l-pi,z = k+1 <-> api,z + apq-p>,z = 
pq, for all z=1,2, ... ,p-1 (the width of the IA is p-1), It 

will be shown that the set 

Si.::. {api,z'apq-pi,v /z=1,2, •. ,p-l & v=1,2, .. ,q-p} (B) 

contains all the multiples of p, exactly once, for any 

value of i (1:Si:Sq-1). 

Let i /1:Si<q. Elements a i /z=1 1 2 1 ... ,p-1 are all dis
P ,z 

tinct multiples of p, since they constitute the row with 1st 

element pi. Similarly, elements a 1 /v=1 1 2,.,,,q-p are pq-p ,v 

all distinct multiples of p because they constitute part of 

the row with 1st element pq-pi (q:S2p-1 <-> q-p:Sp-1). It is 

reminded that the 1st-column elements are pi & pq-pi, re

spectively. Tfe total number of elements in Si is p-l+q-p = 

q-1 = (k+l)/p-1, i.e. as many as the multiples of p. If 

there are any duplications these will be between the two 

rows. Assume that there exist one z (l:Sz:Sp-1) and one v 

(l:Sv:Sq-p) such that 

a 
1 

= pq-a i (by Theorem 7.14) p ,z p ,v 

a 5 za - zpi = pq - a E pq - vpi (mod pq) pi,z pi,l - pi,v 

(z+v)pi 5 0 (mod pq) 

<-> there exists integer s, such that (z+v)pi = spq 

<-> (z+v)i = sq <-> q divides (z+v)i 

Since the only divisors of q are 1 and q, (q 1 i)=l because 

i is positive and less than q, Then, by Theorem A7.1.10, q 

divides z+v -> z+v~q. But, from (B), l:Sz:Sp-1 & 1:Sv:Sq-p, 
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hence 2~z+v~p-1+q-p=q-1 ---> z+v < q ---> contradiction, 

hence all the elements of S1 are distinct and the set con

tains all the multiples of p. 

Since the elements of the row with 1st element pi togeth

er with the first q-p elements of the row with 1st element 

pq-pi are distinct, the remaining of the elements of the 

latter row will have duplicates (obviously in the first row, 

because each row contains a distinct set of elements - for 

the same reason there are no triplications, etc). 

To generate J copies of each multiple of p, a row with 

first element pi is selected together with the row with 

first element k+1-pi. To avoid overlap, 2pi < k+1 <---> 2i 

< q <---> i < q/2. Since q=odd, i=1,2, ••• ,(q-1)/2. Hence J 

cannot exceed (q-1)/2. 

QED 

A7.9,5. Proof of Theorem 7 • t9 

From inequality (7.9), m+1 < (k+1 )/(k+1 ,a 1 ) for all x, 
x=1,2, ••• ,n-k. Alternatively, a number x, between 1 and k, 

may be chosen for the 1st column of the IA provided that m+1 

< (k+1 )/(k+1 ,x). If d1 ~ m+1 < d 2 , then (k+l )/(k+1 ,x) > m+1 

~ d1 • Since (k+1)/(k+1,x) is a divisor of k+1, greater than 

d
1

, it may only be greater or equal to the next divisor, 

i.e. d 2 , hence d
2 
~ (k+1)/(k+1,x) <---> (k+1,x) :S (k+1)/d2 • 

Alternatively, if the latter is true, (k+1)/(k+1,x) ~ d2 > 
m+l ---> m :S (k+l)/(k+l,x)-2. Hence, if d1 ~ m+l < d 2 then 

Theorem 7.3 is equivalent to (k+l,x) ~ (k+l)/d
2 • Hence, x 

may be any integer between 1 & k, provided that it is not 

divided by any divisor of k+l greater than (k+l)/d2 • 

The 2nd result concerns the number of copies of any par

ticular integer a (1~a~k), included in the IA. According to 

the definition of type-B codes (see Definition 7,2), the 

element in column z (l:Sz~m+l) and row with first element x 

is congruent modulo k+l to the product xz. 

Then the number of copies of a equals the number of solu

tions of the congruence xz = a (mod k+l), where x & z are 

restricted according to the above. 

QED 
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A7.9.6. Proof of Theorem 1.20 

Let i denote an IA element (ie[1,k)) and e ~ (i,k+1), 

Let z denote an IA column (ze[1,m+1]) and d ~ (z,k+1). Fi

nally, let x denote a first-column element of the IA 

(xe[1,k]) and f ~ (x,k+1). According to Theorem 7.19, i, z 

& x are related via congruence: 

zx e i (mod k+1) (A) 

where x must not be a multiple of any divisor of k+1 

greater than (k+1 )/d2 , or the same the greatest divisor of 

k+1 which also divides x should not exceed (k+1)/d2 , or the 

same fS(k+1 )/d
2 • 

According to Theorem A7.2.5, if congruence (A) is to be 

solved for x, it has exactly d solutions [d ~ (z,k+1)] in 

the range [1,k) (which is also the range of x), if d divides 

i, and none if d f i. If d I i, of the d solutions only 

those which satisfy f ~ (x,k+1) S (k+1)/d
2 

are retained, 

hence the number of copies of i varies between 0 and d. This 

proves the general statement of the theorem. 

The remaining of the proof is an elaboration on the last 

paragraph. 

From Theorem A7.2.5, if d I i (i.e. if i is a multiple of 

d), congruence (A) has exactly d solutions (in the range 

[1,k)), given by 

X = Q+j(k+1)/d /j=0,1, ... ,d-1 (B) 

Hence, a column z may only contain elements i which are 

multiples of d. Also, there may be up to d copies of an in

dividual multiple of d, i, along column z [i.e. solutions of 

(A)), A solution is acceptable (i.e. the corresponding copy 

of i will be included in column z), if f S (k+1)/d2 , i.e. if 

f = gcd { Q+ j ( k+l ) Id, k+ 1) S ( k+ 1 ) I d2 (C) 

According to Theorems A7.2.5 & A7.2.7, Q is given by 

Q = (i/d)(z/d)•«k+l)/dl-1 (mod (k+1 )/d)) (D) 

where Q is unique modulo (k+1)/d (i.e. there is only one 

solution of congruence (D) in the range [1,(k+1)/d)), 



I 

Appendix 7.9 Page 465 

The requirement that e/dS(k+1 )/d2 and the case for d=1, 

will complete the proof. Nevertheless, they require the 

proof of gcd(x,(k+1)/d) = gcd(f,(k+1)/d) = e/d, if dli· 

If dli, from congruence (D) and Definition A7.2.1, there 

exists integer c such that Q = (i/d)(z/d)P + c(k+1)/d, where 

p ~ ~[(k+1)/d]-l. Hence, from (B), x = (i/d)(z/d)P + 

c(k+1)/d + j(k+1)/d = (i/d)(z/d)P + q(k+1)/d. So, if dli 

there exist integers q & p, such that 

X = (i/d)(z/d)P + q(k+l)/d (E) 

(z,k+1) ~ d <-> [by Theorem A7.1.5] (z/d,(k+1)/d} = 1 

-> [by Theorem A7.1.11] 

Let 

((z/d)P,(k+1)/d} = 1 

((i/d)(z/d)P,(k+1)/d} ~ h 

(F) 

(G) 

Because d- (z,k+1) divides k+1 and i (the latter by hy

pothesis), 

e ~ (i,k+l} = ((i/d)d,[(k+1)/dld} = ldl(i/d,(k+l)/d} 

[by (A7.1.1c)] and since d is a gcd, i.e. nonnegative, 

(i/d,(k+l)/d} = e/d (H) 

Since (e/d) I (i/d) -> (e/d) I (i/d)(z/d)P and 

since (e/d) I (k+l)/d [from (H)] -> 
(e/d) 1 h (I) 

Let (h, (z/d)P) ~ b. Since b I h and h I (k+l )/d, -> b 

(k+1 )/d. Also, b 1 (z/d)P, Then, b ( (z/d)P, (k+1 )/d) = 1 

[see (F)], Hence b=l and 

(h, (z/d)P) = 1 (J) 

From (G) & (J) and Theorem A7.1.10 1 hI (i/d), and by (G) 

hI (k+l)/d. Then, by (H), 

h I (e/d) (K) 

By (I) & (K), h = e/d, and by (G): 

((i/d)(z/d)P 1 (k+1)/d} = e/d (L) 

By (L) & Theorem A7.1.12, 

((i/d)(z/d)P 1 (k+1)/d} = ((i/d)(z/d)P+q(k+l)/d,(k+l)/d} = e/d 
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[using (E)]: 

(x,(k+l)/d} = e/d (M) 

(f,(k+l)/d} = {<x,k+l),(k+l)ld} = 

= (x,(k+l,(k+l)/d)} [by (A7.1.1b)] 

= (x,(k+l)/d} [since (k+l)/d I k+l]. 

Using (M): 

(x,(k+l)/d} = (f,(k+l)/d} = e/d (N) 

Since 

( k+l) /d2' 

(e/d) I f -> 
it is necessary 

(e/d) S f and since f must be S 

that e/d S (k+l)/d2• Apart from 

the case of d=l, the proof is complete. 

If z is relatively prime to k+l (d=l), for a given i 

there is always exactly one solution of (A) (since 1 I i). 

This solution, x, is the 1st-column element of the row which 

contains element i. This single solution is acceptable, only 

if f=(x,k+l)S(k+l)/d2• From (N), for d=l, (x,k+1) = f = e, 

so the condition f S (k+1 )/d2 is equivalent to e S (k+1 )/d2 • 

QED 

APPENDIX 7.10: fn .t .JH l IYP£-8 SEl.f-QBTHQGQNAL COOl;$ 

A7.10.1. Proof of Theorem 7,21 

According to Theorem 7.3, if a row, say x, is not to con

tain a zero it is necessary and sufficient for its length 

not to exceed (k+l)/(k+1,a 1 )-1. Note that this implies also z, 
that a 1 f. 0, because (k+1)/(k+1,0)-1 = (k+1)/(k+l)-1 = 0, z, 
hence there exists no row if a 1=0. z, 

To prove the first part: 

If m+1=k, then every row should have length k (its maxi

mum possible length). From Theorem 7.3: 

(k+1)/(k+1,az, 1 )-1 = k for all x=1,2, ... ,n-k 

(k+1)/(k+1,a,., 1 ) = k+1 for all x=1,2, ... ,n-k 

(k+l,a 1 ) = 1 for all x=1,2, ••• ,n-k 
"· 
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Conversely, if 

(k+l)/(k+l,a 1 )-1 

(k+l,a 
1

) = 1 for all x=1,2, ••• ,n-k, then x, 

x, = k for all x=1,2, ••• ,n-k 1 hence every row 

has length k, and m+1=k. 

Hence, a necessary and sufficient condition for m=k-1, is 

condition (7.24). 

To prove the second part: 

Let (7.25) hold true. Then, the elements of the first 

column are incongruent to each other modulo any non-trivial 

divisor of k+1. 

From Theorem A7.1.7: 

dl(k+1) <---> there exists c: d = (k+1)/(k+1 1 c) /1ScSk+1 

dl(k+1) /d>1 <---> d = (k+1)/(k+1,c) /1ScSk+l & d>1 (A) 

d = 1 <---> k+1 = (k+1,c) <---> k+l I c (B) 

From (A) I k+1 2: c. Hence, if k+1 I c <---> k+1 s C) I then 

k+1 = c. Conversely, if k+1 = c ---> k+1 I c. Hence: 

Given lScSk+l: k+1 I c <---> k+l = c, and using (B): 

Given lScSk+l: d = 1 <---> k+l = c 

Given lScSk+l: d '1- 1 <---> k+l '1- c 

Given lScSk+l: d '1- 1 <---> k+l < c and since d2:1: 

Given lScSk+l: d > 1 <---> k+l < c. So, from (A) : 

dl(k+l) /d>l <---> d = (k+1)/(k+l,c) /lSc<k+l (C) 

Then, from (C) & (7.25) 1 the elements of the 1st column 

of the IA are incongruent modulo ((k+l)/(k+l,c)) for all c 

less than k+l = m+2 1 hence for all c S m+l. Then, by 

(7.13b) 1 the code is self-orthogonal. 

Consider the converse now. Let the code be self-orthogo

nal. Then, by the corollary of Theorem 7.5, 

for all r & v and 

rows that are equal 

ar, 1 ~ av,l (mod (k+l)/(k+l,c)) (D) 

for all elements ar u = a of these two • v,w 

(where l<u,wSm+l) and for all positive 

integers c less than u & w. Since m+l=k and the rows are 
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made of distinct elements (see Theorem 7.6), any two rows, 

say x & y /x#y & 1Sx,ySn-k, contain the same set of ele

ments (in different order). Let element i 1SiSk, be in posi

tion w
1 

in row v and in position u 1 in row r, and let a 1 be 

the minimum between u
1 

& w 
1

, Then, c ranges through the in

tegers 1,2, ••• ,MAX{a1 ,a2 , ••• ,at}-1. 

Assume that there exist at least two rows, say r & v, 

such that their first elements (ar,l & av,l) are congruent 

modulo at least one divisor d, of k+1. Then: 

ar,l 5 av,l (mod d) -> 

there exists integer q such that, ar,l-av,l = qd -> 

ar, 1p(k+1 )/d - av, 1p(k+1 )/d = qdp(k+l )/d, where (p,k+l )=1. 

Then: ar,1p(k+l)/d 5 av,1p(k+l)/d (mod k+l) -> 

ar,z 5 av,z (mod k+1) /z=p(k+1)/d, p=1,2, ... ,d-1 (E) 

Since k=even, k+1 is odd and its smallest prime factor, 

p, is ~3. Then, d~p~3 

least p=1,2. From (E), 
-> d-1~2. Then (E) is valid for at 

for p=2, [note that (2,k+1)=1], a !! r,s 
a (mod k+1) v,s /s ~ 2(k+1)/d. Since, by hypothesis, the 

code is self-orthogonal, from the corollary of Theorem 7.5 

and for all c=1,2, ... ,2(k+1)/d-1, ar,l ¥ av,l (mod 

(k+1)/(k+l,c)). If c=(k+1)/d, which is S2(k+l}/d-1 for all 

k~2, then (k+l)/(k+1,c) = d, hence: ar,l ¥ av,l (mod d), 

which contradicts the assumption. So, there are no two rows 

whose first elements are congruent some divisor of k+l. 

This proves the second part. 

QED 

A'1.10."2. Proof of Theorem z.aa 
Since m=k-1, each row must have length m+1=k. From the 

proof of Theorem 7.21, a necessary and sufficient condition 

is that all first-column elements are relatively prime to 

k+l (note that this was proved without assuming that k is 

even). 

(k+l,a,., 1 ) = 1 (A) 

Since k+l is even, from (A), a 1 must be odd. Then, the 
"• 
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first-column elements must all be congruent to 1 (mod 2), so 

for any two rows with first elements, say, av, 1 & ar, 1 : 

a 
1 

5 a 
1 

(mod 2) v, r, 

2(k+1 )/2 I (av, 1-ar, 1 ) (k+1 )/2 

[ (k+1 )/2]av,1 5 [ (k+1 )/2]ar,1 (mod k+l) 

a 5 a z (mod k+ 1 ) I z .::. ( k+ 1 ) /2 (B) v,z r, 

Since a 
1 

= 1 is an acceptable first-column element, it x, 
follows that a 5 (k+1)/2 (mod k+1) and because O<a <k+1 z,z x,z 

OSja -(k+1)/2j<k+1, it follows from Theorem A7.2.3 that a x,z x,z 

= z [ .:0 (k+1)/2]. Hence, from (B): 

For all v=1,2, ••• ,n-k: a = z /z.::. (k+1)/2 v,z (C) 

(C) proves the 3rd part of the theorem. 

Next, it will be shown that if k+1=even, the IA may only 

have 2 rows, if the code is to be self-orthogonal. 

Let 

Since, 

any two rows, with first 

by Theorem 7, 6, the rows 

elements, say, a 1 & a 1 • v, r, 

contain a distinct set of 

elements, because their range is [1,k] and since there are k 

of them, each row contains the integers 1,2,,,,,k, (in a 

unique order, of course), According to the corollary of The

orem 7.5, for the code to be self-orthogonal, the first ele

ments of any two rows, say a 1 & a 1 , must be incongruent v, r, 

modulo (k+1)/(k+1,c) for all c = 1,2, ••• ,MAX{a1 ,a2 ,,,,,at}-1, 

where a
1 

.:0 MIN{u1 ,w1 } and u 1 & w1 are the positions of ele

ment i (1SiSk) in rows v & r, respectively. 

The smallest divisor of k+1 is 2, hence the largest one 

is (k+1)/2, If (k+1)/2 is included in the range of values of 

c, then (k+1)/(k+1,(k+1)/2) = 2 and a 1 & a 1 must be incon-v, r, 

gruent modulo 2, which means that one of the two must be 0 

(mod 2), i.e. an even integer. This is not permitted by (A) 

above, hence 

;;_ ~u:rr: ~)'lj:{rt}~ :r~_r: ~ ~~ ~ ~~ n_l:t~ 
ij{ ~ :<k':·+J'}/:t u ®'t ~-- _ij\" ~ l'~t1i ot·~~ 

(D) 

Consider rows with first elements av, 1 & ar, 1 ' By (C), the 

middle element is ( k+1) /2, Let A(v) denote the set of the 
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(k-1)/2 elements in the first half of the row with 1st ele

ment a 1 and B(v) the (k-1)/2 elements in the second half of v, 
that row. Note that A(v) & B(v) together contain k-1 dis-

tinct elements [the kth is in column z ~ (k+l)/2]. 

For each element i (lSiSk), either i=(k+l)/2 in which 

case it is in column (k+l)/2, or ieA(v), or ieB(v). 

If i=(k+l)/2, then i is in column (k+l)/2 on each row v, 

r, etc. For this case, a
1
=(k+l)/2. Hence, condition (D) is 

not violated. 

All the elements of B(v) must also belong to A(r) because 

if, say, j appears in B(r) then aj>(k+l)/2, hence c is al

lowed to range up to at least ( k+l) /2, violating thus the 

necessary condition for self-orthogonality [see (D)]. Hence 

A(r)=B(v) and, by necessity, A(v)=B(r). So: 

K. ~-asary_ ~it_i9n __ t~_r: -~ eic:iat~~ ~t, ~-~lt~,tbogo~al 

t;pe:..~ ~- jfUb_ )(:tJ~Y~•i ~ tha~ f9r_ ~J, two_ ~s Jf_i_tb_ fU'•t- (E) 

cblm: ~l~l.fl acv-_i i~ ,azi,it ;A{v)!B{~) ,.and_A{i-J~B{v) ~ 

Assume that the IA has at least three rows with first

column elements, say, a 1 , a 1 & a 1 • According to condition v, r, s, 

(E), above, for the code to be self-orthogonal it is neces-

sary to have A(v)=B(r) & A(r)=B(v), and A(v)=B(s) & 

A(s)=B(v), and A(r)=B(s) & A(s)=B(r). From these six equa

tions it follows that A(v)=B(r) & B(r)=A(s) & A(s)=B(v), 

which gives A(v)=B(v), which means that row v contains du

plicate elements, which is a contradiction, by Theorem 7.6. 

Hence, the IA must have less than three rows if the code is 

to be self-orthogonal, i.e. n-kS2. 

From the discussion so far, on type-B codes, it is appar

ent that since each row contains all integers in the range 

[l,k], each error bit e~1 l appears in the syndrome equations 

exactly n-k times. Then, there are exactly n-k syndromes 

checking on each error bit, hence J=n-k and, since n-kS2, it 

follows that JS2. If the code is to have a non-zero guaran

teed error-correcting capability (t>O), then J>l (note, from 

Theorem 5.3, that t = LJ/2J ), Hence, the only possible value 

for J is 2, and so is for n-k. 

This proves part of the fourth statement of the theorem 

(J=2l. 
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Next, it will be proved that a necessary cond~tion [di

rect consequence of (E)] for the existence of a self-orthog

onal code is that a 1 , 1+a2 , 1=k+l. To achieve this it is neces

sary to show that, for all v=1,2, ••• ,n-k & all b,c=1,2, •. ,k, 

ba 5 a (mod k+l), where y 5 be (mod k+l) & lSySk (F) v,c v,y 

For any b,c,=1,2, •.• ,k and any v=1,2, ••• ,n-k, let be 5 y 

(mod k+l), where lSySk [y = be- lbc/(k+l)J(k+l)]. Then, 

(k+l) I (be-y)-> (k+l) I {bc-y)av,l' Hence: 

For all v=1,2, ••• ,n-k & all b,c=1,2, ••• ,k: 

bcav,l- yav,l 5 0 (mod k+l) -> 

b{cav,l) 5 yav,l (mod k+l) 

Using Definition 7.2 and the fact that lSc,ySk, (F) fol

lows immediately. 

Let c = k+l-p in (F). Then, p = k+l-c and for c=1,2, •• ,k 

---> p = k,k-1, •. ,1. Since y 5 b(k+l-p) 5 -bp (mod k+l): 

For all v=1,2, .•. ,n-k & all b 1 p=l 1 2, ••• ,k: 

ba k+l 5 a (mod k+l), where y5-bp (mod k+l) & lSy~k (G) v 1 -p v,y 

Let a 1 , 1 & a 2 , 1 be the two elements of the 1st column. The 

elements of the 2nd half of the first row may be expressed 

by al,k+l-u /u=l 1 2 1 ••• 1 (k-1)/2. Because B(l)=A(2) [by (E)] 1 

a 2 , 1 must equal one of al,k+l-u /u=l, 2, ••• , (n-k)/2. Let a 2 , 1 = 

al,k+l-w /lSwS(k-1)/2. Then, the elements of A(2) are given by 

(see Definition 7.2): 

a 2 ,r 5 ral,k+l-w (mod k+ 1) [and using (G)] -> 

a 2 5 a 1 (mod k+l), where v 5 -rw (mod k+l) (H) .r ,v 

Since the IA elements are in the range (O,k+l), their 

difference la2 ,r-al,vl is in the range [O,k). Then, by Theorem 

A7.2.3: 

a 2 = a 1 /v 5 -rw (mod k+l) (I) ,r ,v 

For those values of r, for which lSk+l-rwSk, and because 

k+l-rw = -rw (mod k+l), it follows that v = k+l-rw. Then, 

from (I): 
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a 2,r = a 1 ,k+1-rw /lSk+l-rwSk (J) 

Notice from (J) that if w=l, a 2 , 1 = a 1 ,t, a 2 , 2 = a 1 ,t_1 , • • •, 

a 2 ,._1 = a 1 ,.,1 • where z ~ (k+l)/2. Hence, w=l is a suitable 

value. It will be shown that any other value of w (with 

we[l,(k-1)/2]) will result in a violation of condition (E). 

Let w>l. As r increases, k+l-rw decreases. By design, 

element a 2 , 1 = a 1 ,k,1-w is in the 2nd half of the first row. It 

is not known though if a 2 , 2 = a 1 ,k+1-zw appears in the 2nd half 

of the 1st row, or not. The same applies to a 2 , 3 , etc. 

Note that elements a 2 , 1 ,a2 , 2 ,, •• ·~z,x• where x ,;. (k-1 )/2, 

equal elements al,lt+l-w' al,t+l-Zw' ••• , al,t+l-xw' where if k+l-jw 
becomes negative an adequate number of (k+l)s is added so 

that it becomes positive and not greater than k. Hence, the 

1st half of the 2nd row is identical to a reversed & 'inter

leaved' (with 'degree' w) first row. 

Consider, for example, k=19 and eight rows (only two to 

be retained), with first elements 1, 3, 7, 9, 11, 13, 17 & 
19 (all relatively prime to k+l=20). 

1st halt' 2nd halt' 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

3 6 9 12 15 18 1 4 7 10 13 16 19 2 5 8 11 14 17 

7 1-4 1 8 15 2 9 1£ 3 10 17 -4 11 18 5 12 19 6,13 
9 18 7 16 5 14 3 12 1 10 19 8 17 6 15 4 13 2 11 

11 2 13 4 15 s 1'1 8 19 10 112 3 14 5 16 7 18 9 

13 6 19 12 5 18 11 4 17 10 3 16 9 2 15 8 1 14 7 

17 14 11 8 5 2 19 16 13 10 7 4 1 18 15 12 9 6 3 

19 l8 17 16 15 14 13 12 11 1D 9 8 'I 6 5 4 3 2 1 

Select any of the eight rows as the !A's first row, say 

the 3rd row* (starting with element a 1 ,1=7). Candidates for 

the other row may be found in the 2nd half of this row: 

13(w=l), 6(w=2), 19(w=3), 12(w=4), 5(w=5), 18(w=6), 11(w=7), 

4(w=8) and 17(w=9). Note though that from these candidates 

one must exclude all elements not relatively prime to 

k+1=20. Hence the acceptable list of rows** is 13(w=l), 

19(w=3), ll(w=7) and 17(w=9), 

Let a 2 , 1 = 19 (w=3). Then the first half of the !A's 2nd 

row will be 19 18 17 16 15 14 13 12 11. According to the 

* Highlighted heavily, 
** Highlighted, 
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theory, these 9 elements should equal elements a 1 , 20_3r, where 

r=1,2, ••• ,9 and where 20-3r is kept within [1,19] by adding 

20s whenever necessary. The 1st half of the 2nd row, corre

sponds to the 1st-row elements a 1 , 11 , a 1 , 14 , a 1 •11 , a 1 , 8 , a 1 , 5 , 

a 1 , 2 , a 1 , 19 (=a1 ,_1 ), etc, a 1 , 13 (=a1 ,_7 ). To illustrate this, the 

two rows are arranged again below, with the first six ele

ments (of the 2nd row) highlighted: 

7 14 1 8 15 2 9 16 3 
1~ 18 17 1~ 15 14 13 12 11 

10 

10 

17 4 11 18 5 12 19 6 13 

9 8 7 6 5 4 3 2 1 

For condition (E) to be satisfied (a necessary condition, 

if the code is to be self-orthogonal), no highlighting 

should appear in the 1st half of the 1st row (the case above 

does not qualify). To put it otherwise, w should be chosen 

so that (E) is satisfied; in fact, all such values of w must 

be obtained, in order to arrive at all possible self-orthog

onal codes. 

All first-column elements must be relatively prime to 

k+1: (a1 , 1 ,k+1) = (a2 , 1 ,k+1) = 1, and since a 2 , 1 = al,t+l-w' then 

(al,t+l-w'k+1) = 1 -> (a1 , 1 (k+1-w)-q(k+l),k+l) = 1 -> 

(-wa1 , 1+s(k+l),k+1) = 1 -> (-wa1 , 1 ,k+1) = 1 (by Theorem 

A7.1.12), Then, (w,k+1) may only be 1, because otherwise 

(-wa1 , 1 ,k+1) would not be 1 either. Hence, 

(w,k+1) = 1 (K) 

The 1st element ( al,k+l-w) is somewhere in the 2nd half of 

row 1, the 2nd element ( al,k+l-zw> maybe in the 2nd half, or 

it may not be, and so on, but it seems that at least one of 

the elements will be in the 1st half of the 1st row (forbid

den region). Let al,t+l-lw'al,k+l-Zw' ••• ,al,t+l-xw be the first x 
elements of the 1st half of the 2nd row that are all in the 

2nd half of the 1st row, as well. Then, k+1-xw > (k+1)/2 

<-> (k+l)/2 > xw <-> x < (k+1)/(2w). From (K}, w (w>1} 

does not divide (k+1}/2 because if it did, k+1 = 2qw and 

then (w,k+1} = (w,2qw} = w > 1. Then, the maximum value of x 

is L( k+ 1 } / ( 2w )J • Then, element al,lt+I-xw (X 0::. x""") is in the 

2nd half, but element a 1 .t+l-(X+llw will be in the 1st half, 

provided that k+1-(X+1)w > 0 /X+1 = x~+1 = L(k+1)/(2w)J+1. 

But, k+1-(X+1)w = (k+1}-L(k+1)/(2w)Jw-w = (k+1}/2-
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l(kfl)/_~w)Jw + (k+1)/2-w = MOD[(k+1)/2,w] + [(k+1)/2-w], 

where MOD(A,B) ~ A modulo B, with O~MOD(A,B)~B-1. Then, 

k+1-(X+1)w ~ (k+1)/2-w ~ (k+1)/2-(k-1)/2 = 1. Hence: 

If w>1, there exists an element a 2 from the 1st half of ,v 
the 2nd row [v<(k+1)/2] which appears in the 1st half of the 

1st row: 

a 2,v = al,t+l-vw /v.;, L(k+1)/(2w)J+1 (L) 

Hence, if the code is to be self-orthogonal, w may only 

be equal to 1. Then the 1st element of the 2nd row equals 

at+l-l, i.e. the first element of the 2nd row must be equal 

to the last element of the first row: 

then, a 1,t + ak,l = 0 (mod k+1). From (M): 

a 1,1 + a 2,1 = 0 (mod k+1) -> "there exists integer q 

such that a 1,1 + a 2,1 = q ( k+ 1)", Since a1,1 & a 2,1 are IA ele

ments, it follows that 0 < a 1,1 + a 2,1 < 2 ( k+1) -> 0 < 

q(k+1) < 2(k+1) -> q=1 -> 

A necessary condition for the code to be self-orthogonal: 

al,l + a2,1 = k+1 (N) 

Note that from (N), and because (a1,1,k+1)=1, it also fol

lows that (a2,1,k+1) = (k+1-a1,1,k+1) = (-a1,1,k+1) (from Theo

rem A7.1.12) and finally, (a2,1,k+1) = 1. 

This proves the 2nd statement of the theorem. 

So far it has been proved that the following conditions 

are necessary, if k+1=even and the code is to be self-or

thogonal: 

1. J = n-k = 2 , 

2 • ( a 1,1, k+ 1 ) = 1 and 

3. a 2,1 = k+1-a1,1 

Consider now a (k+2,k,k-1) type-B code with k+1=even and 

its IA with a 1,1 such that 

Because ( a 1,1, k+ 1) = 1 

(a1,1,k+1) = 1 and a 2 ,1 = k+1-a1,1• 

-> (k+1-a1,1,k+1) = 1 and since 

both rows satisfy Theorem 7.3, then they contain no zeros. 
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Let a 1 , 1=x. Then, the first row elements are given by 

a 1 ,r5 rx (mod k+l) /r=1,2, ... ,k (0) 

while the 2nd row elements are given by 

a
2 

5 (k+l-x)r 5 -rx (mod k+l) (P) ,r 

From (0) & (P), 

a 1 + a 2 50 (mod k+l) /r=1,2, ... ,k ,r ,r -> 

a
1 

+ a
2 

= k+l /r=1,2, ... ,k ,r ,r (A7.10.1) 

because a 1 & a 2 are lA elements, hence they are con-,r ,r 
fined in the range (O,k+1), so their sum cannot be less than 

1, or greater than 2k. Also, from (P) and with the same rea

soning: 

al,k+l-r 5 (k+l-r)x 5 -rx 5 a 2 ,r (mod k+l) /r=1,2,.,, ,k 

-> a = a Z,r l,k+l-r (A7.10.2) 

From (A7.10.2), the pairs of equal elements in the two 

rows appear in positions 1 & k, 2 & k-1, ••• ,(k+l)/2 & 
(k+1)/2, ••• ,k & 1. Hence, the beginning of the rightmost 

pair of equal elements is (k+1)/2, hence c=1,2, ••• ,(k+1)/2-1 

and according to the corollary of Theorem 7. 5 the code is 

self-orthogonal if 

a 1 , 1 - a 2 , 1 (mod (k+1)/(k+l,c)) /c=1,2, ... ,(k+l)/2-1 

Since c<(k+1)/2, it follows that (k+l,c) < (k+l)/2 -> 
(k+1)/(k+1,c) > 2. Hence it is required that a 1 , 1 = x and a 2 , 1 

= k+l-x are incongruent modulo any divisor d of k+l, greater 

than 2. 

Assume that there exists a divisor d of k+1, greater than 

2, for which x & k+1-x are congruent modulo d: 

x 5 k+1-x (mod d) -> there exists q such that 

k+l-2x = qd -> d divides 2x, because d 1 k+1. 

Let (d,x) ~ f. Then, f I d I k+1 and f I x, hence f I 
(x,k+1) = 1 -> f=l. So, d divides 2 (by Theorem A7.1.10) 

---> dS2 ---> contradiction ---> there does not exist a 

divisor of k+l, greater than 2, such that a 1 , 1 & a 2 , 1 to be 
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congruent. Then the code is self-orthogonal. 

So, if k+1=even, a necessary and sufficient condition for 

the (k+2,k,k-1) code to be self-orthogonal is J=n-k=2, a 2 , 1 = 

k+1-a1 , 1 and (a1 ,l'k+1) = 1. This proves the main body of the 

theorem and also statement 4. 

Regarding statement 1, it has already been proved that 

a 1 , 1 is the !A's generating element, and that a 1 , 1 may be any 

positive integer, not exceeding k, and is relatively prime 

to k+l. Since a
1

,
1
=k+l would not be considered because it 

would not be relatively prime to k+1, there are exactly 

~ ( k+ 1) such a 1 , 1s (see Definition A 7 .1. 4), hence as many !As. 

QED 

A'1.10.3. Proof of Theorem 7.23 

Let k+1 be an odd positive integer, with p its smallest 

prime factor. If the elements of the first column of the IA 

form a subset of 

B(p).::. {bj /j=1,2, ... ,p-1, bj 5 pj (mod k+l), 1Sbjsk} (A) 

where ( p, k+ 1) = 1, then for each a 
1 

there exists j x, 

/1SjSp-1 such that: 

ax, 1 = bj 5 pj (mod k+1) -> 

there exists q such that a 1 = pj + q(k+1) -> x, 

( a,., 1 , k+ 1) = ( pj +q ( k+ 1) , k+ 1} = ( pj, k+l) (by Theorem A 7 .1.12) 

Since (p,k+l) = 1 & (j,k+1) = 1 (because 1Sj<p), 

then ( pj 'k+1) = 1 (by Theorem A7.1.13). * 
It follows then that each row of the IA may have k ele-

ments (see Theorem 7.21), which are distinct (see Theorem 

7. 6) • Hence, the IA contains exactly n-k copies of each ele-

ment i=1,2, ••• ,k, which is equivalent to the existence of 

exactly n-k syndromes checking on each error bit e~1 > /i=1,2, 

••• ,k (see Theorem 7.1). Hence, J = n-k. 

Furthermore, if k+1 S n S k+p-1, then 2 S n-k S p-1, 

hence the number of rows may not exceed p-1. 

