BRDSC no .- DK‘?‘SG_»‘%_

, LOUGHBOROUGH
" UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE

ACCESSION/COPY NO.

O3600e®77 .
“VOL. NO. CLASS MARK

LeAd oofor

23 JUN1ag5 |
27 JUN 1517

f 036000877 1

- MR llllﬂﬁllllll I

SOME NEW RESULTS

ON CONVOLUTIONAL CODES

Volume 2: Appendices

by

Nikos P. Frydas

A Doctoral Theals

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy of the Loughborough University of Technology

1 January 1990

© by N.P. Frydas 1850

” ey

Loughborough University
of Technology Library

Date O‘L‘ q L

Class

N 0% 000 877

Hrae 37y

- . -
.

| S
'7 e
¢ O

'DoDpoopDooOo00oOopooooonod,

Contents
Volume 2

ABBREVIATIONS Vii
NOTATION ++rrrorormmonmeanarecasaseacanccsssnnsnsnnes jix
APPENDICES --::-:casssnocnnnnan e h e n e i e st e s e e 280

Al.1 THE FUNCTIONAL BLOCE-UNITS OF A DIGITAL
COMMUNICATIONS SYSTEM - -----c--cevrrernnecen-s 281
Al.2 BINARY PSK WITH COHERENT DEMODULATION ------- 285
Al1.2.1., PSK Modulation -+ --c--ermrrnns 285

Al.2.2. The Output of a PSK Coherent
Demodulator - st e 286
Al1,2,3. Statistical Properties of n, ------" 287
Al.2.4, Hard-Decision' Demodulation --------- 290
Al1.2.5. Probability of Error ‘-:-c---cr-ee-rs 290
. Al.2.6. Bounds on, and Approximation to, 291
* Al.3 AVERAGE ERROR-RATE FOR A SIMPLE CHANNEL WITﬁ
MEMORY e 4 % 2 8 2 s @ 8 B w e oe 4w E 4 s a e e s s 294
Al.4 ASYMPTOTIC CODING GAIN FOR A BLOCK CODE ----- 294
A2.1 INTRODUCTION TO ABSTRACT ALGEBRA ------------ 296
A2.2 INTRODUCTION-TO LINEAR ALGEBRA ‘r-r=cr e en 299
A2.3 PROOF OF THE THECREMS IN APPENDIX 2.2 «+v=+:- 304
A2.4 THE POLYNOMIAL & MATRIX APPROACHES TO

' CONVOLUTIONAL-CODE THEORY -----c--ccccasecsnen 307
A2.5 DISTANCE MEASURES FOR CONVOLUTIONAL CODES --- 309
A2.6 PROOF OF RELATION (2.24) - rrecsscrecrucren 311
A2.7 PROOF OF THEOREM 2,3 ---+-cccorsvvveecncvenns 312
A2.8 PROOF OF RELATION (2.36) «cccreorrecncereccnce 313
A2.9 EXAMPLES OF NORMAL-ENCODER CONSTRUCTION ----: 314
A2.10 CATASTROPHIC CODES <+ --++ = ccrcarereraerns 317
A2.11 COMPOSITE GENERATOR-POLYNOMIALS -+~ +=-c=-=--- 320
A2.12 PROOF OF THEOREM 2.5 -+---rccserrvacvanns ~. 323

A2.13 COMPOSITE GENERATOR-POLYNOMIALS FOR
SYSTEMATIC CONVOLUTIONAL CODES -~-----=----"~--- 323

- -

-

Contents (Appendices)

A2.14
A2.15
A2.16
A2.17

A3.1
A3.2

A3.3
A3.4
A3.5
A3.6

Ad.1

A4.4
Ad4.5
A4I6
Ad4.7

A5.1

Ab.2
A5.3
Ab.4

Page 111
EXAMPLE OF A TYPE-II ENCODER -+ --"--sr---n-e 324
PROOF OF THEOREM 2.10 <« v vercrecvenenn-nrnan 325
PROOF OF THEOREM 2.12 +errrecccrcnmernsnrnns-n 326
PROOF OF THEOREM 2,15 -+ ersmrsececnmnncnncn 328
SEQUENTIAL MACHINES & STATE TRANSITIONS =----- 329
PROOF OF THEOREMS 3.1, 3.2 & 3.3 ------cer--- 333
A3.2.,1. Proof of Theorem 3.1 ---=-----*cer--- 333
A3.2.2. Proof of Theorem 3.2 <<« o ceen=> 334
A3.2.3. Proof of Theorem 3.3 -----------v--> 335
EXAMPLE OF TRELLIS DIAGRAM «---cecr-venerane 335
EXAMPLE OF VITERBI DECODING --+-> o= 337
SEQUENTIAL DECODING s+ rrmerssemmrncsr e 339
TABLE LOOK=-UP DECODING -------rscvvoorcrnnn- 341
PROOF OF THE THEORY IN SECTION 4.1 -------+-" 342
Ad.1.1. Proof of Lemma 4.1 --------°csrverno-- 342
Ad4.1.2. Proof of Theorem 4.1 ----«ccsree--- 342
Ad4.1.3. Proof of Theorem 4,2 -+ er 343
Ad.1.4, Proof of Theorem 4.3 =--------svsr--- 344
Ad4.1.5. Proof of Lemma 4,2 - -+ mronn- 345
A4.1,6, Proof of Theorem 4.4 «-+++rc-ver--- 345
A4.1.7. Proof of Theorem 4.5 «----ccvcvrcv-> 347
Ad.1.8. Proof of Theorem 4.6 +--c- - 348
A4.1.9. Proof of Theorem 4.7 <----- s --n 349
SET THEORY AND PARTITIONS ------cceevorcnecc~- 250
PROOF OF THEOREMS 4.9 & 4.10 - rccennern 353
Ad4.3.1. Proof of Theorem 4.9 -----+- s+ e--- 353
A4.3.2, Proof of Theorem 4.10 ----«::-vrre-ne 354
PROOF OF THEOREM 4.11 s+ mreenanns 355
EXAMPLE OF CONSTRAINED REGULATOR TRELLIS 356
EXAMPLE OF ERROR-TRELLIS SYNDROME DECODING 361
PROOF OF THE THEORY IN PARAGRAPH 4.4.1. +---- 363
Ad4.7.1. Proof of Theorem 4,12 -----«ccren--- 363
A4.7.2. Proof of Theorem 4.13 ~--+++rrveee-en 364
Ad.7.3. Proof of Theorem 4.14 ---+-«=*cov---- 365
Ad.7.4. Proof of Lemma 4.10 =---cr s -ccenen- 366
PROOF OF THEOREM 4,15 +cccrerrrccrecncnaveens 366
THE INTERMEDIATE RESULTS OF § 4.6,3., -++++---- 368
Ad.9.1. Proof of Theorem 4.25 v vne--- 368
A4.9.2, Proof of Lemma 4.13 -+ r-reenrr-ny .+ 368
A4.9.3. Proof of Lemma 4.14 --+--crr v rene-- 369
CONSTRAINED & SIMPLIFIED STATE~-TRANSITION
DIAGRAMS FOR A t=2 NORMAL LSC ----+rrrrro---- 369
PROOF OF THEOREMS 4.30 & 4.31 --ccrrvnererr- 374
Ad4.11.1, Proof of Theorem 4.30 ----------~-"" 374
Ad4.11.2. Proof of Theorem 4.31 ----------~-*" 375
PROOF OF THE THRESHOLD-DECODING THEOREMS - 3178
A5.1.1. Proof of Theorem 5.1 ---+ccccvv----- 378
A5.1.2, Proof of Theorem 5.2 -+ rere---nn 378
A5.1.3. Proof of Theorem 5.3 -------+csro-v- 379
A5.1.4,. Proof of Theorem 5,4 -+ srrroerenn 380
DEFINITE DECODING - PARITY SQUARES ----«--+--- 381
FEEDBACK DECODING - PARITY TRIANGLES +-+------ 389
PROOF OF THE THEORY IN SECTION 5,3 +-+---:--- 397
Ab.4.1. Preliminary Results ----<c+sr=ccer--- 397
A5.4.2. Proof of Theorem 5.7 +r+--crv--rer-- 398
A5.4.3. Proof of Theorem 5.8 «--:---veroe- 400

Contents (Appendices) Page 1v

A5.5 PROOF OF THEOREM 5,9 ++rrcrsrcrmrecrecrcc-ns 400
A5.6 PARITY-TRIANGLES & PARITY-SQUARES FOR CSOCs - 402
A5.7 BLOCK EFFECTIVE CONSTRAINT-LENGTH FOR A CSOC 405
A5.8 DISTANCE PROPERTIES OF CSOCs --:-tveseremrmns- 409
A5.8.1. Proof of Theorem 5.11 ------+-v-r0a-- 409
A5.8.2. Proof of Theorem 5.12 -++---c-vvve-- 410
A5.8.3. Proof of Theorem 5.13 =----------0r-- 411
A6.1 PROOF OF THE THEORY IN SECTION 6.1 ----rvso»-- 412
A6.1.1. Proof of Lemma 6.1 -««-r--ccerrrere- 412
A6.1.2. Proof of Theorem 6.1 -----+- """~ 412
A6.1.3., Proof of Theorem 6.2 -+ ro-ccereee 413
A6.1.4. Approximation to (1-2p)¢ ------+---- 414
A6.1.5. Examples of the Calculation of
P(I=p|e =0) er-crernseenncaaes 416
A6.2 CAPACITY OF THE BINARY SYMMETRIC CHANNEL ---- 418
A6.3 STUDY OF H{p,1)/H(p,c) -----r-rrrrrerenen- 421
AB.4 PROOF OF RELATION {(6.38¢) rrccr-secccnrruenes 426
A6.5 GENERALIZED MEANS -+ s rrerrrcrccccccre. 428
A6.5.1, Proof of Theorem 6.9 -------ccsser--- 428
A6.5.2., Proof of Theorem 6.10 ------v-vr---- 428
A6.8 OPTIMUM THRESHOLD FOR FEEDBACK DECODING ----- 431
A7.1 INTRODUCTION TO ARITHMETICAL FUNCTIONS ---+-- 435
A7.2 INTRODUCTION TO CONGRUENCES -+ --v---co---- 440
A7.3 INTRODUCTION TO PRIMITIVE ROOTS ----cc--r---> 444
AT.4 PROOF OF THEQOREM 7.2 ---rcccccnreeer-cvnancns 447
A7.5 THE MINIMUM VALUE OF m FOR TYPE-B CODES =----- 448
A7.5.1. Proof of Theorem 7.3 --+--+ccree-n-- 448
A7.5.2. Proof of Theorem 7.4 - -2 449
A7.6 ORTHOGONALITY CONDITIONS FOR TYPE-B CODES --- 450
A7.6.,1. Proof of Lemma 7.1 -+ rr-scrmrmreves 450
A7.6.2, Proof of Theorem 7.5 -------+rcsm-vr 450
A7.7 PROPERTIES OF TYPE-B CODES -« ccrecmrroe-nn- 451
A7.7.1. Proof of Theorem 7.6 -r----:=---=---r=- 451
A7.7.2. Proof of Theorem 7.7 -------+>+r--n- 452
AT.7.3. Proof of Theorem 7.8 =-++---cccererens 452
. A7.7.4. Proof of Theorem 7.9 --------s+-=--~- 453
AT.8 TYPE-B1 CODES +r-rersrrmrermcmeccccccnccssnn 454
A7.8.1, Examples s r-c s cenns 454
A7.8.2, Table of Type-Bl Codes -------+"++--> 456
A7.9 OTHER CLASSES OF TYPE-B SELF-ORTHOGONAL CODES 458
A7.9.1. Proof of Theorem 7.13 ---:--c-cr-0r> 458
A7.9.2. Proof of Theorem T.14 --«+srrneneen 459
A7.9.3. Proof of Theorem 7.16 ----=--<c---"c-> 460
A7.9.4. Proof of Theorem 7.1B -+--ccreoc-ovee 461
A7.9.5. Proof of Theorem 7.19 -+-------ccvens 463
A7.9.6. Proof of Theorem 7.20 ««<«+crveavc-nen 464
A7.10 {(n,k,k-1) TYPE-B SELF-ORTHOGONAL CODES ~------ 466
A7.10.1. Procf of Theorem 7.21 +-crcvercerves 466
A7.10.2. Proof of Theorem 7.22 ---------:2-- 468
A7.10.3. Proof of Theorem 7.23 --:--+---co~" 476
A7.11 GENERAL PROPERTIES OF TYPE-C CODES --+«+-++--- 478
A7.11.1., Proof of Theorem 7.24 ----------:+" 478
A7.11.2. Proof of Relations (7.27) +----++-- 479
A7.11.3. Proof of Theorem 7.25 --+---=~-----" 479
A7.11.4. Proof of Lemma 7.3 =----------s+cos.- 483
A7.12 CYCLICALLY-DECODABLE TYPE-BjJ CODES ---:-+c+=- 484

A7.12.1. Proof of Theorem 7.27 ----«-er-veen- 484

PR VA S

e

- i a

Contents (Appendices) Page v

A7.13
AT.14

AT.15

A7.16

A8.1

A8.2

AB8.3
A8.4

A8.7

A8.8

AT7.12.2. Proof of Theorem T.31 ------=:t-2cn" 486
A7.12.3. Proof of Theorem T.32 ---«:cccce=ns 489
A7.12.4. Examples of Type-C5 Codes ---------" 491
INTRODUCTION TO QUADRATIC RESIDUES +--------" 496
PROPERTIES OF THE INITIAL ARRAY -+-=-++v-r--- 497
AT7.14.1., Proof of Theorem 7.33 =--<---<scssns 497
A7.14.2, Proof of Theorem 7.34 -+-+:rvve-e 498
AT7.14.3, Proof of Theorem 7.35 -+ vvvn-n- 499
A7.14.4, Proof of Theorem 7.36 ----c-=+ce.: 500
EFFECTIVE CONSTRAINT-LENGTH ----+++ s rm--n 504
A7.15.1. Proof of Theorem 7.39 ++-+:ce----u: 504
A7.15.2. Proof of Theorem 7.40 ------=-+°"--" 505
PROOF OF THEOREM T.41 «-cccrccsemenmnrrcorennn 508
COMPUTER GENERATION OF ’CYCLIC’ CSOCas ------- 510
A8.1.1. Greatest Common Divisor -«-:+---»--- 510
AB.1.2, Sum Modulom =-----<«*scsrsssmrecnnon-- 510
A8.1.3. Product Modulo m -+ =-«rcr e nvenn 511
A8.1.4., Power Modulom ---c- s o vrrannn 512
A8.1.5, Prime Decomposition :+-+¢-rrrreee-ns 513
A8.1.6, Primitive Root Modulom ------+ - -" 514
A8.1.7. Order J Modulo any Divisor d>1 of m 515
A8.1.8. Encoding and Syndrome Arrays =------- 516
A8.1.9. Effective Constraint-Length ------'- 519
FORTRAN PROGRAMMES FOR APPENDIX 8,1 --:::---- 520
AB8.2.1., Greatest Common Divisor -«-«+---+---- 520
A8.2.2., Sum Modulom ----=--**ersrmrmseccecnn 520
A8.2.3. Product Modulo m + <= vrvenen 520
AB.2.4. Power Modulo m ------ s s smmrnecen 521
A8.2.5. Prime Decomposition +-rsrr-reeermeen 522
A8.2.6. Primitive Root Modulo m ---:=--=---«-" 524
A8.2.7. Order J Modulo any Divisor d>1 of m 525
A8.2.8, Encoding and Syndrome Arrays ------- 525
A8.2.9. Effective Constraint-Length -------- 533
CHANNEL AND DECODER SIMULATION -------r«=-:---- 533
SIMULATION PROGRAMMES - ---cscssreccecnm-vrtns 541
A8.4.1. Software Implementation of the
Decoder 541
A8.4.2. A Complete Simulation Programme for
Long Codes -+t rr-rrseammrranananens 543
SUBROUTINES USED BY THE MAIN PROGRAMME --:---- 556
FORTRAN PROGRAMMES FOR APPENDIX 8.5 ----vc--- 559
A8.6.1. Channel Capacity, Channel Error-Rate
& Probability of Decoding Error under
DD 559
A8.6.,2., Probability of First Decoding Error
under FD ccerrrrrresacneacnnoansassas 561
SELECTION OF CODES WITH GIVEN PARAMETERS ---- 564
A8.7.1. Codes with Given Information Block~-
Length, k +cvrrrrercmmrecerrcaanenn 564
A8.7.2., Codes with Given Rate, c¢/(c+l) ~----- 564
A8.7.3. Codes with Given Number of Orthogonal
Checks, J ~----+-crscrssscnvcosssnnn- 565
FORTRAN PROGRAMMES FOR APPENDIX 8,7 +=-r----- 566
A8.8.1, Codes with Given Information Block-
Length, k --ccrrreeemrcnnennannn 566
A8.8.2. Codes with Given Rate, c/{(c+1) ~----- 567

A8.8.3. Codes with Given Number of Orthogonal
Checks, J - cccrersreirtnennnnns 568

Contents (Appendices) Page vi

AB.9 CONFIDENCE INTERVALS ---‘cc-----cscrmmermerrons 569
A8.10 GRAPHS OF EER & NET CODING-GAIN vs ' ~-------- 571
A8.11 ERROR PROPAGATION --«sv--r-scrmmmmmmeemecnns 578
A8.12 UNEQUAL ERROR-PROTECTION ---«-ccvecerccnecre 584

REFERENCES - -cvrrroesrnnrresssennnonseneennnnn. 586

'oooo0o0oo00o0o0Onoo0oooo0oonan,

Abbreviations

APP = a posteriori probability (see p. 136)
AWGN = additive white Gaussian noise (see p. 287)
BSC = binary symmetric channel (see p. 6)
CcC = convolutional code (see p. 18)

CEG = central group (see p. 58)

CSOC = convolutional self-orthogonal code (see p. 138)
c/w = codeword

DD = definite decoding ({see p. 139)

DIG = discarded input group (see p. 87)
DMC = discrete memoryless channel (see p. 5)
EA = encoding array (see p. 220)

eqn = equation

FD = feedback decoding {see p. 139)

FEG = front-end group (see p. 58)

FF = feed-forward ({see p. 317)

Fig. = Figure

gcd = greatest common divisor (see p. 435)
IA = initial array (see p. 183)

iff = if, and only if

ING = input group {see p. 87)

I/P = input

LHS = left-hand side

LSB = least significant bit

LSC = linear sequential circuit

MEG = memory group (see p. 58)

MIG = memory input group (see p. 87)

MLD = maximum likelihood decoding (see p. 10)
MSB = most significant bit

MUX = multiplexing (see p. 283)

0/P = output

PCM = pulse code modulation

PSK = phase-shift keying

REG = rear-end group (see p. 58)

reln = relation

RHS = right-hand side

SA = syndrome array (see p. 517)

SNR = signal-to-noise ratio

S0 = gelf orthogonal (see p. 138)

SR = shift register

SYRE = syndrome register (see p. 210)

X-OR = exclusive-or

wrt = with respect to

'poooooooOoDOoOoOOoooOOonooon,

Notation

number of states (Chapter 4) (see p. 89)
composite parity-check (Chapter 6) (see p. 135)
IA generating element (Chapters 7 & 8) (see p. 218)
autocovariance function (see p. 257)

"n!/[k!(n-k)!]° = binomial coefficient
signal-to-noise ratio per information-bit

delay operator

minimum distance of a code

energy per received bit (see p. 4)

expected wvalue of ?

channel~-error sequence (see p. 46)

complementary error function (see p. 291)
coherent demodulator O/P (Chapter 1) (see p. 286)
number of zero-length SRs (Chapters 3 & 4) (see p. 57)
memory-density function (Chapter 4) (see p. 102)
memory-distribution function {Chapter 4) (see p. 114)
Euler totient (Chapters 7 & 8) (see p. 436)

net coding-gain ({(see p. 13)

generator matrix (see p. 30)

Galois field q (see p. 297)

parity-check matrix (see p. 45)

identity matrix

number of orthogonal check-sums

total circuit memory (see p. 55)

memory order (see p. 19)

length of the ith SR of a normal LSC (see p. 33)
single-sided noise power spectral density
actual constraint-length (see p. 20)

effective constraint-length (see p. 145)

number of input blocks (Chapter 4) (see p. 89)
probability of bit decoding error

probability of channel error

received sequence (see p. 46)

autocorrelation function (see p. 257)

syndrome sequence (see p. 47)

syndrome threshold (see p. 151)

error-correcting capability (see p. 85)

optimum threshold (see p. 151)

message (or information) sequence (see p. 25)
channel sequence (see p. 25)

=

o oo H 3~ unn

—
8 od
I = 4

ain

meao-QQo b

hyhththn D O
— — L] ~
y >

-

x4
—

T T I O T AC S T . IO { O T IO T (O ¢ O T T Y« I T Y (R o L O e T R |

X CMIQOOQO

[%4

muwnomawnunn
THRLE L I O LI T LA R LT (T L2 (T T L T O T (O O 2T T T DO (O T (DO O (I LI |

'tl“"d IO'FbEJ (=

—
L]

et

<C=ct=-1th T

Notation Page 1ix

w[?] = = Hamming weight of ?

¥ = = = eesees (gee p. 89)

® = = = theta function (see p. 218}

Ix] = = greatest integer =x

N1 = = smallest integer 2x

E = = = congruence symbol (see p. 441)

= = = = equal by definition

<A,B> = partitioned by sets A & B (see p. 352)

ACB = = A is a subset of B - I
'"ACB = = A is a proper subset of B

(a,b) = greatest common divisor of a & b (see p. 435) |
x/y/z = (x/y)/z = x/{yz) |

VOLUME 2

Appendix 1,1 Page 281

L R DML ST A R Iy i e L ESET T oy T Tt R N Te g, WS L gh oy T

¥ e I 4 ‘
e ATER S e e b e b h e W1 G -

-t
- I ————
[A T W . e b P R

APPENDIX 1.1: FUNCT = E
DIGITAL COMMUNICATIONS SYSTEM

In this appendix, the task of each of the functional
block-units of the digital communications system of Fig. 1.1
{(p. 2) will be briefly described. The idea of such a diagram
was borrowed from Sklar [1], from whom some of the following

material is also taken.

The information source is either the human or the machine
that originates the information to be transmitted. The in-
formation may be an analogue signal (i.e. a signal continu-
ous both in amplitude and in time), or a sampled signal
{i.e. a signal continuous in amplitude but discrete in
time), or a digital signal (i.e. a signal discrete both in
amplitude and in time).

The information sink, or destination is the human or ma-
chine that will receive an estimate of the original informa-
tion signal. The signal should be delivered in a format
suitable to the particular destination. The performance of
the whole system is judged by the quality of the delivered
signal (an ideal system would deliver an estimate which is
identical to the original signal), by the delay involved, by
the cost of transmission (or storage) and, for some applica-

tions, by the security against interception.

The source formatting unit converts the source signal
into a bit stream (since the system is digital). For exam-
ple, the source formatting unit for an analogue source (au-
dio, etc) may be a PCM encoder, while for a digital source
(computer terminal, etc) an ASCII (or similar) encoder (in
the case of the computer terminal this is incorporated in
the keyboard).

The destination formatting unit converts the received
bit-stream into a signal suitable to the particular destina-
tion. In the case of audio signals the formatting device may
be a PCM decoder, while in the case of digital signals it

Appendix 1.1 Page 282

.

may be the appropriate part of a VDU or a printer.

The source encoder compresses the information signal. The
ratio of the bit rate out of the encoder over the bit rate
in the encoder is called the compression ratio. Compression
techniques for analogue sources include differential PCM,
adaptive delta modulation and linear predictive quantiza-
tion; these are both source-formatting and source-coding
techniques. Digital sources are compressed by variable-
length coding techniques, like the Huffman and Liv-Zempel
ones. The latter algorithm is adaptive in the sense that it

requires no prior knowledge of the source statistics.

The source decoder performs the reverse operation. It
assumes that no errors have occured. The validity of this
assumption depends on the particular system. Usually, a sin-
gle bit in error may appear with probability less than, say,
108, In most of the cases the source decoders are able to
recover*, in which case the user experiences a short or long

burst of erroneous data.

Encryption prevents unauthorized users from extracting
information from the channel (privacy) and from injecting
information into the channel (authentication). The message
is encrypted with an invertible transformation, to produce
the ciphertext which is then transmitted over a public chan-

nel.

Decryption is equivalent to inverting the original trans-
formation. This is easily done if a8 specific
transformation-parameter is available. This parameter is
called the key and is not available to the unauthorized user
(cryptanalyst). The latter is assumed to have full knowledge
of the transformation used and of the ciphertext, to have
access to the bhest (specialized or not) computer systems,
but not to have the key. The security of the system is based
on the vast number of calculations required to decipher the
ciphertext, without the key.

Channel coding aims at offering a flexibility to the sys-
tem-designer to ’play’ with the error-rate performance, the
power requirement or the bandwidth requirement. So, for a

¥ 1In some applications, this may not be desirable.

Appendix 1.1 Page 283

given input data-rate one of these three parameters can be
improved, at the expense of the other two. This is achieved
by introducing controlled redundancy, into the encoder in-
put-stream, which for this purpose is broken into blocks of
k; the introduction of redundancy results in an increased
bit-rate at the 0/P of the encoder (for every k bits, n bits

are transmitted by the encoder, where k<n).

The channel decoder uses the received bit-stream to ei~-
ther detect the presence of errors (and ask for a retrans-
mission) or to correct them. Error detection & retransmis=-
sion is called automatic reguest for retransmission (ARQ},
while error correction is called forward error-control
(FEC). Note that ARQ results in a wvariable throughput, but

it is expected to offer superior error-performance.

Multiplexing (MUX) is the sharing of a communications
resource {CR). Mux of bit streams is achieved by sharing the
CR in time (time-division mux - TDM). TDM may be static (as
used in telephony) or dynamic (usually called statistical
mux). Another very common type of mux is frequency-division
mux (FDM), but this operates on waveforms, hence it would be

located somewhere after the modulator.

Demultiplexing separates the multiplexed bit-stream into

its constituent parts.

The modulator is the interface between the bit-stream and
the waveform parts of the system. The modulator-demodulator
prair is the most essential part of the whole system. The
modulator superimposes the bit-stream onto a carrier (usual-
ly a sine-~wave). This is done because the frequency charac-
teristics of an, appropriately designed, (modulated) carrier
better match the channel characteristics. A sine-wave is
completely defined by its three parameters, amplitude, fre-
quency and phase. In amplitude modulation (AM) the carrier
amplitude is made to vary in sympathy with the message sig-
nal; in freguency modulation (FM) the parameter which is
altered is the (instantaneous) frequency of the carrier; in

phase modulation (PM) it is the carrier phase that changes

in sympathy with the message signal. If the message signal

Appendix 1.1 Page 284

is digital {as in Fig, 1.1), these three techniques are
called ASK, FSK & PSK, respectively (the initials "SK" stand
for shift-keying). A hybrid combination of ASK & PSK is
called quadrature amplitude modulation (QAM). In essence, a
modulator maps blocks of k bits into an alphabet of 2k wave-

forms.

Demodulation is the process of extracting the message
signal from the received modulated carrier. The received
signal may be demodulated in a coherent or noncoherent way.
A coherent demodulator multiplies and integrates (corre-
lates) the received signal with each of the prototype wave-
forms and chooses the one which better satisfies a certain
criterion (usually the minimum Euclidean distance). For this
processing to be successful, the demodulator must have
knowledge of the carrier’s phase reference. Noncoherent de-
modulators do not require knowledge of the carrier phase;
this results in simpler implementation {(there is no need for

carrier tracking), but in worse error-rate performance.

Multiple access is, like mux, a CR sharing technique. The
two differ in that multiple access usually involves the re-
mote accessing of a resource and a guard-time overhead (re-
quired to make the controller aware of the user's demand).
In MUX the CR controller has instantaneous knowledge of all

the users demands.

The transmitter (XMT) includes a power amplifier, a fre-
quency~up conversion stage (optional) and an antenna (or, in

general, XMT-to-channel interface).

The receiver (RCV) includes an antenna {(or, in general, a
channel-to-RCV interface), a front-end amplifier and a fre-

quency-down conversion stage (optional).

Synchronization (SYNC) is the alignement of the time
scales of spatially separated time-processes. Bit SYNC is
involved with the extraction of a clock signal, at the
pulse-repetition frequency. Frame SYNC is involved with the
detection of frame-~-timing slips and the recovery from such
slips. Carrier SYNC is involved with the extraction of car-

Appendix 1.1 Page 285

rier phase information.

Channel is the medium between the XMT and the RCV anten-

nae {or equivalent).

APPENDIX 1,2: BINARY PeK WITH COHERENT DEMODULATION

Al.2.1. ulatijo

Consider a PSK modulator with output alphabet
{s,(t),s,(t)}, where

s,(t) = {(2E/T)sin(2nf t+w/2) /OStsT (Al.2.1a)

s, (t) = {(2E/T)sin(2nf t-n/2) /OSLsT (A1.2.1b)

and f.T = integer (Al.2.1c)

From the identity sin(a+b) = sin(a)cos(b)+sin(b)cos(a)
and eqns (Al.2.1):

-s,(t) = s,(t) = {(2E/T)cos(2nf,t} /0StsT (A1.2.2)

The modulation rate is 1/T baud and, since transmission
is binary, the data signalling rate is 1/T bps.
The energy of so(t), or sl(t), in the time interval [0,T]

is
T
Energy =°Isf(t)dt
= (2E/T) Jcos® (2nt t)dt [using (A1.2.2)]
0
T *
= (28/7) [{{1+cos(4nt t)1/2}dt
T 4n1’°
= (8/T)[dt + (E/T)[cosxdx/(4xt,)
0 0
= E + [E/4nfoT)][sin(4nf°T)-sin0]
= E [since f T=integer, by (Al.2.1c}]
Hence,

% yUse was made of the identity cos®x = [l+cos(2x)]/2.

Appendix 1.2 Page 286

r(t)

- T2 T,
Energy/bit = Iso(t)dt = 0Isl(t)dt = E (A1.2.3)
0

Then,

Power E/T {A1.2.4)

Note also that, by (A1.2.3):

n
|
=

S EXCIENCIE ;rsg(t)dt (A1.2.5)

Hence, so(t) & sl(t) are not orthogonal.

Ar.2.2. uEpu f a mod

A coherent demodulator for PSK multiplies the received

signal, r{t), by sc(t) [or sl(t) = -so(t)], integrates the
product from time t=0 and samples the integrator’s O/P at
time t=T (see Fig. Al.2.1).

f(t) M f=5(D)
INTEGRATOR —O\.—O
Sample
att=T

s (1)

Figure A1.2.1: Coherent demodulator for binary PSK.

Assuming a channel suffering from additive noise, n(t),
r{t) = si(t)+n(t) Ji = 0 or-1 (Al1.2.6)

From Fig. A1.2.1 and egqn (Al1.2.6):

f{t) = r(t)so(t) = si(t)so(t) + n(t)so(t) —>
f(t) = ts:(t) + n{t)s,(t) —

t
fe) = figsio + nlx)sg(x)ldx =

Appendix 1.2 Page 287

fiT) & f = £fs2(t)at + fn(e)s,(t)at

o 0 0 0
[and using (A1.2.3)1, § = tE+n_ (A1.2.7)
where n_ ﬁﬂj;(t}so(t)dt (Al1.2.8)

Note that n_is a random variable because the waveform
n(t) /02t<T is random. Hence the demodulator O/P is E+n_ if
s,(t) was transmitted, or -E+n_ if sl(t) was transmitted.
Note also that f is a real random variable, which has to be
further processed in order to be determined whether sobt),
or s,(t), was transmitted. Of course such a decision will
not always be error-free, due to the random nature of n.

In order to determine the optimum way to further process

f+ one has to examine the statistical properties of n_.

A1.2.3. Statistical Properties of n

If the additive noise n{t) is Gaussian, then n(t) is a
Gaussian stochastic process, hence n(t’) is a Gaussian ran-
dom variable. Since so(t’) is a constant, then n(t’)so(t’)ﬁt
is also a Gaussian random variable (with different mean and
variance - see Papoulis {3], p. 127), where 8t is a small
time interval.

Consider the sum,

T/8t
onlet/2+8t(i-1)1s,[6t/2+8t(i-1)]6t (A)
i=1

Let the additive Gaussian noise be also white, with power
spectral density (double-sided) #i/2 (this means that the
noise power from f=f, to f=f°+B is 2BA/2 = fiB}). Since the
power spectral density, Gh(f), is constant over all frequen-

*

cies”, the autocorrelation function, Rh(t), of the Gaussian

white noise process is impulsive, because Rn(t) & Gn(f) form

a Fourier-transform pair (see Papoulis {3], p. 338):
R (T) = (i/2)8(t) (A1.2.9)
This means that E[n(tl)n(t1+6t)] = 0, hence the factors

in summation (A) are statistically independent Gaussian ran-

* 1In practice, up to about 1013 gz,

Appendix 1.2 Page 288

dom variables, Then, their sum is also a Gaussian random
variable (see Davenport [4]1, pp. 188-90). If one lets
5t
(A1.2.8), which defines n,. Hence, n is_a Gaussian random

> 0, the summation in (A) tends to the integral, in

variable.

E[nc], the expected value of n,, may be obtained from
(A1.2.8):

Eln, 1 = E[[n(t)s,(t)at] (B)

From (B), E[nc] is the ensemble average over the noise
voltages, n(t), from all statistically independent noise
sources. If nj(t} denotes a noise sample-function from the
jth source, the RHS of (B) may be written as (N is the num-

ber of noise sources),

N T
LIM (1/N)j=21[olnj(t)so(t)dt]

and using (A},

N T/56¢t
Eln.] = LIM (/N[X F nylt)slt)st] =—>
Bie #1 e
T/5t N

Eln] = LIM E[L}g.u/mgnj(ti)] so(t,)8t (C)

The summation in the brackets in (C), is the ensemble
average of noise samples at time t=t,, over all noise

sources. Then:
N
LIM (1/N)[§nj(ti)] = Eln(t,)] (D)

Since the Gaussian noise process is stationary, the sta-
tistical averages are independent of time and E[n(ti)] =
E[n{(t)] = 0. Then:

E[nc] = 0 (A1.2.10)

Finally, consider the mean square_ vsalue, E[n:], of n_.
From (Alozns):

Appendix 1.2 Page 289
T T
= Jatt)s (et [ntsy(x)dx =

Eln?] = E[j’an(t}n(x)so(t)so(x)dtdx]

! and since the operatlons of 1ntegrat10n & expectatlon are
.)] '} by |
11nterchangeable *, .

Eln2] = j j Eln(t)n(x)s,(t)s,(x)1dtdx

Since, for ensemble averaging, sn(t) & so(x) are con-
stants (the ensemble average is over all noise sample-func-

tions, at a fixed time):
T pT
E[n2] = d
(021 = [[EM(6)n(01sg(t)sg(x)atax (E)

E[n(t)n(x)] is the autocorrelation function Rn(t,x) of
the noise process, which is a function of only the differ-
ence t-x, because the process is stationary (see Davenport
[4], pp. 322-3). Hence, from (A1.2.9):

Eln(t)n(x)] = R (t-x) = (fi/2)8(t-x) (F)

From (E) & (F):

E[n®] = ITIIR (t-x)s. (t)s,(x)dtdx —
c od o n 0 0

E(n2] = (ﬁ/z%jéo(x)[ujgott)a(t-x)dt]dx (@)

If f(x) is any function, continuocus at the origin, then
the shifting property of Dirac’s delta function is (see Pap-
oulis [3], p. 97):

4@
If(x)&(x-a)dx = f(a)
-l

Since x ranges from 0 to T, the value t=x is within the
range of variation of t, hence the range (-o,+®o) may be re-
placed by [0,T]:

ojéo(t)a(t-x)dt = s,(x) (H) '

i See Papoulis [3], Chapter 9 see also the argument leading to result (A1.2.10). |

Appendix 1.2 Page 290

From (G}, (H) & (A1.2.3):

T
E(n?) = #afsi(x)dx = #&E (A1.2.11)
0

Al.2.4. Hard-Decision Demodulation

The coherent demodulator’s output is tE+nc, where ncis a

zero~mean Gaussian random variable with variance E[ngl = o2

= Efi/2. The hard-decision threshold, T, is set at 0, *,

[PV,

Hence, if s {t) is transmitted, E+n_ is received, while

if sl(t) is transmitted -E+n_ is received. Then, the optimum

hard-decision demodulation rule is:

—> sg(t) if §20
f = = (A1.2.12)
> sl(t) if f<0

A1.2.5. Probability of Error

A demodulation error will occur if ncexceeds certain

limits. Specifically,

Error, if s,(t} is transmitted and fx4,
OR, if s,{t) is transmitted and f20.

el

Error, if s t) is transmitted and n x-E,

(A1.2.13)
OR, if s, {t) iz transmitted and n 2+E.
From (A1.2.13),
P, = P[so(t)]P(nc<-E) +,P[sl(t)]P(ncz+E)
Since P(n_2+E) = P(n_<-E),
P, = P(n_2+E) (Al1.2.14)

Since ncis a zero-mean QGaussian randem variable with

variance o, then:

P & P(n

>E) = I[e-*’““”/uhoz) Jdx
E

]

. .- . ool - . .
| ¥ If the bit error rate, P.» is expressed as P_ = P(sS,)P(f<T)+P(3,)P({>T) = P(5,)P(n_<T-E),
| +[1-P(8,)]P(n >T+E)}, différentiated with respect to ? and set eqiial to 0, it ig found !
i that T, the optimum threshold, is 0.

Appendix 1.2 Page 291

Let x/{o{2) = z. Then,

400

P = 1/«[(2n02)je'22042dz = %(Z/Jn)fe"zdz —

B/(042) £/ (042}
P, = terfc[E/(o{2)] (A1.2.15)
where erfc(z) = (2/Jn)je“3dx (A1.2.16)

Using (A1.2.11) in (A1.2.15):

P, = derfcly/(E/R)] (A1.2.17)

Al.2.6. ds O and roxi to

The following theorem was taken from Feller [5] (p. 175):

Theorem At1.2.1: If Q{x) is the complementary normal

{Gaussian) distribution, defined by
+8
Q(x) & If(z)dz (A1.2.18)
b 4

where f(z) is the, zero-mean, unit-variance, normal den-

sity-function, given by

£(z) = e /2 (2n) (Al1.2.19)
then:
(1-1/x2)f(x)/x < Q{x) < f(x)/x (A1.2.20)
Qlx) = f(x)/x as x——>+o (A1.2.21)
Proof: For all z>0:

1-3/z% < 1 < 1+1/22 (A)

Since, f{z)>0, from (A):
(1-3/28)£(2) < £(z) < (1+1/22)f(=) (B)

From (B) and (A1.2.18), for all x>0:
j(1-3/z4)f(z)dz < jf(z)dz < [(141/22)8(2)dz =—>

L(x) < Qx) < I(x) (C)

Appendix 1.2 Page 292

where Il(x) - I(1—3/z4)f(z)dz (D)
and L(x) & [(1+41/2%)£(2)dz (E)
From (A1.2.19): df(z)/dz = ~zf(z)} (A1.2.22)

From (E), (Al1.2.18) & (Al1.2.22):

I,(x) = [f(z)dz + [(£(z)/2*1dz ==—>
I,(x) = Q(x) + [f(z)d(-1/2) ==
I,(x) = ax) - [(1/2)e(2)] + [(1/2)af(z) =
I,(x) = Q(x) - [0-£(x)/x] - [f(z)dz =—=>
I,(x) = £(x)/x (F)
Also, from above,
[te(z)/22 1z = £(x)/x - Qx) (G)

From (D), (A1.2.18), (A1.2.22) & (G):

I,(x) = [f(z)dz - 3[(£(2)/21dz =—m>

I(x) = a(x) - 3[f(z)al-1/(32))] —>

I, (x) = Q(x) - 3[-£(2)/(32*)] + 3[[-1/(32%)1a8(z) =—>
I,(x) = Q(x) + [£(z)/2°]:-&-J[f(z)/z’]dz —

I,(x) = Q(x) + [0-£(x}/x%] + £(x)/x - Q(x) w==a>

I(x) = (1-1/x*)f(x)/x (H}

From (H), (F) & (C), (A1.2.20) follows readily.

Appendix 1.2 Page 293

Note that the difference between the upper and the lower
bound on Q{x) [from (A1.2.20)] is 1/x*, which tends to 0, as
x=—>+®, Then, Q(x) = f(x)/x, as x—>+o,

QED

The results of Theorem Al.2.1, will be used now to obtain

bounds on, and an approximation to, Pe.

Lemma Aj.2.1: The probability of a bit-error, for bi-

nary PSK transmission over the AWGN channel and coherent

demodulation with hard-decisions, is bounded by

[1-1/(2r)1eT/[2{(nT)] < P < e T/[(2f{(nT)] (A1.2.23)

where T =& E/f {(Al1.2.24)

E is the energy per received bit and A/2 is the double-
sided noise power spectral density.

Furthermore:
P, = eT/[2{(nl')] as T —> +o (A1.2.25)

Proof: From the definition of Q(x) & erfc(x) [see
{A1.2.18) & (A1.2.16)], the following relationship is ob-
tained:

[}

Q(x) [l/J(Zn)]Ie"zlzdz (let y=z/42)

+@

31274 (2n) 1 [e V2dy

xf42

400

3(2/4n)[e ¥ dy = 3erfc(x/d2) w—>
xf42

Q(x) = %erfc(x/42) (A1.2.26)
From (A1.2.26) & (A1.2.20):
(1-1/x2)f{x)/x < %erfc(x/42) < £f(x)/x —
[1-1/(y42)*)1E(y42)/(y42) < }erfc(y) < £(yf2)/(yy2) mmmm>
[1-1/(2y%)1e™*/Iy{24(2n)] < erfc(y) < e /[yi2{(2n)]
[from (A1.2.19) - let now y=4T]

—> [1-1/(2T)]eT/[2{(nT)] < }erfc(4T) < e T/[2{(nl)]

Appendix 1.2 Page 294

Approximation (Al1.2.25) & bounds {A1.2.23) follow readi-
ly.
QED

APPENDIX 1.3: RROR-RA _SIMP
’ CHANNEL WITH MEMORY

If P(b) = 1-P(g) is the probability that the channel will
be found in the 'bad’ state, then from Fig. 1.4, the proba-
bility, P(g), that the channel will be found in the ’good’
state is:

P(g) = P(2)(1-q,}+P(b)g, = P(g)(1~-q,)+[1-P(g)]lq, ==>
P(g)(1-14q;+q,) = q, ===> P(g) = q,/(q;+q,) (A1.3.1)

Since P(b)=1-P(g)},
P(b) = q,/(a,+a,) (A1.3.2)

Note that since q,«q,, P(g) =1 & P(b) = q,/q,.
The average probability of error for this channel is

P

¢ = P(g2)p,+P(b)p, =—>

—> P, = (q,p,+q,p,)/(q,*q,) ~ p,+(q,/q,)p, (A1l.3.3)

APPENDIX 1,4; ABYMPBTOTIC CODING GAIN FOR A BLOCK CODE

Consider the calculation of the asymptotic coding-gain
for a t-error correcting code, of rate R, with BPSK trans-
mission over the AWGN channel and coherent demodulation.with
hard decisions.

Let p denote the probability of a bitrin error over the
BSC (made of the BPSK modulator, the AWGN and the coherent
demodulator). From eqn (1.7), the probability of erroneous
decoding, P(E), is

P(E) = 3p*(1-p)™!C(n,i)
i=np+l

Appendix 1.4 Page 295

Since at high SNRs, p is very small, only the first term
of the above summation is significant*- Also (1-p)™*1l =« 1,
so P(E) » Kp**!, where K is a constant. For the same reason
as above, given that a block is erroneously decoded [and
that happens with probability P(E)], the probability that it
contains more than t+1 errors is close to zero (because p is
very small at high SNRs). Hence, P(E) is approximately equal
to the probability of t+1 errors. So, the bit error-rate,
P,, at the decoder O/P is:

P, K(t+1)p**! (Al.4.1)

p is the channel error-rate as 'seen’ by the decoder.
Hence, p is given by (1.4), but the SNR per information-bit,

'y is reduced by a factor of R:

P, K(t+1){}erfc[/(IR)1}*" (Al1.4.2)

For uncoded transmission, the bit error-rate, P, is

P} = %erfc(4T’) (A1.4.3)

The expressions in eqns (A1.4.2) & (A1.4.3), for high
SNRs, can be approximated by (1.5¢). Then, to achieve the

same bit error-rate (P;=Pb):
K(t+1){eC™/[2{(nIR)]}* = e T'/[2{(nD’)] ==>
InfK{(t+1)] + (t+1){-TR=-1In[2/(nTR}]} = -T’~1n[2/(nl’)] m——c >

Il’

RC(t+1)+{t+1)1n[2y (xR} 1-1n[2{/(wl’)]-1n[K(t+1)] e >

r’ RL{t+1)+31n{(TR)*/I’ J+t1n{2/n)-1n{K(t+1)]

Since all logarithmic factors are small, for I—>w®:

T’/T ~ R{(t+1) ———> G =~ 10log[R(t+1)}] (A1.4.4)

a

¥ This is the i=t+l term, since ng = t.

Appendix 2.1 Page 296

1 e g a EANRAS L VImg g o SRS PAMSREAST Y MUR T "W DT U s
- - - - = T T A LS -l s

T T e Fr T TR L Mol L anAEDaeme o amen e ,;_I
APPENDIX 2,1 T T T

This appendix is intended to serve as a 'look-up table’
for basic definitions and theorems of abstract algebra.

The part of convolutional-code theory, covered by this
thesis, is inherently algebraic. Consequently, the reader is
expected to be familiar with the most common elements of
abstract algebra.

More information can be found in chapter 2 of most

textbooks on error-correcting codes.

Definition A2.1.1: A set S, together with an operation

* defined in the elements of S, forms a group G if the fol-

lowing properties are satisfied:

i) Closure: For every a,b in S, a*b is in S,

ii) Associativity: For every a,b,c in S, a¥(b¥c) =

(a*b) *c.

iii) Identity: S contains an element e such that, for
all b in S, b*e = b.

iv) Inverse: For every b in S there is an element c,

in S, such that b*c = e, ¢ is called the inverse
of b and is denoted by b},

Theorem A2.1.1: In every group, the identity element is

unique. Also, the inverse of each group element is unique,
and {(a’1)l= a.

Definitijon A2.1.2: If a group G satisfies the commuta-

tive property, i.e. if for every a,b in G, a*b = b#*a, then

the group is called commutative or abelian.

Definition A2.1.3: If a group G has a finite number of
elements, it is called a finite group and the number of ele-

ments in @ is called the order of G.

Appendix 2.1 Page 297

Definition A2.1.4: A set S, together with an operation

* defined on the elements of S, forms a semigroup if #* is a

closed associative operation.

pefinition AZ2.1.5: A set S together with two operations

on S, addition (denoted by +) and multiplication {denoted by

Juxtaposition), forms a ring if:

i) S together with addition forms an abelian group.
ii) S together with multiplication forms a semigroup.
1ii) The distributive laws a(b+c) = abt+ac and (b+c)a =

ba+ca, hold.

Definition A2.1.6: A set § together with two operations

on S, addition and multiplication, forms a field if:

i) $§ together with addition forms an abelian group
with additive identity denoted by 0.
ii) S§' = {s : s€5 & s # 0} together with multiplica-
tion forms an abelian group.
iii) The distributive law a(b+c) = ab+ac holds for all

a,b,c in S.
|

Definition A2.1.7: A field with q elements, if it ex-
ists, is called a finite field, or Galois field, and is de~
noted by GF(q).

Definition A2.1.8: Let F be a field. The elements of F

will be called scalars. A set V is called a vector space and

its elements are called vectors if there is defined an oper-
ation called vector addition (denoted by +) on pairs of ele-
ments from V, and an operation called scalar multiplication
{dencted by juxtaposition) on an element from F and an ele-
ment from V, provided the following hold true: :
i) V is an abelian group under vector addition.

ii) Distributive law: For any vectors v, & v, and any

scalar c, c(v1+v2) = cv,tcv,.

Appendix 2.1 Page 298

1ii) Distributive law: For any vector v and any scalars
c, & c,, (c1+c2)v = c,Vic,V.

iv) Associative law: For any vector v and any scalars
c, & ¢, (clcz)v = °1(°zv)'

v) If 1 is the multiplicative identity of F, 1v = v,
for all v in V.

Definition A2.1.9: Let S be an non-empty subset of a

vector space V. S is a vector subspace if it forms a vector
space under the original vector addition and scalar multi-

plication.

Definition A2.1.10: In a vector space V, a sum of the

form
u = a,v +aV,tecctav
where the a, are scalars, is called a linear combination
of the vectors Vv ,v,,...,V,.
A set of vectors {vl,vz,...,vk} is called linearly depend-

ant if there exist scalars al,az,...,aksuch that

v, = 0

-
a1V1+a2V2+ .\+ak x

Definition A2.1.11%: If a,eF /i=1,2,...,k, where F is a
field, the quantity (al,az,...,ak) is called a k-tuple of

elements from the field F. Under the operations of compo-
nentwise addition and componentwise scalar multiplication,
the set of k-tuples of elements from a field F forms a vec-

tor space over F, which is denoted by F k,

Definition A2.1.12: A set of vectors is said to span a

vector space if every vector in the space equals at least
one linear combination of the vectors in the set. A vector
space that is spanned by a finite set of vectors is called a

finite-dimensional vector space.

Definition A2.1.13: The number of vectors in a set that

spans a finite-dimensional vector space V is called the di-

Appendix 2.1 Page 299

mension of V. A set of k linearly independent vectors that
span a k-dimensional vector space V is said to form a basis
of V.

Note A2.1.1: Any finite~dimensional vector space V can
be represented as an n-tuple space: If the set of vectors
{V1'Vz""'vn} forms a basis of V then every veV can be ex-
pressed as V = aV +a,v,+e+++a Vv, hence one may represent v

" by the n~tuple of coefficients (a, a, *++ a) = V.

Definition A2.1.14: A single-valued mapping of a set S

into a set T is a correspondence (f:s—>sf} that associates
with each s€S a unique element te7. Two mappings f & g, of §
into T, are equal (f = g) iff sf = sg for all se€S. A mapping
of § into T is a mapping of S onto T, if for each teT there
exists at least one seS : sf = t. £ is a one-to-one mapping
iff for each a,beS : a £ b — af # bf. [6]

Definition A2.1.15: Let S & T be any two sets. The set
Sx T= {{s,t) : s€S5,teT} is called the cartesian product of
the sets S & 7. [6]

APPENDIX 2.2: 77 INTRODUCTION TO LINEAR ALGEBRA

This appendix is intended to give a few definitions and
theorems that will be used throughout the thesis. The reader
may find more information in chapters 1 & 3 of Noble & Dan-
iel {71.

Definition A2.2.1: An m X n matrix over a ring R is

made of mn elements of R, arranged in a rectangular array of

m rows and n columns. If the elements of A are denoted by

ay, / i=1,2,...,m & j3=1,2,...,n, then the matrix can also be
denoted by A = [a“].

| Appendix 2.2 Page 300

pefinition A2.2.2: The transpose of the m X n matrix A

[a“] is the n X m matrix AT = [dL], such that dL = a, Ji=

1,2,-.-,1’1 & j=1,2,...,m.
i

Theorem AZ2.2.1: Properties of the transpose matrix [7]:
i) (A+B)T = AT + BT
ii) (AT)YT = A

iii) (AB)T = BTAT
1

Definition A2.2.3: A matrix G such that GA = I, if such
a matrix exists, is called a left-inverse of A. A matrix H

such that AH = I, if such a matrix exists, is called a

right- inverse of A [T7].
i

Theorem A2.2.2: If both the right-inverse and the

left-inverse of a matrix A exist, they are the same; this

common inverse is called the inverse of A, is unique and is
denoted by A"},

Theorem A2.2.3: Properties of the inverse [7]:

i) A square matrix possesses an inverse or it does
not posses either a left- or a right-inverse.
ii) If A & B are square matrices that posses an in-

verse (in which case they are called nonsingular):
1. (A=A

2. (AB)-1= pial

3. (AN 1= (AY)T

iii) The results in (ii) imply that if A & B are non-
singular, so are AT, Al & AB.

Definition A2.2.4: Elementary row operations on ma-

trices are defined as following:

Appendix 2.2 Page 301

i) Interchange of any two rows.
ii) Multiplication of any row by a non-zero element.
iii) Replacement of any row by the sum of itself and a

multiple of any other row.

Elementary column operations are defined by replacing the

"

term "row" by the term "column", above.[8]

Definition A2.2.5: An m X n matrix is said to be canon-

ical or in row-echelon form if:

i) Certain columns numbered cl<c2<---<crare precisely
the unit vectors e,,e,,...,€ the unit vector e,
of order m (1<jsm), is the m x 1 matrix with the

jth element unity and all cther elements zero.

ii) For a column numbered c, where c,fcley,, (1<isr),
its last m-i elements are zero.
From (i) & (ii) above, it follows that:
iii) The last m-r rows of the canonical matrix are
zero; the first r rows are non-zero.
iv) The lower triangle of elements in the (i,j) posi-

tions, where i>j, is all zero.
v) For row i (12£ifm):
1. The first c,~1 elements are zero.
2. The c;th element is 1.
3. The cjth element is zero, for i#j.

Theorem A2.2.4: Any elementary row (column) operation

on an m X n matrix A, can also be achieved by forming the
product HA (AK). H (K) is the corresponding elementary ma-
trix, obtained by performing the row (column) operation on

I_(In). An elementary matrix is nonsingular.

Definition A2.2.6: An elementary operation is any oper-
ation that is either an elementary row operation or an ele-

mentary column operation. If a matrix A can be transformed

into a matrix B by means of one or more elementary opera-

Appendix 2.2 Page 302

tions, we write A ~ B and say that A is equivalent to B. In
particular, we may say that A is row equivalent (or column
equivalent) to B if only elementary row (or column) opera-

tions are involved in the transformation. [8]

Theorem A2.2.5: The row-echelon form of a matrix is

unique.
|

Definition A2.2.7: The number of non-zero rows in the

row-echelon form of a matrix is known as its rank.

Definition A2.2.8: By means of elementary transforma-

tions any matrix A of rank r>0 can be reduced to one of the

forms
I, » [5..0] T , o

called its normal form. A zero matrix is its own normal
form [9].

Theorem A2.2.6: Equivalent matrices have the same rank

(81.

heorem A2.2.7: Two matrices A and B are equivalent iff

there exist two nonsingular matrices P and Q@ such that A =
PBQ.

Thecorem A2.2.8: If A is an n X n matrix and if [A,In]
can be transformed to the equivalent matrix [In,B] by ele-

mentary row operations, then B is the inverse of A [8].

Theorem AZ2.2.9: Let A be a square m X m matrix of rank
m. Then, [7]

i) The row-echelon form of A is I‘.

Appendix 2.2 Page 303

ii) A is the product of elementary matrices.

iii) A is nonsingular.

Theorem A2.2.10: If A is a general m X m matrix and B

is an m X n matrix of rank m, the rank of [B,A] is m [7].

Theorem A2.2.11: Let A be an m X n matrix of rank r.
Then, [7]
i) A has a right-inverse R > r=m=2<zn
ii) A has a left-inverse L o> r=n=<m

Theorem A2.2.12: Let A be a square m X m matrix. A is

nonsiﬂéular iff the rank of A is m. [7]

Theorem A2.2.13: If A& B are m X m matrices and AB is

nonsingular, both A and B are nonsingular [7].

Theorem_A2.2.14: If A is nonsingular, the rank of AB
(and also of BA) is that of B [9]. ¥

Theorem A2.2.15: The rank of the product of two ma-

trices cannot exceed the rank of either factor [9].

Theorem A2.2.16: If the m X p matrix A is of rank r and

the p X n matrix B is such that AB = 0, the rank of B cannot

exceed p-r [9].
\ |

Theorem A2.2.17: If AismX nand B is n X m with n<m,
AB is singular [7].

Theorem A2.2.18: Suppose that AB = 0. Then [7]:
i) IfT AisnXné&Bisnxp, B=0or A= singular.
ii) If Aismxn &Bisnxn, A=0 or B = singular.

¥ 1n fact, AB & B have the same canonical matrix.

Appendix 2.2 Page 304

iii) If A and B are boethn xXxn, A=0, or B =0, or’
both A & B are singular.

Theorem A2.2.19: If two matrices are related by a suc-

cession of elementary row operations, they have the same row
space (row space of a matrix is the set of all linear combi-

nations of its rows).

Theorem A2.2.20: Let A be an m X n matrix with elements
in GF(q). The row space of A is a vector sub-space of
GF(q)", with dimension equal to the rank of the matrix. The
column space of A, the set of all linear combinations of the
columns of A, is a vector subspace of GF(q)® with dimension

equal to the rank of A.

Theorem A2.2.21: Let A be an m X n matrix with elements
in GF(q). The set of n-tuples v such that Av! = 0 is called

the null-space of A and forms a vector subspace of GF(q)".

NQTE: Information about the proof of the theorems of
Appendix 2.2, can be found in Appendix 2.3.

APPENDIX 2.3: PR E M3 _IN AP

This appendix 1is intended to provide the reader with a
brief sketch of the proofs of those theorems of Appendix

2.2, for which a reference was not found.

Por Theorems A2.2.1, A2.2.2 & A2.2.3: See Noble & Dan-
iel [7], ppP. 11-8.

For Definition A2.2.5, parts (diii), (iv) & (v): Using
parts (i) & (ii):

iii) If c,Sc<cy,, (1€isr), the column numbered c has its

last m-i elements zero. Then the last MIN{m-i} elements of

Appendix 2.3 Page 305

each column are zero, hence the last m-MAX{i} = m-r rows are
zZero.

iv) The elements of the lower triangle are a(p,c) = a, .

with p>c. From the discussion above, if i<p<m then a(p,c} =

0, where c,Sc<e and 1<isr. Since igc, and c.c, if c<p =)

i1 i i~

i<p, hence a(p,c) = 0.

v) Column c, contains a 1 in position i. So, a(i,c))
1. Consider a(i,c) /c(ci. Let cj$c<cju.with j+1£i., In column
c, elements j+1,...,m are zero. Hence a(i,c) = 0. In row i,

positions clﬂa,...,crbelong to ej/j=1,2,...,r, respective-
ly.

For Theorem A2.2.4: See [7], pPp. 85-8 for a proof for

row operations. The proof for column operations is similar.

The proof of the last statement is in [7], pp. 86-T.
|

For Theorem A2.2.5: See [7], pp. 88-90.

For Theorems A2.2.6, A2.2.7 & A2.2.8: See Campbell [8],
PP. 130"8-

For Theorem AZ2.2.9: Let P be the row-echelon form of A.

Then P contains the r unit vectors elaa,...,er(Definition

A2.2.5). Since P is m x m, of rank m, then m-r=0* and P =
[el,ez,...,e.] = I. So, P=1I = FA {by Theorem A2.2.4),
where F is the corresponding elementary matrix. Then A has a
left inverse, hence it is nonsingular (by Theorem A2.2.3).
By Definition A2.2.6 & Theorem A2.2.7, P = I_& A are equiv-
alent, hence there exist nonsingular matrices G & H such
that P = I_= GAH mem> A = GH! (G & H! are nonsingular,
by Theorem A2.2.3). G & H are elementary, since GAH = P,

For Theorem AZ2.2.10: Let [PI’PZ] be the row-echelon
form of [B,A]l. According to Definition A2.2.5, P, is an
m X n canonical matrix, and by Theorem AZ.2.4: [PIJ%] =
F{B,A] w===> P, = FB (F is the elementary matrix), so P, &

¥ py Definitions A2.2.5 & A2.2.7.

Appendix 2.3 - Page 306

B are row-equivalent, hence they have the same rank (Theorem
A2.2.6), so P, has rank m, and since [PI’PZ} is m X (m+n), it
has no zero rows, hence its rank is m and so is the rank of

its row-equivalent [B,A] (ibid).
N

For Theorems A2.2.11 & A2.2,12: See {71, pp. 96-7.

For Theorem A2,2,13: Since AB is nonsingular, if F is
its inverse, I = F(AB) = (FA)B w===> FA is the left-inverse
of B ==m> +the rank of B is m (Theorem A2.2.11) ==m> B is
nonsingular (Theorem A2.2.12). Similarly for A.

For Theorem A2.,2.14: Since A is nonsingular, I = XA (X

is nonsingular}. Let P be the row-echelon form of B; then P
= FB (F is nonsingular, by Theorem A2.2.4) and P = (FI)B =
F(XA)B = (FX)(AB). Since FX is nonsingular® and P is a ca-
nonical matrix, P ~ AB and since P ~ B, B & AB have the same
rank (Theorem A2.2.6).

For Theorems A2.2.15 & A2.2.16: See Ayres [9], p. 43.

For Thecorem A2.2.17: Let r,, r, & r be the ranks of A,
B & AB, respectively. Then, rISm, r2$n<m — r,<m and
rSMIN{rl,rz} {Theorem A2.2.15), sc r<m and hence the m X m
matrix AB is singular (Theorem A2.2.12).

For Theorem A2.2.18: Let AB = 0, If any of A or B is
nonsingular, appropriate multiplication of AB = 0 by the
inverse matrix will leave the other matrix equal to 0; this

means that both matrices canncot be nonsingular.

For Theorems A2.2.19, A2.2.20 & A2.2,2]1: See Blahut

* By Theorem A2.2.3 (iti).

Appendix 2.4 Page 307

APPENDIX 2,43 P A P
& i - ¥

The ’quantities’ in a communications system are the 1/P,
or the 0/P, of its various block units. Each quantity is
made of digits denoted by, say, z;”, where j denotes time, i
denotes input (or output) port and z?) takes values from

GF(q) (usually, q=2).

(1) D
o 00 0 0 0O o0 0 —o l———+ 0 0 0 0 0 0 O ©
2 2
ooooooooou—-Block(—)—v ©o 0 0 0 O ©
: Unit :
(b) (©)
© 00O 0O O O O O 0O — > ”+ o0 0 0 6 0 O 0 ©
. Tim
X(jl) J e y(jl)
Port No

Figure A2.4.1: Organization of digits (o) at the I/P and the O/P

of a block unit.

Each block unit has, say, b inputs and c¢ outputs, where
bzl & c21. The input digits x?) and the output digits y?)
can be thought of as being organized in a rectangular array.
Digits in the same row 'travel’ towards (or out of) the same
port, while digits in the same column belong to the same
time-unit (see Fig. A2.4.1).

In Figs A2.4.1, A2.4.2 & A2.4.3, the little circles (o)
represent the digits xgn, or yﬁ“, and are assumed to flow
steadily with time, from left to right. To make mathematical
expressions simple, it is necessary to introduce a more com-
pact representation of the z{)g; this is achieved by com-

3
bining the digits either horizontally, or vertically.

In the matrix approach, the digits, zﬁ”, z;”,..., z\®, of

column h are combined into a vector 2z =& [zil)zﬁz’--- ZS”]

which represents the input to (or the output of) the block

Appendix 2.4 Page 308

unit at time h (see Fig. A2.4.2a). Subsequent horizontal
combination results naturally into a time-sequence of vec-
tors: z & [zo,zp...,zh,...] {see Fig. A2.4.2b). Relations
among this type of quantities include infinite-dimensioned

matrices, of sub-matrices of approprite dimensions.

o I/ B\\\ o I./ B\\\ o ..g.'_ll_. ._(1. o o ’.! ;\\\ o
I i by
' R 2 2 !

o :o } o ;o } o il—* Block —£—+ o o ;o E o

S IS T IEO T R

NN . o L)

A R A T Unit : SR U
\ \ (®) ©) \

o \\o /i o \°] 0 — ——> 0 o \0/ o

xn-u ,x1.+3 B+2 xa.+1 xn yn yn-x yh 2 yl 3

f
{
]
i
{
*
ar,.., Block A T..

(b)

Figure A2.4.2: Matrix approach; formation of a) vectors and b)

time sequence of vectors.

In the polynomial approach, digits zs“,zi“,...,z;”,... of
row i are combined to form a polynomial z'1)(D) & zg”+z§“D+
+z§”Dz+---+z;“Dh+---, which represents the input to (or out-
put of) port i, of the block unit, during all time (see Fig.
A2.4,3a). Subsequent vertical combination results naturally,
into a vector of polynomials: 2Z(D) & [zM(D),z®(D),...,
2@)(D)}] (see Fig. A2.4.3b). Relations among this type of
quantities involve appropriately dimensioned matrices of
rolynomials.

One advantage of the latter approach is the use of ma-
trices of finite dimensions. The inevitable ’infinite’ in
convolutional code theory (resulting of course from an infi-

nitely-long message), is contained by the polynomial. Note

Appendix 2.4 Page 309

(1) . e m———— - e —— - (1)
(D ’-’- :-.u L+) o] o] o ’é-; (1) —(!)——h\i {u] o O e 0‘2! y (D)

(2) i . — sy 3
x (D) e 0 0 0 0 & @ Block g,(:‘ °o 0 DY (D)

3 TR - JESR - ()
X (D)\’-E:‘-- a o © O’é-;‘ﬁ.)_. E—;(P o 0O .ooo-z',y (D)

XD)2 x"0)..x"D)] - %ﬁf L Y(D)2[y' (D)---y" (D)]

(b)

Figure A2.4.3: Polynomial approach; formation of a)} polynomials
and b) vectors of polynomials.

finally that both z & Z(D), although of different form, rep-

resent the same collection of variables [zgi)s]:

S I I (A2.4.1)
+0 +® +@

z(p) = [Dz, FzPot ..., 3 20" | (A2.4.2)
h=0 h=0 h=0

APPERDIX 2.5:

Definition A2.5.1: The ith minimum distance di of a

convolutional code is equal to the smallest Hamming distance

between any two initial codeword segments, (i+l)-blocks long,
that disagree in the initial block [10].