* Remember that (a, b) denotes the greate~~~~~n div~sor of a & b. 
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Let any two elements of B( p), say b 1 & b.l, and assume 

that there exists a non-trivial divisor of k+1, say, d such 

that: 

b 1 = b.l (mod d) <-> pi = pj (mod d) [by (A) 1 

<-> i = j (mod d/(p,d)) (by Theorem A7.2.4) 

Let (p,d) ~ f. Then, f I d I (k+1) and f I p, hence 

f I ( p, k+ 1 ) = 1 -> f = 1 • So, i E j (mod d) -> 
d divides li-jl -> d S li-JI• 

But 1Si,jSp-1 -> 0 < li-jl < p-1 < d, hence contra

diction, hence the elements of B(p) are incongruent to each 

other module any non-trivial divisor of k+1. This proves the 

existence part of the theorem. 

To prove that the (n,k) type-B5 code is the only 

(n,k,k-1) type-B self-orthogonal code with k=even, it is 

enough to start with an (n,k,k-1) type-B self-orthogonal 

code. 

Since the length of each row is k, it follows from 

Theorem 7.21 that 

(a:x, 1 ,k+1) = 1 /x=1,2, ... ,n-k (B) 

Also, for the same reason, the IA contains exactly n-k 

copies of each integer i /i=1,2, ... ,k, hence J = n-k (see 

Theorem 7.1). 

Since the code is self-orthogonal, by Theorem 7.21, the 

a 
1

s are incongruent to each other module any nontrivial x, 
divisor, d, of k+1. Hence, since there cannot be more than d 

incongruent numbers module d, for any non-trivial divisor of 

k+1, and since p is the smallest of ds, then there are not 

more than p incongruent numbers module any divisor of k+1. 

Of these p numbers, one has to be excluded because it is a 

multiple of p [ = 0 (mod p) ] and it would violate (B). 

Then, 

1 S n-k S p-1 -> k+1 S n S k+p-1 

QED 
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APPENDIX '1.11; GEtfEBAl PRQPEBTI:ES OF TYPE-C COl)ES 

A7.11.1. Proof of Theorem 7.~4 

Consider a cyclically-decodable (n,k,m) 

(a.JI13)' two error bits, say, e~4 l and 

requirement laid by Definition 7.4. Let 

type-B code 

that satisfy 

s{z(j)} 
h+Z(j)-1 /j=l,2, ••• ,J

4
, lSx(j)Sn-k & lSz(j)Sm+l 

and 

the 

(A) 

be the syndromes checking on e~>. Then (see Definition 

7. 4) the syndromes checking on e~Pl must be: 

s<><Cj)} 
h+z(j) /j=1,2, ••• ,JP, lSx(j)Sn-k & lSz(j)Sm+l (B) 

where, without loss of generality, a leftward shift has 

been assumed. 

Note at first that, 

Also, from Theorem 7.1, 
e<«l 

h ' 

a necessary condition is J
4

= J8 ~ J. 

because [see (A)] s<><CjlJ checks on b+z(j)-1 

ax(1),z(1) = az(2),z(2) = ''' = az(J),z(J) = a. (C) 

and because [see (B)] s<><Cj)} checks on e<Pl h+z(j) h ' 

a - a = • • • = a = J3 (D) z(l),z(l)+l - z(2),z(2)+1 z(J),z(J)+l 

From (C) & (7.8): 

z(l)az(1),1 = z(2)az(2),1 = ••• = z(J)ax(J),1 (mod k+l) (E) 

From (D) & (7.8): 

••• 

!! z(J )az(J),l+az(J),1 (mod k+l) (F) 

It follows from (E), (F) & Theorem A7.2.2 that a neces

sary condition for the existence of a horizontal-shift cy

clically decodable type-B code is 

az(l),l a ax(2),1 a • • • = az(J),l (mod k+l) (G) 

Because 1Sax(j),1Sk, then 0Siax(v),1-ax(w),ll<k+l, hence, by 

Theorem A7.2.3: 

az(l),l = ax(2),1 = ''' = ax(J),1 (H) 

Then, by the corollary of Theorem 7.5, the code is not 
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self-orthogonal. 

QED 

A7.11.2. Proof of Bel@tjons !7.271 

Following the same approach, as above, consider a cycli

cally-decodable (n,k,m) type-B code and two error bits, say, 

e~•l & e~Pl (a;((3), that satisfy the requirement laid by Defi

nition 7.4. Let 

(X( j)} I . 1 2 J 
shu(jl-1 J= • • • • • • • • l~x(j)~n-k & l~z(j)~m+l (A) 

be the syndromes checking on e~•>, Then (see Definition 

7.4) the syndromes checking on e~Pl must be: 

sfx(jl±.1l /j=1,2, ••• ,JP, l~x(j)~n-k & l~z(j)~m+l (B) h+z(j)-1 

where an upward or downward shift has been assumed. 

As before, it is necessary that J
4

= JP~ J. 

From Theorem 7 .1, because [see (A)] s~~~U~-1 checks on e~•>, 

a =a = ••• =a =a (C) x(1),z(l) x(Z),z(Z) x(J),z(J) 

and because [see (B)] s{x(jl±.1l checks on e(lll h+z(j)-1 h ' 

ax(1)±.1,z(1) = ax(Z)±.1,z(Z) = ''' = ax(J)!.1,z(J) = 13 (D) 

From (C) & (7.8): 

z(l)ax(1),1 = z(2)ax(Z),1 = 
From (D) & (7.8): 

z(l)ax(1)±.1,1 = z( 2 )ax(Z)±.1,1 = 

••• 

••• 

(E) & (F) are relno ( 7. 2 7) , 

- z(J )ax(J),1 (mod k+l) 

= z ( J) az(J)±.1,1 (mod k+ 1) 

A7.11.3. proof of Theorem 7.25 

(E) 

(F) 

QED 

Assume that there exists a row, say, x (lSxSn-k) of the 

SYRE which contains at least two syndrome bits, say, s~:!.1 & 

s~:!.1 checking on the same error bit, say, e~11 , Then, by Theo

rem 7 .1, a = a • = i, which contradicts Theorem 7. 6. This z,A z, .. 
proves part of the 1st statement of the theorem. 
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Assume that there exists a column of the SYRE, say, z 

(l:Sz:Sm+l) which contains at least two syndrome bits, say, 

<«l & <a> h k' th b't <il Th sh+z-l sh+z-l c ec 1ng on e same error 1 , say, eh • en, 

by Theorem 7 .1, a = a. = i, which is acceptable by Theo-a,z ... z 
rem 7.6 but not by Definition 7.5, as will be shown below: 

Let syndrome bits, s<xl h+z-1 & s<x+&l where 1 <x<x+8<n-k ~ S & 
h+z-1' - -

1:Sz:Sm+1, check on error bit e~c(l)} /1:Sc(1):Sk. 

Since O<x<x+8:SS -> 0<8:SS-x:SS-1 -> 0<8<S (A) 

Then, according to Definition 7.5, the two syndrome bits 

immediately below (without loss of generality, one of the 

two directions - upwards or downwards - has been chosen) 

s<xl & s<x+&l in the SYRE, must check on another error bit. In 
h+z-1 h+z-1' 

general, the pairs of syndrome bits 

s<x+j-1) & s<x+6+j-1) 
h+z-1 h+z-1 /J=1,2, ... ,s (B) 

where x+j-1 & x+8+j-1 are kept within [1,S], by reducing 

them modulo s, 
check on error bits e~c(j)} /j=1,2, ••• ,S, respectively. 

From the above & Theorem 7.1: 

ax+j-l,z = az+6+j-l,z = c(j) /j=1 ,2, • • • ,S (C) 

It will be shown now that the c 1, c
2

, ••• , c 5 are not dis

tinct. 

Let ie[1,S] and let j=i-8 if i>8 and j=S+i-8 if i is oth

erwise. In both cases, je[1,S] because: If i>8, 0<8<i:SS 

-> O<i-8:SS-8:SS-1 [by (A)] -> 1:Si-8<S -> je[1,S), 

If i:S8, then: i-8:50 -> S+i-8:SS, while i-8~1-(S-1) [see 

(A)] -> 2-S:Si-8 -> 2:SS+i-8, hence je[2,S]. Further

more, j 5 i-8 (modS), while j#i [otherwise, 8=0 or 8=S, 

both of which contradict (A)], So: 

For each ie[1,S], there exists je[1,S] /j#i: 

j 5 i-8 (mod S) (D) 

From (D): j 5 i-8 (mod S) 

x+i-1 5 x+8+j-1 (mod S) (E) 

From (C): 

a:uj-l,z = ax+&+j-l,z = c ( j) (F) 
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az+i-l,z = az+6+1-l,z = c ( i) (G) 

From (E), (F) & (G), for each c(j) /j=1,2,,., ,S, there 

exists at least one ie[l,S]: c(i) = c(j), Hence, a complete 

cyclic shift can only be used to decode less than S ~ n-k 

error bits, which contradicts Definition 7.5. Hence, no col

umn of the SYRE contains more than one syndromes checking on 

the same error bit. This concludes the proof of the 1st part 

of the theorem. 

Consider column w (lSwSm+l) of the SYRE. From Fig. 7.1, 

this contains the syndrome bits s<.11l , i=1,2, ••• ,n-k (h=O), 
• -w 

According to Theorem 7.1, these check on error bit e~4>, iff 

a 1 ,••Z-w = a. Since each column of the SYRE contains syndromes 

checking on a different error bit, no two of a 1 2 must be 
·•• -w 

equal, for i=1,2, ••• ,n-k. Hence, by necessity, no IA column 

must contain duplicate elements. 

Furthermore, there must be another, say, Jw-1 SYRE col

umns containing syndrome bits checking on exactly the same 

error bits as column w. Hence, there must be Jw IA columns 

containing exactly the same elements._ All these Jw IA col

umns form a coset. The coset leader is the column with the 

smallest column number. The first coset is the one with the 

1st column as leader. Since each column contains exactly n-k 

elements, then each coset contains n-k distinct elements. If 

there are x cosets, then all of them contain x(n-k) distinct 

elements. For the code to check on each error bit, x(n-k) = 

k, from which it follows that n-k must divide k and also 

that there are k/(n-k) cosets. 

X = k/(n-k) (H) 

If the syndrome bits of a column of SYRE check on a cer

tain sequence of error bits then, by Definition 7.5, the 

syndrome bits of another column of SYRE, belonging to the 

same coset, must check on the same sequence of error bits, 

the sequence starting from a different row this time. This 

means that (by Theorem 7.1), each column of the same coset 

must be a cyclic shift of some other column of that coset. 

Let J 1 /1SiSx be the number of columns in coset i. Then, 

since the IA has m+1 columns, 
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Furthermore, by Theorem 7.1, the number of syndrome bits 

checking on error bit e~1 l /lSi:Sk equals the number of is in 

the IA. But since, by Theorem 7.6, no IA row contains dupli

cate elements, there are no more than n-k is in the IA, 

hence there are no more than n-k syndromes checking on e~il, 

So for all i=1,2, ••• ,x ( J) 

This proves the 2nd part of the theorem. 

Let a 1,1 ,;;;. 11 and a column 13 /l:SI3Sm+l belonging to the 1st 

coset. Then, a
1

,
11 

5 1311 (mod k+l). Since 1311 belongs to the 

first coset it must also appear in the first column, as 

well, hence 

if S ,;;;. n-k: 

there must exist a 
1

5 l311 (mod k+l), In general, x, 

-> 

-> 

-> 

-> 

-> a 1 ,
11 

5 1311 (mod k+l) 

there exists x(2)e[l,S]: ax12,,1 5 1311 (mod k+l) 

-> ax( 2 l ,P 5 13211 (mod k+ 1 ) 

there exists x(3)e[l,S]: a 5 13211 (mod k+l) x(3),1 

-> ax( 3 ),P 5 13311 (mod k+l) 

there exists x(4)e[l,S]: ax14,, 1 5 13311 (mod k+l) 

-> 

• • • • • • • • • 

there exists x ( S) e [ 1, S] : ax(S) ,1 5 135
-

111 (mod k+l) 

-> ax(S) ,JI 5 13511 (mod k+ 1 ) 

So far, column 1 has the S elements 11,1311,13211,,. ,138
-
1a (all 

reduced modulo k+l in the range [l,k+l]), For the code to be 

self-orthogonal, they should be distinct (see Theorem 7.5). 

Also, column 13 has the S elements 13a,l32a,,, ,138
-
1a,l38 11 (all 

reduced modulo k+l in the range [l,k+l]), For the code to be 

self-orthogonal, they should be distinct (see Theorem 7.5). 

A direct consequence of the requirement for the elements 

of each of these two columns to be distinct is that 
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.131 '1- 1 (mod k+l) /i=1,2, ••• ,S-l (K) 

Furthermore, the two columns must have the same elements. 

Since they differ only in ~ & .135~, it is required that: 

.135~ = ~ (mod k+l ) ( L) 

Finally, note that there must exist one such column .13, of 
the 1st coset because otherwise J

1
=1, and the J of the code 

will be one, hence the code will have zero error-correcting 

capability, 

This proves the 3rd part of the theorem, 
QED 

A7.11.4. Rcoof of Lemma 7,3 

Consider the 3rd statement of Theorem 7.25, and in par

ticular the relation among ~ • .13 & k+l, Let S ~ n-k: 

From ( 7, 29b): ~(.135-1) = 0 (mod (k+l), Two obvious so-

lutions are~= 0 & .135 = 1 (mod k+l), The first is not 

acceptable, while the 2nd is not always possible. Let us 

consider all solutions of the congruence. By Theorem A7.2.5: 

If (.135-l,k+l) ~ s, then 

~ = i[(k+l)/s] /i=1,2,,,,,s-1 (A) 

If .13 5-1 = 0 (mod k+l), then (by Theorem A7.1,12): 

s = (O,k+l) = k+l [by (A7.1.1e)], hence by (A):~= 

1,2, ... ,k. Hence: 

If .(35 a; 1 (mod k+l), any~ = 1,2, .. , ,k (B) 

Consider solutions for .135-1, From Theorem A7.2.5: 

If (~,k+l) ~ r, then 

.135-1 = i[ (k+1 )/r] /i=0,1, ... ,r-1 (C) 

From (7.29a), the first S-1 powers of .13 must be different 

than 1 (mod k+1), From Theorem A7.2.9, this can be achieved 

either if (.13,k+1) > 1, or if S S ~(k+1), in case (.13,k+1)=1, 

Let ( 13, k+1 l > 1: Then, (7.29a) is satisfied, for any 13 
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not relatively prime to k+1 and any S. Let (~,k+1) ~ d > 1. 

Then, since dl~ ---> dl~1 hence, all S powers of ~ are mul

tiples of d. These S powers must be incongruent to each oth

er (mod k+1), so that the 1st-column elements (a,~a.~2a, •• 

•• ~~1a) are distinct. Obviously, there are exactly (k+1)/d 

such multiples, 1,d,2d,[(k+1)/d]d = k+1, and since the last 

one must be excluded, 131 can assume no more than (k+1)/d-1 

distinct values. Then: 

S S (k+1)/(k+1,~) - 1 (D) 

Let (!3.k+ll = 1: Then, by (A7.2.7b): 13•<1<+l) = 1 (mod k+1), 

hence it is necessary that: 

SS ~(k+1) (E) 

Let (a. k+ 1 ) = 1: Then, from (C) , ~s = 1 (mod k+ 1), hence, 

from Theorem A7.2.9, (!3,k+1) = 1. Since all first S-1 powers 

of 13 must be distinct, it follows from Definition A 7. 3.1, 

that: 

Also, by (A7.3.2c): 

Since (!3,k+1) = 1 ---> (!31 ,k+1) = 1 

/(!3,k+1) = 1 

s 1 ~<k+1l 

(F) 

(G) 

(by Theorem A7.1.11) 

Also, since (a,k+1) = 1 ---> (a!31 ,k+1) = 1 [by (A 7 • 1. 8) ] 

So, all 1st-column elements are relatively prime to k+1: 

/i=1,2, ••• ,s (H) 

By (H) & Theorem 7.3: m S k-1. Hence: 

m = k-1 (I) 
lW< 

QED 

APPEN:DlX 7 ,12; OYCLICALLY-DECQt)ASLE TYP£-B.j QOOES 

A7.12.1. pr99:f gf Itlegrem 1,27 

The (p,J) type-B2 code has parameters n = (p+1)(J+p-1), k 

= (p+1)(p-1) & m+1 = p-1, where 2SJSp-1 (by Theorem 7.17). 

Let r ~ (a,k+1). Since a<k+1=p2 , then r ~ (a,k+1) = (a,p2 ) 

= 1 or p.'*' Assume that (a,k+1) = 1. Then, from ( 7. 30f): 
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(n-k) I ~(k+l) -> [ ( p+ 1 )( J +p-1 ) - ( p+ 1 ) ( p-1 ) ] I ~ ( p 2 
) 

-> J(p+l) I p2 (p-1)/p = p(p-1) (by Theorem A7.1.15) 

Also, by Theorem 7.25: (n-k) I k -> J(p+1) I (p+1)(p-1) 

Hence, by Theorem A7.1.6, 

J(p+1l 1 (P<P-1l,(p+1l(p-1l) = (p-1J(p,p+1l = p-1 

it is necessary that J(p+l) divides p-1, which is impos

sible. Hence, contradiction and r ~ (a,k+1) = p -> a = 

jp /1~j~p-l. 

By Theorem 7.25 (iii), any 1st-column element, say, x is 

congruent to jpl31 /O~i~n-k-1: x !! jpl31 (mod p2
) -> pI 

p2 l(x-jpl31 ) -> plx· Hence, the 1st column contains only 

multiples of p. Similarly, any element of column, say, z is 

congruent to zx (where x is the corresponding 1st-column 

element), or congruent to zpp (mod p 2 ), hence a multiple of 

p. Then, the IA contains only multiples of p, hence there 

are error bits not checked by syndrome bits. Hence, no 

type-B2 code is also a type-C code. 

According to Theorem 7.18, a (p,q,J) type-B3 code has 

parameters n = (q+2)J+pq-1, k = pq-1 & m+1 = p-1, where 

p<q<2p and 2~J~(q-1)/2. Let r ~ (a,k+1) = (a,pq). Since 

a<k+l=pq, then r = 1 or p or q, Assume that (a,k+1) = r = 1. 

Then, from (7.30f): 

(n-k) 1 ~(k+1) -> £(q+2lJ+pq-1- (pq-1ll 1 ~(pqJ -> 

J(q+2) I pq(p-l)(q-1)/(pq) = (p-l)(q-1) (by Theorem A7.1.15) 

Also, by Theorem 7.25: (n-k) I k -> J(q+2) I pq-1 

Hence, 

J(q+2) I (pq-l,pq-1-(p+ql) = (pq-l,p+q) (by Theorem A7.1.12) 

Hence, J(q+2) I p+q -> q+2 I p+q -> 

there exists integer b: p+q = b{q+2) /b=l,2, •• 

If b = 1, then p+q = q+2 -> p = 2 but, by Theorem 

7.18, p is an odd prime. Hence b>l. Then: 

p+q = bq+2b -> p = (b-l)q+2b > q, which contradicts 
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the assumption that p < q. Hence, (a,k+1) = p (or q) ---> a 

= jp (pq), where l:Sj:Sp-1 {l:Sp:Sq-1). Following the same 

procedure as for the type-B2 codes, one concludes that the 

IA elements are all multiples of p (or q), Hence, there are 

no type-B3 codes which are also type-C codes. 

Consider the k type-B4 code. By Theorem 7.22, this is a 

(k+2,k,k-1) code, with k = odd. Since n-k = 2 f k, there is 

no type-B4 code which is also a type-C code. 

QED 

A7.12.2. proof of Theorem 7.31 

Assume that the equivalent conditions for the existence 

of a (k+J,k,k-1) type-B self-orthogonal code, which is also 

a type-C code, (see Theorem 7.30) hold true: 

( aJ31 ,k+1) = 1 /for i=0,1, ••• ,J-1 (A) 

aJ31 'f. al3j (mod d) /dlk+1, d>1, i,j=0,1, .. ,J-1 & ijllj (B) 

From (A), for i=O: (a,k+1) = 1 (C) 

Let e ~ (J3,k+1). Then, el13 ---> ela13 and since elk+1, 

it follows that e I (al3,k+1) = 1, by (A). Hence, 

(13,k+1) = 1 (D) 

Hence: (A) -> (a,k+1) = (J3,k+1) = 1 

Also, the converse is true, by Theorems A7.1.11 & 

A7,1.13: 

(A) <-> (a,k+1) = (J3,k+1) = 1 (E) 

From (B): 

al31 'f. al3j (mod d) (F) 

where, without loss of generality, it has been assumed 

that i>j. Assume that there exists d, such that d 1 (131-j-1). 

Then, d I al3j ( 131-L 1) , which contradicts (B), Hence, (F) -> 

d f (131-j-1). 

Conversely, let d f ( 131-j-1 ) & assume that d 1 al3j ( 131-j-1) • 

Since (J3,k+1) = 1, then (13z,k+1) = 1 (from Theorem 
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---> A7.1.11). Also, since (a,k+1) = 1 

Then, if (al3j 1 d) .::. e, since eldl (k+1) 

(al3j 1 k+1) ---> e=1. Since (d,al3j) = 1 

-> d I ( 131-L1), which contradicts the 

f a/3j ( 131-J-1) • Then: d f ( 131-J-1) ---> 

( al3j, k+l ) = 1. 

ela13j -> e I 
d I ai3J ( 131-j-1) 

& 

and 

hypothesis, hence d 

(B) • 

So: (B) <---> d f ( 131-L 1 ) (G) 

From (B) & (G), for all i,j e [O,J) /i>j & dlk+1, d>1: 

<---> (H) 

O:Sj<i<J i-j>O & i-j<J <---> 1:Si-j=z:SJ-1. So: 

For all z=1,2, ••• ,J-1 & j=1,2, ••• ,J-z: 

<---> d f (13'-1) 

13• 7- 1 (mod d) /z=1,2, ••• ,J-1 

<-> 

So, condition (B) 

Ordd ( 13) 2: J 

Ordd ( /3 ) 2: J 

(I) 

( J) 

Since the assumption that (A) & (B) hold true imply the 

existence of a type-C code, then it is necessary that 

(7.29b) holds true, i.e. that 13J = 1 (mod k+1). Since 

(13,k+1) = 1 and from (I), all the powers of /3j /J<J are 

different than 1 (mod k+1), it follows that: 

Ordk+l ( /3) = J -> /3J = 1 (mod k+1) <---> k+1 I J3J-1 

and since d I k+1: d I /3J-1 ---> /3J = 1 (mod k+1) -> 

Ordd( /3) :S J (K) 

From (J) & ( K): condition (B) <---> Ordd(/3) = J (L) 

So: 

(A) & (B) <---> (a,k+1)=(13,k+1)=1 & Ordd(/3) = J (M) 

(M), above is a set of necessary & sufficient conditions 

for the existence of a self-orthogonal type-B code, which is 

also a type-C code. 

The only condition on J is that it is the order of some 

integer, say, d. By (A7.3.2c), it is necessary that J I 
~(d). No other J can then be acceptable. 
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J I ~<dl for any non-trivial divisor, d, of k+1 (N) 

It will be proved that (N) is equivalent to J I O(k+1). 

Let: 

k+1 = pa1(1) Paz(2) • • • a(r) / < < < •- ( • )>1 • 1 2 Pr P1 Pz • • • Pr "' a 1 - , 1= , , , , , r ( 0) 

Assume that J I ~(d) /d>1 & dlk+1. Then, from (0): 

J I ~(p1 ) = p 1-1 (by Theorem A7.1.15), for i=1,2, ••• ,r. 

-> 

Conversely, assume that J I (p1-1,p2-1, ••• ,pr-1} ~ O(k+1). 

From (0) & Theorem A7.1.3, for any non-trivial divisor, 

d, of k+1: 

d = p~U>p~<Zl • •• P!(r) /p1<p2<• • •<pr & d(i)2:0 i=1,2, .. ,r (P) 

From (P) and Theorem A7.1.15: 

where if d(x)=O, the factor p:<">(p"-1 )/p" is missing. 

-> 

where if d(x)=O, the factor p:<><l-1(p"-1) is missing. 

Hence, ~(d) is the product of factors 

d(x)-1 2: 0. Hence, for all such factors, 

pd<><l-1(p -1) 2: p -1. Furthermore, for each 
" " " 

p:<><>-1( p" -1), where 

Pd(x)-1 > 1 <-> 
X -

d>1 there exists 

at least one such factor, because there exists at least one 

prime factor of d. Since J divides all px-1, it follows that 

it also divides all ~(d). 

QED 

A7.1'2.3. Proof of Theorem z • .ag_ 

Let k+1 be any odd positive integer and J any integer 

J2:2, such that J I O(k+1). It will be proved that e. given 

by (7.33a) (p. 218), has order J modulo any non-trivial di

visor, d, of k+1. 
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Consider the prime factorization of k+1: 

k+1 = np~111 /a(i)~1, i=1,2, ••• ,r (A) 
1=1 

r 
13 5 ~g{(1)(J [ ( k+ 1) /p~(1)] f(1) (mod k+1) (7.33a) 

1•1 

where: f(]..) ~ p•1{i)-1(p1-1) ;· 1 2 l.= ' ' • • • 'r (7.33b) 

Consider, at first, divisors p~< 1 > /1:Sb(i)Sa(i), 1:Si:Sr and 

reduce 13 (mod p~W) I je[ 1, r]. 

Since, b{j)-1 ~ 0 -> p~<Jl-1 ~ 1. Since, also, J I 
6(k+1) ~ (p1-1,p2-1, ••• ,pr-1) -> 

J I p~(j)-1{pj-1) ~ "t{j) = f(j )/p~(j)-b(J) (B) 

For all i=1,2, ••• ,r /i#j: 

p~(j) I < k+1 > /p~<1> -> 

-> 
/i=1,2, ••• ,r & i#j 

Since a(i)-b(i) ~ 0 /i=1,2, ••• ,r -> p~lil-bl 1 > ~ 1 

/i=1,2, ... ,r. If the last congruence is raised to p~<il-bl 1 l 

(allowed by Theorem A 7. 2. 2) , since "t ( i )p~(1)-b( 1 l = f ( i) [by 

(B)], the following congruence will be obtained: 

-> 
/i=1,2, ••• ,r & i#j 

/
1:SbCjl:Sa(j) 

& BJ:Sr (C) 

From (A), (k+1)/p~<Jl contains no prime factors pj. Hence, 

( ( k+ 1 ) /p~W, p~W) = 1 (D) 

By Theorem A7.1.15 & (B): 

~(p~W) = p~<J.l-l(pJ-1) ~ 1:(j) (E) 

By (D) & Theorem A7.2.6: 

(F) 

Raising eqn (F) to P
a(j)-b(j) 
j • noting from (B) that f(j) = 
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"t(j )pjW-bW and substituting in (C): 

(mod pb(j)) 
j 

l1~b(j)~a(j) & 1~j~r 
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(G) 

If g 1 0::. primitive root (mod p 1 ) such that g~i"1 '1- 1 (mod p~) 

then, by Theorem A7.3.4, g 1 is also a primitive root modulo 

p~U>, for all c(i)~l. So, gj has order ~(p~<n) (mod p~(jl), or 

using Theorem A7.1.15: 

Then, by Theorem A7.3,1: 

Ord ( g ~ W I J ) = Ord ( g j} I ( Ord ( g j } , f ( j ) I J } 

and using (H) & (E), in (mod p~W): 

(mod pb(j)) 
j 

Ord ( g~W/J) = [ p~(j)-1 ( pj-1)] I ( p~W-1 ( pj-1) , pj<jl-1( pj-1) /J) 
[multiply numerator & denominator of the RHS, by J] 

Ord ( g~W/J) = J [ p~W-1 ( pj-1)] I ( p~<jl-1( pj-1 )J, pjW-1 ( pj-1)} 

Ord ( g~W/J) = J [ P~(j)-1( pj-1)] I [ p~W-1( pj-1 )( J 'Pj(j)-b(j))] 

(H) 

-> 

-> 

-> 

(ord g~W/J} = J I (J,pjW-b<jl) (I) 

Since J I p 1-1 for all i=1,2, ••• ,r, it follows that J < 
pj, hence (J,pj) = 1 -> (J,pj(j)-b(j)) = 1 (by Theorem 

A7.1.11). Hence, from (I) & (G): 

Ord(l3) = J (mod p~W) IHb(j)~a(j) & 1~j~r (J) 

Consider, next, any non-trivial divisor d, of k+1 and

assume that there exists an integer xe[1,J-1], such that 13x 

E 1 (mod d). Let p be a prime factor of d. Then p I d I 13x-

1, hence 13x E 1 (mod p), which contradicts (J), Then: 

for all non-trivial divisors of k+1 (K) 

Finally, consider again any non-trivial divisor, d, of 

k+1 and its factorization [from (A)]: 

d = np~<il IO~d(i)~a(i), i=1,2, .. , ,r (L) 
1=1 

From ( J): 13J E 1 (mod p~<il) li=1,2, ... ,r -> 
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/i=1,2, .•. ,r ---> 

/i=1,2, ••• ,r [by (L), d(i)Sa(i)] -> 

/i=1,2, ... ,r (M) 

Since { p~(l), p~(Zl, ... , p~(r)) = 1, it follows from (M) and 

Theorem A7.1.14, that: 

p~(llp~(2) • • • p:(r) = d I .13J - 1 -> 

.13J 5 1 (mod d) for any non-trivial divisor of k+l -> 

Ordd(J3) S J for any non-trivial divisor of k+l (N) 

From ( K) & ( N) : 

For any non-trivial divisor of k+l: 

QED 

A7.12.4. Examples of Ivpe-C5 C9des 

Example A7.12.1: Let k+l =prime= 23. Then 6(23) = 22, 

and J~2, J I 22. Let J = 11. Then there exists a (22,11) 

type C5 code, which is a rate R=2/3 (33,22,21) type-B self

orthogonal cyclically decodable code, with exactly J = 11 

syndromes checking on each error bit. 

From Lemma 7.4, eqn (7.34a): 

.13 5 gk/J (mod k+l) 5 gZZ/ll (mod 23) 5 g2 (mod 23) 

where g is a primitive root (mod 23). From TABLE A7.3.1 

(p. 446), g=5. Then, from above, .13 5 25 (mod 23) -> .13=2. 

For ~=1, the IA is: 

2 4 6 8 10 12 14 16 18 20 22 1 3 5 7 9 11 13 15 17 19 21 
4 8 12 16 20 1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15 19 
8 16 1 9 17 2 10 18 3 11 19 4 12 20 5 13 21 6 14 22 7 15 

16 9 2 18 11 4 20 13 6 22 15 8 1 17 10 3 19 12 5 21 14 7 
9 18 4 13 22 8 17 3 12 21 7 16 2 11 20 6 15 1 10 19 5 14 

18 13 8 3 21 16 11 6 1 19 14 9 4 22 17 12 7 2 20 15 10 5 
13 3 16 6 19 9 22 12 2 15 5 18 8 21 11 1 14 4 17 7 20 10 
3 6 9 12 15 18 21 1 4 7 10 13 16 19 22 2 5 8 11 14 17 20 
6 12 18 1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 

12 1 13 2 14 3 15 4 16 5 17 6 18 7 19 8 20 9 21 10 22 11 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

* * * * * * * * * * * 
Note that there are k/J = 22/11 = 2 cosets. The columns 

of the 1st coset have been marked by an *• 
I 
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Example A7.12.2: Let k+l = pa = 52 = 25. Then 6(25) = 

4, and J~2, J I 4. Let J = 4. Then there exists a (24,4) 

type C5 code, which is a rate R=6/7 (28,24,23) type-B self

orthogonal cyclically decodable code, with exactly J = 4 

syndromes checking on each error bit. 

From Lemma 7.4, eqn (7.34b): 

If I ~ pa-1(p-1), then l3 = gf/J (mod k+1) 

-> I= 52- 1(5-1) = 20, and l3 = g20' 4 (mod 25) = g5 (mod 25) 

where g is a primitive root (mod 5), such that g~1 ~ 1 

(mod p 2 ). From TABLE A7.3.1 (p. 446), g=2, and gP-1 E 24 5 16 

(mod 25), hence g=2 can be used. From above, l3 = 32 (mod 25) 

-> l3=7. For a=l, the IA is: 

7 14 21 3 10 17 24 6 13 20 2 9 16 23 5 12 19 1 8 15 22 4 11 18 
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
18 11 4 22 15 8 1 19 12 5 23 16 9 2 20 13 6 24 17 10 3 21 14 7 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 2 3 3 4 5 1 5 6 4 2 6 6 2 4 6 5 1 5 4 3 3 2 1 

Note that there are k/J = 24/4 = 6 cosets. 

I 
Example A7.12.3: 

6(65) = (4,12) = 4, 

Let k+1 = p 1p 2 = 5 X 13 = 65. Then 

and J~2, J I 4. Let J = 4. Then there 

exists a (64,4) type C5 code, which is a rate R=16/17 

(68,64,63) type-B self-orthogonal cyclically decodable code, 

with exactly J = 4 syndromes checking on each error bit. 

From Lemma 7.4, eqn (7.34c): 

where g1 is a primitive root (mod 5) and g 2 is a primi

tive root (mod 13). From TABLE A7.3.1 (p. 446), g1=2 & g2=2. 

Then, from above, 

J3 E 2(5-1)/4 X 135-1 + 2(13-1)/4 X 513-1 (mod 65) -> 

13 5 2 X 134 + 23 X 512 E 1,953,182,122 (mod 65) -> 13 = 47 

For a=1, the IA is: 
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47 29 11 58 40 22 4 51 33 15 62 44 26 8 55 37 19 1 48 30 12 59 41 23 
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 
18 36 54 7 25 43 61 14 32 50 3 21 39 57 10 28 46 64 17 35 53 6 24 42 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 2 3 4 5 6 4 7 8 9 3 10 11 7 9 12 13 1 13 14 10 6 15 15 

5 52 34 16 63 45 27 9 56 38 20 2 49 31 13 60 42 24 6 53 35 17 64 46 
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 
60 13 31 49 2 20 38 56 9 27 45 63 16 34 52 5 23 41 59 12 30 48 1 19 
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

5 11 16 12 2 14 16 8 8 16 14 2 12 16 11 5 15 15 6 10 14 13 1 13 

28 10 57 39 21 3 50 32 14 61 43 25 7 54 36 18 
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
37 55 8 26 44 62 15 33 51 4 22 40 58 11 29 47 
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

12 9 7 11 10 3 9 8 7 4 6 5 4 3 2 1 

Note that this IA has k/J = 64/4 = 16 cosets. 