In mathematical language,

Appendix 2.5 | Page 310

if [u]iﬁ [uo'“p"'“:] (A2.5.1a)
-, and [V]i® [Vorvareeavy] (A2.5.1b)
then, for i20:

d, = MIN[d([v’1,Iv*’ 1) « [wl, # [u’],) (A2.5.2)

The most important distance measure for convolutional

codes is the free distance, d,_., defined as following:

Definition A2.5,2: If v! & v'’ are the codewords corre-
sponding to the information seauences u’ & u’’, respective-
ly, then the free distance, d of a convolutional code is

defined by

free!?

d, = MIN{d(v’,v”) s U # u“] (A2.5.3)

free

If u' and u'’ are of unequal length, the shortest is ap-
pended with zeros, so that both have equal-length codewords

[2].
1

Another useful distance measure is dnnﬁ

Definition A2.5.3: The minimum distance, d of an

min?
{n,k,m) convolutional code is defined to be the mth minimum
distance:

d. = d (A2.5.4)

min "
0

Much of the earlier work on convolutional codes treated
d,,, as the distance parameter of greatest interest, because
the earlier principal decoding techniques had a decoding

memory of one constraint-length [2].

Definition A2.5.4: The sequence d,,d,,d,,... is called
the distance profile of the convolutional code [10].

For convolutional codes that are linear, equations
(A2.5.2) & (A2.5.3) can be re-written, using the weight of a

binary word:

Appendix 2.5 Page 311

For i20: = MIN[wIV], : [u]y # O] (A2.5.5)

d

free

(11
= MIN{w{v) s u o} = MIN{w(uG) sy # o} {A2.5.6)

APPENDIX 2.6: PROOE OF RELATION 2,24}
The following theorem was taken from Noble & Daniel [7]:

Thecrem A2.6.1: We can multiply partitioned matrices as
if the submatrices were ordinary (scalar) elements, provided
that the matrices are partitioned in such a way that the
appropriate products can be formed.

Consider relation (2.22):

v, = [uh__,uh_ml,...,uh] .

Note that the message matrix is a 1 X (m+l) one while the
system matrix is an (m+l) X 1 one. Consequently, the product
of the two will be a single-element matrix (in this case,
the elements are submatrices). Note also that the message
matrix has been partitioned into (m¢l) 1 x k submatrices,
while the system matrix has been partitioned into (m+1l)
k X n submatrices. Hence, the product will be a 1 X n subma-
trix (as expected):

Vo T W Gt u G, teret UG

where h=0,1,2,... and u =0 if x<0. Then:

]
Vh = zu G /h=0,1,2,...

h=z "2
zz0

where 6 & MIN{m,h}.
QED

Appendix 2.7 Page 312

APPENDIX 2,7: PROOF OF THEOREM 2.3

Consider eqn (2.24):

]
v, = 24,6, /h=0,1,2,... & u, =0 if j<0 (A)
i=0

The objective is to obtain an egn, similar to the one

above, for the channel sequence
h ~
[V]z L [Vh,Vh'I,--.,Vh'z] /hZO & 220 (B)

One way is to increase the limits of the summation, in
(A) above, to include all message blocks that participate in
the calculation of [v]%. h, in (A), can be replaced by h#x,

with x ranging from 0 to z:

»
Viex = 23 Uny G /08xSz, h20 & u; = 0 if j<O (c)
i=0

If x is left to range in [0,2z] and i in [0,m]), then w =

h+x-i will range from a maximum of

MAX{max{h+x-i]} = MAX{h+xmm—i} MAX{h+z~i} = h+z-i_, = h+tz
i i i

in

to a minimum of

max

MIN{min[h+x-i]} = MIN{h+x -i} MIN{h-i} = h-i__ = h-m
i i i

So, welh-m,h+z] and substituting in (C), h+x-i = w:

h+z

For x=0,1,...,2¢ vhex = ZuwGh+x-w (D)

wzh-u

where: h20, u, = 0 for j<0O and G;= 0 for jél(o,m].

3

System (D) can be expanded to:

Vy = W G +u G, t ety G

Vit T YpaGany * UpnniGa ¥ oeee vy G, > (E)
[] L) L] L] L] - [] » [] L] L] L] L] - » . . » [] *

[] » . L] [] [2 L] L] » L] L] [] L] [] [] [] [] * L]

vmz = uh-lGuz + uh--+IGn+z-1 oo 4 uh+zG0

Appendix 2.7 Page 313

System (E), can be easily written in matrix form to
produce eqns (2.25) & (2.26).

APPENDIX 2.8: PROOE OF R 6

Egqn (2.14) gave:

m k
v =3 2“1(123;2 /h20, 1=£j<n & u{!? = 0 for x<0
wz0 i=1

From the above and egqn (2.35):

"o m k
viom) = F[T D ulel) Jo" /isisn & ulP = 0 if x<0
h=0 w=0 §=1

Interchanging the order of summation:

m +w k
vi(D) = 3 3 3 uellph /1sjsn & ufV = 0 if x<0
w=0 h=0 i=1

Substituting h=y+w:

m o+ Kk
vi(p) = 33 3 21 uiPgip™ /1gjisn & ull = 0 if x<0

wz0 ysew i=1

Because u;“ = 0, for y<0, y should be non-negative:

m +o

k
viii(p)y = 3 3 2 ulMe D™V /1<52n
w=0 y=0 i=1

Interchanging the order of summation:

k +0]
vy = 3 [Zu®ov) [3 eiev] /1sisn
i=1 y=0 w=0 '

By eqn (2.34), the 1st bracket above is u¥)(D), while the
2nd bracket is g?’(D), according to ean (2.37):

k
v (D) = 3} u¥(D)g{V (D} /1gjsn
i=1
QED

Appendix 2.9 Page 314

APPENDIX 2.9: B MAL- TRUQT

To illustrate the discussion in Section 2.14, three exam-
rles are considered. In them, given G(D), the associated

normal encoder is constructed.

Example A2.,9.1: Consider the generator-polynomial ma-
trix:

1+D D 14D,

6y = D 1 1

It is obvious that it corresponds te a (3,2,m) code.
Since the maximum power of D is 1, then m=1. The normal en-
coder is made of 2 SRs and 3 X-OR gates. Both SRs have
length 1, because the highest power of D along any row of
G(D) is 1. The number of non-zero polynomial terms along the

three columne (& hence the number of inputs for gates 1,2 &

u®(D)

vO(D)
A (e

uWDy——J B

e vO(D)

Figure A2.9.1: The normal encoder for a (3,2,1) binary convolu-

tional code.

3) is 3,2 & 3, respectively. The connections are easy to
deduce., For example, the contribution to the 3rd gate, from
the 1st SR, is the row-1, column-3, polynomial 14D which
indicates two connections, one from the O/P of the 0th stage
(i.e, the I/P of the SR) and one from the O/P of the 1lst

Appendix 2.9 Page 315

stage. The diagram of the encoder is shown in Fig. A2.9.1.

Example A2.9.2: Consider the generator-polynomial ma-

trix:

1 1 1 1
G(D) = 0 14D D 1
0 D 1+4D% 14D%

It is obvious that it corresponds to a (4,3,m) code.
Since the maximum power of D is 2, then m=2. The normal en-
coder is made of 3 SRs and 4 X-OR gates. Note that the high-
est powers of D along each of the rows of G(D) are 0, 1 & 2;
hence these are the lengths of the three SR’s. Note also
that the number of non-zero polynomial terms along the four
colurns is 1,4,4, & 4. The connections are easy to deduce.
Note finally that an SR of length 0 or a gate with one I/P
do not exist. The normal encoder for the above code is shown
in Fig. A2.9.2.

u®(D) . v\{O(D)
V(z)(D)

u(z)(D) 41—- A
» vO(D)
u(D) B c {+H— vi(D)

Figure A2.9.2: The normal encoder for a (4,3,2) binary convolu-

tional code.

Appendix 2.9 Page 316

Example A2.9.3: Consider the (3,2,2) systematic convo-
lutional code with generator-polynomial matrix G(D) =

[Ik,P(D)] (for a discussion on the generator-polynomial ma~-
trix of systematic codes, see § 2.17.5., p. 39},

1+4D+D2

where P{D =
(D) 1+D2

The normal encoder is made of 2 SRs and n-k=1 X-OR gate.
Both SRz have length 2 because the highest power of D, along
each row of P(D) is 2. The number of non-zero polynomial
terms along the only column (and hence the number of I/Ps
for the only gate) is 3+2=5. The connections are easy to

deduce. The normal encoder for the above code is shown in
Fig. A2.9.3.

u(l)(D) e . V(l)(D)

v

u(z)(D) . X V(z)(D)

A

c D =\D - vO(D)

Figure A2,9.3: The normal encoder for a (3,2,2) binary systemat-

ic convoliutional code.

Appendix 2.10 Page 317

APPENDIX 2.10: ATASTROP

Definition A2.10.1: Codes for which an information se-

quence of infinite Hamming weight may result in a codeword
of finite Hamming weight, are called catastrophic codes and
they are said to suffer from catastrophic error propagation.

It has been shown that (see Lin & Costello [2], Sec.
10.3),

For non-catastrophic codes, LIM {di} = d
i—'te

(A2.10.1)

free

Usually, as i increases, direaches d after 3-4 con-

straint-lengths [2].

free

The following theorem, and its proof, appear here in an
original form. Nevertheless, the result has been estab-

lished, long ago, by Massey & Sain [22].

Theorem AZ2.10.,1: A code is non-catastrophic if, and

only if, its encoder has a feed-forward (FF) inverse.

Proof:

a) Sufficiency: Let the encoder have an FF inverse. This
means that there exists an n-input, k-output, linear sequen-
tial circuit (LSC), which if it is cascaded with the encod-
er, they will result in a pure delay~line of h time-units,
where h2?0 (Massey & Sain [22]1, Sec. I).

Assume that the corresponding code is catastrophic. Ac-
cording to Definition A2.10.1 there exists an information
sequence M, of infinite Hamming weight, which if fed into
the encoder, it will generate a codeword, v, of finite Ham-
ming weight. If v is applied at the inverse, by the nature
of the circuit, 4 should be the response. Hence, the inverse
is an 1LSC which produces an infinite sequence (u), in re-
sponse to a finite one (v). Hence, this LSC cannot be an FF
one. Hence, contradiction. -

Then the code is non-catastrophic.

b) Necessity: Let the code be a non-catastrophic one.
Since a bhinary LSC always has an inverse with delay h20 (see

Appendix 2.10 Page 318

Huffman [{23], p. 13}, the encoder for the above code will
also have one.

By eqns (A2.10.1), (A2.5.5) & (A2.5.6), there exists a
non-zero k-tuple u such that u = [uo,0,0,...,O,...] re-
v is applied at the

’
sults in a codewor; v of weight d, ..
inverse and after h (h20) {block) time-units, it reproduces
u,, while all the subsequent k-tuples are zero. So, this LSC
{the inverse) has a transient of only one k-tuple, hence it
cannot have feedback loops (LSCs with finite transients have
only FF loops - see Huffman [23], p. 7).

QED

The following theorem, due to Massey & Sain ({22], Sec.
IV), gives a necessary & sufficient condition for the exist-

ence of an FF inverse:

Theorem A2.10.2: A k-input, n-output, feed-forward (FF)

linear sequential circuit has an FF inverse either with de-

lay or without delay if, and only if,
gcd[éi(D) /i=1,2,...,c(n,k)] = ph (A2.10.2)

for some h20, where ¢i(D) is the determinant of the ith
k X k submatrix of G(D). gcd stands for greatest common di-
visor, while C(n,k) & . n!/[k!(n-k)!]| is the binomial coeffi-

cient. Note that there are exactly C(n,k) such submatrices.

Theorem A2.10.2 makes the Massey & Sain [22] paper a
classical one, in convolutional code theory. Some authors
have defined non-catastrophic codes as those which satisfy
eqn (A2.10.2) (see for example Blahut [10], Definition
12,2.3).

The two theorems, given above, imply the existence of an
n X k matrix G'(D) such that

G(D)G’(D) = I.D" /h20 (A2.10.3)
Note also that [by egns (A2.10.3) & (2.41)]:

V(D)G’ (D) = U(D)G(D)G’(D) = U(D)D" (A2.10.4)

Appendix 2.10 Page 319

Note A2.10.1: Relation (A2.10.4) reveals that any gen-
erator-polynomial matrix G(D), satisfying relation
(A2.10.2), has an inverse which if multiplied with the chan-
nel sequence V(D), it will produce the original message se-
quence U(D), delayed by h time-units (h20).

Lemma A2.10.1: The generator-polynomial matrix of an

{n,k,m) non-catastrophic convolutional code has rank k.
Proof: By eqn (A2.10.3), G(D) has a right inverse:
G(D)[(1/D"MG’(D)] = I,
By Theorem A2.2.11, its rank is k.

QED

Example A2.10.1%: Consider the generator-polynomial ma-
trix of Example A2.9.1 (p. 314). The C(3,2) = 3, k x k, sub-

matrices of G(D) mentioned in Theorem A2.10.2, are:

2.(D) 1+D D 2.(D) 14D 14D 2.(D) D 1+D

1 D 1 2 B D 1 3 Tl o1
with determinants &,(D) = 1+D+D?, ¢2(D) = 1+4D* and ¢3(D) =

1. Their greatest common divisor is (1+D+D*,1+D%,1) = 1 =

D%, hence the code of Example A2.9.1 is non-catastrophic and
has an FF inverse with no delay.
Consider the output eqns of the circuit of Fig. A2.9.1

(notation is simplified):

v, = u1+Du1+Du2 o
Vot vy T ou, u, = V,+v,
v, = Du +u, > (+) —>
_ v2+D1.x1 = U, u, = v2+])v'2+Dv3
Vy = \1141-D1:11+uz e
g 0 10
Then: G’(D) = 1 1+D | and G(D)G’(D) = 01l ® 1,0°
1 D

\
—

Appendix 2.10 Page 320

Hence, h = 0, as predicted,.

APPENDIX 2,11; COMPOSITE GENERATOR-POLYNOMIALS

An expression for the encoder’s serial output may be ob-
tained by considering that the n {(parallel) encoder output-
ports are multiplexed for serial transmission {see Fig. 2.1,
p. 19). It is obvious that the serial bit-stream must be n
times faster than the parallel one.

If X denotes the delay operator for the serial line, then
one can write X" = D; this means that successive bits of a
particular output must be n time-units apart, in the multi-
plexed stream. Since also, the zth bit of O/P sequence
v} (D) is delayed by one time-unit, with respect to the zth
bit of vW1(D), sequence v (D) is multiplied by XJ3-1
(j=1,2,...,n). So:

Note A2.11.1: The serial output of the encoder is given
by

V(X) - v(l)(xn) + Xv(z)(xn) 4o 0o Xn-lv(n)(xn) (Az.llol)

Equation (A2.11.1) can be re-written as

n
vV(x) = Dx¥lvid(x)
3=

and combined with eqn (2.36):

n k
Vi) = 3 X3 [3 ut(xmgft(xm)]
J=1 1=1

Interchanging the order of summation:

k n
V(x) = Ju x| 3] xgf (x) |
i=1 J=1

Finally:

k
V(X) = Ju®(x™)g,(X) (A2.11.2a)
i=1

Appendix 2.11 Page 321

n
where g,(X) & 3} x¥gi¥(x") /i=1,2,...,k (A2.11.2b)
3=1

Definition A2.11.1: The k polynomials gi(X) /i=1,
2,...,k, defined by eqn (A2.11.2b), are called composite

generator-polynomials [2].

Note A2.11.2: The ith {1<ifk) composite generator-poly-
nomial relates the ith input sequence to the serial

encoder output.

Example A2.11.1: Consider now the encoder of Example
A2.9.1 (p. 314)., This is a (3,2,1) code, hence it has k = 2
composite generator~polynomials, which may be obtained from
(A2.11.2b).

From Example A2.9.1 and the form of G{(D) [see reln
{2.41d), p. 33)], the following eqn is obtained:

gi’(p) g{(p) g{’(D)| _ | 14D D 14D

a(o) o®(p) g(p) oP(D)| D 1 1

(A)

From (A), substituting D = X} (n = 3):

g (x®) = 14x% gi(x®) = x* g{?(X?) = 14X% —
> (B)
g (x?) = X3 gi?(x*) = 1 g (x?) =1 ——
Using (B) in reln (A2.11.2b):
g, (X) = X%(14x3) + XU(X?) + x¥(1+4%%) = 1+x%+x%4x44x5
—> (C)
g, (X) = X°(x?) + x1(1) + X*(1) = Xx+x%+x?

Using (C) in eqn (A2.11.2a), the encoder'’s serial output

is obtained in terms of its two inputs:
V(X) = uW(X3)(1+X%34+334+X4X5) + u@(xX3) (X+X%4+X3) (D)

To verify the correctness of (D), consider the following

simple input:

Appendix 2,11 Page 322

U(X) = 1+x2+x3 (E)
(E) corresponds to the message sequence

u=(10100100 +-+) (F)
N Ry Ty TN Ry N

from which, the two inputs are obtained by demultiplexing
into two streams:
uw’(D) = 14D and u'¥(D) = D? (G)

Substituting D = X% in (G) and then into (D), the serial
response of the encoder [i.e. the three multiplexed output
bit streams, in response to the input (G)] is:

VIX) = (1+X3) (14XZX34X4X5) + (XO)(X4X%4X3) >
V(X) = 1+4X2+X%4x5+X%8 {(H)
(H) corresponds to the channel sequence

v=(101010100100-+»-) (1)
L] |] 1 1 1 1

From Example A2.10.1, the eqns for the encoder O/P are:

v (D) = (1+D)u* (D) + Dut® (D)
v (D) = buM (D) + u® (D) > ()
vi3(Dp) = (1+D)u™™(D) + u‘® (D)

Substituting the input (G) into eqns (J):

vi(D) = (1+D)(1+D)+DD* = 14D%+D® <¢—> 1 0 1 1 0 .-
v (D) = D(1+D) +D® =D ¢G> 0 1 0 0O 0O «-
vi3{D) = (1+D)(1+D)+D* = 1 > 1 0 0 0 0 -
_multiplex

h—D 1010100010000 0 +»-

Comparing the last result, with (I), it is indeed veri-
fied that V(X) gives the serial channel bit-stream of the

{parallel-in, parallel-out) encoder.

Appendix 2.12 Page 323

APPENDIX 2.12: PROOF OF THEOREM 2.5

Using Definition 2.10, one may write:
v, = [uh,vt‘lp)] /h>0 & v{® is an (n-k)-tuple (A)

Consider also the partition of the k¥ X n matrix Gz[de-
fined by (2.21), p. 27]:
6, = [65,P,] (B)

where G;is k x k and P, is k X (n-k).

Using eqns (A) & (B), in egn (2.24), with 6 & MIN{h,m}:

[4v@] = Sulfarn] ©

Zz=

Using Theorem A2.6.1 (p. 311), about the multiplication

of partitioned matrices, on eqn (C):

[}
-) —]]
u = ZUh_sz & s > u, = uB + z u, .G
z=1

9
o> uh(Ik+ G;) + Ny, G = 0
z=1

For the above eqn to hold true for all messages u;, all

the coefficients of u, must be zero:

I,+G = 0 <m==> @)= 1
—> (D)

QED
APPENDIX 2,13 T ATOR-P

Applying the results of Lemma 2.8, to the definition of

composite generator-polyomials, one gets:

Theorem A2.13.1: For an {(n,k,m) systematic convolution-

Appendix 2.13 Page 324

al code, the composite generator-polynomials have the fol-

lowing form:

n-k

g8,(X) = X xEM(xM] + X' /is1,2,..0,k (A2.13.1)
J=1
Proof: From eqn (A2.11.2b), for i=1,2,...,k:
n
g9,(X) & 3} X*=lglt)(x")
z=1
Kk n
— 9,(X) = 3} x*1g{(x™) + 3 x*lgiP(x")
z=1 2=kl
From relation {(2.49) (p. 38), g?’(D), ggJ(D),..., gﬁ;(D),

gﬁ{(D),..., g;“(D) are all zero and gi”(D) =1 for all i=1,2,
+re3ke Using this, in the 1st summation of the above eqn and
substituting z = k+j in the 2nd summation, eqn (A2.13.1) is
obtained.

QED

APPENDIX 2.14;: XAMF E A TYPE- N

Example A2.14.1: Consider the systematic code of Exam-

ple A2.9.3 (p. 316). Its generator-polynomial submatrix
P(D), is enough to generate the type-II encoder:

Since n-k=1 there is only one SR. Since the maximum expo-
nent of D in P(D) is 2, the SR has length 2 (ﬁﬁ=2).

Since the number of ’ones’, along the column of P(D) is
two, then the Oth gate has a total of 3 I/Ps.

Since the number of Ds, along the column of P(D) is one,
then the 1st gate has a total of 2 I/Ps.

Since the number of D?®s, along the column of P(D) is two,
then the 2nd (& last) gate has a total of 2 I/Ps.

Connecticns are easy to determine. For example, looking
along the 1st row, one sees three terms; this means that
u(D) contributes to all three gates. Along the 2nd row
[for connections from u‘?’(D)] there are the terms 1 & DZ2.

"1" means a connection to the 0th gate, while "D?*" means a

connection to the 2nd gate. The encoder is shown in Fig.
A2.14.1.

Appendix 2.14 Page 325

u(D) — ’ . . v®Y(D)

(D) . vO(D)

C/ A O B Q—— vO(D)

Figure A2.14.1: Type-11 encoder for the (3,2,2} systematic code

of Example A2.9.3. The normal encoder, for the

same code, is illustrated in Fig. A2.9.3.

APPENDIX 2,15: PROOE OF THEOREM 2,130

Condition (2.54) and the partition of G(D), instruct the
following partition for H'(D) (see also Theorem A2.6.1):

reer | YD)
H(D} = 2(D) (A)

where ¥Y(D) is a k X (n-k) matrix
and Z(D) is an (n-k) X (n-k) matrix.

Combining eqn (2.54) with egn (A):

Y(D)
Z(D)

——)

1]
o

[1,P(D)] I,Y(D) + P(D)Z(D)

— Y{D)}) = -P(D)Z{D) and substituting in (A):

Appendix 2.15 Page 326

-P{D)Z(D
H'(D) = Z:n;) and using Theorem A2.2.1:

H(D) = [-27(P)PT(D),2T(D}] = Z'(D)[-P"(D), I] (B)

The rank of H{D) (n-k) cannot exceed the rank of Z'(D),
or [-P(D),Imk] (see Theorem A2.2.15, p. 303) and since both
have n-k rows they should both have rank n-k. Since Z'(D) is
a square matrix, it must be non-singular {(see Theorem
A2.2.12, p. 303)

QED

APPENDIX 2.16; PROOE OF THEOREM 2.12

A constructive proof of Theorem 2.11 can be obtained, if
H is seen as the limit of [H]z /z—>+o, Let hid = [*1J'Y1J]
{0<isz & 05jsz) where,)(1"1
an {n-k) X (n~k) matrix. Then, condition (2.58) gives [=ee
(2.43) & (2.25c)]:

is an (n-k) x k matrix and Yi.j is

=0 - T T .
for z=0: Xo.o + P“,‘Yu.‘J = 0 (A)

while for z>0:

G|%, K, HiT, RI
[elz[v]: = - e =0 (B
0 G, c! h:.z

where 0 is a 1 x z matrix of k X n submatrices,
Ta [ar at T
KI & [6],6];,....€]]

R,& [h, oo, 0ee ,hm_l]

Ta R T T
and Cz - -ho’z,hl’z’ LI ,h -1,2]

with G

0, if z>m,

From eqn (B), using (A) & (2.58):

Appendix 2.16 Page 327

T _

K,cl =0 (Ca)
T

G,c! =0 (Cb)
T -

G{)hz,z =0 {Cc)

0 (Cd)

2 pT T

[G]z-le + thz.z
The system of equations (C) will serve as the set of
conditions, [H]z has to satisfy. If the egquals of K,, C: and
RI are used in system (C), together with the matrix parti-

tions G = [Ik’Po] . Gi = [Ok,Pil (i=1,2,...,m) and hi“,j =

[Xi’j,Yi.,], the following results are obtained:
PIYI,Z = O /i=1,2,..-,z & j'—'o,l,.--,z-l (Da)
X}, + PY], =0 /3=0,1,...,2-1 (Db)
T T _
)(z'sz + POYz,z =0 (Dc)
[G]g_lnl = =K, hl (Dd)

A solution for eqn (a) is Y';.z = 0 and this combined with
eqn (b), gives X;'z= 0, so that h =0 /j=0,1,,..,2-1, and
hence Cz = 0.

Eqn {c) will determine hz.z; one sclution is hz.z =
Yz’z[—P;,In-k}, where Yz,z is any nonsingular {(n-k) x {(n-k)
matrix; usually, Yzz = In-k'

Eqn (d) will determine R:; it can be rewritten as:

X3+ PoY:'j+zzl::’iY:’hj = ~P,, /3=0,1,..,2-1 (E)
i=1
One solution for (E) is de =0 /j=0,1,...,2-1. This
gives X] , = -P,_, /3=0,1,...,2-1, so that:
h,y= [=Pl;:0] /3=0,1,...,2-1
Finally:
R, = ~[P],0,P],0,...,P],0] (F)

The above result concludes the construction. Note that

the [H]z obtained, is not unique.

Appendix 2.17 Page 328

APPENDIX2,1%: ° PROOE _OF THEOREM 2.15

Substitute sYY(D) [from eqn (2.72)1, e®)(D) [from egn
(2.69)] and gl“”(D) [from eqn (2.37)1, in ean (2.75):

For j=1,2,- . ,n'k:

o k +@ » 40

(dph = _ (i), (1) Y4z {k+J)Inh —
2=t = 2 e, gy, DN+ 2 e D >

i=1 y=0 =z=0 h=0

40 k +o m +o

(IInh = - (1) ,(1) h (k+jinh —
Esh’ D" = 2 Zeh-zgk.; Lt E e, D ?
h=0 i=1 h=0 z=0 h=0
+0 +00

(dph - (k+3) (1),(1) ph ——
i, D" = Z{Gh 2 Zeh-z Bxsg, z} >
h=0 h=0 z2=0 =1

(3 = (k¢d) _ (i) (i) =

st = ef Z Z}e g, /h=0,1,2,...

z=0 i=1

where e;“=0 if x<0, or otherwise:

(= (k+J) _ (i)g(1) =
s = ef 2 Ze gy, /h=0,1,2,...
z=0 {-=1

where 6 = MIN{h,m}.

The expression in terms of rt““ is obtained in exactly the

same way.
QED

Appendix 3.1 Page 329

1 S T LT Ry £ g G RN WSS WA TS TR ST g T TR MRS B v o P V- 4l wew

w7 ool Jesl T WD 7 L e w® 1 n Fhamemen = 5 e

APPENDIX 3.1: T MA T ANSITIONS

The following definitions are taken from Booth [6] {chap-
ter 3):

Definition A3.1.1%: A sequential machine is a system

that has the following properties:
i) Its internal behavior is described in terms of a
set, &, of possible states the system might enter.
ii) The possible inputs to the system are assumed to
be sequences of symbols selected from a finite
set, I, of input symbols.

iii) The possible outputs of the system are assumed to
be sequences of symbols selected from a finite
set, Z, of output symbols.

iv) The system produces an output symbol whenever an

input symbol is applied.

Definition A3.1.2: A sequential machine is called a

Mealey machine if it is characterized by the following:

i) A set of @ states.
ii) A finite set, I, of input symbols.
iii) A finite set, Z, of ocutput symbols.
iv) A mapping*, f, of T X @ into @, called the next-
state function.
v) A mapping, g, of I X @ onto Z, called the output

function.

A particular machine is denoted by the 5&5-tuple
{I,@,2,f,8).

Definition A3.1.3: A sequential machine is called a

Moore machine if it differs from a Mealey machine only in
that its output mapping g is restricted to a mapping of @
onto Z,

¥ Tor a definition of the varjous types of mapping, see Definition AZ2.1.14,

Appendix 3.1 Page 330

Note A3.1.1: Transition diagrams provide a graphical

representation of the operation of a machine. Each diagram
consists of a set of labelled boxes (or circles) that corre-~
spond to the states of the machine.

For each ordered pair of states Saand S, a directed edge
will connect state 5, to state S if, and only if, there
exists an input symbol i, in I such that f(ia,sa) = S,

If a directed edge connects state S, to state Sbwhen the
input is i , the edge is labelled as i /g(i,,S,).

The boxes (or circles) of the transition diagram corre-
spond to the current state of the system; the label on the
edge indicates the current input and the current output. The
arrowhead on each edge indicates the next state of the ma-
chine,

If more than one input symbols cause a specific transi-
tion from, say, S, to Sbthen a multiple-edge representation

is used: A single directed line with a multiple label.

Example A3.1.1: Consider the (3,2,1) encoder of Fig.
A2.9.1 (p. 314). Its state diagram contains 4 states, Sys
S,» 5, & S;. Due to the special configuration of this encod-
er, it is easy to construct the state diagram. Note that the
encoder memory is completely reset after each transition,
because the 'depth’ of its SRs is only one. This means that
the current I/P block u, will become the next state. From
the encoder circuit-diagram, the following equations are

obtained (in simplified notation):

vi2uw ¥AFB Vv, 2 ou, ¥ A vy R i i, ¥ A

Current state = § = [8A] Next state = §' = {unu,]
For each of the four current states S, the above eqns are

modified for the particular values of A & B (as shown

below). Following that, each of the four sets of simplified

eqns is used to produce the next state and the output, by

letting [uﬂﬁ] assume each of its four values.

Appendix 3.1

Page 331

S5 = [BA] S = [BA] S = [BA] S = [BA]
S¢ = {00] S, = [o11] S, = {101 S, = [11]
Vi sy vy =, vy = Vi W
Va T U, v, =1, Vo T, v, =4,
v3 = ul+u2 v3 = u1+u2 v3 = u1+uz V3 = u1+u2
uu, 5! Vi VY, s? vV, V, Vs s’ ViV, Yy s’ V,V,V,
s, 000 [s, 111 }|s 100 |5, 011
1 s, 011 [s, 100 }|s, 111 |s, 000
0 s, 101 [s, o010 |s o001 |s 110
1 s, 110 |s, 001 |s, 010 |[sS, 101

The results are summarized in the encoder state-

transition diagram of Fig. A3.1.1:

90/000

007100

S, |

01/111

Figure A3.1.1:

i0/101

00/011

0i/011

00/111

01/100
01/000

10/001

10/010
{ s,
=4
11/001 10/110
117110
e
1 S,

11/010

117101

encoder of Fig. A2.9.1 {p. 314).

Example A3.1.2:

Fig.

obtained from the circuit diagram,

v, = u

1 1

A2.9.2 {(p.
(see Example 3,2, p.

315).

Vzﬁuii'uzi?ﬁi"ﬁ

State-transition diagram for the (3,2,1)} normal

Consider the normal {(4,3,2) encoder of
It has 3 SR stages,
56). The next-state and output eqns are

hence 8 states

and are shown below:

Appendix 3.1

Vy = u, ¥ oy ¥ A+ 0

3

Current state

x01/zF

x10/xD

201/2D

y

x01/2A

x00/xA

A —> xxx

E —> xXxx

Fiqure A3.1.2:

For each of the

of eqns above is simplified,
next state and the output, by letting [uﬂﬁual assume

eight possible wvalues,

§ =

Page 332

Ve ® 1, v, ¥ usiﬂ

.

§01: LY

Next state = 5' = [Bum,}

z11/xE

x11/zH

x01/xB

x11/x8B

x=0, o0orl

B—>xxX C —> xXXx D —=> xXX

F—> XxxX G —> xxx H— xxx

State~transition diagram for the (4,3,2) normal
encoder of Fig. A2.9.2. All labels are double-
edge ones (one for each value of x). ug1’= x =0
or 1. The output is a logical function of x and

has the form xXYZ, where XYZ € {A,B,...,H}.

eight current states S = [CBA], the set
and then used to obtain the
its

The resulting state-transition dia-

Appendix 3.1 Page 333

gram is shown in Fig. A3.1.2.

Example A3.1.3: Consider finally, the type-II encoder
of Fig. A2.14.1 (p. 325). Its next-state and output eqns
are:

v, = 1 Vy= uy ¥ou, ¥ B

2 3

Current state = § =2 [BA] Next state = §* = [{u4,+A){u,+4,)]

Following the same procedure as before, the state-

transition diagram of Fig. A3.1.3 is produced.

00/000 10/101
01/011
11/110
=] —1

01/010
117111

00/001 117119 017011 10/100

10/101
00/000

L3 . A
00/001

S; | 1 S
10/100

11/111 017010

Figure A3.1.3: State-transition diagram for the (3,2,2) type-II
encoder of Fig. A2.14.1 (p. 325).

APPENDIX 3,33 3

A3.2.1, o om

According to Note 2.9, the ith row of the generator-
polynomial matrix G(D), determines the contributions (to the

encoder O/P) from the ith SR (1<£ifk). In particular, a con-

nection from the hth stage (OShSMi) of the ith SR to the jth
X-OR gate (1<jSn) exists, iff the coefficient of D" in
g{"’(D) is non-zero. It follows easily then that the exist-

Appendix 3.2 Page 334

ence of a non-zero coefficient for DP, in any of the polyno-
mials of the ith row, implies that the O/P of the hth stage
of the ith SR contributes to the encoder O/P. By the same
token, the highest power in the polynomials of the ith row,
is M3 consequently, if this highest-power term is 1 then M,
= 0, So, for the normal encoder, f[G(D)}] equals the number
of zero-length SRs.
QED

A3.2.2. Proof of Theorem 3.2

According to Theorem 3.1, f of the k SRs* have zero
length (i.e. are non-existent), say SRs number af{l),
a{2),...,a{f). Then §f of the k input digits, specifically
digits uﬁ“ln,ugﬂzn,...,tﬁ“”’] cannot be stored in the memory
of the encoder, hence they do not participate in the forma-
tion of the new encoder state. As a consequence, there are
q¥! different ways of altering the encoder state in a single
time-unit, so in a state-transition diagram there are qk-!
transitions out of each state.

let the next state be S(h+1)=Sn. &1can be reached from
the current state S{h) within a single time-unit. How many
states can 'act? as current state S(h)? Or, to put it other-
wise, what are the restrictions on S(h) so that the next
state is S ?

Note from Fig. 3.2 that to reach Snwith one transition,
F(h) & C(h) (the current state of FEG & CEG, respectively)
must have a unique and specific composition, because they
will form C(h+l) & R(h+l) - the next state of the CEG & REG,
respectively; to be precise, if FEGNREG # ¢ then the digits
of F(h) that are common with the ones of R(h) can assume any
value. In contrast, R(h) may have any composition (during
the transition this group will leave the encoder).

So the format of the current state S(h), from which S5
can be reached with one transition, is: "Specific F(h) &
¢{h) and any R(h)". Since R(h) contains k-f digits (see
Definition 3.1), there are q¥f states from which another
state can be reached with one transition.

Consider now the labelling of each transition with the

¥ A g-ary encoder is made of g-ary SR stages and GF(q) gates.

Appendix 3.2 Page 335

I/P block {(a k-tuple) that caused it. It was mentioned ear-
lier that f of the k source digits cannot be stored in the
encoder memory and hence they do not participate in the for-
mation of the next state. This means that for each (k-f)-
tuple that causes a state transition there are f I/P digits
that can have any value, hence to any transition there cor-
respond qf source blocks.
QED

A3.2.3. FProof of Theorem 3.3

According to Theorems 3.2 & 3.1, there are q""f transi-
tions entering any particular state*. Consider the transi-
tion S(h} —> S(h+1). What are the restrictions on u,, the
I/P k-tuple at time-unit h, if the next state is Sn?

It is obvious from Fig. 3.2 (p. 59) that F(h+1)=Fnde—
pends entirely on u,. Specifically, all the k-f digits of u,
that correspond to SRs of length more than one (i.e. those
that will reside in the c¢ircuit memory during the next
time=unit) will form F .. Consequently, these k-f digits are
completely specified, once S 1is given. By the same token,
though, the rest f digits can have any value.

The conclusion from the above discussion is that in order
for the next state, S(h+1), to be state S, only f of the k
digits of the current I/P block u, can be chosen freely (the
rest are determined by Fn); hence there are qf different I/P
blocks that can trigger the previously considered transi-
tion. The above conclusion holds true for the transition
S(h) —> S,» which means that it holds true for all the qF!

states that can change to 5.,

QED
APPENDIX 3.3 XAMP F T AGRA
Example A3.3,1: Consider the code with generator-

polynomial matrix G(D) = [1+D? 1+4D+D?*]. Its transition dia-
gram is shown in Fig. A3.3.1. The trellis diagram follows
readily (Fig. A3.3.2). Note that the central portion of the
trellis extends from time-unit 2 to time-unit 7.

¥ A g-ary encoder is made of g-ary SR stages and GF{(q) gates.

Appendix 3.3 Page 336

0/00

t/11

0/11 1/10

(s

3

1/01

Figure A3.3.1: State~-transition diagram for a (2,1,2) normal

encoder,

Time Unit -_—

0 1 2 3 4 5 6 7 8 9

So 00 0/00 0/00 0/00 0/00 0700 0!00—7—0[007—0[007
; ; \ 0/11 0/11 0s11 011 /11 0/11 0/11

1/11 111 1/11 i/11 1/i1 1/11 1711
\MI 0/01
1710 1/10 1/10 1110 1/10 1710

ono \ 0/10 \ 0/10 \ 0/10 \ 0/10 \ 0/10
S3 1/01 1/01 1/01 1/01 1/01

Figure A3.3.2: Trellis diagram for the {(2,1,2) normal encoder

with the state-transition diagram of Fig. A3.3.1.

Appendix 3.3 Page 337

During the remaining time-units (8 & 9), the encoder is

reset {i.e. only zero-I/P is permitted).

APPENDIX 3,4: XAMP F_VIT N

Example A3.4.1: Consider the normal encoder for the
(2,1,2) code defined in Example A3.3.1 (p. 335). Its trellis
diagram is shown in Fig. A3.3.2 (p. 336). Assume that trans-

mission is over the binary symmetric channel. Consider the
source sequence U = (01 0 0 1 1 1) made of L = 7 I/P k-
tuples (here, k = 1). This is appended with mk 0s (to reset
the encoder - here mk = 2) producing the channel sequence Vv

Received Sequence r

Time Unit —8—
0 1 2 3 4 5 6 7 8 9

So 0/00 0/00 0/00——. 0!00—-.-—0[00——.—0!00—-.—0[0()7 ’
'\ \ OII.I. 0/11 0/11

1/11 1/11 1/11 1/11

\ 0 3 1
1700 1/00 1/00
0[01 0/01 0/01 0/01
3 1 2 2

lIIO 1/10 1/10 1/10
0!10 0/10 0/10

S3 uo:—o 1701
a 2 3 3 1 2

Figure A3.4.1: Example of Viterbi decoding using the encoder
with the trellis diagram of Fig. A3.3.2 (p. 336)

and assuming transmission over the binary symmet-

ric channel.

Appendix 3.4 Page 338

=00, 1%t 01,11, 11,10, 01, 10, 11).

Let the channel error sequence e = (0 0, 0 0, 00, 00, O
0, 10, 01, 00, 0 0), giving rise to the received sequence
r=(00,11,01, 11, 11,00, 00, 10, 1 1). This is
used by the Viterbi decoder to produce its best estimate of
the transmitted sequence v, which in this case coincides
with the original; in other words, the decoder successfully
corrected the two errors.

Note that at each time-unit, there is one survivor per
state., For instance, at time-unit 5, the following paths
have survived:

Corresponding to §,, {0 1 0 0 0) with metric 2.
Corresponding to §,, {0 1 0 0 1) with metric 0.
Corresponding to S,, (0 1 0 1 0) with metric 3.
Corresponding to S,; (0 1 0 1 1) with metric 3.

Received Sequence r

Time Upit —————
0 1 2 3 4 5 6 7
n , 0 , 0 , 1

8 9

W , 11 , 01 , 11 2 3

S 0 0/090 0/00 0/00—e 0/00—8—0/00—8—0/00—® ,— oroo—,
; ; ; 0/11 ; 0/11 0/11

1/11 1/11 1/11 1711
2 3 2 (4] 3 1
S, ;
1/00 1/00 1/00
00 1ol 0701 0/01 0/01
S,
0 3 3 1 2

1/10 1/10 1710 1/10

0
1 0
3
\. \ 0/10 \ \ 0/10 one
S3 1/01—@ 1/01—@
3 2 a 3 1 2

Figure A3.4.2: Example of Viterbi decoding, similar to the one

in Fig. A3.4.1, but with four channel errors.

Appendix 3.4 Page 339

The final survivor (01 0 0 1 1 1 0 0) has metric 2 (i.e.
it corresponds to a received sequence which is assumed to

have been corrupted by two channel errors).

On occasion, a tie occurs, i.e. more than one paths en-
tering a state have the same metric. In the case of a final
tie, one path is arbitrarily selected. See for example in
Fig. A3.4.2 a decoding case similar to the current one, but
with four (instead of two) channel errors.

Note that there is a tie at time-unit 9. This gives rise

to two final survivors, of which one has to be chosen:

u=(0 1 0 0 1 IITErE 0 0)
v=(0,11,01, 11, 11, 10,01, 10, 11)
v-(o0,11,01, 11, 11,10, 10,11, 00) troant
v=(00,11,01, 11, 11,01, 00, 01, 1 1) trease
e= (00, 00,00, 00, 00, 10, 01, 01, 10)

& - (00, 00,00, 00, 00,00, 11, 01, 11) tromn
3 =1(00, 00,00, 00, 00,11, 01, 11, 0 0) trom 2
=0 1 0 0 1 =¥rrmr 0 0) fram
8=d40 1 0 o0 1 coomerm 0 0) treme

Note that the last two bits of u & U are used to reset
the encoder. Comparing U & (I one sees that four channel
errors, in a span of 14 channel bits, are too much for this

code, hence there is a single-bit decoding error.

APPENDIX 3.5:; SEQUENTIAL DECODING

Viterbi decoding has two important disadvantages: i) It
can be used only with short constraint-length convolutional
codes, because of limitations in the total encoder memory,
M. ii) The number of computations per decoded source block
is independent of the channel conditions (i.e. even if the
channel is noiseless, the Viterbi decoder will do the same
amount of computing). The number of computations of a se-

quential decoder on the other hand, depends on the noise

level of the channel and is essentially independent of M. As

Appendix 3.5 Page 340

a result, long constraint-length codes can be used and so
arbitrarily low probabilities of (decoding) error can be
achieved.

Wozencraft [30] introduced sequential decoding in the
late fifties. In 1963, Fano [31] introduced a new sequential
decoding algorithm and a few years later Zigangirov [32] (in
1966) and Jelinek [33] (independently, in 1969) introduced
the third version, known as ZJ or stack algorithm. The easi-
est to use is the ZJ algorithm, while the Fano one is the
most popular (see Clark & Cain [13}, p. 298).

A sequential decoder does not follow the optimum proce-
dure of the Viterbi decoder; instead of delaying decisions
until some late level (time-unit)}, it looks at the first
received block, makes a decision {(based on some suitable
metric) and proceeds to a point (state) at the next level.
This procedure is repeated.

At each level the decoder is at a single node; since gFf
qf-label branches (see Theorem 3.2, p. 60) emerge from this
node, the decoder chocses the one ’closest’ to the received
information and follows it to the next level. Any channel
error will deflect the decoder from the correct path, but
this will become apparent later on, because of the abnormal
accumulation of errors; the decoder then backs-up, level by
level, until it finds a suitable path and goes on as before.

Due to memory limitations the decoder can process only a
finite portion of the trellis, say b levels at a time (the
same applies to Viterbi decoding). Hence, at every level it
makes irrevocable decisions about an old information block.
The main disadvantage of sequential decoding is that the
processing time per decoded block is a random variable with
high deviation from the average; this can cause buffer over-
flow.

The Fano algorithm uses the tilted distance, t(L), to de
tect incorrect paths. In particular, t(L) = p’nl-d(L), where

P
channel error-rate, p) determined by simulation, I is the

' is a channel parameter {(usually slightly larger than the

level (time=-unit) and d(L) is the Hamming distance between

the received sequence and the current path through the trel-

lis, If decoding is correct, d(L) = pnL, hence t(L) =

Appendix 3.5 Page 341

nL{p'«p) > 0 and increasing. If the tilted distance starts
to decrease, the decoder backs-up.
The Fanc algorithm is more time-consuming, while the ZJ

one is more memory-consuming (see Lin & Costello [2], p.
360).

APPENDIX 3.6: X K-tp

This type of decoder has been employed where a very sim-
rle implementation is desired and only one to two dB coding
gain* is required. Usually, hard-decision demodulator out-
puts are used and moderate constraint-lengths are necessary,
to keep the size of the decoding table manageable [13].

The decoder is based on a table which relates syndrome
patterns with channel error patterns. _ —_—

The pairs are chosen so that the probability of decoding

error, for the given channel, is minimized.

* See Section 1.4 (p. 13).

Appendix 4.1 Page 342

i BT e et e ST % P g e g g W o T el B — R T S FFEa T
=ET Pt e akats aseRanbis S-Sl e S e, sieriguan it Sl S aliel S

i = T -
O oA o S e J =l i e e T 2 a T - by l
T T G e M, R, TS DL T mme e e S e, T, T R T e B L SR WS B O

APPENDIX 4.1: ~ PROOE OF THE THEORY IN SECTION 4,1
Ad.1.1. [+) 8 4

According to Lemma A2.10.1, the generator-polynomial ma-
trix G(D) of an (n,k,m) non-catastrophic conveolutional code
has rank k. By means of elementary row operations (see Defi-
nition A2.2.6) G(D) can be transformed into one of its row-
equivalents. If this row-equivalent is [Ik,O], it is called
a normal form (see Definition A2.2.8). Note that both ma-
trices have the same rank (by Theorem A2.2.6). Then, by The-
orem A2.2.7, there exist two nonsingular matrices A(D) &
B(D) such that G(D) = A(D){I_,0]B(D).

QED

84.1.2. Proof of Theorem 4,1

According to Definition 2.12 {(p. 44), the parity-check
polynomial matrix associated with the k X n generator-poly-
nomial matrix G(D) is any full-rank {(n-k) X n matrix of
polynomials which satisfies G(D)H'(D) = O,

The rank of YJ(D) is n-k because, from Note 4.1:

B(D)B YD) = I s>

n

X,{D)Y,(D) X (D)Y,(D) I

(A4.1.1)
X,(D)Y,(D) X,(D)Y,(D) 01

From (A4.1.1): X, (D)Y,(D) = I | <m==> Y(D)X}(D) = I_,

Hence, Y;(D) is an (n-k) X n matrix which has a right-

inverse, So, it has rank = n-k < n (by Theorem A2.2.11).

Consider the product G(D)[Y’I(D)]T = G(D)Y,(D). Using the
Smith normal form and the partition of B(D) (see Lemma 4.1 &
Note 4.1, p. 76),

Appendix 4.1 Page 343

X,(D)
G(D)Y,(D) = A(D)[I,,0] Y,(D)
X,(D)

— G(D)Y,(D) = A(D)X,(D}Y,(D) = O [by ean (A4.1.1)]
QED

Ad.1.3. Froof of JTheorem 4.2

With the help of Theorem 4.1, the syndrome equation can

be written as

S(D) = E(D)Y,(D) (A)
Also, from eqn (4.2):
-1 0 = 0 = Y B
8-1(D) |- [Y,(D),Y,(D)] |- ,(D) (B)
)
S(D) = E(D)B{D) [] —_
In-k
> < v—
Let W(D) = E(D)B}(D)
S(D) = W(D)[0] —_
In-k
e o—
E(D) = W(D)B{D) ——

S(D) = [w‘“(D),w‘z’(D)....,w‘“’(n)] :] —
n-k

—> o—
i | x,(D)
E(D) = [w“’(n),wfz’(n),...,w‘ ’(D)]- X:(D)] —
— 8(D) = [w™V(D),w™B(D),... . w™(D)] (C)
e E(D) = [w(D),w®(D),...,w*(D}]X, (D)

L+ [wD(D),w™D(D),...,w™(D)]X,(D) (D)

Appendix 4.1 Page 344

Since [w(D),w®(D),..,w¥)(D)] is arbitrary, one can let
T(d) & [w®(D),w?(D),...,w"(D)] (E)

Note though that, from the definition of W(D) above and
the partition of B™}(D) (Note 4.1, p. 76),

W(D) = E(D)BND) = [E(D)Y,(D),E(D)Y,(D)]| ==mm>
=—> T(D) = E(D)Y,(D) (F)
From eqns {C}, (D) & (E): E(D) = T(D)X,(D) + S{D)X,(D).

QED

A4.1.4, Proof of Iheorsm.4.3

Egn (4.5), the result of Theorem 4.3, can be obtained
from the result of Theorem 4.2 [eqn (4.4)] by providing ex-
pressions for X (D) & X,(D).

From eqns (A4.1.1) & (4.3),

X,(D)Y,(D) = X,(D)HT(D) = I s=sa>
——> H(D)X}(D) = I_,

— X;.',_'(D) is the right-inverse of H(D), denoted by H’(D):

X,{D) = H'T(D) (A4.1.2)
From eqns (4.1) & (4.2),
X, (D)
Al(D)G(D) = |I .o[1] = X,(D) (A4.1.3)
[k] xz(D) 1

Substituting egqns (A4.1.2) & (A4.1.3) into eqn (4.4),
E(D) = T(D)AYD)G(D) + S(D)H'T(D)
By Theorem 4.2, T(D) is a 1 x k matrix. Then,

Z(D) & T(D)AY(D) (A4.1.4)

and from the last two egns the final result follows.

Appendix 4.1 Page 345

Ad4.1.5. Proof of Lemma 4.2

The result of Lemma 4.2 follows easily from eqn (4.5) and
eqn (2.71) [the definition of S(D)]:

E(D) = Z(D)G(D) + R(D)H"(D)H'T(D)

Substituting H'(D) = YZ(D) [from eqn (4.3)] and H'T(D) =
XZ(D) [from eqn (A4.1.2)] the result of Lemma 4.2 is ob-

tained.
QED

Ad.1.6. Proof of Thaorem 4,4

For systematic convolutional codes (see Lemma 2.9, p. 39)
G{D) = [Ik,P(D)] and using the Smith normal form (see Lemma
4.1) and the partition of B(D) (see Note 4.1),

A(D)[1,,0] [’;::2;] = {1,P(®)] =—

—> X(D) = AND)[L,,P(D)] (A4.1.5)
From egns (2.54) & (4.3}, letting Y;(D) - [Y;I(D),Y';z(D)]:

Y,,(D) .)
[1..P(D)] [Yzz(D)] =0 <m=> Y, (D) = -P(D)Y,(D)

~P(D)

—> Y,(D) = []Yzz(n) (A4.1.6)

n-k

Let:

Y,,(D
X,(D) = [X,(D),X,,(D)] & Yy (D) & [Yijni]

where XH(D) & YH}D) are square submatrices.

From (A4.1.1) & (A4.1.5):

Appendix 4.1 Page 346

i N
X,(D)Y,(D) = I, ===> AYD)[L,,P(D)] [Yi:(D)] = I, <>

—> AYD)Y, (D) + AND)P(D)Y,,(D)

|
[
wr
—
=
'

From (A4.1.1}:

Y, (D
X,{D)Y,(D) = 0 mmms> [xu(n),xzz(n)][Y“tD;] =2 0 (o
12

(o> X, (D)Y, (D) + X, (D)Y,(D) = O (B)

From (A4.1.1) & (A4.1.6):

-P(D)

X,(D)Y,(D) = I wee> [xn(n),xzz(n)][:]Yzz(n) = I,
n-k

=3 =X, (D)P(D)Y,,(D) + X,,(D)Y,(D) = I, (c)

The next step is to solve the above system of matrix
eqns, for the submatrices of B(D) & B-!(D). Of the eight sub-
matrices, X, (D), XH(D), XH(D), Xn(D), Y, (D), YH(D), Yn(D)
& Yu(D), three are already known: Xn(D) & XH(D), from
(A4.1.5) and Yn(D), from (A4.1.6). With three eqns available
it is obvious that two of the submatrices should be arbi-
trary.

Xn(D) is a submatrix of Xz(D), which is (n-k) X n (see
Note 4.1, p. 76), with)%z(D) being square, hence
(n-k) x (n-k). So, XH}D) is an arbitrary (n-k) X k matrix:

X, (D) & C(D) (D)

From Note 4.1 (p. 76), YE(D) is n X (n-k). Hence, Y,,(D)
is (n-k) x (n-k) [see also (A4.1.6)] and so its rank cannot
exceed n-k (see Definition A2.2.7, p. 302). On the other
hand Y;(D) = H(D) (by Theorem 4.1, p. 76), so Y;(D) has rank
n-k. From (A4.1.6), YI(D) is the product of two matrices non
of which may have rank less than n-k (by Theorem A2.2.15, p.
303). So the rank of the square matrix Y, (D) is n-k and, by

Theorem A2.2.12 (p. 303), this matrix is nonsingular. Hence,

Y;Z(D) is an (n-k) x (n-k) nonsingular matrix and so is its
transpose, YR(D) [see Theorem A2.2.3 (iii), p. 300]:

Appendix 4.1 Page 347

Y, (D) & F(D) (E)

From eqns (A) - (E), and since A{D) & F(D) are nonsingu-

lar:
Y5 (D) = A(D) - P(D)Y,(D) (F)
C(D)Yll(n) = -xzz(D)le(D) (G)
X,,(D) = F(D) + ¢(D)P(D) (H)

Substituting (F) & (H) in (G):
C(D)A(D) - C(D)P(D)Y,,(D) = -F}(D)Y,,(D) - C(D)P(D)Y,,(D)
(a3 Y,(D) = -F(D)C(D)A(D) (1)
Substituting (I) in (F):
Y, (D) = A(D) + P(D)F(D)C(D)A(D) (J)

From Note 4.1 (p. 76), (A4.1.5), (D) & (H), B(D) can be

pieced togeher:

(4.7a)

A1(D) AY(D)P(D
B(D)=[(d) A*(D)P(D)]
C(D) F*(D) + C(D)P(D)

From Note 4.1 (p. 176), (A4.1.8), (E), (I) & (J), B (D)

can be pieced togeher:

B-1(p) = { A(D) + P(D)F(D)C(D)A(D) ~P(D)F(D)] (4.7b)
-F{D)C(D)A(D) F(D)
QED
Ad4.1.7. Proof of Theorem 4.5
From eqn (4.4): E{D) = T(D)Xl(D) + S(D)XZ(D) (A)

From partition (4.2) and eqn (4.7a):

X, (D) . A'XD) AYD)P(D)

X, (D) | = C(D) FYD) + C(D)P(D) (B)

From eqns {A) & (B):

Appendix 4.1 Page 348

E(D) T(D)[A"(D),A'I(D)P(D)]+S(D)[C(D),F'I(D)+C(D)P(D)] —

E(D)

[T(D)A2(D),T(D)AH(DIP(D)] +

+ [S(D)C(D),S(D)F'l(D)+S(D)C(D)P(D)] =

[T(D)A'I(D)+S(D)C(D),T(D)A’l(D)P(D)+S(D)F“(D)+S(D)C(D)P(D)]
Using Z(D) &« T(D)AY(D) + S(D)C(D) in the above eqn:
E(D) =[Z(D),Z(D)P(D)+S(D)F'1(D)] (A4.1.7)

and since T(D) is arbitrary, so is T(D)AY(D) + S(D)C(D)

Z(D). The theorem is proved by letting F(D) = I , [recall,
from § A4.1.6., that F(D) is an arbitrary nonsingular
{n-k) X (n-k) matrix].

QED

Ad4.1.8B. Proof of Theorem 4,6

From the basic egn of the additive-noise channel {eaqn
{2.70)], R(D) V(D) + E(D). Then the best estimate, V(D},
of the channel sequence is (using Lemma 4.2, p. 77),

V(D) = R(D) - E(D) = R(D) - [Z(D)G(D)+R(D)Y,(D)X,(D)] (A)

Since G(D) is a k¥ X n matrix of rank k (see Lemna
A2.10.1, p. 319), it has a right-inverse {(see Theorem
A2.2.11, p. 303) denoted by, say, G’{D). From the Smith nor-
mal form {(see Lemma 4.1, p. 76), it can be easily verified
that,

1
If G(D)G’(D) = I, ===> G’(D) = B“(D)[0*]A’l(n) (A4.1.8)
From the fundamental eqn V(D) = U{(D)G(D), post-multiply-

ing with G'(D), V(D)G’(D) = U(D) and using (A),

U(D) = R(D)G’(D) - Z(D)G(D)G’ (D) - R(D)Y,(D)X,(D)G’ (D)

—> U(D) = R(D)G’(D) - Z(D) - R(D)Y,(D)X,(D)&’(D) (B)
From eqns (A4.1.8) & (4.2),

Appendix 4.1 Page 349

I
Y,(D)X,(D)G’ (D) = vz(n)xz(n)[vl(n),vz(n)][.~]A-l(n)

> Y,(D)X,(D)G’ (D)

Y,(D)X,(D)Y,(D)A™}(D)

=3 Y,(D)X,(D)&’(D)

Y,(D)OA'X(D) = 0 [by eqn (A4.1.1)]

From the last result & eqn (B}, Theorem 4.6 is proved.
QED

A4.1.9. Proof of Theorem 4,1

Substituting B-}{D) (from Theorem 4.4, p. 78) in the ex-
pression for the right-inverse, G'(D), of G{(D) [see eqn
(A4.1.8)]:

A(D) + P(D)F(D)C(D)A(D) -P(D)F(D)] [A-l(n)]

G'(D) = [-F(D)C(D)A(D) F(D) 0

(A4.1.9)

s &'(D) [Ik-r P(D)F(D)C(D)]
-F(D)C(D)

Also, since the right-inverse of G(D) exists, egn (2.41la)

(p. 33) can be inverted to give

U(D) = V(D)G'(D), or using egn (A4.1.9),

(A)

I, + P(D)F(D)C(D)
-F(D)C(D)

U(D) = G(D)[

From egqn (2.70) Q(D) = R(D) - E(D) and combining with
eqn (A)

— . I+ P(D)F(D)C(D) |

u(p) = [R(D) E(D)][_F(D)C(D) | (B)
From Lemma 2.11: R(D) = [R("(D),R"”(D). (c)
From eqn (A4.1.7): E(D) = [i(n),E(D)P(D)+S(D)F'1(D)] (D)

From eqns (B), (C) & (D), G(D) =

Appendix 4.1 Page 350

I, + P(D)F(D)C(D)
-F(D)C(D)

= [R™(D)-Z(D),R®(D)-Z(D)P(D)-$(D)F* (D)][
> U(D) = R™(D) - Z(D)} + R™(D)P(D)F(D)C(D) -
- Z(D)P(D)F(D)C(D) - R®(D)F(D)C(D) + Z(D)P(D)F(D)C(D) +
+ S(D)F(D)F(D)C(D)
> U(D) = R®™(D) - Z(D) + S(D)C(D) +
+ [R®(D)P(D) - R®)(D) |F(p)C(D) (E)

From eqn (2.71) (the definition of S(D), p. 48) and egqn
(4.3) (p. 76), S(D) = R(D)H'(D) = R(D)Y,(D). From Theorem
4.4 (p. 78) the general expression for Yz(D) is obtained,
while from Lemma 2.11 {(p. 48) the partition of R(D) is used:

-P(D)F(D) —_—
F(D)

(D) = [R“’(D),R‘P’(n)][
— S(D) = -R®(D)P(D)F(D) + R®(D)F(D) (F)
From eqns (E) & (F):
U(D) = R®(D) - Z(D) - [R™(D)P(D)F(D) - R®)(D)F(D)]C(D) +
+ [R")(D)P(D)F(D) - R“”(D)F(D)]C(D) —

—> U(D) = R®(D) - Z(D)
QED

APPENDIX 4.2: SET THEORY AND PARTITIONS ' ’

The basic operations on sets are the operations of union
and intersection (which are assumed to be well known). A

third operation is introduced below:

Definjtion A4.2.1: Let A & B be any two sets. Then, the
relative complement of B in A is denoted by A-B and is de-
fined to be the set of all the elements of A that do not
belong to B:

Appendix 4.2 Page 351

A-B & {x / XxeA & xéB} (A4.2.1)
1
Definition A4.2.2 In many applications, all sets are

subsets of a large set which is called the universal set and
is denoted by S. The complement of B can be defined to be
the set S-B which, by Definition A4.2.1, is

-B & S-B = {x / Xx€S & x¢B} (A4.2.2)

The following set-theory identities can be found in any

set-theory chapter or book (see for example Enderton [34]}:

Note A4.2.1: "The following identities, which held true
for any sets, are some of the elementary facts of the alge-
bra of sets” [34]:

Commutative laws:
AUB=BUA and ANB=BNA (A4.2.3)

Associative laws:

AU(BUC) = (AUB)UC (Ad.2.4a)
An(Bnc)=(AnB)ncC {(Ad4.2.4Db)

Distributive laws:
ANn(BUC) =(ANB)U (ANC) (Ad.2.5a)
AU(BNC) ={(AUB)N (AUZC) (A4.2.5b)

De Morgan’s laws:
C-(AUB) =(C-A)n (C - B) {A4.2.6a)
C-(ANnNB) =(C~-A) U (C-B) (A4.2.6b)
If C = S: -(AUB) =-AnNn-B (A4.2.6c)
-(ANB) =-AU-B (A4.2.64)

Identities involving the empty set, g:
AUg = A & ANg=g¢g & AN (C-A)=2¢9 (A4.2.7)

Identities involving the universal set, S, (if A C S):*
AU S =28 & ADS = A & AU-A=S8 (A4.2.8)

Definition A4.2.3: Non-empty sets X,,X,,...,X are said

to partition a set Y, i.e. Y = <X1,X2,...,Xn>, if, and only

* Remember, ACB denotes "A is a subset of B". |

| .

Appendix 4.2 Page 352

if, their union equals Y and their intersection in pairs is

the empty set:

n
Ux,= v —
i=1 — (A4.2.9)
X, n st g /for all i,jell,n] : i#j —
n
Theorem_A4.2.1: Let A,B be any two non-empty subsets of
the universal set, S. Then:
A U B = (A,B-A) (A4.2.10a)
IfT ACB — B = (A,B-A) {(A4.2.10b)
Proof: From Definition A4.2.1, one may write:
B-A = {x / xe€B & x¢A} =B N -A (A4.2.11)

Consider the set A N (B-A) and use eqns (A4.2.11),
{Ad.2.3) (the commutative law), (A4.2.4b) (the associative
law) and (A4.2.7):

AN (B-A) =An (BN -A) =An (-AN B) —>
AN (B-A) =(AN-A)NB=¢gNB-=g¢g (A)

Consider the set A U (B-A) and use eqns (A4.2.11),
(A4.2.5b) {(distributive law) and (A4.2.8):

AU (B-A) =AU(BN-A)=(AUB)N (AU -A) —
AU (B-A) =(AUB)NS =AUB (B)

It is clear from eqns (A) & (B) and Definition A4.2.3
that A & B-A partition A U B (A,B are of course non-empty).
It is also clear that if AC B then A U B = B.

QED
Theorem A4.2.2: Let A, B & C be any two subsets of the
universal set S. Then:
{(C-A) - (B-A) =C=-AUB {Ad.2.12a)

-A - (B-A) = -A UB (A4.2.12b)

Appendix 4.2 Page 353

If AC B then -A - (B-A) = -B (A4.2.12c)

Proof: Let X = {C-A) - (B-A). From eqns (A4.2.11) &
(A4.2.6d):

X ={(Cn=-A)n([-(BnNn=-A)] = (Cn =A)n (-BUA)
——> X =[{Cn=-aA)n =Bl UI[(Cn -A) AN A] [by (A4.2.5a)]
—> X=[(Cn=-A)n-BlUuI[Cn (-AnA)]l =(Cn-A)Nn-B
— X=Ch(-An-B)=Cn ~-(AUB) [by (A4.2.6c)]
— X = (C-A) - (B-A) =C - AUB (A)
If C = S in eqn {A), result (b) is readily obtained.

If AC B, then AU B = B. This proves result (c).
QED

APPENDIX 4,3: PROOF OF THEOREMS 4.9 & 2.10

Ad.3.1. Preof of Theorem 2.9

Since A“A?,...,A“partition B they are non-empty sets
(see Definition A4.2.3). If B(i) = |A1| (= the number of

elements of Ai), the Az can be listed in the usual way:

FOI‘ all i=1,2,...,0.: A - {a{i)'agi) (i) } (A)

i ,---,an(i)

Also, and for the same reason as above, they are mutually

disjoint, hence their union can be listed in a similar way:
ass - (1) (1) (2) {2) (a) (a)
A1UA2U UAﬂ = {al ,..,aau),al '.',aﬂ(Z)’..’al 115,38(0)} (B)

Finally, and for the same reason as above, their union

equals B, hence eqn (B) can be re~-written:

B = {agn,...,a;g,,agn,...,ag;,,...,aia),...,ag;g,} (c)
Then:
B(1) + B(2) + +++ + B(a) = |B| (D)

The state of (a part of) an LSC, at a time-unit h, is

defined to be the |B|-tuple of the contents of its memory,
that is, the ordered set of the |B| bits that occupy its

: Appendix 4.3 Page 354

memory. The particular order used is arbitrary, hence of no

importance for the current discussion; consequently, one may

write
- (M), , o (1) 5{(2)5(2),,.5(2) . ..ga)g(a),, . q(a)
B(h) = [9'1 aj ann) a1 8 8502, a;*a; 8ata) (E)
FOI‘ all i=1,2,o.o’a: Ai(h) - [a;i)agi)lo.a;:i) (F)

Since the LSCs are assumed to be binary, the Hamming

weight of an x~tuple is simply the algebraic sum of its com-

ponents:
For all i=1,2,..,a: W[Ai(h)] = aiil + a,gi) +eo 4 a;ﬂ) {G)
a[BR)] = a® + af® +eo4 ol 4+ a4 a® 4eeot al) 4eees

+ al® + al® teeot all) (H)

From eqns {G) & (H), the final result is obtained:
w[B(h)] = w[Al(h)] + w[Az(h)] FLERY w[Aa(h)]
QED

Ad.3.2. Proof of Theorem 4.10

By Definition 3.1 (p. 58), the memory group MEG of the

regulator circuit is made of a collection of past I/P bits.

Specifically, from eqn (3.5a):

MEG(h) = {z‘” z

4, h_g,...,z,gf;,i /i=1,2,..4,k : Miz1} (A)

Since M;<m for all i=1,2,+.4+,k [see eqn (3.1)] then from
egn (A):
MEG(h) C { (1) 51 (1) /321,2 xl* Qo>
LY) Zh_l,zh_z,...,zh_‘ /1-" 3 3 v ey } ———
(MEG(h) U ING(h)) _Q {Zgi),zgf;,...,ziiz /i=1,2’.ll’k} _>

W[s(h) u Zh] < w[z,‘,”'"Zﬁk’Zf.fi'“zt(;fi”'z.‘,ll“'Zn(a'-?.] (B)

Reln (B) follows from Lemma 4.6, noting that S(h) is the
state of MEG and zhis the state of ING, at time=-unit h.
From {B):

»
w[s(h) U 2] = Jufz, ;] =t (by Theorem 4.8, p. 86)
i=0

[¥ Remember, ACB denotes "A is a subset of B,

Appendix 4.3 Page 355

Note that MEG{(h) & ING(h) are disjoint sets by construc-
tion: ING(h) is made of the components of Z,, while MEG(h)
is made of the components of z ,,...,Z, _. Hence, MEG(h) N
ING(h) = g. Consequently, MEG(h) U ING(h) = <MEG(h),ING(h)>
(by Definition A4.2.3) hence, by Theorem 4.9:

w[S(h) U zh] = w[S(h)] + w[zh]

From the last two results: w[zh] £t -~ w[S(h)]
QED

APPENDIX 4.4; PROOF OF THEOREM 4,11

The above results are based on the fact that the number
of combinations of k things, taken i at a time, is C(k,i)

{see, for example, S. Lipschutz [35], Section 8.6).

Then, £(i) is the number of M=-tuples of weight i and this
is C¢{M,i). Furthermore, according to Lemma 4.7 (p. 8§), the

weight of a state may vary between 0 and t, inclusive.

Similarly, assume that the current state has weight w.
Then, by Theorem 4,10 {(p. 88), the weight i of the current
ainput-block must not exceed t-w, Furthermore, there are
C{k,i) k-tuples of weight i.

Finally, according to the above, if the current state has
weight w, there are ©(i,w)} (where 02i<t-w) different permit-
ted input blocks, hence there are as many ways to change
state. If all k SRs have non-zero length, then each new in-
put block leads to a new unique state. If though, f SRs have
zero length (i.e. they do not exist - see discussion in Sec-
tion 3.2) then some of the input blocks lead to the same
state. For example, if the 3rd row of G(D) contains only
‘ones’ or ’'zeros' then the 3rd SR does not exist. Two I/P
blocks that differ only in the 3rd bit will lead tc the same
state. Hence, the input-block bits that participate in a
state change are k-f and there exist C(k-f,i) (k-f)-tuples
of weight i.

QED

Appendix 4.5 Page 356

APPENDIX 4.5: EXAMPLE OF CONSTRAINED REGULATOR TRELLIS

Example_A4.,5.1: Consider the regulator circuit with

transfer-function matrix:

1+D+D?
P(D) = 1+D
1+D2

Obviously, n-k=1, k=3 & m=2, hence it is the transfer
function of a (4,3,2) regulator circuit. The total memory is
5, i.e. the state-transition diagram has 32 states.

The diagram of the regulator circuit is shown in Fig.
A4.5.1.

1
z()

(D) E TD

@
z (D)—?———- C >

+q (D)

3
z D)—+—— B A

Figure A4.5.1: Circuit diagram of a (4,3,2) regulator circuit.

The free distance, d of the associated code eguals

free’
the weight of the minimum-weight codeword which is non-zero
in its first block (see Appendix 2.5, p. 311 & Appendix
2,10, p. 317). d,. can be obtained from the trellis dia-
gram, by finding that sequnce of output blocks which has
minimum weight and is non-zero in its first block. Whatever

this sequence, there will be a time-unit at which it will

remerge with state So and remain in the So'__> So transi-

Appendix 4.5 Page 357

tions, which exist (by Lemma 3.3, p. 67) and which occur
with an all-zero input and {(hence) with an all-zero output
(ibid.). So, d, .
Nevertheless, the trellis has 32 states, hence it is diffi-

will assume a finite value at some point.
cult to determine d, _ this way.

From the transfer-function matrix, v (D) = u®)(D)
/i=1,2,3 and v#(D) = (1+D+D?*)u‘?(D) + (1+D)u'®(D) +
(14D)u'®(D). Since V(D) = [v¥(D),v®(D),v®(D),v¥(D)1,
the minimum-weight V(D) which is non-zero in its first block
must contain at least one 1 and the minimum possible number
of powers of D. Clearly, at least one of the u‘Y)(D)s must
contain one 1., If u@(D) = 1 and u®¥D) = u®(p) = 0, then
w[V(D)} = w[0,1,0,14D] = 3. The only way w[V(D)] = wlu(D)]
+ wlu®(D)] + wlu®(D)] + wlv*®(D)] < 3, is if the I/P con-
tains one or two terms (of which one must be 1) and v (D)
contains one or no term, respectively.

If u(D) = 1 [and u®(D) = u® (D) = 0], then V(D)
[1,0,0,1+D+D*], while if u‘¥(D) = 1 [and u®(D) = u®(D)
01, then V(D) = {0,0,1,1+D%].

If U(D) is to contain one 1 and another term, then v*)(D)

must be zero so0 that a free distance of 2 is obtained. In
other words, u‘(D), u®(D) and u® (D) must satisfy:

v (D) = (14D+D2)u(D) + (1+D)u®(D) + (1+D*)u®(D) = 0
 —
[uD(D) + u® (D) + u®(D)] +D[u(D) + u®>(D)] +

+ DZ2[U(D) + UBPH(D)] = 0 Commmd>

— u®(D) + u?(D) + u¥(D) =0
(> (—— u(D) + u®(D) = 0O
L— u®(D) + u®(D) = 0
< v—> u®(p) = u®(p) = u3(D) = 0
The last solution is not acceptable, hence 4 = 3, This

free

agrees with Blahut [10] and Reed & Truong [24] (the latter
use this code to illustrate their technique). Then, the er-

ror-correcting capability is t=1l.

Appendix 4.5 Page 358

The transition diagram of the regulator circuit is con-
structed following the directions of Note 4.5 and the expe-

rience of the examples of Chapter 3.

Note here that Reed & Truong [24] (who use this example)
talk about and use a regulator circuit with 8 SR stages:
".esthe number of internal states +++ of the regulator cir-
cuit can be limited to seven out of a possible 64." This
happens because they assume a circuit realization which uses
3 SRs each of length 2. Note also that the total memory of
the regulator circuit could have been reduced to 2, hence
giving rise to 4 states (for the unconstrained case), if a
type~-I1I realization was to be used. Nevertheless, in this

case, all the preceding analysis wouldn’t have been valid.

According to Lemma 4.7, the following states are permit-
ted:

ABCDE s,
00000 S,
00001 S,
00010 s,
00100 S,
01000 s,
10000 s

The following results are easily obtained, from Fig.
A4.5.1. To simplify notation, let z¥)(D) = z,, z¥(D) = gz,,
23)(p) = Zgs q(D)} = q and let the next state be S’. Then:

S = [ABCDE] S’ = [Bz,z,Ez,]
and q=zl+zz+za+A+C+D+E

If the current state is 8 = §, = [00000], then the above

egqns are simplified to:

8’ = [OZSZZOZI] and q =2, ¢+ 2,% 2,

According to Theorem 4.10 (p. 88), w[S] + w[zl,zz,zal £t

=1 e w[zl,zz,zal = 0 or 1. Then:

Appendix 4.5 Page 359

TABLE AA B2 ° .
Z,_.Z,_ 24 q s?
0o 0 0 0 s
o o 1 1 s,
0 1 0 1 8,
1 0 0 1 S

If the current state has weight 1, then according to The-
oremn 4.10 (p. 88), w[S] + w[zl,zz,zsl < t = 1 ———
wliz,y2,,2,] = 0 — Z, = 2, % z5 = 0. The above egns are

gsimplified to:

S’ = [BOOEO] and q=A+C+D+E
S = [ABCDE] q S’ = [BOOEO]
s, = [00001] i S, = [00010]
s, = [00010] 1 s, = [00000]
5, = [00100] 1 8, = [00000]
s, = [01000] 0 S; = [10000]
S, = [10000] 1 S, = [00000]

Fiqure A4,5.2: Constrained state-transition diagram (t=1) for
the regulator circuit of Fig. Ad4.5.1.

The transition diagram of the constrained regulator cir-

cuit is shown in Fig. A4.5.2.

Appendix 4.5 Page 360

The corresponding trellis (see Fig. A4.5.3) follows
readily from Fig. A4.5.2. Note that all transitions, except

those originating from S , are caused by the all-zero I/P 3-

tuple.
Time Unit
0 1 2 3 4 5 6 7 8 9
S0 0/0 os0 0/0—g—0/0 0/0 0/0 0/0 /0
n V271 n n n 2/1 n
o/1 0/1 f o/1) ori o/d or1
83 VI "l \'I "l "I
31 371 3 a 311 31 3t
0/1 /1 0/1 0/1 0/1 0/1 01
S o/ 0/1 0/1 o/l o/t o/t
2
171 171 Ve 171 " 11 11
S4

o0 0/0 0/0 0/0 0/0 0/0 0/0
SS
Notation for 2z : [000] =0 [001) =1 [010] =2 [100} = 3

Fiqure A4.5.3: The trellis diagram corresponding to the con-

strained state-transition diagram of Fig. A4.5.2.

Appendix 4.6 Page 361

APPENDIX 4.6;

Example A4.6.1: Consider the {(4,3,2) code of Example
A4.5.1; its trellis diagram is shown in Fig. A4.5.3 (p.

360). Let the feollowing source polyncmial:
uU(p) = [D+D2+D5+D°,D+D2+D5+Ds,D+D2+D5+DB] (A)

This is appended with mk zeros, to reset the encoder.
Since this code is systematic, V(D) = [U(D),U(D)P(D)], where
P(D) is given in Example A4.5.1 (p. 356). Then:

1+D+D?
U(D)P(D) = [D+D2+D5+Ds,D+D2+D5+D5,D+D2+D5+D6] 1+D < >
1+D*
U(D)P(D) = [D+D2+DS+D3][(1+D+D=)+(1+D)+(1+D=)] pI—
U(D)P(D) = [D+D2+D5+D°][1] = [D+D2+D5+D‘] s >
V(D) = [D+D2+D5+Ds,D+D2+D5+D8,D+D2+D5+D°,D+Dz+D5+D°] (B)

This code is one-error correcting, hence it can correct a
single error anywhere within a 12-bit sequence [= actual
constraint-length, nAG n{m+1)]. Consider two channel er-
rors, say, in the 3rd bit of the 3rd block and the 1st bit

of the 7th block. Then, the error polynomial is:
E(D) = [D“,o,n’,o] (c)

According to the decoding algorithm (see Note 4.6, p.
91), the decoder needs the syndrome S(D). Since the code is
systematic, according to Lemmz 2.11 (p. 48), S(b) = E®XD) =~
E®™(D)P(D). Then:

14D+D?
S(D) = [0] - [D‘,O,Dzl 14D Gy
14D?

8(D) = D5(14D+D*) + D?(14D?*) = D?*+ D*+ D6+ D7 + D® (D)

S$(D), from (D), corresponds to the syndrome sequence
{note that since n-k = 1, the syndrome sequence is organized

Appendix 4.6 Page 362

in one-bit blocks):

s=(oo1o10111ooo---) (E)

Syndrome sequence S

Time Unit —s

Ss

Notation for Z: [ooe] =0 {0011 =1 [010]1 =2 [100] = 3

Figure A4.6.1: Error-trellis syndrome decoding of a 36-bit chan-
nel sequence corrupted by 2 errors (for the code
with the trellis of Fig. A4.5.3).

Appendix 4.6 Page 363

Using (E) with the trellis of Fig. A4.5.3, the hyperchan-
nel error sequence may be obtained (see Fig. A4.6.1).

The final survivor is the path with z-label 0-0-1-0-0-0-
=3-0-0 (highlighted).

The best estimate of the hyperchannel errocr sequence is
found to be 2 = (000 000 001 000 000 000 100) (the last six
zeros are not part of the message sequence), which corre-

sponds to the hyperchannel error polynomial:
Z(D) = [p%,0,07] (F)

Comparing (F) with (C), it becomes obvious that the de-

coder located both errors.

APPENDIX 4.7: Y. R : 3

44.7.1. Proof of Thaorem 4.12
From egns {3.5) (p. 58):
FEG U CEG U REG = [u uglrugtloufl) /i satisties X, jelz,M,)}
« e—
FEG U CEG U REG = {uf!} /i satisfies X, je[1,M,]} (A)

where condition X is: ie[1l,k] & M;21 OR
ie[1,k] & Mizl OR
ief1,k] & M,23

Condition X above is obviously equivalent to condition
ief1,k] & M.21, hence eqn (A) above gives:
FEG U CEG U REG = [uff} /i=1,2,..,k : M;21, §=1,2,..,M,} = MEG

by eqn (3.5a). From eqns (3.5b) & (3.5d):

FEG = {uf!} /ie[1,k] & M,21, jel1,1]1} —

CEG

"

[l /iel1,k] & M,23, jel2,4,)]

—> FEG 0 CEG = {u{t} /iell,k] & M23, j=1 & 25jsM,-1} = ¢

From egqns (3.5¢) & (3.5d):

A\

Appendix 4.7 Page 364

REG = {ugﬂ /ie[1,k) & M 21, jE[Mi'Mi]} B

—d —

CEG

fl

[wh /iel1,k] & 4,23, jel2,M,)} —

~=s> REG 0 CEG = {uf!) /iel1,k] & M23, j=M, & 2£53M,-1] = ¢

From eqns (3.5b) & (3.5¢):

FEG = {ufl) /iell,k] & M, 21, j=1} —

REG

[u.(,f; /ietl’k] & M‘.Zl, 'i=M1} —

—> FEG N REG = {ufl} /iell,k] & M21, j=1=M,} —>

FEG 0 REG = {uf!) /ie[1,k] & M=1}
QED

A4.7.2. Preof of Iheorem 4.13

Consider the set X = FEG U CEG U REG' and use egqn
(A4.2.11) and the distributive law [eqn (A4.2.5b)].

X

FEG U CEG U (REG-FEG) = FEG U CEG U (REG n -FEG)
[(FEG U CEG) U REG] n [(FEG U CEG) U (-FEG)]
(FEG U CEG U REG) n [(CEG U (FEG U -FEG)] (A)

by the associative (A4.2.4a) and commutative (A4.2.3) laws.

In eqn (A), the 1lst parenthesis gives MEG (by Theorem
4,12), while the 2nd, CEG U MEG [by ean (A4.2.8)].

X = MEG N (CEG U MEG) = MEG N MEG = MEG —
— FEG U CEG U REG’ = MEG (B)
Consider now the intersections of CEG, REG’ & FEG:

From eqn (4.31b): FEG N CEG = ¢ (C)

FEG N REG’

FEG N (REG - FEG) FEG N (REG n -FEG)
FEG n (~FEG N REG) [by eqn (A4.2.3)]
(FEG n -FEG) N REG [by eqn (A4.2.4b)]
g N REG = ¢ [by egn {A4.2.7)] —
v— FEG N REG’ = ¢ (D)

CEG N REG’

CEG N (REG N -FEG)

Appendix 4.7 Pags 385

= (CEG N REG) n ~FEG [by eqn (A4.2.4Db)}]
=g N -FEG = ¢ [by eqns (4.31b) & {(A4.2.7)]
—D CEG N REG' = ¢ {(E)

It is evident from eqns (B), (C), (D) & (E) and Defini-
tion A4.2.3 that MEG = <FEG,CEG,REG’>. Reln (b) is proved
similarly.

QED

44.7.3. Eroof of Theorem 4.14

Because FEG’ is a subset of FEG and FEG & CEG are parts

of the encoder memory, while MIG is not,

MIG{h) n FEG’(h)

@ (A)

MIG(h) n CEG(h) & (B)

Also, by Definition 3.1 (p. 58), CEG "+-s+scontains the
stages that do not belong to either the FEG or the REG.".

Hence, since FEG’ is a subset of FEG,
FEG’(h) n CEG(h) = ¢ (C)

What remains to be done is to prove that the union of the
three mutually exclusive sets is MEG(h+1).
From egns (4.33) & (A4.2.11),

FEG’ = FEG - REG = FEG N -REG
and using Definition 3.1 {(p. 58),
FEG® = {ugf; /i=1,2,...,k @ M21, j=1 & j<Mi} —
FEG’ = {ufl] /i=1,2,...,k : M;22} (4.35)
From eqns (4.23b), (4.35) & (3.5d):

MIG(h) U FEG’(h) U CEG(h) = {u},f; /i€l1,k]l, (3=0 & M,21)

—

—> OR (j=1 & M;22) OR (Je[2,M4,) & M23)} me>

MIG(h) U FEG’(h) U CEG(h) ==

- {u,‘,f} /iell,k], jel[O,M,) & Mizl} (4.36)

From eqn (3.5a) (see p. 58):

Appendix 4.7 Page 366

MEG(h+1)

{ulh), 7iel1,k1, M21 & jel1,M,1] (let j-1=a)

MEG(h+1)

{uﬁﬂ /iel1,k], M21 & ue[O,Mi)]
From the last expression and egn (4.36),

MIG(h) U FEG’(h) U CEG(h) = MEG(h+1)
QED

Ad.7.4. Eroof of lemma 4.10

From Theorem 4.14,

MEG{h+1) U DIG(h)

MIG(h) U FEG’(h} U CEG(h) U DIG(h)
[MIG(h) U DIG(h)}] U FEG’(h) U CEG(h)
ING(h) U FEG’(h) U CEG(h)

Note also that, FEG'(h) & CEG(h) are mutually exclusive,
since they partition a set (see Theorem 4.14), and that ING
N FEG' = ING N CEG = g, because ING does not belong to the
circuit memory, of which FEG' & CEG are parts.

QED

APPENDIX 4.8: PROOF OF THEOREM 4,15

It is known, from Lemma 4.9 {p. 89), that the total num-
ber of different states that can be reached within one
time-unit from a state of weight w, is denoted by I¥(w) and
an expression is given by eqn (4.30c). The task therefore is
to prove that the total number of states from which a state

of weight w can be reached is also I¥(w).
From Lemma 4.10,
MEG(h+1) U DIG(h) = (ING(h),FEG’(h),CEG(h)) (A)

Since DIG(h) contains bits that are not stored in the
memory, then DIG(h) N MEG(h+l) = ¢ hence, from eqn (A},

(MEG(h+1),DIG(h)) = {ING(h),FEG’(h),CEG(h)) (B)

Applying Theorem 4.9 (p. 87) into eqn (B),

w[S(h+1)] + w[D(h)] = w[z,] + w[F'(h)] + w[C(n)] (C)

Appendix 4.8 Page 367

From Theorem 4.10 (p. 88),
w[S(h)] + w[zh] <t (D)

Since w[S(h+1)] = w, from (C) & (D),
w[s(h)] + w4+ w[D(h)] - w[F’(h)] - w[C(h)] < t (E)

Consider Partition II of MEG(h) (see Theorem 4.13, p. 93)
and apply Theorem 4.9 (p. 87):

MEG(h) = {FEG’(h),CEG(h),REG(h)) =ww=>
w[s(h)] - w[F’(h)] - w[C(h)] = w[R(h)] (F)
From (E) & (F), since w[e++] 2 O:
w[R(h)] s t - w[s(h+1)] - w[Do(h)] = ¢ - w[S(h+1)] (4.38)

Note from Theorem 4.14 (p. 95) that, the bits that make
up the state at time-unit h+l are those belonging to
MIG(h), FEG’(h) & CEG(h). Since FEG’(h), CEG(h) & REG(h)
partition MEG(h) then the only memory bits, of the current
state, that do not participate in the formation of the next
state are the REG(h) ones, and only those. Hence, the states
from which one can reach a specific next state, S(h+l) = Sy,
should equal the total number of different R(h)s. Note that
the Hamming weight of R{h) is bounded by (4.38).

If w[R(h)l=i, since REG has k-f elements, there are
C({k-f,i) different R(h)s of weight i, and since there are

t-w

ZC(k-f,i)

1i=0

different R(h)s in all, there are as many states from which
S(h+1) = Sy, a state of weight w, can be reached.

Note that the above analysis is valid only within the
central portion of the trellis, i.e. not for time-units = m
or 2 L, This is so0 because in calculating the number of
states from which any particular state S(h) can be reached,
one ceonsiders a transition S(h-1) —> S(h), where h-=1 2 m
we=> h > m. Also, in calculating the number of states that
can be resched from any particular state S(h), one considers
transitions of the type S(h) —> S(h+l), where h+l £ L smem)

Appendix 4.8 Page 368

h < L.
QED

APPENDIX 4,.9: IHE INTERMEDTATE BEGULTS OF § 2.6.3. |

A4.9.1. Proof of Theorem 4.25

Relnas (a) & (b) follow easily from Definition 4.8. Reln

{c) is based on Theorem 4.19:

n
b 4

Sif(i)
i=1

Substituting f(i)

F(i) - F(i-1) [(4.55a)1,

MiF(1) = QiF(i-1) = M

i=1 i=1

] m-1 T3

DAF(L) - IF(G) - F(J) = M <o
i=1 J=1 3=0

nF(m) - NF(J) + F(m) = M
J=0
Since F{m) = k [reln (b)]

NF(F) = (m+l)k - M
320

QED

44.9.2. FPreof of lLemma 4,13

B
Let A(B) = 3]if(i) and use eqn (4.55a):
i=1

B B
DAF(L) = iF(i-1) K
i=1 i=1

A(B)

-] 51 81 81
2iF(1) - 2IF(5) - ZF()) BF(8) - XF(J)

i=1 J=1 3=0 =0

A(B)

Relation (b) is easily proved using the above result and

Appendix 4.9 Page 369

reln (4.42e):

n | |
2if(i) = 2Jif(i) - A(B8-1) = M - A(B-1)
i=p 121
QED
A4.9.3. Proof of Lemma 4,14
For any two sets X & Y, it is accepted that:
if XnyY-= g, then |X| + |Y| = |X U Y| {4.568)

For a proof of eqn (4.58) (which is trivial anyway) see
Biggs [36), p. 44.

From Theorem A4.2.1, A U B is partitioned into A-B & B.

So, (A-B) N B =¢g (A)
and (A-B) UB = AUB {B)
From eqn (B):]A U B| = |(A-B) U B| and using eqn (A)

in {(4.58): |(A—B) U B| = |A - B| + |B|, from which eqn (a)
follows. Eqn (b) is & special case of (A}, because if B C A,
then AU B = A%

QED

APPENDIX 4,10: CONGTRAINED & BIMPLIFIED DTATE~FRANGITION
DIAGRAMS FOR A =2 NORMAL LEBC ‘s

Example A4.10,1: Consider the state-transition diagranm
of Fig. A3.1.2 (p. 332). It corresponds to a (4,3,2) normal
LSC, with total memory M=3, shown in Fig. A2.9.2 (p. 315).

Let a weight-constraint of 2 be imposed on it. Then, in

its transition diagram, the sum of the Hamming weight of the
current state plus the current input-block should not exceed
2 (see Theorem 4.10, p. 88).

Hence, state S7is removed. For the remaining states,
only those transitions (out of each state) satisfying
w[S(h)] + w[zh] £ 2 are kept. Hence, from the weight-2
states (8,,S; & Ss) only one transition is kept (correspond-
ing to z, = [000]). From the weight-1 states (S5,,S, & S¢)»

"‘ Remember, ACB denotes "A is a subset of B".

Appendix 4,10 Page 370

only transitions of weight 0 or 1 are kept. From 5, transi-
tions of weight 0, 1, or 2 are kept (see Fig. A4.10.1).

Figure A4.10.1: t=2 constrained state-transition diagram, for
the (4,3,2) normal LSC of Fig. A2.9.2 (p. 315).

Consider now the application of Theorem 4.29, on the
above diagram. From the circuit diagram:
S = [CBA] R{h) = [CA] f=1 k =3 & M =3

There is one state of weight 0, So’
with one transition to itself [o = 1+C{f,1)+C{(]f,2) =
1+C(1,1)+C(1,2) = 2},
k-f=2 transitions to the weight-1 region [o=1+min{1,f}=2]
(to 8, & Sz’ and
if k-f=222, (k-f)(k-f-1)/2=1 transition to the weight-2
region [o=1] (to Sa).

There are M=3 states of weight 1 (SI,S2 & S‘).

Appendix 4,10 Page 371

M-k+f=1 of them has one transition to a weight-1 state
[c = 1+min{1,f} = 2]:
S,—>8,; S5,=[CBA]=[010] ma=> R(h)=[CA]=[00] ===m> =0 (o=2)
and k-f=2 transitions to the weight-2 region {o=1] (S5 &
Se) -

The rest, k-~f=2, states have one transition, each, to S,
[0 = 1+min{2,f} = 2]:

8,—>8,; 5,=ICBA]=[001] ==> R(h)=[CA}=[01] ==> =1 (0=2)

S,—>8,3 S4=[CBA]=[100] mm> R(h)=[CA]=[10] ===> =1 (o=2)

and k-f=2 transitions, each, to a weight-1 state [o=1]:

S,—>8,; Sl=[CBA]=[001]) R(h)=[CA]=[01] w=> t=1 (o=1)
S,—>S,; 5,={CBA]=[001] ==> R(h)=[CAl=[01] ==> t=1 (o=1)
S,—>S,; 5,[CBAJ=[100] ==> R(h)=[CA}=[10] ==> t=1 (o=1)

S,—>S,; S,=[CBA]=[100] ===> R(h)=[CA}l=[10] ==> =1 (0=1)

There are M(M-1)/2=3 states of weight 2 (Ss'ss’ss)’ with
one transition each [o=1]:

Provided that M-22k-f mee=> 122, (M~k+f)(M-k+f-1)/2 states
transit to another weight-2 state.

Provided that M-12k-f =we=> 222, (k-f){(M-k+f)=2 states
transit to a weight-1 state:

S;—>5,; S,=[CBA]=[011] ==> R(h)=[CA]=[01] ==> t=1 (o=1)
S¢—>S,; Sg=[CBAJ={110] ==> R(h)=[CA]=[10] ==> t=1 (o=1)
Provided that k-f=222, the remaining, (k-f)(k-f-1)/2=1,

state transits to 5;:

S;—>S,; S;=[CBA]=[101] mee> R(h)=[CA]=[11] wm=> t=2 (o=1)

Hence, the results of Theorem 4.29 were verified via the
above example. If the total number of transitions/diagram is
considered as a complexity measure [= (transitions/state) X
{No of states)], then:

The unconstrained transition diagram has (see Fig.
A3.1.2, p. 332) 2 x 4 x B = 64 transitions.

The t=2 constrained state-transition diagram has (count-
ing state-by-state, starting from Sg18;s++4,8¢ - see Fig.
A4,10.1), (2+2+2+41) + (2+1+1) + (1+41+1) + (1) + (2+41+1) +
{1) 4+ (1) = 21 transitions, or about 1/3 of the uncon-

strained.

Appendix 4.10 Page 372

Example A4.10.2: Consider the constrained state-
transition diagram of Fig. A4.10.1. The simplified diagram
is easily constructed following the instructions of Note 4.7
{p. 99). The result is shown in Fig. A4.10.2.

0100600
000
100

001000

Fiqure A4,10.2: t=2 simplified state-transition diagram, for the
(4,3,2) normal LSC of Fig. A2.9.2 (p. 315).

Since the circuit is a (4,3,2) one, according to Theorem
4,18, its longest transition is m+l, only if the LSC con-
tains at least t=2 SRs of length m. Hence, the simplified
state-transition diagram will not contain transitions of
length 3, as can be verified from Fig. A4.10.2. Hence, the

only long transitions are the (=2 ones.

Consider the application of Theorem 4.27. The states to
be examined may have weight we[0,t], i.e. w = 0,1,2,
The memory details are (from Fig. A2.9.2, p. 315):

Appendix 4.10 Page 373

F(0) = F(1) = F(2) = 1 M =3 & k=3

i) The number of states of weight w, from which a tran-

sition of length 8 = 2 may start is

(1-REG{Z-1)]) (4.60a)
22
where: |-REG(2-1,)| = 3 - (2-1)3 + X F(i) (4.60b)
i=0
|-REG(1,)| =3 -3+ F(0) =1, Hence w = 0 or 1. Then:

There is (%) = 1 state (So), of weight 0, from which £=2
transitions may start (to 54)'

There is (i) = 1 state (S,), of weight 1, from which =2
transitions may start {(to S, & S4).

ii) There are (|-REG£2—1,)|) - (|-REG£2,)|) (4.60c)

states, of weight w, from which

(1-P1gL2-2)1) = (3-f12-2) (4.60d)

—

transitions of length B=2 start, where:
|-REG(2,)| = |-REG(2-1,)| + F(2-1) - 3 {4.60e)

j-REG(2,)| =1 + 1 - 3 = -1, Hence the 2nd term of
(4.60c) drops, and since }-REG(1,)| = 1:

There is {17REG{Z=11)1) = 1 state of weight w (=0,1),
from which

(|-D13£3-2,)|) - (3-513-2) = (224) = 2/1@-wiwn], = 2/(2-w)

B=2 transitions start:

One state of weight 0 (So) from which 2/(2-0) = 1, B=2
transition starts (to S‘).

One state of weight 1 (8,) from which 2/(2-1) = 2, B=2
transitions start (to Sp & 5,).

iii) There are (I'REng’)I) (4.60f)

states, of weight w, from which

(1-01562-201) - (1-Pge-) 1)

L (s-gtz-2)) - (3-F(2-1)) (4.600)

Appendix 4.10

transitions of length 8 = 2 start.

Page 374

Since |-REG(2,)| = -1, there is no f=2 transition, under

this category.

Hence, Theorem 4.27 was verified by the above example.

APPENDIX 4,11; PROOF OF THEOREMS 4.80.8 4,31

Ad.11.1. Proof of Iheoram 4,30

these values to the results of Theorem 4.21 (p. 107

the constrained trellis results.

f(m-1) = 0 and §(m) = k. Also, F(0) = F(1) = <.
0 and F{m) = k.)

present case is equivalent to tsgk.
From (4.60b) & (4.60e), for pFef2,m+1]:

|-REG(B-1,)| = km - k(B-1) + 0 = k(m-B+1)
|-REG(8,)| = k(m-B+1) + F(8-1) - k = k(m-B) + F(B8-1)
From (4.60d):
|-DIG(B-2,)] = k - F($-2) = k /Bel2,m+1]
and [-DIG(8-1,)]| = k - F(B8-1) /Be[2,m+l]
From the above, for B = m+l:

0

|-REG(m,)| = |-REG(m#1,)]|

0

|-DIG(m-1,)| = k and |-DIG(m,)] = k - F(m)

Since all SRs have the same length, this length is the

maximum, i.e. m. Then f = 0 and M = km. Substitution of

), gives

Since all SRs have the same length, f = §(0) = f(1) = «--

= F(m-1)

From Theorem 4.18 (p. 101), Be[2,m+l] and B8 = m+l, only
if there exist at least t SRs of length m, which in the

(A)
(B)

(c)
(D)

(E)
(F)

From (E) & (F), above, the 2nd part of Theorem 4.27

drops, because the number of states under this category is:

(I-ogten 1) - (1o8aegeeao) o (2) - (2) = o

Appendix 4.11 Page 375

Similarly, the number of states under the 3rd category
is:

(1-REC{m*.)1) = (O) = 1 if w=0, and = 0 if w>1. Then,

there is only one state, S from which transitions of

length S8=m+l1 start. There are
(FPrglam) - (1721h) = (§) - (8) = (%)

transitions from S;,. This proves part (iii) of the the theo-

o!

reme.

I1f pe[2,m}, from (C) & (D), |-DIG(H-2,)| = |-DIG(R-1,)| =
k, since F(f$~1) = 0. Hence there are no transitions from the
states of the 3rd category (see Theorem 4.27). From the 2nd
category, using (A), (B) & (C), there are

(k(moBr1)) - (K(m-B)) states with (%)

transitions each. This proves part {(iv) of the theorem. For
the last part, let 8 = m, above. For w=0, there are C(k,0) -
c{(0,0) =1 -1 = 0, hence state S5, does not have transitions
of length m. For w>l, there are C{k,w) - C{O0,w) = C(k,w)
states, each with C(k,t-w) transitions.

QED

Ad.11.2. Eroof ef Theorem 4.31

Theorem 4.31 is an application of Theorem 4.30, for the
special case of k = 1, Part (i) is straightforward.

For part (ii): For each T € [max{O,q-m+1} , min{l,q}],
there are (%) g:% states of weight ¢, each of which has
(ﬁ+%—q) single-edge transitions, to the weight-fi region,
where: ¢-t $§ w[S(hi-l)] = i € MIN{t-T,14g-T} (o)

0 £ fh+t-¢ £ MIN{t-g,1}.
Since t = 0 or 1, C(1,t)=1. Since, also, fitt-¢ = 0 or 1,

Cc(1l,fi+t-¢)=1. Hence: For each t € [max{O,q-m+1} ' min{l,q}],

there are m:l states of weight ¢, each of which has
c-T

Appendix 4.11 Page 376

one single-edge transition, to the weight-fi region, where:
¢ £ fi + Tt £ MIN{t,g+l1}.

If ¢=0, then te[max{0,-m+1},min{1,0}] wmem)> t=0. There
is C(m-1,¢-t) = C{m-1,0) = 1 state of weight 0, with one
single-edge transition to the weight-~ii region, where:
¢ S fi+t £ MIN{t,g+1} < 0 € i £ MIN{t,1} (mmmm> fi =
0 or 1. If fi=0, the next state is §,, while if fi=l, the next

state will be [00:+-01] = 5.

For the case ¢<m, if ¢e€[l,t], for each t € [max{0,¢-m+l},
min{l,g}] <===> t € [0,1] (because, ¢<m ==m=> ¢-m+1<1) there
are C(m-1,¢-t) (which is non-zero because T 2 g-m+]l s>
m-1 2 ¢-t) states with one single-edge transition, each, to
the weight-fi region, where: ¢ < fi+t £ MIN{t,g+l}., With re-
spect to the last inequality, there are three possibilities:
Either t2c¢+l, or t=¢, or t<¢. Since ¢€[l,t], either t2¢+l,
or t=¢. Hence, if ¢e[l1l,t) then ¢-t £ i £ ¢+l-t, and if t=g¢
then A = t-t.

If t=0, there are C(m-1,g¢) states of weight ¢e[l,t}) with
two single-edge transitions, each, to states of weight ¢ &
¢+l and C{m-1,t) states of weight t, with one single-edge
transition to a state of weight t.

Iif t=1, there are C{m-1,¢-1) states of weight gell,t)
with two single-edge transitions, each, to atates of weight
¢ & ¢g-1 and C(m-1,t-1) states of weight t, with one single-

edge transition to a state of weight t-1.

For the case c¢2m (assuming of course that tzm), only the
¢=m case is meaningful. Then, for each t /max{0,¢-m+l} € v £
min{l,g} <wwm> t=1, there is C(m-i,m-1) = 1 state with one

1A

single-edge transition to the weight-ii region, where: G
fi+t S MIN{t,¢+1} <Kmmm=> m £ fi+l $ MIN{L,m41} Commm) m-1 < § =
MIN{t-1,m}. Hence, if t=zm there is one transition to a
weight-(m-1) state, while if t2m+l1 there are two transi-

tions, to states of weight m-1 and m.

With respect to the central portion of the simplified
trellis:

) = 1 maximum-length transition

k=

iii) There is (

Appendix 4.11 Page 377

(B = m+l), starting from state S,. Since c(i,t) = 0 for t>1,
such a long transition exists only if t=1.

iv) There are (m—g+1) - (m;B) states of weight
¢, with (th) =1 (only if 1 2 t=¢ (=) ¢ 2 t=]1 w=m> ¢

= t or t-1) transition of length B each, where 8 € [2,m].
For any states to exist, m-F+1 2 ¢ <www=> § £ m+l-g.

v) From above, if the current state has weight ¢ the
longest transition is m+l-¢, and because the smallest ¢ is
t-1, the longest transition is m+2-t, starting from a state
of weight t-1. Hence, the I/P must be 1, as well, in order
to bring the memory into a weight-t state and hence start a
long transition. Finally, for the longest transition to take
place, the SR must have t-1 1s in the first t-1 stages, and
that corresponds to state S , where a=2%1-1,

QED

Appendix 5.1 Page 378

APPENDIX B.1:

A5.1.1. Proof of Theorem 5.1

Assume that x of the error digits are non-zero, where 0 <
x £ [J/2]. Since either e , = 0, or e_# 0:

i) If e, = 0, then x other error digits are non-zero.
Hence no more than x composite parity-checks are affected
(i.e. become non-zero). All the rest e;s are zero, hence the
rest J-x K are zero. Since x £ LJ/2] = J/2 s— J=-x 2
J/2 s—> x € J-x. So, the majority vote is 0, unless x =
J-x in which case there is a tie which is resolved in favour
of 0. Hence, decoding is correct if conditions are satisfied

and e, = 0.

ii) If e, =V # 0, then x-1 other error digits are
non-zero. These x-1 digits affect at most x-1 B&;s. The rest
J-x+1 &,
Now, since x-1 < |J/2] £ J/2 w==m> J-x+1 > J/2 > x-1, hence

the majority of the composite parity checks, vote for V, so

s are affected only by e, hence their value is V.

decoding is correct if conditions are satisfied and e, = V
0.

From (i) & {(ii), above, the theorém follows.
QED

A5.1.2. Eroof of Theorem 5.2

According to Definition 5.3, the APP rule maximizes the
conditional probability P(e_ =V|{£;}). Consider

Baye'’s rule: P(A|B) = P(B|A)P(A)/P(B) (A5.1.1)
Then, P(e,=V|{8,}) = P({£}|e=V)P(e,=V)/P({£,}) (A)

Since the error digits are statistically independent and

the composite parity-checks £, are all orthogonal on e,

J J
P(e,=V|{4,}) =]_[P(mi|e_=v)9(e_=v) / []—I[P(Ei)] —_
i= 1=

Appendix 5.1 Page 379

J
logP(e.=V) + :ﬂlogP(Ei|e_=V) -

—> logP(e,=V|{&,})
i=1

J
- DllogP(&)) (B)

1=1
Note that the 3rd term in the RHS of eqn (B) does not
depend on e, i.e. varying the value of this digit will have
no effect on this term. Hence, maximizing the conditional
probability P(e_]{Ei}) is equivalent to maximizing its log
(since the latter is a continuously increasing function of
its argument) which is equivalent to maximizing the RHS of
(B); since also varying e has no effect on P(4£,), the last

term of the RHS of (B) may be ignored.
QED

A5.1.3. Ercof of Iheorem 5.3

Assume that x of the error bits are 1, where 0 £ x £

LJ/2). Since, either e, = 0 or e = 1:

i) If e, = 0, then x other error bits are non-zero.
Hence no more than x composite parity-checks are 1. All the

rest e,
< LJ/2] < fu/21 — > e = 0.

s are zero, hence the rest J-x Bfnare zero. So, 2 £ X

ii) If e, = 1, then all £ have one bit equal to 1 (e,)
and at most x-1 of them also have another bit equal to 1,
which cancels out the e_=1. So, at most x-1 Ef are zero or,
the same, at least J-x+1 are 1. Hence,

T 2 J-x+l (A)

‘Si—nce x £ (J4/2] —> -x 2 =|J/2] —>

— J=x+1 2 J=[J/2]+1 > J-LJ/2]

and combining with reln (A),

J-J4/2 = J/2 = F4/21 /J=even
z > J-ld/zl _E J-(J=1)/2 = (J+1)/2 = TJ/21 /J=odd —

— T > J/23 — e =1

Note that application of the decoding criterion, (5.4),

Appendix 5.1 Page 380

coupled with a restriction on the number of errors, led to

correct decoding.
QED

A5.1.4. Proof of Theorem 5.4

According to the definition of p,, the probability that
R = 0, given that e, = 1, equals the probability of an odd
number of ’ones’ in the rest of the error bits that partici-

pate in the formation of &, i.e. equals Py Similarly,

P(E1=0|e.=1) = P(31=1|e‘=0)

Py

P(E;=1|e=1) = P(£,20[e,=0) = q,

From Theorem 5.2, because e, = 0 or 1, the APP decoding

rule becomes:

Choose e, = 1, iff

J J
logP(e,=1) + z logP(£1|e_=1)) logP(e =0) + z logP(Ei|e_=0),
i=1 i=1

o> ilog[P(‘Ei!e.ﬂ-)/P(£1|3.=0)]) log(q,/p,) (a)
i=1

Consider now the ratio P(Bi|e.=1)/P(Ei|e_=0).

If £, =0 then:

P(Eile.=1) / p(£1|e_=o) = P(Bi=0|e_=1) / p(£1=0|e_=o) = p,/q,
If £ = 1 then
P(Eile_=1) / P(£1|e_=0) = P(Ei=1|e_=1) | P(&=1]e=0) = q,/p,
Then, one may write:
P(g,|e=1) [P(&;|e,=0) = (q,/p,) (B)

From results (A) & (B), the condition becomes

Jd
(A) <===> D1(2E,-1)log(q,/p,) > log(q,/p,)
i=1

from which condition (5.4) follows.
QED

Appendix 5.2 Page 381

APPENDIX 5.2 DEEINITE DECODING - PARITY SQUARES

In this appendix, the general case of estimating a given
error block ea/azm will be discussed. From Theorem 2.15 (p.
50), with 0 = MIN{h,m}:

s = e 4 Z ze;f;gg;z /15jsn-k (A5.2.1)

izl =2=0
In order to consider all syndrome blocks that check on
e,, one must require h-z = a, hence h should vary between
MIN{a+z} and MAX{a+z}, i.e. from a to a+6 = a+MIN{h,m}:
a<h<a+MIN{h,m} and since h2a2m, 6=m and h should be allowed
to range from a to a+m. Hence, the set of syndrome bits that

may check on error bit e?” are:

k n
st = eV 4 egh) /1$jSn-k (A5.2.2a)
a e a-z k+j,z
i=1 z=0
3
{ = (k+J i i .
Sl T Can * Zzeﬁ,i_, W . /1sjsn-k (A5.2.2b)
i=1
k -
= 1 i .
sy = elLP o+ 3 el gl /18isn-k (A5.2.2¢)
i=1 z=0
In general:
3y = (k+§) 1) L) 1£jsn~-k
sa#x = e‘"; + z zeuox-z k+_1,z /053‘1 <m (A5-2-2d)
i=1 z=0

Let m-z = w and rearrange the terms:

- k i (1 1€ji<n-k
) = e e 3 Dl e, BB k5.2
1=1 w=0

The 2nd summation, in the above egn, may be written in

matrix form:

Appendix 5.2 Page 382

2 g (1) e{l) =
ktj,m-w ux-uw

w=0
[g(i) gi) ... g®)] oll) o) L, (DT (A)

k+),m hj.l-l k+j,0 atX~-m a+x-m+l asx

Comparing the generator sequence gg;" (see Definition 2.5,
p. 23) with the first vector, in the RHS of (A), one may see
that the vector is nothing more than the generator sequence

with its elements arranged in the reverse order:

(1) - (1) (i’ R (1)
kh‘i (gk#j n k{j..-l gk‘lj,ﬂ) (A5-2.4)

Then, (A) may be written as:

Zg{i) e(i) g(i) (1) o) vee @7 (B)

k+j,m-w ux-nw k+} afx-- a+x-mtl n+x

Using (B) in (A5.2.3), for 1£jsn-k & 0sSx<m:

k
g (k+d) o (1) o (1) (i) eee a(1}]|T
Saex + Caix = ng €oix-a Tosx-mst Carx (A5.2.5)
(1) (2} {k) el) (1) e o) () 2) s 2) ,,.
[ghj it T LA k+,j] [asx-m Caix-mer ° €asx Casx-n Catx-mi1 Casx
.o ® (x) ces BT
Carx-n Sasx-me1 Casx (A5.2.8)

In (A5.2.68) the g-coefficient vector is independent of x.
The error vector may also be made to be independent of x, if
it is allowed to vary between its maximum & minimum values
(0 & m). Then, the error vector will be made of the k error
bits of blocks a-m,a-m+l,...,a+m. In such a case, the vector
of g-coefficients must be modified, by interspersing 0s in

between the Qﬁ;s .

In (A5.2.6), the 1st bit of QE; multiplies eﬂ: .+ If the
(1)

lst error bit of the-error vector is e ., then- eﬁ; . will be

the (x+1)th bit of this vector, hence x 0s must precede Qi:;.

Similarly, the last bit of QS; multiplies e“i and the next g-

coefficient [the 1st bit of Q{f;] multiplies e(f; 4» While in the

modified error vector, m error bits {eﬁ;u,e(ua,.. e:ﬂ,eﬁ:

;-zu' . ,eifx___l}, will be placed in between. Hence, m Os must

be placed in between 3} & 3(3), For the same reason, m 0s must

k+j k+)
be placed between any two of Qki; & QF’“ Finally, m-x Os must be

placed after Q{f;, so that the vector has the appropriate di-

mensions. From the last egn:

Appendix 5.2 Page 383

s 4 e‘(:;i) = [ox'g(l) o-’gﬂ) 0,4::+,0 ’gkej’on-x][ell) o1y

a+x kej? k+j? a-m a-m+l

v D e@) o) L.l oD LL. oR) o) ... ei”]‘ (A5.2.7)

a-m o-n+ a-m a-I +1
Consider now the following notation:

[s]“- [sm s eel gD @ 5@ L. 5@ .,

a+l
e gPR) gB) L, s;n-k)] (A5.2.8a)
[E‘]fé [e:n e} ooe el e) cut o ..
e o™ e ... e;ﬂ] (A5.2.8b)

[E’]‘: 2 [e(kﬂ.) e(k;l) e(xu) emz) e(k;Z) e e;mz) .

. e(n) e(n) s e e e;n)] (A5.2.80)

atl

From (A5.2.8b) & (A5.2.7), for 1<£j<n-k & 0<xSm::

st + elhi¥ = [0,,80),0,,33),..,0,,80),0, J{[E*]aa]" (as.2.9)

a+X a+x K+}? kej? ! k+j?

where, 0 is a 1l X x row vector of 0Os.

Eqn (A5.2.9) represents a system of m+l eqns, for each
j=1,2’ooo,n-k=

(A5.2.10)

) (1) (2) .o (k) (k+i)
sa oo ghj 0- gluj 0- ol gkij 0- ea
J) (1) (2) e (k) (k+J)
sml 01 ghj 0- ghj 0- 0 gkoj O--l. a+1
- - . . - - - - - - “ E + - .
(3 1) (2) . e (k) (k+j)
sul 0 gkﬂ 0 gk*j 0- OI gkfj 00 ea&-

In the above matrix eqn (of which only a part is shown),
'big! E represents the error vector of eqn (A5.2.9). The
system matrix {of which only a part is shown) may be suit-
ably partitioned in parity sgquares. Each parity square is
made of a column of m+l Qiﬂ each of which is displaced to
the right (with respect to the one above) by one bit, the

‘gaps’ being filled by 0s. For i=1,2,...,k & j=1,2,...,n-k:

Appendix 5.2

| 1

~

(1)
00 §k+3
(1)
01 gh 3

Page 384

(A5.2.11)

Using-the definition of parity squares [(A5.2.11)],
the last {incomplete) matrix ean [(A2.5.10)1:

(A5.2.12a)

gt

(1)
a+l

«9 40

1)
Sﬂ+l

(2)
sa

(2
sa+1

(2)
Sﬂfl

" e
LR
LRI)

s(n-k)

(n-k)
a+l

(n-k)
a+m

-k
i

-k
¥

1)
€a-n

(1)
en-l+l

1)
Caem

2)
€o-n

(2)

ec-n+1

(2
edil

(k)
e(l-l

(k)

ea—-tl

(k)

ed.fl

(k+l)
eﬂ

(k+1)
ea41

(k+l)

ed.'l'l

(k+2)
ea

(k+2)
en+1

(k+2)
Caim

(n)
ea

{n)

en+1

(n)

e‘#l

in

Matrix egn (A5.2.12a) can (and needs to) be written in a
If notation (A5.2.8) is used and H(T)
denotes the system matrix in eqn (A5.2.12a), then the latter

more compact form.

can be written as:

Appendix 5.2 Page 385

{[s]e=} = weryf[e]aml™ + {[E"]e=)" (a5.2.12b)

If the transpose of both sides in the last eqn is ob-
tained (see, also, Theorem A2.2.1, p. 300), then:

[s]e™ = [e®]ea[m(m)]™+ [eP]e™ (a5.2.12¢)

The dimensions of the matrices in egn (A5.2.12c) are as

following:
[S]f' isal x (n-k)(m+l) matrix,

[E']“' is a1l x k(2m+l1l) matrix,

[H(I‘)]'r is a k(2m+1) X {n-k){m+l1l) matrix and
[E”]r' is al X (n-k)(m+l) matrix.

Consider any error bit, say, egg /-m5B8<m & 1<p<k and exa-
mine if any particular syndrome bit, say, s{{) /0stsm, 1Sosn-k
checks on it, By inspection of eqn (A5.2.12a) one may con-
clude that the error bit belongs to the pth group of error
bits and within this group it is the {(m+1-B)th bit, i.e. it
is the [(p-1){2m+1)+m+1-Bith bit of the message error vec-
tor. The syndrcome bit, on the other hand, belongs to the oth
group of syndrome bits and within this group it is the
(t+l1)th bit, i.e. it is the [(o-1)(m+1)+t+1]th bit of the
syndrome vector. Then, these two bits are linked wvia the
[(6-1){m+1)+t+1]Jth row, [(p-1)(2m+1)}+m+1-Blth column, g-
coefficient of the system matrix H(I'). Since the latter is
organized in an {n-k) X k matrix of I's, each of which is an
{m+1) X (2m+1) matrix [see (A5.2.11)], the above mentioned
g-coefficient belongs to the oth row of I's and pth column of
I‘_s, ki_.é. to 1";, which contains shifted versions of §{‘:3. Within
this parity square, the g-coefficient belongs to the (t+l)th
row, (m+1-B)}th column. If one expands the parity square, one
may see that ggﬁﬂ:is found in rows & columns satisfying: z =
= m + row - column. Hence, 2z = m + {(t+l) - (m+l1-B) = <T+B.

Hence, if -m$f<m, 15p<k, 0st<m & 1l<ofn-k, then:

5% checks on ei‘_‘; iff gw =1 (A5.2.13)

a+t kto,TeB

Also, from the discussion preceding reln (A5.2.13), the

) are determined by the

syndromes checking on error bit eﬂk

Appendix 5.2 Page 386

[(n-1)(2m+1)+m+1-B]Jth column of H(IC); in particular, the
1s along this column indicate the positions, within the syn-
drome vector, of the syndrome bits checking on egg (the top
bit is in position 1). Similarly, the message error bits
checked by sﬁz are determined by the [(o-1)(m+1)+Tt+1]lth row,
of H(T): in particular, the 1!s along this row indicate the
positions, within the message error vector, of the error

bits checked by s!9)

ast’

Consider now the problem of determining J the number

,a?
of syndrome bits checking on error bit e?". ;atrix equation
{A5.2.12) contains, by design, all the syndromes that check
on this bit. By (A5.2.13), for Bf=0, the number of syndromes
checking on this bit equals the number of g:‘:"ms that are
equal to one, where p is fixed, but o & v are allowed to

vary over their range. Hence:

n-k = n-k
Jya = 0 e = Dwleh (A5.2.14)
o=1 t=0 o=1

Note, from (A5.2.14) that Jnm depends only on the bit
number p {(within a block) and not on the time-unit a (pro-
vided that a2m, as initially assumed). Hence a may drop from

N
H,a

Finally, the size, c;,, of syndrome sy’ /hzm and 1<£jsn-k
may be calculated from eqn (A5.2.1). Because h2m, then 6=m
and the size of the syndrome bit equals the number of g-
coefficients that are equal to 1, plus 1 (for the parity-
check):

k " k
- i - i
eyn = 14 35 gl = 1 4 EW[GL,} (A5.2.15)

1:1 z=0 1=1

Note, again, that cdlldepends only on j, so h may drop.

The following theorem has been proved:

Theorem A5.2.1: Consider an (n,k,m) systematic convolu-

tional code with generator sequences g;ﬂ /iz1,2,..,k & j=1,2,

+s+yn=k. Then, under definite decoding, for a20:

Appendix 5.2 Page 387

[s]a= = [e*]am[n(m)]" + [EP]s™ (a5.2.12¢)

where if a<m, the message error vector is suitably trun-

cated, If -m<B<m, 1l<ps<k, 0<tsm & l1l<o<n-k, then:

s(9) checks on e:'_‘l’3 iff g =1 (A5.2.13)

ast k40,T+8

The syndromes checking on e{®), correspond to 1ls along the
{(u-1){2m+1)+m+1-81th column of H(I'). The message error bits
checked by syndrome bit sf‘f:, correspond to 1s along the

[{oc-1)(m+1)+T41]1th row, of H(I).

Furthermore, if J1/1$i5k denotes the number of syndromes
checking on error bit e#’ /hzm and c, /15jSn-k denotes the

size of syndrome bit s{!’ /h2m, then:

n-k

Jy= Dw[ell)] /1sisk (A5.2.14)
J=1

K
cy= 1+ Rulell] /12isn-k (A5.2.15)

1=1
|

Consider an example:

Example AS5.2.1: Consider the (2,1,6) systematic code

with generator polynomial gi{!’(D) = 1+D%+D%+Dp®. Since n-k = 1
there is only one syndrome bit, SSJ /a20, which is related
to the error bits via matrix eqn (A5.2.12a). Furthermore,

there is only one parity square, r! hence this coincides

1!
with the system matrix H(T).

Let us consider the application of the results of Theorem
A5.2.1, to the above example:
According to reln (A5.2.13), s{° checks on e'®, iff

a+y a-p!?
Sif:'t,ﬁ= 1, where -65B<6, 1<€p<l, 0<t<6 and 150£2-1. Hence,
s{!) checks on eﬂ; if, and only if, ggfzm = 1, where -6<B<6 &

0<t<6, From the given generator polynomial:

2,3 2,4
From above: For, say, 8=2 & t=5, g{!) . = 0, hence s{!) does
not check on ef!). For, say, B=2 & t=0, g;ft’m = 1, hence s{V

Appendix 5.2

does check on efl). For, say, B=-1 & v=5, g{!} |

does not check on e!})

s1} does check on e

a+5

a+l’
(1)
a+5°

from the matrix eqn,

For, say, B=-5 & t=5,

Page 388

= 0, hence s}

ath

g{l) = 1, hence

2,3-5

These ’'predictions’ can be verified

Furthermore, J, denotes the number of syndromes checking

on error bit ef’ /az6
sf’ /a6,

bit

and cldenotes the size of syndrome
From (A5.2.14) and (A5.2.15), and since the

weight of the, only, generator sequence is 4: J1 =4 & ¢, =

5, which may be verified from the matrix egn,

Egqn (A5.2.12a) gives:

g1
(1)
a+l

{1)
SMZ

1)
a+d

11001

1100

11

1

(1)
ea—s

(1)
ea-s

(1)
Ca-s

1)
ec-a

(1)
a-2

(1)
ea-l
e(l)

1
below.

(2)
Ca

(2)
ea&l

(2)
eu+2

(2}
+ ea+3

Appendix 5.3 Page 389
APPENDIX §,8: FEEDBACK DECODING - PARITY TRIANGLES . .-

For FD, it is enough to consider the decoding of r,,
since all subsequent blocks are decoded in exactly the same
way (assuming no error propagation). Consider the following

rearranged version of eqns (5.8).

k
s§? = eV + etgll) /1£jsn-k (A5.3.1a)
i=1
k 1
- k 1y ,(4 -
s{) eP 4+ 3 Slellgll) . /15jsn-k (A5.3.1Db)
i=1 z=0

/1]
-
-
\

(1]
»

*
[
o

-+

i=1 z=0

Consider the expansion of the above egns (i=1,2,..,k):

(1) = .. (1) (1) . eee (k+j)
8" = + ghj'oeo L A + €y
(3) = ... (i) (i) (1) (ty 4... aes (k+j}
s1 = . + ghj’leo + gh‘,"oe1 + + e1

(3) = 40w (i) (1) (1) 1) L. 1) 1) Loeee vae (k+J)
Sa = t Brim€0 t Brejm1®1 t + 245,080 F e,

The above eqns can be written in matrix form:

" (A5.3.2)

» .. (i) . (1) (k+3)
84 gk-lj,ﬂ €0 €9

(§}) .. (1) (i) .. (1) (k+j}
& Bx+5.1 Bxey,o0 21 €

. - - - - + -

[}) .. (1) (1) . .. (1) .. ($3) (k+j)
Sa k+j,m ghj.--l gkij.o e- e-

k =
D= el > Deilgl) ., /13jsn-k (A5.3.1c)
\
\
\
|

Appendix 5.3

Note that in eqn {A5.3.2) the spaces denote zeros.

Page 390

It is

obvious that the matrix of the generator coefficients is

made of ’'triangles®' of gs.

Definition A5.3.1:

Where i'-’l,z,ooo’k & j=1,2g---’n-k’

(1)
Bkes,0

()
gk*j,l

L] * *

($9]
gkfj,l

g

g

(1)
k+j,0

(1)
k+j,m-1

The general jith parity triangle

is defined as following:

(A5.3.3)

Eqn (A5.3.2) can be written as following:

581)
(1)
5
(1)
s-
(2)
5o
2)
8
(2)
s.

(n-k)
S

(n-k)
S,

(n-k)
Sl

Aot

Ag

(A5.3.4a)

(k+1)
€0

(ke1)

<

e (k+1)
m
(k+2)

=2

(x+2)
€

(k+2)
®a

(n)
€
(n)
€
LI B B]

(n)
el

Appendix 5.3 Page 3%

Matrix eqn (A5.3.4a) can (and needs to)} be written in a
more compact form. Using the notation introduced by (A5.2.8)
and letting H(\) denote the system matrix:

{[s]3} = v {[e"[3}" + {[=°]3} (A5.3.4b)
If the transpose of both sides in the last eqn is ob-
tained (see, also, Theorem A2.2.1, p. 300), then:

[s]s = [E°]s [H(M)]™+ [F°]3 (A5.3.4c)

The dimensions of the matrices in eqn (A5.3.4c) are as
following:

[S]; iz a1l % (n-k){m+1) matrix,
.E']; is a2 1 X k(m+l) matrix,

:H(L)]T is a k(m+1l) X {n-k)(m+l) matrix and

'Eplg is a1l x (n-k)(m+1) matrix.

From the definition of the parity triangle [eqn
(A5.3.3)], one may conclude that it is made of (m+1l)(m+2)/2
g-coefficients. Furthermore, a comparison of the 1st column
of the parity triangle with the ccefficients of the genera-
tor sequence gg; (see Definition 2.5), reveals that they are
jdentical. Also, if the 1st column is shifted downwards by
one position and truncated in the bottom-end (by one ele-
ment) the 2nd column is obtained. In fact every column is a
shifted/truncated version of the 1lst. The following note

summarizes the findings.

Note A5.3.1: Consider an {(n,k,m) systematic convolu-
tional code. This code has k(n-k) parity triangles, each of
which contains (m+1)(m+2)/2 elements. The 1st column of
parity triangle Li(i=1,2,...k & j=1,2,..,n=-k) is [giﬁ]f, i.e.
the transpose of the (i,k+j)th generator =equence [or, the
same, the column of the elements of the (i,k+j)th generator
polynomial, giﬂ(D)]. The hth column {1£h<m+1) of the triangle
is obtained by a downward shift of the 1st column by h-1
positions and a truncation of its bottom end, by h-1 ele-

ments.

Appendix 5.3 Page 392

Consider now any error bit, say, e{* /0fasm & 1sp<k and
examine if any particular syndrome bit, say, s{® /0<t<m &
1<0sn-k checks on it. By inspection of eqn (A5.3.4a) one may
conclude that the error bit belongs to the pth group of er-
ror bits and within this group it is the {a+l1)th bit, i.e,.
it is the [(p-1)(m+1l)+a+l]th bit of the message error vec-
tor. The syndrome bit, on the other hand belongs tc¢ the oth
group of syndrome bits and within this group it is the
{t+1)th bit, i.e., it is the [(o-1)(m+1)+T+i]th bit of the
syndrome vector. Then, these two bits are linked via the
[(o~1){(m+1)+T+1]th row, [(pn-1){m+l)+a+l]th column, g-coeffi-
cient of the system matrix H(N). Since the latter is organ-
ized in an {n-k) X k matrix of As, each of which is an
(m+1) X (m+l1) matrix [see (A5.3.3)], the above mentioned g-
coefficient belongs to the oth row of ks and pth column of
\s, i.e. to N\, which contains shifted/truncated versions of
922. Within this parity triangle, the g-coefficient belongs
to the (t+l1)th row, (a+l)th column. If one expands the
parity triangle, one may see that 3)‘;’3,; is found in rows and
columns satisfying: z = row - column. So, z = (t+l) - (a+l)

= t~a., Hence, if 0<a%m, 15ufk, 0f£tZm & l1l%ofn-k, then:

s?” checks on e® iff g'® = 1 (A5.3.5)

a k+o,T-0

Also, from the discussion preceding reln (A5.3.5), the
syndromes checking on error bit e!{" are determined by the
[{(p-1)(m+1)}+a+l]th column of H(A); in particular, the 1s
along this column indicate the positions, within the syn-
drome vector, of the syndrome bits checking on er” (tpe top
bit is in position 1): Similarly, the bits from the message
error vector, checked by syndrome bit sf”, are determined by
the [(o-1){m+l1)+t+1])th row, of H(hN); in particular, the 1s
along this row indicate the positions, within the message

error vector, of the error bits checked by s?”.

Consider now the problem of determining J the number

u:o’
of syndrome bits checking on error bit e?“. Matrix equation
{A5.3.4a) contains, by design, all the syndromes that check

on this bit. By (A6.3.5), for a=0, the number of syndromes

checking on this bit equals the number of gn(:f?:.:' that are

Appendix 5.3 Page 393

equal to one, where n is fixed, but o & Tt are allowed to
vary over their range. Hence:

n~k = n-k

o = 2 B8, = Zw[e] (45.3.6)
a=1 t=0 o=1
Note, from (A5.3.6) that.ﬁhodepends only on the bit num-
ber n (within a bleck) and not on the time-unit 0. Hence 0
may drop from Ju&. In any case, the equations for the decod-
ing of the zeroth block are identical to those for any other
block.

Finally, the size, 5 n (/h20 & 1<j<n-k), of syndrome bit
s{) may be calculated from eqn (5.7). Again, under FD, the
decoding of the 0th block is similar to that of any other
block. Hence, the syndromes checking on any block are the
same linear combinations of error bits, like the syndromes
used for the decoding of r,. Then, hsm and hence, 6 &
MIN{h,m} = h. The size of the syndrome equals the number of
g-coefficients that are equal to 1, plus 1 {(for the parity-
check):

k h
= i
cyp = 1+ 23 gl . (A5.3.7)
i=1 zz0

The following theorem has been proved:

Theorem A5.3.1: Consider an (n,k,m) systematic convolu-
tional code with generator sequences gﬂj /i=1,2,...,k & j=1,

2,++sy3n-k. Then, under feedback decoding:

[s]5 = [E*]s[HM]™+ [FP]5. (AB.3.4c)

If 0<a<m, 1<nsk, 0%t<m & 1l<c0<n-k, then:

s?” checks on er" iff g = 1 (A5.3.5)

k¢o,T=0

The syndrome bits checking on e?” correspond to 1ls along
the [{(n-1)(m+1)+a+11lth column of H(A). The message error
bits checked by syndrome bit s{® correspond to 1s along the
[(o-1)(m+1)+T+1]th row, of H(L).

Furthermore, if J1/1$i£k denotes the number of syndromes

checking on error bit e?J and c,, /15jsn-k denotes the size

Appendix 5.3 Page 394

of syndrome bit s{¥ /h>0, then:

n-k
g, = Zw[ef)] /1sisk (A5.3.6)
3=1
k h
c,p = 1 + 3 Xglll, /1sjsn-k (A5.3.7)

i=1 z=0 .

Consider the following two examples:

Example AS5,3.1: Consider the (2,1,6) systematic convo-
lutional code with generator polynomial gyJ(D) = 1+D%2+D%+D"
(examined, under DD, in Example A5.2.1). Since n-k = 1 there
is only one syndrome bit, s{!’ /a20, which is related to the
error bits via matrix eqn (A5.3.4a). Furthermore, there is
only one parity triangle, L:, hence it coincides with the

system matrix H(h\).

Eqn (A5.3.4a) gives:

r s(()” - 1 [eé” - esz)

(v 01 e(® e(®

s{V 101 elV el

s [=]0101 e’ | + | ®

s{D 00101 el el®

s{ 100101 elt) el

- | s 1100101 eM | Legz)

Let us consider the application of the results of Theorem
A5.3.1, to the above example:

According to relation (A5.3.5), sf” checks on e?“, iff

W . = 1, where 0%as<6, 1su<l, 03t<6 & 1Sos2-1. Hence, sV
checks on ei”, iff 8214 = 1, where 05a<6 & 0<t<6. From the

given generator polynomial:

Appendix 5.3 Page 395

From asbove: For, say, a=1 & t=5, g{!) = 0, hence s{! does

2,5-1
not check on e?J. For, say, a=0 & t=5, ggg_o= 1, hence sgn
does check on eé”. For, say, az=0 & t=3, g;g_°= 0, hence sgn

does not check on e{!’. For, say, a=2 & t=2, g;2_2= 1, hence

1)

sg does check on e;”. These ’predictions’ can be verified

from the matrix eqn, above.

Furthermore, J denotes the number of syndromes checking
on error bit ey’ and c, , /a20 denotes the size of syndrome
bit sf’ /a20. From (A5 3.6), and since the weight of the,
only, generator sequence is 4, J1 = 4 which may be verified
from the matrix eqn, above.