I 
Example A7.12.4: Let k+1 = 19. Then 9(19) = 18, and J = 

2, 3 1 6 1 9 & 18, Let J = 6. Then there exists a (18,6) type 

C5 code, which is a rate R=3/4 (24,18,17) type-B self

orthogonal cyclically decodable code, with exactly J = 6 

syndromes checking on each error bit. Its ~ can be calculat

ed from eqn (7,34a): ~ = 8. Then, for a=l, the IA is: 

8 16 5 13 2 10 18 7 15 4 12 1 9 17 6 14 3 11 
7 14 2 9 16 4 11 18 6 13 1 8 15 3 10 17 5 12 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
11 3 14 6 17 9 1 12 4 15 7 18 10 2 13 5 16 8 
12 5 17 10 3 15 8 1 13 6 18 11 4 16 9 2 14 7 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 2 2 3 2 3 1 1 3 3 1 1 3 2 3 2 2 1 

The syndrome register (SYRE) is an (n-k) x (m+1) store of 

syndrome bits (see Fig, 7.1, p. 210). In this case the SYRE 

has dimensions 6 x 18. Using Theorem 7.1 and the above IA, 

one may deduce the co-ordinates (x,y} /l~x~6 & 1~y~18, of 

the syndrome bits that check on each error bit. For in

stance, since a 2 , 4 = 9, s!~~ checks on e~9 ). This syndrome bit 

is in row 2 1 column 15. In generals~~~ is in stage (z,k+1-w). 

Since, by Theorem 7.1, s~~~ checks on e~a[z,w)}: 

The syndrome ' bits ocheckins '<ln e~a[s, .. u,

are in stases {z,k+1*W) of the SYRE. 
(A7.12.1) 

From statement (A7.12.1) & the IA, one may deduce the 
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syndrome bits checking on the error bits of the 1st coset: 

For e 0(
8', a = 8 1 for z=1,2,3,4,5,6 & w=1,12,11,18,7,8, z,w 

respectively, hence k+l-w=19-w=18,7,8,1;12,11: 

e~Ga> is checked by (1 118) (~, 7} {:t, 8) {4, 1} {5,12) & (S,ll} 

~~07 l is checked b~ (1 111) {2,18} (31 1) (41 8} {5, 1) & (6112} 

~1181 is checked by {1 112) (2,11} (3,18) {41 7) (5, 8) & {S, 1) 

elUl is checked by (1, 1) {~ 1 12} {3 111) {4,1.8} {5, 1) & (6, 8} 

~1m is checked by {1, 8) (2, 1) {3112) {4,11} (5,18} & {S, 7} 

e1°1l i!i checked b~ (1, 7} {2, 8) (3, 1) {41 12} {5,11} & (S,18) 

If the above SYRE co-ordinates are rearranged, the cyclic 

nature of decoding will become obvious: 

el"1 is checked by {4 1 1) (2, 7} (3 1 8) (6 1 11} {5 112) & (1,18) 

elGT) is checked by {5 1 1) (3, 7} (4, 8) (1,11} (~1 12) & (~ 118) 

elm is checked by {6, 1) {4, 7} {5, 8) {2,11) {1 1 1~) & (3,18} 

ei11> is checked by (1 1 1) {5, 7) {6 1 8} (31 11} (2 112} & {4,18} 

e!m is checked by (.2, 1) {S, 7) {1, 8) {4,11} (3,1~} & (5,18} 

~l01 > is checked by {31 1) (1, 7) (.2, 8) (5 1 11} (4 112) & {S,18} 

Hence, if the SYRE stages for e~8 ) are connected to the 

MG of the first coset, an upward uniform cyclic shift by one 

step will allow the decoding of e~7 >, the next shift will 

decode e~18 >, etc. The syndrome connections to the other two 

MGscan be similarly deduced: 

For the Znd coset: 

~114> ia checked b'1 (4, 2) (6, 3) (5, 5) (2,14) (3,1S} & {1,17} 

e!Ul ia checked by (5, 2) {1, :t) {~, 5) {3,14) {4 11S) & (2,1'1) 

e!17 l ia checked h't (~. 2) {2, 3) (1, 5) (4~14) (.5116) & {3,11} 

e!031 is checked b't {1, 2} {3, 3) (.2, 5) (5,14} (~,16) & {4,17) 

e!ll5.l ia checked by {f, 2) (4, 3) {31 5) (S,14} {1,1S) & (5,17} 

e!~1 ia checked h't {3, 2) (5, 3) (4, 5) (1,14) (.2,1S) & (6,1'1} 
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For the 3rd coset: 

e~U.l is checked b1 {4 1 4) {6, 6) {.2 1 9) (5,10} (3113) & (1,15) 

e~Otl is checked by (5 1 4) {1 1 6) {3 1 9) (6,10} {4113) & {.2 1 15} 

e~1~l is checked b1 {6, 4) (2, 6) {4, 9) (1,10) {5 113) & (3,15} 

e~Ofll is checked b1 {1, 4) (3, 6) (5, 9) (2,10) {6,13} & (4,15) 

e~111 l is checked bt (.2 1 4) (4, 6) {6, 9) (3, 10} {1,13) & (5,15) 

e!04 l is checked by {3, 4} (5, G) {1, 9) (4,10} {.2,13) & (6,15} 

Hence, the connections to the HGsare as following: 

1st MG: (4, 1) (2 1 7} {3, 8} (6,11} (5,12) & (1,18} 

2nd MG: {4 1 .2) (6, 3} (5 1 5) (.2 114} {3,16) & (1117} 

3rd MG: (4 1 4) (6, 6} (.2, 9) {5,H}} {3113) & (1,15} 

Notice that the SYRE columns connected to the three gates 

are: 

For MGl: 1, 7,8, 11,12, 
For MG2: 2,3, 5, 

For MG3: 4, 6, 9,10, 

14, 
13, 15 

16,17 
18 

i.e. there is no overlapping. Furthermore, the sequence 

of the bits decoded by each gate is: 

FN:Illi MGl: elGal 
0 

el01l 
0 

eUlU 
0 

eUU 
0 

eU2l 
0 

elOll 
0 

From MG2: ell•> 
0 

e<tt> 
0 

e(~7l 
0 

e<OSl 
0 

e(OS) 
0 

e(02) 
0 

'Frolli MG3: eUlU 
0 

elotl 
0 

eUU 
0 

el04l 
0 

eUOl 
0 

el04l 
0 

I 

APPENDIX: 1 • U: OORootJCIION TO QtJAPBATIC RESIOUES 

This appendix is drawn mainly from Chapter 9 of T.M. 

Apostol's "Introduction to Analytic Number Theorey" [44]. 

Unless otherwise stated, small latin & greek letters de

note integers. 
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Definition A7.13.1: Let p be any odd prime and n ~ 0 

(mod p). If congruence x 2 = n (mod p) has a solution it is 

said that n is a quadratic residue modulo p and this is de

noted by nRp. If the congruence has no solution it is said 

that n is a quadratic nonresidue modulo p and this is denot

ed by ntlp. 

I 
Definition A7.13.2: Let p be any odd prime. Then, for 

any n, Legendre's symbol (nip) is defined as following: 

(nip) 

if n = 0 (mod p) 

if n ~ 0 (mod p) & nRp 

if n ~ 0 (mod p) & nllp J > (A7.13.1) 

I 
Theorem A7.13.1: 

and any n: 

Euler's criterion: For any odd prime p 

(nip) = n<P-ll/Z (mod p) (A7.13.2) 

Proof: See Apostol [44], p. 180. 

I 
Theorem A7.13.2: For any odd prime p and any m & n: 

(mnlp) = (mlp)(n( lP) (A7.13.3) 

Proof: See Apostol [44], pp. 180-1. 

I 
Theorem A7.13.3: For any odd prime p, every reduced 

residue system modulo p contains exactly (p-1)/2 quadratic 

residues and exactly ( p-1) /2 quadratic nonresidues, modulo 

p. The quadratic residues are congruent to i 2 (mod p) 

/i=1,2, ••• ,(p-1)/2. 

Proof: See Apostol [44], p. 179. 

I 
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APPENDIX 7.14: PBQpEBilES OF JHE INITIAL ARRAY 

A7.14.1. Proof of Theorem 7.33 

Let k+1 be an odd integer with prime decomposition: 

r 

k+1 = np~<il lp1<p2<• ••<pr & a(i) ~ 1, i=1,2, •• ,r (A) 
1=1 

Let ~ be given by (7.33a). From the proof of Theorem 

7.32, in Appendix 7.12 (§ A7.12.3., p. 490) [eqn (G)]: 

where 

~ = gf(j)/J 
j 

( mod p~< J > ) I j = 1 , 2 , ••• , r 

f ( J.) 0::. pa(j)-1 (p -1) I· 1 2 J J J= ' ' .. • 'r 

(B) 

(C) 

and gj 0::. primitive root (mod pj), such that g~3- 1 '1- 1 (mod 

p~) for j=1,2, ... ,r. 

From (B): 

gf<Jl/Z 
j 

/j=1,2, ... ,r (D) 

From eqn (J) of§ A7.12.3., the order of~ (mod pj<J>) is 

J for all j=1,2, ••• ,r. Then: 

(~J/Z)Z 5 1 (mod pj<Jl) lj=1,2, ... ,r (E) 

One solution of (E), for J3JfZ, is -1 = pj<Jl-1 (mod pj<J>) 

[+1 is not a solution, because the order of J3 is J, hence 

13J/Z '1- 1 (mod pj<Jl]. Then, there is no other solution,* for 

~J/Z, in the range [ 1, pj<Jl], hence: 

~J/Z 5 pj<J>-1 (mod Pj(j)) lj=1,2, ... ,r (F) 

(F) is a system of congruences with moduli relatively 

prime in pairs (the unknown is J3JfZ), According to the 

Chinese remainder theorem (Theorem A7.2.10), system (F) has 

exactly one solution module the product of the moduli, i.e. 

module k+1 [see (A)]. Hence there is a unique number, in 

[1,k+1], which satisfies (F), for all j=1,2, ••• ,r. 

From (A), pj<J> k+1, for all i=1,2, ... ,r. Then: 

k = -1 (mod Pj(j)) lj=1,2, ... ,r -> 

lj=1,2, ••• ,r -> [from (F)] 

* See Vinosradov [46], p, 9Z. 
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/j=1,2, ••• ,r -> 

/j=1,2, ••• ,r -> 

(by Theorem A7.1.14) -> 

J3J/Z = k (mod k+1) 
QED 

A7.14.2. Proof of Theorem 7.34 

From Theorem 7.31 (p, 218), the elements of the first 

column of the IA of the (k,J) type-C5 code, 

(mod k+1), for x=1,2, •• ,,J, For a=1, and since 

are a = a.13x x,l 
Ordt+l ( J3) = J , 

aJ,I = 1 and hence aJ,z = z (mod k+1), for z=1, 2,,,,, k. Hence, 

a = z J,z /z=1,2, ... ,k 

From (7.36) for J=even, J3JfZ = k (mod k+1), For a=1: 

13J/Z - - k ( d k 1) = aJ/Z,l = mo + -> aJ/Z,l = k (mod k+1) 

aJ/Z,z = zaJ/Z,l = zk (mod k+1) /z=1,2, ••• ,k -> 

aJ/2,z 5 z(-1) (mod k+1) /z=1,2, ... ,k -> 

aJ/Z,z 5 k+1-z (mod k+1) /z=1,2, ••• ,k -> 

8 JJ2,z = k+1-z /z=1,2, ... ,k 

For J=even, for all x=1,2, ••• ,J/2 & z=1,2, ••• ,k: 

a z,z + a"+J/2 ,z = zl3z + zl3z+J/Z (mod k+1) -> 

a x,z + a = Jt+J/2,z 
zJ3Z( 1+J3JfZ) (mod k+1) -> 

ax + ax+J/Z,z 
5 zl3z( l+k) (mod k+l) [by (7,36)] -> ,z 

a z,z + ax+J/2,z = 0 (mod k+1) -> 

a + a = q{k+l) z 1z z+J/2,z /q=integer -> 

(A) 

-> 

(B) 

Since, 0 < az,z + az+J/Z,z < 2(k+1) -> q = 1 -> 

ax,z + az+J/Z,z = k+1 /x=1,2, ••• ,J/2 & z=1,2, ••• ,k 

From the last result, by summing over all x=1,2, ••• ,J/2, 

(7,37d) follows. 
QED 
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A1.14..3. Proof of Theorem 7.35 

From Theorem 7.31 (p. 218), a 1 E a.l3x (mod k+1), for 
"• 

x=1,2, ••. ,J, where (a.,k+1) = 1, and Ordd(l3) = J for all non-

trivial divisors, d, of k+1.*For a. = 1, and from Definition 

7.2 (p. 185): 

(mod k+1) /z=1,2, •.• ,k (A) 

Also, 

J 

~13x = [ (13J•1-1 )/(13-1) - 1] (mod k+1) -> 
x•l 

J 

~ax,l 5 13(13J-1)/(13-1) (mod k+1) (B) 
:.:=1 

Since (13,13-1) = 1 (by Theorem A7.1.6), and 13-1 I 13(13J-1), 

then (by Theorem A7.1.10): 

Since Ordd(l3) = J, ford I k+l, then 13J-1 = 0 (mod k+1). 

Hence: 

Let: 

r 

k+l = np~<il /p
1
<p2<•••<pr & a(i) l: 1, i=1,2, .. ,r (E) 

1•1 

Then: /i=1,2, ••• ,r (F) 
, 

Assume that there exists je[1,r] such that (pj<J>,I3-1) .::. 

f > 1. Since f I Pj(j) & f>1, then there exists be[1,a(j)] 

such that f = p~. Since f I 13-1, then 13 5 1 (mod p~), which 
contradicts Theorem 7.31 [that the order of 13 (mod d), for 

any d I k+1, d>1, is J]. Hence, 

( p~(i). 13-1) = 1 /i=1,2, ••• ,r (G) 

From (G) & Theorem A7.1.13: 

( p~(l) p;(2) ••• pa(r) 
r ' 13-1) = (k+1,13-1) = 1 (H) 

* Remember that (a,b) denotes the greatest collJIIIOn d~visor of a & b. ' 
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From (C) & (D), ~-1 & k+1 both divide ~J-1, while from 

(H) they are relatively prime. Then, by Theorem A7.1.14: 

-> (k+1l 1 <~J-1ll<~-1l -> 

(~J-1 )/(~-1) = 0 (mod k+1) and substituting in (B), and 

then (A): 
J 

~ax,z = 0 (mod k+1) /z=1,2, ••• ,k 
x;l 

This proves (7.38a). To prove (7.38b) & (7.38c): 

For all x=1,2, ••• ,J & z=1,2, •.• ,k: 

a + a = z~x + (k+l-z)~x (mod k+1) x,z x,k+l-z -> 

a + a = (k+l+z-z)~x = 0 (mod k+1) x,z x,k+l-z -> 

a + a = q{k+1) x,z x,k+l-z /q=integer -> 

Since, 0 < ax,z + ax,k+l-z < 2 ( k+ 1) -> q = 1 -> 

a + a = k+1 x,z x,k+l·z /x=1,2, ••• ,J & z=1,2, ••• ,k -> 

J J 

~ax,z + ~ax,t+l-z = J ( k+ 1) /z=1,2, ••• ,k 
x=l z=l 

QED 

A7.14.4. Proof of Theorem 7.36 

Let the (k,J) type-C5 code, with J = odd. Let, also, the 

prime factorization of k+l: 

r 

k+l = np~Cil /p1<p2< .. •<pr & a(i) i!: 1, i=1,2, .. ,r (A) 
i•l 

Since, by Theorem 7.31, J I 6(k+1).::. (p1-1,p2-1, .. ,pr-1), 

then p1-1 = q1J, for i=1, 2, ... , r. Since p1-1 = even = q1J and 

J = odd, then q1 = even. Hence: 

/i=1,2, ••• ,r (B) 

' From eqn (G) of § A7.12.3. (p. 490): 

(mod p1 ) /i=1,2, ••• ,r (C) 
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i=1,2, ... ,r. 
From (C): 

13 (Pi-1)f2 = gilf(i)/J)[(pi-1)/21 (mod pi) /' 1 2 1=, , ... ,r (D) 

Since, from (B), (pi-1)/J =even /i=1,2, ••• ,r, then (2J) 

(pi-1), hence (2J) I p~(i)-l(pi-1) ~ f(i). From (D): 

/i=l,2, ... ,r -> 

13(pi-1)/2 ;; 1 (mod pi) /i=1,2, ••• ,r (by Theorem A7.2.6) 

-> (13lpi) = 1 (mod pi) /i=1,2, •• ,r (by Theorem A7.13.1) 

-> (13lpi) = 1 (mod pi) /i=1,2,.,r (by Definition A7.13.2) 

-> (1321Pi) = 1 (mod pi) /i=1,2, .. ,r (by 

-> (1331Pi) = 1 (mod pi) /i=1,2, .. ,r (by 

etc 

-> 

Since a 1 = 13" (mod k+1) "· 
/x= 1 , 2, ••• , J : 

-> k+ 1 I a - 13" /x= 1 , 2 , .. , , J z,1 

Theorem A7.13.2) 

Theorem A7.13.2) 

(E) 

-> Pi I k+1 I a 1 - 13" /x=1,2, ... ,J & i=1,2, ... ,r "· 
-> a = 13" (mod pi) z,1 /x=1,2, •• ,J & i=1,2, •• ,r (F) 

From Euler's criterion (Theorem A7.13.1), 

If n = m (mod p) -> 

(nip) !I n(P-1>12 = m(p-1)12 !I (mlpl (mod p) 

and since (by Definition A7.13.2), (klpl = O, 1, or p-1: 

If n !I m (mod p) -> (nlpl = (mlp) (A7.14.1) 

Then, applying (A7.14.1) to (E) & (F): 

Hence, the elements of the first column are all quadratic 

residues modulo any prime factor of k+l. Furthermore, no two 

such quadratic residues (mod pi) are congruent to each other 

(mod pi), because then there will exist x,ye[l,J] /x>y such 
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that 13" = j3Y (mod pi), hence l3""Y = 1 (mod pi) [because (J3Y,pi) 

= 1 - see Theorem A7.2.4], and since x-y<J this contradicts 

Theorem 7.31 [Ord(l3) = J (mod pi)]. 

For all x=1,2, ••. ,J & z=1,2, ••• ,k, since 

a = za 1 (mod k+l) z,z x, -> 

and using (A7.14.1): 

(ax,ziPi) = (zax, 1 1Pi) (mod pi) /x=1,2, ••• ,J & i=1,2, •.• ,r 

while from Theorem A7.13.2 & (G): 

Hence, for every prime factor, pi, of k+l, a column of 

the IA contains either multiples of pi, or quadratic re si

dues, or quadratic nonresidues (mod pi). The first column 

contains always quadratic residues. 

QED 

Example A7.14.1: Let k+l = 11 x 31 = 341. Then, 8(341) 

= (10,30) = 10, hence J = 2,5 & 10. Let J=5. Then there ex

ists a (340,5) type-C5 code (by Theorem 7.31), which is a 

(345,340,339) type-B SO cyclically decodable code with ex

actly 5 syndromes checking on each error bit. From Lemma 7.4 

(p. 219), since k+l = p1p2 , and since, from TABLE A7.3.1, 

g=2&g=3: 1 2 

-> 

l3 = 22 x 31 10 + 36 x 1130 (mod 341) -> 

l3 = 4 x (31 5 ) 2 + 729 x (11 6 ) 5 (mod 341) 

l3 = 4 x 1552 + 729 x 665 (mod 341) -> 

-> 

l3 = 4 x 155 + 729 x 187 (mod 341) -> 

l3 = 136,943 = 202 (mod 341) 

Then, the elements of the zth column are z x 202 1 

/i=1,2, ••• ,5, where 1SzS340. 

Column 1~ ~02, ~25, 97, 157, 1 C{1) ~ 682 ~ 341 X 2 
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Column 

Colullln 

Column 

etc 

Ctilumn 

etc 

Clt~lumn 

etc 

2: 63, 109, 1~4, 314, t 

3~ 265, 334, 291,- 130, 3 

4: 126, 218, 47, 287, 4 

11~ 176, 88, 44, 22, 11 

62~ 248, 310, 217, 186, 62 

C{2) : 682 : 341 X 2 

C(3) = 1,023 = 341 X 3 

0(4) : 682 : 341 X 2 

0(11) = 341 

0(62) : 1,023 : 341 X 3 

The quadratic residues (mod p) are given by i 2 (mod p), 
for i=1,2, ••• ,(p-l)/2 (see Theorem A7.13.3): 

(nl11) = 1, for n = 1,3,4,5,9 

(nl31) = 1, for n = 1,2,4,5,7,8,9,10,14,16,18,19,20,25,29 

If the elements of the 1st column are reduced: 

Mod 11: 4,5,9,3,1 {all 4Uadratic residues (mod 11)1 

Mod 31~ 16,8,4,2,1 {all quadratic residues (mod 31)1 

Since (3111) = (4111) = 1, columns 3 & 4 are expected to 
be made of quadratic residues (mod 11), while column 2 
should be made of quadratic nonresidues (mod 11). Since 62 ; 
7 (mod 11), then (62111) = -1, hence column 62 should be 
made of quadratic nonresidues. 

Column 2 (mod 11): 8,10,7,6,2 {q. nonresidues (mod 11)] 

Column 3 (mod 11)~ 1,4,5,9,3 {q. residues (mod 11)] 

ColUIIln 4 (mod 11): 5,9,3,1,4 {q. residues (mod 11)] 

Column 62 (mod 11): 6,2,8,10,7 {q. ntlnresidues (mod 11)1 

Since (2131) = (4131) = 1, columns 2 & 4 are expected to 
be made of quadratic residues (mod 31), while columns 3 & 11 
should be made of quadratic nonresidues (mod 31): 

Column 2 (llltid 31): 1,16,8,4,2 {q. residues (mod 31)] 

Column 3 (1110d 31)~ 17,24,12,6,3 {q. nonresidues (mod 31)1 
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CDlumn 4 {mod 31)~ 2,1,16,8,4 {q. ~eaidues (mod 31)] 

CDlumn 11 {mod 31)~ 21,26,13,22,11 {~. ttDtt~eaiduea {mod 31)] 

Since (11111) = 0, column 11 is expected to contain only 

multiples of 11 (176 = 16 X 11, etc). Since (62131) = O, 

column 62 is expected to contain only multiples of 31 (248 = 

8 X 31, 217 = 7 X 31, 186 = 6 X 31, etc), 

I 

APPENDIX 1.15: EFFECTIVE CONSTRAINT-LENGTH 

A7.15.1. Proof of Theorem 7.39 

From eqn (7.38a) (p. 222) (see also Theorem 7.38), there 

exists integer q(z), such that: 
J 

~a = (k+l )q(z) 
~ x.z /z=1,2, ... ,k (A) 

x=l 

Note: Unless otherwise stated, MAX & MIN will be as-

sumed over all z=1,2, ••• ,k. 

By Theorem 7.39 (p. 224) & Definition 5.9 (p. 145): 

J 

nE= MAX{1 + L: ax,z} = MAX{l+(k+1 )q(z)} 
x=l 

[by (A)] -> 

nz = 1 + ( k+l ) MAX { q ( z)} (B) 

From (A) & (7.38c): 

(k+1)q(z) + (k+1)q(k+1-z) = J(k+1) /z=1,2, ••• ,k -> 

q(z) + q(k+1-z) = J /z=1,2, ••• ,k (A7.15.1) 

From (B) & (A7.15.1): 

n
1 

= 1 + (k+1)MAX{q(z)} = 1 + (k+1)MAX{J - q(k+1-z)} 

As z takes on values 1,2, ••• ,k, so does k+1-z. Then: 

n
1 

= 1 + (k+1 )MAX{q(z)} = 1 + (k+1) [ J - MIN{q(z)}] (C) 

(C) is the first result of the theorem. 
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From (A7.15.1): 1 S q(z) S J-1 /z=1, 2, ••• , k (A7.15.2) 

because q(z) cannot be negative or zero, as the quotient 

of two positive numbers, hence q(z) ~ 1. Also, if q(z) = 1 

then there exists an IA column, such that q(w) = J-1 [w = 

k+1-z -by (A7.15.1)]. 

Consider bounds for MAX{q(z)}: 

Assume that MAX{q(z)} = q(w) < (J+1)/2. Then, by (A7.15.1): 

q(k+l-w) = J - q(w) > J - (J+1)/2 = (J-1)/2 -> 

q(k+l-w) ~ (J+l)/2 > q(w) -> contradiction. Hence: 

MAX{q(z)} ~ (J+1)/2. Also, from (A7.15.2): MAX{q(z)} S J-1 

So: (J+1)/2 S MAX{q(z)} S J-1 

From (C) & (D), the 2nd result follows. 

Note, from (D), that for J = 3: 2 S MAX{q(z)} S 2 

MAX{q(z)} = 2. 

A7 .15."2. proof of Theorem 7.40 

(D) 

-> 

QED 

Let a (p-1,(p-1)/2) type-C5 code, where p is any odd 

prime, and p: 3 (mod 4). This code has J = (p-1)/2, and 

because p = 4q+3 (q=integer), (p-1)/2 = J = 2q+1 =odd. By 

Theorem 7.31, (p-1)/2 must divide p-1 (which it does). By 

Theorem 7.36, the first column of the IA is made of J = 

(p-1)/2 distinct quadratic residues modulo any prime factor 

of k+ 1 and, by Theorem A 7 .13. 3, there are exactly ( p-1) /2 

quadratic residues (mod p). Hence, the first column contains 

all the quadratic residues (mod p). The elements of the IA 

are reduced (mod k+1) = (mod p), in the range [1,k] = [1,p]. 

The code IA is made of k/J = (p-1)/[(p-1)/2] = 2 cosets. 

The first coset contains all the quadratic residues (mod p), 

hence the 2nd coset contains all the quadratic nonresidues 

(mod p). Hence, by Theorems 7.39 & 7.37, n
1
-1 equals the sum 

of the quadratic residues, or the sum of the quadratic non

residues, whichever is greater*. 

It has been observed (and it supposed by the author that 

* All reduced (ood p) in the range (l,p]. 
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it has been proved indirectly) that " ••• for p 5 3 (mod 4), 

there are always more quadratic residues than nonresidues in 

the first half of the range from 0 to p. Again, no direct 

proof is known" (see H. Davenport [48] 1 p. 9). 

Then, from the above, there are more quadratic residues, 

than nonresidues in [1,(p-1)/2] = [1,J]. Hence, 

J 

~(ilpl > 0 (A7.15.3) 
1•1 

Consider now the sum 

S ~ (Sum of quadr. residues) - (Sum of quadr. nonresidues) 

-> S = [sum of i=1,2, ••• ,p-l /(ilpl=l)-

-> 

-[sum of i=1,2, ••• ,p-l /(ilp)=-1) 

S =[sum of i(iiPl /i(ilpl=i, i=1,2, ••• ,p-1) + 

+ [sum of i(iiPl /i(ilpl=-i, i=1,2, ••• ,p-1] 

p-1 

-> s = ~i(ilp) (A7.15.4) 
1=1 

Using (A7.15.3) it will be shown that, (A7.15.4) is nega

tive, i.e. that the sum of quadratic nonresidues exceeds the 

sum of quadratic residues (mod p), if p 5 3 (mod 4). 

p-1 

s = ~i(ilp) 
1•1 

p-1 p-2 

= ~r(rlp) + ~t(tlp) 
r=2 

r=even 
t=1 

t=odd 

Let r = 2i /i=1,2, ••• ,(p-1)/2 = J & t = p-2j (=odd) 

/j=1,2, ••• ,(p-1)/2 = J. Then: 

J J 

s = ~(2i)(2ilpl + ~(p-2j)(p-2jlp) 
jz1 

Since p-2j 5 -2j (mod p), (p-2jlp) = (-2jlp), by 

(A7.14.1). Then, using Theorem A7.13.2: 

J J J 

s = 2(2IPl~i(iiPl + p~(-2jlp) - 2~j(-2jlpl -> 
j=1 j=1 
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J J J 

S = 2(2lp)~i(ilp) + p(-2lp)~(jlp) - 2(-2lp)~j(jlp) (A) 
1•1 j=1 j=1 

By Theorem (A7.13.2), (-21Pl = (-qp)(2lp). By Theorem 

A7.13.1, (-lip)= (-l)<P·1lf2 (mod p). Now, since (p-1)/2 = 
odd by hypothesis, it follows that: 

If p 5 3 (mod 4): (-lip) = -1 (A7.15.5) 

Hence, (-21Pl = -(2lp). Substituting in eqn (A): 

J J J 

S = 2(2lp)~i(ilp) - p(2lp)~(ilp) + 2(2lp)~i(ilp) ---> 
1=1 1•1 

J J 

S = 4(2lp)~i(iiPl - p(2IPl~(iiPl (B) 
1=1 1=1 

Following the same technique, S may be expressed differ

ently [from (A7.15.4)]: 

J p-1 J J 

S = ~i(ilp) + ~i(ijp) = ~i(ilp) + ~(p-j)(p-jlp) ---> 
1=1 i=J+l 1=1 j=1 

J J J 

S = ~i(ilp) + p~(-ilp) - ~i(-ilp) ---> [by (A7.15.5)] 
1=1 1=1 1=1 

J J J 

s = ~i(ilp) - p~(ilp) + ~i(ilp) ---> 
1=1 1=1 

J 

= p~(ilp) + S (C) 
1•1 

Substituting (C) in (B): 

J J 

S = 2p(2lp)~(ilp) + 2(2lp)S - p(2lp)~(ilp) (D) 

Multiplying both sides of (D), by (21Pl (which is -1- 0, 

because 2 f p) and noting that (2lp) 2 = 1: 

J 

S(2lp) = p(2IP) 2 ~(ilp) + 2(2lp)•s ---> 
1=1 
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J 

S(2lpl = p~(ilp) + 2S -> 
i=l 

J 

[2-(2lp)]S = -p~(ilp) < 0 [by (A7.15.3)] -> 
i=l 

[2-(2lp)]S < 0 -> s < 0 [because 2 > (2lp)] 

Hence, the sum of quadratic nonresidues exceeds the sum 

of quadratic residues, so n
1
-1 equals the former sum. 

Finally, if there was a closed-form expression for n
1

, 

then there would have been one for the sum of quadratic non

residues, and hence for the sum of quadratic residues (mod 

p) [the two sums add to p{p-1)/2]. This would have solved 

one of number theory's great problems, because then Dirich

let 's function L{ 1) would also have a closed-form expres

sion 1 for p = 3 (mod 4) {see discussion in H, Davenport 

[48], pp. 3-11). 

QED 

APPENDIX 7 .16; PROOF OF THEOREM 7.41 

Given a {k,J) type-C5 code, since J I k, one may let c ~ 

k/J. Since n-k = J, the code length is n = k+J = cJ+J = 
{c+1)J. The code rate is R ~ k/n = {cJ)/[(c+1)J] = c/(c+1). 

Since m+1 = k, the actual constraint-length is nA~ (m+1)n = 
kn = cJ(c+1)J = c(c+1)J 2 • 

The effective constraint-length, n
1

, is bounded by 

(7.42), for J = odd. The lower bound is 1+{k+1){J+1)/2 = 
1+{k+1) rJ/21, while the n1 for J = even is 1+{k+1 )J/2 = 
1 + { k+ 1) r J /21 • Hence the lower bound on nl I for J = odd and 

the exact value of n
1

, for J = even, are the same and equal 

to 1+(k+l)rJ/21 = 1+{cJ+l)rJ/21. The upper bound, from 

(7.42) and for J = odd, is 1+(cJ+1){J-1). 

The ratio Q ~ nA/n
1

, is bounded, from above, by: 

c{c+1)J 2 /[1+(cJ+1){J-1)] ~ Q ~ c(c+1)J2 /[1+{cJ+1)rJ/21] 

This can be approximated by: 
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c(c+1)J 2 /[(cJ+1)(J-1)] S nA/nzS c(c+1)J"/[(cJ+1)(J/2)] -> 

c(c+1 )J 2 /(cJ"+J-cJ-1) S nA/n
1 

:S 2c(c+1 )J/(cJ+1) -> 

c(c+l)J/(cJ+1-c) :S nA/n
1 

S 2c(c+1)J/(cJ) -> 

c(c+1)J/(cJ-c) :S nA/nz :S 2(c+1) -> 

(c+1) :S nA/n1 S 2(c+1) -> 

[since R = c/(c+1) -> c = R/(1-R) -> c+1 = 1/(1-R)] 

2(c+1) = 2/(1-R) :S nA/n
1 

:S c+1 = 1/(1-R) 

Obviously, the upper bound is always met for J = even. 

Note though that the bounds are approximate. 

Finally, for J = even, 

(J/2)/n
1 

= J/{2[1+(1+cJ)J/2]} ~ J/{2[(1+cJ)J/2] = 1/(1+cJ) ~ 

~ 1/(cJ) = 1/k 

QED 
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APPENDIX 8.1: CQMPtJTEB GENEflATIQt! Of 'CYCLIC' CSOC. 

This Appendix presents & explains the flow-charts of the 

various number-theoretic routines, used by the simulation 

programmes. The associated FORTRAN programmes are given in 

Appendix 8.2. 

Note: The expression a mod m denotes the least positive 

residue of a (mod m). This can be obtained from: 

a mod m A - a - la/mjm = a - INT(a/m)m (AS .1.1) 

Also, MAXIN denotes the maximum integer of the computer. 

I 

A8.1.1. §reatest Qommon piyisor 

This function [IGCD(a,b)]* uses the Euclidean algorithm 

(see Apostol [44], p, 20), See Figure A8.1.1, for a flow

chart, 

Specification: "Given integers a & b, return their 

greatest common divisor, (a,b)", It calls MOD. 

If (ab = 0), then: (a, b) = I a+bl > END 
li (a= b), then: (a,b) =a ------> END 
li else, then: A = a & B = b 

[ > Step: X = A mod B 
li (X f. 0), then: A = B & B = X 
If else, then: (a,b) = B 

& repeat step 
> END 

Figure AS. 1 . 1 : Flow-chart for greatest-conon divisor. 

A8.1.2. §J.Im Hodulo m 

This function returns a+b mod m, even if a+b>MAXIN. The 

algorithm (Fig, A8.1.2) is original. ** 
Specification: "Given integers a," b & m, return a+b mod 

m, without causing overflow", It calls MOD, and is based on 

the following theorem: 

Theorem A8.1 .1: For any me[1,MAXIN] & any a,be[O,m-1], 

* See Appendix 8,2 (§ A8,2,1., p. 520), ** This routine is incorporated into other routines. 
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such that a+b > MAXIN, if MAXr ~ MAXIN mod m: 

0 < a+b-MAXIN+MAXr < m (AS .1. 2) 

Proof: See Appendix 8.2 (§ A8.2.1., p. 520). 