1,h

So, the size of s is ¢, =1+ g‘” = 2
the size of s{’is c; =1+ g(” + g;” Foood g(n = 3
the size of s{' is ¢, = 1 ¢ {1+ g{l) 4ot g = 4

Again, these ’predictions’ may be verified from the last

matrix eqn.

ample A5.3.2: Consider the (3,2,13) systematic convo-

lutional code with generator polynomials g{!’ = 14D%4+D%4+D!2 &
g{? = 1+D%+DM+D13,

Since k = 2 & n-k = 1, H(A) is made of two parity trian-
gles arranged in one row, Li & k;. Eqn (A5.3.4a) for this

example, gives (see matrix egn overleaf):

Let us consider the application of the results of Theorem
A5.3.1, to the above example:
According to relation (A5.3.5), s{” checks on e, iff

g .= 1, where 0%a<l3, 1sps<2, 05v<13 and 1f£0%2-1. Hence,

si” checks on e:“), iff gg"':_u= 1, where p=1,2, 024513 and

0$t<13. From the given generator polynomials:

Appendix 5.3

g()

(1)
513

1 1

01 01

001 001

0001 0001
00001 00001
000001 000001
0000001 1000001
00000001 01000001
100000001 001000001

1100000001 0001000001

01100000001 00001000001

001100000001 100001000001

1001100000001 0100001000001

0100110000000110100001000001

eV
elD
et
ell?
e

(1)
€s

o)
(1)

€
(1)

€s

(1)
€9

(1)
€10

(1
°n

()
€2

1)
€3

el®
e®
el®
el®
e(®
e(2)

(2)
€g

el®
el
e
o(2)

10

2)
€1

(2)
€12

(2)
€13

Page 396

e(®
(3)
€
(3)
€2
(3)
€3
REN
(3)
€5
(3)
€s
(3)
e(3®
(3)
S
e(®

10

(3)
11

(3}
€52

3)
€13

Appendix 5.3 . Page 397

= g = g o g = g o g2 g@) = g =
5.0 = &3 €3,9= 83,12 = 3,0 = B3, = 83,11 " B3,13 7 1

From above: For, say, a=1, p=1 & t=5, ggg_lz 0, hence s{

does not check on e{!’, For, say, a=2, n=2 & t=13, S£i$z==1s

Y. For, say, a=7, n=1 & ©=10, ggfio-v

‘3’ does not check on e;”. For, say, a=7, pn=2 &

t=13, 3:5?:3-7 = 1, hence sg’ does check on e{?’. These ’predic-

tions’ can be verified from the matrix eqn, above.

hence si? does check on e

= 0, hence

Furthermore, Ji/i=1,2 denotes the number of syndromes
checking on error bit e{" and ¢, /a20 denotes the size of
syndrome bit s?’ /a20. From (Ab. 3 6), and since the weight
of each generator sequence is 4, J, = J, = 4 which may be
verified from the matrix egn, above.

From eqn (A5.3.7):

Dis ¢ =1+g‘“ g‘2’=3

So, the size of sa 1,0

the size of sé” is

cyg= 1+ g(1) + g(2) + g(1) + ggz) Fes o4 gu) + g(2) = 4
the size of s{}’ is

Cyp = 14 g+ g4 g e g@ ooy gl o+ gl =7

1,11 3,11 3,11

Again, these ’'predictions’ may be verified from the last

matrix eqn.

APPENDIX B.,4: PBOOF OF THE THEORY IN SECTION 534"

A5.4.1. Eraliminary. Results

Theorem A5.4.1: Let two binary n-tuples a = (“1“2"'
a) and B = (B, B, *-* B,). Then,

wlal + wiB] 2 wla®B] (A5.4.1)

where a®B is the 'bit-by-bit mod-2 sum’ of a & B and
ai,ﬂieGF(Z) /i=1,2, XY

Appendix 5.4 Page 398

Proof: Let + denote ordinary real-number addition and @

denote mod-2 addition. Then, for all i=1,2,...,n:

0 ifa, =8, =0

a;, + B, —E 1 if o,i;f B, > (A)
2 if a; = 8, =1
0 if a, = Bi=0

a, ® B, -E 1 if o, # B, > (B)
0 if a;=8,=1

From (A) & (B):
0.1@ Bis (11 + Bi /i=1,2,.-..n (A50412)

E— an(%e Bi) < i(“i" ’31) = é:lﬂi" iﬁi

i=1 i=1 i=1

—> wla ® Bl £ wla] + w[B]
QED

Lemma A5.4.1: Let a, B & U be three n-tuples with coef-
ficients in GF(2). Then the following, called the triangle

inequality, holds true:

d(a,B) + d(B,un) 2 d{a,u) (A5.4.3)
Proof: Lemma A5.4.1 follows from Theorem A5.4.1:
d(a,8) + d(B,u) = wja ® B] + w[B ® W] 2

w[(a @ B) (B u)] = w[u ® u] = d(a,u)
QED

45.4.2. Proof of Theorem 5.7

Assume that the 1st constraint-length [rJ. of the re-

.y

ceived sequence r, contains no more than t = L(dﬂm-l)/zj

channel errors. Then,
w[iel] s t & L(d,,~1)/2] (A)
Since the channel is assumed to be an additive-noise one,

e=v+r => w[lel] =w[irl + [vl] = q(irl,Ivl,) (B)

Appendix 5.4 " Page 399

Consider now another transmitted codeword v'. By the tri-

angle inequality,

d(tri,Ivi1) 2 a{iv’], (vl,) - d{ivl,Irl,) =—>
a(tri,ivi 1.} 2 atvi 1, 1vl,) - w[lel,] (fusing (B)]

—> d[lrl,Iv']) 2 q(Iv’'1,iv],]) - t lusing (A)] (c)

Since, d

ain
words, over the 1st constraint-length (the c/ws differing

is the minimum distance between any two code-

only in the first source bleck),

d([v]_,[v’]_) 2 d-u: and using inequality {(C):

d(Irl,Iv’],) 2 d,, - t (D)

From (A), if d,, = odd, then, d_, -t =4d, - (d_in-l)/Z =

(d‘m+1)/2 > t, while if d“n= even, then, d“u— t =4d, -
(da,=2)/2 = 1 ¢ d_ /2 > t. So, from (D): d{Irl,{v’1) > t.

Hence, the distance between the received truncated se-
quence [r]_ and the transmitted truncated codeword [v]_ is
smaller (£t) than the distance between [r]_and any other
codeword.

So, over the 1st constraint-length, ne codeword v’, that
differs from the transmitted codeword v over the 1lst source
block ([u’l, # [u],), is closer to r than the transmitted
codeword Vv, if no more than t errors occured over the first
constraint-length (<===> the weight of [e] is £ t).

Consider now t+l1 channel errors over the 1lst constraint-
length. Then reln= (A} & (B) are modified, as following:

- - w[[B]_] = d([r]_,[?];) = t+l (E)

Since d_n‘is the minimum distance, there will be a code-

word ¥' such that d([vﬂ_,[v’]_) 2 d,,, where v & v! differ
only over the 1st source block. Then from (A5.4.3),

—> aflri,iv']) 24, -t -1 (F)
If dlin = odd, then, dlin -t-1-= d-in = (d.m-l y/2 -1 =
(dgyp-1)/2 = t. If d_, = even, then, d,, -~ t - 1 = d, -

(d,,-2)/2 - 1 = (d_,-2) - (d,-2)/2 +1 =t + 1. Hence, from
relns (E) & (F), one concludes that there exists at least

Appendix 5.4 Page 400

one codeword which is as close to the received sequence as
is the transmitted codeword [vl], (or closer, if d_, = odd}.
QED

A5.4.3. Eroof of Jheorem 5.8

Majority-logic decoding is based on the 1lst constraint-
length. If at least J parity checks can be formed on the
error bits of the 1st block, then this decoder can correct
lJ/2] or fewer errors in the 1lst constraint-length. Obvious-

ly, this capability cannot exceed t:

/2] § L(d,,=1)/2) s>

> L(d_m-l)lz_l + (=-J/2) 20 /J=even
> L(d,,m1)/20 + [-(J-1)/2) 2 0 /d=odd
> L(d_m-l)IZ-JIZJ z 0 /J=even

—> 1(d,, -1)/2-(J-1)/2] 2 0 /J=odd

o d_in-l-d =0 /Jzeven =m
—> d - 20 /Jzodd w sin
QED
APPENDIX 5.6: PDROOF OF THEOREM 5.8 *
i) The syndrome bits that check on eSJ are orthogonal

on ef’ /i=1,2,...,k & h20. Then this will be true for h=0,

hence according to Definition 5.4*, the code is a CSOC.

ii) The code is a CSOC. Assume that there exists an a20
for which, the syndrome bits that check on er" (1<psk) are
not orthogonal on e{®™. Then, there will exist two syndrome
bits, say, s:"’ & si‘,’" that will check on e:“) and on somne
other error bit, say, eﬁf“ (where, either a#a', or p#p’, or
both). Consequently:

s:") = ei") + ei‘,‘" 4+ +++ [sum of other error bits] (A)
sif’ = e?” + e:T) + +++ [8um of other error bits] (B)

Comparing with the general syndrome egqn [(5.7)}, p. 138],

¥ See p. 138.

Appendix 5.5 Page 401

one can deduce the following results:

From egn (A): gg‘;'t_‘ = gif;f‘_a, =1 (c)
. (- ") =
From eqn (B): g, e =B e R (D)
where [again from eqn (5.7)],
1<p,p’<k, 1l<o,0’sn-k and — R (E)
0<t-a,t-a’<MIN{z,m} & OsSt’-a,t’-a’<SMIN{c’,m} —
Without loss of generality, one may assume that:
a’za (F)

Consider now syndrome bits s{® & s!J). From the general

syndrome eqn [(5.7}],

9 k

(= k i i
1:'.’) -~ ei-;‘,) + z e'l:-l)l-z gL;.z (A5.5.1)
z=0 i=1
where: © = MIN{m,t-a}.
e'
{o') _ (k+o’)) (1)
st",-a = et'-: + Z ze Vegez gkw’ (A5.5.2)
z=0 1=1

where: ©' & MIN{m,t’-a}.

Consider eqn {A5.5.1); from (E), 0 £ t-a $ MIN{t,m}. So
t-a < m and hence, 6 = t-a. Then z2 = t-c is a permitted val-
ue because 0 € z £ 6. Also, from (F), a’ 2 a <(==m> T-a’ £
.t-a. Since, from (E) 0 € t-a’, z = t=-a’ is also a permitted
value. With respect to eqn (A5.5.1), consider the two terms
defined by z = t~a & i = n and 2z = t-a’ & 1 = p’:

s{® = [e gy Timm [e(” g e [] —

T=a-z°k+o,2z | 2zT=-a t-0-z%k+a,2 [Z=T-a’
— (o) o) o (n) n*) 4 (n") ‘ee
> By T {eo gho.t-a] + [ea'-n ha.t-u'] + [] (6)

Similarly, from egqn (A5.5.2), using the same arguments as
above, 2 = t'’-a & z = t'-a’ are permitted values of z. Con-

sider the terms z = v’-a & i = pn and z = t’-a’ & i = p’:

(o') = (1) (1) i=p (1) ‘1) izp’ en e ——
Sytea T -a-zgkvo’.z zzv'-a + [v'-a-28 keo*,z |Jzz1’~0’ + [] >
g?") {n) (0} e(B’)a(n*) cesn
— t’-l = [eo gk#c',t"ﬁ] + [ll’-d kfﬂ'.‘l"ﬂ'] + [] (H)

Note that the four g-coefficients shown explicitly in

Appendix 5.5 Page 402

egns (G) & (H) are all equal to 1 [according to egqns (C) &
{D)]. Then,

s®) o (u) + e"' [] (1)

T-a

(o')
st'-n

{u) + e(u) [} ()

Syndrome bits sifz & s:‘,’:l both check on eé“’, but they also
check on eiﬁ;. Since, by hypothesis, a’-a # 0, or u # n’, the
code is not a CSOC which contradicts the initial hypothesis,

hence the assumption was not correct, hence the syndrome

bits that check on e{" are orthogonal on e{", for all a20.
QED

APPENDIX 5.6:

The fact that a code which is self-orthogonal for FD is
also self-orthogonal for DD, may be exploited to limit the
discussion to parity-triangles,

For a code to be a CSOC, all syndromes that check error
bit e$3 (1<i<k) must be orthogonal on eé”. This means that
apart from egn, these syndromes should not check any other
error bit twice.

According to Theorem 5.6 [see reln (5.16)], if 0<fa<nm,
1spsk, O<tsm & 1<0sn-k, then s{® checks on e{" iff gﬂ‘z’tq = 1.
Then, the syndromes that check on eyd /1%i<k, correspond to
ls along the first column of parity triangles hi /3i=1,2,..
«yn-k, If the triangle matrix, H(A), is considered and,
say, an arrow indicates the rows that contain 1s along the
1st column of these trigpgles, then these arroqg_indicate,_
in effect, the_éynérome bits that check on es“. Any 1ls along
the 'arrowed’ rows, apart from 1s in the 1lst column, indi-
cate other error bits that are checked by the corresponding
syndrome and are ’marked’ by, say, replacing them with BN.
According to Definitions 5.4 & 5.2, no other errer bit
should be checked twice, hence no two Bs should appear along
the same column., If this is the case, the code is self-or-
thogonal and this has to be the case if the code is to be a

self~orthogonal one.

Appendix 5.6 Page 403

The following examples will help clarify these ideas.

Example A5.6.1: Consider the (2,1,6) systematic code
with generator polynomial gi{’(D) = 1+D%+D°+D%, already exam-
ined in Examples A5.2.1 & A5.3.1, Since k = 1, there is only
one bit in e,. From the previous analysis its {(only) parity

triangle, complete with its arrows and Bs, appears below:

—_> E
‘T 1
—> EQ0N
T'1 01
RIIIT
—> ENOOWON

where the position of the error bit on which the syn-
dromes (whose position is arrowed) are orthogonal, has been
highlighted.

Note that each column contains no more than one B, hence
all J = 4 syndromes checking on e{! are orthogonal on this
bit. The size of the four syndromes is 1,2,3 & 4, hence the
gs is 1+(1+2+3+4) = 11. Hence,

this code will correctly estimate the error bit e?J whenev-

effective constraint-length, n

er J/2] = 2 or fewer errors occur among the 11 bits of the
effective constraint-length, which are confined of course

within one actual constraint-length n, = (m+1)n = 14.

Although it is not necessary, one may repeat the above
for the parity square. According to Theorem 5.5, the syn-
dromes checking on e{®, correspond to 1s along the (m+l)th
column of parity squares Pi /3=1,2,...,n=-k. From Example
Ab5.2.1:

—> ‘KN OO NOQE = :
1100101
— ANQVEQN
1100101
1100101
— ETOONON"
—_ ‘ERoONOW

where highlighted is the position of the error bit on
which the syndromes are orthogonal.

The above arrangement shows that the code is self-orthog-

Appendix 5.6 Page 404

onal under DD (as expected)}, and it also, graphically, il-

lustrates, the reascon.

Example A5.6.2: Consider the (3,2,13) systematic convo-
lutional code with generator polynomials ggn = 1+D%4+D%+D!? &
9;2) = 1+D%+DM4D!3, examined also in Example A5.3.2. Since k
= 2, there are two arrangements of the parity triangles to

be considered, one for each of eg” & eé”:

The arrangement for eé”:

—>¥) | |
01 01
001 001
Q001 0001
00001 00001
000001 000001
0000001 10006001
0000001 i 01000001
—$098.9898 . gpmo0ooQN
—>T¥0000000 T AOONOO00 0N
1100000001 0D0D0ODDITODO0D00 1L
g 01100000001 190001000 8 01
—>E¥00BBOQQ000O0QN OB0QC0008 QO LRI |
0100110000006 01101000010000O01
The arrangement for ef’:
—>N . i 3
01 U1
001 001
0001 0001
00001 00001
000001 000001
—>0 0000 0N) $00000N
0000D0D0DD1I 91000001
100000001 001000001
11000600001 0001000001
0110000 8 001 0001000001
—0 08 XO0O00 200N FOOQOQNOQO000O0ON
1 g 01100000001] é D00D0D1IT0DODDVDO0OO01
—>f CORNBOQCQO0 QO NEOROQOORKQOCCOQN

Note that each of ey) and ef) is checked by J=4 syn-
dromes; furthermore, these sets of four syndromes are or-
thogonal on their corresponding error bits, because no two
B: can be found along any of the columns of the triangles.
Hence the code igs a CSOC and can correct 2 or fewer errors
from among the n, error bits of its effective constraint-
length.

The actual constraint-length is n, = (m+1)n = 14 x 3 = 42.

A

Note that n for the decoding of a certain error bit,

equals the sum of the sizes of all syndromes checking on

Appendix 5.6 Page 405

that bit plus one (see Definition 5.5). From the triangles
above, the size of each syndrome equals the number of Hs
along the 'arrowed’ row plus 1 {for the corresponding parity
error bit). So for each of the two cases, n, should equal
the total number of arrows, which is 4 (that accounts for
the parity error bits) plus the total number of MBe, which is
14 for ef! and 15 for e{?) (that accounts for the total num-
ber of message error bits) plus one (that accounts for the
error bit checked by the set). Then the effective con-

straint-length for esn is 19 and for esn is 20.

APPENDIX 6,73

With Definition 5.9 in mind, let us now try to determine
the N, of a CSOC, under FD. Note from the general syndrome
eqn (A5.3.4a) that each column of H(A) corresponds to a
specific information error bit; for example, a ’one’ any-
where along the first column of H(\), implies that ey’ is
checked by a syndrome bit (in fact by the syndrome bit of
the row in which this ’'cone' appears). In general, according
to Theorem 5.6, for pe{l,k], a€[0,m], o€[l,n-k] & te€[0,m}
syndrome bit s{°’ checks on error bit elW, iff gg‘:'t_a =1, i.e.
if the element of H(LA) in the [(p-1){(m+l)+a+1]th column &
[{o-1)(m+1)+T+1lth row, of H{L), is 1. Also, by inspection
of eqn (A5.3.4a), syndrome bit s{® checks on parity error
bit e{™?; hence one parity error bit must be considered, iff
the‘porresponding syndrome bit is a member of an orthecgonal
éét. Taking into account the above conclusions, the follow-
ing set of instructions may be proposed for the calculation

of the N!of a CSOC.

Note A5.7.1: Let an (n,k,m) systematic CSOC, with tri-
angle matrix H(h). To calculate the block effective con-
straint-length of this code, under FD:

i) Inspect column [(p-1)(m+1)+1] /n=1,2,...,k of H(\);
the 1s indicate the syndromes orthogonal on eg“. For p=1,2,.

Appendix 5.7 Page 406

.s3k, let the set of ordered pairs R“6 {(o,t) /1%05n-k &
0<t<m : position [(oc-1){(m+1)+t+l] of column [{u-1)(m+l)+1]
is 'one’}. By {A5.3.5):

R,= {(ost) : g{®) =1 /1Sosn-k & Osvsm} /lspsk (A5.7.1)

k+o,T

Let ‘Rnl’ the number of elements of Rn’ be Jn' J“ is the
number of syndromes orthogonal on e{® and R, indicates both
the set of syndromes orthogonal on e{" and the set of pari-
ty error bits that are checked by this set of syndrcomes. In
other words, Rpis concerned with the 1st column of the nth
column of parity triangles (i.e. with the 1lst column of hg
/3%1,2,+..4n-k). Specifically, (a,t)eRpif there is a ’one’
in L:, in column 1 and row t, where t ranges from ¢ to m.
Conversely, if (o,t) € R“, then error bit egm is checked by

syndrome bit s:”.

ii) Let the union of the Rs: R “ R, UR,U -+ U R,.
R indicates both the complete gset of distinct syndromes that
check on the 1st information error block e; and the set of
distinct parity error bits that are checked by this set of
syndromes. Hence, |R| is the contribution of the parity er-
ror bits towards N;. R is the set of rows of H(\) that are

*involved' in the estimation of e,. From (A5.7.1):

R = {(o,T) : g} =1 /1spsk, 1gosn-k & O<tsm) (A5.7.2)
iii) Consider now the set, C, of message error bits,

exclusive of 8, that are checked by the set of syndromes
indicated by R. Inspect all columns of H(\), apart from

columns [(o~1)(m+1)+1] (i.e. apart from the 1st column of

each parity triangle), for at least one ’one’ in a position
(row) specified by R. A row of H(A) can be written as
(o,t), where o is the row of triangles (120fn-k) and T is
the row within the triangle {(0<t<m). Similarly, a column may

be written as {B,a) (1<B<k & 0<a<m). Then, C may be defined

2 L)

as the set of those columns (B,a) which contain a ’one’ in

at least one of the rows of R: C = {(B,a) /1<Bsk & 0sSasm :
element [(o,T),(8,a)] of H(N) is ’one’, for all (o,t}€R}.

Fromn the discussion in Appendix 5.3:

Appendix 5.7 Page 407

k+g,T=0

C = {(B,a) /1<B<k & O<a<m : g® =1 & (o,t)eR} (A6.7.3)

Then, |C] is the contribution of the message error bits,
exclusive of the ones that are checked (i.e. of eo). towards
N;,. C is the set of columns of H(L) that ’participate’ in
the estimation of e,.

iv) Then: N, = k + |R| + |C| (A5.7.4)

|

Example A5.7.1: Consider now the calculation of the
block effective constraint-length (under FD), N;, for the
(3,2,13) systematic code with generator polynomials ggn = 1+

+D%+D?+p!? and g{? = 1+D%+D114+D1, examined also in Examples
s
A5 - 3 * 2 * & As L] 6 * 2 »

From above:

ggfa = gt = g) o gll) 2 o) = g2) = g2 o g2} o

3,8~ 3,0 53,8 3,11 3,13

Using the instructions of Note A5.7.1:

R={(o,v) : g{¥) =1 /1=ps2, 15051 & 027213} =eem>
R={(1,7) : g =1 /p=1,2 & 051513} =—>
R = {(1,7) /v=0,6,8,9,11,12,13} ==> |R| = 7

Hence, the rows of H(\A) to be examined, are along the
1st row of triangles, and specifically rows 0, 6, 8, 9, 11,
12 & 13. Then, excluding columns (1,0) & (2,0) (i.e. the 1Ist
column of each of the two parity triangles), columns (1,x)
/x=1,2,3,4,5,6,8,9,11,12,13 & (2,y) /y=1,2,3,5,6,7,8,9,11,
12,13 contain a 'one’ along at least one of the rows of R
{see bp. 396 & 401). Hence;]é[= 22. Alternatively:

C = {(Bya) /15852 & 120513 : gff) (= 1 & (1,T)eR} mem>
c = {(B,a) /15852 & 150513 : g{f) =1 & 1:=0,6,8,9,11,12,13}

_—> = {(l,n.) /12a€13 : g =1 & t=0,6,8,9,11,12,13] U

3,T=0a

1] {(2,0.) /1%a<13 : @ =1 & t=0,6,8,9,11,12,13} w—>

3,%=a

c = {(1,0.) /1€a€13 : t-a = 0,8,9,12 & t=0,6,8,9,11,12,13} U

v {(2,0.) /1013 : t-a = 0,6,11,13 & 1:=0,6,8,9,11,12,13}

Appendix 5.7 Page 408

—

C = {(l,a) /azl : a=t,1-8,t-9,T-12 & t=0,6,8,9,11,12,13} 1]

¥ {(2,a) /azl : a=t,1-6,t-11,7T-13 & t=0,6,8,9,11,12,13}

—

c = {(1,a) /a=6,3,9,11,12,13,1,3,4,5,2,3,4,1} U

U {(2,0.) /0.26,8,9,11,12,13,2,3,5,6,7,1,2}

———
C = {(1,a) /a=1,2,3,4,5,6,8,9,11,12,13} u
U {(2,a) /a=1,2,3,5,6,7,8,9,11,12,13}
—— {C] = 11+11
Then, from (A5.7.4): N,= 2+ 7+ 22= 31

In order to verify the above results consider the syn-
dromes checking on block e,. From Example A5.3.2 (p. 395):

N e® + el®
s = eftt & eV + el? + ef® + esd
s = el 4 el + oV & el + ef® + el®
e o e Do PPy o
s = eV 4 ef?t + el *
st = efV + el + e{® 4 el®
siD = el + efl + el + el + el + oD + el

(2) 4 o(2) 4 o(®

(1 _ (1) 1 (1) 1) 143 (2)
s = ey ey ey 4oeny +e™ e +oeg 13 13

13

The above equations will now verify the predictidns.ﬁThé
syndrome bits that check e, check 19420 = 39 error bits,
while N, was found to be 31. Then, 39-31 = 8 error bits must
be found to be duplicated, in the above equations. Further-
more, the actual constraint-length is 42, hence 42-31 = 11
bits of the actual constraint-length must be found to be
missing from the above egns. The error bits that participate

in the eqns above are:

* This eqn is identical with the lst one, but fs repeated for symmetry.

Appendix 5.7 Page 409

s /4 = 0,8,1,9,3,4,12,0,6,2,3,11,1,4,5,13.

2% /o = 0,2,8,3,9,1,6,12,0,6,5,11,2,7,13.
e fa = 0,8,9,12,0,6,11,13,

From e, a = 0,1,3,4 are duplicated and a = 7,10 are

missing.

From e?’, a 0,2,6 are duplicated and a = 4,10 are mis-

sing.

From e!®, a = 0 is duplicated and a = 1,2,3,4,5,7,10 are

missing.

Then, indeed 8 bits are duplicated and 11 are missing.
|
APPENDIX 5,.8: DISTANCE PROPERTIES OF CG0OCe

A5.8.1. Proof of Theorem 5.11

According to egns {A2.5.4) & (A2.5.5) (pp. 310-1),

dyip & MIN[WIV], : [uly # O} (A5.8.1)

Recall from eqn (2.67) that, if v is a codeword (c/w),
then vH' = 0. Consider {vl,, the 1st constraint-length of v;
this is a 1 X n{m+l) row vector. Consider, also, a suitable
truncation of H; from Definition 2.13, [H]. is an
(m+1) X (m+1l) matrix of (n-k) X n submatrices, i.e. [H]] is
an {(m+1)n X (m+1)(n-k) matrix. So:

If v is a c/w, then [v][H]I=0 (A5.8.2)
where 0 is the 1 X (n-k)(m+l) zero row-vector.

Note from eqn {(A5.8.2) that the matrix product equals the
sum of the rows of [H]] that correspond to ’ones’ in [V],.
Since this product is zero, any sum of rows of [H]: or, the
same, any sum of columns of [H]_that is zero corresponds to
a codeword. Furthermore, one may require that this c¢/w is
such that its 1st information block [u]o is non-zero; this
restriction is imposed so that one will be able to calculate

d_n‘[see eqn {A5.8.1)]. The restriction that [u]o £ 0 is

Appendix 5.8 Pags 410

equivalent to [v'L,# 0, since v®" = u, for systematic codes.
Hence, any sum of columns of [H]., including at least one of
the first k, that is zero, corresponds to a c/w which is
non~zero in its first information block.

QED

A5.B.2. Proof of Theorem 5.12

From the general form of H for an (n,k,m) systematic con-
volutional code (see Theorem 2.11), and the directions for
the construction of [H]_(see Theorem 5.11):

[H]. = Pl o Pl o P} I (A5.8.3)

- L] L] > L] L]

Pl o Pl,o P ,0 - P I

m-1 n-2

According to Theorem 5.11, to calculate d one would

min
have to consider at least one of the first k columns, i.e.
at least one of the columns of [P, P, <+ P;]T.

According to Theorem 2.6:

(1) (1) P (1)
gkel.z ghz.z gn.z

For all z=0,1,..,m: P, = k#l,z Thed,z moZ (A5.8.4)
(x) x) ... gk
ghl.z ghz.z gn,z

From eqns (A5.8.3) & (A5.8.4) C,» the pth column of [H],
contains the following elements (1sp<k):

2 (n) ny ..) () n) . nm ,. (n) m L. (n)
C,= (gku,o Byxi2,0 Bn.0 Bxi1,1 Bxez,1 €1 Bxi1,m Eke2,m Eo.n

If the weight of C“is considered, a rearrangement of the

elements is permissible:

Appendix 5.8 Page 411

- (n) () s n) (n) (n) P (n) '] (Il) (“)- - (n)
W[Cu] = ngku 0 Bxe1,1° " " ©xel,m Brs2,0 Bre2,1° " 'Exez,n” * “Eny0 En "Bn,n

— w[C“] = w[g{f;, {‘:.",,...,g;‘"]
—> w[c,] = w[g;';; /u=1,2,...,k (A5.8.5)
The theorem follows from egn {(A5.8.5) and Theorem 5.6.
Note, also, that H & [H]_ are identical in their first n

columns [compare eqns {(2.59) & (A5.8.3)].
QED

A5.8.3. Froof of . Iheorenm 5.13

Let any of the first k columns of [H]_, say C“. According
to Theorem 5.12, its weight is J“. There are always J11 more
columns of [H]- that together with Cu sum-up to =zero. This
can be seen from egn (A5.8.3). Columns k+l,...,n,n+k+l,..
es2n,2n+k+1,..,3n,...,hn¢k+l,...,(h+l)n,...,mn+k+l,..,(m+1l)n
correspond to the elements of the identity matrix In_k, hence
they contain exactly one ‘one’., Furthermore, from (A5.8.3),

there are exactly (m+l1)({n-k) such columns, each one with its

L] H

one’ in a different row and there are (m+l){(n-k) rows in
[H]-. Hence, [H]_ has always .J“ columns which sum up to zero
together with C“, hence d.in cannot be greater than ‘Ju+1' In
fact, since J = MIN{..!Il /8=1,2,...,k}, d_mS J+l.

QED

Appendix 6.1 Page 412

APPENDIX 6,1 FROOF OF THE THEORY IN DECTION 6.1

A6.1.1. Eroef . of lewma 6.1

Let 31/i=1,2,...,d be the bits orthogonal on e_,. Then
£ te /15i%J depends entirely on error bits other than e,
because each £, /i=1,2,...,J checks on e, . Let P(Z=n|e =0} =
P. Then, P is the probability that exactly n, of the {31}’
are 1, given that e =0 or, the same, P is the probability
that exactly n of the {Bi+e_} are 1, where e_=0 or, the same,
P is the probability that exactly J-n of the {B£+e.} are 0,
where e-=0 or, the same, P is the probability that exactly
J=p of the {E& - are p, where e_=0 or, the same, P is the
probability that exactly J-p of the {31} are 1, given that

e_=1. Hence:

P(E=p|e,=0) = P = P(E=J-n|e,=1)

QED
A6.1.2. Proof of Theorem B.1
BB,(T) < 0 /T<X <mmma> B(T-1) > By(T) /T<X (A)
If X=integer, by hypothesis:
BB (X) = 8B (1X)) = 0 (mmm>
cm=> By(X) = By(X-1) = By(LXJ) = RBy(1xJ-1) (B)
If X=integer, because [X] = X:
T<CKX (mmmd> T=1,2,000yX]1~1 (C)

From (A), (B) & (C):
If Xzinteger: B8B(T) < 0 /T<X & BB(X) =0 <o
Cmmmd> B,(0) > By(1) > +-e > B (1X]-1) = B,y(1X]) (D)
If X#integer, because [XJ < X:

T<CX <mmm> To=1,2,.0.,X-1,LX] (E)

From (A) & (E):

Appendix 6.1 Page 413

If X#integer: BB,(T) < 0 /T<X Lomm>
Commm> B,(0) > By(1) > oo+ > B(1X]1-1) > B,(LX]) (F)
From (D)} & (F):
[6By(T) < 0 /T<x] & [8B,(X) = 0 /X=integer]| <=
Crmmmm> P{0) > By{1) > c-+ > B,(1XI-1) 2 B, (LX]) (G)
Consider now the 3rd condition:
8RB, (T) > O /T>X — R,(T) > Pd(T-l) /T>X {H)
T>X — T = J,Jd-1,...,1X]+¢1 > X (1)
From (H) & (I):
BB, (T) > 0 /TOX Commmmd
< —> B,(J) > By(J=1) > »o+ > R, (1X]+1) > B, (LX1) (J)
From (G) & (J):
[6B,(T) <0 /T<x] & [6B(T) >0 /TX] &

& [8Py(X) = 0 /X=integer| <=—=> MIN {BatT)} = By(Lx))

(> T = |X]

[+

QED

AS.1.3. FEroof.of Theorem 8.2

Clearly, the mod-2 sum of q_bits is 1, iff any combina-
tion of an odd number of them is 1.

Since there are C(c,i) = :.c!/[i!(c-i)!].. combinations of- i
things out of ¢, then there are C(c,i) distinct patterns of
¢ bits of which i are 1. Because a bit assumes its value (0
or 1) independently of the other bits, then the probability
that exactly i of the ¢ bits are 1, and of course c~i are 0,
is pl(1-p)°!; this is the probability of one of the C(c,i)

patterns mentioned above. Then,

P = E(f{)p‘(l-p)"“ (A)
i=z1
i=odd

Appendix 6.1 Page 414

e > 1 [izodd ==
Let: . 1) & — —> (B)
(1) —> [fizeven —

From egns (A) & (B):
P = 3{§)iDIpt(1-p)*t (c)
i=1

— [1-(-1)1/2 = 1 /i=odd — _
1-(-1)¢ — T
[1-(-1)*3/2 e [1-1]/2 = 0 /iseven — ‘o

Then, from (B) & (D): f(i) = [1-(-1)%]1/2 and combining
with (C):

P = $31C(c,i)[1-(-1)*]p*(1-p)°? wmm>
i=1

P = [Zclc,i)pt(1-p)*! = FCle,i)(~p) (1-p)*!]
i=1 i=1

——> P = t{[p+(1-pn°- u—p)+(1-pn°} = 3[1-(1-2p)°]

where the binomial expansion was used [see (A6.1.3), be-

low].
QED

A6.1.4. Approximations to (1-20)7

Theorem A6.1.1: Let p be a small positive real number

and ¢ a positive integer. Then:

LIM (1-2p)¢ = e-%c (A6.1.1)
0

Proof: - - Let

x & (1-2p)° <mmm> x = e®l0(1-2p) (A)

It is well known that (see Kreyszig [40], p. 579)

e* = Zzili! (B)
i=¢

Applying (B}, in (A):

Appendix 6.1 Paga 415

x = D leln(1-2p)]Y/it = 1 + 3 [eln(1-2p)]i/i! smam>
i=0 i=1

—> LM {x} =1+ Ld { f}[clnu-Zp)]i/i: } o —
i=1

—1 i
—— - 1 - i
> plﬁ% {x} 1+ Eu/l:)[c{:ﬂg 1n(1 zp)}] (C)
From Kreyszig [40], p. 580: LI% {ln(l-z)} = -z (D)
'—

From (C) & {(D):

LIM {x] = 1 + 3(1/i1)(-2pc)* = e [by (B)]

=0 11
QED
Theorem A6.1.2: Let p be a small positive real number
and ¢ a positive integer. Then:
(1-2p)°¢ > 1-2pc /pc«l (A6.1.2)
Proof: It is known that (see for example Biggs [36], p.
69):
n
(a#B)® = Fa's™(}) (A6.1.3)
=0
From {A6.1.3):
c c
(1-2p)° = J-2p)*(§) = 1 - 2zpe + F(-2p)*(§) (A)
1=0 i=2

Consider the magnitude of the ratio of the (i+1)th, over
the ith, term of the summation in the RHS of (A), where
iefl,c-11]:

R(i) & |(-2p)¥*c(c,i+1)/(-2p)}/C(c,i)| w===>

R(1i)

2pctit(c~i)(c=i=1)!'/lc!(i+l)it(c-i-1)!] S— >

T R(4)

2p[{ec-i)/(i+1)]

Since (c-i)/(i+l) is a decreasing function of i€[l,c-1]:

R(i) £ R(1) = 2p{(c~1)/(1+41)] = p(ec~1) < pc

Appendix 6.1 Page 416

Hence, the terms in the summation in (A) decrease by a
factor of at least pe (if pec<l), as i increases in steps of

1. For pc«l, the summation may be eliminated:

(1~2p)°¢ = 1-2pc /pc«l
QED

A6.1.5. Exampliss of the Calculation of P(Izn{e 0)

Example A6.1.1: Assume that J=4 & n=3. Then, frem egn
(6.18) {p. 155):

P(z=3|e-=°) = (Q1Q2Q3Q4) szme(z)Kx(s) p—>

x(1)
1ex{i)<x(1i+¢1)<4
1¢i<3

P(2=3]e,=0) = {9,9,9,Q,) (KKK, + KKK, + KKK, + KKK, (A)
Alternatively, from eqn (6.19):

P(2=3]e,=0) = (P,P,PP,) X [Kyy, | =—

y{J)
1ey(d<y(jel)a
1£3¢4-3

P(z=3]e,=0) = (P,P,P,)(K;* + K3' + K + K (B)
i

Example A6.1.2: Consider now scme figures for the case
of Example A6.1.1. Let p=10"* and c,;=1, ¢,=3, c¢,=6 & c,=12.

Then, using Theorem 6§.2:

TABLE A6.1.1°
i cy o _Pi) in i K,)
1 1 1.00000x10"* 0.99990 1.00010x10°*
2 2,.99940x10"* 0.99970 3.00030x10°*
3 6 5.99700x10"* 0.99940 6.00060x10™*
4 12 1.19868x10°3 0.99880 1.20012x1073

From TABLE A6.1.1:

P,P,P.P, = 107* x 2.9994x10™* x 5.997x107* x 1.19868x107°

= -14
o> P,P,PP, = 2.15708x10 (A)

From eqn (B) of Example A6.1.1:

Appendix 6.1 Page 417

P(£=3]e,=0) = (2.15708x107){9999 + 3333 + 1666.5 + 833.25 |

— P(£=3]e,=0) = 3.41504x10"

Example A6.1.3: Consider the case of the previous two

examples, for P(Z=ple_=0) /n=0,1,2,4.
Obviously:
P(E=4|e,=0) = PP,PP, = 2.156708x107 (A)
P(£=0]e,=0} = §,@,9,9, = 0.99780 (B)
From (6.18):

P(}:=1|e_=0) = (Q1Q2Q3Q4) ZK:\:(I) —

x(1)
1ex(i)<x(isl)cs
1cict

P(I=1]e=0) = (Q8,9:Q,) (K, +K,*KK,) = 2.19538x107 ()

From (6.18):
P(I=2|e,=0) = (Q,2,0.9) T Kikery ==
x(1)

lex(i)ex(isl)ce
1¢i¢2

P(I=2e,=0) = (@,8,9:Q,) (K;K,*KKy*K K, +K K +K K +KK,)

—> P(I=2]|e=0] = 1.46706x10° (D)

Example A6.1.4: Consider now the details of Example
A6.1.3 and the calculation of B,. Since J=4, (J-1}/2 = 1.5.

_From (6.23b): - B

2,(T) = é} p(£=n]e,=0) + (1-p) za:p(z=p|e_=o) JTZ0 >
p=1

p=4’

B, = p(z=4|e_=o)+(1-p)[p(z=1|e_=o)+p(>:=z|e_=o)+p(z=3|e_=o)]

—> B, = P(I=4|e,=0)+(1-p)[1-P(2=0|e,=0)-P(5=4]e,=0])]

— P

a = PP(I=4]e,=0) + (1-p)[1-P(Z=0]e,z=0)]

— R {0) = 2.200x103 (4)

Appendix 6.1 Page 418

Similarly, from (6.23b):

B(T) = éP(Z'—‘p[e_ﬂ)) + (1-p) zz:P(Z=11|e.=0) [Tzl —
p=3 n=2

=—> By = P(3=3]e =0} + P(I=4|e,20) + (1-p)P(Z=2|e=0)
—> P,(1) = 1.467x10"° (B)

From (6.23a):

B,(T) = ép(z=p|e_=o) + pzz:p(z=p|e_=o) /T2 mmme>
n=3 p=2

B, = P(3=3|e,=0) + P(Z=4]e,=0) + pP(I=2|e,=0)
— P, (2) = 4.882x107" (c)

Similarly, from (6.23a):

B,(T) = ﬁ:p(z:me_:o) +p f}p(z:u]e_:o) PACK I
n=4 p=1

B, = P(I=4]e,=0) + p[P(I=1]|e=0)+P(I=2|e,=0)+P(Z=3 e =0)]

—> B, = (1—p)P(I=4|e-=0) + p[l-P(2=0|el=0)]

—> P,(3) = 2.200x1077 (D)
Finally, from (6.21): Pd(4) = 10 -4 (E)
[

APPENDIX 6.2:

In this appendix, the term channel capacity will be in-
troduced, together with any other related concepts. The
channel between two devices (usually between a pair of com-
plementary devices like encoder & decoder, modulator & de-
modulator, etc) is understood to mean the collection of
hardware and physical media between the O/P of the 1st and
the I/P of the 2nd. In communications, channels are usually
'noisy’, i.e. they distort the message signal in a random
fashion. This undesirable effect destroys some of the infor-

Appendix 6.2 Page 419

mation contained in the message signal. It becomes clear,
therefore, that a measure is required, of the amount of in-
formation about the message signal contained in the observed
O0/P of the channel. Shannon defined the concept of mutual

information between events A & B:

Definition A6.2.1: The mutual information between
events A & B, denoted by I1{A;B), is the information provided

about event A by the occurence of event B.

A measure for I{(A;B) should satisfy the following two
intuitive properties (see, for example, Viterbi & Omura,
[26]1):

i) If A & B are independent events, then the occurence
of B should provide no information about A.
ii) If the occurence of B indicates that A has definite-
ly cccured, then the occurence of B should provide

us with all the information about A.

With the above specifications in mind, the following

measure is proposed:
I(A;B) = 1ogP(A|B)/logP(A) (A6.2.1)

Consider now a discrete memoryless channel (DMC - see
Paragraph 1.1.4.) with input alphabet X, output alphabet Y
and conditional probabilities P(ylx), where the ys are let-~
ters of the O/P alphabet and the xs of the I/P alphabet. Let
furthermore gq(x) denote the probability of occurence cof the
1/P letter x.

The mainiiniereét, with respecthfo—a chﬁnnel, is_the
average amount of information, the O/P of the channel pro-
vides, about the 1/P.

Definition A68.2.2: The average mutual information be-
tween inputs and outputs of the DMC is defined to be:

I(X;Y) & E[I(x;y)] (A6.2.2)

I(X;Y) is defined in terms of the P(y]x)s and gq(x)s. It

Appendix 6.2 Page 420

is possible to maximize I(X;Y), over all I/P-letter proba-
bility distributions, q{(x):

pefinition A8.2,3: The channel capacity of a DMC is

defined to be the maximum average mutual information, where
the maximization is over all possible input probability dis-

tributions:

c & MAX{I(X;Y)] {A6.2.3)
1
|
By symmetry, the capacity of the BSC, is achieved when
its two inputs are equally probable [q(0)=q(1)=1/2]. Then it

can be shown that (see for example Viterbi & Omura, [26]) if

p is the channel error probability:

Cpsc = 1 + plog,p + (1-p)logz(1-p) bits/symbol (A6.2.4)

When using the BSC (or any channel for that matter), one
has to take into account the maximum permissible code rate
R. Specifically, in assessing the performance of a rate-R
code, for various channel error probabilities p, one should
not exceed the channel capacity C, or for a given p one

should not use codes with rate R>C (see Theorem 1.3). Hence:
R < 1 + plog,p + (l—p)logz(l-p) (A6.2.5)

The maximum code rate for wvarious channel error probabil-

ities, p, is given below:

. ZABLE £6.2.1
P Roux . 2 - B
0.000001 0.99998 0.010000 0.91921
0.000010 0.99982 0.020000 0.85856
0.000100 0.99853 0.050000 0.71360
0.001000 0.98859 0.070000 0.63408
0.002000 0.97919 0.100000 0.53100
0.005000 0.95459 0.200000 0.27807
0.007000 0.93983 0.500000 0

Appendix 6.2 Page 421

JABLE A0.2.2

R Ppoy R Poax

1/10 3.160x10°1 7/8 1.713x10"2
1/9 3.063x10°! 8/9 1.479x1072
1/8 2.949x107! 9/10 1.299x10"2
1/7 2.812x107! 10/11 1.155x1072
1/6 2.644x107! 11/12 1.038x10"2
1/5 2.430x1071 12/13 9.420x10"3
1/4 2.145x1071 13/14 8.610x10°3
1/3 1.740x1072 14/15 7.920x10"3
1/2 1.100x1072 15/16 7.327x10°3
2/3 6.149x1072 16/17 6.812x10°3
3/4 4.169x1072 29/30 3.468x1073
4/5 3.112x10%2 49/50 1.910x1073
5/6 2.462x1072 99/100 8.602x10"4
6/17 2,025x1072 999/1000 6.515x107>

APPENDIX 6.3: STUDY OF Hip.13¥/H{p.C)

Let F(p,c) = H(p,1)/H{p,c) (A6.3.1)
From eqn (6.34b), with P& 1-2p (A6.3.2)
H(p,c) = ln[(l-P°)/(1+P°)] (A6.3.3)

At first, the two derivatives of H, dH/dp & dH/dc, will
be calculated:

dH/dp = (dH/dP)(dP/dp) w==—=> dH/dp =
= {[(1+8°)7(1-P*)][(-cP™1) (14P°) - (1-P) (cP=1) | [(14P%)2}(-2)
—> dH/dp = {[(1+p°)/(1—p¢)](-cpm)(1+p°+1-p°)/(1+p°)2}(—z)
—> dH/dp = 4cP®1l/(1-P?°) (A6.3.4)
Also, since P® = €% > dP%/dc = e®PInP = P°InP:
dH/dc = {[(1+p°)/(1-p°)][—(1+p°)-(1-p°)]/(1+P°)=}P°1np

> dH/dc = =-PS1nP(1+P%+1~P€)/(1-P2%)

—> dH/dc = -2P°1lnP/{1-P%*) (A6.3.5)

Appendix 6.3 Page 422

The following two theorems are concerned with the varia-
tion of F(p,c) with p & c:

Theorem A6.3.1: F(p,c) is a continuocusly increasing

function of p, for 0<p<0.5.
Proof: From (A6.3.1) & (A6.3.4):

dF/dp

d[H(p,l)/H(p.C)]/dp

{H(p,C)[dH(p,l)/dp] - H(p,1)[dH(p.c)/dp]}/[H(p,c)]2

—> dF/dp = 1n[(1-p°)/(1+p°)]4/(1-p=)/[n(p.c)]2 -

- 1n[(l-P)/(1+P)]4cP°'1/(1-P2°)/[H(p,c)]2
—> (ar/ap)/{4/[nCRs)]*} =
1n[(1-p°)/(1+P°)]/(1-p=) - 1n[(1-9)/(1+p)]cp°-1/(1-p2°) (A)

Obviously, the sign of dF/dp 1s the sign of the RHS of
eqn (A). An inequality will be constructed that will deter-

mine this sign:

Let 0<q<1 —— 0<qk<1 fOI‘ k=1 ’2, “ee

c=1 c=1
— 0 < qu< c-1 /e>l s— qu < c
k=1 k=0
ec-1 c-1 ¢
—_—> (1-q)7ja* < c{l-q) ===> FH1g¥- PF< c(l-q) =
k=0 k=0 k=1
1-9q° < e{l1l-q) — > c({l-q)/(1-q9%) > 1 /0<q<l & c>1 (B)
Also, for 0<q<l & k=0,1,7..: ° T ogkle ¢ g (€)

From (B) & (C), for q=P® (0<P<1):
c(l_PZ)/(l_ch) > 1 > PZK(C-I)
— cPc+2k(1_P2)/(1_ch) > Pch-2k+c+2k = (Pc)Zkﬂ.
— c[(1-92)/(1-p2°)]p°'1p“'1 > (PS)2 /k=0,1,..., m—

c[(1-93)/(1-9“)]Pc-l[p““/(zku)] > (Pt)ZX*1/(2k+1) /k=0,1,...

Appendix 6.3 Page 423
+8

—> 23c[(1-P})/(1-P%) |1 [P™Y/(2k41)] >
k=0

> 233(P°) 31/ (2k+1)
k=0

+0
=> c(1-P%)/(1-P%)p=13]2P%*/(2k+1) >
k=0

> M2(p°)¥/(2k+1)
k=0

From Kreyszig [40], p. 580:

2222“1/(21{"'1) = ln[(1+z)/(1‘z)] /|Zi<1
k=0

Then, since 0<P<1 & 0<P%<1 /ec>1:
c[(I-Pz)/(l-ch)]P"'l{-ln[(l-P)/(l-l-P)]} > -ln[(l—Pc)/(1+P°)]
—> [1/(1-P2)]1n[(1—P°)/(1+P°)] >

> [cP"'I/(l-Pz")]ln[(l—P)/(1+P)]
for 0<P«1 — 0<1-2p<1 et > 0<p<0.5.

From the last result and egn (A):

dF/dp > 0 for 0<p<0.5.

QED

Theorem A6.3.2: F(p,c) is a continuously increasing

function of ¢, c2l.

Proof: From egn (A6.3.1),) . -

dF(p,c)/de = H(p,1)(-1)[H(p,c)]%dH(p,c}/dc =

-H(p,1)[H{p,c)1?[dH{p,c)/dc]

From egqn (A6.3.3), H{(p,1) < O
From egqn (A6.3.5), dH(p,c)/dc > 0O

Then, dF(p,c)/dc > 0.
QED

Appendix 6.3 Page 424

Consider now the limit value of F(p,c) as p—>0.
From eqns {A6.3.1), (A6.3.2) & (A6.3.3):
F(p,c) = 1n[p/(1-p)]/1nK ===>

e > #gy{F(p,c)} = ln{#i?[p/(l—p)]}/ln[#sy(K)] (D)

From eqns (D) & (6.28):

Lgy{Ftp,c)} = 1n(p)/ln(pc) = 1/(1+lnc/lnp) /pc«l (E)
p—

Since, by Theorems A6.3.1 & A6.3.2, F(p,c) is a continu-

ously increasing function of p & c,

F(p,C) 2 F(plin’c.l.n) = F‘plin'l) = 1

Hence, F(p,c) 2 1; the following lemma has been proved:

Lemma A6.3.1: F{p,c) 2 1 {A6.3.61)
LIM {F(p,c}} = 1/(1+1lnc/inp) /pc«l ({A6.3.6b)
0
|
Consider now the limit values of F(p,c), as ¢ —> +@ and
P _— 0.50

For p constant and 0<p<0.5, P=1-2p is also constant and
0<P<l. Then 1nP<0 and hence,

P¢ = eclnf >0 ags Cc-—=>+o® (F)
Then, 1-PF =——> 1_ as c——>+®
and,) 1+P°—7—> 1, a; c—>+w
Hence, (1-P%}/{1+P°) >1./1, as c—>+o
and H{p,c) = 1n[(1-P°)/(1+P°)] —> 0_ as c—>+o
¥inally: F{(p,c) = H(p,1)/H(pyc) —> 4o as c—>+o (G)

Let ¢ constant /c>l. As p—>0.5, P—>0. Then:

H(p,c) 1n[(1-P°)/(1+P")] —>0 as P —> 0, soO

H(p,1)/H(p,c) —> 0/0 as P —> 0.

F(p,c)

Appendix 6.3 Page 425

Using the derivatives of H{p,1) & H{(p,c) [from egn
{(A6.3.4)1]:

LIM{F(p,c)} = LIM{[aH(p,1)/dp][[dH(p,c)/dp}}

P

a%?{[4/(1-P2)]/[4cP°4/(1—P2°)]}
= k%?{(l-PhW/(1-P2)}££y[1/cP°4} = +o
Hence, the following theorem has been proved:

Theorem A6.3.3:

F(p’c) — 0 as C —_— o (A6.3.7a)
|

Consider now the range of values of F. Note that T =
LJ/2+F/2]). Hence, as p increases from very small values, F
also increases and Toincreases in steps of 1. Since F/2>0.5
(see Lemma A6.3.1), the values of interest of F are those
for which F/2=k, where k=1,1.5,2,2.5,... Let F/2=k. Then
from eqn {(A6.3.1):

H{p,1)/H(p,c) = 2k (H)

Eqn (H) is very difficult (if not impossible) to solve
analytically for p. So, it will be solved for c¢. From (H):

H(pyc) = H(p,1)/2k memm> 1n[(1-P°)/(1+P°)] = H(p,1)/2k

m—> (1-P®)/(14P%) = exp'u(p,1)/2k] & A (1)

we—=)> 1=P% = A+AP® =) 1-A = PYHAP?. mmm). - - - -

P°= (1-A)/(14A) ==m> ¢ = 1n'(1-A)/(1+A)]/1np (J)
From eqn (I): A= exp[H(p,l)/Zk] = exp{ln[p/(lvp)]/Zk}
> A = [p/(1-p)1/2K), Hence:
Theorem A6.3.4: If A & [p/(1-p)]1V/¥® | the value of c
which makes F/2=k /k=1,1.5,2,2.5,... is given by:

c = 1n[(1-A)/(1+A)]/ln(1-2p) (A6.3.8)

Appendix 6.3 Page 426

Consider now an approximate solution of F/2=1. From egn
(A6.3.1):

F =2 e 1n[(1-P)/(1+P)] = 21n[(1-P°)/(1+P°)]
—) (1-P)/(14P) = (1-P°)3/(1+P°)? = (1+P¥*-2P°)/(14P?*°+2P%)
m—) 14P%°42p°-p-pctlo2pctl = 14pZC-2PC+p+pictl-2pct!

m—> P¥-2p°l41 = 0 (K)

Consider now an approximation for P":

P = (1-2p)° = 3(-2p)*(}) (L)
i=0

Because p is very small (p«1), P" will be approximated by

the first three terms of the above summation. From (L):
(1-2p)"~ 1 - 2p(}) + 4p%(3) = 1 - 2pn + 4p’n(n-1)/2
> (1-2p)"= 1 - 2pn + 4p’n(n-1)/2 (A6.3.9)
From (A6.3.9) & (K):
1 - 4pc + 4p*(2c¥-¢c) - 2 + 4p{c-1) - 4p*(c?-3c+2) + 1 = 0
—— -4p(c-c+l) + 4p%(2c¥~c-c?+3c-2) = 0
— p(c?+2¢-2) 8 1 ===> p =z 1/{c?+2c-2) ===
p & 1/(c?+2c) = 1/c?

Hence:
Lemma A6.3.2: The value of p which makes F=2, is p %
1/¢2.
i
APPENDIX 6.4; PROOE'OF RELATION {6,38¢) " " - ° |

From (6.38b):

B (T) = QJ[éKl‘(g) + pi"x“(;{)] (6.38b)
1,1='I'°01 p=J-T°

Appendix 6.4 Page 427

a1y = wSeld) +] Sefd) o) - Se)] —

p=To+l

B,(T,)

pé}@“x“(;’l) - ¢ [;1212“(3,) - (1-p)2J:K“(;{)] (a)
p=0 p=0 psT°+1

Let t = J-p, in the last summation in the RHS of (A).
Note, also, that C(J,J-n) = C(J,n):

J=To-1

B(T) = pZQ""‘P"() - Q"[p K"() - (1-p) ZK"‘()] —
B(T,) = p(P+Q)’ - Q’-E:-(l) [pK“- (1-p)K*H] >
J-T -1
B(T) = » - @ B(p)[ex* - (1-p)x*?] (B)
p=0

Consider now the sign of the quantity in brackets, in the
summation in the RHS of (B):

From Theorem 6.5 (F is defined in Theorem 6.?):
T, = L(J+F)/2] < (J+F)/2 < T _+1
—> TS (JHF)/2 < T _+1 (A6.4.1)
—> J-T_-1 < (J-F)/2 S J-T, (A6.4.2)
For 0 £ p s J-T -1:
0 s J-To-l < (J-F)/2 — 2n < J-F — F < J-2n
o> - 1n[p/(1-p)}/1nK < J-2p wwe=> 1n[p/(1-p)] > 1nk*%*
> p/(1-p) > K*¥ = K'F/K¥ =m=> pK* > (1-p)K’*
m—=> For 0 $ p S J=-T_-1: pKP~(1-p)K'*> 0 (c)

Hence, from (B) & (C): Pd(To) < p for T < J
QED

Appendix 6.5 Page 428

APPENDIX 6.6: GENERALIZED MEANS

A6.5.1. Proof of Theorem 8.9

From Definition 6.1, for np=1 & u=J:

J=1+1 J=142

A = {[2 K sz(z) ZJ: Ky] / H)}”l —_—

2(1)=1 x(2)=x(1)+1 x(1)sx(1-1)+1

J
—> A= (1/4) K ,, = arithmetic mean
x(1)=1

J=J+1 J=J+2

A= {[2K 2K ZJ: K] / (j)}lu -

2(1)=1 x(2)=x(1)+1 x(J)=x(J=1)+1

—> A = (Kﬂ%---KJﬂJJ= geometric mean

4

It igs known that the arithmetic mean of ! positive num-
bers is always greater than their geometric mean, if these J
numbers are not all the same {see Barnard & Child ([411]).

Then, since (Auﬂ‘is the arithmetic mean of C{(J,u) num-
bers [the C{J,pn) products KanKuzf"Kkun]’ (A“P'is greater
than their geometric mean. The latter is the C(J,un)th root
of the product of C(J,n) distinct products of n Ks.

Given any specific Ki(lsiSJ), there are C{(J-1,u-1) dis-
tinct ways to form a product of n Ks, hence as many distinct
products of p Ks that include Ki. Hence each specific K; ap-

pears C(J-1,p~1) times in these products. Then:

e c(J-1,n-1) J1/CCd,n) — e J
(8,07 > [(RRye e oK,)CULRD WO = (KK, oo oK)V

because: - -

p-1
. con 174 -
Then: A, > (KK,»+-K) =4,

J-l) / (ﬂ) = [(J-l)!u!(J-p)!]/[J!(p—1)g(J_1_p+1)!] = u/d

QED

A6.5.2. Proof of Theorem 6.10

The following, forms the basis of Theorem 6.10.

Theorem A6.5.1: Consider J positive real numbers K,,K,

Appendix 6.5 Page 429

ye+e3K;, and all c(J,p-1) distinct products of p-1 K;s, as
well as all C(J,n) distinct products of n K;s. Let collec-
tion Cl be made of J-p+l replicas of the products of p-1 K
and collection C2 be made of n replicas of the products of n
K;s. Then, the two collections have the same number of ele-
ments, and for each element, [Kﬂl)xm) --K“ul)], from C1

there is an element in C2, of the form [KxUJ TTRIMLE. STINEY & 1,
where 1sx(1)<x(2)<s++<x(u-1)<J, while y # x{(i) /i=1,2,..

. ’l.l-]. & 1SySJ.

Proof: Cl is made of J-u+l replicas of C(J,p-1) distinct
elements, while C2 is made of u replicas of C(J,n) distinct
elements,
(mpe)) = (U) /[(-1) 1 (Um0 = {

= /[(n-1)1(J-n)!] = pdt/int(Jd-p)t] = u("’) (A)

—— " -

From eqn_kA), collectlons Cl & 02 contaln the same number‘

of elements.
A method will be proposed to generate C2 from Cl.

Cl1 contains J-p+l [K LEXY 4

2(1%x2) su-py8e Multiply each of
the identical [K K .. K

¥y’ x(n-l)]s by a Kz other than
Kx(l.)'Kx(Z)’°'°’Kx(u-1) {i.e. z # x(i) /i=1,2,...5u-1]. There
are exactly J-u+l such Ks, hence each [Kxu)’Kx(z)'“"Kx(u-l)]
generates J-p+l1l distinct elements of C2. Hence, since Cl1 has
C(J,p-1) distinct elements, {(J-p+1)C(J,n-1) = uC(J,n) ele-
ments of C2 are generated. For the generated collection to
be €2, though, it must contain exactly p copies of each dis~
tinct product of u Ks. - -

]a[K(1)°K]’-'t

Con31derelements[K(zf° K va-1Eyan

y(u 1) y(u)

KBy * Kyl [KyyKyezy® " "Kyupy] ©f Cl. Multiply the 1st
with K ,,, the 2nd with Kyﬂ),...,the (n-1)th with X _,, and

the pth with Kﬂn)‘ Hence, the generated collection contains
at least p copies of each of its elements.

Assume that there is at least one product of n K,s, say
K ke Kaam
lection. Then, all the p preducts of n-1 K

]}, that does not belong to the generated col-

2(1)%?

Appendix 6.5 Page 430

[l{ [K *K]s

+K K],_ (K oK z({1) z(Z) Bz

z(Z). BT) z(n) z(1) z(p-l)Kz(u)] LI

{K K ss s K

2{1)" z(2) z(u-l)]

cannot belong to Cl, because multiplication of any of thenm

by the appropriate K respec-

z(1) [Kz(l) ’Kz(Z)’ e ’Kz(u-l)’Kz(u)’
tively], would have generated K K sesi But this con-

. .
tradicts the fact that C1 conta?;; :?1 po::;ble products of
n-1 K;s. Hence, all the C{J,p) distinct products of n K are
contained in the generated collection and, according to a
previous conclusion, at least u copies of each.

Then, the generated collection contains at least uC{J,n)
elements but since (J=-p+1)C(J,p-1) = nC(J,pn) elements were
generated, it contains exactly n copies of each of the
C(J,p) distinct products of n K,=; hence the generated col-
lection is C2.

QED

According to the generation rule of the proof of Theorem

A6.5.1, each [Kxuo PR xu.n] of Cl is multiplied with the

J-n+l Ks which belong to

{KI,KZ, cee ,KJ} - {Km),xxm, vee .Kx(“_u}

Hence the sum of the elements of C2 that are generated

from the J-p+l [Kx“)‘“z) -*K“udj]smay be expressed by:
KK Keun ZKx(u)
x(u)
x(n)v¥x(i)
0<i<p

Hence, the sum of the elements of C2 may be written as

J-p+2 J-p+3 4
2 2 A& K ¥ Krgen pX Ketw (B)
x(1)=1 x(2)=2(1)+1 x{(p-1)=x(n-2)+1 x(u)
x(p)#x(i)
O<icp

The sum of the elements of Cl is nothing more than the
gsum of the elements of all the distinct products of n-1 K=
[C{J,n-1) such products] multiplied by J-u+l. Since, in the
above multiple summation, the last sum is over J-p+l fac-
tors, the sum of the elements of Cl may be expressed by:

Appendix 6.5 Page 431

Jap+2 J=n+l J

2 2 2 K, Ee2r®* Kapeny Z 1 ()
2(1)=2 x(2)=x(1)}+1 x{p-1l)=x(p-2)+1 x(p)
x(p)¥x(1i)
0<icn

Note though that the sum of the elements of Cl, if divid-
ed by J-u+l, gives the sum of all distinct products of n-1
K;s; if it is further divided by C{J,p-1) it gives (Awlykk
Similarly, the sum of the elements of C2 divided by ncC(J,n)
gives (Apﬂﬁ Hence, the difference of summation (C) minus
summation (B} equals (J-—p-l-l)C(..l,p—l)(A“__l)”"'1 - pC(J,p)(Au)ll
or, using eqn (A), nC(J,n)[(A,)" '-(A)"]:

p(p)[(A"t - (a)r] =

J-ps2 J-p+3 J

= 2 2 et 2 K.k "Kepeny PN [1-K (] (D)
2{1)z1 x(2)sx(1)+1 x{p=-1)=x{p~-2)+1 2(p)
x(p)¥x(1)
0<cicp

Note, from egn (D), that if all K;s are less than, or
equal to, 1 with at least one K1<1 then the RHS is positive.
Similarly, if all K = are >1 with at least one K1>1 then the
RHS of eqn (D) is negative.

QED

APPENDIX 6,6; OPTIMUM THRESHOLD FOR FEEDBACK DECODING

From eqns (6.3) & (6.4) and Lemma 6.1:

BPd(T) - Pd(T) - Pd(T-l) = pP(Z=J-T) - (1-p)P(Z=T)
Using eqn (6.44), in the above eqn:

8B,(T) = pR(II(A,)" (4] - (1-P)((ADT(Y) =

8B,(T) = Q) (1) [p(A,)*T - (1-p)(A))T] /0<Tsy (A)

Note from eqn (A) that the sign of 6Pd(T) is the sign of
p(Aﬁq)*J - (l—p)(AT)T. The sign of a difference, say A-B, is
positive if ADB (wmmm> A/B>1 <smm> 1n(A/B)>0, negative if

Appendix 6.6 Page 432

In{A/B)<0 and zero if 1n(A/B)=0. Hence, the sign of 6Pd(T)
is the sign of

E(T) & 1n{ip(A,)" "1/1(1-p)(A)T]} /0<Tsy (A6.6.1)
—> E(T) = 1nlp/(1-p)] + (J-T)InA, - TlnA, (A6.6.2)

The following theorem has then been proved:

Theorem A6.6,.1: Let J syndrome bits, with sizes ¢,
/i=1,2,...,J checking on error bit eg” and K, be defined by
eqn (6.16). If p denotes the BSC's error probability and
P,(T) the probability that e{*’ will be erroneously estimat-
ed, using a threshold T and FD, then the sign of Ed(T) -
Pd(T-l) is the sign of

E(T) = In[p/(1-p)] + (J-T)lnAJ_.f---TlnAT (A6.6,2)

where Apis the pth generalized mean of the J K /n=1,2,
. eeesdy Ap=1l and 0<TsJ.

It is necessary to examine the behaviour of E(T). It will
be shown that E(T) is a continuocusly increasing function of
T and that E(T)<0 for T<J/2.

Consider the difference E(T) - E{(T-1). From eqn (A6.6.2):

E(T) - E(T-1) = 1n(A,)*T - 1In(A;)" -
- ln(AJ-'ru)J-Tu + ln(AT-l)T-l —

E(T) - E(T-1)

1n[(A,)*T/(A 3, ™) + 1n[(A)T/ (A7)
From Theorem 6.10, and because K, = P1/(1~Pi) < 1:
(AJ-T)J-T 5 (AJ-TH)J-T-&I & (AT-I)T-I s (AT)T
Hence the arguments of both logarithms are >1. Then,
E(T) > E(T-1) (A6.6.3)

Consider now the sign of E(T). Since p<i-p, then
In[p/(1-p)] < 0. E(T) will be negative if 1ln[(A,)*7/(A)7]
< 0 or, the same, if (AJ_.T)""'r < (ATY'. According to Theorem
6.10, this happens if J-T > T «<wmmm)> T < J/2., It follows

then that if E(T) = 0 has a solution this will occur for T 2

Appendix 6.6 Page 433

J/2 (this does not imply that E(T) 2 0 for T 2 J/2).