I 

A = a mod m & B = b mod m 
!i (A< MAXIN-B), then: MODSU = A+B mod a -------:> 
!i else, then: MAXr = MAXIN mod m & MODSU = (A-MAXIN)+B+MAXr 

Figure AS. 1 • 2: Flow-chart for a+b mod m. 

Note that (A-MAXIN)+B+MAXr 5 A+B (mod m), because MAXr 5 

MAXIN (mod m). Also, (A-MAXIN)+B+MAXr does not overflow be

cause (A-MAXIN) is evaluated first. 

AB.1.3. Prgduct MQdu]g m 

This function [MODPR(a,b,m)]* returns ab mod m, even if 

ab>MAXIN. The algorithm (Fig. A8.1.3) is original. 

Specification: "Given integers a, b & m, return ab mod 

m, without causing overflow". It calls MOD, L?J ~ INT(?) & 

MODSU. 

The basic idea behind this routine is that ab = 
a+ a+ a+ • • • +a ( b-1 additions) • To avoid a programme with too 

many loops (each of which would involve one call to MODSU), 
it is proposed to add as many as as is possible, without 

causing overflow, reduce them (mod m) and repeat. To this 

end, ab is replaced by Qu, Re & MAXr, where Qu is the quo

tient of the integer division ab/MAXIN, Re the remainder and 

MAXr ~ MAXIN mod m [Re ~ ab - QuxMAXIN, hence (ab mod m) = 
(Re mod m) + (Qu mod m)MAXr]. Note that Qu<m because ab< m2 

< mxMAXIN, hence ab/MAXIN<m and lab/MAXINJ = Qu < m. 
What remains to be done is to evaluate Q~MAXr, without 

causing overeflow. The same process is followed, i.e. 

QuxMAXr = Qu' xMAXIN + Re' , where Qu' &. Re 1 are the quotient 

and the remainder of the division QuxMAXr/MAXIN; this equals 
Qu'xMAXr + Re'. Again Qu'xMAXr is expressed as Qu' 'xMAXr + 

Re'', until the product between the quotient Qu &. MAXr is< 

* See Appendix 8,2 (§ A8.2.3., P• 520), 



Appendix 8.1 Page 512 

MAXIN. Then, MODPR = Re+Re'+Re''+•••+QuxMAXr. That this ex

pression will not cause overflow, is decided by QuxMAXr < 

MAXIN <---> Qu < MAXIN/MAXr <---> Qu < lMAXIN/MAXrj. 

A = a aod m & B = b mod m 
If (A= 0, orB= 0, or AS MAXIN/B), then: MODPR =AB aod • END 
If else, then: D = (A/MAXIN)B, MAXr = MAXIN aod m 

Qu = INT(D) & Re = D-QuxMAXIN mod m 
I! (MAXr = 0) , then: MOD PR = Re > END 
ll else, then: Dx = MAXr/MAXIN & LIM = INT(MAXIN/MAXr) 

[> Step• ll (Qu S LIM), then: MODPR = MODSU(QuxMAXr,Re,m) -> END 
ll else, then: D = DxxQu & Qu = INT(D), 

Rs = D-QuxMAXIN aod • & Re = MODSU(Re,Rs,m) 
Repeat step 

Figure AS. 1 • 3: Flow-chart for ab mod 111. 

A8.1.4. Power Mpctulp m 

This function [MODRE(a,b,m)]* returns ab mod m, even if 

ab>MAXIN. The algorithm (Fig. A8,1.4) is original. 

Specification: "Given integers a, b & m, return ab mod 

m, without causing overflow", It calls MOD, L?J .::. INT(?), 

MODSU & MODPR. 

MAXg = logMAXIN & A = a mod m & B = b & C = 1 
> Step: ll (A S 1), then: MODRE = A > END 

I! else, !h§l: k = INT(MAXg/logA) 
If (B < k), then: z = AB mod m & MODRE = MODPR(z,C,m) END 
ll else, then: 
ll (k = 1), then: ll (B =odd), then: C = MODPR(C,A,m) 

A = MODPR(A,A,m) & B = INT(B/2) 
Repeat step 

If (k '/- 1), then: R = B mod k & Cn = AR mod m & B = INT(B/k) 
C = MODPR(C,Cn,m) & A = A" mod 11 

Repeat step 

Figure A8.1.4: Flow-chart for ab mod •· 

Since ab= aqk+r, where q = Lb/kj, and r = b-qk, ab may be 

written as ab= (a"Jqar, where k is chosen so that a"< MAXIN 

<---> k < logMAXIN/loga. A= a"mod m is the new base, B = q 

is the new exponent and C = ar (mod m) multiplies the final 

result. This is repeated until AB< MAXIN. If, and when, A2 

> MAXIN the new values of A, B & C are C = MODPR(A,C,m) if 

B =odd, A= MODPR(A,A,m) and B = LB/2J. 

* See Appendix 8.2 (§ .&8.2.4., P• SZl). 
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A8.1.5. 

This subroutine [PRIDE1(m,Arr)]* returns the prime decom

position of m. The algorithm (Fig. A8.1.5) is original. 

Specification: "Given integer m, return its prime fac-

tors p 1<p2 <• • •<pr, and their respective exponents a 1 ,a2 , •• 

• ,ar, in 22 X 2 array Arr [so that Arr(i,1) = p1 & Arr(i,2) 

= a1 1 • The rest of the array should be zero." It calls MOD, 

l?J ~ INT(?) & SQRT. 

This subroutine generates test integers p = 2,3,5,7,9, •• , 

starting with p 1 = 2. It examines whether p 1 I m; if it 

does, m is reduced to m/p
1

, and a 1 is increased by 1, and 

repeats until p
1 

does not divide m. It then updates the ar

ray ( if a
1 

~ 1 ) , so that Arr ( 1 , 1 ) = p 1 & Arr ( 1 , 2) = a 1 , and 

considers the next integer p2 , unless m = 1 (in which case 

it terminates). If p2 = 3 f m, it considers p3 = 5, etc 

until it obtains another divisor of m. In this way only 

prime integers are considered, because if, say, 9 is tested 

it will not divide m since 3 has already been tested and all 

Arr = 0 & M= m & p = 0 & i = 0 
> Stel! 1: a = 0 & p = p+2 & il (p=4), then: p = 3 

c> Stel! 2: U. (M mod p = 0), then: M = M/p & a= a+1 
ReJ:!eat step 2 

If else, then: il.(a=O), then: Go to step 3 
U. (a'# 0), then: i = i+1 & Arr(i,1) = p 

Arr(i,2) = a 
Step 3: If (p :S {M), then: ReJ:!eat step 1 < 

If else, then: il (M = 1), then: > END 
If else, then: Arr(i+1,1) = M 

Arr(i+1,2) = 1 END 

Figure A8.1.5: Flow-chart for prime decomposition of m. 

factors equal to 3 have been removed via the m = m/p opera

tion. The search terminates if m = 1, but processing may be 

sped up if one considers the fact that if m is not divided 

by any of 2,3, ••• ,{m, then it is only divided by itself. 

Hence, the test is repeated until p > {m. Then m is a prime 

and the search terminates there. 

Subroutine PRIDE2* does what PRIDEl does (by calling it) 

and it also returns r (the number of prime factors of m) and 

* See AppeDdix 8,2 (§ A8,2,5,, P• 522), 
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e(m). Note also that an array with up to 22 prime factors 

can accomodate the prime decomposition of integers of the 

order of 3x1030 ( = the product of the 22 smallest primes). 

AD.1.6. primitive Root. ModuJo m 

This function [IPRIM1(m)]* returns the smallest primitive 

root of m. The algorithm (Fig. A8.1.6) is original. 

SPecification: "Given integer me[ 1,MAXIN], return the 

smallest primitive root (mod m). If m has no primitive root, 

return 0". It calls MOD, MODRE &. PRIDE1. 

The straightforward approach is to test integers n = 

1,2, ••• ,m-1 /(n,m) = 1, until a primitive root is found. The 

test is n 1 '(. 1 (mod m), for i=1, 2, ••• ,lfl(m)-1. It is obvious 

that such an approach is inefficient. 

Firstly, the special cases are examined. For m = 1,2,3 &. 
4, g = m-1 /m>1 and g = 1 /m=1 (see Apostol [44], p. 205). 

Next, the prime decomposition of m is obtained. For m>4, m 

has a prim. root only if m= p•, or m= 2p8 /a~1 (ibid). 

Then, if r>2, or if r=2 & p
1
>2, or if r=2 &. p

1
=2 &. a

1
>1, 

there is no prim. root and g = 0. Finally, if p
1
=3 then m = 

3• /a~2, or m = 2 X 38 /a~1. For the former case, g=2 is a 

prim. root (mod 3). Since 2P-1 = 2 2 = 4 l! 4 (mod 32 ), then 

(by Theorem A7.3.4) g=2 is also a prim. root (mod 3•). For 

the latter case, g=5 is also a prim. root (mod 38
) because 5 

[ 5 i5 2 (mod 3)] is a prim. root (mod 3) and because 5P-1 = 25 

= 7 (mod 9) is also a prim. root (mod 3•) (by Theorem 

A7.3.4). Since 5 is odd, then it is a prim. root (mod 2p•) 

(ibid, p. 210). Furthermore, 5 is the smallest prim. root 

because 2,3 &. 4 are not relatively prime to the modulus. 

Hence, if p 1=3, then g=3r-1. 

For the remaining of the cases (m=p•, or m=2p• /p~5), 

what is required is the smallest prim. root (mod p), or the 

smallest odd prim. root (mod p) (if 2lm). In both cases, g 

should satisfy g~'-1 '(. 1 (mod p 2 ), if a>l. 

To this end candidate gs are generated and tested. If 

2lm, then g=3,5,7!'''' otherwise g=2,3,4, ••• The search ends 

if g~p-1=\TI(p)=lfl (p-1 has order 2, while g has order p-1~4). 

If this happens (it should not) then p is replaced by p• and 

* See Appendiz 8,2 (§ A8,2,6,, P• 524), 
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the search starts again for g=p+1,p+2, ••• (if 2fm), or 

g=p+2,p+4, ••• (if 2lm). If it fails again (it should not) 

then g=-1 and the search terminates. 

Returning now to the normal search, every g is tested to 

determine if g 1 ;f. 1 (mod p), for i<p-1=~. If the test 

fails, another g is considered [note that if p• is tested, 

instead of p, then i<~(p8 }=p•-1 (p-1 )=~]. To speed-up the 

process, not all is are considered, but only those that may 

result in g1 = 1 (mod p}. According to Theorem A7.3.2, if 

ifp-1 then g1 ;! 1 (mod p). Furthermore, if q1 ,q2 , •• .,q
8 

are 

the prime factors of ~ and i=~/qj satisfies the test g 1 ;! 1 

(mod p), g also satisfies the test for other powers of qj 

(provided that they divide ~), because: If g 1 ;f. 1 (mod p} 

and gl•f<qjq,ll = 1 (mod p), then gl•f<qjq,lJqx = gl•t<qjlJ = g 1 = 1 

(mod p), which contradicts the hypothesis. Hence, it is 

enough to test all exponents ~/qj /j=1,2, ••• ,s. 

If (m= 1), then: g = 1 -------------:> IDll! 
If (2S m S 4), then: g = m-1 > END 
If (m~ 5, & m is not p8

1 or 2p8
), then: g = 0 > END 

If else, let r=1 if m=p• or r::2 if m=2pa 
If (p=3), then: g = 3r-1 -------------:> END 
If else, then: Obtain the prime factors (q1 ,q2 , ••• ,q

8
) oft= p-1 

g = 1 
> Step: g = g+r 

If (g ~ p-1), then: 

If (g < p-1), then: 

Repeat for p = p• & t = p•-1 (p-1} 
li it fails: g = -1 & STOP 

li {g•fqj = 1 (mod p}, for at least one je[1,s]}, then: Repeat step 
If else, then: li (a= 1), then: > ID!l! 

If (a> 1), then: 
If [gP-l J& 1 (mod p2 )], then: END 
If else, !hgn: Reoeat step. 

Figure A8.1.6: Flow-chart for the saallest primitive root. 

Aa.1.'1. owr ,J Modulo any piv1aor d>t of m 

This function [IEXP1(m,J)]* returns an element ~ (1S~Sm) 
of order J modulo any divisor d>1 of m. The algorithm (Fig. 

A8.1.7) is original. 

Specification: "Given integers m & J, return element 

~e[1 ,m], such that Ord4 (~) = J, for all dim & d>l. If m<3, 

or J<2, or m=even & J~2, or m=odd & Jf9(m), return O". It 

* See AppeDdix 8,2 (§ A8,2,7,, p, 525), 
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calls MOD, PRIDE2, IPRIMl, MODRE, MODPR & MODSU. 

The routine is a straightforward application of eqn 

(7.33a). It also includes checks for illegal pairs of m & J. 

If (m S 2 or J S 1), then: B = 0 > Em! 
If (J = 2), then: B = m-1 ---------> END 
If (J > 2 & m = odd), then: B = 0 > END 
!i else, then: Obtain prime decomposition of m 

(P1oP2o••••Pr & a1,a2, ••• ,ar) and O(m) 
!i [J { O(m)], then: > END 
If else, then: Let B = 0 
r------> For i = 1,2, ••• ,r 

m1 = p ai & J = (m/p1 ){p1-1) & g1 = IPRIM1(m1 ) 
A = MObRE(g1 ,J1~,m) & B = MODRE(m/m1 ,J1 ,m) 
C = MODPR(A,B,m) & B = MODSU(B,C,m) 

Ei gure AS. 1, 7: Flow-chart for the lA generator-element B. 

A8.1.:&. Eneod ins and Smdroma Arrays 

This routine [eODAR2 ( k+l, J, Jarr, Karr)] * returns the en

coding & the syndrome array, for the (k,J) type-e5, or the k 

type-B4 code. The algorithm (Fig. AB.l.B) is original. 

Specification: "Given integers k & J, return the EA in 

array Jarr & the SA in array Karr, for the (k,J) type-e5 

code, or the k type-B4 code. If there is no code, return 

Jarr(2,1) < 0", It calls MOD&. IEXPL 

The work starts with the calculation of a. If IEXPl = 0, 

the routine terminates, returning Jarr(2,1) < Q, 

The EA is obtained from the IA via mapping (7.35), To 

save space, the IA is not calculated but array Karr is used 

as a working array for the storage of the coset leaders of 

the IA. The first column of the IA is stored in Karr(i,l) = 
' a1 (mod k+l) /i=1,2,, •• ,J, The 1st row of Jarr is set equal 

to 0. Jarr is calculated coset by coset, starting from coset 

number, en = 1 , Hence, scanning J arr ( 1, i) , as i = 1 , 2, ••• , k, 

permits the determination of the coset leader, er, of the 

next coset to be calculated [Jarr(l,i)=O, for the smallest 

i]. Once a coset leader, er, is found, the corresponding 

column of Jarr is obtained from the mapping: 

/i=1,2, ••• ,J (A8.1.3) 

* See Appendix 8.2 (§ A8.2.8,, p. 525), 
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The rest of the columns that belong to coset Cn, are the 

rest of the elements of column Cr, of the IA (Cr is the last 

element of that column). By Definition 7.2 (p. 1B5), the IA 

elements of column z are a = za 1 (mod k+1) lx=1,2, ••• ,J. x.z x. 
Since Karr(i,1) contains the IA first-column elements, then 

the IA elements of column Crare obtained by: 

Cln(i) = Cr X Karr(i,1) mod k+1 li=1,2, ... ,J (AS .1. 4) 

Cln(i) li=1,2, ••• ,J are both the IA elements of the coset 

leader of coset C [which were mapped to C +(i-1)kiJ - by n n 

(AB.1.3)] and also the column numbers of coset Cn' According 

to (7.37a) (p. 221), the column numbers of an IA coincide 

with the elements of the Jth row, Cln ( i) I i=1, 2, ••• , J and 

also the last elements of the IA columns belonging to coset 

en. Hence, the last elements of these columns of the IA are 

also mapped to Cn+(i-1)kiJ: 

li=1,2, ••• ,J-1 (AB .1. 5) 

Note, from (AB.1.4), that Cln(J) = Cr, and that Jarr(J,Cr) 

has been calculated. The rest of the elements of column 

Cln(i) are calculated using the cyclic nature of the EA. So, 

the element in row J-1 will be smaller by kiJ, unless this 

is non-positive, in which case k must be added: 

Jarr(j,Cln(i)) = Jarr(j+1,Cln(i))-kiJ* lj=J-1, •• ,2,1 (AB.1.6) 

The search terminates when en > kiJ. 

Consider now the syndrome array (SA). Let the syndrome 

register (see Fig. 7 .1) be rotated 90' clockwise and then 

180' around its vertical axis, to become the k X J array 

ISR. Then, the top row contains s~~L1 lj=1,2, ... ,J, the 2nd 

row s~~~-2 I j=1, 2, ... , J, etc, the last row contains s~j) I j=1, 2, 

•• ,J. Obviously, if his the block currently decoded: 

ISR(z,j) = s~~Lz lj=1,2,, •• ,J & z=1,2, ••• ,k (AB .1. 7) 

Theorem 7.1 relates the syndrome bits with the elements 

of the IA. Since decoding is done via the EA, the latter's 

elements are used instead. By 

• , k, (j) 8 h+w-l 
checks on eU> 

b ' 

* Add k, if the BHS is less than one. 

iff 

Theorem 7.1, for each i=1,2, •• 

EA element bj,w = i. Since, bj,w 
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= Jarr(j,w) and since there is exactly one i in each EA row, 

then for each J=1,2, ••• ,J, there exists a column z (obvious

ly l~z~k), such that Jarr(j,z) = i. Then, e~11 is checked by 

s~~l = ISR(k+l-z,j). For each i = 1,2, ••• ,k, syndrome bits 

ISR(k+l-z,j) /j=1,2, •• ,J, check on e~11 , where z is such that 

Jarr(j,z) = i. Obviously, z depends on j & i. Hence, an ex

pression for z(j,i) is required and since z is a column of 

Jarr, ze[l,k]. This expression is obtained from the inver

sion of Jarr(j,z(j,i)) = i. Let z(j,i) = x /x=1,2, ••• ,k. 

Then, Jarr(j,x) = i and from z(j,i) = x, one obtains 

z(j,Jarr(j,x)) = x /x=1,2, ••• ,k. To facilitate decoding, let 

Karr{j,i) = k+l-z(j,i). Then: 

Karr(j,Jarr(j,i)) = k+l-i /i=1,2, ••• ,k & l~j~J (AS .1. 8) 

Then, ISR(Karr(j,i),j) /j=l,2, ••• ,J are the syndrome bits 

checking on e~1 l, for each i = 1,2, ••• ,k. See Example A8.2.1 

(p. 531), for an illustration of the validity of the above 

results, via the calculation of the EA & SA for the (18,6) 

type-C5 code. 

In Appendix 8.2 (§ A8.2.8., PP• 525-31), FORTRAN pro

grammes for subroutines CODARl & CODAR3 are also listed. The 

first one prints any combination of the IA, EA & SA, re

quired. Each array is partitioned into sub-arrays of dimen

sions that fit in the printer paper. CODAR3 returns the same 

B = Karr(l,l) = IEXP1(k+l,J) 
il (B = 0), then: Jarr(2,1) < 0 -------------> END 
il else, then: 
r------:> For i=2,3, ••• ,J 

Karr(i,l) = BxKarr(i-1,1) mod k+l 
Jarr(l,i) = 0 /i=1,2, ••• ,k & C = C = 0 r n 

> Step: C = C + 1 
il [Jarr(1,C ) I 0], .thm!: Repeat step 
If else, then: Cn = C +1 & Jarr(i,Cr) = Cn + (i-1)k/J /i=1,2, •• .,J 
r------:> For i='\,2, ••• ,J-1 

Cl (i) = C xKarr(i,l) mod k+1 
Jah(J,Clnhll = Cn + (i-l)k/J 

r-----:> For j=J-1, ••• ,2, 1 
Jarr(j,Cl (i)) = Jarr(j+1,Cl

0
(i)) - k/J 

il [Jarr?j,Cl
0
(i)) < 1] then: Increase by k 

If (C < k/J), then: Repeat step 
Karr(j,Jarr(j,i)) ~ k+l-i /i=1,2, ••• ,k & j=1,2, ••• ,J END 

Figure A8.1.8: Flow-chart for the encoding & syndrome arrays. 
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information, as CODAR2, but in a way suitable for the decod

er implementation of 'long' codes (see Examples A8.3.1 & 
A8.3.2 in Appendix 8.3, pp. 536 & 541). 

A8.1.9. 

This function [NEFELl(k+l,J)]* returns the effective con

straint-length, n
1

, of the (k,J) type-C5, or the k type-B4 

code. The algorithm (Fig. A8.1,9) is original. 

Specification: "Given integers k+l & J, return the 

effective constraint-length of the (k,J) type-C5, or the k 

type-B4 code. If no such code exists, return O". It calls 

MOD, MAX & IEXPl. 

This routine calls IEXPl to calculate ~. If ~=0, it re

turns 0. If J=even, it returns l+(k+l)J/2**, while if J=3, 

it returns 1+2(k+l)**. For the rest of the cases, it exam

ines the IA to determine the column with the largest sum of 

elements. To avoid having to store the IA, it generates only 

the coset leaders, from ~. An 1 x k logical array, Isu, is 

used to 'tick-off' examined IA columns. To speed-up the 

process, if a column sums-up to the maximum [(k+l)(J-1), by 

Theorem 7.39] the search terminates. Also, if the opposite 

happens (by Theorem 7.35, the minimum is k+l), another col

umn will sum-up to the maximum. 

~ = IEXPl(k+l,J) & n
1 

= 0 
il (13 = 0), then: > END 
If (J =even), then: n

1 
= l+(k+l)J/2 > END 

If (J = 3), then: n1 = 1+2(k+l) -------------:> END 
il else, then: 

Isu(i) = F /i=1,2, ... ,k & er= en= 0 
r-----:> Step: e = e + 1 

ll. [Isu(C ) =r T], then: Repeat step 
il else, irum: e = e + 1 & enn = e & Sum = 1 

,...-----:> For j=1,2, ... ,J n n r 
enn = 13xenn aod k+ 1 & lsu ( enq) = T 
Sum = Sum + e & n1 = MAX{n11 ,~:~um} 
ll. (Sum = k+2~ then: n~ = l+(k+l)(J-1) 
ll. [n

1 
= l+(k+l)(J-1)], then: --------:> END 

ll. (en< k/J), then: Repeat step 
If else, then: > END 

Figure AS .1. 9: Flow-chart for the effective constraint-length. 

* See Appendix 8.2 (§ A8.2.9., P• 533). 
** See Theor .. s 7.38 • 7.39 (p. 224). 
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APPENDIX: 8 • 2: fORTBAN Pf!OGRAMMES FOB APPENDIX a .1 

A8.2.1. 

c 
FUNCTION IGCD(K,M) 

IGCD = G.C.D. (K,M) .
Il"'K 
I2eM 

149 I 3=MOD (Il, I2) 
IGCD=I2 
IF(I3.EQ.9) RETURN 
Il"'I2 
I2=I3 
GO TO 149 
END 

Figure A8.2.1 FORTRAN progr8111me for function IGCD. 

A8.2.2. Sum Modulo m 

To prove Theorem A8.1.1: Since, 

0 :S a,b < m -> MAXIN < a+b < 2m -> 

0 < a+b-MAXIN < 2m-MAXIN -> 

0 < a+b-MAXIN+MAXr < 2m-MAXIN+MAXIN-lMAXIN/mJm -> 
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0 < a+b-MAXIN+MAXr < m+(l-lMAXIN/mU)m (A) 

Since m :S MAXIN -> lMAXIN/mJ 0: 1 -> 

1-LMAXIN/mJ :S 0. From this & (A), (A8.1.2) follows. 
QED 

AB.'2.3. Product. Modulo m 

This subroutine was tested for validity for various modu

li up to MAXIN-1. A processing-time test was carried out for 

various moduli of magnitude-order 103-10 7 on an ICL-1904 

mainframe (for which MAXIN = 8,388,607). For each modulus, 
the routine was called about 5,000 times. The 1st factor of 

the product was = m, while the 2nd factor = m/2. The average 

processing time was 11, 12, 15, 27 & 16 psec, respectively, 

for the above-mentioned moduli. 
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FUNCTION MOD PR (IA, IB, IMO) 
C MODffi = IA*IB (MODULO IMO) .-

DOUBLE PRECISION D,DCM 
COMMON/MO/ICE 
Ml=MOD (IA, IMO) 
M2=MOD (IB, IMO) 
IF(Ml.NE.0.AND.M2.NE.0) GO TO 190 

170 MODPR=0 
RETURN 

190 IF(Ml.GT.ICE/M2) GO TO 220 
MODPR=MOD (Ml*M2, IMO) 
RETURN 

220 D=DBLE(FLOAT(Ml))/ICE*M2 
M2=MOD(IDINT(D),IMO) 
IR=MOD (!DINT ( (D-M 2) *ICE+0. 5) , IMO) 
ICM=MOD (ICE, IMO) 
DCM=DBLE (FLOAT (ICM)) /ICE 
IF(ICM.EQ.0) GO TO 170 
LIM=ICE/ICM 

290 IF(M2.LE.LIM) GO TO 390 
D=DCM*M2 
M2=MOD (!DINT (D), IMO) 
IRR=MOD (I DINT ( (D -M 2) *ICE+0. 5) , IMO) 

330 IF(IR.LE.ICE-IRR) GO TO 370 
IR=MOD (IR-ICE+IRR, IMO) 
IRR=ICM 
GO TO 330 

370 IR=MOD(IR+IRR,IMO) 
GO TO 290 

390 MODPR=MOD(M2*ICM,IMO) 
400 IF(MCDPR.LE.ICE-IR) GO TO 440 

MODPR=MOD(MODPR-ICE+IR,IMO) 
IR=ICM 
GO TO 400 

440 MODPR=MOD(MODPR+IR,IMO) 
RETURN 
END 

Figure A8.2.2: FORTRAN programme for function MODPR. 

A8."2.4.. Pgwec Module m 
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This subroutine was tested for validity and processing

time performance, for various moduli up to MAXIN-1, in a way 

similar to that used for MODPR. Again, the moduli order of 

magnitude was 103-107 (on an ICL-1904 mainframe, MAXIN = 
8,388,607). For each modulus, the routine was called about 

5,000 times. The base was between 300 & 350 and the exponent 

between 151 & 170. The average processing-time was 12, 31, 

24, 72 & 47 psec, respectively, for the above-mentioned mod

uli. 
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FUNCTION MODRE(IBA,IEX,IMO) 
C MODRE = IBA**IEX (MODULO IMO).

COMMON/MO/I CE 
A=ALOG(FLOAT(ICE)) 
IB=MOD (IBA, IMO) 
IE=IEX 
IC=l 

190 IF(IB.GT.l) GO TO 230 
MODRE=0 
IF(IB.EQ.l) MODRE=IC 
RETURN 

230 K =A/A LOG (FLOAT (IB)) 
IF(IE.GE.K) GO TO 280 
MOD RE =MOD (I B* *I E, IMO) 
MODRE=MODPR (MODRE, IC, IMO) 
RETURN 

280 IF(K.EQ.l) GO TO 330 
ICcMODPR (IC,MOD (IB**MOD (IE,K), IMO), IMO) 
IB-MOD (IB**K, IMO) 
IE=IE/K 
GO TO 190 

330 IF (MOD (IE, 2) .EQ.l) IC-MODPR (IC, IB, IMO) 
IB=MODPR (IB, IB, IMO) 
IE=IE/2 
GO TO 190 
END 

Figure A8.2.3: FORTRAN progra11111e for function MODRE. 

A8.2.5. Prime Qeeomooaition 

Page 522 

This subroutine was tested for validity and processing

time performance for various moduli up to MAXIN. For the 

ICL-1904 mainframe (with MAXIN = 8,388,607) 1 it was verified 

that: 8,388,607 = 47 X 178,481 

8,388,606 = 2 X 3 X 23 X 89 X 683 

8,388,605 = 5 X 1,677,721 

8,388,604 = 22 X 72 X 127 X 337 

8,388,593 = prime 

etc 
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SUBROUTINE PRIDE I (NI, IAR) 
C THIS SUBROUTINE RETURNS THE PRIME DECOMPOSITION OF NI, IN 22X2 ARRAY 
C IAR - PRIMES IN 1ST COLUMN, CORRESPONDING EXPONENTS IN 2ND - THE PRI
C MES AND THEIR EXPONENTS ARE ARRANGED IN ASCENDING ORDER AND OCCUPY THE 
C FIRST ROWS OF THE ARRAY, WHILE THE REST ROWS ARE 9.-
C l<IMO<MAXINT+l I MAXINT<2**191 - IF IM0<2, IAR=9 - NI IS RETURNED.

DIMENSION IAR(22,2) 
DO 199 I=l,22 
IAR (I, 1)=9 

199 IAR (I,2)=9 
IF(NI.LT.2) RETURN 
NNI,.NI 
J=9 
I=9 
LIM• (SORT (FLOAT (NI)) +1 112 

259 I=I+l 
IPR=2*I-l 
IF(I.EQ.l) IPR=2 
IEX=9 

299 IF(MOD(NNI,IPR) .NE.9) GO TO 339 
NNI=NNIIIPR 
IEX=IEX+l 
GO TO 299 

339 IF(IEX.EQ.9) GO TO 389 
J=J+l 
IAR (J, l)=IPR 
IAR(J,2)=IEX 
IF(NNI.EQ.l) RETURN 

389 IF(I.LE.LIM) GO TO 259 
IF(NNI.EQ.0) RETURN 
IAR (J+l,l) =NNI 
IAR(J+1,2)=1 
RETURN 
END 

SUBROUTINE PRIDE2(IMO,IL,NR,RAR) 
C THIS SUBROUTINE RETURNS THE PRIME DECOMPOSITION OF IMO IN 22X2 ARRAY 
C KAR - PRIMES IN 1ST COLUMN, CORRESPONDING EXPONENTS IN 2ND - THE PRI
C MES AND THEIR EXPONENTS ARE ARRANGED IN ASCENDING ORDER AND OCCUPY THE 
C FIRST NR ROWS OF THE ARRAY, WHILE THE REST ROWS ARE 9.-
C THE SUBROUTINE CALCULATES AND RETURNS IL AND NR, WHERE NR IS THE NUM
C BER OF PRIME DIVISORS, IPR(l),IPR(2), ••• ,IPR(NR), OF IMO, AND 
C IL • G.C.D.( IPR(l)-1,IPR(2)-l, ... ,IPR(NR)-l ).-
C l<IMO<MAXINT+1 I MAXINT<2**llll - IF IM0<2, KAR=9, NR=9, IL=-1.- ·~ 

DIMENSION KAR(22,2) 
CALL PRIDEl(IMO,KAR) 
NR=9 
IL•KAR(1,1)-1 
IF(IL.EQ.-1) RETURN 
DO 269 I•l, 22 
IF(KAR(I,l).EQ.9) GO TO 279 

269 NR-NR+l 
279 IF(NR.EQ.l) RETURN 

DO 299 I•2,NR 
299 IL,.IGCD(IL,KAR(I,l)-1) 

RETURN 
END 

Figure A8.2.4: FORTRAN programtes for subroutines PRIDE?. 
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A&.2.6. Prjmitjve Root. Modulo m 

This subroutine was tested for validity and processing-

FUNCTION IPRIMl (IMO) 
C IPRIMl=SMALLEST PRIMITIVE ROOT OF IMO.-
C IF IMO HAS NO PRIMITIVE ROOTS, IPRIM1=e.
C IF NO PRIMITIVE ROOT IS FOUND, IPRIMl=-1.-

INTEGER Xll2BBF 
DIMENSION IAR(le,2),JAR(le,2) 
COMMON/MO/ICE 
ICE=Xe2BBF(X) 
IPRIMl=l 
IF(IMO.GE.S) GO TO 19e 
IF(IMO.GT.2) IPRIM1=IMO-l 
RETURN 

19e IPRIM1=e 
IND=l 
CALL PRIDEl(IMO,IAR) 
IF(IAR(1,1) .GE.3.AND.IAR(2,1) .EQ.e) GO TO 2S0 
IND=2 
IF(IAR(l,l).EQ.2.AND.IAR(l,2).EQ.l.AND.IAR(2,1).NE.0.AND.lAR(3,1). 

1EQ.e) GO TO 2S0 
RETURN 

2S0 IPR=IAR(IND,1) 
IF(IPR.NE.3) GO TO 29e 
IPRIM1 =3 *IND-1 
RETURN 

291'1 IA=IAR (IND,2) 
LIM=IPR-1 
CALL PRIDE1(L1M,JAR) 
I=1 

330 I=I+IND 
IF(I.LE.IPR-2) GO TO 440 
IF(IA.NE.e) GO TO 380 
IPRIM1=-1 
RETURN 

38e I=IPR+IND 
LIM=(IPR-1)*IPR**(IA-1) 
IPR=IPR**IA 
CALL PRIDE1(LIM,JAR) 
IA•e 
GO TO 33e 

4411 J=1 
4Se IF(MODRE(I,LIM/JAR(J,1),IPR).EQ.1) GO TO 33e 

J-J+1 
IF(JAR(J,1).NE.e) GO TO 4Se 
IF(IA.EQ.e.OR.IAR(IND,2).EQ.1) GO TO see 
IF(MODRE(I,IPR-1,IPR**2).EQ.1) GO TO 33e 

see IPRIM1=I 
RETURN 

C INCORPORATE FUNCTIONS MODPR & MODRE AND SUBROUTINE PRIDE1.
END 

Figure AS. 2. 5: FORTRAN programme for function IPRIMI. 
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time performance for various moduli up to MAXIN. On an ICL-

1904, it required 33 secs to examine m = 1-1000, 30 secs for 

1001-2000, 35 secs for 2001-3000, 58 secs for 5001-6000, 99 

secs for 8001-9000 and 139 secs for 8388400-8388607 (MAXIN = 

8,388,607). For m= 8,388,602, g = 7. 

A:8."2.'7. Ordgr ,J Mocfulo any ptyitor: d>1 of m 

This subroutine was tested for validity and processing

speed performance for various moduli. For a given m between 

2000-3000, it required about 0.4 secs to calculate P, where 

OrddP = J, for all J I e(m) (on a CDC-7600 mainframe). Note 

that IEXPl calls PRIDE2, IPRIMl, MODRE & MODPR. 