Theorem A6.6.2: Let E(T) be defined by Theorem A6.6.1,
Then, E(T) is a continuously increasing function of T
(0<T<d). Furthermore, E(T) < 0, for T<J/2.

Note, from Theorem A6.6.2, that E(T) is definitely nega-
tive for T < J/2. This means that if E(T) changes sign,
within the range [1,J], this will occur in the ransge
{4/2,4]. The sign of E(T) is also the sign of SPdFT) (see
Theorem A6,6.,1). According to Theorem 6.1, if E(T) < 0 for T
< X, E(T) > 0 for T > X and, in case E(T) = 0 has a solution
E(X) = 0, then the optimum threshold is 7 = LXj. Since E(T)
will not change sign in the range (0,J/2), then the optimum
threshold will be at least J/2, and since it has to be an
integer, Toz rg/721.

This proves the first part of Theorem 6.11.

Since the sign of 8P,(T) is the sign of E(T):
amd(T) <0 —> E(T) < 0 < v—
¢===> 1n[p/(1-p)] + (J-T)lnA, . - TInA < 0
¢memm> 1n[p/(1-p)] + JlnA, . < TlnA, + TlnA, . = Tin(A; ,A;)
<> T < {Inlp/(1-p)] + J1nA, .} [In(A, A7)
Hence,
8B (T) < 0 <==> T < {In[p/(1-p)] + JinA, }[in(A A)
Similarly,
8B,(T) > 0 <===>' T > {In[p/(1-p)] + JinA, .} In(A A7)
If 8B,(T) = 0 has a solution,
6By(T) = 0 <===> T = {Inlp/(1-p)] + JinA, .} [1In(a, A)
According to Theorem 6.1,
L{ln[p/(1-p)]1 + JinA, }/In(A, A}l

is the optimum threshold for the above case. Note though

Appendix 6.6 Page 434
that the expression above is a function of To itself, hence
it does not give To, but it has to be solved for To. Also,
since T _sJ, T, should not be allowed to exceed J.

This completes the proof of Theorem 6.11.

Appendix 7.1 Page 435

APPENDEX 7.1 ~ INTRODUCTION TO ARITHMETICAL FUNCTIONS

This appendix will introduce the reader to the basic
definitions and theorems on the so-called arithmetical func-
tions (like the Euler function, the Mobius function, the
greatest common divisor, etc). The material is based on the
excellent textbook by Tom Apostol, "Introduction to Analytic
Number Theory" [44]. It is the opinion of the author that
number theory becomes increasingly important for various
branches of electronic engineering, and as such it should be
incorporated into the syllabuses of relevant under- & post-

graduate courses.

Unless otherwise stated, small latin & greek letters de-

note integers.

Definition A7.1.1: A real- or complex-valued function

defined on the positive integers is called an arithmetical

function or a number-theoretic function. [44]
B

Definiticon_A7.1.2: It is said that d divides n, and
this is denoted by d|n, if there exists an integer ¢ such
that n = cd. It is also said that n is a multiple of d. dfn
denotes that d does not divide n. [44]

Definition A7.1.3: The greatest common divisor {(gcd) of
two integers a & b is a nonnegative common divisor of ¢ & b,
denoted by (a,b), such that any other common divisor of a &
b also divides (a,b). It can be proved that for any a & b,
(a,b) is unique. If (a,b) = 1, a & b are said to be rela-

tively prime. [44]
|

Theorem A7.1.1: The gcd has the following properties:

Commputative law: {a,b) = (b,a) (A7.1.1a)

Associative law: {a,{bsec)}) = ({(a,b),c) (A7.1.1b)

Appendix 7.1 Page 436

Distributive law: (ac,bc) = |c|(a,b) (A7.1.1c)
(a,1) = (1,a) =1 (A7.1.1d)
(a,0) = (0,a) = |a (A7.1.1le)

Proof: See Apostol [44], p. 16.

Definition A7.1.4: If n21, the Euler totient &(n) is

defined to be the number of positive integers not exceeding

n which are relatively prime to n. [44]

Theorem A7.1.2: Fundamental theorem of arithmetic: Ev-

ery integer n>l1 can be represented by a product of prime
factors in only one way, apart from the order of the fac-

tors.

Proof: See Apostol [44]), p. 17.

Theorem A7.1.,3: If n = p{ipy2*++pir, vwhere a, 2 1 for i=l,
2,:.4,r, then the set of positive divisors of n is the set

of numbers of the form p‘;lpgz---p‘r’r, where 0s<c fa, for i=1,2,..

sy s

Proof: See Apostol {441, p. 18.

Theorem A7.1.4: If two positive integers a and b have

the factorization

=

a = p:1
i=1

= b

b = P,i

where 0120 & bizo, then their gcd has the factorization

+@
(a,b) = l |p§1 /ey = MIN{a ,b,} for all i (A7.1.2)
1=1

Appendix 7.1 Page 437

Proof: See Apostol [44], p. 18,

Note that in the last thecorem the products are over all
prime numbers, but of course the products themselves are

finite. So, p1=2. p2=3, p3=5,..., :55=47,... etc.

Theorem A7.1.5: For any two positive integers a & b:

(a,b) = a —> (a/d,b/d) =1 (A7.1.3)

Proof: From (A7.1.1c), {(a/d,b/d) = 1 w===> d(a/d,b/d) = d
> (a,b) = d (because d20, by Definition A7.1.3). Let now
(asb) = d. If at least one of a & b is 1, then (a/d,b/d) =
(a;b) = 1. The theorem will be proved for the case where
a &b are >1, Let a & b have the following factorization:

S0
a = P:‘ (A)
1=1

+8
pit (B)
i=1

o
1

where 0120 & tnzo. From Theorem A7.1.3, d will have the

factorization:

+8
d = p;'i /0%d $MIN{a,,b,} for all i (c)
i=1

From (A), (B) & (C), one obtains the following factoriza-

tions:
+9
a/d = ‘l—l-p::l.'di a,~d, 20 (D)
1=1
480
brd = | [ol% b-d20 (E)
is]

From (D) & (E) and Theorem A7.1.4:

+9
(a/d,b/d) = | lpii /c,= MIN{a,-d;,b,-d;} for all i (F)
1=1

Then, (a/d,b/d)=1 > c,=0 for all i , from (F)

Appendix 7.1 Page 438

—> MIN{ai,bl}=d1for all i, from (F)

s> (a,b)=d, from Theorem A7.1.4.

QED
Theorem A7.1.6: If n21, then (nyn-1) =1 (A7.1.4)
Proof: Let d = (n,n-1). Then, there exist integers a & b:

n=ad & n-1=bd ===> gd-1=bd ====> (a=-b)d=z=] =} d|1. > d<1.,
Since ad>bd s> d#0, hence d=l.
QED

Theorem A7.1.7: If m is a positive integer, then as c
'runs’ through the range [1,m], m/{m,c) ’runs’ through all

the positive divisors of m:
d|m £ m— there exists ¢ /1%c€m : d=m/{(m,c) {A7.1.5)

Proof: Let ¢ /1%c$m. Then, if d = m/(m,c) ===> d{(m,c) = m
m—> d|m.

Let d|m. Then, m=kd, where 1<k<m. Let c=m-k=kd-k=k(d-1).
From Theorem A7.1.8, (d,d-1)=1 =e=> (m/k,c/k)=]1 ====> (m,c)=zk
{(from Theorem A7.1.5) ===> (m,c)=m/q =w=> d=m/{(m,c).

QED
Theorem A7.1.8: Let b be a positive integer and p its
smallest prime factor. Then, if 1fc<p, {b,c}=1.
Proof: Let b, p & ¢, as above and d = (b,c). Since d|c

> d<c and because c<{p ====> d<p. Assume that d>1. Let q be
a prime factor of d. Since (b,c)=d|b, q is also a prime fac-
tor of b. But q<d<p, hence q is a prime factor of b, smaller
than p. This contradicts the hypothesis, hence d=1. Since,
by Definition A7.1.3, d is nonnegative then d=0 or d=1. By
Definitions A7.1.2 & AT7.1.3, there exist integers x & y such
that bsxd & c=yd. Since b & ¢ are not zero, by hypothesis,
X, ¥ & d must alsc be non-zero, hence d=1.
QED

Theorem_ A7.1.9: If a prime p does not divide a, then
(p,a)=1.

Appendix 7.1 Page 439

Proof: See Apostol [44), p. 17.

Theorem A7.1.10: If a|bc and if (a,b)=1, then ajc.

Proof: See Apostol [443, p. 16.

Theorem A7.1.11: For any integers a & b and any posi-

tive integers k & n:
(a,b) =1 ===> (a*,b") =1 (A7.1.86)

Proof: Let a, b, k & n as defined above and (a,b)=1l. Let
f & (a¥,b"). Assume that £>1. Then, there must exist a
prime p which divides both a* & b".

Let ql,qz,...,qrbe the prime factors of an integer c.
Then c¢® has the same prime factors (except that they are all
raised to power m). Hence, a* has the same prime factors
with a and b™ has the same prime factors with b. So p is a
prime factor of both a and b and (a,b) 2 p, which contra-
dicts (a,b)=1. Hence, (a¥,b") = 1,

QED

Theorem A7.1.12: For any integers a, b & c:

(atcb,b) = (a,b) (A7.1.7)

Proof: Let (a,b) = h and (a+cb,b) = f, It will be shown
that f|h & hif.

Since (a+cb,b)=f, f|(a+cb) & f£|b, hence there exist inte-
gers k & m, such that a+cb=zkf & b=mf. It follows that a=kf-
cmf w=> a={k-cm)f w====> f|a. Then f|{a,b) ==m=> fih.

Since {(a,b)=h, hja & h|b, there exist integers n & s such
that a=nh & b=sh. It follows that a+cb = nh+csh = (n+cs)h
wemes> h|(a+cb). Then, h|(atcb,b)=f.

QED

Theorem A7.1.13: For any a, b & c:

{a,b) = (a,c) =1 — {a,bc) = 1 (A7.1.8)

Proof: Let the prime decomposition of a, b & c:

Appendix 7.1 Page 440

0 = pJl P2 py3c** /a,20 for i=1,2,3,...
b = pb1phz pise++ /b20 for i=1,2,3,...
c = p‘l’l p‘z’z pga--- /c,;20 for i=1,2,3,...

From (A7.1.2), since (a,b) = 1 = (a,c), it follows that:
MIN{a‘l’bi} = MIN{ai’ci} = 0 /i=1’2,3,|oo —

Either a, = 0 or b

c 0 /1i=1,2,3,... —

i i

Either a, = 0 or b

i + c, = 0 /i=1’2,3’0-- —

i i

MIN{G’i’bi+c1} =0 /i=1,2,3,... S—

(a,bc) =1 [by (A7.1.2)]
QED

Jheorem A7.1.14: For any a, b & ¢, such that (a,b) = 1:

a | c & b|c — ab | ¢ (A7.1.9)

Proof: Since o.|c & b[c, there exist integers q & s, such
that ¢ = qa = sb ===> b|qa. Since {a,b) = 1 ===> b|q (by
Theorem A7.1.10), hence there exists integer t, such that
q=tb. Then, c=tba ====> abjc.

QED

Theorem A7.1.15: If m>1 has the prime decomposition:

m p:lp;Z"‘p:r /p1<pz<“‘<Pr & 0.121 for i=1’2,.|o’r

Then:

o(m) = m[(p;=1)(p,~1) -+~ (p,~1)][[ypy ;] (A7.1.10)

Proof: See Apostol [44], p. 27.

APPENDIX ¥.2 ~ INIRQDUCTION TO CONGRUENCES

This appendix, like Appendix 7.1, is based on Apostol’s
textbook "Introduction to Analytic Number Theory" [44]). The
material (definitions & theorems) has been drawn mainly from

Appendix 7.2 Page 441

Chapter 5.
Unless otherwise stated, small latin & greek letters will

denote integers.

Definition A7.2.1: Given a,b & m, with m>0, it is said
that a is congruent to b modulo m, denoted by a = b (mod m),
if m divides the difference a-b. m is called the modulus of

the congruence:

a b {mod m) v—> m [(a-b) (A7.2.1)
|

Thecrem A7.2.1: Congruence is an equivalence relation;
in other words it is reflective, symmetric and transitive.

For any ¢, b, ¢ & m, with m>0:

a E a (mod m) (A7.2.2a)
a b {mod m) — > b £ a {mod m) (A7.2.2b)
@ # b (mod m) _——> a £ ¢ (mod m) (A7.2.2c)
b=2c (mod m) e

Proof: See Apostol [44], p. 107.

Theorem A7.2.2: For any a, b, ¢, 4 & m, with m>0, if a
EDb (modm) & ¢ 23 (mod m), then:

ac = bd (mod m) (A7.2.3a)
For all integers x—& ¥y, ax+cy = bx+dy (mod m) (AT.2.3b)
For all positive integers n, a® 2 b" (mod m) (A7.2.3c)

For every polynomial f with integer coefficients,
f(a) = f(b} (mod m) (A7.2.3d)

Proof: See Apostol [44], p. 107.

Thecorem A7.2.3: For any a, b & m, such that 0<|a-b|<m:

a=Db < — a = b {mod m) (A7.2.4)

m
[}

b

b (mod m). Let a

Proof: Obviously, if a = b ===} g

Appendix 7.2 Page 442

(mod m); from (A7.2.1), m|(a-b) ===> a-b = km. On the oth-
er hand, by hypothesis, 05|a—b|<m; hence 0 £ |k|m { m —
05| k<]l s> k=0 > g=b,

QED

Theorem A7.2.4: For any a, b, ¢ & m, with m>0, if ac =
bc {mod m) and if d = (m,c), then ¢ = b {mod m/d).

Proof: See Apostol [44], p. 109.

Definition A7.2.2: The set of all integers x such that
X & a {mod m), where m>0, is called the residue class a mod-
ulo m. A set of m representatives, one from each of the
residue classes a modulo m /a=0,1,...,m-1, is called a com-
plete residue system modulo m. Hence, {0,1,2,...,m-1},

{1,2,3,...,m}, etc, are complete residue systems modulo m.

Theorem A7.2.5: Assume (a,m) = d. Then, the linear con-
gruence ax & b (mod m) has solutions if, and only if, d|b.
Furthermore, and if d|b, the congruence has exactly d solu-
tions modulo m, given by t+im/d /[i=0,1,..,d-1, where t is
the solution, unique modulo m/d, of the congruence a/d = b/d
(mod m/d). It is understood that 'a solution of a congruence
modulo m’ means a& number within a complete residue system

modulo m, say {0,1,..,m-1}, satisfying that congruence.

Proof: See Apostol [44], pp. 111-2,

Definition A7.2.3: Any set of ®(m) integers, incongru-
ent modulo m, each of which is relatively prime to m, is

called a reduced residue system moduloc m.
|

Theorem A7.2.6: Euler-Fermat theorem: For any a & n,

with m>0, if (a,m)=1 then
uf(-)

1 (mod m) (A7.2.5)

Proof: See Apostol [44], p. 113.

Appendix 7.2 Page 443

Theorem A7.2.7: For any ¢, b & m, with m>0, if {(a,m)=1

then the solution {unique modulo m) of the linear congruence

ax 2 b (mod m) is given by
x 5 ba*™-1 (mod m) (A7.2.8)

Proof: See Apostol [441, p. 114.

Theorem A7.,2.8: For any a, b & m, with m>0 and a =
(mod m), if d|m and d|a, then d|b.

Proof: See Apostol [44], p. 109.

Theorem A7.2.9: For any a & m, with m>0:
{a,m) > 1 — a2 1 {mod m) /n=1,2,... (A7.2.7a)
(a,m) =1 wmm> o**® =1 (mod m) (A7.2.7b)
(A7.2.7b) is known as the Euler-Fermat Theorem. *

Proof: (A7.2.7b) is Theorem A7.2.6, included here to com-
plete the case,

Let (a,m) = d > 1 and assume that there exist k»1 such
that a* = 1 (mod m). Since dla s> dlak. Alsc, d|m. Then,
by Theorem A7.2.8, d|1 > d=]1 w===> contradiction.

QED

Theorem A7.2.10: The Chinese remainder thecrem: Assune

m,,M,,«.s,M, are relatively prime in pairs. Let bl'bz’ eeesb,

be arbitrary integers and let a,,a,,...,a_ satisfy (a,,m) =

2
1 /i=1l,2,...,r. Then the linear system of congruences ax,

bi(mod mi) /i=1,2,...,v has exactly one solution modulo

1 2‘ » .mr'

Proof: See Apostol [44]), p. 118.

Theorem A7.2.11: For any a, b & m, with m>0:
a b (mod m) — (a,m) = {(b,m) {A7.2.8)

Proof: See Apostol [44], p. 109.

{ * Remember that (a,b) denotes the greatest common divisor of a & b. I

Appendix 7.3 Page 444

APPENDIX 7.3: INTRODUCTION TO PRIMITIVE ROOTS

This appendix is drawn mainly from Chapter 10 of T.M.
Apostol’s "Introduction to Analytic Number Theory" ([441]).
Unless otherwise stated, small latin & greek letters will

denote integers.

Definition A7.3.1: Let o & m, with m>0., The smallest
positive integer f, such that:
af = 1 (mod m)

is called the order (or exponent) of a modulo m and is
denoted by Ord_(a) [exp (a)]. If Ord.(a) = &(m), then a is
called a primitive root modulo m. [44]

Theorem A7.3.1: For any a, m & k, with m & k positive:
ord (a*) = ord(e)[(0rd (a),k] (A7.3.1)

Proof: See Apostol [44], p. 206.

Theorem A7.3.2: For any k, n & m positive and any a, if
Ord‘(a) & f, then:

i) a®*= o (mod m) <w=> k = n (mod §) (A7.3.2a)
ii) a¥=1 (mod m) (wmme> k =2 0 (mod f) (A7.3.2b)
iii) | em) {A7.3.2c)

iv) The numbers 1,a,6%,...,af"! are incongruent (med m).

Proof: See Apostol [44], p. 205.

Theorem A7.3,3: Let p be any odd prime and S any posi-
tive divisor of p-1. Then in every reduced residue system
modulo p there are exactly &(S) numbers a such that Ord_(a)
= 8,

Proof: See Apostol [44], pp. 207-8.

Appendix 7.3 Page 445

Theorem A7.3.4: Let p be an odd prime. Then, if g is a
primitive root modulo p, g is also a primitive root modulo

p® for all a 2 1 if, and only if:
gl # 1 (mod p?) (A7.3.3)

Furthermore, there is at least one primitive root g modu-
lo p which satisfies (A7.3.3).

Proof: See Apostol [44]1, pp. 209-10.

Theorem A7.3.5: Let any odd prime p and a positive di-
visor S of p-1. If g is a primitive root mecdulo p, satisfy-
ing:

g1 # 1 (mod p?) (A7.3.3)

then, for any a =2 1, g*®™/S (yhere m=p®) has order S modu~

lo p®, for any b=1,2,...,a.

Proof: Theorem A7.3.3 guarantees the existence of ®(p-1)
primitive roots module p. Furthermore, if one of them, say
g, satisfies (A7.3.3), then g is also a primitive rcoot modu-
lo p*, for any azl, by Theorem A7.3.4. According to the same
theorem, there is at least one primitive root of p which
satisfies {(A7.3.3). Let g be the one. Then:

ord (g)= ®(n) /n=p®& b2l (A)
From Theorem A7.3.1 & (A):
ord (g*®/%) = &(n) [(@(n),8(m)/s) /m=p® (B)
Let f 2 (seh,0%)/8)" (0)
Using Theorem A7.1.15:
f = (pbd(p-l).Pmd(p-l)/S) >
§ = (e e-1)/8)(s,p (D)

using (A7.1.1c), the hypothesis that b<fa and the fact
that (p-1)/S divides p-1,

Since § | p-1 s > S < p ——m) (S,p) =1 (by Theo-
rem A7.1.9) w==> (S,p*P) = 1 (by Theorem A7.1.11). Then
from (D): §f = p*!(p-1)/S. Then, from (B):

* {a,b) denotes the greatest common divisor of a & b.

Appendix 7.3 Page 446

ord,(g*™’%) = p™i(p-1)[[p"(p-1)/8] = 5
QED

Note A7.3.1: TABLE A7.3.1 below, lists the smallest
primitive root medulo p, for all integers n < 607 that have

a primitive root. The roots were calculated using subroutine
IPRIM1 (for a flow-chart of IPRIM1 see Fig. A8.1.6, p. 515).

JABLE A7.3.%1°
n g n g n g n g n g n g n g
1 1 47 5 118 11 199 3 289 3 386 5 491 2
2 1 49 3 121 2 202 3 293 2 389 2 499 7
3 2 50 3 122 7 206 5 298 3 394 3 502 11
4 3 53 2 126 2 21t 2 302 7 387 b 503 5§
5 2 64 5 127 3 214 5 307 5 398 3 606 2
6 5 58 3 131 2 218 11 311 17 401 3 514 3
7 3 59 2 134 7 223 3 313 10 109 21 521 3
9 2 61 2 137 3 226 3 314 5 419 2 523 2
10 3 62 3 139 2 227 2 K 421 2 526 5
11 2 67 2 142 7 229 6 326 3 422 3 529 b
13 2 1 17 146 5 233 3 331 é 431 7 538 3
14 3 73 5 149 2 239 7 334 b 433 b 541 2
17 3 74 5 151 6 241 7 337 10 439 15 542 15
18 5 79 3 157 b 242 7 338 7 443 2 547 2
19 2 81 2 158 3 243 2 343 3 446 3 554 5
22 7 82 7 162 5 250 3 346 3 449 3 557 2
23 5 83 2 163 2 251 6 347 2 454 5 562 3
25 2 86 3 166 5 254 3 349 2 457 13 563 2
26 7 89 3 167 5 257 3 353 3 458 7 566 3
27 2 94 § 169 2 262 17 358 7 461 2 569 3
29 2 97 § 173 2 263 5 359 7 463 3 571 3
31 3 98 3 178 3 269 2 361 2 466 3 577 b
34 3 101 2 179 2 271 6 362 21 467 2 578 3
3r 2 103 5 18t 2 274 3 367 6 4718 1 586 3
38 3 106 3 191 19 277 6 373 2 479 13 587 2
41 6 107 2 193 5§ 278 3 379 2 482 7 593 3
43 3 109 6 194 § 281 3 382 19 486 5 599 7
46 5 113 3 197 2 283 3 383 5 487 3 601 7

Appendix 7.4 Page 447

APPENDIX 7.4:; PROQE OF THEOREM 7.2

A code is not self-orthogonal, if two syndrome bits thag‘
check on the same error bit, say ef!, check also on another
error bit. Consider two such syndromes, say s{® & s{").
From (7.5) {(p. 183), the syndrome eqns are:
|
|

(r) = gfalr,u+sl]} {alr,ul} ,... {a[r,utl-c)} , ... {a[r,1]} (k+r)
S, = e + e} + + e + + e + e,

S‘(’v) - el{)a[v,\ul]} + e{a[v.v]} doood ein[v,m-l-c]} $oos i ef'a[v,ll} + e‘{'hv)

Using the fact that they both check the ith bit of (e’)o,
i.e. that

i (A}

At = Bywn T

(r) = (i) {alr,ul} ... {a[r,u+l-cl) ... {a[r,1]} {k+r)
s = et + e + + e + + e + e (B)

{v) - {1} {alv,¥]} . s {alv,wtl-c]}) ,... {a[v,1]} (k+v)
s{M = it + ef teoet ef B peeeq efelvelld 4 ol (¢c)

As ’'promised’ earlier on, let these two syndromes check
also on another common error bit, say eg” /c>0., Then, the
corresponding IA elements will both be equal to b. From eqns
(B) & (C), the coefficient of the error bit from the cth
block, participating in the formation of sf”, is a .. {=b)
and the coefficient of the error bit from the cth block,
participating in the formation of s{", is a {(=b).

vV, Wtl=C

&

a1? Bl Bpiee 8, n1.ct 8re elements of an

Since a_
(n-k) x (m+1) array of integers, 1sr,vsn-k and 1Su+l,w+l
sutl-c,wtl-csm+l. The second inequality gives O0fu,wsm and

0fu-ctm & O0fw-c<m. The latter is equivalent to
{-m€c-ug0 & -m<c-w<0) — (u-m<c<u & w-mScsw)

and since u-m & w-m are at most 0, while ¢ has to be
positive [see (B) or (C)]l, 0<csMIN{u,w}. Note also that if
u=0, s{™ cannot check on el /c>0, as well [see egn (B)];
hence u#0. Similarly, w#0.

Hence, if the code generated by the IA is not self-or-

thogonal, there exist numbers r,u,v,w & c, such that:

1<r,ven-k & 1<u,wsm & 0<c<MIN{u,w} (D)

Appendix 7.4 Page 448

(E)

and a':',u+1 = av.\Nl & a'r.ml-c: = a’v,wd-c

Conversely, assume that there exist numbers r,u,v,w & c
such that (D) & (E), above, hold true. Then, it is noted
from the first of (E) that, syndrome bits s{”’ and sV both
check on error bit e?” [where i = a_, ., = a, 1, but be-
cause of the second of (E) they both check on e!® [where b =

= g = a] and because ¢>0, the corresponding code

r,usl-c v,wtl-C
is not self-orthogonal.

Note also that ¢ is the positional difference between any
two distinct elements of a row and since the IA has m+l col-
umns, ¢ ranges between 1 & MIN{u,w}<m.

If utl & w+l, in eqns {D) & {(E), are replaced by u & w,
the theorem is proved.

QED

APPENDIX 7.5: IHE MINIMUM VALUE OF m FOR TYPE-B CODES

A7.5.1., Proof of Theorem 7.3

The elements of the IA denote the position of a message
bit within a block, hence ISathk. Reln (7.8) restricts the
elements in the range [0,k]l, hence the generation of ele-
ments along a row must stcp just before the generation of
the first 0. Then the smallest integer z, in the range [1,k]
satisfying the linear congruence za, , E 0 {(mod k+1), will
give the position of the first zero along row x.

According to Theorem A7.2.5 the above linear congruence
xJ) {because d|0).
The solutions are given by t+i{(k+1)/d /i=0,1,..,d~-1, where t
is the solution of t(axdld) = 0 (mod (k+l1l)/d); according to
Theorem A7.2.7, t = 0 (mod (k+1)/d), hence z = i(k+1)/4d (mod
k+1) /i=0,1,..,d-1. Hence the 1st zero along row x is at

has exactly d solutions, where d = (k+l,a

position (k+1)/(k+1,ah1) and so0 the number of elements of
row x must be (k+1)/(k+1,ah1)-1. In general, the length of
the rows of the IA will vary, between 1 & k. This means that
the condition introduced by Definition 7.1 will not be sat-
isfied, in general. Definition 7.1 requires all rows to have
the same length, which by necessity will be the length of

]

Appendix 7.5 Page 449

the shortest row.

This proves the theorem.
QED

A7.5.2. Proof of Theorem 7.4

From Theorem 7.3, in order that the IA contains no en-
tries equal to zero, it is necessary that the maximum value
of ﬁ, Mmoay? satisfies

n-k

m., = riffl{(k+1)/(k+1,ax'1)} -2 (A)
where a, /x=1,2,...,n-k are the elements of the 1st col-
unn of the corresponding IA. Let i = (k+1,ax’1) Commm> i{k+l)
= (ktl,a, () (ktl) Comemd i(k+1)/(k+1,ax_1) = k+4l. Then k+l is
divided by (k+1)/(k+1,axJ) and hence 1 = (k+1)/(k+1,ah1} <
k+1. Assume that (k+1)/(k+1,am1) = 1; then (k+1,am1) = k+l
—— (k*“lax,1 — ax‘12k+1. On the other hand, by construc-
tion, ISaxJSk. Hence contradiction* and (k+1)/(k+1,a&1} #
1. Hence, (k+1)/(k+1,ah1) is a divisor of k+l, which is not

1, i.e. which is greater than 1.

Then, the minimum of (k+1)/(k+1,ah1) /x=1,2,...,n-k is
the minimum of a set of non-trivial {(i.e. different than
one) divisors of k+l and obviously it cannot be smaller than
the minimum non-trivial divisor of k+l; the latter may only
be a prime, say, p (because, if not, there will be a prime
diving it and, hence, k+l as well). Hence, the right-hand
side of eqn (A) is 2 p-2.

For (2k,k,m) codes, the first column, i.e. elements a, 1
/x=1,2,...,n-k, contains k distinct (mod k+l) elements, in
the range [1,k]. Note that, if any two elements, a = 8,
/r#v, are equal, the code will not be self-orthogonal, ac-
cording to Theorem 7.2, because rows r & v will be identi-
cal, given the IA construction-technique introduced by Defi-
nition 7.2. Hence, &, 3 'runs’ through the range [1l,k]. Ac-
cording to Theorem A7.1.7, if akd_’runs’ through the range
[1,k+1], then (k+1)/(k+1,ah1) 'runs’ through the set of
positive divisors of k+1l. Since ISahlsk, diviscr
{k+1)/(k+1,k+1)=1 is excluded and, since no ah1<k+1 can gen-
erate (k+1)/(k+1,am1)=1, (k+1)/(k+1,ah1) 'runs’ through the

¥ aAnyway, if (k+1)/(k¢l,a_ ,)=1, then m_, =-1, hence there iz no IA, or code.

Appendix 7.5 Page 450

set of divisors of k+l that are greater than 1. Hence, p is
definitely equal to one of (k+1)/(k+1,am1) /1sxsn~k and m__
= p-2.

QED

APPENDRIX 7.6:

A7.6.1. Proof of lemma 7,1

Consider two elements, along row x of the IA, say ele-

ments a & a where z & ¢ are positive integers. Then,

X,Z+C x,z’
from (7.8) (p. 185) and since, by Theorem A7.2.2, congru-
ences may be added, subtracted or multiplied member by mem-

ber as though they\were equations:

8y 540~ By, = (2+c)a, , - za , (mod k+1)

— 8y zec ™ Byz = CBy, {mod k+1)
QED

A7.6.2, Proof of Theorem 7.5

According to Theorem 7.2, the code is not self-orthogonal

if, and only if, there is at least one pair of elements a4

= a,,and at least one integer c, such that a . =

where 0<c<MIN{u,w}. Note though that:

a
v,w-c?

= a a = a

r,u v, W > r,u v, W
r,u-c = av.w-c a'r,u-c: - a’r,u = av,w-c - av,w
E +
< R a, . Ea, {mod k+1)
T, u~c - ar,u = av,w-c - av,w (mOd k+1)

The last result is obtained from Theorem A7.2.3, noting
that the elements of the IA are always in the range [1,kl,
hence the absolute value of the difference of any two of
them is less than k. Using (7.11), the last result gives:

8ru” Byw £ > 8ru " Ay,

= a c(a.v'1 - aml) 2 0 (mod k+1)

r,u-c V,W=C

Hence, a type-B code is not self-orthogonal if, and only

Appendix 7.6 Page 451

if, for any two rows, say, r & v which have a common ele-
ment, in columns u & w, there exists at least one positive
integer c, less than u & w, such that ca, is congruent to
ca, modulo k+1l. Condition (7.9) is a necessary restriction

on m, imposed by the introduction of the generation method

of Definition 7.2.
QED

APPENDIX 7.%: EROPERTIES OF TYPE-B CODES

A7.7.1. Proof of Theorem 1.8

Assume that there exists a row, say, x (1£x<n-k) which
has at least one pair of equal elements, say a, =2
(1%u#w<m+1). Then, from Definition 7.2 & Theorem A7.2.4:

X,W

ua, ;S wa, , (mod k+l)} wmme>

usw (mod (k+1)/(ktl,a ,)) (A)

Note though that, from relation (7.9), u,wsm+ls
(k+1)/(k+1,a:J)-1 — 0<|u—w|<(k+1)/(k+1,axd)—1 and then,
by Theorem A7.2.3 & (A), u=w which contradicts the hypothe-

sis. Hence, the first of the two results.,

Consider now any specific column, say, u {12usm+l) and
let two of its elements, say a, =a, (1€r#v<n-k), be equal.

According to Definition 7.2 and Theorem AT.2.4:

ua_, S ua , {mod 1§+1) —

r,l

wo— a,,Ea,, (mod {(k+1)/(k+1,u)) (B)

r.1

Conversely, let (B) hold true. From Definition A7.2.1:
(k+1)/(k+1l,u) divides (ard-av'l)

-a, , = a(k+1)/(k+l,u)

— a.,
’

—> u(a_,-a,) = alu/(k+1,u)](k+1)
— (k+1) | (uar'l-uavll)

e ua, , £ ua {mod k+1) — a, .3 a (mod k+1)

] * Remember that (a,b) denotes the greatest common divisor of a & b. ;

Appendix 7.7 Page 452

From Theorem A7.2.3, and since 1 £ a_ €k mm=> 0 %

,a
U v,

|a -avm| < k, a__=a_ _.

r,u r,u v,u

QED

A7.7.2. Proof of Theorem 7.7

Let the elements of the first column, a, /x=1,2,...,n-k,
be distinct {obviously in the range [1l,k]). Then for any two
rows, say, Tr#V, al__.l#a“,,1 and since ISard,aHISk, it follows
that 0<]arJ-avJ|<k, a. # a, {mod k+1), by Theorem A7.2.3.
Let ¢ be any integer in the range [l,m+l1l]. Since c=m+l<p,
(c,k+1)=1, by Theorem AT.1.8.

So, a, , # a,.1 (mod (k+1)/(k+1l,c)) for all r#v and all
c=1,2,...,m+l, Then, by the corocllary of Theorem 7.5, the

code is self-orthogonal.

Conversely, let the code be self-orthogonal and assume
that there exist two elements in the first column that are
Then they are congruent modulo

equal, say elements a a

17 %v,1t
anything, hence relat;;n (;.13b) does not hold true and the
code is not self-orthogonal. This contradicts the initial
hypothesis, hence there are no equal elements in the first
column.

QED

A7.7.3. Proof of Theorem 7.8

According to Theorem 7.7, the first column contains n-k
distinct integers in the range [1,k}. Clearly, n-k £ k w=—>
1-R S R wmw==m> R 2 1/2,

Assume k=odd. Then k+l=even and p=2 ==md> pSp-2=0 me—~}
m=0, hence the code is not (even) convolutional, hence con-

tradiction. Then k=even.

Assume that there exists at least one column, say, u
{1<usm+1) with at least two equal elements, say a, ,=8y .
(1<r¥yv<n-k). Then, by Theorem 7.6, a1 o8, , (mod
(k+1)/(k+1,u))}. Since 1<usfm+1<p, (k+1l,u)=1, by Theorem
AT.1.8, and I v,1

erated modulo k+1, they are equal. But this is equivalent to

= a,, (mod k+l1). Because a, & a are gen-

the code not being self-orthogonal (according to Theorem

Appendix 7.7 Page 453

7.7), which contradicts the hypothesis. Hence each column

contains a distinct set of integers.
QED

A7.7.4. £ 20

According to Definition 5.5, the effective constraint-

length, n,, for the decoding of ef! is equal to the sum of

x,
the sizes of the composite parity checks {(in this case, the
syndrome bits), that are orthogonal on eﬁ“, plus one. Also,
according to Definition 5.4, if a code is self-orthogonal,

1) are orthogonal on it.

all the syndrome bits checking on ei
Furthermore, the decoding circuit for efj is identical to
that for ey’ [see discussion following equations (5.14), p.
141]. Hence, n,~1 [for eé”] equals the sum of the sizes of
the, say, J syndromes checking on eg”.

According to Theorem 7.1, eé“ is checked by syndrome bit
s‘(,’_‘; if, and only if, a, = i. So, the number of syndromes,
checking on ey’, equals the number of IA entries that are
equal to i and, as a consequence, this number is equal to J.
Then, according to the above discussion, there will exist J

JA elements equal to i:
a[xl,wll = a[xz,wzl Seeex= a[xJ,wJ] = i {A)

Then, the J syndromes checking on e{!) are 55’:;‘;3} for j=1,2,.

evyd [where x(Jj) = xj& wi{j) = wj] and, according to egn
{(7T.6):
{x(3)} 'S {a[x(3),z]} {k+x(j)}
x{J) - a[x " +X
Se(iol = 248wz * -1 (B)
zz=1
Expanding eqns (B):

elll 4 BIDMD-UY, (., 4 falxDal}, glkix(D))

gix(1} -
w(1)-1 w(1)-1 w(1)-1
{x(2)} = {1} {alx(2),w(2)-1}} “o e {afx(2),1]} {k+x(2)}
Sy2)-1 = ® t & + *oel2)-1 t e
x(H} o {i} {a[x(J),w(J}~1]} cee {afx(J),1]} {kex(4)}
Sy)-1 - S t & + t ey et
The size® of the above syndromes is W;sWyse00yW,, Tespec-

tively. Then, by eqn (5.9),

¥ fhe size excludes the checked bit = see Definition 5.5.

Appendix 7.7 Page 454

n,= 1+ w + W, + o0 bW, {C)

On the other hand, according to Definition 7.3 and taking

into account (A), above, the leftwise sequences on eg“ are
alxg,w,} alx w1 alxy,w;,] <= alx;,w,1 alxy,w,) / 3=1,2,..,d

hence, the number of elements in the leftwise sequences

is w4 Wy + st + Wy, which equals to nl-l, according to egn

(c).

QED
APPENDIX 7.8: PE-B1
A7.8.1. Examples
Examplie A7.8.1: Let the initial array for the (14,J)

type-Bl code. Since k+1=15, then p=3 and 235JSp-1=2 =) J=2,
Hence, the IA is an {n~k) x (m+1l) = k x J = 14 X 2 array.

As predicted by Theorem 7.10, there are exactly J=2 syn-
dromes checking on each error bit. Hence, the above is a
(28,14,1) systematic CSOC which can correct up to one error

within one constraint-length [nA = n(m+l) = 28 x 2 = 56].

ot e o o b

b GO = (D 00 =10 N LI DD 1=
ot ok o bt b

€0 b= 00 OGO b= o 1N © 00 Ol N

Example A7.8.2: Let the initial array for the {24,J)
type-Bl code. Since k+1=25, p=5 and 2<J<p-1=4. Let J=4. Then
the IA is a 24 X 4 array:

Appendix 7.8 Page 455

DO DO b b

[SF ST
el [171 TN Yo K N T TN TNV TS TR TR T, T LY, S

DO DI 1 ot ot ot b
€0 b (O =T N) bk L0 DNES oo DO 0O T3k DD Q0 i I
B9 Db bk b
DO OO b =03 =3 s b= CO T 18n =00 LN O T 6
NG b ek et

WP BT = D LD 00 =1 Tk CIDD b= €0 00 =30 U LIDD bk
DO =t b

N9 DNIIND N3 1 v b o o o o ok ok ok
Ly T

IND b b b b
BN bk b

The leftwise sequences, for selected error bits, are giv-

en below:

g

1
18 9 E
14 113 '

If all leftwise sequences are checked, it will be veri-
fied that the associated code is indeed a J=4 (48,24,3) sys-
tematic CSOC which can correct up to 2 errors in one con-
straint-length [nA= 48 x 4 = 192].

ottt

[y

W
DOROBSDS

[+ eTe] o0)

4
4 1
i1

PO

5
0 8
0 12 6

-0

10
15 20

2
17 2
13 19 2

Example A7.8.3: Consider the (48,24,3) code of Example
A7.8.2 and the decoding of the, say, 21st current message
bit, r;“J [or, the same, the estimation of ei"J]. The 4 syn-
drome eqns that contain the 21st current message error bit

may be deduced from the leftwise sequences for (21).

s{? = &M + el + e + o) + e
s = e 4 (D 4 ellP 4+ e8] + &)
s{¥) = i 4 eﬁf’ +ellP + 1D + eV
sV = e 4 eV 4+ 0D 4+ &) + &1

From the above four equations, it is obvious that the

four syndromes checking on efl’ are described by the fol-

lowing equations.

Appendix 7.8 Page 456

s = e tend el 4 el 4+ ey
sV 2 oD 4 SUD 4 AN 4)y U5
Sl = G tens t el + ey + el
Shes T Chea t emz temi teps + el

Assuming feedback decoding and no past errors (or ’genie
decoding’ - see Chapter 6, p. 157), the past error bits,
i.e. es) /g<h, are correctly estimated and cancelled out.

Then, the above four equations are modified to:

sV = D 4 el4s)
S S
S L
S R R s

It is obvious that efl’ will be correctly calculated,
using the majority-decoding algorithm (Theorem 5.3), if no
more than two of the 11 bits appearing in the above four
equations have been corrupted. Hence, up to 2 errors in 11

{selected) bits can be tolerated.

A7.8.2. labls of lype-Bl Codes

TABLE A7.8.1, below, gives the ’'best’ type-Bl code, for
various selected values of J, together with the correspond-

ing values of k, n n, & nA/nl. The actual constraint-length

nl
of the 'best' type-Bl codes is compared with that of rate-
1/2 CSOCs constructed by Massey [18], or Wu [45]. The sixth

column (marked "%") shows how much longer the type-Bl codes

are, compared with the Massey or Wu ones.

Appendix 7.8 Page 457

JABLE A7.8.%1

J k ng n, n, /n, %
2 * 2 4 8 2.00 100.0
3 4 7 24 3.43 -
4 4 11 32 2.91 100.0
6 6 22 T2 3.27 71.4
8 10 a7 160 4,32 77.8
10 * 10 56 200 3.57 23.5
12 * 12 79 288 3.65 21.0
14 16 106 448 4.23 43.6
16 * 16 137 512 3.74 -
17 18 154 612 3.97 19.5
ig * 18 172 648 3.77 8.0
20 22 211 880 4.17 18.9
22 * 22 254 968 3.81 -
24 28 301 1,344 4,47 22.6
26 28 352 1,456 4,14 15.2
28 x 28 407 1,568 3.85 7.4
30 * 30 466 1,800 3.886 7.0
32 36 529 2,304 4,36 17.4
33 36 562 2,376 4,23 16.0
36 ¥ 36 667 2,582 3.89 -
38 40 742 3,040 4.10 10.9
40 * 40 821 3,200 3.90 -
42 * 42 904 3,528 3.90 .
44 46 991 4,048 4,08 7.3
46 * 46 1,082 4,232 3.91 -
48 52 1,177 4,992 4.24 13.0
50 52 1,276 5,200 4,08 6.7
52 % 52 1,379 5,408 3.92 -
54 58 1,486 6,264 4.22 1.5
58 * 58 1,712 6,728 3.93 -
60 * 60 1,831 7,200 3.93 3.4
62 66 1,954 8,184 4,19
65 66 2,146 8,580 4.00 4.7
66 * 66 2,212 8,712 3.94 -
68 70 2,347 9,520 4.06 4.6
70 * 70 2,486 9,800 3.94 -

¥ Type-Bl codes meeting the lower bound on n, fegn (7.17}].

Appendix 7.8 Page 458

JABLE A7.8.1 {continued)

J k n, n, n, /n, %

72 * 72 2,629 10,368 3.94 .

74 78 2,776 11,544 4,16 .

78 * 78 3,082 12,168 3.95 -

80 82 3,241 13,120 4,05 .

82 ¥ 82 3,404 13,448 3.95 .

88 * 88 3,917 15,488 3.95 -

89 96 4,006 17,088 4.27 -
90 96 4,098 17,280 4.22 8.5

91 96 4,187 17,472 4.17 -

92 96 4,279 17,684 4.13 -

93 96 4,372 17,856 4,08 -

94 96 4,466 18,048 4.04 -

95 a6 4,561 18,240 4.00 -

96 * 96 4,657 18,432 3.96 -

97 100 4,754 19,400 4,08 -
398 100 4,852 19,600 4,04 3.8

99 100 4,951 19,800 4,00 -
100 * 100 5,051 20,000 3.96 -
102 * 102 5,254 20,808 3.96 -
150 * 150 11,326 45,000 3.97 -
210 * 210 22,156 88,200 3.98 -
310 * 310 48,208 192,200 3.99 -
520 * 520 135,461 540,800 3.99 -
820 * 820 336,611 1,344,800 4.00 -
1,008 * 1,008 508,537 2,032,128 4.00 -
5,002 * 5,002 12,512,504 50,040,008 4.00 -
9,000 * 9,000 40,504,501 162,000,000 4.00 -

“e s T e u e RN NN LR R RN BN W 4(?)

APPENDIX 7,93

A7.9.1. Proof of Theorem 1.13

Consider the initial array of a (2k,k,m) type-B self-

orthogonal code. It is obvious that if any of the IA rows

* Type-Bl codes meeting the lower bound on n, feqn (7.17)}.

Appendix 7.9 Page 459

are deleted (at random) the corresponding code will still be
self-orthogonal (see Theorem 7.7). The minimum number of
syndromes checking on any error bit, J (which equals m+l),
will be reduced though and also (a compensation) the value
of n-k will be reduced. Hence, if y (12y<k) rows are deleted
the IA generates a (2k-y,k,m) self-orthogonal type-B code.
J’, the new value of J, is unknown but it cannot be greater
than J{(1-y/k). This is so, because there will be J' copies
of each of the k integers, hence at least kJ’ integers in
the IA, which has dimensions (n-k) x (m+l) = (k-y) x J, i.e.
(k-y)J2kd? mamm> J?'<J(k-y)/k.

QED
A7.9.2. Proof of Theorem 7.14
According to Definition 7.2 and the hypothesis:
a _ = za_, = zx {mod k+l) (A)

X,Z X,1

From {(A), a ,+ zx + z(k+l=x) = z(k+l) (mod k+l1)

' Z akil-x +Z

n—> a, ., + Byrlox,z 2 0 (mod k+l)
—> kt+l | a 4+ a8, . .
’ axlz + ak*l-x,z = q(k+1) (B)

Since 0 < a, 20 Baiexz < k+1 S—

0 <a _+a < 2(k+1) and using {B)}, 0<q(k+1)<2(k+1)

X, 2 k+l=x,2Z

——> (<q{2 =mww=> g=1, and from (B): a,,t 8, .= k+l.

From (A) & (B), a, ,m2X = ql{k+l) o) a,,= zx+q(k+1).
Let plx. Then, since p is a divisor of k+l, p also divides

a Let p divide a . For the same reason, p divides zx.

N:ﬁ. 2z is a column number and as such 12£z£J<p (see Theorem
7.10). Then, since p>z, p does not divide z, hence (p,z)=1
{according to Theorem A7.1.9), hence p divides x (according
to Theorem A7.1.10).

Let b,z,w be as in the hypothesis and assume that there
exist i & j, with 15i#j<(k+1)/p, such that Bhyip,2=Bbeip, v’

Then, from (A):

z{b+ip) = a = 2 wi{b+jp) (mod k+l) s>

b+ip,2 abojp,w

Appendix 7.9 Page 460

zb~wb = wjp-zip {(mod k+1) — (z=-w)b+(zi-wj)p = s(k+l)

and since p divides k%1, it also divides (z-w)b. Since
b<p, p does not divide b, hence (p,b)=1 (by Theorem A7.1.9),
hence p divides z-w (by Theorem A7.1.10). Then, z-w = qp.

But since z & w are JA columns, O0<2,WSJ<p mmmmd> -p{gpip ~—=>

abup.z = ah-tjp,z b+ip,1 =
Bpyip.1 (mod (k+1)/(k+1,z)) (by Theorem 7.6). Since zs<J<p (see

Theorem 7.10) then, (z,k+1)=1 (by Theorem A7.1.8). Hence,
ab+ip.1 = a’b+Jp,1 (mod k+1)) a'bﬂ.p,l = ab+jp,1
elements are in [1,k]). This contradicts Theorem 7.8 (iii),
hence the 3rd result of the theorem.*

=1{g¢] ==mm> Qg=() s> zzw, Hence, o’ 8,

{because the two

QED

A7.9.3. Proof of Theorem 7,16

Consider an (n,k,p~2) type-B self-orthogonal code. Each
row contains p-1 distinct elements, while there are
(k+1)/p-1 distinct multiples of p. Hence, the number of rows
that are multiples of p (and will contain only likewise ele-
ments), say, x must be such that the number of elements in
them, x{p~1), is at least J times the number of the distinct
multiples of p: x{(p~1}) 2 [{(k+1)/p-1]1J. On the other hand, x
cannot exceed the number of multiples of p, i.e. (k+l)/p-1.
Hence, if A & {(k+1)/p~1: AJ/{(p-1) € x < A.

x is the number of rows that contain multiples of p only,
while, according to Theorem 7.15, the rows that do not con-
tain multiples of p are exactly J(k+l1l)/p. Their sum is the
total number of rows of the resulting IA, which equals n-k.

Then, bounds for n may be obtained:
AJ/(p-1)+J(k+1)/p £ x+J(k+1)/p = n-k £ A+J(k+1)/p
— AJ/(p-1)+J(A+1) < n-k < A+J(A+]1)
— Adp/(p-1)4+J+k = n £ A(J+1)+J+k
wm> J{Ap/(p~1)+11+k € n £ [(k+1)/p-1]1(J+1)}+J+k
meme> J[p(A+1)-11/(p-1) € n £ (J+1)(k+1)/p-Jd=-1+J+k

—> JI{(k+1)-11/(p-1) € n £ (J+1)(k+1)/p~1+k

| * Remember that (a,b) denotes the greatest common diviso; of ; & l_:._

Appendix 7.9 Page 461

— Jk/(p-1)+k £ n S (J+1)(k+1)/p-1+k
QED

A7.9.4. Eroof of Theorem 7.18

Let the number of multiples of p {=(k+1)/p-1] be greater
than the width of the array but not more than twice that
width. In such a case, two rows are enough, if together they
contain a distinct set of integers. Since the width of the
row is p-1 and the number of multiples of p is (k+l1l)/p-1,

then the condition on p & k is
p-1 < {(k+1)/p-1 £ 2(p~1) <(memm> p < (k+l1l)/p £ 2p=1 (w=mm)>
p? < k+l £ p(2p-1) (> p < (k+1)/p £ 2p-1 (A)

Of course, k+l must be an odd positive integer whose
smallest prime factor is p. For example, if p=5, then 25 <
k+1 € 45, hence the only possible value of k+l1 is 35 (27,
33, 39 & 45 are divided by 3 and 29, 31, 37, 41 & 43 are
primes).

It will be shown that a given value of p is suitable,
only if (k+1)/p is a prime number. If (k+l1)/p is a prime
number, because p < {(k+1)/p [see (A), above] p is the small-
est prime of k+l and (A) is satisfied. If (k+l)/p is not a
prime then it will have at least two prime factors, say q &
r. Assume that both are not less than p. Then,
p?<qr<(k+1)/p<2p-1<2p ===} p<2 =m==> contradiction, hence if
(k+1)/p is not a prime it will have a prime factor less than
p. Then, p & k should be such that (k+1)/p is also a prime,
(k+1)/p & q. Equivalently, it is required that k+l = pq,
where q is a prime greater than p and less than 2p. For p=T7,
q should be >7 and <14, hence possible values for q are 11 &
13, giving a k equal to 76 & 90 respectively.

The number of rows with elements that are not multiples
of p is J(k+1)/p (see Theorem 7.15). The number of rows with
elements that are nmultiples of p, is 2J. Hence, n-k =
2J+4J(k+1)/p = J(2p+k+1)/p ===> n = k+J(2p+k+l)/p.

The IA construction instructions will be similar to those

for the type-B2 codes, except for the lst-column elements

that are multiples of p. For the type-B2 codes, each such

Appendix 7.9 Page 462

row contained all the multiples of p, while for this class
of codes, two such rows are required and the instruction set
nmust specify the pairs. It will be shown that two rows, spe-
cifically one with 1st-column element pi [1$ig£(k+l)/p-1 =
q-1] and another with 1st-column element (k+1)-pi, contain
all the multiples of p once and 2p~-(k+1)/p-1 = 2p-q-1 of
them, twice.

Consider 1st-column element x=pi /1<i<q-1. Element k+l-x
= pg-pi is also divisible by p, hence it also generates mul-
tiples of p. Let a1 = pi and Byy1epi,1 = k+l-pi. According to
Theorem 7.14, a, + a,, . ,= ktl < > 8oz ¥ Bpqepr,z
p9s for all z=1,2,...,p-1 (the width of the IA is p-1). It
will be shown that the set

S, = {a

1 /Z=1,2,o-,p-1 & V=1|2t"1q-P} (B)

pi,z? 2pg-pi,v

contains all the multiples of p, exactly once, for any
value of i (1%isq-1).

Let i /1<i<q. Elements & i,z /z=1,2,...,p-1 are all dis-
tinct multiples of p, since they constitute the row with lst

element pi. Similarly, elements a /v=1,2,...,9-p are

-pl,v
all distinct multiples of p becaus;mgaey constitute part of
the row with 1st element pg-pi (Q€2p-1 <(smmmm> g-p<p-1). It is
reminded that the l1st-column elements are pi & pa-pi, re-
spectively. Tpe total number of elements in Siis p-l+q-p =
g=-1 = (k+l)/p-1, i.e. as many as the multiples of p. If
there are any duplications these will be between the two
rows. Assume that there exist one z (1%z<p-1) and one v

({1sv€gq-p)} such that

Byg= 8 (> &y, = PATR, (by Theorem 7.14)

I
N
rd
s
n

 m—— a8 = Za

pi,z rq - a

pt,v = PA ~ vpi (mod pq)

{wwes> (z+v)pi 2 0 (mod pq)
<wm==> there exists integer s, such that (z+v)pi = spg
(> (z4V)i = 8q <(=w=d> q divides (z+v)i

Since the only divisors of q are 1 and q, (q,i)=1 because
i is positive and less than gq. Then, by Theorem A7.1.10, q
divides z+v w=m> z+v2g. But, from (B), 1%zsp-1 & 1<v<qg-p,

Appendix 7.9 Page 463

hence 2<z+v<p-l+q-p=q=1 ww=> z4v { q ===} contradiction,
hence all the elements of S, are distinct and the set con-
tains all the multiples of p.

Since the elements of the row with lst element pi togeth-
er with the first gq-p elements of the row with 1st element
pa-pi are distinct, the remaining of the elements of the
latter row will have duplicates (obviously in the first row,
because each row contains a distinct set of elements - for
the same reason there are no triplications, etc).

To generate J copies of each multiple of p, a row with
first element pi is selected together with the row with
first element k+l-pi. To avoid overlap, 2pi < k+l <(wmm> 2j
< q <=mm> i < q/f2, Since q=odd, i=1,2,...,(q=1)/2. Hence J
cannot exceed (q-1)/2.

QED

A7.9.5. f r 1

From inequality (7.9), m+l < (k+1)/(k+1,ah1) for all
x=1,2,...,n-k. Alternatively, a number x, between 1 and k,
may be chosen for the lst column of the IA provided that m+l
< (k+1)/(k+1l,x). If d, € m+l < d,, then (k+1)/(k+l,x) > m+l
2 d,. Since (k+1)/(k+l,x) is a divisor of k+l, greater than
d1’ it may only be greater or equal to the next divisor,
i.e. d,, hence dzs (k+1)/(k+1,x) (wm> (k+l,x) £ (k-l-l)/dz.
Alternatively, if the latter is true, (k+1)/(k+l,x) 2 d, >
m+l oemm> m@m < (k+1)/(k+1l,x)-2. Hence, if d, £ m+l < d, then
Theorem 7.3 is equivalent to (k+l,x) S (k+1)/d2. Hence, x
may be any integer between 1 & k, provided that it is not
divided by any divisor of k+l greater than (k+1)/d2.

The 2nd result concerns the number of copies of any par-
ticular integer a {(1<a<k), included in the JA. According to
the definition of type-B codes (see Definition 7.2), the
element in column z (1<z<m+1) and row with first element x
is congruent modulo k+l1 to the product xz.

Then the number of copies of a equals the number of solu-
tions of the congruence xz = o (mod k+l), where x & z are

restricted according to the above.
QED

Appendix 7.9 Page 464

A7.9.6. £ S0

Let z denote an IA column (z€{l,m+1]) and d &« (z,k+1i). Fi=~
nally, let x denote a first-column element of the IA
(xe[1,k]) and f & {x,k+1). According to Theorem 7.19, i, 2
& X are related via congruence:

zx = 1 {mod k+1) {A)

where x must not be a multiple of any divisor of k+1
greater than (k+1)/dz, or the same the greatest divisor of
k+1 which also divides x should not exceed (k+1)/d2, or the
same fs(k+1)/d2.

According to Theorem A7.2.5, if congruence (A) is to be
solved for x, it has exactly d solutions [d &= (z,k+1)] in
the range [1,k] {(which is also the range of x), if d divides
i, and none if d (i. If d [i, of the d solutions only
those which satisfy £ & (x,k+1) £ (k+l)/d, are retained,
hence the number of copies of i varies between 0 and d., This

proves the general statement of the theorem.

The remaining of the proef is an elaboration on the last

paragraph.

From Theorem A7.2.5, if d | i (i.e. if i is a multiple of
d), congruence (A) has exactly d sclutions (in the range
[1,k]), given by

x = ¢g+j(k+l)/d /3=0,1,...,d~-1 {B)

Hence, a column z may only contain elements i which are

multiples of d. Also, there may be up to d copies of an in-

dividual multiple of 4, i, along column z [i.e. solutions of
{A})]. A solution is acceptable (i.e. the corresponding copy

Let i denote an IA element (i€[l,k]) and e & (i,k+1).
|

of i will be included in column z), if f < (k+1)/dz, i.e. if ‘
t = ged{e+i(k+l)/d,kel) s (kel)/d, (c)

According to Theorems A7.2.5 & A7.2.7, ¢ is given by

g = (3/d)(2/d)MEDML (nod (k+1)/d)) (D)

|

where ¢ is unique modulo (k+1)/d {(i.e. there is only one

solution of congruence (D) in the range {1,(k+1)/d]).

Appendix 7.9 Page 465

The requirement that e/dS(k+1)/d2 and the case for d=1,
will complete the proof. Nevertheless, they require the
proof of gecd(x,(k+1)/d) = gcd(f,(k+1)/d) = e/d, if d|i.

If d|i, from congruence (D) and Definition A7.2.1, there
exists integer c¢ such that ¢ = (i/d)(z/d)* + c(k+1)/d, where
p = ®[{(k+1)/di-1. Hence, from (B), x = (i/d)(z/d)" +
c(k+1)/d + j(k+1)/d = (i/d)(z2/d)* + q(k+1}/d. So, if d|i
there exist integers q & p, such that

x = (i/d){(z/d)* + q(k+1)/d (E)
(z,k+1) = d <===> [by Theorem A7.1.5] (z/d,(k+1)/d) =1

1 (F)

— [by Theorem A7.1.11] ((z/d)“,(k+1)/d)
Let ((i/d)(z/d)“,(k+1)/d) ah (G)

Because d = {z,k+1) divides k+l and i (the latter by hy-
pothesis),

e & (1,k+1) = ((1/d)d,[(k+1)/d1d) = |a]{i/d, (k+1)/d)

{by (A7.1.1c)] and since d is a gecd, i.e. nonnegative,
(i/d,(k+1)/d) = e/d (H)

Since (e/d) | (i/d) — (e/d) | (i/d)(z/d)* and
since (e/d) | (k+l1}/d [from (H)] —
(e/d) | h (1)

Let (h,(z/d)*) & b. Since b | h and h | (k+l1}/d, ==> b |
(k+1)/d. Also, b | (z/d)". Then, b | ((z/d)¥,(k+1)/d) = 1
[{see (F)]. Hence b=1 and

(h,{z/d)*) = 1 (J)

From (G) & (J) and Theorem A7.1.10, h | (i/d), and by (G)
h | {k+1)/d. Then, by (H),
h | (e/d) (K)

By (I) & (K), h = e/d, and by (G):
((i/d)(z/d)“,(k+1)/d) = e/d (L)

By (L) & Theorem A7.1.12,

((i/d)(z/d)“.(k+1)/d) = ((i/d)(z/d)“+q(k+1)/d,(k+1)/d) = e/d

Appendix 7.9 Page 466

{using (E)1:
(x,(k+1)/d) = e/d (M)

(f,(k+1)/d)

((x,k+1),(k+1)/d) =

(x,(k+1,(k+1)/d)) [by (A7.1.1b)]}

(x:(k+1)7d) [since (k+1)/d | k+ll.

Using (M):
(x,(k+1)/d) = (f,(k+1)/d) = e/d (N)

Since (e/d) | £ — (e/d) € f and since f must be £
(k+1)/d2, it is necessary that e/d = (k+1)/dz. Apart from
the case of d=1, the proof is complete.

If z is relatively prime to k+1 (d=1), for a given i
there is always exactly one sclution of (A) (since 1 | i).
This solution, x, is the 1st-column element of the row which
contains element i. This single solution is acceptable, only
if f=(x,k+1)$(k+1)/dz. From (N), for d=1, (x,k+i1) = f = e,
so the condition f £ (k+1)/d, is equivalent to e < (k+1)/d,.

QED

APPENDIX 7,10: - ~ -

A7.10.1. Proof of Theorem 7,21

According to Theorem 7.3, if a row, say x, is not to con-
tain a zero it is necessary and sufficient for its length
not to exceed (k+1)/(k+1,a:J)-1. Note that this implies also
that a, , # 0, because (k+1)/(k+1,0)-1 (k+1)/(k+1)-1 = 0,
hence there exists no row if axJzo.

il

To prove the first part:
If m+l=k, then every row should have length k (its maxi-

mum possible length). From Theorem 7.3:
(k+1)/(k+1,aﬁ1)-1 = k for all x=1,2,...,n-k < >
(k+1)/(k+1,axJ) = k+1 for all x=1,2,...,n-k onmmn >

(k"'].’ax'l) = 1 fO!.‘ all x=1,2’n¢a'n-’k

Appendix 7.10 Page 467

Conversely, if (k+1,axA) = 1 for all x=1,2,...,n-k, then
(k+1)/(k+1,axﬁ)-1 « k¥ for all x=1,2,...,n=-k, hence every row
has length k, and m+l=k.

Hence, a necessary and sufficient condition for m=k-1, is
condition {(7.24).

To prove the gecond part:
Let (7.25) hold true. Then, the elements of the first

column are incongruent to each other modulo any non-trivial

divisor of k+l.
From Theorem A7.1.7:

d|(k+1) {mmue> there exists c: d = (k+1)/(k+l,c) /1ScSk+l
d|(k+1l) /d>1 <Km==> d = (k+1)/(k+1,c) /1lfecsk+l & d>1 (A)
d =1 <> ktl = (ktl,c) <===> k+l | c (B)

From (A), k+l 2 c. Hence, if k+l | ¢ (m=m=> k41 < ¢c), then
k+l = c. Conversely, if k+l = ¢ ===> k+1 | c. Hence:

Given 1<c<k+1: k+l | ¢ Cmem> k41

c, and using (B):

I
0

Given 1<c<k+1: d =1 <mwwm> k+1

Given 1%c<k+l: d #1 (> k+l # c

Given 1s5csk+l: d #1 (=) k¢l < c and since d2z1:
Given 1<c<k+1l: d > 1 <==> kil < c. So, from (A):
d|(k+1) Jd>1l ey d = (k+1)/(k+1,c) /1Zc<k+l (C)

Then, from (C) & (7.25), the elements of the 1st column
of the IA are incongruent modulo {((k+1)/(k+i,c)) for all c
less than k+1 = m+2, hence for all ¢ £ m+l. Then, by
(7.13b), the code is self-orthogonal.

Consider the converse now. Let the code be self-orthogo-

nal. Then, by the corollary of Theorem 7.5,
8,1 # a, 4 (mod (k+1)/(k+1,c)) (D)

for all r & v and for all elements 8. 0= 8,y of these two

rows that are equal (where 1l<u,w<m+l) and for all positive

integers ¢ less than u & w. Since m+l=k and the rows are

Appendix 7.10 Page 468

made of distinct elements (see Theorem 7.8}, any two rows,
say x & y /x¥y & 1£x,y<n-k, contain the same set of ele-
ments (in different order). Let element i 1<i<k, be in posi-
tion w, in row v and in position uiin row r, and let o, be

the minimum between u, & w Then, ¢ ranges through the in-

1.
tegers 1,2’ L) ’MAX{UI,OZ’ « e ,Ok}"l.

Assume that there exist at least two rows, say r & v,
such that their first elements (a.r'1 & avl) are congruent

modulo at least one divisor d, of k+l. Then:

a_ , = a, s (mod d) —

T,1l

there exists integer q such that, a ,-a , = qd ==

aer(k+1)/d - aVJp(k+1)/d = gqdp(k+1)/d, where (p,k+1)=1.
Then: aer(k+1)/d E ava(k+1)/d (mod k+1) —

a ,Ea {mod k+1) /z=n(k+1l)/d, n=1,2,...,d-1 (E)

I,z

Since k=even, k+l is odd and its smallest prime factor,
P, is 23. Then, d2p23 ==m> d-122, Then (E) is valid for at
least p=1,2. From (E), for u=2, [note that (2,k+1)=1], 8, 4 =
ay, o (mod k+1) /s & 2(k+1)/d. Since, by hypothesis, the
code is self-orthogonal, from the corollary of Theorem 7.5
and for all ¢=1,2,...,2(k+1)/d-1, a, ¥ a, {mod
(k+1)/(k+1,c)). If c=(k+1)/d, which is £2(k+l)/d-1 for all
k22, then (k+1)/(k+1l,c) = 4, hence: a, 7 a, (mod 4d},

which contradicts the assumption. So, there are no two rows

whose first elements are congruent some divisor of k+l.

This proves the second part.
QED

A7.10.2. FProof of Theorem .71.22

Since m=k-1, each row must have length m+l=k, From the
proof of Theorem 7.21, a necessary and sufficient condition
is that all first-column elements are relatively prime to
k+1 (note that this was proved without assuming that k is
even).

(k+1,a,,) = 1 (A)

Since k+l1 is even, from (A}, a, 4 must be odd. Then, the

Appendix 7.10 Page 469

first-column elements must all be congruent to 1 (mod 2), so

for any two rows with first elements, say, a, 4 & a,,:

_a'r.l

a = 8., (mod 2) s > 2 | (a) m—y

v,1 v,1

2(k+1)/2 | (av'l-ar'l)(k+1)/2 < —>
[(k+1)/2]av.1 = [(k+1)/2]a.r’1 (mod k+1) < m—

a, .= &, {mod k+1) /z = (k+1)/2 (B)

V2

Since a,, = 1 is an acceptable first-column element, it
follows that a S (k+1)/2 (mod k+l1l) and because 0<axJ<k+1
0$|axJ-(k+1)/2|<k+1, it follows from Theorem A7.2.3 that a

=z [= (k+t¢1)/2]. Hence, from (B):

' Z

For all v=1,2,...,n~k: a_ _= 2 [z = {(k+l1)/2 (C)

V,.Z
(C) proves the 3rd part of the theorem.

Next, it will be shown that if k+l=even, the IA may only
have 2 rows, if the code is to be self-orthogonal.

Let any two rows, with first elements, say, 8,1 & I
Since, by Theorem 7.6, the rows contain a distinct set of
elements, because their range is [1,k] and@ since there are k
of them, each row contains the integers 1,2,...,k, (in a
unigue order, of course). According to the corollary of The-
oren 7.5, for the code to be self-orthogonal, the first ele-
ments of any two rows, say a, ., & a. .y must be incongruent
modulo (k+1)/(k+1l,c) for all c = 1,2,...,MAX{ol,cz,...,ak}—l,
where 013 MIN{uinn} and u, & w,
ment i (1£i<k)}) in rows v & r, respectively.

are the positions of ele-

The smallest divisor of k+1 is 2, hence the largest one
is (k+1)/2. If (k+1)/2 is included in the range of values of
c, then (k+1)/(k+1,(k+1)/2) = 2 and a, & ard_must be incon-
gruent modulo 2, which means that one of the two must be 0
{mod 2), i.e. an even integer. This is not permitted by (A)

above, hence

) D
ix that (Ke131/2 38 not Included in the vande of ' ()

Consider rows with first elements a, 4 & 8y By (C), the
middle element is (k+1)/2. Let A(v) denote the set of the

Appendix 7.10 Page 470

(k-1)/2 elements in the first half of the row with 1lst ele~
ment a, , and B(v) the (k-1}/2 elements in the second half of
that row. Note that A(v) & B(v) together contain k-1 dis-
tinct elements [the kth is in column z = (k+1)/2].

For each element i (1<isk), either i=(k+1)}/2 in which
case it is in column (k+1)/2, or ieA(v), or ieB(v).

If i=(k+1)/2, then i is in column (k+1)/2 on each row v,
r, etc. For this case, o,=(k+1)/2. Hence, condition (D) is
not violated.

All the elements of B(v) must also belong to A{r) because
if, say, J appears in B(r) then aj>(k+1)/2, hence ¢ is al-
lowed to range up to at least (k+1)/2, vioclating thus the
necessary condition for self-orthogonality [(see (D)}]. Hence
A{r)=B(v) and, by necessity, A(v)=B(r). So:

type-B coffe With M¥T=even,: fu that for sy fvo rove with fixet~ (E)
columy elemetits &, ;:h & ;i:A{vIsBir):and A{F)3B(V):

Assume that the IA has at least three rows with first-
colunn elements, say, a, 41 8., & 8y 4y According to condition
(E), above, for the code to be self-orthogonal it is neces-
sary to have A(v)=B{(r) & A(r)=B(v), and A{(v)=B(s) &
A(s)=B{(v), and A(r)=B(s) & A(s)=B(r). From these six equa-
tions it follows that A(v)=B(r) & B(r)=A(s) & A(s)=B(v),
which gives A{v)=B(v), which means that row v contains du-
Plicate elements, which is a contradiction, by Theorem 7.8.
Hence, the IA must have less than three rows if the code is
to be self-orthogonal, i.e. n-ks2.

From the discussion so far, on type-B codes, it is appar-
ent that since each row contains all integers in the range
[1,k], each error bit e?’ appears in the syndrome equations
exactly n~-k times. Then, there are exactly n-k syndromes
checking on each error bit, hence J=n~k and, since n-k<2, it
follows that J=£2. If the code is to have a non-zero guaran-
teed error-correcting capability (t>0), then J>1 (note, from
Theorem 5.3, that t = |J/2]). Hence, the only possible value

for J is 2, and so is feor n-k.

This proves part of the fourth statement of the theorem

(J=2).

e

Appendix 7.10 Page 471

Next, it will be proved that a necessary condition [di-
rect consequence of (E)] for the existence of a self-orthog-
onal code is that a1J+aL1=k+1. To achieve this it is neces-
sary to show that, for all v=1,2,...,n-k & all b,c=1,2,..,k,

ba

v,C

avJ,(mod k+1), where vy & be (med k+l) & 1<y<k (F)

For any b,e,=1,2,...,k and any v=1,2,...,n-k, let bc = ¥y
(mod k+l1), where 1€y<sk [y = bec - |be/(k+1)l(k+1l)]. Then,

(k+1) | (bc~y) ==w=> (k+1l) | (bc-y)a Hence:

v,1°

For all V=1,2,.-.,n-k & 8.11 b,c=1'2,-o-’k:
bca.v'1 - vya, , = 0 (mod k+l))
b(cavd) = ya,, (mod k+1)

Using Definition 7.2 and the fact that 1gc,ysk, (F)} fol-
lows immediately.

Let ¢ = k+1-p in (F). Then, » = k+l-c and for c¢=1,2,..,k
= n = k,k-1,..,1. Since y = b(k+i-n)} 2 -bp (mod k+i):

FOI‘ all V=}.,2’-oo,n-k & all b,p=1’2,ooo'k=

b:a\v.‘“l__ll = a, (mod k+1), where y==bu {(mod k+l) & 1<y<k (G)

Let 8y 4 & a,, be the two elements of the 1st column. The
elements of the 2nd half of the first row may be expressed
1.,m_u/u=1,2,...,(k-1)/2. Because B{(1)=A(2) [by (E)],
must equal one of aLkHﬂ]/u=1,2,...,(n-k)/2. Let By =
ahk”,w/15ws(k-1)/2. Then, the elements of A(2) are given by

{see Definition 7.2):

by a

21

2 ra (mod k+1) [and using (G)] —>

az,r

1,k4l-w

8, .= &, (mod k+1), where v £ ~rw (mod k+1) {H)

Since the IA elements are in the range (0,k+1), their
difference |aLr-aLv| is in the range [0,k). Then, by Theorem
AT7.2.3:

/v & =~rw (mod k+1) (1)

1,v

For those values of r, for which 12£k+l-rw<k, and because
k+l-rw = -rw (mod k+1), it follows that v = k+l-rw. Then,
from (I):

Appendix 7.10 Page 472

82,0 = 2y xippw /15ktl-rwsk (J)

Notice from (J) that if w=1, = a

817 81.x* 8,2 1,k-10°°°?

a where z = (k+1)/2. Hence, w=1 is a suitable

82,2-1 = 81,21
value. It will be shown that any other value of w (with
wel[l,{k-1)/2]1) will result in a violation of condition (E).
Let w>l1. As r increases, k+l-rw decreases. By design,
element a, , = a,,,, is in the 2nd half of the first row. It

is not known though if a appears in the 2nd half

2,2 = B1,ked-2w
of the 1st row, or not. The same applies to a, 43 etc.

Note that elements a where x & (k-1)/2,

2,17 82,290 ¢ 228 4

equal elements a where if k+l-jw

Lkslew? 21 ke1c2w? 0 09 81 xe1oaw?
becomes negative an adequate number of {(k+l)s is added so
that it becomes positive and not greater than k. Hence, the
1st half of the 2nd row is identical to a reversed & 'inter-
leaved’ (with ’degree’ w) first row.

Consider, for example, k=19 and eight rows {(only two to
be retained), with first elements 1, 3, 7, 9, 11, 13, 17 &

19 (all relatively prime to k+1=20).

1st half 2nd half
1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15 16 17 18 19
3 6 91215 18 1 4 1 10 131619 2 5 8 11 14 17
7314 1 815 2 9316 3 10 17 4 11 18 £ 12 19 6.13
918 716 5 14 312 1 10 19 817 615 4 13 2 11

1r 213 415 617 B8 19 10 112 314 516 718 9
13 619 12 5 18 11 4 17 10 316 9 215 8 114 7
17 14 11 B 5 2 19 16 13 10 7 4 1181512 9 6 3
19 18 17 16 15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1t

/

Select any of the eight rows as the IA’s first row, say
the 3rd row" (starting with element a14=7). Candidates for
the other row may be found in the 2nd half of this row:
13(w=1), 6(w=2), 19(w=3), 12(w=4), 5(w=5), 18(w=6), 11(w=T7),
4(w=8) and 17(w=9). Note though that from these candidates
one must exclude all elements not relatively prime to
k+1=20, Hence the acceptable list of rows** is 13(w=1),
19(w=3), 11(w=7) and 17(w=9),

Let a,, = 19 (w=3). Then the first half of the IA’s 2nd
row will be 19 18 17 16 15 14 13 12 11. According to the

¥ Highlighted heavily.
¥* Righlighted.

Appendix 7.10 Page 473

theory, these 9 elements should equal elements a ,» where

1,20-3r
r=1,2,...,9 and where 20-3r is kept within {1,19] by adding
20s whenever necessary. The 1st half of the 2nd row, corre-
sponds to the lst-row elements 8; 190 By.341 85310 By gv By 5
a) 2 aL19(=a1r1), etc, ah13(=a1r7). To illustrate this, the
two rows are arranged again below, with the first six ele-

ments {(of the 2nd row) highlighted:

712 1 81% 2 9 16 3 10 17 4 11 18 5 12 13 6 13
19 18 17 16 15 124 13 12 11 10 9 8 7 6 5 4 3 2 1

For condition (E)} to be satisfied (a necessary condition,
if the code is to be self-orthogonal), no highlighting
should appear in the 1lst half of the 1st row (the case above
does not qualify). To put it otherwise, w should be chosen
so that (E) is satisfied; in fact, all such values of w must
be obtained, in order to arrive at all possible self-orthog-
onal codes.

All first-column elements must be relatively prime to
k+1: (aLl,k+1) = (ahl,k+1) = 1, and since 81 % 8 1w then
(al,k+1-w’k+1) =1 o— (al.l(k+1-w)-q(k+1),k+1) =1 —
(-wald+s(k+1),k+1) =1 — (-wald,k+1) = 1 (by Theorem
A7.1.12). Then, (w,k+1) may only be 1, because otherwise

(-waIJ,k+1) would not be 1 either. Hence,
(w,ktl) =1 (K}

) is somewhere in the 2nd half of
1'ku_m) maybe in the 2nd half, or
it may not be, and so on, but it seems that at least one of
the elements will be in the 1st half of the 1st row {forbid-
den region). Let B) re1-2w? B2 ks1-20? * * * 981 Keloxw be the first x
elements of the 1st half of the 2nd row that are all in the
2nd half of the 1st row, as well. Then, k+l-xw > (k+1)/2
(> (k+41)/2 > xw <=mmd x < (k+1)/(2w). From (K), w (w>1)
does not divide (k+1)/2 because if it did, k+1 = 2qw and
then (w,k+1) = (w,2qw) = w > 1. Then, the maximum value of x
is L(k+1)/(2w)]. Then, element a, .. . (X & x_) is in the
2nd half, but element a, .., 4,4, ¥ill be in the 1st half,
provided that k+1-(X+1)w > 0 /X+1 = x_ +1 = [(k+1)/(2w)]+1.
But, k+l-(X+1)w = (k+l)-L{k+1)/(2w)fw-w = (k+1)/2 -

The 1st element (a, ., .

row 1, the 2nd element {(a

Appendix 7.10 Page 474

L(k+1)/(2w) Iw + (k+1)/2-w = MOD[(k+1)/2,w] + [(k+1l)/2-w],
where MOD{A,B) & A modulo B, with O0=MOD(A,B)<B-1. Then,
k+1-(X+1)w 2 (k+1)/2-w 2 (k+1)/2-(k-1)/2 = 1. Hence:

If w>l, there exists an element a, ., from the 1lst half of

the 2nd row [v<(k+1)/2] which appears in the 1st half of the
1st row:

az,v = a

Lkstovw IV = L(k+1)/(2w)]+1 (L)

Hence, if the code is to be self-orthogonal, w may only
be equal to 1. Then the 1st element of the 2nd row equals
a,,5.s i.e. the first element of the 2nd row must be equal
to the last element of the first row:

a,,= 8, (M)

Since 8y y kalJ.E (k+1)ah1-a E -alﬂ_(mod k+1)

1,1

then, a)y*t 8 = 0 (mod k+1). From (M):

8y, % 8,4 = 0 {(mod k+l) — "there exists integer g

such that a;; + a = q(k+1)". Since 8y 4 & a,, are IA ele-

2,1 2,1
ments, it follows that 0 < a1t 8, < 2(k+1) — 0 <

al{k+l) € 2(k+1l) wem=d> g=] =—
A necessary condition for the code to be self-orthogonal:
ay *t 8, = k+1 (N)

Note that from (N), and because (814'k+1)=1’ it also fol-
lows that (azJ,k+1) = (k+1—a1J,k+1) = (-ald,k+1) {from Theo-
rem A7.1.12) and finally, (azﬁ,k+1) = 1,

This proves the 2nd statement of the theorem.

So far it has been proved that the following conditions
are necessary, if k+l=zeven and the code is to be self-or-
thogonal:

1. J =n-k = 2 ,

2. (ahl,k+1) =1 and

3. a;,= k+1-a1d

Consider now a2 (k+2,k,k-1) type-B code with k+l=even and
its JTA with ald’such that (ald,k+1) = 1 and By, = k+1-a1J.
Because (alJ,k+1) =] — (k+1-a1J,k+1) = 1 and since

both rows satisfy Theorem 7.3, then they contain no zeros.

Appendix 7.10 Page 475

Let a, ,=x. Then, the first row elements are given by

aLrE rx {(mod k+l1) /r=1,2,...,k {0)

while the 2nd row elements are given by
a, .= (k+l-x)r = -rx (mod k+l1) {(P)
From (0) & (P),

8y, % 8, 0 (mod k+1) /r=1,2,.00yk o>

a .+ 8, = k+l /r=1,2,...,k (A7.10.1)

because 8 r & a, , are IA elements, hence they are con-
fined in the range (0,k+l1), so their sum cannot be less than
l, or greater than 2k. Also, from (P) and with the same rea-

soning:

2 {k+l-r)x

1
|

H

”
i

al,kil-r = az,l‘ (mOd k+1) /r=1’2’ o ,k

(A7.10.2)

— a =

2,0 = B1,xketer

From (A7.10.2), the pairs of equal elements in the two
rows appear in positions 1 & k, 2 & k-1,...,(k+1)/2 &
(k+1)/2,...,k & 1. Hence, the beginning of the rightmost
pair of equal elements is (k+1)/2, hence ¢=1,2,...,{k+1)/2-1
and according to the corollary of Theorem 7.5 the code is
self-orthogenal if

8y, 7 8, (med (k+1)/(k+1,e)) /e=1,2,...,(k+1)/2-1

Since c<{k+1)/2, it follows that (k+l,c) < (k+1)/2 w==>
(k+1)/(k+1l,c) > 2. Hence it is required that a), =X and 8, .,
= k+l-x are incongruent modulo any divisor d of k+l, greater
than 2.

Assume that there exists a divisor d of k+1, greater than

2, for which x & k+l-x are congruent modulo d:
x 2 k+l-x (med d) St > there exists q such that
k+1-2x = aqd v—— d divides 2x, because d | k+1.

Let (d,x) = f. Then, f | d | k+1 and f | x, hence f |
{x,k+1) = 1 ===> f=1, So, d divides 2 (by Theorem A7.1.10)
— Jd€2 =——=> contradiction =mem> there does not exist a

divisor of k+1, greater than 2, such that ay, & a4 to be

Appendix 7.10 Page 476

congruent. Then the code is self~orthogonal.

So, if k+l=even, a necessary and sufficient condition for
the (k+2,k,k=1) code to be self-orthogonal is J=n-k=2, a,, =

k+l-a, ;, and (all’k+1) = 1, This proves the main body of the
theorem and also statement 4.

Regarding statement 1, it has already been proved that

a, is the IA's generating element, and that a, , may be any

positive integer, not exceeding k, and is relitively prime
to k+l. Since a1J=k+1 would not be considered because it
would not be relatively prime to k+l, there are exactly
®(k+1) such ahls(see Definition A7.1.4), hence as many IAs.

QED

A7.10.3. Froof of Theorem 7.23

Let k+1 be an odd positive integer, with p its smallest
prime factor. If the elements of the first column of the IA

form a subset of
B(u) = {bJ /3=1,2,...,p=1, by = uj (mod k+1), 1bjk} (A)

where (n,k+1) = 1, then for each a, there exists J
/1£j$p-1 such that:

8,17 bJ = nj (mod k+1) —

there exists gq such that a,, = Bj + q{k+1) —

(2,,10k+1) = (Ri*ta(k+1),k+1) = (nj,k+l} (by Theorem A7.1.12)
Since (p,k+l) =1 & (Jj,k+1) =1 (because 15j<p),
then (uj,k+1) = 1 (by Theorem A7.1.13).%

It follows then that each row of the IA may have k ele-
ments (see Theorem 7.21), which are distinct (see Theorem
7.6). Hence, the IA contains exactly n-k copies of each ele-
ment i=1,2,...,k, which is equivalent to the existence of
exactly n-k syndromes checking on each error bit eé” /i=1,2,
++s3k (see Theorem 7.1). Hence, J = n-k.

Furthermore, if k+l £ n £ k+p~-1l, then 2 £ n-k £ p-1,
hence the number of rows may not exceed p-1.

¥ Remenmber that {a,b) denotes the greatest common divisor of a & b.
I

Appendix 7.10 Page 477

Let any two elements of B(m), say b, & bj, and assume
that there exists a non-trivial divisor of k+l, say, d such
that:

b, = bJ (mod 4d) S —> pi = pj (mod Q@) [by (A)]

(> i E (mod d/(u,d)) (by Theorem A7.2.4)

Let (p,d) & f. Then, £ | d | (kt1) and £ | n, hence
£ (ktl) = 1 =
d divides |i-j| ===> d £ |i-j].

But 1£i, j<p-1 — 0 < |i-j]| < p-1 < d, hence contra-

= 1. So, i 8 j (mod d) S—

diction, hence the elements of B{n) are incongruent to each
other modulo any non-trivial divisor of k+l. This proves the

existence part of the theorem.

To prove that the (n,k) type~-BS code is the only
(n,k,k-1) type-B self-orthogonal code with k=even, it is
enough to start with an (n,k,k~1) type~B self-orthogonal
code.

Since the length of each row is k, it follows from
Theorem 7.21 that

(a,10k*1) = 1 /x=1,2,.000n-k (B)

Also, for the same reason, the IA contains exactly n-k
copies of each integer i /i=1,2,...,k, hence J = n-k (see
Theorem 7.1).

Since the code is self-orthogonal, by Theorem 7.21, the

a_,s are incongruent to each other modulo any nontrivial

d;tisor, d, of k+l1. Hence, since there cannot be more than d
incongruent numbers modulo d, for any non-trivial divisor of
k+1, and since p is the smallest of ds, then there are not
more than p incongruent numbers module any divisor of k+l.
Of these p numbers, one has to be excluded because it is a
multiple of p [2 0 (mod p)] and it would violate (B).

Then,

l £ n-k £ p-1 — k+l £ n § k¢p-1

Appendix T.11 Page 478

APPENDIX ¥,ti; GENERAL PROPERTIEC OF TYPE-C CODES

A7.1t.1t, Proof of Thaorem 1.24

Consider a cyclically-decodable (n,k,m) type-B code and
two error bits, say, el“" and ef‘” (aB), that satisfy the

requirement laid by Definition 7.4. Let

sl o /3=hi2, 0000, 15x(§)Sn-k & 1£z2(j)<m+l ()

be the syndromes checking on e#”. Then {(see Definition

7.4) the syndromes checking on e{?’ must be:

{x(31} s35=1,2,...,J

Shez(4) 1<x(j)sn-k & 13z(j)sm+il (B)

ﬁ,
where, without loss of generality, a leftward shift has
been assumed.
Note at first that, a necessary condition is J = JBG J.

Also, from Theorem 7.1, because [see (A)] sgf:'(’;}_l checks on

e;“),
By1),z(y - Bxyzy - T T By T @ (c)
and because [see (B)] S.";fi?;i checks on eltln)’
8),en T Bx@z@nn T T T Bxyzn < B (D)
From (C) & (7.8):
z{D)a,yy = 2(2)a,,, 7 = z(J)a,,, , (mod k+l) (E)
From (D) & (7.8):
z(1)a 4y %8,y = 2(2)a, 5, 48,0y F °*°
= z(J)alx(.,‘,‘.1+a\.x('”'l (mod k+1) (F)

It follows from (E), (F) & Theorem A7.2.2 that a neces-
sary condition for the existence of a horizontal-shift cy-

clically decodable type-B code is

8y1),1 T Byzy,1 T 00 F 8y, (mod k+l) (¢)

Because ISaﬂjMISk, then Oslax”)ﬂ—aﬂwhl|<k+1, hence, by
Theorem A7.2.3:

a - B2yttt T (H)

Then, by the corollary of Theorem 7.5, the code is not

Appendix 7.11 Page 479

self-orthogonal.
QED

AT.11.2. Proof of Relations (1.,27)

Following the same approach, as above, consider a cycli-
cally-decodable (n,k,m) type-B code and two error bits, say,
eg” & ef” (a#B), that satisfy the requirement laid by Defi-
nition 7.4. Let

sl 7§=1,2,...,4,, 13x(§)sn-k & 1s5z(j)sm+l (a)

be the syndromes checking on e(*. Then (see Definition

7.4) the syndromes checking on e(®) must be:

sfxNa /§5=1,2,...,dy, 13x(§)sn-k & 1fz(j)<m+l (B)

where an upward or downward shift has been assumed.

As before, it is necessary that J_= Jai‘- J.

From Theorem 7.1, because [see (A)] s{*W} checks on e®

hez(j}-1 h *
B2y T Bxyzy T T T By T O (c)
and because [see (B)] sﬁféi’}ﬂi checks on e!%,
8yyat,z() T Bxntz T 0T T Byt T B (D)
From {C) & (7.8):
z(l)au1L15 z(Z)a“ZLIE see = z(..l)a.xu)’1 (mod k+1) (E)
From (D) & (7.8):
z(l).ezlxu)ﬂ’1 = z(2)a.x(z)!1’1 E oeve = z(.J)ax(.”_’_l.1 (mod k+1) (F)
(E) & (F) are relns (7.27).
QED

A7.11.3. PBroof of Theorem 1.25

Assume that there exists a row, say, x (12x<n-k) of the

SYRE which contains at least two syndrome bits, say, si‘lﬂ_l &

Sr?:s)n-l checking on the same error bit, say, e{'’. Then, by Theo-

rem 7.1, a = a,p8° i, which contradicts Theorem 7.6. This

proves part of the 1st statement of the theorem.

Appendix 7.11 Paga 480

Assume that there exists a column of the SYRE, say, z
(1<z<m+1) which contains at least two syndrome bits, say,

s{®) & 31(::-1 checking on the same error bit, say, e,(‘“. Then,

by Theorem 7.1, a,,= 8, = i, which is acceptable by Theo-
rem 7.6 but not by Definition 7.5, as will be shown below:
Let syndrome bits, s{¥) & s;:‘;f;, where 1Sx<x+8<n-k = S &

1<z<m+1, check on error bit eE“I” /1<c(1)<k.
Since 0<x<x+5%S — 0<5<85-x58-1 — 0<56<S (A)

Then, according to Definition 7.5, the two syndrome bits

immediately below (without loss of generality, one of the

two directions - upwards or downwards - has been chosen)
s & s{X8), in the SYRE, must check on another error bit. In

general, the pairs of syndrome bits

{x+3-1) (x+6+3-1) .
Sh‘l'z-]. & Sh+z-1 /J-liz!-OO,S (B)

where x+j-1 & x+6+j-1 are kept within [1,S], by reducing
them modulo S,
check on error bits e#““} /j=1,2,...,8, respectively.

From the above & Theorem 7.1:

a /3=1,2,...,8 {(C)

x+j-1l,z = ax+8+;)-1.z = C(J)

It will be shown now that the C;31Cyr e+ 43Cg ATE not dis-
tinct.

Let ie[1,S] and let j=i-8 if i>8 and j=S+i-86 if i is oth-
erwise. In both cases, Jje[l,S] because: If i>8, O0<8<Ki=S
> (0<i=-85S~-8<S-1 {[by (A)] mmm> 1<i-8<S8 ===> je€[1,8).
If i<8, then: i-520 ===> S+i-8$S, while i-821-(S-1) [see
(A)] ===> 2-S€i-8 oww=m> 25<S+i-8, hence je[2,S8]. Further-
more, j £ i-8 (mod S), while j#i [otherwise, 6=0 or 8=8,
both of which contradict (A)]. So:

For each i€[1,8], there exists je[l1l,S] /j#i:

J = i-86 (mod S) {D)
From (D): J & i-8 (mod S) >
x+i~1 = x+86+j-1 (mod S) (E)
From (C):
Breg-1,z = Bxedey-1,z _ c{J) (F)

Appendix 7.11 Page 481

a‘ni-l,z = axfsu-l,z = c(i) (G)
From (E), (F) & (G), for each c(j) /j=1,2,...,S, there
exists at least one ie€[1,8]: c(i) = c{j). Hence, a complete

cyclic shift can only be used to decode less than S & n-k

error bits, which contradicts Definition 7.5. Hence, no col-

umn of the SYRE contains more than one syndromes checking on

the same error bit. This concludes the proof of the lIst part
of the theoren.

Consider column w {(1<w<m+l1) of the SYRE. From Fig. 7.1,
this contains the syndrome bits sgiw, i=1,2,...,n-k (h=0).
According to Theorem 7.1, these check on error bit e?*, iff
8 p2.y = @+ Since each column of the SYRE contains syndromes
checking on a different error bit, no two of a must be

i,m42-w
equal, for i=1,2,...,n-k. Hence, by necessity, no IA column
must contain duplicate elements.

Furthermore, there must be another, say, J -1 SYRE col-
umns containing syndrome bits checking on exactly the same
error bits as column w. Hence, there must be J IA columns
containing exactly the same elements. All these J IA col-
umns form a coset. The coset leader is the column with the
smallest column number. The first coset is the one with the
1st column as leader. Since each column contains exactly n-k
elements, then each coset contains n-k distinct elements. If
there are x cosets, then all of them contain x(n-k) distinct
elements. For the code to check on each error bit, x{n-k) =
k, from which it follows that n-k must divide k and also
that there are k/(n-k) cosets.

x = k/(n-k) (H)

If the syndrome bits of a column of SYRE check on a cer-
tain sequence of error bits then, by Definition 7.5, the
syndrome bits of another column of SYRE, belonging to the
same coset, must check on the same sequence of error bits,
the sequence starting from a different row this time. This
means that (by Theorem 7.1), each column of the same coset
must be a cyclic shift of some other column of that coset.

Let J1/1515x be the number of columns in coset i. Then,

since the IA has m+l columns,

Appendix 7.11 Page 482

J, + J, eret Jx=“‘*1 (1)

Furthermore, by Theorem 7.1, the number of syndrome bits
checking on error bit e{!’ /1£ifk equals the number of is in
the IA. But since, by Theorem 7.6, no IA row contains dupli-
cate elements, there are no more than n-k is in the IA,

hence there are no more than n-k syndromes checking on eé”.

So J. £ n-k for all i=1,2,...,Xx {J)

i
This proves the 2nd part of the theorem.

Let 9'1,1‘ a and a column B /128<m+l belonging to the 1st
a, g = Ba (mod k+1). Since Ba belongs to the

first coset it must also appear in the first column, as

coset. Then,
well, hence there must exist a1 2 Ba (mod k+l1). In general,
if S = n-k:

If 31,1'; Qe a g = Ba (mod k+1)

— there exists x(2)e[1,3]: a2y = Ba (mod k+l)

m— 8, = B% (mod k+l)
there exists x(3)e[1,S]: 83,1 = B%a (mod k+1)

— B3yp = B3 (mod k+l)
e=—> there exists x(4)el1,8]: a_,, = B3 (mod k+1)

—> 8, = Bla (mod k+l)
— there exists x(S)e(1,S]: B8y, = B5-la (mod k+1)

— Begyp 2 6% (mod k+1)

So far, column 1 has the S elements a,Ba,B%a,..,85% (all
reduced modulo k+l in the range {1,k+11). For the code to be
self-orthogonal, they should be distinct {see Theorem 7.5).

Also, column B has the S elements 8a,B%a,..,B%,B85% (all
reduced modulo k+1 in the range [1,k+1]). For the code to be
self-orthogonal, they should be distinct (see Theorem 7.5).

A direct consequence of the requirement for the elements

of each of these two columns to be distinct is that

Appendix 7.11 Page 483

Bt# 1 (mod k+1) /i=1,2,...,5-1 (K)

Furthermore, the two columns must have the same elements.

Since they differ only in a & B%, it is required that:

B%a

a (mod k+l) (L)

Finally, note that there must exist one such column B, of
the 1st coset because otherwise J1=1, and the J of the code
will be one, hence the code will have zero error-correcting

capability.

This proves the 3rd part of the theorem.
QED

A7.11.4, Eroof of lLemma. 7.3

Consider the 3rd statement of Thecrem 7.25, and in par-
ticular the relation among a, B & k+l. Let S = n-k:

From (7.29b): a{$5~1)
lutions are a 2 0 & B%5=1 (mod k+l). The first is not

acceptable, while the 2nd is not always possible. Let us

0 {(mod (k+1). Two obvious so-

consider all solutions of the congruence. By Theorem AT7.2.5:
If (BS~1,k+1) & s, then
a = if(k+1)/s] /i=1,2,...,8-1 (A)
If 85-1 = 0 (mod k+1), then (by Theorem AT7.1.12):

s = (0,k+1) = k+1 [by (A7.1.1e)], hence by (A): a =

1,2,...,k. Hence:
If 5= 1 (mod k+l), any a = 1,2,...,k (B)
Consider solutions for $%-1. From Theorem A7.2.5:
If {(a,k+l) = r, then
B%-1 = i{(k+1)/r} /i=0,1,...,r-1 (c)

From (7.29a), the first S-1 powers of § must be different
than 1 (mod k+1). From Theorem A7.2.9, this can be achieved
either if (B8,k+1) > 1, or if 8 £ ®(k+1), in case (B,k+l)=1.

et k+1) > 1: Then, (7.29a) is satisfied, for any B

Appendix 7.11 Page 484

not relatively prime to k+l and any S. Let (8,k+1) = d > 1.
Then, since d|B ov— d|Bi hence, all S powers of B are mul-
tiples of d. These § powers must be incongruent to each oth-
er (mod k+1), so that the lst-column elements (a,Ba,B%a,..
.,B%la) are distinct. Obviously, there are exactly (k+1)/d
such multiples, 1,d,2d,[(k+1)/d]d = k+1, and since the last
one must be excluded, B! can assume no more than (k+1)/d-1
distinct values. Then:

S £ (k+1)/(k+1,B) - 1 (D)

Let (B.k+1) = 1: Then, by (A7.2.7b): B¥®¥1) = 1 (mod k+1),
hence it is necessary that:

S € ®(k+l) (E)

Let (a,k+l) = 1: Then, from (C), B®= 1 (mod k+l1l), hence,
from Theorem A7.2.9, (B,k+l1) = 1. Since all first S-1 powers
of B must be distinct, it follows from Definition A7.3.1,
that:

Oord,,,(B) = S8 /(B,k+1) =1 (F)

Also, by (A7.3.2c¢c): S | ®(k+1) {G)
Since (B,k+1) = 1 ==> (pi,k+1) =1 (by Theorem A7.1.11)
Also, since (a,k+1l) = 1 s> (aBi,k+1) =1 [by (A7.1.8)]

So, all 1st-column elements are relatively prime to k+l:

(aill,k+1) = 1 /i=1,2,..-,s (H)
By (H) & Theorem 7.3: m £ k-1. Hence:
m,., = k-1 (I)
QED

APPENDIX 7.%2: QYCLICALLY-DECODABLE FYPE-Rj CODES

A7.12.1, Proof of Theorewm 7.27

The (p,J)} type-B2 code has parameters n = (p+1)(J+p-1), k
{p+1)(p-1) & m+l = p-1, where 25J<p-1 (by Theorem 7.17).
Let r & (a,k+1). Since a<k+l=p?, then r & (a,k+l) = {(a,p?)
= 1 or pf*Assume that (a,k+1) = 1. Then, from (7.30f):

| . .
' ¥ Remember that (a,b) denotes the greatest common divisor of a & b. "

Appendix 7.12 Page 485

(n-k) | &®(k+l) e==> [(p+1)(J+p-1) - (p+1)(p-1)] | @(p?)

=> J(p+l) | p*(p-1)/p = p(p-1) (by Theorem A7.1.15)

Also, by Theorem 7.25: (n-k) | k ===> J(p+1) | (p+1){p-1)
Hence, by Theorem A7.1.6,

J(p+1) | (p(p-1),(p+1)(p-1)} = (p-1)(p,p+1) = p-1

it is necessary that J(p+1l) divides p-1, which is impos-
sible. Hence, contradiction and r = {(a,k+l) = p ==m> g =
Jp /15j<p-1.

By Theorem 7.25 {(iii), any lst-column element, say, X is
congruent to jpB! /0<i<n-k-1: x = jpB! (mod p?) s> p|
pzl(x—jpB‘) ===> p|x. Hence, the 1lst column contains only
multiples of p. Similarly, any element of column, say, z is
congruent to zX (where x is the corresponding lst-column
element), or congruent to zup (mod p?), hence a multiple of
p. Then, the IA contains only multiples of p, hence there

are error bits not checked by syndrome bits. ence no

type=-B2 code is also a type-C code.

According to Theorem 7.18, a (p,q,J) type-B3 code has
parameters n = (g+2)J+pg-1, k = pgq-1 & m+l = p~-1, where
p<g<2p and 25J%(gq-1)/2. Let r = (a,k+l1) = (a,pq). Since
a<k+l=pg, then r = 1 or p or q. Assume that (a,k+l) = r = 1.
Then, from (7.30f):

(n-k) | ©(k+l) ===> [(q+2)J+pq-1 - (pq-1)] | ®(pg) ====>

J(a+2) | pa(p-1)(a-1)/(pa) = (p-1)(q-1) (by Theorem A7.1.15)

Also, by Theorem 7.25: (n~k) | k ===> J(q+2) | pg-1
Hence,

J(q+2) | (pq-l,pq—l-(p+q)) = (pa-1,ptq) (by Theorem A7.1.12)
Hence, J(q+2) | ptq w==> q+2 | ptq o=

there exists integer b: p+q = b{q+2) /b=1,2,..

If b =1, then p+a = g+2 ——— p = 2 but, by Theorem
7.18, p is an odd prime. Hence b>1. Then:
ptq = ba+2b — P = (b-1)q+2b > q, which contradicts

Appendix 7.12 Page 486

the assumption that p < q. Hence, f{a,k+l) = p (or q) mem> g
= Jjp (nq), where 1=2jsp-1 {(1£usgq-1). Following the same
procedure as for the type-B2 codes, one concludes that the

IA elements are all multiples of p {(or q). Hence, there are
no type-B3 codes which are also type-C codes.

Consider the k type-B4 code. By Theorem 7.22, this is a
(k+2,k,k-1) code, with k¥ = odd. Since n-k = 2 [k, there_is

no_tvyvpe-B4 code which is also a type-C code.
QED

AT7.12.2. Proof of Theorem 7.31

Assume that the equivalent conditions for the existence
of a (k+J,k,k-1) type-B self-orthogonal code, which is also
a type-C code, (see Theorem 7.30) hold true:

(aai,ku) =1 /Jfor i=0,1,...,J-1 (A)
ap! # aBd (mod d) /d|k+1, d>1, 1,j=0,1,..,J-1 & i#j (B)
From (A), for i=0: {a,k+1) = 1 (C)

Let e = (B,k+1). Then, e[| ===> elaB and since e|k+l,
it follows that e | (aB,k+l1) = 1, by (A). Hence,

(B,k+1)

n
b
a——n
o
el

1l
—

Hence: (A) —— {a,k+1) = (B,k+1)

Also, the converse is true, by Theorems A7.1.11 &
A7.1.13:
(A) < — (a,k+1) = (B,k+1) = 1 (E)

From (B):
aB! # aBd (mod d) <===> 4 [af¥(BiI-1) (F)

where, without loss of generality, it has been assumed
that i>j. Assume that there exists d, such that d | (pi-i-1).
Then, d | aRI(pi*9-1), which contradicts (B). Hence, (F) m===>
a | (8i3-1).

Conversely, let d [(81-3-1) & assume that d i aBd(Bi-3-1).
Since (B,k+1) = 1, then (B%*,k+1) = 1 (from Theorenm

Appendix 7.12 Page 487

A7.1.11), Also, since (a,k+l) = 1 ==> (aBd,k+1) = 1,
Then, if (aB’,d) & e, since e|d|(k+1l) & oa!lu.Bj —_— e |
(aBd,k+l) ===m> e=1. Since (d,afd) =1 and d | apd(B'I-1)
> d | (B19-1), which contradicts the hypothesis, hence d
| aBI(BI-1), Then: d | (Bi*9-1) ===> (B).

So: (B) <mmm> d) (BiI-1) (@)
From (B) & (G), for all i,j € [0,J) /i>j & d|k+l, d>1:
aft # ap! (mod d) <me=> d J (BiI-1) (H)
0SJ<i<d <Kmmmmd> §-j>0 & i-j<J Kweem> 12i-j=z<J-1. So:
For all z=1,2,...,d-1 & j§j=1,2,...,Jd=-2:
aB®d # apd (mod d) <mem> d [(B*-1)

< vo—— BZ¥ 1 (mod d) /z=1’2,-nn,J_1

v

Cmmmm> Ord,(B) 2 J (1)

So, condition {(B) < e— Ordd(B) z J (J)

Since the assumption that (A) & (B) hold true imply the
existence of a type-C code, then it is necessary that
(7.29b) holds true, i.e. that B = 1 (mod k+l). Since
(B,k+1) = 1 and from (I), all the powers of B3 /j<J are
different than 1 (mod k+l1l), it follows that:

Ord,, (B) = J ===> B'=1 (mod ktl) <===> k+1 | 8’-1

and since d | k+1: 4 | gl-1 p— B = 1 (mod k+1) —>

Ord,(B) = J (K)

From (J) & (K): condition (B) < > Ordd(B) = J (L)
So:

(A) & (B) £ w— (a,k+1)=(B,k+1)=1 & Ordd(B) = J (M)

(M), above is a set of necessary & sufficient conditions
for the existence of a self-orthogonal type-B code, which is
also a type-C code.

The only condition on J is that it is the order of some
integer, say, d. By (A7.3.2c), it is necessary that J |
&(d). No other J can then be acceptable.

Appendix T.12 Page 488

J | &(d) for any non-trivial divisor, d, of k+l (N)
It will be proved that (N) is equivalent to J | 6(k+1).
Let:
k+1 = p:“Jp;“)--- p:‘r’/p1<p2<---<pr & a(i)21, i=1,2,..,r (0O)
Assume that J | &(qd) /d>1 & d|k+1. Then, from (0):
J | °(P1) = p,~1 {by Theorem A7.1.15), for i=1,2,...,r.
—> J | (pym1ippmlseeyp,1) & O(ke1).
Conversely, assume that J | (pl—l,pz—l,...,prﬁl) = Q(k+1).

From {(0) & Theorem A7.1.3, for any non-trivial diviser,
d, of k+1:

d = p{®pi@ ... pd® /p ¢p,<eee<p, & d(i)20 i=1,2,..,r (P)
From (P) and Theorem A7.1.15:
a(d) = piMpi@ e pi®(p -1)(p,~1)+«+(p,~1)/(p,p,***P,) (Q)

where if d(x)=0, the factor p:“’(pi-l)/pxis missing.

—

8(d) = pi-lpd@®-l. . pd)l(p o) (p,=1)-+(p-1) /d(i)20 (R)
where if d(x)=0, the factor pf*”l(pi-l) is missing.

Hence, ®(d) is the product of factors pi*’!(p -1), where
d(x)-1 2 0. Hence, for all such factors, pf‘*‘Z 1 —
pi®)-1(p -1) 2 p -1. Furthermore, for each d>1 there exists
at least one such factor, because there exists at least one
prime factor of d. Since J divides all px-l, it follows that
it also divides all &(d).

QED

AY.12.3. Proof of Iheorem 1,32

Let k+l be any odd positive integer and J any integer
J22, such that J | 6(k+1). It will be proved that S, given
by (7.33a) (p. 218), has order J modulo any non-trivial di-
visor, d, of k+l.

S
Appendix 7.12 Page 489

Consider the prime factorization of k+1:

k+l = I lp:u) /a(i)zl, i=1,2,...,r (A)

i=1
r
8 = Zg{(““[(k+1)/p;(“]”“ (mod k+1) (7.33a)
i=1
where: f(i) & p}(p,-1) /i=1,2,...,r (7.33b)

Consider, at first, divisors pfi)IISb(i)Sa(i), 1<i<r and
reduce B (mod p?”)) /jell,r].

Since, b(j)-1 2 0 = p?“"‘k 1. Since, also, J |
B(k'l'].) - (pl_]..pz_l,ooo’pr"l) —— >

J | Py pm1) A T(§) = F5)/p{OPD (B)
For all i=1,2,...,r fi#j:
pg(j)l (k.'.l)/p:(i) — p:(3)| [(k+1)/p:(i)]1(i)

—> pJ | g OO (k1) /pf VMY for all i=1,2,...,1 /i#]
—

gf 0l (k1) /p§ 0]V 2 0 (mod p§?) /i=1,2,...,1 & Q4]

Since a(i)-b(i) 2 0 /i=1,2,...,r — pi-P) >

/i=1,2,...,T. If the last congruence is raised to pfi*b“)

(allowed by Theorem A7.2.2), since t(i)p{"P®) = f(i) [by
(B)], the following congruence will be obtained:

gl VP (k+1) /o3P = 0 (mod P}P) /i=1,2,...,1 & iF]

—

B = si"’”[(k+1)/p§‘“]“” (mod p) /lébiggég(j) (C)

From (A), (k+1)/p?”contains no prime factors p,. Hence,

((k+1)/p} .05} =1 (D)

By Theorem A7.1.15 & (B):
o(p}) = pil(p,-1) & (J) (E)

By (D) & Theorem A7.2.6:
[(e41) /059 2 1 (mod pE) (F)

Raising eqn (F) to p*PW) . noting from (B) that f(j) =
3

Appendix 7.12 Page 490

t(j)p?jﬁ“j’and substituting in (C):
8 = gi¥" (mod pYM) /15b(j)saly) & 1sjsr (@)

If gia primitive root (mod p,) such that g?ﬁ‘; 1 (mod pi)
then, by Theorem A7.3.4, g, is also a primitive root modulo
p{!), for all c(i)2l. So, g, has order Q(p?”’) (mod pgu’), or
using Theorem A7.1.15:

ord(g,) = pPXp,1) (mod pi) (H)
Then, by Theorem A7.3.1:
Ord(ng”J) = Ord(gj) / (Ord(gj),f(J)/J) (mod p?”))
and using (H) & (E), in (mod p?”)):

Ord(gg‘“’") [pj(.i) 1(P3‘1)]/(Pb(” 1(p3—1),p3(‘” I(P 1)/J) —

[multiply numerator & denominator of the RHS, by J]

ord(g{ M) = J[p}Ue,;-1) | /(B3N Rm 10} O M Rm 1)) —
ord(ggﬁ)“) = J[pb(.‘i) I(PJ_I)]/[pb(J) 1(PJ_1)(J,PI;(J)-NJ))] —
(Ord ggum) = J/ (J’pgm—bm) (1)

Since J | pi"l fOI' all i=1 ,2’ ve eIy it fOllOWS that J <
Py» hence (J,pj) = 1 e— (J,p?j*b”’) = 1 (by Theorem
A7.1.11). Hence, from (I) & (G):

Oord(8) = J (mod p';m) /1sb(j)sa{j) & 1sjsr (J)

Consider, next, any non-trivial divisor d, of k+1 and-

assume that there exists an integer xe[l1,J-1], such that §*
2 1 (mod d). Let p be a prime factor of d. Then p | d | B*-
1, hence 8*= 1 (mod p), which contradicts (J). Then:

Ordd(B) 2 J for all non-trivial divisors of k+1 (K)
Finally, consider again any non-trivial divisor, d, of

k4l and its factorization [from {(A)l:

d TLI'p‘}“’ /0<d(i)sa(i), i=1,2,...,r (L)
i=1

From (J): B8'=1 (mod pt?) /i=1,2,...,r ==

Appendix 7.12 Page 491

p:(1)| BJ-]- /i=1,2,...,r —
pi® | p2® | pio1 /i=1,2,...,r [by (L), d(i)Sa(i)] ===>
pi® | pl-1 /i=1,2,...,r (M)

Since (pg“’,p?Z),...,p?r)) = 1, it follows from (M) and

Theorem A7.1.14, that:

Pgu)Pg(Z). . .pg(r) =d | B -1

B'=2 1 (mod d) for any non-trivial divisor of k+l S—
Ordd(B) < J for any non-trivial divisor of k+l {N)
From (K) & (N):

For any non-trivial divisor of k+l: Ordd(B) = J
QED

i

A7.12.4, Examples of Type-C5 Codas

Example A7.12.1: Let k+1 = prime = 23. Then 6(23) = 22,
and Jz2, J | 22, Let J = 11. Then there exists a (22,11)
type C5 code, which is a rate R=2/3 (33,22,21) type-B self-
orthogonal cyclically decodable code, with exactly J = 11

syndromes checking on each error bit.

From Lemma 7.4, egqn (7.34a): ~
B = g&¥ (mod k+1) = g22/11 (mod 23) = g? (mod 23)

where g is a primitive root (mod 23). From TABLE A7.3.1
{p. 446), g=5. Then, from above, 8 2 25 (mod 23) w=m> (=2,
For a=1, the IA is:

2 4 6 810121416182022 1 3 5 7 911131517 19 21
4 8121620 1 6 9131721 2 61014 18 22 3 7 11 15 19
g16 1 917 21018 31119 41220 51321 614 22 7 15
16 9 21811 42013 62215 8 11710 31912 5 21 14 7
918 41322 817 31221 716 21120 615 11019 5 14
1813 8 3211611 6 11914 9 4221712 7 2201510 5
13 316 619 92212 215 518 821 11 114 417 7 20 10
3 6 912151821 1 4 7101316 1922 2 5 811 14 17 20
612 18 1 71319 2 81420 3 91521 41016 22 5 11 17
12 113 214 315 416 517 618 7 19 8 20 9 21 10 22 11
1 2 3 45 6 7 8 9101112131415 16 17 18 19 20 21 22
*x X % x L J *x = t 2 J *

Note that there are k/J = 22/11 = 2 cosets. The columns

of the 1st coset have been marked by an ¥,

Appendix 7.12 Page 492

Example A7.12.2: Let k+1 = p* = 52 = 25. Then 06(25) =
4, and J22, J | 4, Let J = 4. Then there exists a (24,4)
type C5 code, which is a rate R=6/7 (28,24,23) type-B self-
orthogonal cyclically decodable code, with exactly J = 4
syndromes checking on each error bit.

From Lemma 7.4, eqn {(7.34b):

If § & p*{p-1), then B = g!’’ (mod k+¢1)

> f = 52°1(5-1) = 20, and 8 = g°%* (mod 25) = g% (mod 25)

where g is a primitive root {(mod 5), such that gPl' # 1
(mod p?). From TABLE A7.3.1 (p. 446), g=2, and gPl=z 2%= 16
(mod 25), hence g=2 can be used. From above, 8 2 32 (mod 25)
s> f3=7, For a=l, the IA is:

71421 3101724 61320 2 91623 51219 1 81522 411 18
24 232221201918 17161514 13121110 9 8 7 6 5 4 3 2 1
1811 42215 8 11912 52316 9 22013 6 24 17 10 3 21 14 7

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 3 451 5 6 42 6 6 2 46 5 1t 5 4 3 3 21

Note that there are k/J = 24/4 = & cosets.
|

Example A7.12.3: Let k+1 = pjp, = 5§ x 13 = 65. Then
0(65) = (4,12) = 4, and J22, J l 4, Let J = 4. Then there
exists a (64,4) type C5 code, which is a rate R=16/17
(68,64,63) type-B self-orthogonal cyclically decocdable code,

with exactly J = 4 syndromes checking on each error bit.

From Lemma 7.4, eqn (7.34c):
B = 8{"1'1”"132"1-'1 + g;"z'”’"pl"z"1 {mod k+1)

where g, is a primitive root (mod 5) and g, is a primi-
tive root (mod 13). From TABLE A7.3.1 (p. 446), g,52 & g,=2.

Then, from above,

B
8

2(5-13/4 13571 4 2(13-1)/4 y FI3-1 (nod 65))

2 x 13%+ 23 x 512 = 1,953,182,122 (mogd 65) ==m> B = 47

For a=1, the IA is:

Appendix 7.12 Page 493

47 29 11 58 40 22 51 33 15 62 44 26 B8 55 37 19 1 48 30 12 59 41 23
64 63 62 61 60 59 58 H7 56 bb 54 53 52 51 50 49 48 47 46 45 44 43 42 41
18 36 54 7 25 43 61 14 32 50 3 21 39 57 10 28 46 64 17 35 53 6 24 42
1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24
1 2 3 4 6 6 47T 8 9 311t 7 91213 113 1410 6 15 15
5 52 34 16 63 45 27 956 38 20 2 49 31 13 60 42 24 6 53 35 17 64 46
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
60 13 31 49 2 20 38 56 9 27 45 63 16 34 52 523 41 5912 3048 1 19
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
51116 12 2 1416 8 8 16 14 2 12 16 11 51515 6 10 14 13 1 13
28 10 57 39 21 3 50 32 14 61 43 25 7 54 36 1B

16 16 14 13121110 %9 8 7 6 5 4 3 2 1
37 b5 8 26 44 62 15 33 51 4 22 40 58 11 29 47
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

12 9 71110 3 9 8 7 4 6 5 4 3 2 1

Note that this IA has k/J = 64/4 = 18 cosets.
|

Example A7.12.4: Let k+1 = 19, Then 06{(19) = 18, and J =
2, 3, 6, 9 & 18, Let J = 6. Then there exists a (18,6) type
C5 code, which is a rate R=3/4 (24,18,17) type-B self-
orthogonal cyclically decodable code, with exactly J = 6
syndromes checking on each error bit. Its B can be calculat-
ed from egn (7.34a): B = 8. Then, for a=1, the IA is:

816 513 21018 715 412 1 917 614 311
714 2 916 41118 613 1 815 31017 5 12
181716 15 1413121110 9 8 7 6 5 4 3 2 1
11 314 617 9 112 415 71810 213 516 8
12 51710 315 8 113 61811 416 9 214 7
1 2 3 4 5 6 7 8 910111213 14 15 16 17 18
12 2 3 231133 11323221

The syndrome register (SYRE) is an (n-k) X {(m+1l) store of
syndrome bits (see Fig. 7.1, p. 210). In this case the SYRE
has dimensions 6 x 18, Using Theorem 7.1 and the above IA,
one may deduce the co-ordinates (x,y) /15x<6 & 1<y<18, of
the syndrome bits that check on each error bit. For in-
stance, since a, = a, sﬁi checks on eS”. This syndrome bit
is in row 2, column 15. In general s{?) is in stage (z,k+l-w).
Since, by Theorem 7.1, s{f) checks on ef*l*¥1}:

The syndrome ~bits checking on el*=¥1},-

(A7.12.1)
are in atagey {z;k+i-w) of the SYRE,

From statement (A7.12.1) & the IA, one may deduce the

Appendix 7.12 Page 494

syndrome bits checking on the error bits of the 1st coset:
For e%a’, az‘w= 8’ for Z=1,2,3,4,5,5 & W=1,12,11,18,7,8,
respectively, hence k+l-w=19-w=18,7,8,1,12,11:

2" is checked by (1,18) {2, 7) (3, B) {4, 1} (5,12) & (5,11)
&%) 45 checked by (1,11) {2,18) (3, 7) {4, 8) (5, 1) & {5,12)
a{®) is checked by (1,12) {2,131} (3,18) {4, 7¥ (5, 8) & {5, 1)
e 45 checked by (1, 1) {2,12) (3,11} {4,18) (5, 7) & {5, 8)
a{?) 12 checked by (1, 8) {2, 1) (3,12) {4,11) (5,18) & {6, 7)
e 4¢ checked by (1, T) {2, 8) (3, 1) {4,12) (5,11) & {5,18)

If the above SYRE co-ordinates are rearranged, the cyclic
nature of decoding will become obvious:

£i%) 45 checked by (4, 1) {2, 7) (3, 8) {6,11) (5,12) & {1,184}
e{’" is checked by (5, 1) {3, 7) (4, 8) {1,11) (6,12} & {2,18)
0% 42 checked by (6, 1) {4, 7) {5, B) (2,11} {1,12) & {3,18)
2g!) is checked by (1, 1) {5, 7} (6, B) {3,11) (2,12) & {4,18)
ef!®) 12 checked by (2, 1) {5, 7} (1, B) {4,11) (3,12) & {5,14)
8™ iz checked by (3, 1) {1, 7} {2, B) {5,11) (4,12) & {5,18)

Hence, if the SYRE stages for e?l are connected to the
MG of the first coset, an upward uniform cyclic shift by one
step will allow the decoding of e, the next shift will
decode e{'®), etc. The syndrome connections to the other two

MGs can be similarly deduced:
For the 2nd coset:

#%) 48 checked by (4, 2) {8, §) (5, 5) {2,14) (3,18} & {1,17)
M 44 shecked by (8, 2) {1, 3) (6, 5) (3,14) (4,18) & {2,1%)
2 48 checked by (6, 2) {2, 8) {1, 5) {4,14) (5,18} & (3,17}
e{™) is shecked by {1, 2} {3, 3} {2, 5) {5,14) (6,18} & {4,17)
a9 58 shecked by (2, 2) {4, 3) {3, 5) {6,14) (1,18) & {5,17)
e{® 1& shecked by (3, 2) {5, 3} {4, 5) {1,14) (2,16) & {5,17)

Appendix 7.12 Page 485

For the 3rd coset:
el®) 5 checked by (4, 4) {6, 6) (2, 3) {5,10) (3,13) & (1,15)
ef® 45 checked by {5, 4) {1,) (3, 9) {6,10) (4,13) & {2,15)
£{®) 18 checked by (6, 4) {2, 6) (4, 9) {1,10) (5,13} & {3,15)
ef* 13 chacked by (1, 4) {3, €} (4, 9) {2,10) (6,13) & {4,15)
{1 is checked by (2, 4) {4, 6} (6, 9) (3,10} (1,13) & {(5,15)
ef) 2 checked by {4, 4) {5, €) {1, 9) {4,10) (2,13) & {8,15)
Hence, the connections to the MGs are as following:
1st MGy (4, 1) {2, 7) {3, 8) {6,11) {(5,12) & {1,18)
2nd MG: (4, 2) {6, 3} (&, 5) (2,14} (3,16} & {1,17)
3rd MG: (4, 4) (6, €) {2, 9) (5,10} (3,13) & {1,15)

Notice that the SYRE columns connected to the three gates

are:

For MG1: i, 7"8, 11,12’ 18
For MG2: 2,3, b, 14, 16,17
For MG3: 4, 46, 8,10, 13, 15

i.e. there is no overlapping. Furthermore, the sequence
of the bits decoded by each gate is:

v (08) (07) (18) {11) (12) (o)
From MG1y £y £y eo 24 ey eg

n (i8) (14) &40] (03) (05) (02)
From MG32: ey e, 2, e, e, ey

. (13) (09) {151 (08} (10} (04)
From MA3: e e, e, ey &y £4

APPENDIX 7,%3:

This appendix is drawn mainly from Chapter 9 of T.M.

Apostol’s "Introduction to Analytic Number Theorey" [44].

Unless otherwise stated, small latin & greek letters de-

note integers.

Appendix 7.13 Page 496

Definition A7.13.1: Let p be any odd prime and n ¥ 0
(mod p). If congruence x* = n (mod p) has a solution it is
said that n is a gquadratic residue modulo p and this is de-
noted by nRp. If the congruence has no solution it is said
that n is a quadratic nonresidue modulo p and this is denot-
ed by nRp.

Definition A7.13.2: Let p be any odd prime. Then, for

any n, Legendre’s symbol (n|p) is defined as following:

gm0 if n 0 (mod p)
(n|p) w=geme 1 if n # 0 (mod p) & nRp > (A7.13.1)
0 (mod p) & nRp

M

— -] if n
|

Theorem A7.13.1: Euler’s criterion: For any odd prime p

and any n:

(n]p) n{P 132 (nod p) (A7.13.2)

Proof: See Apostol [44], p. 180.

Theorem A7.13.2: For any odd prime p and any m & n:

(mn|p) = {(mjp)(n(}p) (A7.13.3)

Proof: See Apostol {443, pp. 180-1,

Theorem A7.13.3: For any odd prime p, every reduced

residue system modulo p contains exactly (p-1)/2 quadratic
residues and exactly (p-1)/2 quadratic nonresidues, modulo
p. The quadratic residues are congruent to i¥ (mod p)
/7i=1,2,...,(p-1)/2.

Proof: See Apostol (441, p. 179.

Appendix 7.14 Page 497

APPENDIX 7.14: P R N R

A7.14.1., Proof of Theorem 7,33

Let k4l be an odd integer with prime decomposition:

k+1 = I |P:(i) /p1<P2<|.o<pr & a(i) Z 1, i:l,Z,.-,I‘ (A)
i=1
Let B be given by (7.33a). From the proof of Theorem
7.32, in Appendix 7.12 (8 A7.12.3., p. 490) {eqn (G)]:

8 = gl (mod p§) /j=1,2,...,r (B)
where FL3y = p§PUp,-1) /3=1,2,.0 0,1 (c)

and g, = primitive root (mod p,), such that g$'1¥ 1 (mod
Pi) for j=1,2,--.,rn

From (B):
g2 = ggtmz (mod p';‘“) /3=1,2,..4,T (D}

From eqn (J) of § A7.12.3., the order of B (mod p?”’) is
J for all j=1,2,...,r. Then:

(8742 = 1 (mod pj'7) /§=1,2,...,r (E)

One solution of (E), for BY?, is -1 = p;”’—l {mod pgu’}
[+1 is not a solution, because the order of B is J, hence
B2 2 1 (mod p;”’]. Then, there is no other solution,* for

/2, in the range [l,p;”’], hence:
B2 = p3-1 (mod p}¥) /j=1,2,...,r (F)

(F) is a system of congruences with moduli relatively
prime in pairs (the unknown is B?/?). According to the
Chinese remainder theorem {(Theorem A7.2.10), system (F) has
exactly one solution modulo the product of the moduli, i.e.
modulo k+1 {see (A)]. Hence there is a unique number, in
{1,k+1], which satisfies (¥}, for all j=1,2,...,r.

From (A), p?3’| k+1, for all i=1,2,...,r. Then:

-
il

s -1 (mOd p?(J)) /j=1,2"¢o’r —

=
1}

= p:(“—l (mod P;(‘n) /3=1,2,. .0y w— [from (F)]

* see Vinogradov [46], p. 92,

Appendix 7.14 Page 498

B2 2 k (mod p}) /j=1,2,...47 =

P} | B3k /§=1,2,...,r e

p:u)p;&)...p:“') = k+l | gYi-x (by Theorem A7.1.14) we=m>
Y% =2 k (mod k+1)

QED

A7.14,.2. Proof of Theorem. l.34

From Theorem 7.31 (p. 218), the elements of the first
column of the IA of the (k,J) type-C5 code, are a_ ., = aB®

x,1
(mod k+1), for x=1,2,...,J4. For a=l, and since Ordkﬂ(B) = J,
a, = 1 and hence a; , = 2 (mod k+1), for z=1,2,...,k. Hence,
a,,% z /2=1,2,...3k (A)

From (7.36) for J=zeven, B2 = k {mod k+1). For a=1:

BJIZ =

= k (mod k+1) w— = k (mod k+1) S—

a2,1 21

ale’z = Za.”z'l s zk (mod k+1) /z=1,2,00l,k —

a’JIZ.z z(-l) (mOd k+1) /z:l'z’...’k —

a,/;,z 2 ktl-z (mod k+l) /221,2, 000,k s>

ale== k+1-z /Z=1,2,...,k (B)

For J=even, for all x=1,2,...,J/2 & 2=1,2,...,k:

a _+ z zB* + zP**Y? (mod k+1) T—

x,2 a'x#le.z

8, % 8,42, % 2B (1487%) (mod k+1) w=—>

a, . % By;m, = zB*{1+k) (mod k+1) [by (7.36)] S—
By % By2,. 0 (mod k+1) S—

8.t 82,2 " q(k+l) /gq=integer —

Since, 0 < a__+ a < 2(k+l1) — q=1 —

X,2 x+Jf2,Z

a +

%,Z ax+JlZ,z= k+1 /x=1,2,aongJ/2 &. z=1,2’ou-’k

From the last result, by summing over all x=1,2,...,J/2,
(7.374) follows.

QED

Appendix 7.14 Page 499

A7.14.3. Proof of Theorem 1.35

From Theorem 7.31 (p. 218), a,, ¥ aB* (mod k+1), for
x=1,2,.¢.,J, where {(a,k+1) = 1, and Ordd(B) = J for all non-
trivial divisors, d, of k+1.*For a =1, and from Definition
7.2 (p. 185):

J J
zax,z £ Zzax.l (mOd k+1) /z=1,2’---,k (A)
x=1 x=1
Also,
J J

2"‘::,1 = QB = [(34*1-1)/(3_1) - 1] (mod ktl) s>

x=1 xz1

J
2, = B(B'-1)/(B-1) (mod k+l) (B)
x=}1

Since (8,B~1) = 1 (by Theorem A7.1.6), and B-1 | B(B-1),
then (by Theorem A7.1.10):
g-1 | g'-1 (c)

Since Ord,(B) = J, for d | k+l, then B'-1 = 0 (mod k+l).

Hence:

k+l | B'-1 (D)
Let:
r
k+l = | IP;(i) /p1<p2<.c.(pr & a(i) b 1, i=1,2,..,r (E)
i=1
Then: pi) | k+1 | B)-1 /i=1,2,...,r (F)

Assume that there exists je[l,r] such that (;g“’,ﬂ-l) -
f > 1. Since f | pf” & f>1, then there exists bel[l,a(j)]
such that f = p?. Since f | B-1, then 8 = 1 (mod pg), which
contradicts Theorem 7.31 [that the order of B {(mod d), for
any d | k+1l, d>1, is J]. Hence,

(p;“4,5-1) =1 /i=1,2,...,r (G)
From (G) & Theorem A7.1.13:

(p?1)p;u)... P2, 3_1) = (k+1,B-1) = 1 (H)

¥ Remember that (a,b) denotes the greatest common divisor of a & b. '

Appendix 7.14 ; Page 500

From (C) & (D), B-1 & k+1 both divide B’'-1, while from
({H) they are relatively prime. Then, by Theorem A7.1.14:

(B=1)(k+1)} | (B'-1) =mmm> (k+1) | (B'-1)/(B-1) =

(B'-1)/(B-1) = 0 (mod k+1i) and substituting in (B), and
then (A):

J *
2}_':&,"'z = 0 (mod k+1) /2=1,2,...,k
x=1

This proves (7.38a). To prove (7.38b) & (7.38¢c):

For all x=1,2’nno,J & Z=1’2,---’k:

B,z % B xi.. ¥ zB* + (k+1-2z)8* (mod k+1) —
a8, ,% 8 34y (ktl+z=-z)B* = 0 (mod k+l) —>
axJ'+ 8y ye1-z = qf{k+1) /qa=integer s

Since, 0 < a__+ a < 2(k+1) — q=1 —

X,z x,k+l-2
ax.z+ ax.k+1_z= k+1 /x=1,2,...,J & Z=1,2,...,k Sm—
J J
Sa, .t 318y, = J(k#1) /2=1,2,...,k
x=1 x=1
QED

A7.14.4. Proof of Theorem 71.36

Let the {(k,J) type-Cb code, with J = odd. Let, also, the

prime factorization of k+1l:

ktl = | |p{™? /p<p,<cee<p. & a(i) 2 1, i=1,2,..,r (A)
i=1

Since, by Theorem 7.31, J | O{k+l) = (pl—l,pi-l,..,pr-l),
then pi-l = qu, for i=1,2,...,r. Since pi—l = even = q,J and

J = odd, then q, = even, Hence:
(pi-l)/J = even /i=1,2,...,r (B)
From egn (G) of § A7.12.3. (p. 490):

B = g{(i”" (mod pi) /i=1,2,..-,r (c)

where: f(i) & p}®"}(p,-1) & g, & primitive root (mod p,),

Appendix 7.14 Page 501

i=1’2,nnn,r-
From (C):

Since, from (B), (pi-l)/J = even /i=1,2,...,r, then (2J)
| (p;-1), hence (2J) | p?‘”l(pl-l) & f(i)., From (D):

glpy-1)/2

n

[g{(i)ltz.’)]pi-l (mOd pi) /i=1 |2, s o sy T —

gp-1)/2

1 {mod pi) /i=1,2,...,r (by Theorem A7.2.6)

=—> (B]|p,) 1 (mod p,) /i=1,2,..,v {(by Theorem A7.13.1)

> {B|p;) =1 (mod p;} /i=1,2,.,r (by Definition A7.13.2)

> {(B%|p;}) = 1 (mod p,) /i=1,2,..,r (by Theorem A7.13.2)
etc
— > (B"[pi) =1 {(mod p;} /i=1,2,..,r & x51,2,..,J (E)

Since a,, = 8% (mod k+1) Ix=1,2,...,J¢
—> k+l | a, - B /x=1,2,...,J
> p, | ktl | &, = 8 /x=1,2,..4,J & i=1,2,...,r
—> &, % B* (mod p;) /%=1,2,..,J & i=1,2,..,r (F)
From Euler’s criterion (Theorem A7.13.1},
If n=nm (med p) —
(n|p) = a2 2 n®V/2 = (n|p) (mod p)
and since (by Definition A7.13.2), (k|p) = 0, 1, or p-1:
If n = m (mod p) — (nip) = (m|p) (A7.14.1)
Then, applying (A7.14.1) to (E) & (F):
(anllpi) = 1 (mod P;) /%x=1,2,...,d & i=1,2,..,T (G)

Hence, the elements of the first column are all gquadratic
regsidues modulo any prime factor of k+l. Furthermore, no two
such quadratic residues {(mod pi) are congruent to each other
{mod pi), because then there will exist x,ve{l,J} /x>y such

Appendix 7.14 Page 502

that $* = BY (mod p,), hence B*Y = 1 (mod p;) (because (8Y,p,)
= 1 - see Theorem A7.2.4], and since x-y<J this contradicts
Theorem 7.31 [Ord(8) = J (mod p,)].