FU~CTie~ lEXPll~oiSI 
DIKE~SION ~ARI22o2loiPEX122loiREXI22loiPk122l 
COKMC\/TPl/lLo~~•KAP 

IFI~o&T.2.A~U.IS.GT.loANDoiMDOIKo2lo[GoloOR.ISoEG.2ll GO TO 290 
27~ IEXPl=O 

RETURN 
29~ IEXF'l:M-1 

IFIIS.EQ.2l RETUkN 
CALL PRIDE21~olLohRt~APl 
IFIMODIILtlSloNE.Cl GO TO 27~ 
IEXPl=O 
DO 43) 1:1 1 1\R 
IPEXIJl:KARIItll••KA~II 1 2l 
lREXIIl=IPEXI!l/KARIIoll•CKARCloll-11 
IPRili=IPRirlllPEXIIIl 
IA=MODRECIPRCllolREXIll/IS,~l 
lo=MuDREIK/IPEXIlloiREXIlltMl 

4~0 IEXPl=~ODIIEXPl+~OOPRCIAol&,~lo~l 
RETUR"l 
Er ID 

Figure AB. 2. 6: FORTRAN programme for function IEXP1. 

AB."2.8. io99ding and SYndrome Arravt 

Subroutine CODAR2 returns the encoding (EA) & syndrome 

(SA) arrays in the J X k arrays JAR & KAR. It is used by the 

simulation programmes, for decoding. 

Subroutine CODARl prints any combination of the IA, EA & 
SA, without making use of storage arrays. The arrays are 

partitioned so that they can fit in the available printer 

paper (see Fig. A8.2.8). 
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SUERDUTI~E CCD~~2tK:tiSoJAk,KAkl 
DlME~SIC~ Jt~llStK~loKAkllSt~Ol 
C0!':-'0'!/ CC C2/JEXP 
M=K~+l 

JEXP=KARI1t1l=IE~P11Mtl5l 
lFIKARilt1loEC.~l RETUR~ 
IA=JAiH2tll 
Jf,:JARiltll 
CO 21C· 1=2• IS 

210 KARIItll=MODIKARII-lt1l•KARI1tlltMl 
DO 230 I=ltKl 

230 JARI1ti>=C 
f\ICS:t-1l•IS 
f\::0 

263 lll:r~+1 

lFCJARI1tNl.~E.Cl GO TO 26C 
NCS=~.CS+l S 
~CC=NCS+lS+1 

DO 31~ l=lt!S 
310 JARI!tNl=~CS+I 

00 37::1 I=2t IS 
K=~ODt~•KARCl-1t1lt!'l 

JARiltKl=NCS+I 
DC 37~ J=2tiS 
JARCJt~l=JAF<J-ltKl+l 

37C lFIJARIJtKloEGo~CCl JARIJtKl=NCS+1 
IFINCCoLT.~l GO TO 26~ · 
IC=IA•IIE>-ll 
DO 4lu I=ltlS 
DO 410 J=1tKC 

41C KARCltJAklltJll=J•JA+IC 
RETURN 
u;o 

Figure AS. 2. 7: FORTRAN programme for subroutine CODAR2. 

SUBROUTI~E CCOARl<•oiStlDl 
DIME~SIO~ lR12~tl,IFCt2COltiFRC23Jl 
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C JNCOkPORATE THl FCLLO~l~G ~TAT[rEhTt IN T~[ CALLING SEGMENT.
CO~MO~/CCDl/IAolt/CCD2/J[XP 
DATA K~/L/tEI•-•/,H/ 0 +'/tFI•:•t,G/• •I 
IFC I 1l :JEXP 
IFCIFCilloNE.Cl GO TO 315 
ID=O 

310 RETUR~ 
315 IFCJDoLTo1oORolOoGT.7l ID=l 

NCP=39-INTIALOG1:CM-1o0ll/2•1C 
IOD:O 
KO=H-1 
NPW=KO/NCP 
~1\C=K~-NPW•NCP 
flRP=5 J 
~PL=lS/t.RP 
NRR:JS-NPL•t-IRP 
DO 365 I=2tiS 

3£5 IFCIIl=~ODCIFCCI-1l•IFCClltMl 
IFCID.EQ.ll GO TC. 431 
DO 36J I=1,KC 
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38C !FRill=~ 

N=O 
NCS=I-11*1~ 

395 tl=l\+1 
IFIIFRINloN(o~l GO TO 3Q5 
NCS:NCS+IS 
IFR UO='\CS+1 
00 420 1=2olS 

420 IFRI~OOiti•IFCII-llt~ll=~C~+J 
IFINCS+IS.LToK:I GO TO 3"5 

430 I~D=7•IDO+IC 
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GO TOI445t455t~E5o445t445o455t445t3lrt3l~t310t455o465o31:,455t31Jt 
1310o310o310o31Co465o465o31Co310o3l~t310o310o310o310loll\u 

44!:1 100=1 
GO TO 470 

455 100=2 
GO TO '170 

465 100=3 
470 CALL SECO~OITII 

IFIIOO.EQ.l) GO TO 495 
DO 4'33 I=lti<'C 
IF!IDD.EQ.2l IR!J):JFR!J) 

4'3~ lFIIOUo[Oo3l IR<IFR!l)):JA•Il+IE-ll 
'1~!:1 M3=~CP•I4-NCP/35l+3 

Kl: ... CP 
1=0 

51~ 1=1•1 
IFiloGT.rPWl GO TO 715 
K3=I•NCP 
K2=K3-NCP+l 

53: ,1:'12=~ 

53!:1 J=J+l 
IF!J.GT.NPLl GO TO f95 
M2=J•NRP 
1'1 =1'2-t;PP+l 

5!:1!:1 IFIIDDolG.1l ~RITE12ol7Pl ~tlS 

IF!IDD.E0.2l WRlTE12tlB:l l'tiS 
IFIIDJoEOo3l WF1TE12tl9Gl MtiS 
lFINCP.EGo29) ~PITE12o2CJI ftiGtKtK=K2tK31 
JFI~CP.EQ.39) WR1Tll2t2~5) f,(G,K,K=K2tK3) 
•RITE12t2lOl IHtK=lt~3l 
DO 685 L=Mltr.2 
IFII00-21 5q5,625t650 

595 IRIK2l=MOO!K2•IFC1Llt~l 
IFIK2oEGoK3l GO TO 680 
K21=K2+1 
Oe 61!:1 K=K2ltK3 

615 IRIKI=MOOIJ~IK-1l+IFCILltHl 
GO TO 68t 

625 IFILoEOo1l GC TC 68t 
00 64~ K=K2tK3 
IRIKI=IRIKI+l 

640 IFIMODIIRIKl-ltiSioEGoOl IRIKl=IRIKl-IS 
GO TC f 80 

65C IFIL.EQ.l) GC TC 68~ 
00 675 KK:lStK:tlS 
IRR=IRIKKl 
00 67J K=2oJS 

67C IRIKK+2-Kl:IRIKK+l-Kl 
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67e IRIKK-IS+ll=IRR 
6P~ IFINCP,E~.29l ~RITE12t215l LoFtiGtiRIKloK=K2oK3l 
£f5 IFC~CP.EQ,35l kRITEC2o22~l LtftiGtlRCKloK=K2oK3l 