For all x=1,2,..-,d & z=1,2,n-o'k, Since

a _ = zaxd.(mod k+1) D —d a,,= za, (mod pi)

X,Z X,2

and using (A7.14.1):

(axm|p1) = (zaxﬂ|pi) {mod pi) /%x=1,2,.4.,J & i=1,2,...,T
while from Theorem A7.13.2 & (G):

(axﬁ|pi) = (z|pi) (mod p,) /x=1,2,..,J & i=1,2,..,r (H)

Hence, for every prime factor, Py of k+l, a column of
the IA contains either multiples of p;» or quadratic resi-
dues, or quadratic nonresidues (mod pi). The first column
contains always quadratic residues.

QED

Example A7.14.1: Let k+1 = 11 x 31 = 341. Then, 0(341)}
= (10,30) = 10, hence J = 2,5 & 10. Let J=5, Then there ex-
ists a (340,5) type-C5 code (by Theorem 7.31), which is a
(345,340,339) type-B SO cyclically decodable code with ex-
actly 5 syndromes checking on each error bit. From Lemma 7.4
(p. 219), since k+l1l = P,P,>» and since, from TABLE A7.3.1,
31=2 & g,=3:

B = gl®x 3119+ g3%5 x 113 (mod 341) m=>

B = 22x 311%+ 3%x 113° (mod 341) we>

B =4 x (315)%2 + 729 x (11%)% (mod 341) =)
B =4 x 1552 + 729 x 66° (mod 341) w=>

B =4 x 155 + 729 x 187 (mod 341) wewm>

B = 136,943 = 202 (mod 341)

Then, the elements of the zth column are z x 202%
/i=1,2,...,5, where 1225340,
Column 1: 202, 225, 97, 157, 1 c{1) = 682 = 341 x 2

Appendix 7.14 Page 503

Column 2: 63, 109, 194, 314, 2 o{2) 682 = 341 x 2

Column 3y 265, 334, 291, 130, 3 1{3) = 1,023 = 341 x 3

Column 4: 126, 218, 47, 287, 4 G{4) = 682 = 341 %X 2
etc

Column 1ty 176, BB, 44, 22, i1 g{11) = 341
etc

Column 627 248, 310, 217, 186, 62 ¢{62) 1,023 = 341 x 3

12

etc

The quadratic residues (mod p) are given by i? (mod p),
for i=1’2’l|l,(p-1)/2 (See Theorem A7|1303):

1,3,4,5,9

{n{11) = 1, for n

n

{n§31) = 1, for n = 4,2,4,5,7,8,9,10,14,16,18,19,20,25,28
If the elements of the 1st column are reduced:

Mod 11: 4,5,9,3,1 {all guadratic residuez {mod 11)]

Mod 31y 16,8,4,2,1 Jall guadratic résidues {(mod 31)]

Since (3|11) = (4|11) = 1, columns 3 & 4 are expected to
be made of quadratic residues (mod 11}, while column 2
should be made of quadratic nonresidues (mod 11). Since 62 =
7 {mod 11), then (62|11) = -1, hence column 62 should be

made of gquadratic nonresidues.

Column 2 {mod 11): 8,10,7,6,2 {q. ronresidues {mod 11)}
Column 3 {mod 11)y 1,4,5,9,3 1. residoss (mod 11))
Column 4 {mod 11): 5,9,3,1,4 {g. residues {(mod 11)]
Column 62 {mod 11t): 6,2,8,10,7 {s. tonresidues {mod 11}]

Since (2|31) = (4]31) = 1, columns 2 & 4 are expected to
be made of quadratic residues (mod 31), while columns 3 & 11

should be made of quadratic nonresidues (mod 31):
Column 2 {mod 31): 1,16,8,4,2 [q. residues {mod 31)]}

Coalusn 3 {(mod 31)y 17,24,12,6,3 [q. nonresidues {mod 31)]

Appendix 7.14 Page 504

Column 4 {mod 31): 2,1,16,8,4 [q. residues {mod 31)]
Column 11 {(mod 31): 21,26,13,22,11 {4q. nonresidues {mod 31)]

Since (11]11) = 0, column 11 is expected to contain only
multiples of 11 (176 = 16 x 11, etc). Since (62|31) = 0,
column 62 is expected to contain only multiples of 31 (248 =
8 x 31, 217 = 7 x 31, 186 = 6 x 31, etc).

APPENDIX 7.15: FEECTIV TRAINT=

A7.15.1. Proof of Theorem 7.39

From eqn (7.38a) (p. 222) (see also Theorem 7.38), there

exists integer q(z), such that:

J
Zax.z= (k+l)a(z) /2=1,2,..4,k (A)
x=1

Note: Unless otherwise stated, MAX & MIN will be as-

sumed over all =z=1,2,...,k.

By Theorem 7.39 (p. 224) & Definition 5.9 (p. 145):
3

n, = HAX{1 + Fa

z .} = Max{1+(k+l)a(z)} (by (A)] ==—>

X,
x=1

n, = 1 + (k+1)MAX{a(z)} (B)
From (A) & (7.38c):
(k+l)q(z) + (k+l)q(k+tl-z) = J(k+l) /2=1,2,..,,k s>
a(z) + a(k+l-z) = J /2=1,2,...,k (A7.15.1)
From (B) & (A7.15.1}):
ng= 1 + (k+1)MAX{q(z)} =1 + (k+1)MAX{J - q(k+1l-z)}

As z takes on values 1,2,...,k, so0o does k+l-z., Then:

ng = 1 + (k+1)MAX{q(z)} = 1 + (k+1)[J - MIN{q(z)}] (C)

(C) is the first result of the theorem.

Appendix 7.15 Page 505

From (A7.15-1): 1 5 q(Z) S J"l /221’2.|501k (A701502)

because q{z) cannot be negative or zero, as the quotient
of two positive numbers, hence gq{z) 2 1. Also, if q(z) = 1
then there exists an IA column, such that gq(w) = J-1 [w =
k+l-z - by (A7.15.1)].

Consider bounds for MAX{q{=z)}:

Assume that MAX{aq{z)} = q(w) < (J+1)/2. Then, by (A7.15.1):

q{k+l-w) J = q{w) > J - {(J+1})/2 = {J-1)/2 a—

qflk+1l-w) 2 (J+1)/2 > q(w) — contradiction. Hence:

MAX{aq(z)} 2 (J+1)/2. Also, from {(A7.15.2): MAX{q(z)} £ J-1
So: (J+1)/2 £ MAX{q{(z)} 5 Jd-1 {D)
From (C) & (D), the 2nd result follows,

Note, from (D), that for J = 3: 2 £ MAX{q(z)} =< 2 —
MAX{q(z)} = 2.
QED

A7.15.2. Proof of Theorem 1.40

Let a (p-1,(p-1)/2) type-C5 code, where p is any odd
prime, and p 8 3 (mod 4). This code has J = (p-1)/2, and
because p = 4q+3 (q=integer), (p-1)/2 = J = 2q+1 = odd. By
Theorem 7.31, (p-1)/2 must divide p-1 (which it does). By
Theorem 7.36, the first column of the IA is made of J =
{p-1)}/2 distinct quadratic residues modulo any prime factor
of k+1 and, by Theorem A7.13.3, there are exactly (p-1)/2
quadratic residues (mod p). Hence, the first column contains
all the quadratic residues {(mod p). The elements of the IA
are reduced (mod k+1) = {mod p), in the range [1,k] = [1,p].

The code IA is made of k/J = (p-1)/[{p-1)/2] = 2 cosets.
The first coset contains all the quadratic residues (mod p),
hence the 2nd coset contains all the quadratic nonresidues
(mod p). Hence, by Theorems 7.39 & 7.37, ni—l equals the sum
of the quadratic residues, or the sum of the quadratic non-
residuesg, whichever i=s greater*.

It has been observed {and it supposed by the author that

¥ 11 reduced (mod p) in the range {1,p}.

Appendix 7.15 Page 506

it has been proved indirectly) that "...for p 2 3 (mod 4),
there are always more quadratic residues than nonresidues in
the first half of the range from 0 to p. Again, no direct
proof is known" (see H. Davenport [48], p. 9).

Then, from the above, there are more quadratic residues,

than nonresidues in [1,(p-1)/2] = [1,J]. Hence,

J
alilp) > 0 (A7.15.3)
=1
Consider now the sum

S & (Sum of quadr. residues) - (Sum of quadr. nonresidues)

[Sum of i=1,2,...,p-1 /{i|p)=1] -
- [Sum Of i=1,2’l..’p-1 /(ilp)‘-'_l.

———>

wn
"

[sum of i(i|p) /i(i|p)=i, i=1,2,...,p-1] +

+ [sum of i(i|p) /i(i|p)==i, i=1,2,...,p-1]
p-1
i=1

Using (A7.15.3) it will be shown that, (A7.15.4) is nega-
tive, i.e. that the sum of quadratic nonresidues exceeds the

sum of quadratic residues (mod p}, if p & 3 (mod 4).

p-1l p-1 p-2

8 = Ji(ilp) = rir|p) + Jt(t|p)
iz1 r=2 t=1
Ir=even t=odd

Let v = 2i /i=1,2,...,{p=-1)/2 = J & t = p-23 (=o0dd)
/j=1’2’lll,(P—1)/2 = Jo Then:

J J
s = 23(2i)(2i]p) + 2}(p-2j)(p-2j]|p)
te1 11

Since p-2j = -2j (mod p), (p-2j|p) = (-23|p), by
(A7.14.1). Then, using Theorem AT7.13.2:

J J J
s = 2(2|p)Qililp) + pD3(-2j|p) - 2273(-2j|p) =—>
121 3=1 =1

Appendix 7.15 Page 507

J J J
s = 2(2|p)Qjilijp) + p(-2|P)2(J|p) - 2(-2|p) 2 ilJ|p) (A)
i=1 j=1 j:l
By Theorem (A7.13.2), (-2|p) = (-1|p)(2|p). By Theoren
A7.13.1, (-1]p) = (-1)®D/2 (nod p). Now, since (p-1)/2 =
odd by hypothesis, it follows that:

If p 3 (mod 4): (-1|p) = -1 {(A7.15.5)

Hence, (-2|p) = ~-(2|p). Substituting in eqn (A):

J J J
S = 2(2|p)2jiti|p) - p(2|P) 2 (i]|p) + 2(2|p)i(i]|p) ==>
i=1 i=1 121

J J
s = 4(2|p)2i(i|p) - p(2]|P) 2 (i|p) {B)
i=1 i=1

Following the same technique, S may be expressed differ-
ently [from {A7.15.4)1:

J p-1 Jd J

s = Qi(i|p) + Ji(i|p) = Ri(i|p) + 2(p-i){p-j|p) ==
i=1 i=J+l i=1 J=1
J & J

8 = Ji(i|p) + p2(-i|p) - Fi(-i|p) ===> [by (A7.15.5)]
i=1 i=1 i=1

S =

J J J
Ni(i|p) - pli|p) + Dji(i|p) =
i=1 i=1 i=l

J J
22i(ilp) = p2(i]p) + S (€)

izl i=1

Substituting (C) in (B):

J J
s = 2p(2|p) 2 (i|p) + 2(2|p)S - p(2|P)D}(i]|pP) (D)
1:1 i1
Multiplying both sides of (D), by (2|p) (which is # 0,
because 2 (P) and noting that (2|p)® = 1:

J

s(2ip) = p(2|p)2 3 (i|p) + 2(2]p)2S wmmm>
i=1

Appendix 7.15 Page 508

4
S(2{p) = p2(i]p) + 28 s>
£=1

J
[2-(2|p)]1s = -pj(i|p) < 0 [by (A7.15.3)] ==m>
i=1

[2-(2[P)]S < 0 s> S<0 {because 2 > (2|p)]

Hence, the sum of quadratic nonresidues exceeds the sum

of quadratic residues, so n-1 equals the former sum.

Finally, if there was a closed-form expression for ng,
then there would have been one for the sum of quadratic non-
residues, and hence for the sum of quadratic residues (mod
r) [the two sums add to p{(p-1}/2]. This would have solved
one of number theory's great problems, because then Dirich-
let’s function L(1) would also have a closed-form expres-
sion, for p 2 3 (mocd 4) (see discussion in H. Davenport
[48]), pp. 3-11).

QED

APPENDIX 7.16: PROOF OF THEOREM 7,41

Given a (k,J) type-C5 code, since J | k, one may let c -
X/J. Since n-k = J, the code length is n = k+J = cJd+J
_{(c+1)J. The code rate is R = k/n = (cJ)/[(c+1)J] = c/{c+l).
Since m+l = k, the actual constraint-length is nAa (m+1)n =
kn = cd{c+l}J = c{c+l1)J®.

The effective constraint-length, n,, is bounded by
(7.42), for J = odd. The lower bound is 1+(k+1)}(J+1)/2
14+(k+1)lMJ/21, while the n, for J = even is 1+{k+1)J/2
14(k+1)7J/21. Hence the lower bound on n,, for J = odd and

for J = even, are the same and equal

the exact value of L
to 1+(k+1)MJ/27 = 1+{cJ+1)}TJ/27. The upper bound, from
{(7.42) and for J = odd, is 1+(cJ+1}(J-1).

The ratio Q@ = n‘/n‘, is bounded, from above, by:

cl{c+1)J?/[14(cd+1)(J-1)] £ Q <€ c(c+1)Jd2/[1+(cd+1)TJ/21]

This can be approximated by:

Appendix 7.16 Page 509

c{c+l)J2/[{cd+1)(J=1)] £ n,/ng £ c(c+l)J2/{(cd+1)(J/2)] mmmm>
c(c+1)J*/(cJ*+J-cJ-1) £ n,/n, < 2c(c+l)d/(cd+l) —
c(c+1)Jd/(ed+l-c) S n/n < 2c(c+l)J/(cd) mmm>
c(c+l)Jd/(cd=c) € n,/n, S 2(ctl) s>

(ct+l) £ n,/n, s 2(ctl) =e=m>

[since R = ¢/(c+l) w==> ¢ = R/(1-R) w==w==> c+l1 = 1/(1-R)]
2(c+41) = 2/(1-R) £ n,/n, £ c+1 = 1/(1-R)

Obviously, the upper bound is always met for J = even.

Note though that the bounds are approximate.
Finally, for J = even,
(J/2)/n== JZ{2[1+(1+cd)J/2]1} = J/{2[(1+cd)}J/2] = 1/{1+cd) =

x 1/{cd) = 1/k
QED

Appendix 8.1 Page 510

it voar SRR o
L i ‘:7§ g
,:'|

g, m o e e DT by g e e

APPENDIX 8.1: COMPUTER GENERATION OF ’CYCLIC’ CSOCs

This Appendix presents & explains the flow-charts of the
various number-~theoretic routines, used by the simulation
programmes. The associated FORTRAN programmes are given in

Appendix 8.2.

Note: The expression a mod m denotes the least positive

residue of a (mod m). This can be obtained from:
camod m % a - la/mjm = a - INT{(a/m)m (A8.1.1)

Alsco, MAXIN denotes the maximum integer of the computer.

AB.1.1. Greatest Common Divisor

This function [IGCD(a,b)l* uses the Fuclidean algorithm
(see Apostocl [44], p. 20). See Figure A8.1.1, for a flow-

chart.

Specification: "Given integers a & b, return their

greatest common divisor, (a,b)". It calls MOD.

If (ab = 0), then: (a,b) = |a+b| ——> END
If (a = b), then. (a,b) = > END
I1f else, then: =a &B-= b

I:) Step: X=AnodB
If (X #0), then: A=B & B = X & repeat step
I1f else, then: (a,b) = B > END

Figure A8.1.1: Flow-chart for greatest-common divisor.

AB.1.2. gum Modulo m

This function returns a+b mod m, even if a+b>MAXIN. The

algorithm (Fig. A8.1.2) is original. **
Specification: "Given integers a, b & m, return a+b mod

m, without causing overflow"”. It calls MOD, and is based on

the following theorem:

Theorem A8.1.1: For any me[1,MAXIN] & any a,bef0,m-1],

¥ see Appendix 8.2 (§ A8,2.1., p. 520).
This routine is incorporated into other routines.

Appendix 8.1 Page 511

such that a+b > MAXIN, if MAXr = MAXIN mod m:
0 < a+b-MAXIN+MAXr < m {A8.1.2)

Proof: See Apprendix 8.2 (§ A8.2.1., p. 520).

A=amdm & B=Dbmodm
If (A < MAXIN-B), then: MODSU = A+B mod m »
If else, then: MAXr = MAXIN mod m & MODSU = (A-MAXIN)+B+MAXr E

2

E
=

Figure A8.1.2: Flow-chart for a+b mod m.

Note that (A-MAXIN)}+B+MAXr = A+B (mocd m), because MAXr =
MAXIN (mod m). Also, (A-MAXIN)+B+MAXr does not overflow be-~
cause [(A-MAXIN) is evaluated first.

AB.1.3. Product Modulo m

This function [MODPR{a,b,m)]* returns ab mod m, even if
ab>MAXIN. The algorithm (Fig. A8.1.3) is original.

Specification: "Given integers a, b & m, return ab mod
m, without causing overflow". It calls MOD, |?}] = INT(?) &
MODSU.

The basic idea behind this routine is that ab =
atata++*++*+a (b-1 additions). To avoid a programme with too
many loops (each of which would involve one call to MODSU),
it is proposed to add as many as as is possible, without
causing overflow, reduce them (moed m) and repeat. To this
end, ab is replaced by Qu, Re & MAXr, where Qu is the quo-
tient of the integer division ab/MAXIN, Re the remainder and
MAXr = MAXIN mod m [Re & ab - QuxMAXIN, hence {(ab mod m) =
{Re mod m) + (Qu mod m)MAXr]. Note that Qu<m because ab < m?
< mxMAXIN, hence ab/MAXIN<m and |ab/MAXIN] = Qu < m.

What remains to be done is to evaluate QuxMAXr, without
causing overeflow. The same process is followed, i.e.
QuxMAXr = Qu’xMAXIN + Re', where Qu’ & Re’ are the quotient
and the remainder of the division QuxMAXr/MAXIN; this equals
Qu’xMAXr + Re’'. Again Qu’xMAXr is expressed as Qu’’xMAXr +
Re’’, until the product between the quotient Qu & MAXr is <

¥ See Appendix 8,2 (§ A8.2.3., p. 520).

Appendix 8.1 Page 512

MAXIN. Then, MODPR = Re+Re’+Re’'+::++QuxMAXr. That this ex-
pregsion will not cause overflow, is decided by QuxMAXr <
MAXIN <(wwe=> Qu < MAXIN/MAXr <====> Qu < |[MAXIN/MAXrj.

=amodn & B=bmodm
0, or B =0, or A < MAXIN/B), then: MODPR = AB mod m END

A

If (A ND
If else, then: D = (A/MAXIN)B, MAXr = MAXIN mod n
Qu = INT(D) & Re = D-QuxMAXIN mod m

If (MAXr = 0), then: MODPR = Re > END

ND

I1f else, then: Dx = MAXr/MAXIN & LIM = INT(MAXIN/MAXr)

> Step: If (Qu < LIM), then: MODPR = MODSU(QuxMAXr,Re,m) —> END
| If else, then: D = DxxQu & Qu = INT(D),
Rs = D-QuxMAXIN mod = & Re = MODSU(Re,Rs,m)
Repeat step

Figure A8.1.3: Flow-chart for ab mod m,

AB.1.4. FPowar Modulo m

This function [MODRE(a,b,m)]* returns a® mod m, even if

a®>MAXIN. The algorithm (Fig. A8.1.4) is original.

Specification: "Given integers a, b & m, return aP mod
m, without causing overflow". It calls MOD, |?] = INT(?),
MODSU & MODPR.

MAXg = logMAXIN & A=amodm & B=b & C=1

—> Step: If (A €£1), then: MODRE = A > END
If else, then: k = INT(MAXg/logA)
If (B < k), then: =z = APmod m & MODRE = MODPR(z,C,m) END

1f else, then:

I (k = 1), then: If (B = odd), then: C = MODPR(C,A,m)

A = MODPR(A,A,m) & B = INT(B/2)

Repeat step

R=Brodk & Cn=A"mod m & B = INT(B/k)
C = MODPR(C,Cn,m) & A= A¥pod m

Repeat step

If (k # 1), then:

Figqure A8.,1,4: Flow-chart for a® mod m.

Since a® = a%*r", yhere q = |b/k], and r = b-qk, a® may be
written as aP = (a¥)%?’, where k is chosen so that a® < MAXIN
(wem> k < logMAXIN/loga. A = a¥*mod m is the new base, B = q
is the new exponent and C = a® {(mod m) multiplies the final
result. This is repeated until AP ¢ MAXIN. If, and when, A?
> MAXIN the new values of A, B & C are C = MODPR(A,C,m) if
B = odd, A = MODPR(A,A,m) and B = [B/2}.

¥ See Appendix 8.2 (§ A5.2.4., p. 521).

Appendix 8.1 Page 513

AB.1.5. Erime Decomposition

This subroutine [PRIDEl(m,Arr)]* returns the prime decom-
position of m. The algorithm (Fig. A8.1.5) is original.

Specification: "Given integer m, return its prime fac-
tors p,<p,<***<p,, and their respective exponents a,,a,,..
c18,, in 22 x 2 array Arr [so that Arr(i,1) p, & Arr(i,2)
= a,]. The rest of the array should be zero." It calls MOD,
L?] & INT(?) & SQRT.

2,3,5,7’9,.-,
starting with p, = 2. It examines whether p, | m; if it

This subroutine generates test integers p

1is increased by 1, and
repeats until pldoes not divide m. It then updates the ar-
ray (if a, 2 1), so that Arr(1,1) = P, & Arr(1,2) = a,, and

considers the next integer p,, unless m = 1 {in which case

does, m is reduced to m/pl, and a

it terminates). If P, = 3 r m, it considers p, = 5, etc
until it obtains another divisor ¢f m. In this way only
prime integers are considered, because if, say, 9 is tested

it will not divide m since 3 has already been tested and all

Arr =0 & M=m & p=0 & i=0
—> Step 1: a=0 & p=p+2 & If {(p=4), then: p=3
r—) Step 2: If (Mmod p=0), then: M=M/p & a = atl
Repeat step 2
If else, then: If {(a = 0), then: Go to step 3
If (a # 0), then: i = i+l & Arr{(i,l) =p
Arr{i,2) = a
Step 3: If (p £ /M), then: Repeat atep 1 <
If else, then: If (M = 1), then: > END
If else, then: Arr{i+l,1) = M
Arr{i+1,2) =1 END
Figure_ A8 :* Flow-chart for prime decomposition of m.

factors equal to 3 have been removed via the m = m/p opera-
tion. The search terminates if m = 1, but processing may be
sped up if one considers the fact that if m is not divided
by any of 2,3,...,/m, then it is only divided by itself.
Hence, the test is repeated until p > ym. Then m is a prime
and the search terminates there.

Subroutine PRIDEZ* does what PRIDEl does (by calling it)
and it also returns r {the number of prime factors of m) and

% See Appendix 8.2 (§ A8.2.5., p. 522).

Appendix 8.1 Page 514

6(m). Note also that an array with up to 22 prime factors
can accomodate the prime decomposition of integers of the
order of 3x10% (= the product of the 22 smallest primes).

AB.1.6. Primitive.Root Modulo .m

This function [IPRIM1(m)]* returns the smallest primitive
root of m. The algorithm (Fig. A8.1.6) is original.

Specification: "Given integer me[1,MAXIN], return the
smallest primitive root (mod m). If m has no primitive root,
return 0", It calls MOD, MODRE & PRIDEl.

The straightforward approach is to test integers n =
1,2,...,m-1 /{n,m) = 1, until a primitive root is found. The
test is n! # 1 (mod m), for i=1,2,...,%(m)-1. It is obvious
that such an approach is inefficient. -

Firstly, the special cases are examined. For m = 1,2,3 &
4, g = m-1 /m>1 and g = 1 /m=1 (see Apostol [44], p. 205}.
Next, the prime decomposition of m is obtained. For m>4, m
has a prim. root only if m = p*, or m = 2p®* /a2l (ibid).
Then, if r>2, or if r=2 & p,>2, or if r=2 & p,;=2 & ap>1,

there is no prim. root and g = 0. Finally, if p1=3 then m

32 /a22, or m = 2 x 3* /a2l. For the former case, g=2 is =a
prim. root (mod 3). Since 2P' = 22:= 4 = 4 (mod 3?%), then
{by Theorem A7.3.4) g=2 is also a prim. root {(mod 3*). For
the latter case, g=5 is also a prim. root (mod 3%) because 5
{5 = 2 (mod 3)) is a prim. root (mod 3) and because 5F! = 25
= 7 (mod 9) is also a prim. root (mod 3%} {by Theorenm
A7.3.4). Since 5 is odd, then it is a prim. root (mod 2p%)
(ibid, p. 210). Furthermore, 5 is the smallest prim. root
because 2,3 & 4 are not relatively prime to the modulus.
Hence, if p1=3, then g=3r-1.

For the remaining of the cases (m=p*, or m=2p* /p25),
what is required is the smallest prim. root (mod p), or the
smallest odd prim. root (mod p) (if 2|m). In both cases, g
should satisfy g®!'# 1 (mod p?), if adl.

To this end candidate gas are generated and tested. If
2|m, then g=3,5,7y44+, otherwise g=2,3,4,... The search ends
if g2p-1=0(p)=® (ﬁ-l has order 2, while g has order p-124).
If this happens (it should not) then p is replaced by p* and

* See Appendix 8.2 (§ A8.2.8., p. 524).

Appendix 8.1 Page 515

the search starts again for g=p+1l,p+2,... (if 2}/m), or
g=p+2,p+4, ... (if 2|m). If it fails again (it should not)
then g=-1 and the search terminates.

Returning now to the normal search, every g is tested to
determine if g!# t (mod p), for i<p-1=®. If the test
fails, another g is considered [note that if p* is tested,
instead of p, then i<®(p®)=p*!(p-1)=0]. To speed-up the
process, not all is are considered, but only those that may
result in gi= 1 (mod p). According to Theorem A7.3.2, if
iJp~1 then gl # 1 (mod p). Furthermore, if Q;1Q,s ¢+ 39, aTE
the prime factors of ¢ and i=<ln(q:l satisfies the test gt # 1
{mod p), g also satisfies the test for other powers of q
(provided that they divide @), because: If g!# 1 (mod p)
and guquqxn = 1 (mod p), then g[ll(qjqx)qu - gtll(qj)l = gi z 1
{mod p), which contradicts the hypothesis., Hence, it is

enough to test all exponents ¢:I>/qJ /3=1,2,...,8.

If {(m =1), then: g=1 > END
If (2¢m £ 4), then: g = m-1 > END
If (m 25, &m is not p*, or 2p*), then: g =0 —————> END
If elge, let r=1 if m=p® or r=2 if m=2p*

If (p=3), then: g = 3r-1 > END
If else, then: Obtain the prime factors (ql,qz,...,qs) of ¢ = p-1

g=1

—> Step: g = g4r
If (g = p-1), then: Repeat for p = p* & & = p*!(p-1)
If it faila: g=-1 & STOP

If (g < p-1), then:
— 1If {g%*9 =1 (mod p), for at least one je[l,s]}, then: Repeat step
If else, then: If {(a = 1), then: > END

If (a > 1), then:
If [g”' £ 1 (mod p?)], then: END
If else, then: Repeat step.

Figqure A8.1.6: Flow-chart for the smallest primitive root.

This function [IEXPl(m,J)]* returns an element B (158<m)
of order J modulo any divisor d>»1 of m. The algorithm (Fig.

A8.1.7) is original.

Specification: "Given integers m & J, return element
Be[1,m], such that Ord,(B) = J, for all dim & d>1. If m<3,
or J<2, or m=even & J#2, or m=odd & J.re(m), return 0". It

X See Appendix 8,2 (§ A8.2.7., p. 525).

Appendix 8.1 Page 516

calls MOD, PRIDEZ, IPRIM1, MODRE, MODPR & MODSU.

The routine is a straightforward application of eqn
(7.33a). It also includes checks for illegal pairs of m & J.

If (m<2 orJ<1), then: 8 =0 - > END
If (J = 2), then: B = m-1 > END
If(d>2 & m=odd), then: B=0 ——a——> END
If else, then: Obtain prime decomposition of m
(P;3Pyssessp & 8,,8,500098) and 6{(m)

=t

If [J] e(m)], then' > END
If else, then: Let B =0
> For:.= 1 2“..,r

(n,/p,)(p,-1) & g, = IPRINi(m,)
L Mg RE(g A /ﬁ n) ‘& 'B = MODRE(n/m,,f,,m)
= MODPR(A'B,n) & B = MODSU(B,C,n)

END

Figure A8.1.7: Flow-chart for the IA generator-element R.

AB.1.8.

This routine [CODARZ(k+1,J,Jarr,Karr)]* returns the en-
coding & the syndrome array, for the (k,J) type~C5, or the k
type-B4 code. The algorithm (Fig. A8.1.8) is original.

Specification: "Given integers k & J, return the EA in
array Jarr & the SA in array Karr, for the (k,J) type-C5
code, or the k type-B4 code. If there is no code, return
Jarr(2,1) < 0", It calls MOD & IEXP1.

The work starts with the calculation of B. If IEXP1 = O,
the routine terminates, returning Jarr(2,1) < 0.

The EA is obtained from the IA via mapping (7.35). To
save space, the IA is not calculated but array Karr is used
as a working array for the storage of the coset leaders of
the IA. The first column of the IA is §tored in Karr(i,l) =
pt (mod k+1) /i=1,2,...,J. The 1lst row of Jarr is set equal
to 0. Jarr is calculated coset by coset, starting from coset
number, C = 1. Hence, scanning Jarr{(1l,i), as i=1,2,...,k,
permits the determination of the coset leader, C,, of the
next coset to be calculated [Jarr(l1,i)=0, for the smallest
il. Once a coset leader, C.» is found, the corresponding

column of Jarr is obtained from the mapping:
Jarr(i,Cr) =C, + (i-1)k/J /i=1,2,...,J (A8.1.3)

¥ See Appendix B.2 (§ AB.2.8., p. 525).

Appendix 8.1 Page 517

The rest of the columns that belong to coset Cn, are the
rest of the elements of column Cr, of the IA (Cris the last
element of that column). By Definition 7.2 (p. 185}, the IA
elements of column z are a, ,= za, , (mod k+1) /x=1,2,..445d.
Since Karr(i,1) contains the IA first-column elements, then

the IA elements of column C_ are obtained by:

Cln(i) = C_X Karr(i,1) mod k+l 7i=1,2,..44d (A8.1.4)

Cln(i) /i=1,2,...,J are both the IA elements of the coset
leader of coset C_ {which were mapped to C +(i-1)k/J = by
(A8.1.3)] and also the column numbers of coset C . According
to (7.37a) (p. 221), the column numbers of an IA coincide
with the elements of the Jth row, Cln(i) /i=1,2,...,J and
also the last elements of the IA columns belonging to coset
C,. Hence, the last elements of these columns of the IA are
also mapped to Cn+(i—1)k/J:

Jarr(J,Cln(i)) = C, + (i-1)k/J /i=1,2,...,J-1 {A8.1.5)

Note, from (A8.1.4), that Cln(J) = C., and that Jarr(J,Cr)
has been calculated. The rest of the elements of column
Cln(i) are calculated using the cyclic nature of the EA. So,
the element in row J-1 will be smaller by k/J, unless this

is non-positive, in which case k must be added:
Jarr(§,Cl (1)) = Jarr(j+1,Cl_(i))-k/J* /j=d-1,..,2,1 (A8.1.6)
The search terminates when C_ > k/J.

Consider now the syndrome array (SA). Let the syndrome
register (see Fig. 7.1) be rotated 90° clockwise and then
180°' around its vertical axis, to become the k X J array
ISR. Then, the top row contains sl(‘f:_l /j=1,2,...,J, the 2nd

row sl(‘f;_z /351,2,...,J, etc, the last row contains s]("” /ji=1,2,

+s1yJ. Obviously, if h is the block currently decoded:

ISR(z,3) = s{J) . /3=1,2,...,J & 251,2,...,k (A8.1.7)

Theorem 7.1 relates the syndrome bits with the elements
of the IA. Since decoding is done via the EA, the latter’s
elements are used instead. By Theorem 7.1, for each i=1,2,..

.»k, s checks on el'’, iff EA element b, ,= i. Since, by

shﬂl-]. W

% add k, if the RHS is less than one.

Appendix 8.1 Page 518

= Jarr{j,w) and since there is exactly one i in each EA row,
then for each 3=1,2,...,J, there exists a column z (obvious-
ly 1<z<k), such that Jarr(j,z) = i. Then, e?’ is checked by
Sﬂ:q = ISR(k+1-z,j). For each i = 1,2,...,k, syndrome bits
ISR(k+1-z,j) /j=1,2,..,J, check on ef!’, where z is such that
Jarr{j,z) = i. Obviously, z depends on j & i. Hence, an ex-
pression for z(j,i) is required and since z is a column of
Jarr, ze[l,k]. This expression is obtained from the inver-
sion of Jarr{(j,z(j,i)) = i. Let z(j,i) = x /x=1,2,...,k,
Then, Jarr{j,x) = i and from z(j,i} = x, one obtains
z(j,Jarr{j,x)) = x /x=1,2,...,k. To facilitate decoding, let
Karr{j,i) = k+l-z{(j,i). Then:

Karr(j,Jarr{j,i)) = k+l-i /i=1,2,...,k & 15jsJ {A8.1.8)

Then, ISR(Karr{j,i),j) /j=1,2,...,J are the syndrome bits
checking on eﬁ“, for each i = 1,2,...,k. See Example A8.2.1
(p. 531), for an illustration of the wvalidity of the above
results, via the calculation of the EA & SA for the (18,6)
type-CH code.

In Appendix 8.2 (§ A8.2.8., pp. 525-31), FORTRAN pro-
grammes for subroutines CODAR1 & CODAR3 are also listed. The
first one prints any combination of the IA, EA & SA, re-
quired. Each array is partitioned into sub-arrays of dimen-

sions that fit in the printer paper. CODAR3 returns the same

B = Karr(1,1) = IEXP1(k+1,J)
If (B = 0}, then: Jarr{2,1) <O >
If else, then:
I

=1
A
=

> For i=2,3,...,d
Karr(i,1) = BxKarr{i-1,1) mod k+l
Jarr(l,x) 0 /i=1,2,...,k & C =C =10
> Step: =C +1
— I1f [Jarr(1, 6) #’0} then: Repeat step
If else, theg. Cc,=C+l & Jarr(i,C,) = C,+ (i-1)k/J /i=1,2,...4d
> For 111,2. vayd=1
cl (1) = C xKarr{i,1) mod k+l
Jarr(J cl f1)) c, + (i-1)k/J
> For j=J- 1,...,2 1
Jarr{(j,Cl (i}) = Jarr(j+l,Cl (1)) - k/J
If [Jarr?J.CI (i)} < 1] then: Increase by k
If (c < k/J), then: Repeat step
Karr(J,Jarr(J,1)) kt1-i /i=1,2,...,k & j3=1,2,...,4J EN

Figure A8.1.8: Flow-chart for the encoding & syndrome arrays.

Appendix 8.1 Page 519

information, as CODAR2, but in a way suitable for the decod-
er implementation of ’'long’ codes {see Examples A8.3.1 &
A8.3.2 in Appendix 8.3, pp. 536 & 541).

AB8.1.3., Effective Constraintclength

This function [NEFELI(k+1,J)]* returns the effective con-
straint-length, n,, of the (kyJ) type-C5, or the k type-B4
code. The algorithm (Fig. A8.1.,9) is original.

Specification: "Given integers k+l & J, return the
effective constraint-length of the (k,J) type-C5, or the k
type-B4 code. If no such code exists, return 0". It calls
MOD, MAX & IEXP1.

This routine calls IEXPl1 to calculate B. If B=0, it re-
turns 0. If J=even, it returns 1+(k+1)J/2**, while if J=3,
it returns 1+2(k+1}**. For the rest of the cases, it exam-
ines the JA to determine the column with the largest sum of
elements. To avoid having to store the IA, it generates only
the coset leaders, from . An 1 X k logical array, Isu, is
used to ’tick-off’ examined IA columns. To speed-up the
process, if a column sums-up to the maximum [(k+1)}(J-1), by
Theorem 7.39] the search terminates. Also, if the opposite
happens (by Theorem 7.35, the minimum is k+1), another col-

umn will sum-up to the maximum.

f = IEXP1(k+1,J) & n,= 0

If (B = 0), then: > END
If (J = even), then: n, = 1+(k+1)J/2 > END
If (J = 3), then: n, = 142(k+1) > END
If else, then:
Isu(i) F /i=1,2,...,k & c,=¢,=0
> Step C +1

1t [Isu(é } = T], then: Repeat step
If else, then: c,=¢C, +1 & C_=C_ & Sum= 1

:) FO!‘ j=1’2,-oo,J
C_= fixC__ mod k+1 & Isu{(C)=T
|

som = Sum + C MAX{n‘n%um}

n
If (Sun k+23n th en 1+(k+1)(J~1)

I1f [n, = 1+(k+1)(J-1)], then: > END
1f (Cn (k/J), then: Repeat eat step
If else, then: > END

Figure A8.1.9: Flow-chart for the effective constraint-length.

¥ See Appendix 8.2 (§ A8.2.9., p. 533).
*¥% See Theorems 7.38 & 7.39 (p. 224).

Appendix 8.2 Page 520

APPENDIX 8.2:

AB.2.1.

FUNCTION IGCD (K,M)

C IGCD = G.C.D.(K,M) .-
T1=x
I2=M

142 I13=MOD(I1,12)

1GCD=12
IF(I3.EQ.8) RETURN
I1=12
I2=13
GO TO 148
END

Figure A8.2.1 FORTRAN programme for function IGCD.

A8.2.2. Sum Modulo m

To ove eorem H Since,

0 £a,b<m — MAXIN < a+b < 2m —

0 < a+b~MAXIN < Zm-MAXIN w—
0 < a+b-MAXIN+MAXr < 2m-MAXIN+MAXIN-|{MAXIN/m]m —
0 < a+b-MAXIN+MAXTr < m+(1-|MAXIN/m])}m (A)
Since m £ MAXIN s IMAXIN/m] 2 1 —

QED

AB.2.3. Product Modulom

This subroutine was tested for validity for various modu-
1li up to MAXIN-1. A processing'-time test was carried out for
various moduli of magnitude-order 103-107 on an ICL-1904
mainframe (for which MAXIN = 8,388,607). For each modulus,
the routine was called about 5,000 times. The 1st factor of
the product was = m, while the 2nd factor = m/2. The average
processing time was 11, 12, 15, 27 & 16 usec, respectively,

for the above-mentioned moduli.

Appendix 8.2 Page 521

FUNCTION MODPR(IA,IB,IMO)

C MODFR = IA*IB (MODULO IMO).-
DOUBLE PRECISION D,DCM
COMMON/MO/ICE
M1=MOD (IA, IMO)

M2=MOD (1B, IMO)

IF{M1.NE.@.AND.M2.NE.®) GO TO 190
170 MODFR=#

RETURN

199 IF(M1.GT.ICE/M2) GO TO 220
MODPR=MOD (M1*M2, IMO)

RETURN

220 D=DBLE (FLOAT (M1))/ICE*M2
M2=MOD (IDINT (D) , IMO)

IR=MOD (IDINT ((D-M2)*ICE+8.5),IMO)
ICM=MOD (ICE, IMO)
DCM=DBLE (FLOAT (ICM)) /ICE
IF(ICM.EQ.8) GO TO 170
LIM=ICE/ICM

296 IF(M2.LE.LIM) GO TO 390
D=DCM* M2
M2=MOD (IDINT (D) , IMO)

IRR=MOD (IDINT ((D-M2)*ICE+8.5) ,IMO)

3360 IF(IR.LE.ICE-IRR) GO TO 370
IR=MOD (IR-1CE+1IRR, IMO)
IRR=ICM
GO TO 338

379 IR=MOD (IR+IRR, IMO)

GO TO 299

390 MODPR=MOD (M2 *ICM, IMO)

400 IF(MCDPR.LE.ICE-IR) GO TO 440
MODPR=MOD (MODPR-ICE+IR, IMO)
IR=ICM
GO TO 409

440 MODPR=MOD {MODPR+IR, IMO)
RETURN
END

Figure A8.2.2: FORTRAN programme for function MODPR.

4B.2.4. FPowar.Modulo m

This subroutine was tested for wvalidity and processing-
time performance, for various moduli up to MAXIN-1, in a way
similar to that used for MODPR. Again, the moduli order of
magnitude was 103-107 (on an ICL-1904 mainframe, MAXIN =
8,388,607). For each modulus, the routine was called about
5,000 times. The base was between 300 & 350 and the exponent
between 151 & 170. The average processing-time was 12, 31,

24, 72 & 47 nsec, respectively, for the above-mentioned mod-

uli.

Appendix 8.2

Page 522

FUNCTION MODRE (IBA,IEX, IMO)

C MODRE = IBA**IEX (MODULO IMO).-

198

230

280

336

COMMCON/MO/ICE

A=ALOG (FLOAT (ICE)}

IB=MOD (IBA, IMO)

IE=IEX

IC=]l

IF(IB.GT.1) GO TO 23@
MCDRE =0

IF(IB.EQ.1) MODRE=IC
RETURN

K=A/ALOG {FLOAT (IB}))
IF(IE.GE.X) GO TO 289
MODRE =MCD (IB**IE, IMO)
MODRE=MODPR (MODRE, IC, IMO)}
RETURN

IF(K.EQ.1) GO TO 338
IC=MODPR {1C,MOD {IB**MOD (IE,K) , IMO) , IMO}
IB=MOD (IB**K, IMO)

IE=IE/K

GO TO 198

IF (MOD (IE, 2) .EQ. 1) IC=MODPR (IC,IB,IMO)
IB=MODEFR (1B, IB, IMO)
1E=IE/2

GO TO 198

END

Figure A8,2.3: FORTRAN programme for function MODRE,

AB.2.5.

Eriwe Decomposition

This subroutine was tested for validity and processing-

time performance for various mecduli up to MAXIN. For the
ICL-1904 mainframe (with MAXIN = 8,388,607), it was verified

that: 8,388,607

47 x 178,481

8,388,606 = 2 X 3 X 23 x 89 x 683
8,388,605 = 5 x 1,677,721
8,388,604 = 22 x 72 x 127 x 337
8,388,593 = prime

etc

C

aooon

OO0 O0On0n

Appendix 8.2 Page 523

SUBROUTINE PRIDE1(NI, IAR)

THIS SUBROUTINE RETURNS THE PRIME DECOMPOSITION OF NI, IN 22X2 ARRAY
IAR - PRIMES IN 1ST COLUMN, CORRESPONDING EXPONENTS IN 2ND -~ THE PRI-
MES AND THEIR EXPONENTS ARE ARRANGED IN ASCENDING ORDER AND OCCUPY THE
FIRST ROWS OF THE ARRAY, WHILE THE REST ROWS ARE 0.-

1 <IMO<MAXINT+1l / MAXINT<2**1g1 - IF IMO<2, IAR=0 - NI IS RETURNED.-

DIMENSION IAR(22,2)
DO 190 1I=1,22
IAR(I,1)=0
1990 IAR(I,2)=0
IF(NI.LT.2) RETURN
NNI =NI
J=g
I=8
LIM=(SORT (FLOAT (NI))+1)/2
250 I=1I+1
IPR=2*I~1
IF(1.EQ.1) IPR=2
IEX=0
299 IF(MOD (NNI,IPR).NE.£) GO TO 330
NNI=NNI/IPR
IEX=IEX+1
GO TO 290
330 IF(IEX.EQ.@) GO TO 389
J=I+l
IAR(J,1)=IPR
IAR(J,2)=1EX
IF(NNI.EQ.1) RETURN
3880 IF(I.LE.LIM) GO TO 250
IF(NNI.EQ.#2) RETURN
IAR (J+1,1)=NNI
IAR(J+1, 2)=1
RETURN
END

SUBROUTINE PRIDEZ2(IMO, IL, NR,KAR)

THIS SUBROUTINE RETURNS THE PRIME DECOMPOSITION OF IMO IN 22X2 ARRAY
KAR - PRIMES IN 1ST COLUMN, CORRESPONDING EXPONENTS IN 2ND - THE PRI~
MES AND THEIR EXPONENTS ARE ARRANGED IN ASCENDING ORDER AND OCCUPY THE
FIRST NR ROWS OF THE ARRAY, WHILE THE REST ROWS ARE 0.-

THE SUBROUTINE CALCULATES AND RETURNS IL AND NR, WHERE NR IS THE NUM-
BER OF PRIME DIVISORS, IPR{(1),IPR(2),...,IPR{NR), OF IMO, AND
IL = GOCODI(IPR(l)-l,IPR(z)-l,...,IPR(NR)—].)-""‘ -

1<IMO<MAXINT+l / MAXINT<2**1g1 - IF IMO<2, KAR=0, NR=8, IL=-l.- %

DIMENSION KAR({(22,2)
CALL PRIDE] (IMO, KAR)
NR=p§
IL=KAR(1,1)-1
IF(IL.EQ.~1) RETURN
DO 266 I=1,22
IF(KAR(I,]1) .EQ.8) GO TO 270
260 NR=NR+1
270 IF(NR.EQ.1)} RETURN
DO 298 I=2,NR
298 IL=1GCD(IL,KRAR(I,1)-1)
RETURN
END

Figure A8.2.4: FORTRAN programmes for subroutines PRIDE?.

Appendix 8.2 Paga 524

4B.2.6. Erimitive Reot.Modulo m

This subroutine was tested for validity and processing-

FUNCTION IPRIMI1 (IMO)

C IPRIM1=SMALLEST PRIMITIVE ROOT OF IMO.-
C 1IF IMO HAS NO PRIMITIVE ROOTS, IPRIMl=0.-
C 1IF NO PRIMITIVE ROOT IS FOUNL, IPRIMl=-].-
INTEGER XP2BBF
DIMENSION IAR(10,2),JAR(10,2)}
COMMON/MO/ICE
ICE=X02BBF (X)
IPRIM1=1
IF(IMO.GE.5) GO TO 198
IF(IMO.GT.2) IPRIM1=IMO-1
RETURN
190 IPRIM1=0
IND=1

CALL PRIDE1(IMO, IAR)
IF(IAR(1,1) .GE.3.AND,IAR(2,1) .EQ.0)} GO TO 258
IND=2 :
IF(IAR(l,1).EQ. 2.AND. IAR(], 2) .EQ. 1.AND. IAR(2,1).NE.0.AND. IAR(3,1).
1EC.8) GO TO 250
RETURN

258 IPR=IAR (IND,1)
IF(IPR.NE.3) GO TO 290
IPRIM1 =3 *IND-1
RETURN

296 IA=IAR(IND,2)
LIM=IPR-1
CALL PRIDE1 (LIM, JAR)
I=1

338 I=I+IND
IF(I.LE.IPR-2) GO TO 440
IF(IA.NE.B8) GO TO 3882
IPRIM]1=-1
RETURN

382 I=IPR+IND
LIM= (IFR~1) *IPR** (IA-]1)
IPR=IPR**IA
CALL PRIDE1 (LIM, JAR)
IA=]
GO TO 330

440 J=]

450 IF(M?DRE(I,LIH/JAR(J,I),IPR).EQ.I) GO TO 338
J=J+
IF(JAR(J,1).NE. Q) GO TO 450
IF(IA.EQ.08.0R.IAR(IND,2).EQ.1) GO TO 580
IF (MODRE (I,1PR-1, IPR**2).EQ.1) GO TO 338

500 IPRM1=I :
RETURN

C INCORPORATE FUNCTIONS MODPR & MODRE AND SUBROUTINE PRIDEI].-

END

Figure A8.2.5: FORTRAN programme for function IPRIMI.

L]
-
o

N
~0
ta

40

Appendix 8.2 Page 525

time performance for various moduli up to MAXIN. On an ICL-
1904, it required 33 secs to examine m = 1-1000, 30 secs for
1001-2000, 35 secs for 2001-3000, 58 secs for 5001-6000, 99
secs for 8001-9000 and 139 secs for 8388400-8388607 (MAXIN =
8,388,607). For m = 8,388,602, g = 7.

A8.2.7. Qrder . Modulo any Divisor d>i of m

This subroutine was tested for validity and processing-

speed performance for various moduli. For a given m between
2000-3000, it required about 0.4 secs to calculate $, where
Ord B = J, for all J l 9(m) {(on a CDC-7600 mainframe). Note
that IEXP1 calls PRIDE2, IPRIM1, MODRE & MODPR.

FUNCTION 1EXP1(¢e1S)
DIMENSION KAR(22492)¢IFEXC22)4IREX(22)4IPK(22)
COMMONZTRI/IL oMK o KAF

IF (M aGT o2 eANL oIS ebTal sANDe (MODIM92) e el eOReISER2)) GO TO 250
IEXP1=9D

RETURN

IEXF1=M-1

IF(IS.EGe2) RETURN

CALL PRIDE2(MKeILyNReKAR)

IF(MODCILeIS)eNELSY GO TO 270

IEXP1=0

DO 433 I=1.\R

IFEXCIISKARTT91)#2KARC1,42)
IREXCIY=IPEXCI)/KARCI 91D *CKAR(TIo1)=1)

IPRCII=IPRIFICIPEX(I))

TA=HMODRECIPRCII o IREXCIVNZISHI)

IS=MODRE(M/IFEXCI) S IREX(I) oH)
IEXP1=MODC(IEXP1+¥GCDPRCIA4IE M) o ™)

RETURN

END

Figure A8,2.6: FORTRAN programme for function IEXP1.

AR.2.8.,

Subroutine CODAR2 returns the encoding (EA) & syndrome
(SA) arrays in the J X k arrays JAR & KAR. It is used by the
simulation programmes, for decoding.

Subroutine CODAR1l prints any combination of the IA, EA &
SA, without making use of storage arrays. The arrays are
partitioned so that they can fit in the available printer

paper (see Fig. A8.2.8).

C INCOKPORATE THE FCLLOWING STATEXENTe IN THE CALLING SEGMENTe=

310
315

3€5

Appendix B.2 Page 526

SUERGUTINE CODAR2IK.4¢ISeJARGKAR)
DIMENSION JAFCISoKU)eKARLISyRED)
COMPO'I/CLL22JEXP
MzK3J+1
JEXPEKAR(141)=IEXP1(M41S)
IF{KAR{141)EQaT) RETURN
IA=JAR(241)
IE=JAR(141)
CO 210 1=2418
210 KAR(IeII)=NMOL(KARCI=191)+KARC141)4M)
DO 230 I=1l4Kt
230 JAR(1l+1)=C
NCS=(=1)*]1S
N={
263 N=N+]
IFCJARCI9NINEWC)Y GO TO 26C
NCS=h(SeIS
NCC=RCS+1IS+1]
DO 310 I=14]8
» JAR(IeNIZNCE+]
DO 373 T=2,4,18
KeMOD(N*KAR(I=141)¢M)
JAR(19K)I=NLE]
BC 372 J=2418
JARCIFIZJAF td=14K) +1
I7C 1IFCJAR(GJ oK) e EGehCC) JARUIGJOKIZNCS+]
IFCNCC+LToM) GO TO 2623 -
IC=1A~(]1E~1)
DO 410 I=1418
DO 410 J=1leKC
10 KARCTIsJARCIZJ))=JdeThs1C
RETURN
END

(£
[
L g |

Figure A8.2.7: FORTRAN programme for subroutine CODARZ.

SUBRCUTIKE CCDARL(M,18,1D)
DIMENSION IRCZCLIZIFC(2080)91FRI23D)

COMMON/CCDLIZ7IASIEF/ZCCD270EXP
DATA K3IZLZqE/7 =7 g HI 4V JoqF 22207 4G/Y v/
IFC(1)=JUEXP

IFCIFC(1)Y.NELC) GO TO 315

ID=9

RETURN

IF{IDeLTels0ReIDWGTL7) ID=31
NCP=39=INTIALOGIC(¥M=1,0))/2=10
ictD=0

Ki=M~1

NPW=KJ/NCP -

NARC=K 0=NPWsNCP

NRP=53

MPL=1S/NRP

NRR=]IS=NPLaNRP

DO 3£5 I=2,1S
IFCCII=MODCIFCAI=-1)+IFCC1Y M)
IF(ID.EQel) GO TG 433

DO 380 I=14K¢

Appendix 8.2 Page 527

380 IFR(I)=0
N={
NCS=(=1)}*]1%
3195 N=h+l
IFCIFR{(N)eNEeS) GO TO 395
NCS=NCS+IS
IFR(N)=NCS+]
DO 420 I=241S
423 IFRAMODI(N*IFC(]~1)¢¥))=NhCS+]
IFI(NCS+IS.LT<K:) GO TO 395
430 IND=T+1DDeILD
G0 TO(445+85594E5e44594645+45504459310031%e3100455e465431204554313y
1310¢3109210¢31Ce4654465¢3179310431043109310¢3204310)41IND
44% 10D=1
GO TO 478
455 1DD=2
GO TO &476
465 IDD=3
470 CALL SECONDILTI)
IFCIDDLEG.1) GO TO 495
DG 493 I=14K7
IFCIDDLEQGe2) IR(CII=IFR(I)
450 JF(IDDWEQe3) IRCIFR(LID))I=IA(I+IE~1)
455 MI=NCP*(4=NCP/3I5)+3
Kl=NCP
i=3
81. Iz1+1
IF(]1.GT.NPW) GO TO 718
I=1I=nCP
K2=K3I=-NCP+1
5317 J=M2=yu
535 J=dJde]
IF(JeGTeNPL)Y GO TC €95
M2=JeNRP
MIz=V2=KFP+]l
2855 IFCICDeLGeal) WRITE(24y175) MyIS
IFCIDELEGe2) WRITE(Z4182) M,1I8
IFCIDZeEGad) WRITE(Z9190) MoIS
IF(NCPJEGL29) WRITE(242C0]) Fel(GeKeK=K24K2)
TIF(NCF4EGe35) WRITE(2420C) Fo(G K yK=K24XK2)
WRITEC20210) C(HeK=1443)
DO 685 L=NMleN2
IFCIO0=2) 59546254650
58% IRC(K2)=MOD(KZ+IFCCLYyM)
IFIKZ.EGeK3) GO TO 680
KZlsK2+]
DC 615 K=K214K3
€15 IRCK)I=MOD(IR(K=1)+IFC(L)oM)
60 TO e8¢
€25 IF{L.EQs1) GC TC &8¢
DO 640 K=K2¢K3
IR(K)I=IR(K)+1
669 TFC(MODCIRC(KI=141IS5)+E0Qel) IR(KI=IR(K)=-IS
G0 TC ¢80
65C IFC(L.EQ.,1) GC TC €83
DO 675 KK=1SeKosl1S
JRR=IR(KK)
DO BT K=2018
670 IR(KK+2=-K}=IR(KK+1-=K)

Appendix 8,2 Page 528

ETS IR(KK=1S+1)=]RR
680 IF(NCPJEGCe23) WRITE(2¢215) LoFoe(GaIRCK) gK=K24K3)
€80 IF(NCPoEQe35) WRITE(24227) LeFe(GgIR(K) ¢KZK24K3)
GO TO 535
€55 IF(M2.EQ.18) GO TO 510
®2=18
#1zIS5~NRRK+1
GO TO 5%E%
T1S IF(KZ.EQ.K2) GC TO 745
K1=hRC
K2=NPUW=*NCF+1
K3z=K?
MIZNRCx (4-NCP/3E)+3
GO TO 934
T45 IFCIDD=2) TI54T7L,750
780 IFCIAEGe=1) WRITE(24225) E
IFCIALEGe1) WRITE(24223) H
WRITE(2+2E£0) 1B
GO TG 775
772 WRITLt24232)
775 CALL SECONDCTY)

TK=TJ=T1
WRITL(24292) TK
K3=C
GO TO 43¢
172 FURMATC(IH1417Xe*I N I T I A L ARRAY 0 F MOoODULG M
1=9,T4,40 AN 0ORDER S =0,414/71Fk 417Xe8E5E(*=*)/)
162 FORMAT(IKIS1EXe'C O D I N G ARRAY o F MOoODULLC M =S
1eldy? A N D CRDER £ =% J4/1F 218X e83(%=2)/)
132 FURMATEIHL41€Xe*S Y ND K O ¥ E ARRAY 0 F MoDuULOO
IV =vy4et Ano B O A A S ='eT14/71H 416X+8T(*=%3 /)

FORMATCIHZ9ZXe 21/1Le42%s29041412))
FARAMATCIHC w3 X A1/71H+93x439(4141I2)
FORMATLIH 412741)

FOCRMATCIH 313y L1714 43%X4¢29CA2412))
FORYMATOIr 9139 M1/ 1r+43¥420(023,1I2))
FORMATCO/IHZe1X911E(=) /1K 4£9X+21)
FURWAT(/IHETI91E6Xy 88CT"=%)/1H 41€X9?FOR AN (HN*(KJ+1S)ehL*KL) Y*CYCLIC

1'* CeSeCoeCes THFE ITH PAKITY=-CHECK DIGIT CF BLOCK Lo IS Gl="/1H 416

PXe*VWEN RY THE PMCODULO-=2 SUM OF VYESSAGE DIGLITS M(C-JeleJdAR(T¢J))/d=1

Selyeseehe FCR ALL I=14244%/1H4 21EX9 %4154 WPERE M(Lo4I) DENOTES THE

4 JTH “ESSAGE DIGIT CF SLOCK L AND JAR IS THE CODING ARRAYe*/1H +16

SXe RBLY=*))

CEC FORMATUIH#4" FOR AN (N*C(KO+ISIgh*K?) *¥CYCLIC®'® CoeSeO0eCas SUFDRONME
1 DIGITS SYN(I¢C=5 KAR(I9U))/I=1429se9IS ARE ORTHFOGOMNAL O THE JTh*
2/1H ¢ DIGIT OF ELOCK Cos WHERE? SYN(IsK)} LEANOTES THE ITF SYNLROPE
S3CIGIT OF BLCCK Ky KAR IS THE SYANURGMC ARRAYs AND BE=®9154% '/1h +1X
49lib(t~vr))

293 FORMAT(/1HC+2CX s *PROCESSING TIME =94,1FES.2/1H04120¢*=%))

END

L B SR (RIS B AV N |
NI D) ks g ™ o0
Ny "Moo

- LN,

Figure A8.2.8: FORTRAN programme for subroutine CODAR1.

Subroutine CODAR3 returns enough information about the EA
& SA to enable the decoder to operate, without requiring the

use of large storage-arrays. It is used for the simulation

Appendix 8.2 Page 529

S-S WTI D U wF2ZUR N IS e R e Sy LE e T l1qIF b gVM2R oAk yMLLyKR)
CIFOREITT JRUK Y e STRO) GLUCKFL) o INCUKG) 9 IF B CKO) oA LKD) yMAEL(KDO) o
FCER ")y)
Cove=t O r2/39LYP/raIu/LE
YhLe=bht
tetrta
L Ti=r 1)
FELL)SJM T 2TEYR1(Fy12)
vEQ1Y=OTYE S
IF(JIIYPLECL") FETUR?
Lt 1003 I234¥(
10D P20
B
TLC=IS+C
c=p
112 vc=tal
TECIR (M) 0, y €7 T 11:
JRN) = LLL'A'“F(\CQ =CeSe¥Lb1+CW5S
VEIS LS =045)/LF+1
VUCLR) =LL=AY AL (" CC=Ce B XLEY+ o3
A N S Y N R A K

(=)

FLU=4C+2.s%=1/.C»?
I VNS B2 BN

Srzi

. 120 Y=y T8

r = ol v JUYF oF }
ST av) ¢

IR IIITT DT CTeIal Gy YLE) 4D,
Oz LN l=1,.52/L+]
LUCery =Ly
TUIVIZFEL 4lT6M 0 At UmhdeT (T =17U0eT
IV r (M CC=l)2li-y
VRS-SRS BN
"CC="LC+IS
TE OOl Ty o T 11,
Telz=C P LtrisK(LE=18))

- 17 I=34r)

IFDLIYSrrELId =i C(]

PR AL TN |

L0 TL 1209140100920 017002E0)910DL])
it Tty (1)Y= =t

S B | L“v'“C(T)+1 =JF(1)=12)

FRALTYIS AU et Y)

”AF'I)=C"|FL(HA)

60 Tr 17,
150 IFE(I} LUC(I)=LE

PEEF2SR (LULCT D))

”fA(IJ=A”E("Av"f1)
CELOTY=COMIL (A
G0 TN 120
1680 ~ASMASK(IS=LUCII))
ERLTISAMD(I AWMLY B)
AFCTISCO PLI)
T4 130

L]

17 THELTIZLUSIT (T) #75=2ub b1

S SEALUCITY=1 L)
E:C““‘IIA"V(Lt -LuccI N

LI %

TRy e

o=]

Appendix 8.2 Page 530

DPUTYSCRTRTO gL 4L U= LC(D))
AT =l OO B C L GTAR (I
WL L)

-t TE 13
-}5(1;=\'t1)-1

(=2 {Le=11LCT))
'E:C"Plt':‘”(L‘wLUP(')-*Sll
CAB(TI)=SHIFT{r 4 IFE(2))

nE LIS, [P let CaCl FLOG AE (I
SCUINSCIrRLIL)
jal M 3

"F(L ~erfrel) FL T‘" i
FITIITRE T D) Fed
3’IT’(2o51£)
wn ITT (9202
s EITIN29T30)
RIA TN A
CRTITOL2450 0
TITEC(2 R0

>

wi JTEL24570)
3 2 B SN AR N
"TITT(I4E5)

LT v L0
SEITLAla 1)
CFITC(el

TPz £ 2) w00
TECZ (R (IY=1=l FX2(I""(1)/E)
Foll T 7e U8 28T gl-9T2eI2412)
Cotl c2TL UL I delr od1ad2ed2)
TeLL CITACL LI ACL{T) gl grleK Pt 2
TIT U e 60y IR U Y ST)WL UCY) Tt T) o TP AR TFS(T) eI CoTlel24I3¢U1s
vl !d? 1er Dt Jet ()
SITLT
L M XA T S A A L S S Yy " € PR KAEYS 0
1l F r - uvipcf 1 =%415° AN L R L 1 8 =%431371F
“‘!111t"')/]|0 1Xy 2800 =2 S OF [FIT Jnll) I8 wORL IFLCGJSC(INe1)2
R T Y L = FLATITY BEIT le (4SE=1eLS&=LBY*/1IHZIe EXevIN ZTACH
calbepd 2 DITS TET COSTRIRUTE T ComFELT PLAITY AEFLAR IN A GROUF
T CF 415y CP GECUTIVE ¢IT FOSITIF “SY/1HOe"CACH GROUP IS GIVIDED IR
T LT T OPERTSIPART A FRUM LIT PUSH JPCI) CF IRACJSC1)eI) T2 RIGH
TTPORT FIT PUS) OF ARFUP, IM*/1k 4¥TIC SAME VORD - PART B FRLr 18T
TTor 2l 7F BROUP TN LTDYT T TeiD RILT 2= LILXT T2 THE LLFT WiRDwees
TetTCY/in. o "FCR EnCH SU~ELOCK THIKE ARL £ STLTES: STATE 1 hAS 1 D&
FET = STETPS %42 & & CFVE 2 FERTSy T 2 FoTH IN THE SAME WORL AKDGY/
Ll o*IL 3 R 4 I1 CIFFERFPT WCADS (I 3 FART 2 IS LEFT PARTYT OF GROU
CF IW 4 TIL ‘FRuUSITE) = STRATES 5 & 6 HAVEL 3 FARTSe w & C'/71H +'REIN
Su IY THT CAvE weRD (IR E PART C IS LEFT FART QOF GROUPs IN & PART &
TOTE LSFTla=t /1t 4T LTCODT FIT (h=1)21541/1=14240eeehi/1S o CCLL
FECT SYPLOPORE EITS I, POSN (LE+J=IS) OF SY J(KFCO(RN=1)*IS+J))/J=1924"
SAIY eteesell 9 ¥IETE SYLAKP) IS ToE CURKENT SYLCROMLe MSE=14LSH=
e AMI THL KRIST SITSE ASRE DFCCCZ] tY APPROFFIATE SHIFTSe=%/7/)
BT I et R E LAY JT FPRIT P0SITIZ uF 1ST COF GROURIT')
e FRLT LI W FARRPY JS [wCRL OF 18T OF CFOUPITY)

(-

m.£L
Qo m

A

L4
L]

el

e IR RO
fHnu

FrRTedl G YAREFY LLC = [P7STITIC. (F KRIGRT®CST PIT I GROUPI®)

Appendix 8,2 Page 531

opoPLP AT {radn Foh PRRT BIY)

¢ T MAT LY gt RAY [“A&) FPR FPATT CO%)

¢ ROFTON g vEERJC VE = [SYOTICYE F3ITICNSIM)

tCT TR ATAL Caiadn ARFSYS ARt FIVEN AS 3=TLPLFS?I (11412413)/7 WwHERES
3131012y = £ CF LEFTCRIGHTIMOST G°*S & 12 = KO GF MILODLE 1%°%Sv)

L2 R EMETU///1Y o0 JF J3S Luc Inhy IFA Ith IFCYeTXe*vAaRY,
110Xt 7Rl P4 1T ¥y YU LC Y46 Yo 'FR)

B0 TLOR” AT 92T alfelTalT o216 0202 Y9 (14201242 4%)0I24%)%)415)

- -~
)

TR FTEPETL g G YEFRLY IND = [STATE CF GRLUPIY)

Cn PP rTElr o *2RREY IFL = [SHIFT CF PART A2v)

Seld T 72Tl gt pRIMVOLIFE = [SEITT CF PERT £ 3%

ETU ruliTlr o evaFE kY JIo = [SHITT OF PaAST €1IY)

Er (0 TUBR AT g *APRZY MPA = [PASK FTR PATT A3%)
. : =

T
W o= T

Figure A8.2.9: FORTRAN programme for subroutine CODAR3.

of very long codes (with a k of the order of 1,000). This
subroutine (see Fig. A8.2.9) is used by the simulation pro-
gramme JKOSI5 (see Fig. A8.4.2), as well as by other main

programmes.