GO TO 5:35 
655 IFCM2.EQ,JSI GO TO 51C 

M2:IS 
l'l=IS-N'\F<+l 
GO TO 5~5 

715 IFIK~.EQ,Kal GC TO 745 
Kl:t,RC 
K2=NPII•NCP+l 
K3=K~ 

1'3=NRC•C~-~CP/351+3 
GO TO 53(1 

745 lFCIDD-21 775,77&,75~ 
750 IFCIAoEGo•ll IIRITEC2t225l E 

IFCIA,EG.ll ~F<ITlC2t22~l H 
IIRITEC2t260l IB 
GO TO 775 

77~ IIRJT[I2o23~l 
775 ChLL SECONOCTJl 

TK::TJ-TI 
loiRIH.I2t29;l TK 
K3::; 
GO TO lf3(: 
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17: FuRMATClHltl7X,•I N I T I A L A R RA Y 0 F M 0 DU L 0 M 
l=•,I4o' A ~ u 0 R DE R S =•ti4/l~ t17Xt8~C'·'l/l 

~~~ F~RHATilHltl&Xt•C 0 D I N G A R R A Y 0 F M 0 D U L C M :• 
lol4t' A N 3 C R 0 E R S ='ol4/l~ tl8Xtb3C 1 • 1 l/l 

13J F~R'lATilHltlfX,•S Y N D h 0 w [ A R R AY 0 F M 0 DU L 0 
1~ =•tl4t' A 11 U ) P ~ r k S ='o!4/lH t16X,871'·'1/J 

2'·' FORt1HilH:t?><.t ~1/1t:+o3Xt2'lCAltl3ll 
2L~ FJk~ATCJP;,?X, Al/lH+t~~t39CAlti~ll 

2!: fQqMATClH tl?.All 
,15 FCR~~TilH ,!3, ~l/l~+,~X,29CA1,I~ll 
22~ Ft~~hTCl~ tl5t ~l/lr+,3Y 9 ~~(t],J2ll 
2:5 FCF<.hATI/1H:olXtllEC 1 ·'1/lH t~9Xt~1l 
23; F~R~ATC/lH~olhXt PA1 1 ·'l/l~ ol£)o 1 FOR A~ CN•CK~+ISlt~*K~l ''CYCLIC 

1'' c.s.c.c., TPE ITH PAkiTY-CHECK DIGIT CF BLOCK Ct IS Gl·'llH ol6 
?X,•VE~ ~y TPE r·c~UL0-2 !U~ Cf '(SSAGE DibiTS MIC-J+loJA~IIoJll/J:l 
3,:,,,,,~, FCR ALL I=lt2to 1 /lH tl6X,•,,IS, W~fRE XILtil Of~DTfS TH£ 
~ ITH ~[SSAGE DIGIT CF 5LOCK L ~~~ JAR IS THE CODING AF<.RAY,•/lH tl6 
!>x, e.sc•-•>> 

2E: FORMATilH+t' FOR A~ CN*CKO+lS),~•K~l ''CYCLIC•• c.s.o.c., IUrDROI'E 
1 DIGITS SY~CltC•& KARCitJll/I=lt2tootiS ARE ORTPOGOhAL C~' T~E JTh' 
2/lH •' DIGIT OF BLOCK Ct WhERE: SYNCitKl &E~OTES THE Ilt SY,~RO~E 
3DIGIT OF BLCCK Kt KAR IS THE SYhUROK[ ARRAY, AND B=•ol5t'•'/lh olX 
4,116c•-•>l 

290 FORKATC/lHUt20Xo 1 PROCESSING TIME =•o1FES.2/lHOtl20t'='l) 
END 

Figure AS. 2. 8: FORTRAN progrllllllle for subroutine CODARl. 

Subroutine CODAR3 returns enough information about the EA 

& SA to enable the decoder to operate, without requiring the 

use of large storage-arrays. It is used for the simulation 
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~ .. 11--~ 1L'i!' f r-·r 1-f3Ct-:rl,]':;,._!r?,'-t~,Ll·C,!":Itlf-L-tV!fJ,..,f.f<t~(.tCtKR) 
C'I r:: ;, SI~ ' J f. l K . I H. S (t, c l , L Ll C ( I'( ) , It- C l K ()) t IF b l 11 0 ) t ~;A /J I 1\ 0 ) t f.! A 1:: I K 0 I t 

~ / C t r, • ) " ,,... r ( " ) 

C···•,••• /C .. r 2/J[VF/t'Al"ILl 
>t.l=Lc 
.. :1: ~ •1 
LT;=t''l 1 ) 

ff lli=J:.H =!lY;ll• tiU 
l-' ~ ( ! ) = \.. :.- y J = l. 
!FIJ:YP.[Co"l FETUF' 
L• 1!"~ !=l ,vL 

lCO ,,f' I! l:O 
I t S=~ 
'CC=lS+::' 
• = c 

!l:"l•:f+l 
TfC'"1:.(P').rr. t rr T'' 11: 
J;l'l=LLC=A•Cri\CS-r.~,vlbl+Co5 

J ~: I'. l : I"~ f - ~ • '5 l I L!· + 1 
I l C<'.l=Ll.=A'''•i:,l' rc.-:'.~tXLEl+·.: 
'!' :'! ):• r:n:L• tltllL-Ll'l+2 
FC.'':'·C•2.~-1/. C•? 
··r (' .... ~~>=: -:~ 
.·, = 1 
:. . l?L! ~~;:-, ;~ 

"=··r Jlrf•Jc>F.~ > 
j='·:c· .. vt,•') 

~._1;: P ):\,.1-,1-;: t•(' c:: ... I-! .~tYLE: >•r.:. 
dr ''" ):( L~·•!-1.~1/LL-+1 

i.l'C r '" =u: 
~ l"' ( V ) : 1- ( • + :.. ! G. I c • '- t I L:- '"''"' •.• : ) - J I J "' *: 

l:Zl! • "("CC-ll:r;-v 

"CC=' CC+!~ 
, r t, r ·, .t r • ~· > r:, ,.l 11 . 
··:..1=t ,•·rL(r·:.~ll(L~.'-1!.:) > 
..... 17' 1=1,,.() 
:Frt!l=''tEC!J:f'/CCil=: 

,'t.l!):·•;t 

tr TC1l~Dt14Dt1~0,160tl70tl60l,ji;Dill 
lt. ~r:..fJJ=.JI tl>-ln-~ 

··~::·t~" <Lc'•Ll'C<! 1+1-JF I l l-15:) 
",_A CJ ):,..-.t ( ··t,,,~tl) 

UhF(iJ=C~~FL(MA) 

c.r Tr 1:!. 
1~0 iFS{:l=L~CI!l-Lb 

i't:f'tS~ ILIJL (])) 
KfA(!):4''0(~~tVf!) 

:it I' >=CL·•·H C!'A l 
Gl' 10 1~0 

HO .·.:.="A'>KI!S-IUCill) 
·~'l!l:4u0(f'ht~h!) 
• /, 1- ( ~ ) = c ,, • ,, l ( ,. f ) 

G: T0 1~G 

17 !t-~C~>=LlJ:,H (T)+~S-2•lt-.-1 
' r: r· i 2 E i L U C < ! l -I I! l 
' i :C,'""L tr'A s•: I Li: -L IJC Ill l l 
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~' t!l=c~:f11'', oli•LP-LLCIIll 
.. t I! l =": L I" C , ' A 1, C :•', f L I·' AF 11 l I I 
•. t("'{:tr.rf Lf':J 

·' rr 1~. 
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1'( .f!(TJ:,t'(Jl-1 
t:",:::~ !Li:-lll c Ill 

• f : C' 'v l I' I• ~ " ( l' • l [I C I ! I -! S I I 
1 ;. " C ! I = ~ • I F T I r· r , 1 F !'- I : l l 
"~ 1 11 =. r 1 ,. ~ 1 , ' t, c: · ~ L 1 r ;. t 1 r 1 1 1 

· :·CIIJ=c:nllf't> 

: F ( L. ~ - • ::. r., • r J f. ~ T '-" ~.; 
.. ; 1 ... :, ... ,: 1 : J f'tl!: 
!t rr:-c2.~·!~> 

.. ,, ! T: c ~', L 2 r· ' 
If I~:: t.2t~3QJ 
t.! ~T~' ?,:t.: ~ 
. :.·:.rTC(2,~~: l 
... · !TL<?,c:..fl,) 
v.F JTF (~,:70> 

11 !T~ t: t~c; ) 

"f! T:-\ ;)tt l.(o) 
.:IT:...,2tt.l0l 
,;!T:<?·~.-,: 

, ... ,.=-c:.t~.) 
~.·-~-=T~·-lr-] 

? !' t ! = 1 ' .. , ('1 
"'r:.:l•r t:l+\.•.~t 

'"r=t,' 0 1:il-:-1Pl•CI'~I!l/5l 

r -LL _j;~.,·.u:·~.:.CJJ,L-ti1•l~t13J 

r ~- L l ~ : T L ·· l 1 c 1" t. ~ t: > , L r , J 1 , Lt 2, J ~ ) 
~ , l ~ ~ : i (', l C : ~ C ( T l , L · t ( 1 t ~ " t I ~ l 

:re· '!T"C;'tt 1<0J •''· c:J,,'~I!ltLUCtil ,!o,~,CJ),lFAolf8CJltlFCtiltl2ti3tJlt 
1 \} 2 ,. "I 'T " ... 1 ' , .. :" ' I ::- • I I. ( l J 

r 1 r 

~:TL:f 

''~'it~•:,t.,,•rriJ'c; & S~•·f;rtC'lE t.f..kAYS 0 
lf- :·rt·LC •='tl5t' t.•,;:, ORCER 1S:•,I3/ll-t 
;'")tllll'-'1/liOtL"Y•':It•[-;:: !;lW C•F [~IT J"lll I•~ H•RL: Il't.IJSilltllJ 
:." 1 !=!,:, ... ,v. = f:,"!TY EIT lt I'~SI::=ltLS;,:LE'l'/lH:, 5Xo'I'I EACH 
1--1 f -r! ·r~ ; :TS Tkt.T Cl ':T<JHIF T·' c,•"·f f .. T PHITY t.Fh.AR Ill! A GflOUP 
~ CF l:iSi en• :,rcUTJV[ rlT f-CS!TI• '•S'/lhOt'CACH GkOUP IS uiVluED Ir\ 
·. T '''~T ! Pt~TS:PA•T A FRU~ LIT PCSh JPIIl CF IRAIJSilltll TJ ~lGH 
:~• C3T PIT Pi~~ rf t;f.rpp, I"'ll"' t 'TI: SA''[ ~'0'\0 - PAI\T fl FRL~ lST 

:r t ~:.. "F l:>f<OI'P J'. r.:> i TC' h.r f<lv 'T )" ;.CXT T .J Tl-'t: lt.FT W~F\0,,, 
~.,TC'/ln.,•rc~ E"rf• EU~-ELOCK T~EkE ARL E ST~TES: STATE 1 h~! 1 ~A 
f' T - Si~HS ~.~ f. 4 r'tV[ 2 r {R.T~t !I, 2 r .. T'l It: THl SAP.E IIORL AI>(•'/ 
Llt· t'!'. 3 ~ 4 !' CHFEt:f'I'T .tC~ilS CJ, 3 ~~RT ~IS LEFT PART OF GROU 
L'' J',' 4 Tll ! F~·~~~ITFl - SHH~ 5 I. 6 t'AVt: 3 FAi\TSt " & C'llH t'bE.l\ 
::'t. I' Tf"' ~A''E il~f[' IH. ::PART C IS Lt:FT ~~F.T OF bROUPt p, 6 PART b 
~ '! I!FTl.-'111' ,•Tr CfC3D[ fIT lh-ll•IS•lll=lt2t••••~r/JS t CCLL 
FreT SY!'LP::!"'f EIE I:. PCS~i lll:+J-ISl CF SY J<Kf.ICN-ll•IS+Jll/J=lt2•' 
~/l' •'•••tl~ t f'l fit SY 1.1r\Pl I~ Tr<f Cl•r\~i:'I.T SYI.CR(H.Lt "Sf::=ltlS~= 
• !..<, p•·: TPC r.E!:T ::rH PiE U~'Cl'L;E:J tY Ai'PRCPP!ATE SI'IFTS.- 1 1/l 

"•I ".iCJ'Ot'IIH,v Jf: r'-IT ~"rSJTI:'' l•F 1ST r'F uhOU•J•) 
Fo 0 ~rlll~ •'~RRtY J£ = [oGR~ CF 1ST 0F CFDU~l'l 
~ 0 '~TIH ,•,:[.fiY I L·L : rr~::;~TL'. a hluhTuC~T PIT fl, Gf<OUPJ'l 
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~I(' (f't~~ ·~" Pf.OT A J•) r, •• ~ T I l' t'H'~tY l• ' A : I ~ 

r t ~ ~~ r ~ ;. T t l r • • ;. r r ;. Y t~ :... t = [ fv', ~<. ~ ··~ ~ t.l' J.>" h. T f. J ' ) 
r·. ' .~ {l "!' ( ~ I t ' : f I t y .• , ( : r V A ~-, F r R ~ l! r T c , ' ) 

"1 ; ~ /Til• ,•n~:·r n : [SY''rFC''f P').,JTI':'.SJ'l 
t:~ =,:• ~Til' o,•: .. :-" ft'l{f/YS ~Rt. rJV~•: AS 3-llPLFS: Clltl2tl3l/ w>'ERE: 

llll!?l = f.•. n LnTIF.lbf'lHOS.T O"S ~ 12: 1,0 OF HHiDll l"S'l 
t 3 f-' F '' t: T C 1//1 ,. , ' .,H· .._15 L U C I h u IF A If- h ! F C ', 7 )( t • ~A A • , 

11 V Y t ' ., P • , 1 c l', • r· t. C • , 6 l', 'I' 1\ • J 
64 C r ~ ~ ".~ T Ill" , ~! • , I f., I c, 1 7 t 216 , ~ C ~ Y, t I t , 2 C I;:>, t , • J , I 2, • l • J , 1 ~ l 

::: r : 

Figure AS. 2. 9: FORTRAN programme for subroutine CODAR3. 

of very long codes (with a k of the order of 1,000). This 

subroutine (see Fig. AS.2.9) is used by the simulation pro

gramme IKOSI5 (see Fig. AS, 4. 2), as well as by other main 

programmes. 

All three routines were tested for moduli up to 1500. 

Example A8.2.1: Let the (1S,6) type-e5 code of Example 

A7.12.4 (p. 493). From the IA, the k/J = 3 coset leaders are 

er = 1 , 2 & 4. Then, from (AS. 1. 3 ) : 

Jarr(i,er) =en+ (i-l)lS/6 /i=l 1 2, ... ,6 

3arr(i,1} ~ 1 + 3(i-1) ~ 1,4,7,1~,13,16 

Jarr(i,2} ~ 2 + 3(i-1} ~ 2,5,8,11,14,17 
Jarr(i,4} ~ 3 + 3(i-1} ~ 3,6,~,1~,15,1a 

-> 

From (AS.1.4), the columns corresponding to coset leader 

er are given by [Karr(i,l) = a 1 , 1 = 1st column of the IA]: 

eln( i) = er X a 1 , 1 mod k+l /i=1,2, ... ,J -> 

Ol1(i} ... 1 X {8,7,18,11,12,1) ~d 1~ ~ 8,7,18,11,1~,1 

Ol2{i} ... 2 X {8,7,18,11,1~,1} mod 19 ... Hi, 14, 1 '1, 3 , 5, 2 

Cl-&(i) ~ 4 X {8,7,18,11,1~,1) mod 19 ~ 13,9,15,6,1C,4 

The last row of Jarr is given by (A8.1.5): 

Jarr(6,eln(i)) =en+ (i-l)lS/6 -> 
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Jarr(6,Cl1(i)) = 1+3(i-1) ---> 

Jarr{6,{8,7,18,11,1~,1}) ~ 1,4,7,10,13,16 

Jarr(6 1 Cl2(i)) = 2+3(i-1) ---> 

Jarr{6,{16,14,17,3,5,2}) ~ ~,5,8,11,14,17 

Jarr(6,Cl 3 (i)) = 3+3(i-1) ---> 

Jarr{6,{13,9,15,6,1Dx4}) ~ 3,6,9,12,15,18 

The three expressions above give the last row of Jarr 

(the EA). The element of the first row will be the element 

of the last plus k/J = 3 (minus k=18 1 if it exceeds 18): 

1 .2 u 3 11 15 1 4 9 1& 13 16 6 a 1.2 5 11 to 

and then the EA (Jarr) will be: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 2 14 3 17 15 7 4 9 18 13 16 6 8 12 5 11 10 
4 5 17 6 2 18 10 7 12 3 16 1 9 11 15 8 14 13 
7 8 2 9 5 3 13 10 15 6 1 4 12 14 18 11 17 16 

10 11 5 12 8 6 16 13 18 9 4 7 15 17 3 14 2 1 
13 14 8 15 11 9 1 16 3 12 7 10 18 2 6 17 5 4 
16 17 11 18 14 12 4 1 6 15 10 13 3 5 9 2 8 7 

1 2 2 3 2 3 1 1 3 3 1 1 3 2 3 2 2 1 

Finally, from (A8.1.8), Karr(j,Jarr(j,i)) = 19-i, for 

i=1,2,3, ••• ,18 & 1~j~6, and the SA (Karr) is: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

18 17 15 11 3 6 12 5 10 1 2 4 8 16 13 7 14 9 
7 14 9 18 17 15 11 3 6 12 5 10 1 2 4 8 16 13 
8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1 2 4 
1 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 

12 5 10 1 2 4 8 16 13 7 14 9 18 17 15 11 3 6 
11 3 6 12 5 10 1 2 4 8 16 13 7 14 9 18 17 15 

So to decode, say, e~5 l syndromes ISR(Karr(j,5),j) /j=1, 

2, ••• ,6 are needed, i.e. ISR({3,17,14,16,2 1 5} 1 j) /j=1 1 2, ••• 

,6. Using (A8.1.7), ISR(z,j) = s~Hs-z/j=1,2, ... ,6 & z=1,2, ... 

18 d b . t (1) (2) (3) (4) (5) & (6) h k (5) 
1 1 syn rome ~ s sh•15 1 sh+1, sb+t 1 sh•2' sh•16 sh+13 c ec on eh • 
To verify this, from Theorem 7 .1, syndrome bits s~:!_ 1 check 

on e~5 l 1 for all b,.,, = 5, From the EA above, b1,16 = b2,2 = b3 , 5 
b b b 5 h (1) (2) (3) (t) (5) & (6) 

= t,3 = 5,17 = 6,14 = 1 ence sh+15 1 sh+l' sh•t' sh•2' sh+16 sh+l3' 
should check on e~5 l. 

I 
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A8.'2.9. ifftctiye eooatrajn$-Ltnsth 

FL~CTIO~· ~EFEllfN 9 l!l 
LOGICAL ISUI999l 
CDMMD,/C0&2/JEXF 
K 0:1-1-1 
IA=JEXP 
NEFELl=O 
IFIIAoEOoCl RETURN 
IFIMGDI1St2loEGoloANDolSoGTo4) GO TO 23J 
NEFELl=IIS+ll/2•~+1 
RETURN 

23j DO 240 I=ltr~ 
24~ ISUCil=oFALSEo 

DO 340 N=ltKi! 
lFClSUCN)) GC TO 34J 
JA=•I 
JSU=l 
DO 32J l=ltiS 
JA=MOOIJA•IA,"'l 
ISUIJAl=oTRUt. 

32C JSU:JSU+JA 
NEFELl="'AXOI~EFELltJSU) 

340 CONTINUE 
1\ETUR•; 
END 

Figure AS. 2. 10: FORTRAN programme for function NEFELl. 

APPENnlX 8.3: CHANNEL AND PECQDER SIMULATION 
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The majority-logic decoder of Fig. 5.1 is used as a mod

el. The decoder has to store one constraint-length of re

ceived message bits.* This is done ink x k array IRA, with 

the currently received block stored in the first row: 

IRA(z,i) = r~!~-z /i=1,2, ••• ,k Br. z=1,2, •.• ,k (A8.3.1) 

It is also necessary to store the currently received 

block of parity-checks. This is done in 1 X J array JRA: 

JRA(j) = /j=1,2, ••• ,J (A8.3.2) 

The other array needed is the syndrome register. This was 

defined earlier by (A8.1.7), assuming that the currently 

decoded block is the hth. Since, now, the currently received 

block is the hth, 

ISR(z,j) = s(jl 
h+l-z /j=1,2, ••• ,J &. z=1,2, ... ,k (A8.3.3) 

* See Appendix 8.4 (§ A8.4.1., p, 541), for the correspondinl FORTRAN progr ... e. 
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The decoder processes one block at a time. The first op

eration required, is the shifting of arrays IRA & ISR down

ward by one row, to make space for the current blocks, r~•l & 

sb. Subsequently, r~•l & r~Pl are stored in IRA(1,i) & JRA. The 

next operation is the collection of statistical results 

about the channel (number of channel errors), Following 

that, the current syndrome block must calculated. From eqns 

(7.5), (A8.3.1), (A8.3.2) & (A8,3.3): 

k 

ISR(1,j) = ~IRA(z,Jarr(j,z)) + JRA{j) /j=1,2, •• ,J (A8.3.4) 
z:l 

Normally, z ranges from 1 to MIN{k,h}. This may be sim

plified to [l,k] if IRA is initialized, prior to the recep

tion of the 1st block. 

The next step is the addition* of the syndrome bits 

checking on each of e~~1k-ll /i=1,2, ... ,k. ISR(Karr{j,i),j) /j= 

1,2, ••• ,J are the syndrome bits checking on ef1~ll /i=1,2, •• 

• ,k [see (AB.l.B)], Hence, their sum*, Ipcs{i), is 

J 

Ipcs{i) = ~ISR(Karr(j,i),j) 
j•l 

/1SiSk (AB.3.5) 

If !pes( i) > T, then e~~1k-ll = 1 (see Theorem 5. 3). After 

the decoding of the k bits, the number of decoding errors in 

that block is obtained. Finally, for the case of feedback 

decoding, the syndrome register ISR is reset. If the esti

mated error bit is 1, then the syndrome bits that were used 

for its estimation are inverted. From (A8.3.5), these bits 

are ISR(Karr{j,i),j) /j=1,2, ••• ,J. 

Fig A8.3.1 shows the flow-chart of the channel simulator 

and the decoder. Nee is the number of channel errors, ~1 

will be used to estimate E[nc] (expected to be 0) and ~2 

will be used to estimate E[n~] (expected to be az), 

The above-described technique is not memory-efficient 

with very long codes. The reason is that one bit is stored 

in one word, which can store, say, b bits {b=60, for the 

mainframe computer used). The total memory-requirement for 

arrays IRA, ISR & JRA, is kz+(k+l)J, If bit-manipulation 

routines are used, then the total memory requirement may be 

* Aritbaetic. 

J 
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[ 
[ 

For i=l,2, ... ,k 
ne = G05DDF(O,o) & ll (ne> 0,5), then: 

ll (ne :S 0,5), then: 
Nee = Nce+e & El = El+ne IRA(l,i) = e & 

For i=l,2,.,,,J 
ne = G05DDF(O,o) & ll (ne > 0. 5), .!.b.m: 

If (ne :S 0. 5), then: 
& Nee = Nce+e & El = El+ne JRA(i) = e 

e = 1 
e = 0 
& E2 = E2+n2 

e 

e = 1 
e = 0 
& E2 = E2+n2 

e 

> Step: h = h+l* 

[
> For i=2,3, ••• ,k 

IRA(k+2-i,j) = IRA(k+l-i,j) /j=l,2, ••• ,k 
ISR(k+2-i,j) = ISR(k+l-i,j) /j=l,2, ••• ,J 

Calculate the current syndrome block, from (A8,3.4), 
and store it in ISR(l,i) 
If (h < k), then: Repeat step 
ll else, then: 

....--------> For i=l,2, ... ,k 
Calculate IPCS(i), froa (A8.3,5) 
ll [Ipcs(i) > T], then: Invert IRA(k,i) 
Update decoding-errors register 
ll [no FD, or Ipcs(i) :S T], then: next i 
If else, then: 
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Invert syndromes ISR(Karr(j,i),j) /j=l,2, ••• ,J 
Repeat step 

Figure AS. 3. 1 : Flow-chart for the decoding of type-C5 codes. 

reduced by a factor of, about, b permitting thus {b longer 

codes to be tested. Since b was adequately large, it was 

decided to restrict J :S b. Then array JRA becomes a varia

ble, while array ISR a 1 x k array. The current J received 

parity-checks are stored in the last J least-significant bit 

(LSB) positions, while the current syndrome block is stored 

in the J LSB positions of ISR( 1), IRA is a ~ X k array or

ganized differently: The current block is stored in the 

first column, which has bx~ bit positions, where bx~i!:k, or 

kbi!:k/b, or kb = L(k-0.5)/bj+l. So if k=qxb, then kb=q, while 

if k=qxb+l, kb=q+1. The first bit of the current block is 

stored in the most-significant bit (MSB) position. 

The shift of IRA & ISR is simpler than before. The next 

operation is the formation of the current received message 

block (to be stored in the 1st column of IRA). This is done 

via the bit-manipulation functions MASK, SHIFT & OR. The 

basic problem is the formation of a (b-bit) word, say, W 

which contains the first b bits of the received (k-bit) mes

sage block. MAS1 = MASK(1) is a word with 1 in the 1st posi

tion and Os in the rest, Assuming that W has been initial-

* h is the currently received block. 
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ized to W=O, W = OR(W,MASl) will store a 1 in the first po

sition of W. Hence, if the 1st bit is 1, W = OR(W,MASl). 

MASl = SHIFT(MASl,l) is a word with a 1 in its 2nd position 

and Os in the rest of its positions. Then, if the 2nd bit is 

1, W = OR(W,MASl), etc. After b iterations, W contains the 

first b bits and IRA(l,l) = W. This is repeated for the sub

sequent group of b bits, until all' the k received message 

bits have been stored in IRA(i,1). The same technique is 

used for the received parity-check bits. 

The next operation is the calculation of the current syn

drome block. This requires the EA which is returned by sub

routine CODAR2, for the decoder implementation of Fig. 

A8.3.1. While CODAR2 requires a total of 2 X J X k words of 

memory, subroutine CODAR3 (see § A8.2.8., p. 529) is used 

for the 'long' codes, both because it returns all the infor

mation necessary to implement the various bit-manipulation 

operations and also because it requires a total of 9xk words 

of memory, for the various arrays. The following example 

will explain the technique used for syndrome calculation. 

Example A8.3.1: Let the (12,4) type-C5 code, and its 

encoding array (EA)*: 

1 5 8 9 2 12 10 4 11 6 7 3 
2 6 5 10 3 9 11 1 12 7 8 4 
3 7 6 11 4 10 12 2 9 8 5 1 
4 8 7 12 1 11 9 3 10 5 6 2 

Column No: 1 2 3 4 5 6 7 8 9 10 11 12 
Cos et No: 1 2 2 3 1 3 3 1 3 2 2 1 

Array IRA has dimensions kb X k. Assume that b=7, in this 

case. Then, kb = L( 12-0.5 )/7J +1 = 2, so IRA is 2 X 12. Its 

'bit-structure' is shown in Figure A8.3.2; symbols 

'x', 'o', '+' & '#' denote the received bits participating in 

the formation of the jth current syndrome bit /j=l,2,3,4, 

respectively. The mod-2 sum of all the xa will give the 1st 

syndrome bit (minus the 1st current received parity-check). 

So, what is required is the generation of k (=12) words, 

each corresponding to a different column of IRA, with the J 

(=4) received bits in the last J (=4) least significant bit 

positions, in order x o + #. Then the XOR sum of these k 

(=12) words will contain the J (=4) current syndromes (minus 

* The codes were at.ulated using HcQuilton's aapping - see discussion following Defi
nition 1.1, P• 220. 
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the parity-checks), in its last J (=4) least significant bit 

positions. The XOR sum of this word with JRA equals the cur

rent syndrome block ISR(1). 

Note, from Fig, A8.3.2, that the bits that are used for 

the calculation of the current syndrome block appear in 

groups of J (=4), which are, also, cyclic shifts of each 

other. What is required, for each of the k (=12) groups, is 

to shift the J bits so that they occupy the last J LSB posi

tions of a word, W: W = [????xo+#]. 

1 2 3 4 5 6 7 8 9 10 11 12 <-- Word 

X # 0 + 1 <-- Bit position 

0 X + # 2 r 
+ 0 # X 3 r 

s 
# + X 0 4 t 

X 0 # + 5 w 
0 

0 + X # 6 r 
d 

+ # 0 X 7 

# X + 0 1 

X 0 # + 2 s 
e 

0 + X # 3 c 
0 

+ # 0 X 4 n 
d 

# X + 0 5 w 
6 0 

r 
7 d 

1 5 1 2 2 5 3 4 4 6 7 3 JR (bit posit. of x) 
1 1 2 2 1 2 2 1 2 1 1 1 JS (word of ><) 
4 1 1 5 4 5 5 4 5 1 1 4 LUC (posit. of last bit) 
1 3 4 1 2 2 2 2 2 5 5 2 INJ> (state of aroup) 

-3 1 -3 -2 -2 1 -1 0 0 2 3 -1 I FA (shift of part AI 
-6 0 -6 -3 -5 -4 -4 -5 -4 -5 IFB (shift of part Bl 

-2 -1 I FC (shift of part cl 
4 3 1 4 3 1 3 1 2 2 1 2 NBA (llo of bits in part A) 

1 3 1 3 1 3 2 1 1 2 NBB (No of bits in part B) 

Eigurg A8,3,2: Organization of IRA, for the (12,4) code. 

Note that each group is partitioned into two parts be

cause the first bit of the group ('x') is not always leading 

(as in columns 1,2 & 4). Furthermore, there are cases where 

a group extends over two different words (as in columns 

( 2, 3,10 & 11). Because the length of a group is J and the 

length of a word has been taken to be at least J, then one 
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may partition each group into up to 3 parts. Each part is 

located in a single word and contains as many of the J bits 

in the right sequence (x o + #); part A starts with 'x'. If 

Gx(i) /X=A,B,C & i=1,2, ••• ,k denotes part X of the ith group 

(column i of IRA), then: GA(l) = [x o + #], GA(2) = [x o +], 

GA(6) = [x], GA(10) = [x o], etc. G~(l) = [ 1, G8 (2) = [#], 

G
8
(3) = [o + #), G

8
(10) = [+), G

8
(11) = [o), etc. Finally all 

but groups 10 & 11 do not have part C; Gc(10) = [#] & Gc(ll) 

= [+ #]. Subroutine CODAR3 returns, in arrays JR, JS, LUC & 
IND, information about each group. For the ith group, JR(i) 

is the bit position of 'x', JS(i) is the word where 'x' be

longs, LUC(i) is the bit position of the last bit of the 

group and IND(i) is the state of the group (see Fig. 

A8.3.2). A group is, in state 1 if it is made of one part, 

in state 2 if it is made of two parts both in the same word, 

in state 3 if it is made of two parts of which B is in the 

2nd word, in state 4 if it is made of two parts of which A 

is in the 2nd word, in state 5 if it is made of 3 parts of 

which B is in the 2nd word and in state 6 if it is made of 3 

parts of which C & A are in the 2nd word (see Fig. A8.3.2). 

Arrays !FA, IFB & IFC contain information about the shift 

required for each part of the group, so that they are shift

ed in the right bit position w~thin a word (for 'x' it is 

bit position 4, for 'o' 5, for '+' 6 & for 1 # 1 7). Neverthe

less, CODAR3 returns only IFB; !FA is readily obtained from 

IFA(i) = JR(i)+J-b-1 (b=7, here), and IFC from IFC(i) = 

JR(i)-b-1 [for IND(i) = 5, or 6]. 

Finally, a mask is required for each part of each group, 

such that it contains la only at the bit positions of the 

shifted part and Os elsewhere. The information provided by 

arrays NBA & NBB helps build this mask. For example, NBA(2) 

= 3 (part A of group 2 is made of 3 elements- x o & +). 

Once shifted in its appropriate bit position (4,5,6), part A 

requires mask {0001110), while part B requires mask 

{0000001). In general, if part A is made of NBA(i) bits then 

MAA(i), the mask for part A, contains NBA(i) consecutive la. 

The first 1 should be in the position where 'x' will reside, 

which is b-J+l. So, MAA(i) = [b-J,NBA(i),J-NBA(i)], i.e. 

MAA( i) is made of b-J Os (starting from the MSB) 1 followed 
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by NBA(i) la, followed by J-NBA(i) Os. The mask for part B, 
MAB(i), contains NBB(i) la. The first element of part B is 

the [NBA(i)+l)th of the group, which will be shifted to po

sition b-J+NBA(i)+l, hence MAB(i) is made of b-J+NBA(i) Oa, 

followed by NBB(i) la, followed by Os: MAB(i) = [b

J+NBA(i),NBB(i),J-NBA(i)-NBB(i)]. The mask for part C con

tains J-NBA(i)-NBB(i) la. The first element of part C is the 

[NBA(i)+NBB(i)+l)th of the group, which will be shifted to 

position b-J+NBA(i)+NBB(i)+l, hence: MAC(i) = [b-J+NBA(i) 

+NBB(i),J-NBA(i)-NBB(i),O). 
Consider now group 10. From Fig. A8.3.2, IND(10}=5, hence 

this is made of 3 parts, of which B is in the 2nd word, 

hence the group format is C I A I B (had it been A I C I B, 
then it would have been made of two parts, A I B). The first 

operation is the shifting of its 3 parts. Parts A & C are in 

IRA(JS(lO),lO), i.e. in the 1st word of the lOth column of 

IRA, while part B in IRA(JS(10)+1,10). According to the 

above, IFA(10) is calculated by IFA = JR(i)+J-b-1 = 6+4-7-1 

= 2 and IFC by IFC(10) = JR(i)-b-1 = 6-7-1 = -2. Hence: 

KRA = SHIFT(IRA(JS(i),i),IFA) = SHIFT(IRA(JS{10),10),2) = 

= SHIFT(IRA(1,10),2) = [??#xo??) 

KRB = SHIFT(IRA(JS(i)+1,i),IFB(i)) = 

= SHIFT(IRA(JS(10)+1,10),IFB(10)) = SHIFT(IRA(2,10),-5) 

= [?????+?) 

KRC = SHIFT(IRA(JS(i),i),IFC) = SHIFT(IRA(JS(l0},10),-2) 

= SHIFT(IRA(1,10),-2) = [??????#) 

The masks for the three parts are: 

MAA(i) = [b-J,NBA(i),J-NBA(i)] = [3,2,2) = [0001100) 
MAB(i) = [b-J+NBA(i),NBB(i),J-NBA(i)-NBB(i)) = [5,1,1) = 

= [0000010) 

= 

MAC(i) = [b-J+NBA(i)+NBB(i),J-NBA(i)-NBB(i),O] = [6,1,0) = 
= [0000001) 

Using the masks: 

KRA = AND(KRA,MAA(10)) = AND([??#xo??),[0001100)) = 
= [OOOxoOO) 

KRB = AND(KRB,MAB(10)) = AND([?????+?),[0000010)) = 

= [00000+0) 

KRC = AND(KRC,MAC(10)) = AND([??????#),[0000001)) = 
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= [000000#] 

Finally: 

W = XOR(KRA,KRB,KRC) = XOR([OOOxoOO],[OOOOO+O],[OOOOOO#]) = 

= [OOOxo+#] 

The above is repeated for all k groups. The Ws are added 

mod-2 to JRA. The final result is ISR(l), the current syn

drome block. 

I 
The next step, in the decoding of 'long' codes, is the 

estimation of the k error bits. The SA provides the informa

tion about the syndromes checking on each error bit. To 

economize on storage space, only the 'equivalent' of one row 

of the SA is returned by CODAR3, the rest of the rows being 

generated during decoding. Consider the example below: 

Exam~:~le AB.3.;!:: Let the (12,4) code discussed in Exam-

ple AB. 3 .1. From its EA, and eqn (AB .1. B) , Karr(j,Jarr(j,i)) 

= k+l-i /i=1,2, ••• ,k &. l:Sj:SJ: 

12 B 1 5 11 3 2 10 9 6 4 7 
5 12 B 1 10 11 3 2 7 9 6 4 
1 5 12 B 2 10 11 3 4 7 9 6 
B 1 5 12 3 2 10 11 6 4 7 9 

1 2 3 4 5 6 7 8 9 10 11 12 

Note that the SA is partitioned in 3 groups (one for each 

coset). Within a coset, column i is a downward cyclic shift 

by one, of column i-1. Hence, if CODAR3 returns the 1st col

umn of each coset, the rest are easily generated. 

Let 1 x k array KR be: 

KR{i) ~ 12 5 1 B 11 10 ~ 3 9 1 4 6 

for 1=1 1 2 1 ••• ,12, respectively. To decode the ith bit, 

one would determine the coset number, en, first, by letting 

en= L(i-0.5}/JJ+l. If i=7, en= L6.5/4J+l = 2. This means 

that the appropriate KR elements are 11 10 2 3. Thereafter, 

the relative shift within this group is determined by i mod 

J = 7 mod 4 = 3. Hence, the SA column for i=7 is 2 3 11 10. 

ISR contains the J (=4) syndrome bits, checking on the ith 

(7th) error bit, in rows 2, 3, 11 &. 10, and in bit positions 
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4, 3, 2 & 1, respectively, counting from the LSB. Then, the 

sum of the J (=4) syndromes is obtained as following: 

IPCS = 0 

JSR = SHIFT( ISR( 2), 3) 

JSR = AND(JSR,l) 

IPCS = IPCS+JSR 

JSR = SHIFT(ISR(3),2) 

JSR = AND(JSR,l) 

IPCS = IPCS+JSR 

etc 

IPCS is compared with T for the final decision. 

I 
The syndrome-register feedback is done in the same way. 

This time, though, some masks must be used in order to 

invert only the appropriate bit from each of the J rows of 

the ISR that contain syndromes checking on the particular 

error bit.* 

APPENDIX 8.4: SIMULATION PROGRAMMES 

A8.4.1. $oftware Implementation of the Qec9der 

The FORTRAN software in Fig. A8.4.1, is the part of the 

computer simulation-programme that processes one block of 

•1\~ tL. \kt..JU"'" .,., lol\fh••9• 1< 

C INJTIALIZATJONS.
~P=Nr=~~C11=•·~c21=JCOS=~OB=r 
PCSl:PCS2:AF=C.~ 
CALL r.r5CBFCKGI 
DO 12:. I=1tK(' 
[10 13, J=lti'V 

13= lRA<I 1 J):(: 

DO 12·J J=ltlS 
12~ ISRC!tJI:C 

0!'1 125 l=ltlS 
12~ JRAIII:[ 

DO 15' I=hNAP 
1!.·l AF[l<I 1:<. 

C "AH: LOOPo
IJ=O 

145 I.!=!J+l 

* See Appendix 8,4 (§ A8.t.2., p, 543), for the corresponding FORTRAN prosr ..... 
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C SI-'IFT.-
OC: 17·:> 1=2tKC 
I{:K"•2-l 
DO 1f J .J=ltt'-

lE: IRA!roJ):JP~!K-1o.J) 
DO 17 ·' .J: 1t IS 

17~ lS~II'tJI=ISr!K-1oJl 
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C ADDITION OF CHAh~El NOISE - HID QUA~TlZATIOh - COU~TING OF CHA~hEL 
C ERRORS, l'J~'!:CTf[' I•· !'ES$AGC M!D H' P~RITY CHECK CIGITS.-

DO 21: I=1oKl> 
SN:Gr50CFIC.~oRMSNl 

POS1:POS1 +St; 
PC'S2=PIC!>2+S•. **2 
IRA!loll:O 
IFCS•J.GEono!Jl Ir~ (] oi 1:1 

21J IFCIJ.LE.~HNXI ~P=N~+IRAI1tii 
DC' 22c 1=!t1S 
SN:G[5DDFCOoltR~SNl 

POS1:POS1+SN 
PCS2=PCS2+S"''*'*2 
JRAC!l=: 
IFCS~o&E·~·bl JRACI1=1 

22~ !FIIJ.LE.N~~XI r•r:rP+J~A!II 

C SY~ORO~E CALCULATICh.
DO 2q; J:1tlS 
ISRC1oJI:JRACJI 
DC 24t' I=1t"n 

24: ISRC1 9 J):!AFS!ISRCloJl-JRACJ,JAPCJ,IIII 
C EflROP SE!lUFNCf ESTINTJCN- OECODH.G -·SU"loR.of.!TfirsETYft,G··: 
C C'F uucoHR!:CT£0 EPRC'RS.

IFCIJ.LT.~PI &r TC' 140 
Dt· 2!-o .J:1,1'" 
lCE=IP~CK~tJI+l 

IPCS:IS~CVAF!1,Jioll 

UO 2f !=2t!S 
26. lPC~=IPCS+IS~IKARIItJitll 

JPCS=!PCS/JTI-' 
lfiJPCS.EGo\1 r.c TO 28J 
LW(JCEI="l~CICEI+l 

LO 27~ I=ltlS 
KR='<AR I!, J) 

27: ISRIKP.tli=1-IS~IK~tll 
2BJ AF=AF+IA~SIICE-1-JPCSI 

C CALCULATID~ OF AUTCCDFRELATION surs.-
1\'0B:!'OE +1 
lfiNO<l.LTolf:Q) GO TO l4C 
JCOS:.JcrS+1 
~R:rttiCIJCDSoNAPl 
~R1=~IMICJCrS,MAP-ll 

ADE I li=AF 
IFIAFoEG.~) GO TO 277 
00 275 I=lt"R 

275 AFO!Il:AFO!Il+AF•AOEIII 
277 HR12=r~f:l+2 

!:>0 2!!5 I=lt"'Rl 
J:MR12-I 

285 ADE!Jl=ADEI.J-11 

-----
ccur.TI~G 
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•·oe=r 
AF: J 

C E~D OF ~-I~ LO"P.-
14rt HCT,I.I T.l",.tlll 1:ro Tro 14<. 
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Figure A8.4. 1: The main loop of the simulation-programme. 

bits, This was used in a number of different programmes that 

were designed to produce various results (for example, prob

ability of decoding error, autocorrelation function of the 

decoder-output error-sequence, decoding-errors per coset, 

error propagation, etc). All these programmes differ in 

their details and in the way they process the collected sta

tistical data. The decoder uses a straightforward approach 

and data provided by subroutine CODAR2. 

A8.4.2. A eomolete Simulation programme for Long C9des 

Main programme IKOSI5 implements the storage-saving tech

nique, described in Example A8.3.1 (p. 536), This particular 

version was run in a CDC-7600 mainframe, for which the 

word-length was 60 (see command "LB=60", in p. 544). The 

arrays have been dimensioned for a particular code (with 

k=40). The programme needs only to read the following data: 

k, J, the number of blocks to be decoded (NMAX), the minimum 

number of error bits to be generated (MNER), the number 

channel-error rates to be tested* (NQE), the feedback mode 

(KFIB)**, the initial setting of the random-number generator 

(KG), instructions about the printing (or not) of any of the 

IA, EA & SA (MM), the syndrome threshold to be used (T = 

rJ/21+IDT) and the NQE channel-error rates, 

The above simulation programme is therefore very flexi

ble. One run can produce a set of points of the net coding

gain versus the SNR I information-bit graph, as well as in

formation about the error-rate performance of each of the k 

information bits of the code (indicating thus the potential 

for unequal error-protection), Also, the above-mentioned 

data can be obtained for various syndrome thresholds, so 

that one can determine the optimum threshold for various 

channel error rates (see theory on the optimum threshold, in 

Chapter 6). Finally, each channel error rate can be tested 

* ror each of thea 1 at least NMAX blocks are considered. ** Any coabination of DD, lD • •genie• decoding can be .-played. 
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I"PT=l Pl"DI':P FT\ 4,f•+53c 

PP 0GI' A'1 I KO:'>!~ I l"PUT t OUTPUT, HP£1: I ';PUT, TAP E2=0UTr UT l 
C DIM[I'SIC''I C'F JRtJStlUC,JET,JFb,~•AAt'1AS,MAC,KR & ISR IS IM-11 -
C r!~E~S!n~ CF JP~ I~ l~•lXI'-llt WHE~f KX : JNT[I~-l.~l/LtJ•lt ~·r 
C LP :: NUM&ER nF liTS/WO~D - TOTIL STORAGE RECUIRED IS fl"-ll•fKX+l1l.
C J~ 'UST hE IS<Lf+1 -If IS>Lht 1~ = 2t hY ~EFAULT.-
C ~~AX : tUV8ER CF BLOCKS TO BE OECOOEO.-
C' "''~"P : "J~:I~ll" f'IJI'F.[F, nF CPAP'I.[L EllRORS, 1!1 l"ESSAGE OH;JTS, l': EACP 
C PU~ - hl"AY ~Ill BE ACJUSTEO If IT RESULTS Ih LESS ERRORS THAh l"~[R,
C hGf : NUIIPER Of ~U~~.-
C KFIR COI•TRC'LS TPE SYI.'OROH RESET O::JJE: If MOlt1'02 & MD~ O[I;QT£: THE 
C •TRAI:S~JTTER f/D•, ·~O F/~' & •DEC"CER 0/P FIR• r.OOE RlSPECTIVELYt 
C THC~t IF KFIB = 1t2t~t4t~t~t7 EACP RUN IS COMPOSED BY Mdlt"D2t"D3t 
C 1'01 & "02t 1101 & ~D3t l"OP I I'D3t 0:)1 & "02 & 1"03 t RESPECTIVELY -
C eY DffAULT ~fiP = 3,-
C VG = 1~IT1AL STATE Cf RAWDC~ I'Ul"EEI' GE~ERATCR.
C r.r CO~TRDLS ThE PPI~TtUT Of APRAYS 
C ll IF n•: r IC ~fiFtY<:. HE NHTED, 
C 2l !f l"M = 15 crr~P3 tRRAYS ARE P~I~TEC, 
C 3l IF '<l·'fl<(; l"C'u[ l'l't CODARI AFRAYISlo AR~ PRHJTEO. 
C 4) If 7<1'~<1~ rPDE rr-7 COCAh1 AllD COOAR3 ARRAYS ARE PRI~TED, 
C DJITI'SH 'J fF F'Pf[ !!: "-1 - CF rr.E;:, Pl\fF & FDT~ IS '~OC[:fM-1!/ISJ,
C IF IPLI = 112) C~LY TPE ERROR PPCbAPILITY FOR EICH PlTICOSfTl WILL 5E 
C r~H.TEU - IF IPL = ·, t·OTH IJ!Ll H PRJt,TE'Do-
C' IrT = DEVHTIP' HOt' f!l•~'If.:AL SYI'D'O..,E TPRESHOLC - IF JTH IS OUTSIO( 
C r:,r~J, IUT: :,-

DIMENSICN ~PI4~ltJSI4DltLUCI4GltJET14UltlF&I41l 
D ! I' U 5 I ~ r• I' A t f 4 < l , r•;. il I 4 " l , t· t r f 4 •. l , ~f. f 4 n l , I S R f 4 1 l 
[Jt'[t'SICii JF~!lt4~) 
~li•U•SICH' PFrr 14. l tf'klE12L l oPHF 12: >t?DHC2! l 
DlflE~SION ~~C2loC,CE3loCEPIL~l,&EPiiiE3lt&SPhiL3ltNCChEit3loCEFI63l 

1 , I' [ t'f < ~ ~ l , P r rE I £ ? , 3 l , P l• f CP. I t- 3, ? l , P 0 rE I' C r ~., 3 l , I S C I E, 1 l , J SE I ~ 1 l 
COflMC~/CCDl/IAolP/rtiN/lE 

C D~TI,-

Ct.LL SECfiDITll 
~ [ ~ D ll , ! : • ) r , l S, I' t: I X , ~I, E fl , I C f t ~ ri f> , I( r, 
RfADflt5~Cl f~tlFUtlOT 
~tA&11,~1[) IOPIIltl=l,~f'El 
Lf':(,r; 

C CbECK FOh EYI~TE~Cr Of TPf CfDE - CILCULATIDN CF A~RAYS.
IFCIS.f,Tol8l IS=2 
P:C.~ 
W'0=~-1 

It.=-1 
IE<= c -ll .. Kr 
~'RCll:C 

IfCMI',GE.Bl KRCll:1 _ 
CALL COrAF31~~tlSoJFoJSoLUCoJETtlFRoMAAt~ABoMACoKRl 
IfC~RI1loCT.[) G~ TC 110 
WPJTEI2t52~l r,JS 
STOP 

C CtlCUltTlDII. UF COIJE P~F.AMfTER!:,-
11C ~~=IC+IS 

a..• A='~- *Y.., 
N[:I:EF'Ell lfoltlSl 
P 1 =FLOAT f I. A l /1,[ 
YT:IS/2 
fi:C=FL!'ITI IT )/tT 
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76/76 OPT=l PHDMP FTN 4oB+53e 

Ili'=""DII'lt2l 
I~l=Kf•CCI~-ll•I~+1l/IS 
Ir2=IR1+1+IX 

_!RC=FL~ATCN~l/lT+:o5 
~ c pc= 1 ~ ~. 1• JT /!' t 
~M=A~ODCFLOATC~Mlt7o5l+~.5 

IFC~~.t·c.:> r~Ll CPDAPlC~tlSt"~l 

KX=CKC-~.~l/LF+1 
1')1',1:1' :IL~ 
KXR=K~-LF>•KX(J 

"/.Sl:•'ASK Cl) 
~AS2=S~IFTC1tlB-KYR-ll 
~AS3:SHIFTCl•l~-ll 

uAS4:corrLcrASKCLB-IS+l>> 
l''E=l~>+l _ 
JliC:JS-H~E 

hOC:I' ./Jf, 
lt'XS=It!XP=l 
IF ctJOC.LE.e.nr..r rc.r.r.la.At.•r.r:"C.LE.23> INX5=2 
IfC~DCaGTolPl J~)rr:2 

!!;S=-1-IS 
R:FU•/\ T Cl''" l n•c 
I'VYX:UoJER•IJ,/Cl~/2) 

ITH:C IS+l l/2 
!FCA~~ClnT+!Th-Cl~-I.Cl/2l.LT.CJS-1 •. )/~) IDT=l 
ITii=IHI+IDT 
lSl:IS+l 
JTH=!TH+l 
JFCKrlP.LToloOR.I'FJP.GT.7> KfJB:3 
CALL DATEIAl 
PE"AX:CPAHErc~.~tP>•lJr 
GEI'Ali'=PE!'AX/RCPC 
LFil=LFI2=LFJ3:G 
NFIB=CKFI0-~.51/3+1 
CALL SEC!'! D Cl~> 
TT1=CT2-Tll/NFJE/NQE 

C C'UT[f: Lr.DP.-
00 1:;~ Jlo/=1tt>GE 

C CALCULATION ~F SII'ULATIC~ PARArETC~S.
CI\lL SECOl:O IT l l 
!JE:Q(;CJII) 
PE:QE•INTCIS/2.~1/NA 

SllT=5Jr:'DRAr CP[) 
Rf'S"'=1/SNT 
N!'NX=~AX1CFLOATCNt:AXltNKXX/QE+~.5l 

"!'A X: fv KNX •" -2 
f.'tJ:•.!~'JY•K ':1 
f'M:'HI+ l S• t;IHIX 
NI"!IS:'I"tiX•IS _ 

C F/B f'~DE CC~TP~l lDCP.-
lf;[':KFIH 
CALL SI:CO!WtT2l 
TT:!= l T2-T! l lt'F 1 (J 

15 

1~~ GO TDI112tl14t116t1l~tll~t114tll2tlJ•tlrc,l:b,ll4oll~tll&tl14tlLtt 
11 ~J,l ~- tl ~~.1 ~: tl ·~tll6ol~.hl J:,l J!ol J"tl ;c,l JJ, ~~~loli'W 

112 WPITEC2o53Dl AtlPltlR2th3tKC 
JFI~=-1 
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P.AI~ JKCSI5 ~PT:l PJ.!CMP 

114 

116 

llf< 

LF_Il=l 
GC TO 118 
W~JT(I?t54") ~.I~ltiR2t~-tK• 
I FIB:: 
LFI2=1 
GO TO 118 _ 
IIP!T[I2t55f') AtlPltJR2ti'C.tKLI 
Lri3=IFI8=1 
,tf!B=IAI?SIH !bl 
CALL SCCO'ID_!Tll 
1Fl=JFib•llFib+1)/2 
!F2=JFIB•IIFI~~ll/2 
1 'ID=_PJ0+7 
LFI b=IF IE+2 
~RTTr12.::e '> f!Uf·x,•~r~,w~ 

C I!~IT!AL!7ATI0f'S.-
'I'F:IJ~=·l~l l ):1;111 2 ):J 

POSl=P0~2=:Jo: 

CI.LL G· :.CbF t•!il 
DO 125 !=h !S1 

125 rsc lli=Isrn >= • 
DO 12[• I=ltYJ 
FI'([J! !):: 

1S!'l !I )::t 
(;•J 12 l J:],K)I 

12~ -!RP.IJtil=: 
C r-'t"!"J LI"HlP.-

hl: :' 
145 IJ=IJ+l 

C St'IFT .-
['0 13 .. J:;>,K; 
K=t<' )+2-I 
J~;R(V):]SP!I'-l l 
{lQ ]3" J:1tVY 

13· IKA!JtKl:IRAIJ,t-J) 
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FTN 4o&+!:l36 

C AL~lTJO~ OF Ct',III•EL I:DlSE - HID QUA~TIZATIO~ - COU~Tl~& OF CHA~NEL 
C U.f,:_>'-!S, T'',I£.CllD I•: l'(~fAGE h''r ll~ "4UTY ChlC'< OilolTS.-

lFO'X .• ro., l r.0 TO 1~,! 

UO lb} I=lti':Y1 
If'RA=' 
D 0 P .' J= 1 t l !' 
Sll:f.'~D~FIO.~,P~S~l 

POS 1:PQS 1 +S N 
PCS2=P0~2•S"'**? 
IFIS!'olf.~.!O) G!' Tn 171 
IFI!JoLEoHM~Y> N~=N~+l 
!IJPA=OF.I lfiRAti'ASll 

170 IIJRA=SH!FTCI~RAtll 
lb~ IPACI,]l:J~PA 

IFIKXRoLOoOl loO TO lBO 
1~~ !'~RA: J 

on l9J I=ltYXR 
Sfl:(, r,5[J[Jf (, • ~ t~ li~tl) 

POSl:PO~l+SN 
P!lS2:P!):;2+Sfl••;> 
lfCS~.LroLo5) GJ,TO 1'~ 
IFI!JoLEoNM~Yl N''=N~+l 

15 
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7U1L OP1=1 P~DMP 

1 ': P t.: ll P I !':pI. , 11 A S ~ l 
1~: INRA=S~]fT(l~h~,ll 

!F'~ IYX,l l=l''l,t. 
lE:. .JRA=:: 

oo 2 ·, .. I=l ,ys 
s•J=G-50crcc.~,f\...,st·> 

P"Sl=P<:'Sl+~" 
PJS2=Pt'JS2 +Sf<**2 
.Jr.A:SI'lFTI,IFA,l l 
IFC&~.LE.~.~~ ~r TQ 2r0 
lF<l.JolEof!"f'Vl t;P: 1JF·~l 

.JF:A=CRCJPA,1l 
2·~ C('''TT'JUE . 

C SY''OROt~E Ct.LCULATJOt•.-
00 21; I=_l.l'. 
I'~A:SHTFT<l~ACJSIJJ,IJ,J~IIl+I~Cl 
V RA: A "D ( v r\;, , !·' f;. ( T ) ) 
Gtl T0C~1:,2r;,23:,24-,25Jo~b:l,JETI!l 
Ll.~:oi<JFT I yr: Cc'~(•) t! lo !Ft Ill) 
LP.A:t t':l CLRA ,,..~P CT)) 
"'flA:'1RII'RI.oLPtl 
GO 11 21.) 
Lf· ~ = !' r;! FT (J i I, C •' ~ : T \ +" , ! J, If ~ <I l > 
u: t = t "~ 11 r. t. , 'If F- c • , > 
o/•U- = 1-, < r:t.~ ,:.., L i1,...,) 
!,ij T"' 21 ~ 
L: ,'! = r : ( r r : ( J ~ c : >-! • ~ > , :·t, L· c ! ' > 
"'f.A=-.f' cvr 1 ,lr 1) 

2 S • Lf, A: SHIFT I F A I J S t I 1 •1 , I l , IF " Cl > > 
Ln=t-"~ u f r .r'tr· c:> > 
~RA=St!IrTCI~fti.JSClltil,JRIIJ-INEl 

J 1 r\,.:. = ~ ~\ LJ ( "r \,:. , ·::.. c ' 1 1 > 
~RA:rKCKR~,L~/.,~~1.) 

.v· r:-~ 21 
2C.j lRA=SHIFTCH~C.JSC!l-ltlltlFEIIl> 

LP. A :f.·;: ( Ll{/, ··~ ... ( T) l 
1I~A=SHirTIJkAIJSCllt!lo.J~Cll-l,El 

'' F: A: t. 'W 111. ~A, 'lAC t J l l 
K~A=OR!KP.4tlP.AtMPAl 

21" J~~=XftRIJRt,r~'l 
IS!\ Cl >:,IRA 
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Fl'l 4oll+53A 

C ERR~R Sf•IUF~CE ESTI''I.TION - DECODI~G - SUNDkOHE RESEtTING - COU~TI~& 
C ~r U~C0RRECTED E~PCPS.-

l~C!.J.LT.r:l r,~ rn t4J 
KLD=LB 
KX1=1 • . 
IDE=JRAO ,f(:•l 
JST=!SS+l 
DO 2U J 1=1•1-0C 
!ST=!Sl•!S 
ISFP=i 
!) I) 2 7 .I ,J: 1 ' l c; 
ISH=ISS+.J 
'O.:j'" T 
rrcs=' 
O:l 27~ K=ltiS 

15 
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t K:_VI(+l . 
IFI!Su.[Q.jJ !St-=!SS+l 
J~.~:T::J~+} 

,JSR=Sf.!fT(JSf.(¥PO'Kll ,ISI!l 
JSI'.=A~~irtJSRt11 

275 JPCS:IPCS+JSR 
,trrs=~~·c~/JTI' 

IiJE:Sil!fT( IDEol l 
iCE=l•A\DI1t!Vfl 
J!ST:,J+IST 
.•nr=IAL ::>~ rrr-1-,•rcs > _ 
PREDIJISTJ=PkEOIJISTJ+JDE 
HCSl:JF'CS+l _ . 
ISCIJPCSll=lSCClfCS1l+l-JD[ 
I~EilPCS1l=JSfC!fCSll+JDf 
'!WIICEJ=~~IICLJ•JPCE 

If I ,ITS T • I E o V U_l G r T :1 2 P 7 
~'Le=KLE+lS 

t:xi=f..'I•1 _ 
IlJf:Jr>ttKXIoKLJ 

- ----------

~f7 Ifl!f~•IICf-lloEYolfl•JPLSJ Gr T1 27~ 
JVfP=SHTFTilolS-J) 
! SF o: M c 1 ~ f t-., H. f k J 

rr (!!"r?.ic~. , r-r: T~' ~bJ 

t:K=!ST 
J!· 2~-'~' • ..'=1 '1~ 
"'<=1'1'•1 
l~r\~=r<n. (>\I'",) 

lSFIKFrl=XDQCISRCK~Kitl~FBl 

! 1-': A' ~ I! ~ ~ L t f. I' Jl T I I Sf f t -1 ) ) 
IG=A';:, lt'?S3tSI lfTC!Sfbt !S-1 J J 

? ~ ~ ; s r r. = , ~: 111: .I ~> > 
2f: CC'I.T!r.t'L 

r !.. • rJ G r ·~ ;,11 ~· L (' t r • -
14 lFC~J.LT.rlliYJ &r Tn 1~~ 

C "liTPtJT 'f r::·:n.<L ~lJ'lJL:,TJo,J, RLSULTS.
Ek=l~.•Pt. 
··rE=~'f .r ... v 

!"'r~='·u .. -rHJ 
:, 1-' I 2 l: I' r-.-1. ~ I 2) 
'DE=I'I!Ill+f'I!I2J 
~':JCH::.;tl-r\~~ 

rcE=CEkiJUl=lDJo:•J;CE/MH 
C..U':PC~/RCPC 

~RITE<2o~B~l ITPoiDT 
WRITE t2,5o5 l Q£1',, OE 
PCEP=l~loi•~P/PN 
PC[!I:1. JO •• ,,,.,,,,, 

. I'LE.:roDE I JIJ t LF If> J =l c•c •. •1;0[ /I'N 
~~rP=FCFERIJUtLFIL1=1~~.~·N~I2J/~M 

PDEA=PCECRIJ~oLFibl=ltJol•~~~ll/~~CP 
BSC=l-[DROPYIPCf/lOLJ 
CfFIJWJ:R/PSC•lu3 
~RITE<2t~Cq' bSC,CCFCJUl 
tWCI'E I Jll J :t;C[ 
r.r~F. c Jlol> :r,!"t'lC 

Page 548 

15 
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2'>'1 
293 
295 

• ~. 

Append1x 8.4 

7f./7f, N·T=l PMDI'P 

rrc=rc~!lr. 

IFIIFib.~E.cl GO TO 292 
T Pe:: (, C 1' 

!SRI!l=l 
!SRC2>=:.oc . 
thLL PRODEliK:,NCCtTPDtlDTtPCTXtlSRl 
[lllT=TPlJ 
[,(' T(' 2<;3._ 
!FIIfif,,[(;,ll f>l) TO ?'35 
EEF. T:Pf.:O[.E2 Cl(( tlStGEih I Tl!l 
rn 2"4 I=l,! rr 
F't T>'f I l=EERT 
PLET:ftFT•fCE . 
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WRITE<2t5?1l ~CE,r"tPCEtERtfPt"ftPClPtERtNH,~NtPCE~tERthDEt~htPOE 
!FCIFIP.•T,lJ I'FIT!:r;>,'iCJU !PET 
WkJTE12t594l ~WI2lth~tPDEP 
:r(P~,t~.t.r:.r. > c,p TV~~ .. 
q·A=Pf [P/fTEA 
I<HTflct~'::.l fd't. 
r,o rr 31·· 
~F JT[ 12,:"! l 
W~IH!:?,5S7l 

llD=FP[ /1'; 
I.!JO) t~'\CH,POEA 

DL' :P;,:;,i /l'f hX/k: 
r(''.=r-"'~~tt'l't>.t': 

:;, r Q u = ~: t. c ~ ~ . n r Cl 
SI 1\:~ /Sf.f.. l !FCI') 

•I.ITE ,,,.,.,.,, ('[ P,fr• ,frt Tt!:.' r.,s·.~t.f',!?'JT 
S'iP.Pf<=<: •*AL'lGl: c~r,r; > 
S,\::~:: ~ ,..•218 

b[C:I-1 l*:.tr,Gl.!k) 
S Afi C: SAD+ l [. [:• 

. 

f1E: l /R 
EfF=PU:/rEc 
EU=Sl5ACF !Sf R/2/SCR l( F.•2l,O) 
Ell~:fli*E, 

If<!FI&,fQ,ll GO TO 315 
t.lPT=EliP/FOfT 
SI:F.UT::-S Jf'Of<A n <PCET /1: r > 
&SF'['T:;: ••At.r Col. (~:t·r:.t;Tl-lJ*f·lfGl ~(4, r l-SA"D 

15 

31~ ~PJTEI2t&~Gl SIRtSAtSADt SA~tSt~Dt RtBEt6EDtFE[,, 
lPf Ctl!:R 
!fi!Flf.~f.ll ~P!Ttl2t6~ll ElPT 
WrTTE!~,~ ~~ tU,[V,[lJF,tU,rL~ 

IFCI~IL.~E.ll ~R!TE<2t~~6) GEPT 
;r<•·tr..rc:.r 1 l.' rr-. :•c;t 
b[f{:Fll/f'lO 
S':RL!=~H:uP~ 'lf'[[;l 
l;f•RUD=~ "*Al r:'Gl <Sl RUl 
~ut =s·:r..t'• *~ 1 
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7U76 0F T= l P~Wt\P 

- -
SUA~=S~~UC-l[•ALDGlCC8oCl 

~SP::SUA/St•; 

&SPD=!>UtD-~tiD 

lFILFI&.E~.3l GE~~CJ~l=GER 

!F<LF ISoLCo:!l G~rt <J~'l=GSF'D 
~PITE12tf1Gl GEh 9 G[~oSN~U,SNPU3 9 SNRUoSUA,SUADt 
l~A~oGSPtG~~~ _ 
lfllfiboN[oll ~PJTEC2t611l GSPDT 

Ctl Cl!Ltl!C' 1 ' & CUTPl'T rt SY!:OPfi-'E V~TE UlSTRiflUTJ(ltj.-
!fC!FlEoEGo-ll w~IT~C2 0 ~3:J AoiRltlR2tNDtK~ 
JFIIF!~•lgo'l WFITEC2,~4~) AtiR1tiR2t~C,K: 
IFClfiE.EGoll ~k!TEC2t55Cl Atl~1tlR2t~CtkO 
\If 1Tf<2,7oio) xs,rn •. 
or 3':'~ I=1o!S1 · 
L~·=I-1 

PSl=!SE I I l •H r o ~lr'DE 
tro:•::-•rE 
PSC=JSCCil•1C-·L/LCr 
I~T=lS~<Il+l~C< ll 
PST=IST•l~~.n/!~ 

3 'H • f IT lC ;> , 7 ':. . l L!:., J T !-' , I SE < I> t ". D [, I S [ , I:, C < ll , L C [J , PS C t I S T , ! . r, , f' S T 
IF<IPUoEGo2l GO TO ~~0 

SUAt 

C CnCt.:LfTIU & CUTPUT 0 l::IGIT IJISlUauTICt; OF t•ECODir-.:G EkRCRS.-
!SP<n=-1 
C.'LL Of.ufF CY~ tl'~fr·ti!':Rl 
!F CJfiE:oEGo-ll P:ITLC2,!;!rl AtlF.ltH2tNhKO 
H C ! F If o [ (,. o ' l U; I H 12, !:- 4 _ ) t , ! 'l l t 1 R 2 , ;. ~, v f 
IFCIF!f.£.Go1l ~hiTlC~ob5r) ~.I~ltlR~t~ttK~ 
~riTEC2t7:Ll CLH 
DC 31\C l=ltt<:O 
Hf..Er=n·rrnl 
DERP=l~J.C*IPRED/~P~X 
Dr=cDEkF/FDL-1l•l!~ 
J:ISRC!l 
JP~lD=I'~EL:IJl 

O.!R P= 1 J c o ~ *Jpr E [J/I.fa,X 
DJ:cr,IRP/r"DE-1 l •11 ,, 
lFCr~[JCI,lSJ.fQoll W~lTfC2t72eJ 

!tC WRITl12t71Cl JF~Lt,~u~~tDfRPtltDD,JPPEDti,MNXoDJ~P,J,~J 
4~0 IFC!PUolr.oll GO TO 299 

C CALCUl.Tirt· E !~TFUT rF CCSET DISl~IBUTJP~ OF DECODl~& lRRr~So-
IFCIFleoEG.-1l ~RITEC2t=3Cl Atlrltl~2t~CtKO 
IF CIF If< o [C. o , l IH< lT E C 2 t 54 ~ l t , I~ 1 tl R 2 t I< G, K 3 
IFCIFieolColl WRITE12tb5:l Aoi~ltiR2t~OtKO 
~RJTEC2o73Ll Gfr 
I~ClF!~oEQoll WRITEC2o732l 
lfCIFISoLE.:> ~~ITlC2t7~4l 
I<C:~ 

L'r 4 5 I=l ,•,oc 
P~ED1ll=PR[OCKC+1) 
liC 41. J:;>,!S 

41: PPEDCil=P~ED!Il+r~ED<rC+J) 
475 ~C=KC+IS 

ISP!ll=-1 
C"LL flRC!:Id!'CCoPFrD,ISq) 



Appendix 8.4 

,F t.f' lKCSl~ 7b/76 OPT:l PMOI'~· 

(!n q5 J=loiC'C 
lff\[[':fREC!ll 
DfRP:t:•.r•JP~EC/1~''5 
DD=!VEhP/PUE-ll•lCU 
J:ISR<I> _ 
JPREO:JCREOCJl 
VJRP=l~~.~•JPPED/~"~S 
OJ=<DJRP/POE-ll~ltC 
1fllFir.l,.ll G~ Tn 417 
DERT=PDTXCll•PCE 
DPT=IUEPT/PDtT-ll•lJ1 
OJRT:PDTXCJ>•PCE 
DJT=<DJ~T/FUET-11•1''1 

Page 551 

Fn~ ".~ +~ 38 15 

WRITEC2o7lbl IPRE(!,~KNStDERPtOERTtltDOtDDTtJPREDtNMN&tDJRPtDJhTtJt 
lD,,,O,IT _ 

&C' TO 415 _ 
"17 lolf'1Tfl2t71:1 JPr.EC.,•.I~NStOE~~.ItL!CtJF'f.EDtl;•w~,DJRPoJtLJ 
41!:: CI.,I,TII<UE 

r C~LCULATIC~ Of rECCC~k E~~DRS DUE TD DfCDLLR CP 110 F/1 .• -
IF<KFI~.LE.~l G~ TO £99 
H I IF H o[ [ • , l G 0 T<• 4 2 · 
oo 425 r=t.r·cc 

4'" PRffl!l=PPEr!Jl 
GO TO 259 

4~0 Tf<IF If oECol> l>C• TO 43" 
or 43'i I= 1, •·oc 

4~5 FREF!ll=F~frCil 
GO TO 299 

43, ~fJTEC2,~(Dl Atlhltl~2,~c,M. 
rrc~rrP.r~.c> GO To 44~ 

C CILCUL,TJ~U r uUTPUT GF UECODF~ EFRDRS DUE TO DECODEk F/~.-
00 44!:> I=lt'•OC 

445 P~EE<I>=PRL~Ill-FPlf(Jl 
ISRCl l=-1 
Cf,LL t•F'Dff..(t'f·C,PHEtl SR l 
wRITE12t74~l Q[~ 

r:,r: 45" I=l·•·cc 
!PO:Pf<ED<U 
I PE:Pi\EE < J) 

J:JSP<Il 
JPD:PI\CD!J) 
JPf=F'R[[(J) 
IFCJhYS.EG.2l ~RJTE<? 1 77:l 
IPT=IPO-IPE 
DPI:DPJ:999°9 0 C59 
IFIIPToNEorl OPJ=l~~.n•JPE/JPT 
JPT:,rrO-JF'E 
IF<JFT.NEoCl OPJ=lr~.O•JPEIJPT 

"!' • 11hiTrc2,76.1l I,IPrtiPT,YrT,JPEtiPT,oPr,J.JPE,JPTtDPJ 
JF(Kf!B.EG.=> GO TO 299 

C c•LCULAT10\ & OUTPUT OF DfCOOF~ ER~OP! DUE TO no F/Po-
44~ )0 455 I=lt!OC 
4~5 FPFFIIl=PREtiil-P~fD<ll 

lSRtll=-1 
CtLl ~PDER<~rr,rFfF,ISRl 
!I Cl''YP.EQ.ll IJFJTE!2t7?~l 
JFti' xr:.rr;.::-1 •f:ITEt2,5~::> t.tll'ltlk?,'l~,r.: 
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7t./76 OPT=l PMCI'\P fHJ 4oP+538 

1.1 I'_! TE I;>, 7 !> C l (; r I' 
DO 4G 1 I=l.NCC 
H'D:PRfCI I l 
I f-'f:Pf>E f I Il 
J:ISfd!l 
JPO=PREOIJI 
,IPF:PI\!:F I J) 
IF t n·xs.ra.21 
IPII=JPD+JPF 
JPfi.:JPD•JPF 

--
OPI:DPJ:999~9.~5c 

IfC!PO.~f.G) OI'I=l~~.O*IPF/IPD 

IFIJPO.~E.GI DPJ=l~l.~*JPF/JPD 
_ 46~ ~PITE<?t76Cl IoiP~oiPDoiPDoiFFoiPDoDPioJtJPFoJPDtDPJ 

G" TO 29'J 
29J i.IRITE12t62ul 

!F!IFH .~.E.ll lo!RITEI;?obl1l G~P:ll 
If" <Lf18.EG. 31 LEI\I'IJII l:GSF-I!IJII) =9999 .999 

25'J CALL SE CO I'D ITc) 
TT=T2-T1•TTl+TT2 
I.'P.!H<?t! 141 
~o~n Tr c 2, c. 15 > TT 
GC' Tfl 1 .5 

Id 1T!: I 2 t ~ H' ) to I k 1 tT R 2 t !. ' t K ' 

15 

~RITEC2t57~l UJtY~oKlo!Stl~lo!R2t~At~EtR1tlToNEtR2tlTt~~.IRCtRCPCo 
1 PE 11 A X t Q E I" A X t K & 
~FITEI2t5£Cl ~.I~lolR2tfl.ctKC 
HIIFJ!.UJ._) r.r T'l 32~ 
WI:ITU;: tfo 3~ l 
00 33- l=lt f,fll 
Elk=POCEIIt~l/CEI\Ill 
Ct.l=Cff-:!l 1/f\CPC 

35~ ~~1TE12o64Jl CERIIltDOEtPOClllt31tEEI\tGEkNilltGSPNIIlt~OCHEillt 
1C[f !I I ,r;:JI'E.' I J) 

3;?~ IIPITEI2t56~) AtlR1olR2oH.,Kr 
.i,JTll2t65~l 

DO 34" I= 1t NIH:. 
t'CiE.:CER!Tl/RCPC 
YRITE12t66Jl CEkllltOGEtCEFill 
lfllfllolOo~l GO TO 35J 
RAT=<J99.999 
IFIPDfCFI!tll.~[.~l RAT=PDEEF<Itli/PDECPIIo1l 
IFIPPECRiltll+PDEERCitlloEO."I RAT:-1 
~RITEI2t~7fl POOEIIolltPufC~Ilt1loPDEE~<lt11oRAT 

~50 IFILfl?.EQ.~I G~ TO 36~ 
r<A T='199 .<J'.l9 
1FIPUECRClt2loNE.oOl RAT:PUEERIIt2l/PDECRClt21 
JFIPDECRCit21+PDEf~llo?l.EQ.rl RAT:-1 
WRITEI2t69~l P~DEilt2loPDECRilo2loPCEERC!t21oRAT 

3L:• IFILFI3olU• .I GO TO 34~ 

RAT:q99.':i99 
IFIFDF:CIII!t3l.l'f. 0 l t-AT=PDrlU!t3l/PDECR!lo3l 
lFIPDECPilt3l+PDEERIIt3loEO.rl kAT:-1 
l.hiTE12t( I'Jl PO;JE II t31tPDECf U t31tPOrER llt3 ltRAT 

34 c Ct"!T!'lUE 
CALL SEC0!'!11T2l 
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Vf ITEI:?tClt l T2 
STOP 
ru~ '-I;.T !71 L~ I 

51~ FCR~ATtSt7f1~.2/ll 
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5:>. Ff'~~f.TCH'lt~Yti., !bXII/lt'ql~Xt 'TIIERE ~XJSTS ~~0 COul OF "DuUlO" 
1= 1 tl~t' AND O~DER IS =1 tl41 

1!; 

b3: f('~'TtlPlt~X,•-----> SY~D~UPE R~GI~TE~ IS k[SET FRCK TR~~SMlTTLR 
1<'•~<•-•!o•> IrnsJ5 c-->•,Al",•<--->•,J4,•t•,J3,• <--> c•,J4,•,•,r 
:;,.,., <-----•) 

~4~ FU~M•Tt1Hlt3Xo 1 -----> SY~DROrE FEGISTER IS ~OT RESET C1 t121 1 - 1 lt'> 
1 JKnsi~ c--->•,P1~ 1 •c•,~t•-•!,•>•,I4,•/•,I3o' c---> l'ol4•'•'oi4,• 
21 <-----•) 

5~~ F"~MA1llhlo3~,•-----> SY~DRD~[ FEGISTER IS ~ESET FROP DECUDEF DIP 
1<' 0 61'-'lo'> IK~SI5 <-->•o~lco•<--->•oi4o 1 / 1 oi3o 1 <--> 11 ti4o 1 o1 oi 
24, 0 ) <-----•) 

5&~ fO~fiATI1Hlt21Xo•-----> lKOSio <----->•oAlOt•<---------->'oi4t 1 1 1 ti 
~~.· <-----> 1 1 tl4o'•'•l4t 1 l c-----•1 

57~ Fu~~ATilH:,~Y,•Cru[ LErGTH =•tl4/1HCt5Yt 1 N~PBER OF ~ESSAGE DIGITS 
l='ol"/lH' t :,x, 'f'lOCK-Ctl STkAJ'~T LE.'GTI-' =•ol4/1P.o!:Xt"·ll~e(~ 
~nF OFTHOGUNAL CPECK-SUHS : 1 o!4/lHOo!;Yt 1 COCE ~ATE =•oi3o 1 / 1 ol311HGt 
3 :.x,•HTUAL cr•i:O.HA!' T LEtGTI' :•,H/lHco':'Xo'EFFECTIVf CU',5Tk~I~T L 
'IF't'GTI-' =•olb/!P.,~·Xo•ACTUAL C,L,/EFFECTIVE. C.L. : NA/tl[ =•tF7.2/lH~ 
~ t SYo'RELATlVE. fPf,ur. COPr,ECTl''G CAPti.lllTY : [.J/2)/l.~ =•oi'It'l 1 ti!:> 
ft' :t,fp.~/l~~,tY, •GU&FAI.TEE~ E.RRD~ CD~RECTINL ChPAbll!TY ='• 
7!3, 1 PlC n·~Cf<S 1' ti'Y't Ho t uiG!TS : 1 t'/D ER~Oh t•, If.t 1 

&DIGITS :t,F9.~,·~•/1/lH2t!:>X,•vA~ BSC ERRCR RATE ='tf8o4t 1 ~ 1 /1HC,~X 
9t'f'AY!I'llf~ l'l[ :•,Fto2//ll•.t~·~•'l\ITIAL STATE OF R~f,Lvt' :w•·~E~ !,E!,U• 
~~TCR : ~G ='•I~> 

~·f rr'l''tTClP~t~Y, '"!:' l H N f;EC.C':IEO t'ESSMoE: lLOCKS :•,It·/lH,, 5X 
lt ·~uuEE~ OF DECOLLD fESSAGE DIGITS :•, I6,32X, 0 \UMbER OF 
2li . .JFCTEP ~DI~E [!biT~ ='•I~I 

!;P4 FCP 1'ATI1''~•~x,•-----> SYLORCf'E Tt'~ESHCLD :•,I3t' CHVIATIOti ='ti 
13,•)•) 

5i~ F<lf~''ATl1M;t3>t 1 -----> (,If: CI'AN'IEL ERROR RAT£/GUARAJo.TEED EkROR C:JR 
i.~ECTIUG CAFt[ ILITY :•,Fto2t 1 ( 1 tF6o2t 1 l'l 

5fQ FLR~AT1l''~o3X,•-----> ASC CAP,CITY =•,F9o7t' BITS/SY~EOL 1 oltX, 
1'-----> JI'FCPI'ATH•'l TFA!:S"I~SIC'". RHC: IS'oF7.2o'X OF CHbt~',[l CAFAC 
21TY 1 1 

!:>"~· fC·R•~ATilt<:,r;x,•cprr•:.[L ERROk ~ATE :•,!Oo 0 / 1 o!8t 1 :tof8o3o'% [•,F 
l&o3t 1 X]'/l~:,~X, •PROBABILITY CF A CHA~REl ERROR I~ A FIRITY-CHEC 
2Y. lJIG!T ='• Ift 1 / 1 o If•' :t, F8.3o•:.: [ •oF£,.3t 'l:)'/ll''o5X, 
3'1'ROOhBILITY CIF h C~~~~E.L EFPOR IN A MESSAGE DICIT =•oiPt'/'o!Bt 
4' :•, FEo3t •1 ['oF&.3,•~Jt//lH~o~Xt •PROBABILITY OF A DECOD 
5Er. ERROR ='• Ie, '/ 1 tlflt ' :t, F9o'lt •r.•l 

fql FOR~~TilH+t~9Xo 1 [ 1 tF9o~t 1 ~]'l 
5!4 FUR~ATil~C,5Xt•PRrbABILlTY rf ER~ONECUSLY DECODI~G AN ERRO~EOUSLY 

!RECEIVED DJf.JT ='olf.o'/'olBt•=•of9o4t 1 ~'11H , 1~2Xt ·~~TI' =•I 
~95 FORMATilH+olJ9XtF~o2l 

~q& f(Rv:Till'+t!llXt 1 ?'1 
597 iDP"t.TilH o!:Xo•rFOf~biLITY OF ER~OtH:ou'sLY DECODING A CORHCTLY REC 

lFIVF~ DIGIT =•o!Po'''tlft' :•,Fry,lf•'''/1 
599 FCR~AT!lh~t5kt 1 ~GISE OoCo LEVEL :t, f&o5t 20Xt'~DISE PCWE~ =•• 

H f, '1, • [ 1 , r 7, '> t ' ] "1 H t ~X t 1 11 RI'S IJ (I J SE : t t F f •? t 
2'CCH~~~. PfASUhE.!'.l"t 5~t•=•oF~o3t 'ICOR~fSP. TC ACl. E~~0R hAT 
3EJ't ~y,•:•,rt::.~• 'Clt'~(~r..)•/) 

6~C FUP•ATI1~~.~4Xt'='oF7o3t'**214 =•oF7o3t 1 :•,F7o2t 1 Db tFO~ A~T 
lll :'Otl TPAI.'~I,H!'HI.)•/lfl , ~y, 1 SlGf;Al-TC-!';ClS[ R 
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41! T I"· = • -.: -- --~. ---. 
5 __ _ ____ //ll!!loi>:<x,•=•oF7.3,• :•,F7o2t'Do 
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1~ 

!FCR A'HHODAL 
f<~ TIC> H:.F\ l~FC 

f //1~-t~Y,•BA~n~IfTP EYPA~~!0~ = ll'tFb.~o2!' :•,FGo31t 
9'DE : !~CREASE IN HOJSE POWLR'/lH~t 3Xt •---·-> ERROh EXTE~&lGN kA 
ATIC :•,1Pf~o~t'l',[e,2,• :•,!PF~.~~ 

h:1 FOR~AT!lP•,(5X,•r•,F~.~,tJt) 
&·~ FORMAT!lPLt5Y,•lqRnR RATE FCP UNCOOl~ TKhNS~JSSlC~ At'D E~UAL ~~R/l 

1~FOP.MATIO~ SYP&CL = 1 o1P[9o2t 1 ='tOPFluo7t' =•tF1Co5t 1 1'/1HCt3Xo 1 •• 

~---> ND~r~LT7LD bAl' IN l~RrP RfTE ='o1Pl9o2t 1 / 1 oE9o2t' =•> 
be& Ff.RM~T!lH+,eax,•r•,F~.4,•J•> 
~1~ FORM~T!lh+t E4~, lPEl1o3t ' :t,[PF9.~/1H"'• 5Yt 

1 11/R,r.s. ~DISE RATIO FOR U~CODED TRAHSMI~SION & lQUA~ ERROR RA 
~Tf ='• r7.3, ' =•,FL.2t 'Dk'/1~., ~x,•&I6~AL·TO•\Ol~E RATlJ 
3FCR U~CDCED ANTIFCDAL TRA~SriSSlCN g EQUAL E~ROR RATE :•,F7o3t 

f. /li'C., 3Yt •·····> r.CF.MALIED <.A 
7!~ IN SJG~AL POWER ='• F7o5t •l•oF7o3t '=•• F7o3t '= 1 oF9o4t 1 0~'1 

f!l FlF.f'AlllH+t~3Xt t[ 1 tF9o4t'D£:J•> 
61~ FuR~AT!/1Hctbl'<'•l'!'·'lt'>'to~lt'<'tl,! 1 ·'1t'>'l 
~1~ FCRWAT!1HCol:IYt'I~.T. :•,F7.2o' SECSI'I 
~lE FCR~~T!///l~:,b2Y, 1 [TOTAL PPCC~SS!NG Tl~F. :t,F~·~•' SECSJ•I 
f2! FCR•tT!l~+tE~Y, 'ARLJTRARILY LAPS['Ilb3t~Xt 1PEAK·TC•FEAK Sl,~AL TO 

1 R.~.S. ~CISE RtTI~ FOR U~CrCEJ TRA~Sf'!E~IO~ ~ lQUAL ERROR F.ATE : 
:A~FlTk~KlLY LA~LE'/lhrt?Xt'·----> h~~rALlZEQ GAl~ I~ Slb~AL PO~E~ 
3= ARbiTRARILY LA~GE'///) · 

~~- F~R~AT!l~t,•CERI:> A[ P[E!ZI flf, NGS~ CD 
1&1 HCCHl CEFCI) ND"b'l 

~ 4 , F CJ ~ !111 T ll h t ff , ~ , F I' o 2, Fl ' o 3, F <;, 3, 2 f 1lo ~, I 11 , f l 0 o 3, I 9 I 
&5! FCPMATClt:,•CER!Jl't1CXt•PrE!XI't1bXo•PDE/CR!II'tl~Xt'PU[/[h!ll't1 

11Xt 1 FDf FAT!O ![F/Ckl't7Xt'OE CErCII'/1h t9Xo3(' TX DE 
2 ~~~ 1 1t' TX Ut ~0 1 ) 

~~. FC f\f,AT!l~ tf(,~o"'•Xtfl'o?tflr .~I 

b7 · FI'Pt'AT<ll-+tF1~.3,3F23.!) 
( f- • Fr p•·.t.TClf-+tf2:::-.3t2f2:!.~tF24.3) 
( 0 ~ Ft~HAT!1~+ 0 5Xt3F:3o3tf2to31 
7,~ FCR~ITI1H;,1DYt 1 f'DIJ) = PFOEAPILITY OF DECrD!R FRRO~ IN THE JTH DJ 

1tJT OF A SUELOCK QE :•,F7.2/1H t18Xt82!'• 0 )/1HCt33X,•OE!J) : P 
2fPCf~TAFE rrVlATJCN FPOM VNJFO~~ U!STPilUTI~k'/1H o!!Xt~~!•·•l//lH 

!tt2!11Xo'PD!JI !%1 1 tl2Xt'J't~X, 1 Dl!JI (%1 1 t4XI) 
71~ FCRI'ATC1~ t2!Jl:,•t•,J&o' =•oF9,4olPeF13,3,~XIl 
71~ Ft~MATC1H tl~t'l'tlft 1 =•tF7o4t 1 [toF7o4t'l'olbtf10o3t' ['tFb.3t 1 l 

l 1 tlqo•!•,!&t 1 ='•f7,qt' ['of7,qt 1 l 1 tl6tFlr,3t' [ 1 ,FEo3o 1 J'I 
72~ FCRM~Hlll tl2U'·')) 
73; FOR~ATI1H1tlLXo 1 PDCJI = PRC~A~ILITY OF DrCODLR ERRC~ IN THE JTH CO 

1SET OF A SU~LrCK CE = 1 tF7o2/lH t18Xt621 1 • 0 1/1HCt33Xt'DEIJI = P 
::'EPCELHGE DfVJAT!M.' FPOI1 UIIIFD'll" CISTR!.t:UT!C•~;t/lH o33)(,!;4C'· 1 )//) 

732 FO~~·TI1H~t~C11Yt'FPCJI (X)•,12Xo•J•,4X,•CE!JI !ZI•,4XII 
73~ FOf't"AT!lHCtl •Yt'r"t•!JI !X>'tl4h'..l'tbYo•OEIJI Ul't17lc.t•PDCJ) 

1 C~) 1 o14Xo'J'•~~•'DECJI (~)') 
74: roFI'IIT!l~<:,•['FT[;CJI : P•C!J)-~;T!,JI )/t T(JI l.'hfRE: NTIJHI:C.CJI) : 'IC 

1 OF DFCDOEP EF.RrRS IN CCSET J OF A SUBLC.tK, ~ITH TXIDEI F/B'/lH tl 
213!'-'1/11-'Qt•DPTr !J) : ~ l'H[fiCREt.S[ Jr, THE 'IIU'1~EP CF lJECGDER ERR 
~DRS, IN THE JTP CtSlT OF A SUBLrCK DUE T~ CJ~·>CCR~ECT DECODER F/g• 
4/ll! ,j lllC •-• 111~ .• ~4X,•(,f :•,F 7ot'/lH ~~~Y.tlll'·' 1//lh~tllX,•J• ,4Xt 
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7t>l1t OFT:l l'!~[t.F' 

~·r l'('(,t)- ITI.fl1/ t,•T(.f): !L-'H/ I'TlJI: !ITD!Jl )•,J~X,•J•,~x,• 
~.t;G-~.T/ I'TCJl: CPTC!JI le•) 

7~,' f('f.'f'AT!llno•Lof'f'l,(,l) : rrr.tJl-1\[IIJ))/:":;(J) 1.1-<[Rt:: 1\.l.lvlff.ij(J)): \0 
1 CF DECCDER EKRCht I~ CCSET J OF A SUtlCCKt ~llh 1\.GI~El F/B'/11-< ol 
:?131'-'l/H'• t'Cll P'C,Il : ~ lf•([[)fREASf :~ H<[ t;u:·t:LF. CF CECCIJER E~R 

3C~St 1~ TPE JT~ COSET OF A SUELrCK our TO NC SYhDRD~E RESElTING'/1 
41' oll~l •-• > /H'. ,:.~ Y,•ar =• of 7,!:/lH ,:.~ Xtll I •-• l Ill PColl~o'J' o4X, •r 
5 f'I:!Jl- H'CJ>Y t,[d,ll : IU.-110/ NDCJl : OPDI CJl %'ol3Xo•J•,=x,•\t, 
f - !\ ll/ 'JD C J l : !J I I tc J l :.: • l • 

7b~ F0PI'ATClh tll~o4Xo'C'ol~o'-'ol&o'l/'ol~•' ='ol7o'/'ol6o' =•oFlCo3o 
l·~·,ri~.~x,Ii,•!•,rt,• =•oF1~·3•'='> 

77C FCR"ATClt: olXl 
78~ FOF~hTilh~o~~Yt'~f~f~P!LilY rF A 1/CITH+ll VCTEo ~y T~E'ol3o• SY~C 

l~n~ES ~E :•,r7.2/1H o2~Xt6~1'-'l///ll1 ~o'l/ClTH+ll VOTE'o!lXo'F 
~0~ CEC"C!~G EFhff'oltXo•FCF crR~ECT CEC~Cl~&'o23X,•lrTtL'l 

79: FDR~ATil~~,!bo'l'oi2oll7o'/'ol7o' =•oF11.5o':l:'o~II13o'l'olto• =•oF 
!1!.5,., .• ,, 

EIO 

Figure A8.4.2: The complete FORTRAN programme for the simula

tion of 'long' codes, over a number of differ

ent channel error rates, and with any choice 

of syndrome-resetting modes and syndrome 

threshold; the programme also calculates re

sults for each coset. 

for any combination of syndrome-resetting modes (definite

decoding, feedback decoding & correct syndrome-resetting, or 

'genie' decoding). 

A processing-speed performance comparison between pro

gramme IKOSI5 and its version which used the decoder imple

mentation of Fig. A8.4.1 concluded that the 'long'-codes 

version is also economical with processing-time (apart from 

being economical with storage space). For example, 10,000 

blocks of the (144,4) code were simulated with both versions 

and while the older one required about 140 secs per 10,000 

blocks, IKOSI5 required about 50 secs (both run on a CDC-

7600 mainframe). 
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APPENDIX 8_.5 st!BROUJINES USEQ BY THE MAIN ffflQGBAMME 

In Appendix 8.1, a number of routines necessary for the 

implementation of the chosen code, was presented. Appendix 

8, 5 will introduce the subroutines that are necessary for 

the processing of the simulation results. 

According to reln (A6.2.5), the BSC error rate, P
8

, must 

be such that the code rate, R, satisfies R < 1 + P
8
log2P

8 
+ 

(1-P.)log2 (1-P
8
). Function CHAMER(0.5,R)* returns the maxi

mum allowed P
8

, for a given R, by solving eqn P
8
log2P

8 
+ 

(1-P
8
)log2 (1-P

8
) + 1- R = o,** 

From eqn (1.4), P
8

- lerfc(.jr) = 0 must be solved for r, 

given P
8

• Function SINORAO(P.)* solves eqn P
8

- Q(lo) = O, 

for 1/o. Note, from (A1.2.26), that Q(x) = lerfc(x/./2). 

Also, r = (1/o) 2 /8.** 

Function PRODE2(k,J,P
8
,T)* returns the probability of 

decoding error, Pd, for the (k,J) type-C5 code over the BSC 

with error probability P
8

, under DD and with syndrome 

threshold T (it uses the results of Theorem 6.8, p. 164). 

Subroutine PRODE1(k,J,P.,T,Parr,Iarr) returns the (theo

retical) probability of first decoding error, under FD, for 

each coset (in array Parr) of the (k,J) type-C5 code. Pe is 

the channel error rate, T is the threshold used and Iarr(i) 

are the cosets to be examined (see§ A8.6.2., p. 561). 

The routine uses the results of Theorem 6.3 (p, 157). As 

a consequence, it requires the facility of another routine 

that returns all the combinations of t, out of N things, for 

the calculation of the generalized means, This routine is 

actually incorporated into PRODEl, for practical reasons, 

and it is briefly described below: 

Given N 'things', denoted by 1,2, ••• ,N, one would like 

all the C(N,t) distinct combinations of t, out of the N. For 

instance, if N=5 & t=3, the C(5,3) = 5!/3!/2! = 10 combina

tions are listed below, in their 'natural' order: 

123 124 125 134 135 145 234 235 245 345 

Note that the rightmost element changes faster than the 

* See Appendiz 8,6 (§ A8,6,1,, P• 559), ** The MAC-Library subroutine COSADr is used to solve, nuaerically, the eqn. 
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rest and when it reaches its maximum (5), the previous ele

ment is increased by 1, the last is set at 1 plus the previ

ous element, etc. Let array Ca(i) /i=1,2, ••• ,t contain the 

current combination [if this is 135, Ca(1)=1, Ca(2)=3 & 
Ca(3)=5]. Consider now a pointer, IND, indicating one of the 

t elements. Note that the rightmost element of the combina

tion, Ca(t), must be Ca(t) S N, while the 2nd from the right 

Ca(t-1) S N-1, etc, Ca(t-r) S N-r /r=0,1, ••• ,t-1. If t-r = 

IND, then: 

Ca(IND) S N-t+IND /IND= 1 , 2, ••• , t (A8.5.1) 

When Ca(IND)=N-t+IND, it means that this element has 

reached its maximum value. Hence the previous element, 

Ca(IND-1), is considered and, provided that IND~1, test 

(A8.5.1) is repeated. If it fails, IND is reduced once more 

by one, etc. If all subsequent tests fail, and IND becomes 

0, then there is no other combination. If, for a value of 

IND, the test succeeds, then element Ca(IND) is increased by 

1, while the rest of the elements, Ca(IND+1), Ca(IND+2), .•• , 

Ca(t), take on values Ca(IND)+1, Ca(IND)+2, ••• , Ca(IND)+t, 

respectively. 

Specification: "Given N, t & 8 integers, such that N~1, 

1StSN & 8~1 and a 1 x t array Ca, return in Ca the 8th next 

combination of t out of the N things. On entry, Ca contains 

the current combination. If there is no such combination, 

return Ca(1)=0." The algorithm (Fig. A8.5.1) is original. 

If [N<1 or t<1 or t>N or 8<1 or Ca(i)SCa(i-1) /soae i], then: STOP 
il else, then: IND = t 

> Step 1: il [Ca(IND)-IND # N-t], ~: Go to step 2 
If else, then: IND = IND-1 
il (IND > 0), then: Repeat step 1 
11 else, then: Ca(1) = 0 

Step 2: Ca(IND) = Ca(IND)+1 < 
~-> 

r=> Step 3: il (IND # t), ~: IND = IND+1 & Ca(IND) = Ca(IND-1)+1 
- Repeat step 3 

li. (IND = t), then: 8 = 8-1 
!i (8 > 0), ~: RePeat step 1 
il else, then: 

Figure AS. 5.1: Flow-chart for next coabination. 

> 

Also required by PRODE1, is a reordering subroutine OR-
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DER(N,Da,Po)*, This is supplied with the number, N, of ele

ments to be reordered and two 1 X N arrays, Da & Po. Da con

tains the elements to be reordered (unchanged on exit), On 

exit, Po contains the indices of array Da in such a way that 

Da(Po(i)) /i=l,2, ... ,N are, in ascending order if on entry 

Po(l)=l, or in decsending order if Po(l)=otherwise. 

Reordering is in descending order. If required, it is 

reversed at the end. Initially, Po(i) is set to i /i=l,2, •• 

• ,N. There are n ~ LN/2J steps. In the first one, Po(l) and 

Po(N) are determined. In the 2nd step Po(2) & Po(N-1), etc. 

For each step i=l, 2, ••• , n, Dmx denotes the maximum be

tween Da(Po(i)) & Da(Po(N+l-i)) and Dmn their minimum. Simi

larly, Po(Nmx) is the position of Dmx within Da and Po(Nmn) 

the position of Dmn. Before Dmx & Dmn are compared with the 

elements between them, Ml [=Po(Nmx)] & M2 [=Po(Nmn)] store 

their positions and Inn=Inx=O (they will be used later to 

indicate the type of changes on Dmn & Dmx). 

For all the elements Da(Po(j)) /j = i+l, i+2, ••• , N-i (if 

there are any), Dmn, Dmx, Nmn & Nmx are modified according

ly. If a minimum is found, Inn=l; if a maximum is found, 

Inx=l. Then, the two Po elements are set to Po(i)=Po(Nmx) 

and Po(N+l-i)=Po(Nmn), unless i=Nmn in which case Po(N+l-i) 

= M2. If a min was found (Inn=l) between Da[Po(i)] & 

Da(Po(N+l-i)), then this means that Po(N+l-i) took on the 

value of Po(Nmn); hence the latter must take the previous 

value of Po(Nmn), which was stored in M2. Similarly, if a 

max was found. The algorithm (Fig, A8.5.2) is original. 

A number of other subroutines were also used (like deci

mal-to-binary conversion, calculation of the binomial coef

ficient without overflow, etc), but because their flow-chart 

is straightforward, they will not be mentioned. Concerning 

the binomial coefficient, note that** 

n 11: n-It n n-It 

log(~) = ~logi - ~logi - ~logi = ~logj - ~logi 
1•1 1•1 1•1 j•k+l 1•1 

n-It 
-> log(~) = ~log(l+k/i) (A8.5.2) 

1•1 

* See Appendix 8.6 (§ A8.6.Z., P• 563), ** C(n.k) uy be su.ll. but nl aay still cause overflow. 
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Da(i) = i for i=1,2, ••• ,N 
> For i=1,2, ••• ,N/2 

li [Da(Po(i)) ~ Da(Po(N+1-i))], then: Nax=i & Nmn=N+1-i 
If [Da(Po(i)) < Da(Po(N+1-i))], !hgn: Nmn=i & Nmx=N+1-i 
Dmn=Da(Po(Nmn)) & Dmx=Da(Po(Nmx)) 
Inn=Inx=O & M1=Po(Nmx) & M2=Po(Nmn) 
li (2i = N), then: Go to step 1 -----------, 

> For j=i+1,i+2, ••• ,N-i 
li [Dmn S Da(Po(j)) S Dmx], then: next j 
li [Dmn > Da(Po(j))], then: Dmn = Da(Po(j)) 

Nlllll=j & Inn=1 
li [Dmx < Da(Po(j))], then: Dax = Da(Po(j)) 

Nax=j & Inx=1 
Step 1: Po(i) = Po(Nmx) <-------------' 

li (i = Nmn), then: Po(N+1-i) = M2 
li else, then: Po(N+1-i) = Po(Nmn) 
If (Inn=1), then: Po(Nmn) = M2 
li (Inx=1), then: Po(Nmx) = M1 
next i 

Figure AS. 5. 2: Flow-chart for array reordering. 

APPENDIX: 8.6; FORTBAN PROGRAMMES l'OR APP;ENJ)IX 8.5 

A8.6.1. Cbannel Cag.acity, Cbannel -error-Bate & proba
bility of QeC9ding "Error under OD 

IL:"fT~~\ lf'f''[kfrt'<l 
(:[·l'r ,. IC>-J,;tc 
Lti:r .,~1 l.tt--
C="· •E :1'< 'PY! PI -1 
(, Ll C : •. t~ ~! '• , .~ .~E-~tlf-7tDIItXt .-> 
Cl f,:'[f :). 
f, C: T L1 L :. 
El'iJ 

;::u:·cT re·• uf' 1 X> 
c;:;:u:n• /L:Ilt/C 
u'":[[ l,(•r'V ()( )+C 
r..L TUR.:• 
f 1'0 

FUr:CT!n~ EOD~PY!Pl 

EDRCPY=O 
If!P.Cr:.· .n; .P.[rl.ll f,-TUfd' 
[[R~pv:r-ll•!P*fl"Gl.!Fl+!l-r)*Al~Gl"Cl-P)J/ALOGl~C2o0l 

Figure A8.6.1: FORTRAN programme for function CHAMER. 
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FUNCTIO~ Sl~DRA:!PEl 
CO!o'HOr,/SI n/PEE 
OTE<III:AL DP. 
SlNORAO=O.O 
lF!PE.GE.C.5l RETUR~ 
PE[:PE 
A=l.7~~•<<-ll•ALCG13!PEll•*:•57l-t.~ 
F:A+l 

170 lFCD~CAl•D~Cbl.LTo~l GO TO 2lu 
A:A-0.5 
e=s•r.s 
A:AM~XlCAolE-9l 

GO TO 1 n 
21C CALL CC5ACF<Ao9olE-~tlE-9tDRtSt~l 

SII'ICRA~=2•S 

F.ETURtl 
E'>D 

FUt!CTICt• OR CXl 
CO Mt·IOtUS I r; n /FEE 
OF=Sl5tCFCX,~l-fEl 

RfTUR': 
Et,D 

Figure AS. 6. 2: FORTRAN programme for function SINORAO. 

fU''CTH'" ppr.r.E:>CK~tlS,CE,!Tf'l 
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C PR6DE2 PETU~HS Tf'E EfR CF THE CCDEt FOR THE ~0 F/& MCDE.
DOU8LE P~[C!SJC~ COEtFtC1tFAC2tPPtPPEtPD[oCOtOP:tOOEt~RoSU~ 
lHlE=GE 

l~C 

1 ... ~ <- • 

lH 

PP[:PQ[:DCE/KC•!IS/2)/(~~+ISl 

QQE=l-FF-E 
l Tt·= !TI' 
!FCIS-2•lTH-l.&E.rl &~TO 1•· 
PCE=Q~E 

JTM=IS-ITH-1 
CPE=l-PQC 
P fl (I OE 2=QP E 11' Pl 
IFC!TM.LT.rl PETURN 
PF:Cl-ll-2•PPEl••~ll/2 
CC=l-PP 
flR=1/PP-1 
fACl=PQE•PP**IS 
fAC2=QPE•OO••IS 
Sl1M=FAC1-r AC2 
l~CITHoEOoOl GO TO 110 
DO 121.:' I=ltiT!' 
FAC:CJS-I+l.~l/1 

FACl:FACl•RR•FAC 
FAC2=FAC2/flfl*FAC 
SU!':SU~+FACl-FAC~ 

PRCDE2=PRCDE2+SU~/PPE 

FE TURN 
Erw 

Figure AS. 6, 3: FORTRAN programme for function PRODEZ. 
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A8.6.2. Probability of 'Fjrat Ptco;Ung Error under EO 

SU~ROUTJ~E P~CCEliK"tNDC,QFCtiDT,ERfRtiAPl 

C PRDCE1 PETVR~S THL ERROR EXTE~~JO~ ~ATJD PEP COFETo ~lTH TX FI&.
C CCPE INtKl : IYC+,L/~~CtK=>.-
C CU ENTRY, OEC = PRrBAPJLJTY OF A CPAN~EL EkROQ I GUARANTFEO ERROR 
C COPRECTING CAPt9ILITYo-
C 0~ tNTRYt JARf1l:J1 K IARI2>=I2 SPECIFY T~E COStTS TO ~E LALCULtTE~: 
C Ilt!1+1toooti2o-
C D~ ExiTt GEO : AVERAGE ERROR EXTENSION RATlGt IF I2-Il=~OC-l.
C lOT = DEVIATIO~ FRC~ NOMI~&L SYND.OME THRESPOLD·-
C ERER!Jl: ERRI'P EXTE.t'SIOfl RATIC FOR JTH CGSET I I=Iltl1+1toootl2o
C er• EXIT, IARIKC+Il : NU~PER OF PESSAGE EkROP DIGITS, AFTER coqFfCT 
C RESETTING, I~ THE ITP SYNDkCHE I I=1t2toootiS t OkTHOGC~AL ON 
C ~ESSAGE DIG!TS DF kCTH COSET I KC=lt2toootNDC -
C IAR<,C•Il < IARIKC+I+ll t FOR l=1t2toootiS.-

DIMEHSJO~ ERERI~CCltiAqfKCltAAf2~ll,JJ(2:Cl 
DOUbLE PRECISIO~ bPI2~,ltOERE,PtP2tPRPtPhGtPPRtPG1tGPltR~tOEGtP~Et 

lPE,cr,orr,so~r,su~o 

C0"'"0N/COD2/J[)(P 
DEG=QEO 
"'=K~+1 
!S:K'I'/t\CC 
PE:PQE:DEG/~D•IlS12l/IKC+lSl 
ITH:( 1~+1 l/2 
JT~:I(")(:JTH+lDT 

C CHr!C[ "F "'00F A rR E.
GE=l-PE 
IFIIS-2•JTH-l.GE.~l GO TO 1~~ 
PCE:QE: 
l(r•X:IS-JTH-1 

1 eO. QPE=l-PGE 
Il=IARill 
!2=IIIRI2l 
!F<Il.LTo1or:'Roil.CT.I2l 11=1 
Iffl2oLToi1.0R.J2oGT.~OCl l2=~0C 
IFIK~X.GE.Ol GO TC 1~5 
Q[Q :CPE/PE 
PO 1 '7 I=Il tl2 

107 ERERill:QEG 
1::5 P2=1-2*PE 

C CftLCULftTION & REOFDERI\G OF IAR.
NC=1 
KC=O 
Do 11 ~ I=1 ,~oc 
"'C=NC 
DO 120 J=loiS 
MC:MOOf~C,.JEXP,Ml 

12G AA(Jl=I"C 
JJf1l=1 
CALL ORDERII~tAAtJJl 
DO 1:3 ~ J=1 t!S 

1~~ I~R(J+KCl=~tiJJIJll 
IF<I.EOoNCCl GO TO 110 
KC=KC+IS 

H t r:c=•!C+l 
DO 15n J=1tKC 
IFilA~fJloEQ.~Cl GO TO 140 

1 ~ ~ CO•:TH'UE 
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11: COt>:TI '<UE 
I<C=I·l>•IS 
CCQ: ~ 

C CALCULATIO~ OF [RER·
DC lf'J IJ=Ilt!2 
I<C:I(C+I5 

C CtlCULAT!CN OF PPCDUCTS Of P A~D CF c.-
PRP=2.~••11·l·">*IS> 
PRC=PRP 
DO 11r I=ltTS 
P=1-P2••IARIKC+l) 
l:lf!l !):P/1::-P> 
PllP=PRP•P 

17C PRQ:PRQ•(2•P) 
PCl=PQE•PRP 
QPl=QPE•PRC 
DERE:!PQl-QPl+CPEl/PE 
lF!K~Y.EG.DI GO TO lt5 
SU"P: ·. 
SU"C=: 
Lt:= r 

lE' LI,=U~+l 
DC lq~ I=ltU; 

19C JJ!I>=I 
C C~LCULATIO~ OF PRODUCTS OF R.-

2.' PRR=l 
DC 21C I=ltliJ 

21l PR~=PRR•b~(JJ!l)) 
SUMP=SUI'P+ 1/PPF, 
SU"'C=SU"Q+fi<R 

C CALfULATI~~ OF cr~FJrATI~~s PF p~rCUCTS OF P.
K=L"l 

22~ JJ(I<):JJ(~)+] 

l t:K=L•1-K 
IFIJJfl<>oGTolS·L~K> GC TO 23" 
IFil~K.ECo~l GO TO 2:0 
0(' 24' J=ltltK 

24" JJ!K+II=JJ!I<+I-11+1 
GC Tt' 2:~ 

23( K:K-1 
Ifll<o&E.ll lt' TO ::2· 
lFILN.LToKf')) GO TO 18~ 
DERE=DERE+IPQl•SUI'P·QPl•SUI'~l/Pl 

lf5 ERERIIJ>=DEPl 
lf~ QEG=CEt'+OfRf 

GEQ:QEQ/NCC 
RETl'IHJ 
Et'D 

Figure AS. 6. 4: FORTRAN prograue for subroutine PRODEl. 
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S~PRC~Tl~t r~UEh!~,,A,JJI 
OI~E~SIO~ A'INI,JJ!~I 
"Vl~" .. ':;~,J ~ 
I'I':'J+l 
I !.[':JJ I 11 
DC. l :J l=ltl'l 

1~0 JJIII=I 
DO 11: I=ltt-ifJt, 
r..x=1 
1\t,:MI'I-I 
D>'=CDX=AA IJJII I I 
Df.:At. I JJ! I·' M-I I I 
lf!OY,GE,C~I GO TO 120 
ox= or.; 
DN=DDX 
,._X=I\N 
~r,= I 

120 1'1=JJ!~YI 

It!X=I~HJ=::t 
IF!l+I,EG.~I ~0 TO 17) 
11=1+1 
•H=11-I 
CO 131'J=Il,"!I 
DL.=A!!JJIJil 
lFIDD.LEoCXI GO TO 140 
If' X:2 
DX=DC• 
'~X=J 
GC TO 

140 IFCDD.CE,D~I GO TO 130 

1 ~ -wO 

17: 

15 0 

16 0 
110 

180 

IN'<= I 
D~=L•!: 
"!t.=J 
crr·T Jr,UE 
JJ 1 ll =JJ n;x 1 
JJJ:JJ ( ~.:-.., 
lFCI,[Q,Nh> JJJ:f'2 
,IJ !11"-1 I :JJJ 
rr~·u = 1 ~x· Ir~\+ 1 
GO TO!ll~tlt"tlE~tl~•lol~,._X 
JJINI;I=~2 

IFIIN~X.EQ.21 GC TO 11J 
JJIN)()=M1 
COI'Tl~UE 

IF!I~D.~E.1l RETURN 
DO 18 0 1=1• NI<~ 
JH=JJI!) 
JJIII=JJII'H-11 
JJIM1'4-Il=JH 
RETURN 
END 

Figure AS. 6. 5: FORTRAN programme for subroutine ORDER. 
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AP-PlmniX 3 • 7; se!.'Ecuoo OE cones WITH oxvm PARAMETERs " 

In this appendix, three algorithms will be presented. For 

each one of them, given two code parameters the routine re

turns the (k,J) type-C5 code with one parameter matched ex

actly and the other being as close as possible. 

A&.7.1. Codfs Hitn atun InfoC!!lll1;ton-Bloek Leng1;h. k 

This function [IORD1 (k,J) ..::. f1 ]* returns fl so that 

(k,f1) is a type-C5 1 or type-B4 code, with f1 as close to J 

as possible. The algorithm (Fig. A8.7.1) is original. 

If k+1S2 1 there is no code and f1=0. If k+1=even there is 

only a type-B4 code, with !1=2. For the rest of the cases, 

f1 must divide 6(k+1). Since k is fixed, 6(k+1) will deter

mine the solution. If JS2, then !1=2 [6(k+1) is even]. If 

J~6(k+1) then f1=6(k+l). If 6(k+1) S 3, then fl = 6(k+l). 

For the rest of the cases, test f1s are J, J-1, J+1, J-2, 

J+2, etc. A solution will be found eventually, because the 

sequence of test fls starts with a fle(2 1 6(k+1)), hence it 

will terminate either with /1=2, or with f1=6(k+1), both of 

which are valid solutions. 

If (k < 2), then: fl = 0 
If (k+1 =even or J S 2) 1 then: !1 = 2 
If [6(k+1) S 3 or 6(k+1) S J], then: f1 = 6(k+1) 

!1 = J & 6 = 0 & s = -1 
> Step: If [fl I 6(k+l)], then: 

I! else, then: s = -s & 6 = 6+1 & fl = 
Repeat step 

> 
> 
> 

> 
f1+sx6 

Figure AS. 7 • 1 : Flow-chart for given k and nearest J. 

Oodea with Given Bate. e/(ctt} 

END 
END 
END 

END 

This function [IORD4(c,k) ..::. f4]** returns f4 so that 

(cf4,f4) is a type-C5, or type-B4 code, with cxf4 as close 

to k as possible. The algorithm (Fig. A8.7.2) is original. 

Because k = cxJ = even, if c = odd, then J must be even. 

Also, since J ~ 2 1 then k/c ~ 2. The first candidate for f4 

is lk/cJ; if this is odd and c is also odd, it is reduced by 

1. The next candidate will be f4+sx8, where s = ±1. Before a 

new value of f4 is generated, s changes sign and 8 is in-

* see Appendix 8.8 (§ A8.8.1., P• 566). 
** See Appendix 8,8 (§ A8.8.Z,, P• 567), 
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creased by 1 if c=even, or 2 if c=odd. Since the information 

block length is cxf4, the test for each candidate is !4 

8(cx!4+1). The search will terminate at least with !4=2. 

f4 = MAX{2,INT(k/c)} & Md = c aod 2 
I! (c & !4 are odd), then: !4 = !4-1 
s = Sign(cxf4+0,5-k) & 6 = 0 

> Step: li [f4 I e(cxf4+1)], then: -------------> END 
s = -s & 6 = 6+1+Md & !4 = f4+sx6 
If. (!4 > 2), then: .,R2ep.,e"::a:t:.._:s~t:_ep~------li else, then: f4 = 2 > END 

Figure AS. 7. 2 Flow-chart for given code-rate and nearest k. 

A8.7.3. Codes with Given Number of Orthogonal Checks, ,1 

This function [IORD6(J,k) .:0 f6]* returns f6 so that 

(f6,J) is a type-C5, or type-B4 code, with f6 as close to k 

as possible. The algorithm (Fig, A8.7.3) is original, 

If J < 2, f6 = 0. If J = 2, there is either a k type-B4 

code (if k=odd), or a (k,2) type-C5 (if k=even). For the 
rest of the cases, J~3. To avoid a very long search, an up

per limit, KMAX, is placed upon f6, Also, f6 must be even 

and a multiple of J, If the latter is odd, then q = !6/J = 

even. If 6 = J for J=even & 6 = 2J for J=odd, then f6 = qx8 
:S KMAX /q=1, 2,,,, Hence, the maximum value of q is Kmx .:0 

LKMAX/8J, So, the candidates for f6 are qx8 /q=1,2,,,,,Kmx. 

!i(J<2), 
I!(J=2), 
If. (J ~ 3), 

Step 1: 

c Step 2: 

Step 3: I) Stel! ~: 

then: 
,thm: 
then: 

!6 = 0 ------------------> END 
!6 = MIN{MAX[2,k],KMAX} --------> END 
6 = [1+MOD(J,2)]J & Kmx = INT(KMAX/6) 
q = INT(k/6+0.5) & q = MIN{MAX[1,q],Kmx} 

--------:> END 
s = Sign(qx6-k-0,5) & i = 0 

I! [J I 8(qx6+1)], then: f6 = qx6 
I! else, ~: i = i+l & s = -s & q = q+sxi 
If ( 1 :S q :S Kmx) , then: Reoeat step 1 
I! (q > Kmx), then: Go to step 3 ----------, 
I! (q < 1), ~: q = q+i 
q = q+1 & ll [J I 8(qx8+1)], then: !6 = qx6 - -> END 
I! (else & q > Kax , then: f6 = 1 -> END 
li else, ~: Repeat step 2 
q = q-i < 
q = q-1 & I! [J I 8(qx6+1)], then: !6 = qx6 -> END 
If (else & q < 1), !b!m.: !6 = 1 ------> END 
ll else, then: Repeat step 4 

Figure A8.7.3: Flow-chart for given J and nearest k. 

* See Appendix 8.8 (§ A8.8.3,, p, 568), 



- - ------------------ - --

Appendix 8.7 Page 566 

The test is J 1 6(!6+1). The first candidate is the multiple 

of 8, closest to k: !6 = q8, with q = Lk/8+0.5j. Thereafter, 

q is decreased by 1 if q8 > k, or increased by 1 if other

wise and the search cons~ders q±1, q±2, etc. If q becomes 

less than 1, only higher values are considered. If q becomes 

greater than Kmx, only smaller values are considered. If no 

suitable value is found, !6 = 1. 

A"Pl>END!X 8 • a : FOBTBAN PflOGBAJ:1Mii$ FOB APfct!QIX 8.7 

A8.8.1. Codes wjt.h Giyen Informat-ion-Block Length. k 

FUNCTION IORD1CIMO,IS) 
C IORD1 = CLOSEST TO IS INTEGER, SUCH THAT, IORD1>1, AND IORD1 DIVIDES 
£ IL=G.C.D.C IPRC1)-1,IPRC2>-1, ••• ,IPRCNR)-1 ), WHERE IPR(I)/I=1,2, ••• , 
C NR, ARE THE PRIME DIVISORS OF IMO.-
C IF THERE IS NO SOLUTION, IORD1=1 - IF IM0<3, IORD1=0.

DIMENSION KARC10,2) 
COMMON/ORD/KAR,IL,NR 
IFCIMO.GE.3) GO TO 200 
IORD1=0 
RETURN 

200 IFCMODCIM0,2).NE.O) GO TO 23U 
210 IORD1 =2 

RETURN 
230 CALL PRIDE2CIMO,IL,NR,KAR) 

IORD1=IL 
IF(IL.LE.3) RETURN 
IFCIS.GE.IL) RETURN 
IF(IS.LE.2) GO TO 210 
IORD1=Is 
INC=O 
ISI=-1 

310 IFCMOD(IL,IORD1).EQ.O) RETURN 
ISI=C-1)*ISI 
INC =I NC+1 
IURD1=IORD1+ISI*INC 
GO TO 310 

Figure AS. 8. 1: FORTRAN progr8.1111e for function IORD1. 
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A8.8.2. 99dtA witb Givtn Bate· e/fc+t) 

FUNCTION IORD4(IRl,IR2,N) 
C A) IF: IRl >IR2-l, OR 2 *IRl <IR2, THEN IORD4=9.
C B) IF: IR2-IR1>2*(IR1, IR2), THEN IORD4c1.-
C C) IF: IR2-IRlc2* (IRl,IR2), THEN IORD4=2.-
C D) IF: IR2-IRl=(IRl,IR2), THEN IORD4 • CLOSESEST TO N*(IR2-IR1)/IR1 
C INTEGER, SUCH THAT: 1) IORD4>1.-
C 2) IORD4 DIVIDES IL, WHERE ILo.G.C.D.( IPR(1)-l,IPR(2)-l, ... , 
C IPR(NR)-1 ), AND IPR(I)/I•1,2, ••• ,NR, ARE ALL THE PRIME DI-
C VISORS OF IRl/(IRl,IR2)*IORD4+1.-
C AND 3) IF 2 INTEGERS, SATISFYING CONDITIONS (1) AND (2), ARE EQUI-
C DISTANT FROM N, THE LOWER IS CHOSEN AS IORD4.-
C IN OTHER WORDS: IORD4 RETURNS THE NO OF ORTHOGONAL CHECK SUMS J, FOR 
C A CODE OF RATE R•IRl/IR2 AND BLOCK CONSTRAINT LENGTH AS CLOSE TO N AS 
C POSSIBLE, WITH PREFERENCE TO LOWER VALUES - IN PARTICULAR, J•B IF THE 
C VALUE OF R IS ILLEGAL, AND Jcl IF THERE IS NO CODE FOR THIS a.-

DIMENSION KAR(22,2) 
IF(IRl.LT.IR2.AND.2*IRl.GE.IR2) GO TO 299 
IORD4c0 
RETURN 

290 IC•IG:D (IRl,IR2) 
JRl•IRl/IC 
JR2 •IR2/IC 
IF(JR2.EQ.JR1+1) GO TO 359 
IORD4•1+2/(JR2-JR1) 
RETURN 

359 IORD4•MAX9(N,2*JR1)/JR1 
IV"MOD (JRl, 2) 
IWo=IV+MOD (IORD4,2) 
IORD4ciORD4-IW/2 

ISI•ISIGN (1,2* (IORD4*JR1-N)+l) 
IM•B 

419 CALL PRIDE2(JRl*IORD4+l,IL,NR,RAR) 
IF(MOD (IL, IORD4) .EQ.9) RETURN 
ISI•(-l)*ISI 
IMo=IM+l+IV 
IORD4o=IORD4+ISI*IM 
IF(IORD4.GT.2) GO TO 419 
IORD4c2 
RETURN 
END 

Figure AS, 8. 2: FORTRAN progrume for function IORD4. 
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Aa.a.3. C9des with Giyen Numb&r of Ortboaonll Checks. J 

FUNCTION IORD6(J,N) 
C A) IF: J<2, IORD6o:0.-
C B) IF: Jo:2 AND N<2, IORD6a2.-
C C) IF: Jo:2 AND N<MAXN+1, IORD6cMAXN.
C D) IF: Jo:2 AND 1<N<MAXN+1, IORD6.,N.-
C E) IF: J>2 THEN IORD6o:CLOSEST TO N INTEGER SUCH THAT: 
C 1) J DIVIDES IL, WHERE ILo:G .C. D. ( IPR (1 )-1, IPR (2 )-1, ••• , IPR (NR)-1 ) , 
C AND IPR(I)/Ie1,2, ••• ,NR, ARE ALL THE PRIME DIVISORS OF IORD6+1.-
C 2) IF TWO INTEGERS, SATISFYING CONDITION (1), ARE EQUIDISTANT FROM 
C J, THE LARGER IS CHOSEN AS IORD4.-
C 3) IF THERE IS NO INTEGER, SATISFYING THE ABOVE CONDITIONS, IN THE 
C RANGE [l,MAXN], IORD6o:1, WHERE MAXN IS EVALUATED IN 310.-
C IN OTHER WORDS, IORD6 RETURNS THE BLOCK-cONSTRAINT LENGTH, FOR A CO
C DE WITH J ORTHOGONAL CHECK-SUMS AND BLOCK-cONSTRAINT LENGTH, AS CLOSE 
C AS POSSIBLE TO N, WITH PREFERENCE TO HIGHER VALUES - IN PARTICULAR, 
C IORD6=0,IF THE VALUE OF J IS ILLEGAL, AND IORD6o:1 IF THERE IS NO CODE 
C WITH NUMBER OF ORTHOGONAL CHECK SUMS J AND BLOCK CONSTRAINT LENGTH 
C LESS THAN MAXN+l.-

INTEGER X02BBF 
DIMENSION KAR(22,2) 
COMMON/TR6/MAXN 

3111> MAXNa9999 
IORD6a0 
IF(J.LT.2) RETURN 
KX..-J * (MOD (J, 2)+1) 
NN'*I IN 0 (MAX0 (J, N) , ( MAXN/KX+1-1/(1 +MOD (MAXN, KX))) *KX/2-1) 
IORD6•NN 
IF(J.EQ.2) RETURN 
IORD6aKX *INT (FLOAT (NN) /KX+0.5) 
JRo:ISIGN (1, 2* (IORD6-NN )-1) 
JSa0 
JAo:1 
JB .. -1 
JNo:0 
JNM.,2*IORD6/KX-(JR+3)/2 

450. IMO.,IORD6+1 
CALL PRIDE3 (IMO,IL,NR,KAR) 
IF(MOD(IL,J).EQ.0) RETURN 
IF(JN.GE.JNM) GO TO 540 

490 JNcJN+1 
JS•JA*JS+l 
JR..-JB*JR 
IORD6o:IORD6+JR*JS*KX 
GO TO 450 

540 IF(JA.NE.1) GO TO 590 
JAo:0 
JB•1 
JNM'*IAXN/KX-1 
GO TO 490 

590 IORD6=1 
RETURN 
END 

Figure A8.8.3: FORTRAN programme for function IORD6. 
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APP:ENl)IX 8 • 9; , CONFIOEHCE INTEflYALS ' ' ' , ' 

Consider a sample of size n, and let m denote the sample 

mean. Then, if n ~ 30, the sample means, m, are normally

distributed random variables with mean, say, p• and standard 

deviation, say, a. (see Erricker [49], p. 196). It can also 

be shown (ibid, pp. 196-9) that, 

P• = p (AS. 9.1) 

and that 

a.= alln (A8.9.2) 

where p & a are the population parameters. 

Of course, p & a are not known, but they can be estimat

ed. As mentioned earlier, the best estimate of p is the sam

ple mean, m. The best estimate of a• is ns2 /(n-1) (see Er

ricker [49], p. 226), where s• is the variance of the sam

ple, 
n 

s 2 = (1/n)~(x1-m) 2 

1=1 

and x
1 

are the sample values. 

(A8.9.3) 

Froiil the graphs of the normal probability density func

tion, it may be deduced that: 

i}9% or the '4rea lies between ll ;' 2. 58a .. ll • 2. 58o 
U% of ,the area li'es between 11 -- 1. 96o 4 11 + 1. 96o 
~O%'of the are4'lies between'P,- 1.645o t. 11 +:1.645o 

50%<of ,the are4 lies between,ll - 0.6'145a ... ll • o.6'145o 

Hence, if a. is known, one may state that p lies between 

m-2.58a. & m+2.58a., with confidence 99X (i.e. 99% of the 

sample means m, lie in m±2.58a.). 

From (A8.9.3): 

n n n 

s• = ( 1/n) ~x~ - 2m(1/n)~x1 + m2 (1/n)~1 -> 
1•1 1=1 1=1 
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n 

sa = ( 1/n) ~x~ - 2m2 + m2 

1=1 

n 

Page 570 

-> 

s'" = (1/n)~x~ - m• -> [since x 1 = 0 or 1 - bit stream] 
1=1 

n 
sa = (1/n)~x1 - m'" = m - mz. -> 

1=1 

sa = m(1-m) (A8.9.4) 

Then: aa = nm(1-m)/(n-1) (A8.9.5) 

From (A8.9.2) & (A8.9.5), since m, the sample mean, is 

the estimate of the probability P,. of the bit stream (x = e 

or d), and since the sample size is very large (of the order 

~f 104
, or more), n-1 "'n = Nb: 

~ ~ 

a• = .{[P,.( 1-P,.)/Nb] (A8.9.6) 

(A8.9,6) may be used to obtain the 99% confidence 

intervals in estimating P,.. 
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APPENDIX: a.ttl: GRAPHS Of EER & NET CQQING-GAIN ys~r* 
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Figure A8.10.1: EER vs r, for rate 16/17 codes. * 
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Figure A8.10.2: EER vs r, for J = 4 codes. * 

* I!R s error-extension ratio. 
r z signal-to-noise power-ratio per inforaation-bit. 
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Figure A8.10.3: Net coding-gain vs r for codes of rate 3/4 

(top), R=B/9 (middle) & R=9/10 (bottom). * 

* r = signal-to-noise power-ratio per inforaation-bit. 
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Figure A8.10,4: Net coding-gain vs r for codes of rate 10/11 

(top), R=14/15 (middle) & R=15/16 (bottom). * 

* r = aignal•to-noise power-ratio per infor.ation-bit. 
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Figure A8.10.7: Net coding-gain vs r for codes with J=2 (top), 

J=3 (middle) & J=4 (bottom). * 

* r = signal-to-noise power-ratio per inforaation-bit. 
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Figure A8.10.8: Net coding-gain vs r for codes with J=4 (top), 

J=6 (aiddle) & higher Js (bottom). * 

* r = signal-to-noise power-ratio per inforaation-bit. 
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Figure A8.10.9: Net coding-gain vs r for codes with k=28 (top), 

k=36 (middle) & k=72 (bottom). * 
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ERROR PROPAGATION 

TX f/b (transmitter feedback) denotes what has been 

called 'genie' decoding.** Under this mode, the syndrome 

register is reset using the true values of the error bits, 

instead of the estimated ones. DE f/b (decoder feedback) 

denotes normal FD. The decoder-output error-sequence is the 

number of decoding errors per b (k-bit) blocks, where b ~ 1. 

~ ~ l DE fib 0 
l 

40 TX fib 
l • 
~ 

39 c .. .. 
'0 '· 0 29 

.. . . 
u .. 
• .. '0 • .. 

10 . ' • ' .. . · . . . . 
0 ·' 0 ..... 

0 9 z 
9 18 29 39 48 se 68 7e 88 

TI!Ie"umt (68 blrdsl 

Figure AS .11 .1: The decoder-output error-sequence {60 blocks per 

eleaent), of the (60,6) code, at QE=5, with DE & 
TX f/b. 

* r = signal-to-noise power-ratio per inforaation-bit. ** See § 6.1.4. (p, 157). 
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Figure A8.11.4: Net coding-gain vs r, with DE & TX f/b, for the 

(12,4) code (top), the (40,5) code (middle) & 
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* r c signal-to-noise power-ratio per inforaation-bit. 



Appendix 8.11 Page 582 

" 1.5 (48,3) ' 
Ill R=l6/17 1) 
V 1.2 
c ... 8.9 

-~ I 8.6 ~ c -8- !€ f,'b ... 8.3 1) +TXH 0 
V 8 
" • -9.3 z 

5 6 7 8 9 18 11 

5!fl I lnfn<hoo·M (dB) 

" I.S 
(72,3) Ill 

"0 
1.5 

R=24/25 
V 

c 
!.2 ... 

~ 
~ 
I 9.9 ~ c /----- -8-DEH ... 9.6 '0 + fl. f:t 0 
u 8.3 ~ .. • 8 z 

6.5 7 7.5 8 8.5 
5!fl 1 mina \1 oo-M (dEl 

8 ·=r R=8/~ 

1\ -9.3 
[] 

ill ,' R=l&/17 
1J 
V -9.6 
~ 
~ 

-9.9 0 ... {) (40,5) 
I 
l -1.2 + (42,7) • + (o\8,3) 3 
0 -1.5 I (k,J) 
ll 

-1.8 

3 4 5 6 7 8 9 18 11 

SIR I infn<hon-blt (dB) 
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APP~lX: 3.12 t UNEQUAL EBROR-PROiiCTION 
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(40,5) code; QE=l over 45,000 blocks (top) and 
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average, per coset (top); number of decoding 

errors per coset, over 20,000 blocks, under DD, 

with QE=5 (bottom). 
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