All three routines were tested for moduli up to 1500,

Example A8.2.1: Let the (18,8) type-C& code of Example
A7.12.4 {(p. 493). From the IA, the k/J = 3 coset leaders are
C_=1,2 & 4. Then, from (A8.1.3):

r

Jarr(i,cr) = Cn+ (1-1)18/6 /i=1,2,.--,5 —

Jare{i,1) = 1 & 3{(4-1) = 1,4,7,10,13,16
Jare(4i,2) = 2 & 3{i-1} = 2,5,8,11,14,17
Jare{i,4) = 3 % 3(i~1) = 3,6,9,12,15,18

From (A8.1.4), the columns corresponding to coset leader

C_,are given by [Karr(i,l) = a;, = 1st column of the IAl:

0111(1) = Cr X ai.l mod k+1 /i=1’2’oon|J —

C1,{4) = I x (B,7,18,11,12,1) wed 19 = B,7,18,11,12,1
O1,44) = 2 x {8,7,18,11,1%,1) wed 19 = 16,14,17,3,5,2
O1,4) = 4 x (B,7,18,11,12,1) wed 19 ¢ 13,9,15,6,10,4

The last row of Jarr is given by (A8.1.5):

Jarr(6,C1 (i)) = C_ + (i-1)18/6 w=m>

Appendix 8.2 Page 532

Jarr(B,Cll(i)) = 143(i-1) —

Jarr{6,{B,7,18,11,12,1}) = 1,4,7,10,13,16
Jarr(6,Cl,(i}) = 2+3(i-1) —

Jarr{6,{16,14,17,3,5,2}) = 2,5,8,11,14,17
Jarr(6,Cl,(i)) = 3+3(i-1) —

Jarr{6,{t3,9,15,6,10,4%}) = 3,6,9,12,15,18

The three expressions above give the last row of Jarr
(the EA). The element of the first row will be the element
of the last plus k/J = 3 (minus k=18, if it exceeds 18):

1 2 14 3 17 15 7 4 9 14 13 16 % & 12 5 11 10

and then the EA (Jarr) will be:

1 2 3 45 6 7 8 910111213 1415 16 17 18
1 214 31715 7 4 9181316 6 812 51110
4 517 6 21810 712 316 1 91115 814 13
7 8 2 9 5 3131015 6 1 412 14 18 11 17 16
1011 512 8 6161318 9 4 71517 314 2 1
1314 81511 9 116 312 71018 2 617 5 4
16 1711 181412 4 1 6151013 3 5 9 2 8 7
1t 223 23113311 323221

Finally, from (A8.1.8), Karr(j,Jarr(j,i)) = 19-i, for
i=1,2,3,...,18 & 1<£j<6, and the SA (Karr) is:

1 2 3 45 6 7 8 910111213 14 15 16 17 18
18171511 3 612 510 1 2 4 81613 714 9
714 918171511 3 612 510 1 2 4 816 13
81613 714 918171511 3 612 510 1 2 4
1 2 4 81613 714 918171511 3 612 5 10
12 510 1 2 4 81613 714 918171511 3 6
11 3 612 510 1 2 4 81613 7 14 918 17 15

So to decode, say, ef) syndromes ISR(Karr(j,5),4) /3i=1,
2,4++.,6 are needed, i.e. ISR({3,17,14,16,2,5},3) /j=1,2,...

+6. Using (A8.1.7), ISR(z,J) = s{d), /3=1,2,...,6 & 2=1,2,...
,18, syndrome bits s,‘lﬂs, sﬁi, sgfz, sgf;, sﬁ;s & 32(133 check on el(ls).
To verify this, from Theorem 7.1, syndrome bits s{) check
on e;”, for all bxw = 5., From the EA above, le& = l::z’2 z bs.s
- - - - (1) (2) 3) (4) (3) (6)

= by 4= by 177 bg 1= 5y hence sp i, 5,00 Spes Spizs Shae & s

should check on eé”.

Appendix 8.2 Page 533

AB.2.9. Effective Tonstraint-lLenath

FULCTIOM NEFELI(N4IS)
LAGICAL IS5U(9%9)
COMMON/ZCCL2/JEXF
KizM=1
IA=JVEXP
NEFEL1=3
IFCIAGEG.L) RETURN
IF‘MOD(IS!Z’oEG.l.ANDtlSQGTQQ’ GG T0O 233
HEFELIS(IS+1)/22M+}
RETURN
DO 243 I=]leF0
DO 340 N=lek@
IFCISUINY) GC TO 34)
JASN
JSU=1
DO 323 I=141S8
JASMODCJAXI A4 V)
TSUGJAI=.TRUL .
320 JSU=JSU+gA
NEFELI=ZMAXJ(MEFELIyJSU)
3403 CONTINUE
RETURN
END

)% BN
£
[+]

Figure A8.2.10: FORTRAN programme for function NEFELI.

APPENDIX 8.3: CHANNEL AND DECODER SIMULATION

The majority-logic decoder of Fig. 5.1 is used as a mod-
el. The decoder has to store one constraint-length of re-
ceived message bits.* This is done in k x k array IRA, with

the currently received block stored in the first row:

IRA(z,i) = ril) . /i=1,2,...,k & 2=1,2,...,k (A8.3.1)

It is also necessary to store the currently received
block of parity-checks. This is done in 1 X J array JRA:

JRA(J) = x{™V /j=1,2,...,J (A8.3.2)

The other array needed is the syndrome register. This was
defined earlier by (A8.1.7), assuming that the currently
decoded block is the hth. Since, now, the currently received

block is the hth,

ISR(z,3) = sid) = /3=1,2,...,J & 2=1,2,...,k (A8.3.3)

¥ See Appendix 8.4 (§ A8,4.1., p., 541), for the corresponding FORTRAN prograsme.

Appendix 8.3 Page 534

The decoder processes one block at a time. The first op-
eration required, is the shifting of arrays IRA & ISR down-
ward by one row, to make space for the current blocks, r#” .3
§,. Subsequently, r,“" & r,“") are stored in IRA{1,i) & JRA. The
next operation is the collection of statistical resgults
about the channel (number of channel errors). Following
that, the current syndrome block must calculated. From eqns
(7.5), (A8.3.1), (AB8.3.2) & (A8.3.3):

K
ISR(1,j) = DJIRA(z,Jarr(j,z)) + JRA(J) /j=1,2,..,J (A8.3.4)
z=1

Normally, z ranges from 1 to MIN{k,h}. This may be sim-
plified to [1,k] if IRA is initialized, prior toc the recep-
tion of the 1st block.

The next step is the addition®* of the syndrome bits
checking on each of efl) /i=1,2,...,k. ISR{Karr(j,i),Jj) /j=

h=(k=-1)

1,2,...,J are the syndrome bits checking on eéﬂkdd /i=1,2,..

+1k [see (AB.1.8)]. Hence, their sum*, Ipcs(i), is

J
Ipcs(i) = JISR(Karr(j,i),J) /isisk (A8.3.5)
i=1

If Ipcs{(i) > T, then Eﬁ2b4,= 1 (see Theorem 5.3). After
the decoding of the k bits, the number of decoding errors in
that block is obtained. Finally, for the case of feedback
decoding, the syndrome register ISR is reset. If the esti-
mated error bit is 1, then the syndrome bits that were used
for its estimation are inverted. From (A8.3.5), these bits
are ISR(Karr(j,i),Jd) /3=1,2,...,J. -

Fig A8.3.1 shows the flow-chart of the channel simulator
and the decoder. Nce is the number of channel errors, Il
will be used to estimate E[n] (expected to be 0) and 22

will be used to estimate E[nZ] (expected to be o*).

The above~described technique is not memory-efficient
with very long codes. The reason is that one bit is stored
in one word, which can store, say, b bits (b=60, for the
mainframe computer used). The total memory-requirement for
arrays IRA, ISR & JRA, is k%*+(k+1)J. If bit-manipulation
routines are used, then the total memory requirement may be

¥ Aritheetic.

Appendix 8.3 Page 6§35

—> FO]‘.‘ i=1'2’0.l‘k

n, = GOSDDF(0,0) & If (n_ > 0.5), then: e =1
If (nc < 0.5), then: e=10
— IRA(1,i) = e & Nce = Ncete & Il = Il4n, & I2 = Z2+n]
p—1 For i=1,2,-oo’J
n_= GO5DDF(0,0) & If (n_ > 0.5), then: e =1
1t (nc < 0.5), then: e=0
— JRA(i) = e & Nce = Ncete & IZ1 = Zi4n_ & X2 = I24n?

—> Step: h = h+i¥
> FOI‘ i=2,3’lll’k
[: IRA(k+2=-i,j) = IRA(k+i-1i,]) Fi=1,2,...,k
ISR(k+2-i,j) = ISR(k+1'i’j) /j=1,2,...,J
Calculate the current syndrome block, from (A8.3.4),
and store it in ISR(1,i)
If (h < k), then: Repeat step
If else, then:
> Por i=1,2,...,k
Calculate IPCS(i), from (A8.3.5)
If [Ipcs(i) > T), then: Invert IRA(k,i)
Update decoding-errors register
If [no FD, or Ipcs(i) € T]1, then: next i
If else, then:
Invert syndromes ISR(Karr(j,i),j) /i=1,2,...,J

— Repeat step

Figure A8.,3.1: Flow-chart for the decoding of type-C53 codes.

reduced by a factor of, about, b permitting thus Jb longer
codes to be tested. Since b was adequately large, it was
decided to restrict J £ b. Then array JRA becomes a varia-
ble, while array ISR a 1 X k array. The current J received
parity-checks are stored in the last J least-significant bit
(LSB) positions, while the current syndrome block is stored
in the J LSB positions of ISR{l1). IRA is a k, X k array or-
ganized differently: The current block is stored in the
first column, which has bﬂﬁ,bit positions, where bﬂ%Zk, or
k,2k/b, or k, = L(k-0.5)/bj+1. So if k=qxb, then k, =q, while
if k=qxb+l, k,=q+l. The first bit of the current block is
stored in the most-significant bit (MSB) position.

The shift of IRA & ISR is simpler than before. The next
operation is the formation of the current received message
bloeck (to be stored in the 1lst column of IRA). This is done
via the bit-manipulation functions MASK, SHIFT & OR. The
basic problem is the formation of a (b-bit) word, say, W
which contains the first b bits of the received (k-bit) mes-
sage block. MAS1 = MASK{(1l) is a word with 1 in the 1st posi-
tion and 0s in the rest. Assuming that W has been initial-

¥ h is the currently received block.

Appendix 8.3 Page 536

jzed to W=0, W = OR(W,MAS1) will store a 1 in the first po-
sition of W. Hence, if the 1st bit is 1, W = OR(W,MAS1),.
MAS1 = SHIFT{(MAS1,1) is a word with a 1 in its 2nd position
and Os in the rest of its positions. Then, if the 2nd bit is
1, W = OR(W,MAS1), etc. After b iterations, W contains the
first b bits and IRA(1,1) = W. This is repeated for the sub-
sequent group of b bits, until all" the k received message
bits have been stored in IRA{(i,1). The same technique is
used for the received parity-check bits.

The next operation is the calculation of the current syn-
drome block. This requires the EA which is returned by sub-
routine CODAR2, for the decoder implementation of Fig.
A8.3.1. While CODAR2 requires a total of 2 X J X k words of
memory, subroutine CODAR3 (see § A8.2.8., p. 529) is used
for the ’long’ codes, both because it returns all the infor-
mation necessary to implement the varicus bit-manipulaticen
operations and also because it requires a total of 9xk words
of memory, for the various arrays. The following example

will explain the technique used for syndrome calculation.

Example A8.3.1: Let the (12,4) type-C5 code, and its

encoding array (EA)*:

1 5 8 9 21210 411 6 7 3
2 6 510 3 911t 112 7 8 4
3 7T 611 410 12 2 9 8 6 1
4 8 712 111 9 310 5 6 2
Column No: 1 2 3 4 5 6 7T 8 910 11 12
Coset No: 1 2 2 3 1 3 3 1 3 2 2 1

Array IRA has dimensions k, X k. Assume that b=7, in this
case. Then, k = L(12-0.5)/7]1+1 = 2, so IRA is 2 x 12. Its
'bit-structure’ is shown in Figure A8.3.2; symbols
'x',’0',’4+? & '#’ denote the received bits participating in
the formation of the jth current syndrome bit /j=1,2,3,4,
respectively. The mod-2 sum of all the xs will give the 1lst
gsyndrome bit (minus the 1st current received parity-check).
So, what is required is the generation of k (=12) words,
each corresponding to a different column of IRA, with the J
(=4) received bits in the last J (=4) least significant bit
positions, in order x o + #. Then the XOR sum of these k
(=12) words will contain the J (=4) current syndromes (minus

¥ The codes were simulated using McQuilton’s mapping - see discussion following Defi-
nition 1.1| P 220,

Appendix 8.3 Page 537

the parity-checks), in its last J (=4) least significant bit
positions. The XOR sum of this word with JRA equals the cur-
rent syndrome block ISR(1).

Note, from Fig. A8.3.2, that the bits that are used for
the calculation of the current syndrome block appear in
groups of J (=4), which are, also, cyclic shifts of each
other. What is required, for each of the k (=12) groups, is
to shift the J bits so that they occupy the last J LSB posi-
tions of a word, W: W = {7??%?xo+#].

1 2 3 4 5 6 7T 8 9 10 11 12 < Word
X # o 1 <— Bit position
o x + #l2 F
i
+ o E xI3 r
8
+ x ofd t
xjo #$1+ 5 W
o
o] + x 1 # 6 r
d
+] & o] x 7
1 x + Jo 1
X o] # + 2 S
e
0 + 1 x # 3 ¢
+ $1o0 X 4 :
d
x|+ o 5
W
6 o
T
T d
1 5 1 2 2 5 3 4 4 6 T 3 JR (bit posit, of 1)
1 1 2 2 1 2 2 1 2 1 1 1 _JS (word of x)
4 1 1 5 4 5 5 4 5 1 1 4 LUC (poeit. of last bit)
1 3 4 1 2 2 2 2 2 5 5 2 IND (state of group)
-3 1 -3 -2 -2 1 -1 0 0 2 3 <1 IFA (shift of part A)
-6 0 -6 -3 -5 -4 -4 -5 =4 =5 IFB (shift of part B)
-2 -1 IFC (shift of part C)
4 3 1 4 3 1 3 1 2 2 1 2 NBA (No of bits in part A)
1 3 1 3 1 3 2 1 1 2 NBB (¥o of bits in part B)

Fiqure A8.3.2: Organization of IRA, for the (12,4} code.

Note that each group is partitioned into two parts be-
cause the first bit of the group (’x’) is not always leading

(as in columns 1,2 & 4)}. Furthermore, there are cases where

a group extends over two different words (as in columns
(2,3,10 & 11). Because the length of a group is J and the
length of a word has been taken to be at least J, then one

Appendix 8.3 Page 538

may partition each group into up to 3 parts. Each part is
located in a single word and contains as many of the J bits
in the right sequence (x o + #); part A starts with ’'x’, If
Gx(i) /X=A,B,C & i=1,2,...,k denotes part X of the ith group
(column i of IRA), then: G,(1) = [x o + #], G,(2) = [x o +],
G,(6) = [x], 6,(10) = {x o], etc. G(1) = [1, Gy(2) = [#],
G(3) = [o + #], G,(10) = [+], Gy(11) = [o], etc. Finally all
but groups 10 & 11 do not have part C; GC(IO) = [#] & Gc(ll)
= [+ #]. Subroutine CODAR3 returns, in arrays JR, JS, LUC &
IND, information about each group. For the ith group, JR(i)}
is the bit position of 'x’, JS(i) is the word where ’x’' be-
longs, LUC(i) is the bit pesition of the last bit of the
group and IND{i) is the state of the group (see Fig.
A8.3.2). A group is, in state 1 if it is made of one part,
in state 2 if it is made of two parts both in the same word,
in state 3 if it is made of two parts of which B is in the
2nd word, in state 4 if it is made of two parts of which A
is in the 2nd word, in state 5 if it is made of 3 parts of
which B is in the 2nd word and in state 6 if it is made of 3
parts of which C & A are in the 2nd word (see Fig. A8.3.2).
Arrays IFA, IFB & IFC contain information about the shift
required for each part of the group, sc¢ that they are shift-

ed in the right bit position within a word (for it is
bit position 4, for o0’ 5, for ’'+' 6 & for ’#’ 7). Neverthe-
less, CODAR3 returns only IFB; IFA is readily obtained from
IFA(i) = JR(i)+J~b-1 (b=7, here), and IFC from IFC(i) =
JR(i)=b=~1 [for IND{(i) = 5, or 61].

Finally, a mask is required for each part of each group,

X

such that it contains 1s only at the bit positions of the
shifted part and 0s elsewhere. The information provided by
arrays NBA & NBB helps build this mask. For example, NBA(2)
= 3 (part A of group 2 is made of 3 elements - x o & +).
Once shifted in its appropriate bit position (4,5,6), part A
requires mask (0001110), while part B requires mask
(0000001), In general, if part A is made of NBA(i) bits then
MAA(1i), the mask for part A, contains NBA(i) consecutive le.
The first 1 should be in the position where 'x’ will reside,
which is b-J+1. So, MAA(i) = [b-J,NBA(i),J-NBA(i)], i.e.
MAA(i) is made of b-J 0s (starting from the MSB), followed

Appendix 8.3 Page 539

by NBA{(i) 1s, followed by J-NBA{(i) Os. The mask for part B,
MAB(i), contains NBB(i) 1ls. The first element of part B is
the [NBA{(i)+1]th of the group, which will be shifted to po-
sition b-J+NBA{(i)+1l, hence MAB(i) is made of b-J+NBA(i) Os,
followed by NBB(i) 1ls, followed by 0s: MAB(i) = [b-
J+NBA(i),NBB(i),J-NBA(i)-NBB(i}]. The mask for part C con-
tains J=-NBA{i)-NBB{i) 1ls. The first element of part C is the
[NBA(i)+NBB(i)+1]Jth of the group, which will be shifted to
position b-J+NBA(i)+NBB(i)+1l, hence: MAC(i) = [b-J+NBA(i)
+NBB(i),J-NBA(i)-NBB(i),0].

Consider now group 10. From Fig. A8.3.2, IND(10)=5, hence
this is made of 3 parts, of which B is in the 2nd word,
hence the group format is € | A | B (had it been A | ¢ | B,
then it would have been made of two parts, A | B). The first
operation is the shifting of its 3 parts. Parts A & C are in
IRA(JS(10),10), i.e. in the 1st word of the 10th column of
IRA, while part B in IRA(JS{(10)+1,10). According to the
above, IFA(10) is calculated by IFA = JR(i)+J-b-1 = 6+4-7-1
= 2 and IFC by IFC(10) = JR(i)-b-1 = 6-7-1 = =2, Hence:

KRA = SHIFT(IRA(JS(i),i),IFA) = SHIFT(IRA(JS(10),10),2) =
= SHIFT(IRA(1,10),2) = [??#x077]
KRB = SHIFT(IRA(JS(i)+1,i),IFB(i)) =
= SHIFT(IRA(JS(10)+1,10),IFB(10)) = SHIFT(IRA(2,10),-5)
KRC = SHIFT(IRA(JS(i),i),IFC) = SHIFT(IRA(JS(10),10),-2)
= SHIFT(IRA(1,10),~2) = [?2772774]

The masks for the three parts are:

MAA(i) = [b-J,NBA(i),J-NBA(i)] = [3,2,2] = [0001100]
MAB(i) = [b-J+NBA(i),NBB(i),J-NBA(i)-NBB(i)] = [5,1,1] =
= [0000010]
MAC(i) = [b-J+NBA(i)+NBB(i),J-NBA(i)-NBB(i),0} = [6,1,0] =
= [0000001]

Using the masks:

KRA = AND(KRA,MAA(10)) = AND([??#x07?],[0001100]) =
= [000x000]

KRB = AND(KRB,MAB(10)) = AND([????7?+?],[0000010]) =
= [0000040]

KRC = AND(KRC,MAC(10)) = AND([???77?4],(0000001]) =

Appendix 8.3 Page 540

= [000000#]

Finally:
W = XOR(KRA,KRB,KRC) = XOR([000x%000],[00000+0],[000000#]) =
= [000xo+#])

The above is repeated for all k groups. The Ws are added
mod-2 to JRA. The final result is ISR(1), the current syn-
drome block.

The next step, in the decoding of ’'long’ codes, is the
estimation of the k error bits. The SA provides the informa-
tion about the syndromes checking on each error bit. To
economize on storage space, only the ’equivalent’ of one row
of the SA is returned by CODAR3, the rest of the rows being

generated during decoding. Consider the example below:

Example A8.3.2: Let the (12,4) code discussed in Exam-
ple A8.3.1. From its EA, and eqn (A8.1.8), Karr(j,Jarr{(j,i))
= k“'l"i /i=1,2,...,k & 15.]-5\-’:

12 8 1 5 11 3 2 10 9 6 4 7
5 12 8 1 10 11 3 2 7 9 6 4
1 5 12 8 2 10 11 3 4 7 9 6
8 1 5 12 3 2 10 11 6 4 7 9
1 2 3 4 5 6 7 8 9 10 11 12

Note that the SA is partitioned in 3 groups (one for each
coset). Within a coset, column i is a downward cyclic shift
by one, of column i~1l. Hence, if CODAR3 returns the 1st ceol-
umn of each coset, the rest are easily generated.

Let 1 X k array KR be:

KR{4) « 12 5t B 11 102 3 9 7 4 &

for i=1,2,...,12, respectively. To decode the ith bit,
one would determine the coset number, C,» first, by letting
¢, = L(i-0.5)/Jj+1. If i=7, C = [6.5/4]+1 = 2. This means
that the appropriate KR elements are 11 10 2 3. Thereafter,
the relative shift within this group is determined by i mod
J =7 med 4 = 3, Hence, the SA column for i=7 is 2 3 11 10.
ISR contains the J (=4) syndrome bits, checking on the ith

(7th) error bit, in rows 2, 3, 11 & 10, and in bit positions

Appendix 8.3 Page 541

4, 3, 2 & 1, respectively, counting from the LSB. Then, the

sum of the J (=4) syndromes is obtained as following:

IPCS = O
JSR = SRIFT(ISR(2),3)
JSR = AND(JSR,1)
IPCS = IPCS+JSR
JSR = SHIFT(ISR(3),2)
JSR = AND(JSR,1)
IPCS = IPCS+JSR
etc

IPCS is compared with T for the final decision,

The syndrome-register feedback is done in the same way.
This time, though, some masks must be used in order to
invert only the appropriate bit from each of the J rows of
the ISR that contain syndromes checking on the particular

error bit.*

APPENDIX 8,4: SIMULATION PROGRAMMES | ’

AB.4.1.

The FORTRAN software in Fig. A8.4.1, is the part of the

computer simulation-programme that processes one block of

Wl i hva UL I8 (W AGIvivg g 16
C INITIALIZATIONS.=-
MPSNPIMY (1) =W (2)=UCNS=MEB="C
POSI=PQS2=AF=T. 5
CALL GIS5CBF (KG)
DO 12¢ I=14K¢
DC 13, J=le¥D
132 1IRA(TI s)=
DC 123 u=14s1S
123 TSR(TIeN)=C
DO 125 1=1,418
12 JRA(YI)=¢
DO 157 I=1leNaAP
159 AFR(YI)=L
C WATN LOOP.-
Id=3
145 Id=Tu+l

% See Appendix 8.4 (§ AS.4.2., p. 543), for the corresponding FORTRAN programme.

C

Appendix 8.4 Page 542

SHIFT.'
DE 172 TI=2¢K(
KoKn+2=]
DO 1€) JS1le¥.
167 TRA(V.9JI=IRALK=14J}
PC 170 J=1418
175 ISRU{K 4 J)=ISF(K=14)
ADDITION OF CHANKWKEL NOISE = H/D QUANTIZATION - COUNTING OF CHAMKEL
ERRCRSy INJECTED IV FESSAGE AMD IM PARITY CHECK DIGITS.=-
DO 21 I=l4KG .
SN=GTSDDF (L4 D e RHSEN)
POSI=POSI+SN
POS2=PCS248h #22
IEACL¢Y)=0
IF(SNeGE«2e%) IRA(141)=1
2170 IFCIJeLE«hMEX) ME=NE+TRA(L91)
NC 227 I=1418
SN=GISDLF (Gei ¢ RMSHN) - -
POS1=POS]1+SN
PCS2=POS2+SNh»=?
JRA(IN=T
IF{SLeGEsGe5) JRAC(I)=]
227 IFCTIJeLENPMXY PPt PeJRAL])
SYLNDROME CALCULATICHh.=~
DO 247 J=141S
ISRCleJI=JRA(Y)
De 24 YIzlykn
247 ISR(14J)=TAFRSCISR(14J)=TRA(TIsJAF(J,TII)Y
ERRQP SEQUEMNCE ESTIMATICMN - DECODING ~ SUNDROKE R
OF UNMCCRRECTED ELFRDRSe-
IFCIJLTe¥RY GO TO 140
DU 2L J=leki
ICE=IRPA(K 29)]
IPCS=ISRIFAF (lautdel)
PO 2€ T=241F
6. IPCS=IPCS+ISKFIKARC(IWJ)eI}
JPCS=TPCS/JTH
IF(IPCSWEGST)Y GC TO 282
AUCICE)=HNCICE) +]
L0 27. I=1.1%
KR=KAR(IeJ)
27. ISR(KR¢I)=1-1SFK(KRsl)
280 AFSAF+IARS(ICE=1=JPCS)
CALCULATION OF AUTCCORRELATION SUMSe~-
MOB=MDE+])
IFINOB,LTLIEGR) GO TO 14¢
JCDS=JCPS+1
MR=PINC(JCOSHKEP)
MRI=MIML (JCTSoMAR=1Y
ADECL1)=AF
IF(AF.EQe Y 60 TO 277
DG 275 T=14MR
275 AFDCII=AFDLT)+AF+ADEC(])
2T7T MR12=HR1+2
DC 285 I=14VR1
J=MR12=1
285 ADEC(IIY=ADEC¢(J=1)

SETTING = CCUATING

C

Appendix 8.4 Page 543

vpe="’
AF=3
EkD OF P2IL LOPP,-
14

TECT . TONMENY i TR 145

Figure A8.4.1: The main loop of the simulation-progranmme.

bits. This was used in a number of different programmes that
were designed to produce various results (for example, prob-
ability of decoding error, autocorrelation function of the
decoder-ocutput error-sequence, decoding-errors per coset,
error propagation, etc). All these programmes differ in
their details and in the way they process the collected sta-
tistical data. The decoder uses a straightforward approach
and data provided by subroutine CODARZ2.

A'&'4I‘2'

Main programme IKOSI5 implements the storage-saving tech-
nigue, described in Example A8.3.1 (p. 536). This particular
version was run in a CDC-7600 mainframe, for which the
word-length was 60 (see command "LB=60", in p. 544). The
arrays have been dimensioned for a particular code (with
k=40). The programme needs only to read the following data:
k, J, the number of blocks to be decoded (NMAX)}, the minimum
number of error bits to be generated (MNER), the number
channel-error rates to be tested* (NQE), the feedback mode
(KFIB)**, the initial setting of the random-number generator
(KG), instructions about the printing (or not) of any of the
IA, EA & SA (MM), the syndrome threshold to be used (T =
J/214IDT) and the NQE channel-error rates,

The above simulation programme is therefore very flexi-
ble. One run can produce a set of points of the net coding-
gain versus the SNR / information-bit graph, as well as in-
formation about the error-rate performance of each of the k
information bits of the code {indicating thus the potential
for unequal error-protection). Also, the above-mentioned
data can be obtained for various syndrome thresholds, so
that one can determine the optimum threshold for various
channel error rates (see theory on the optimum threshold, in
Chapter 6). Finally, each channel error rate can be tested

X por each of them, at least NMAX blocks are considered.
* Any coabination of DD, FD & ‘genie’ decoding can be esploved.

OoONonoOOOOOOOt OO0 0000

c

Appendix 8.4 Page 544

Te/TE PPT=1 P¥LEP FIN 4.8+453% 1%

PROGFAM TKOSISUTIMPUTSOUTRUT+TAREI=INFUT«TAFPEZ=OUTFUT)
DIMENSICN COF JReJSeLUCeJETeIFb+MABGMABSHACH4KR & ISR IS (M=1) =
CIveEHnSTAL CF JPLA T8 (FYIX(*=1)y WHERE KX = JINTL(¥=1,5)/LFEJ+ly ArD
LP = HU¥BER NF LITS/WORD = TOTAL STORAGE REGUIRED IS {(FM=1)+{KX+11).=

I8 MUST RE ISKLI+l = TIF ISO>LEs 1S = 24 BY LEFAULTe=
LEAX = RUMBER CF BLOCKS To BE DECODEDe-

PEEP =z MINIMUM FUMEER OF CRAMLEL TRKEORSy IW MESSAGE DIGITSe I EACH
RUN = WMAY WILL BE ALJUSTED IF IT RESULTS IN LESS ERRORS THAN MLER.-
AGE = NUMPEKR CGF FUNS,-

KFIR COMTRCLS THE SYMDROME RESET ¥02E: IF MD1,MD2 & MUZ DENQTE THE
*TRALSMITTER F/B*y *MO F/E* B *DECNCER N/P F/R* MODE RESPECTIVELY.
THCN e IF KFIB = lsZe%e4eSobe7 EACH RUN IS COMPCSED BY MD1eMDZoMD2Z,
01 & #D2y YD1 & MD3e MD2 A MDIe ¥D1 & VD2 R PD3 ¢ RESPECTIVELY =
BY CEFAULT ¥I1IR = 3,=- .

¥iG = INITIAL STATE CF RARDPGCY MUMEEF GEMERATCR. -

¥P COLTRCLS THLC PPILTCUT OF ARRAYS

1 IF ¥» = ¢ tC ARF!YS ARLC PRIMTED.

2) IF "M = 15 COLAP3 ARRAYS ARE PRILTEC.

)Y IF ~eppeg MOLT t'Pe CODAR1 AFRAY(S)e ARE PRINTED.

§) IF 7<PPC1S VODE PP=-T7 CODARKY1 AMD CODARZ ARRAYS ARE PRINTED.
DIFMENSTC(Y CF FPEL 1% ¥=) = 0OF PREEe PRIF & FDTX IS NOCL=(M¥-1)/15)e~-
IF TPU = 1(2) OKLY THE TRROR PRUBEAFILITY FOR EACH BRITLCQSET) WILL BE
FRINTED = TIF IFL = "¢ tOTH WILL £E PRIKTED.-

ICT = DEVIATICH FROP LOMINAL SYIDROME THRESHOLC - IF ITH IS CUTSIDE
T{eI&Ty IUT = [e=
DIMEHSION JPL4Z)edS (4G eLUCI4G)wJETIAL)IWIFB(473)
DIPLESTICE MAL(AC)GMARCGT) G PIC(G L) KR4 D) 4ISRLE)
LIPCMSTICN TRAC(L 443D
DIMEDSION PELL (4.)¢ FREFE(ZLY ¢ PROF(2) 4PDTXC21)Y
DIFEESICN NV(2) o CLCEZ)¢ CEPLL)9 GEPNCET)SLSPALLIISNCCHELEZ) wCEF(62)
YL FE R) PP EtEZ ¢ 3o PP CR (e B3 e T) 4POVERCA 293)4ISCIE1)4ISE(E])
COPMCHZCCLL1/TIALIP/MPEIN/LE
DATHr =
CALL SECCID(T1)
READEIQE-") PolSel'V /Y eMLER I CE4KFIb K6
READCLaSCC)Y FRWIFULIODT
READCI4510) (QCCTYeI=1e.CE)Y
LE=GN
CHECK FOR EXYISTEMNCT OF THF CrDE = CALCULATION OF ARRAYS.=
IFLISCTeLE) IS5=2
Poieb
KioM=] -
lh==1
IB=(=1)+K?D
YRE1)=(
IF(HMF.GELE) KR{1)=1
CALL CUOCAF3 (K CoeISeUReJSoLUCYJETIFBeMAAGKABIMACHKR)
IF(KR{1).CT+L) GO TC 110
WPITE(24520L) Py1S
sSTOP
CZLCULATION UF CODE PARAMFTERS o=
110 Kn=KT+]S
MASN T ap "
NEZREFELI(MeIS)
F1=FLOAT(LA)/NLE
IT=1&/2
RESFLOPTLITY/MD

Appendix 8.4

Page 545

FAM IKUSIS 16/76 OPT=1 PHDHMP FIN 4.8+532

c

C

C

IX=MOD (KL 2)
TRISKO#((IS=12+1¥+1)/18
IF22IR1+1+1X

IRCSFLOAT(NA)/ITeleS
RCPCS10C,1+1T/1)

MMZAMOD (FLOAT(EM) 974504 0.5
TFC"EeMCes) CELL CODARI(MgISyMM)
KXZ(KE=0,5)/LE+1

KXUsK /LB]

KXR=KI=LE#KX(

PAS1=MASK (1)
MAS2=SHIFT(14LE-KYR=1)
PASISSHIFT(1415-1)
YAS4=COMPL(MASK(LE~IS+1))
I"ESLRe)

INC=TIS-INE

hOCz¥ /1S

IPXS=InXP=1

1F (HOCoLEo8eNRel CCohTa18aANTLROC,LEL23) INXS$S=2
IT(NOCe6Tal&) TRYP=2

1§5=-1-15

REFLOATIK) /NE
FEYXS¥HERN. / (1S/2)

ITH=(1S1)/2
IFCARCCINT+ITh=(18=1,0)/2)40T4¢TS=1,.1/2) 10T=)
ITh=TTH+IDT

151=158+1

JTH=TTH«1

IF(KF TP oL Te2oNRFFIR.GTL7) KFTBZ3
CALL DATE(A)
PEVAX=CHAMEP (Tof 4F)+13C
QEVAX=PEPAX/RCPC

LFI1=LF12=LF13=y

HFIB= (KFIB=%e5)/3+1

CALL SECOID(T2)
TT1=(T2-T1)/NFTE/NGE

CUTER LCOP.=-

C

DD 1732 JW=1ehGE
ALCULATICON CF SIVMULATICN PARAPETCRS.=
CALL SECCHDtTI)

GE=QG6 (JW)

PLSQE+INT(IS/Z2)/NA
SNT=STNORAC(PE)

RMSN=1/8NT
NENX=MAXI(FLOAT (N1AX) oNEXX/ZQE*N,L5)
MMANSNMRX +M =D

'.'”:PJ”!“Y*KO

HHSNN+IS*LMRX

NMNS=NEANX*]S

F/78 MNDC CCHTR2L LOCPew

128

INRC=KFIB
CALL SECORD(T2)
TT2=(T2=-TIY/I'FIB

15

GO TOT112¢114431642324110¢114433291 05017091 0s 1801164116911 4841014
117 041 7 91 0030 70 "Nel 16100310 1091 0Nng1 2041394100)4IKD

112 WRITEC24538) AsIP1elR24h2ek

TFIR==1

Appendix 8.4 Page 546

RAR IKCSIS Te/T6 OPT=1 PHDMP FTN 4 .6+538

&0 TD 118
134 WRAITELDP454™) A lf1eTR2en_9k.
IFIG=C
LFI2=1
GO TO 118 .
116 WPITE(24557) AsIRIsIRZ24I %K U
LFI3=IFIR=1
118 JFIB=TABRS(IFTIER)) i
CALL SECCND(T1) -
IF1cJFIb*tIFIbe1Y/2
IF2=JFIB*(IFIE=1)/2
IHD=TND+T7 _
LFIb=IFIE+2
i RETTE(24287) %1 XgNhgM™
C INITIALTIZATIONS.-
NEsNM=IW(1YohWe2Y=)
POS1=P0OS2=3s-
CALL G 5CHF (V)
DD 125 T=141S51
125 ICCHLII=ISTCI)=
DO 120 I=l4F3
FFEDCT)=T
ISR{I¥=0
Cy 123 J=lekX
T IRAGILI=C
AT LANP =
ITa=?
145 1J=lJ+1
C SHIFT.-
I'0 13, I=2eK’
K=K l+2=31
ISR(Y)I=Z]ISP(K=])
DO 137 Jzl.¥X
13 IF-'.&(.J;K)=IRAHI,I'-1)
C ALDLITICQYN OF CrPANLEL NOISE = H/ZD GQUANTIZATION =~ COUMTING OF CHAKNEL
C ZREQRSe TUUECTRED I VESESAGE AMT IN PARITY ChiCKX DIGITS.=~
IF(VX..FQ.&) Flr.‘ TG lbi!
DO 1u) Is1lskyn
IMRA="
DO 170 J=14LF
SHE6G HD0F (GeligPESH)
POS1=P0OS1+SHN
PCS2=PRS2+SN2s?
IF(S" el e™e€)Y GO TH ¥7)
IFCIJeLESHMAYY HR=NM+]
THRAZOR(INRASI"ASY)
172 THRASSHIFTUINRA.LL)
16> IPACIZ1)=TIMRA
IF{KXReLOW2) 6O TO 1835
I THRA=Z]
DN 19) I=1,4¥XR
SREGAOODF (e JeRIIEN)
POS1=P0OS1+SN
POS2=PRS2+SHenD .
IF(SHeLEeLeS) 62 TO 190
IFCIJeLE «NMEXY NI"zhHM+1

12
b

Appendix 8.4 Page 547

Pev IKDSIS TEZTE aPt=1 PMDH¥P FT' 4.8+538 15

INRAZOR (TP LyNASE)
197 INRASSHIFT(INKE 1)
TPALY X 1)=IvEE
183 JRA=T
DO 271 121418
SN=5 . 5DOF (LD gRuS)
PNSI=P0NSIecy
POS2=PNS24SKe*2
JRASSHIFT(RASL)

o IF(SNGLELTR) 6O T0 203
IF(TJeLEL WYY NDz1pe]
JRAZOR(JUFA91)

2% COMTTHUE _
C SYMDROME CALCULATIOM.-
DO 213 I=l,yt.
FRASSHIFTCIRACUSET) ¢ 1) 9 JRETDING)
VEASAYDUIVRAGYLALTY)
GU TN(Z1242059232924.92539202)9JETU(T)
25 LLESSHTFTUITACOSET) 2 I) 4 IFEC(TD)
LRASEVD(LRA ¢MAR{T))
WRAZAR(FRALLRA)
60 TA 212
SR LPESERIFTEII ACCIT Y1, Y)4 IFECT))
LRASAYD L LASMAR(T))
LTI (KR Ay LRA)
60 T 212

26 LUASE LRIT et ity =TT)b tTY}
YEASTRLYE LT)
o Tu i
2L . LRASSHIFTCITALSS(II+14T39IFL(TI))
" LEds2 Tl el 2T

MRASSHIFT(IRACJS(I) o I)e JRUIY=IND)
HRAZARNDI LA ACHAT Y)Y
KRA=TR(KRLWLRAS ML)
L TN 21,
203 LRASSHIFTHLIRACIS(T)I=191)IFEC(L))
LRAZREZILRA LR (T)Y
HEA=SSHITTUTRACISE]) 4T JJRC(TIY~=TNL)
MEASANDOERAGIACLTY)
KREA=QOR(KRAWLRAS NFA)
217 JRASXTRIJRENVEL)
ISR(IY=JRA
€ ECRBROR SFRUTMCE ESTIYATION ~ DECODIUNG - SUHDROME RESETTING = COUNTING
£ OF UMCORRECTID ERFCRS.=-
IF(TJ.LT¥L) 61 TO 143
KLG=LB -
KXIl=1.]
IDE=TRAC1 oK)
IST=758+]

LD 2863 I=1+%0C
IST=TIGT+1S
ISFP=3
Su 2T, J=141S
ISH=]ISS+J

 KR=TCT
Ires=a
DU 2749 K=1leIs

LA

c

27%

ny
)
~J

e
-~

ot
2f 7
Pt

14

Appendix 8.4

K" 518 7¢/7¢ OPT=1 PYDRP FTH

PR=VH+1 T) -
IF{ISt1eLBed) ISE=ISS+]
ILHZTGOHY
JSRESEIFTUISRA¥PLKK)) 4 I8I)
JSR=2ANDIJSRe1)}
IPCS-IPCS+JSH
JPECS=TRCS/JTH
IDE=SHIFTUIDE.1)
ICE=T=-A"D014105)

JIST=J+IST
JRESTARSH{ICE=-1=0F(C8)
PRED(JISTI=FPRELC(JIST)+JDE
IFCEI=IFC S+ .
ISCUIPCS1I=TISC{IFCS1)+1~JDE
ISECIRPCS1YI=TSE(INCS1)Y+Jbdrl
NY(ICEI=NW{ICLY~JPCE
IFCITST LI EWFLEDY G TO 207
V0LE=KLE+LE

EXI=hy1+])
TUE=IPLIKXT ¢KL)
IFCIFDatICE=1) o EQLIFI A PLS)Y GO TD 270
IVFE=SHIFT(ie15-J)
ISFR=0f ISk olkFR)

CosTIRUL

IFEITF ot le) G0 TH 2H3
KK=1IST

Jre 2Fh I=1418

VYEzFY el

REVSKREAK)
ISEFARFFIZXORCISRIKRKI S ISFR)
THSAY DY LSe 4y SPTHTLISTFe=1))
IG=AY D(FESS ¢S ITTUISFEIS=-1))
ISFL= R (IHeIW)

COLTINUE
b GF "ai* Lo F .-

IF T LTI YY GO TO 14%

aUTPUT fF rZftal SINMULATION RESULTSe=

th=17_+Ft

"“"CEZNf <Y

PHLEHPE=-NN
WE(2)=h=Eb (2)
PDESPW(LY+'HAL2)
PHCHs =M
PCESCERGUUI =102 ToINCE/NH
LL¥=PLE/RCPC
BRITECZ245E4) ITHGIDT
WRITE¢24505) CGEDLWGE
PCEP=1%v e #LP/PN
PCEM=1" L " *h1 /1L

. PLE=TODECJUILFIEI=1 0T "+ LDE/I'N

PLEP=FEFERCJUSLFILI=2 004 T2NKW(2) /NN
POEA=PCECROMWSLFIBI=1(Jei #LUCL) /NNCH
ESC=1«LDROPY(PCEZIDL)
CEF{JWI=R/ESCa] v

WRITE(Z4+52EG) BSCLCLF (UMD

ROCHE (JWI=NKCE

LOMECJWI =L MM

Page 548

4 4E+E38

Appendix 8.4 Page 549
|
ReH IKOSIE 7e/7¢ 0FT=1 PHCMP FTh G.u+535

FEC=PCEZZYr.
IFCIFIt«CELT) GO TO 292
TPL=uEr
ISR(1)Y=1
ISRtzy=N2C
CALL PROLEYI(KZoNCCoTPDWIDToPLTXeISR)
{ERT=TPD
G0 T 283
V2 TFCITINLeEGel) G0 TO 255
CERT=PROLEZ (KT o IS¢GEHLITID
pn 206 I=iltec
£%4 PLTY(IY=EERT
293 PLET=CEFT*f CE . ‘
€95 WRITE(24591) KCEoPM4PCEsER I Po Ml ¢PCEPWEReNMyhNePCEM LR ¢yNDE g ANePDE
TFCIFIFLYFel) VEITE(24591) IDET
KRITEC2+T24) RUWIZ)oliMgPDEP
TEUPDEAGE et e)Y OGO T 77
LPA=ZFIERF/ZPIEA
WEITI (oY RPA
GO TO 31w
2. RETTE(Z245ue)
31, WhITF(Z4GSTY Ly(1) ¢! CHyPDREA
beo=png /1
LY =PLEI /P AXIN
| SEAL—S Slak-Se N S L L 3 W LI
Pi‘ .‘_T:C'F."(;i. * *.;_
SEREF=SILCRA AFTC)
SA=1/SGRATIFCt)
s LITECZ o5FG) DL Pgb 0! g b T T TS Ly SARE P9 SNT
SWEDR=Z L+ ALDGIZ SR
SA=SIF#2l /8

5¢F=0"T D=1 240 FC1 (Bo.)
SAv=SLIK

BECZ (=1 I*41 061 . (K)
SANC=SAD+LLD

BE=1/R

EfF=PLO/PEC

CU=S1SACF(SIR/2/5CRT(R2),0)

FUEF=FU=17,

IT(IFIE.FQRel) GO TO 315

GLRT=fUP/FDFT

SLARUT=SIVORASMPLETZICO)

GSPOT=Z v#2Lf G, (SPRUTYI=10%fL0 G 2 (4e }=SAND i

31 LPITE(24E£325) SIReSA+SAD . SANsSEND ReBEsEEGFEL,

IPICHLEFR

IFCIFIFN ol al) WPITE(24671) ELRT

KTTTECC o 5 LUsLUeFUFPgEUSMEL

IF(IFTLNEel) LRITE(2¢636) GEPT

IFCULELECLF) L7 Te 75t

GER=FU/PED

SURU=SINGP. "(PED)
SPRUD=Z-+ALCG1 (S!RY)
SULZS"iRLawD/

Appendix 8.4 Page 550

FAr IKGSTS 7¢/76 OFT=1 PMDHP FTIiN dop+s3s it

SUAL=SNRUG=1C+ALGGI D (Be D)

CSP=SUA/SEY
GSFO=SUID=5E' D
JF(LFIbeEtWwa3) GERN(JWI=GLR
TFCLF I5eLCe2) GOFP C(JVI=GSFD
LFITECS2€10) GEReGERySNRUGSKIUD ¢SNRUGSUAGSUAD ~ SUAs
1SALWGSPe6SFD
IFtIFIEbaNEal1) WFITE(244611) GSPDT
c CEUCULATICY & CUTPUT CF SYNDRCME VOTE UISTRIBUTION.-
IF(IFIEoEGa=1) WRITT(295%35) A¢IRIeIR2eNDeKD
JECIFTR oL @e) WFITEC29547%) AqIR14IR24HC oKD
IF(IFIESCGel) LRITEC(2+9550) AgIRIGWIR2¢NCoh D
VETTE(Z 4T 0l) IS4GEw
LC 395 I=1,181 °
L&=1=-1
PSE=ISE{I)*1{[5/DE
LCD=' ="' E
PEC=TISCII)=1_oL/2LLD
ICT=I8E (1) JSCC)
PEYT=IST*1Cg."/* 1:
39T wlITEC(297%.) LSeJTHoISECT Y gADE 9l SEISCCI) oL CO9PSCeYST o NP ST
IFC(ITU«ECe2) GO TO 450
C CALCUL/TICr & CUTPUT OF ZIGIT LISTRIBUTICYH OF DECODING ERRCRS. -
ISPCY1)y==1
CALL GROEF (Y. s FYLy TSR)
TF(IFIEWEGa=1) LRITLU2+¢52C) AsIRIeIR24NIgKD
IFCTFIF oEGe’) RRITE(2456.) LgTR14IRZyiNa¥!
IFCIFTEZEQel) WRITEL(Z95ET) LAeIR14IRZeNLoKS
VEITECZe7 20) CER
E(380 I=14K%
YFREC=RED(T)
DERP=17e 0 *IPRED/LMN
DC=tDERE/FDL=1)21: G
JZISR(I)
JPFRLU=PREL (D)
DURP=130e TxJdPFEDL/LERX
DJU=(CJIRF/PDE=1)+11 ¢
IF(MPD(IeIS)elQe1) WRITE(24720)
el WRITE(2471C) TEREC ot Y o PP RP o T o DDy JPRED ¢ kMNXoe DJRFP o Jo DY
479 JF(IPULLGel1) GO TC 299
C CALCULATICY & CLTFUT OF CCSET DISTRIBUTICH OF DECODING ERR{RSe~-
IFCIFTEWEGe=1) WRITE(2¢53C) AeIF14IR2eNCeKD
TFCIFIRelCet) WRITE(2954C) £4IR191R2aNGeKD
IFCIFIECLCel) WRITEC24555) A9IR14IR24h09KD
LRITE(2473L)Y GFF
JFCIFYPeEQel) WRITE(24732)
IFCIFIEWLlEe:) KRITE(24724)
KL=n
OC & 5 Iz14%0C
PLEGUI)=PREDIKC+1)
U 41, J=2,47S
61, FFEDC(II=FREC(IV+FREDCVC+J)
475 KC=KC+1IS
ISR(1)=-1
Chll NRCERCI'CCoPFLD ISR

Appendix 8.4 Page 551

FAM IKCSIE Te/76 OPT=1 PHRDFF FTh 4,b+4528 1

LD 615 T=1410C __
IFRED=FREGtTI)
DIRP=1_"a {»IPREL/I 1S
DE=(DERP/PDE=-1)#1C0
JEISRCIY
JPREL=FREDC(JY
DJRP=12%e Do JPRED/LKIS
DJU=(DJRF/PDE=-1)=21(C -
IFCIFIPWEGLTY GNP TO 417
DERT=FDTXLTIY+PCE
DDT=C(DEFT/PDET=1)21 71
DJRT=PDTIXLJI*PCE
CUT=(DJRT/FLET=1)+1 24
HRITE‘E!TIb)'IPRED!NMNS!DERPODERTQI!DD!UDT!dPRED!NHNSdeRP!DJhTOJ!
IDJeDUT _
CO0TO 415 .
617 WFITE(29717Y IPREC".NSeDERFeI9 D e JFREDSNMNSeDJRP 9 UL Y
415 CULTINUE
c CALCULATICN CGF [ECCCEk ERFGRS DUZ TO CECOLLR CP NO F/Le-
IF(KFIbLLEL&) GP TO 259
ITU(IFIE «CEe.) GO T(: 42.
DO 425 Tzlel'CC
45 PREFCI)=FREDC(T)
G0 TH 259
G20 TFrCIFIELECLl) LO TO 43"
DC 4235 I=14t0C
&35 FREFCIY=FREDN(DY
GO TO 29y
G . WEITTEC(Z24500)Y LolhlgIN29Nn oK.
IF(UF TP T GelY GO TO 447
C CALCULATINN € vUTPUT OF DECODER EFRORS DUE 70 DECODER F/Fe~-
L0 44% I=1440C
445 PRECC(II=PRLDA(I)=FPLEC]T)
ISR{1)==1
CALL OFPDEREICCoPREE ISR
URITE(2+T40) GLEWM
LD 45" I=l41CC
IFD=PREB(T)
IFPE=PREECTI)
JSISP(])
JFO=PRLDC(J)
JPF=PREC (Y)Y
TF(IRYSeEGa2) WRITE(2,777)
IPT=IPD-IPE
DPI=LPJU=99599,850
TFCIPTeNE D) DPI=ILO0IPEZIPT
JPT=JPD=JdPLE
IFCUFToNESL) DPJ=ILZ O*JPE/UPT
50 PRITE(29763) YoIPDyIP Ty IR T IPESIPToDP T o JaJdPESJPTDF Y
TF(KFIB.EGeEY GO TO 299
C CALCULATION & OQUTPUT OF DFCODFF ERRORS DUE 7O NO F/F o=
447 D0 455 I=14t0C
450 FPEFCI)=PREFCI)=PLEDRC(T)
ISR(1)=-1
CELL NPDERCKUCFFFFyISR)
I (IVYPEGQel) WFITE(24720)
TJFCI' XFoEGel) wiITL(295E7) AglF191K24NOWK:

FAV TKDS

ig¢

332

327

]
L J

[

[n]

347

Appendix 8.4 Page 552

1t Ta/76 0FT=1

PMLMP FTN 4.0+538 15

KPITOC24750) GFY
DO 4E1 I=1eNCC
IPC=FREC(D)
IFF=PREFLI)
J=ISKR(T)
JFD=PRED(J)
JFF=PREF(J)
IFCTMXSFGe2) KRYITE(24772)

IPR=IPD+IPF

JPAMSJPDeJPF .

DPI=DPJ=5960G,06¢

IFC(IPD«NT&0L) DPI=120,0«IPF/IPD

IF(JFDeNEel) DRPJU=133e 3xJPF/JUFD

WFITEC(C276L) JolPholIPDeIFDeIFFoIPDeDPloJesJPF9JPD+DPJ

G TO 29%

WRITE(24628)

IFCIFTE eXEel) WRITE(29611) GEFDIT

IFCLFIELEGST)Y GERVOJWI=GSFIi(JW)=9995,99S

CALL SECCIDI(TZ)

TT=T2=T1+TTi-TT2

KRITE(P 4142

WRITI (24,615} T7

G Tn }_%

CORTIKUE

KFITEL24560) PolR19TR29h" 4K"

WRITET24572) HRueV eKielSeIRh1eIR2ZaNAGNEWRIIToNEsR2oIToNASIRCsRCFCy
IPEHAXsQREMAX 4 KOG

WFITC(Z45E0) AgIR14IRZ29MhC oK

TFUFIZWLGe.) GO TN 322

WEITL(Z 9620}

PO 33. I=1l4h0L

ELR=PRCECTIL3I/CERLI)

GLE=CFR{1)/RCPC

VRITE(2e6423) CER(IYSOGE «POLE (1 32 4EERGERNCLIY oGSPNCTYe ROCHECtT) ¢
ICCFOI) S NOPP D)

WFITE(2+5860) AsIR141IRK24NLaKFP

whITE(24657)

DO 38, I=1y4NGL

CGE=CER(T)Y/RCPC

WRITE(24+662) CER(I)WGRELCEFC(])

IF(LFI14ECGs") GC TO 2852

RAT=999,99%

IF(FDECF(Tol)ehDe™) RAT=PREEF(T«1)/PDECFP(T41)
IFCPPECRCIo1)*PLEER{I91)sEQeac) RAT==1

WREITE(2+6T0) POCECIal)sPUECR (14129 POEERT(L191)4RAT
IF(LFI2.EQe?) GO TO 363

kRAT=9959,9949

IF(PUECK(192)eNEoD) RAT=PDEERCI+2)/PDECRtI2)
TF(PDECREIw2Y+PLEFR(I42)EQa4T) RAT==]

WRITEC2e£97Y POLCECT42)+FDECR(I42)4PPEER(T42)4RAT
IF(LFIZ«EQse .2 GO TO 3490

R&aT=a9%,590°

IF(FDECR{T43)el'Fe™) RAT=POFER{TI23)/PRECR(T43)
TF(PDECP(143)+PDEERI{I93)eEGT) RAT==1

ERITEC20602) POOE (T 93)ePOLCF (1 932)ePDFERI(193)4RAT

CCMTINUE

CALL SECOIDCtTZ2)

Appandix 8.4 Page 553

rAH IKGSIS Te/76 OPT=1 FPHDKP FTh 4.F+525 1&

VIITE(29C 1Y T2

sTOF

FURMATC(TI1)

FCR¥AT(S(TIF1R.2/))

FORWATCIF1 45 Xel (BX/)/1HL 912Xy *THERT EXJSTS N0 COLL COF POLULO ¥
i=tylay® AKD ORDER IS5 =9%,14)

53, F{RMAT(IP192ZXg¥=====> SYRDRUFME RIGISTER IS KESET FROUK TRANSMITTLR
1€ 46 (=) 9%> TFNSTE C==DPyAl gt Cunmad b4yt /¥yJ34% <==> (*9149%y%1]
3440) Cmmmmn?)

545 FURMAT(1H]¢3Xg¥mme==> SYRDROPE FEGISTER IS NOT RESET <9412(0=)4%>
1 TKNSIF CmmmD P g rg ¥V gf(t=0) 920, J6,7/03]34" Co==D (P9]dy?4%y]b,y"
2) Cammnat)

5% FARMAT(1h1e3Yetmmmmn > SYLORCME FEGISTER IS FESET FROM DECODEF O/P
1€ y5(=) g?> JKNSIS Cm=DdPgRAllg?C=m=DV 4%/ 9]3¢% <=2 (*4]44"%¢"%]
244%) Coomm=t)

56, FORMATC(1H1421Xy % =mmen > TKOS1S C===== SYgA10y ¥<mmmmmmmmm=39, 1440 /%,]
124 (r==== D Uty Tue%etyl4g?) Commemm ')

572 FURMAT(IHC$EX o *COLE LENMGTH =V9]4/1HC+SY 9" NUMBER OF FESSAGE DIGITS
1= Ja/1H g Xy *HLOCK=CCI STRAINT LE*GTH =v414/71F 4EXe*LUNEER
Z0F OFTHOGUNAL CFECK=SUMS =v4J4/7/1H0¢SY'COCE RATE =9134%/%913/ 1Ny
3 SXe*ACTUAL CCMSTRAI'T LENGTH =v4I6/1HCeSXe "EFFECTIVE CURSTRAINT L
GFNGTH =te10/1F o0 XeTACTUAL ColLo/EFFECTIVE Coela = NA/NE =94FT7.2/1HL
e SYS'RELATIVE FPRUR COPRECTING CAPALILITY = [J/22/0L =%¢144%/ %15
E4% SUPGFR.E/THIGEYy *GUAFALTEEL ERROR CORRECTING CAFAEILITY =9,
712y % P/0 EFRCRS T* 2i'Y'y Jé4 ¢ DIGITS = 1 H/D ERROK /¥, Ity ¢
EDIGITS =P gFBaSy Y42/ //71HT o0 Y *VAY BSC ERRCR RATE ='sF8e4e®'/1HLW5X
CytFAYIFUM GL =V eF€e2//11 . ahYe?INITIAL STATE CF RAKRLOF WUMBER GEWER
AATCR = ¥ =%412)

oLy r

(S NS B]

1
b

Gf FORM2AT(IMZ4FYy YHUTEER OF GECODED MESSAGE LLOCKS ='9le/1M., SX
1y *NUYELCR CF CECOLLD FESSAGE DIGITS =7, I16e32X0 *"UMBER CF
SILJFCTED ANOISE TIGITE =*e1%)

84 F(RVATIIVglXgtem=== > SYLDRCIFE THREShCLD t94134° (CEVIATION =%e1
134%)%)

SET FORMAT (1. el) e ¥m=m== > @F = CPANNEL ERROR RATE/GUARANTEED EKROR C2R

iRECTING CAFELILITY Staffels? [*¢Fbazy®I")

EER FOLRYATUIM D gIX gt mewawd BSC CAPACITY =%4F5479% BITS/SYMEQL®s1LX,
1teme=- > IFFCPPATICN TFALSMISSIO RATC 1S8°9F7429%% OF CHANNEL CAFAC
21TYY)

50 FORMATEIR o4 X9 *CHIPILEL ERROK RATE %4789/ %4T80® =94FBa3s*% L' F
16e39*%7¢/1L 92Xy *PROBABILITY CF A CHAANREL ERROR IN A FARITY=CHEC
2 DIGIT =", T6s %/% TEe® =%y FBals*X L*eFEedy *%2%/11F" 45Xy
TYPROGARILITY OF A CHANNEL EFPOR 1IN A MESSASE DIGIT =%91Re*/%418»
4y =ty FP,3y % [*eF6e3e*%]v//IHuaEX, *PROEABILITY OF A UECOD
S5ER ERROR =%y I&g /% 18s * =%y FOube *Z%)

F91 FORMATLIH+96IX e[*eFTate¥%1%)

EQ4 FCRMATC(IHOOX 9 *PROBABILITY (F ERRONECUSLY DECODING AN ERRONEQUSLY
IRECCIVED DIGIT =189 %/ 9978404046427 /1H 4 152X *RATID =*)

LG5 FORMAT(IH++1239%sFBe2)

COFL FIRMIT(IV+42111Xy *7%)

507 FORYAT(IH ¢SXo*FRORABILITY CF ERRONEOUSLY DECODING A CGRRECTLY REC
IFIVED DIGIT SveI8,%70310e" ="4FCabat7*/)

£A0 FCRMAT(1hIeEX e hCISE DeCe LEVEL =%s FHeSe Z0OX+'hOISE PCOWER =7
IFCaSe® [9eFTebe1%71H <8 Xy *1 /RIS NOJSE =ty FEeloe
2T(CHENY . PEASUKEMG)®s SXe'T'9FEede *(CORRFSFe TO ACTe ERRGR RAT
IEI%e EY =¥ 4FEele Y(THLORG)/)

ESC FUP“AT(IRT 924X g ¥'="gFTela%222/8 =%4F 7434 =%4F 742 *Cb (FOR ANT
ITE DAL TRANSPFISSI(LIT/LIH o E¥q *SIGNAL=-TC-NCISE R

Appendix 8.4 Page 554

FAM 1KCSIC T€/76 OPT=1 -PHLC"P FThN 4e5+238 15

LTI zv_

5 T 121V bE2Xe S 4 FTe3e =V,FT7.29%0Db (FCR ANTIFOGAL
ETFANSNISSICH) */1H 92X g% =e===> SIGHNAL=TG=NO1SE KETI0 FER INFC
TRIATICN SYPEQOL =% .) .

¢ J71F (9B ¥ ¢ *EANDLITTH CYPANSINN = 1/%4F6eb4el(% =P,F6o3)y
9*CE = INCREASE IN HOISE POWERY/1H3e 3Xy "==-==> LRROk EXTENSIOGN KA
ATIC =9 91PISele /4L e2¢® =V, (PFtok)

71 FORMAT(IF 49 (O Xy T P9FBRaby?I?)

6'b FORMAT(IHLe5Yy*E%RNR RATE FCP UNCODEM™ TRANSMISSICN AMD EGUAL SANR/I
INFORMATION SYPECL =%41FPETe2¢ =4 0PFl1ieTe® =*oF10e59%%%/1H 93X e~
Pe=ed> NURPALTZED GAIN IN ERRCF RIATE 2941PE9e2¢%/%4E9.24" =7}

606 FORMATIIH® 4 EBXy "L '9F Yy 1%}

Cl1D) FORMAT(IH+e Eb4X gy 1PE17.3¢ ¢ =94 [PFO,4/1H"'y 5¥4
1 '1/R.P.S. POISE RATIG FOR UNCODED TRANSMISSION 8 EQUAL ERRCR RA
STF =%y T7439 * =%4FEe2y *DET/IH.y HX49SIGRAL-TO=N0ISE RATI2
3FCR UWCOCED ANTIFODAL TRANSMISSICN & EGUAL ERROR RATE ='94FTe3s
49%42/4 =P 4FTely ¥ =t4F(e2y °*DRY -

3
- -

(2 J1V Ty 3Y g ?=====d> WCRMALIZED GA
TIt IN SIGKRAL POWER =%9 FT7ele "/%FTe3e ¥ =%y FTa2s ¢ =V 4FO.44*0LEY)
£11 FORMAT(IH+ot3Xe [*9yFCab¢*CLYY)

£14 FORNATU/IBEI g6 (€091 7 (?m®) g 009,06 X) g% 0] (t=t)}y?)?)

E18 FORMATUIHC ¢l ¥ ' (FuTe =*yFT7e24* SECS)YT)

16 FORMAT(///71FTob2Y«*LTOTAL PPCCESSING TIFE =%9FRa24? SECSI®)

27 FORMET(IH+ gty s *ARLITRARILY LARPGEY /11 Je X o *PEAK=TC=-FEAK SIGNAL TO
1 RoVeSae MCISE RATIC FOR UNCCCED TRALSHISSIOK R EQUAL ERRCR RATE =
CAFFITKARILY LARLCE®/1HDe?Xptewmmw=d WORMALLIZED GAIN IK SIGNAL FOWER
2z AREITRARILY LERGE®S/ZZ) -

L2 FURVATC(IFL s *CER (%) GE PEE(X) tEFR NGER NGSF(D
ib) NGCHE CEF (%) NDMBY)

Fa., FURNMATCIL oFf el oFfaleF]l e 34FCe3aeFllelelliaflleInlg)

5! FORMAT (Lt Lo 'CERUY YT o1 CX o "PLEIXY 416X o *POE/CRUYI V14X a*PUEZERI%) Y1
11%+*FPOF FATIO (EF/CR)Y Y4 TXe*UE CEFLX)*/1h o9Xe3(Y TX 313
2 7 *)s* TX UE NCY)

BE . FORLATIELIY oF L a3 40t Y ogF Ra2yF1l7al)

E7 0 FPRMYAT(1IF+9F18e303F23.1)

ER : FOPMAT(UIb+eF el wlF22e29F24.3)

£ FUCRMETUCUIF +9EXe3F(3eZeF2 1)

T FURAT(IH 4189 *PUtJY = PFOLARILITY OF DECCODER FRROR IN THE JTH DI
1CIT OF A SUELOCK GE =9¢FT7e2/1H ¢1EX9B2(*=*)/1HC 433X *DE(JS) = P
PEPCELTACE DFVIAZTICN FROF UNIFOXM™ DISTRIEUTICK*ZIH o32X954(%*=*)//1L
JLe2(11Xe*FO LY (Z)® 410X % J% Yy *'DL LYY {Z)¥4X))

T12 FORVATCOIR 21071 4%/ %9169 =vgFO,44TFeF13430CX))

T15 FOURMATEIH oY5e%/ %16t =%qFTedo® [*eFTate?] % IboF10a39® [*sFbe3s?]
109199/ % 3760 =% ¢FTate” [qFTabe? 10416 90F1T o3 [*oFEe34%]")

723 FORMAT(IH 412i(%=7))

73; FORMAT(IH?¢16Xe*PD(J) = PRCOEKABILITY OF CFLCODER ERRCR IN THE JTH CO
ISET OF A SupLCCK L S%4FT7e2/71H +1BX 982 *'=*)/1HC4IIXG"DELY)Y = P
2EFCELTAGE DEVIATION FPOM UNIFORY DISTRIEUTION®/IH ¢I23XS40=*)/7)

T32 FORMATCIHCG 211 Y9 FIL L) (X)P412X g J44 Y4 *CE (J) (2)*44X))

TI4 FOFFATCIHC 1 Yo't U) (XY elaxe U)X e*DECYY (X)%917Xe*PDCLY)

1 CR)ValaXe®J% el Xe'DECY) (%)%

Te. TORFATCIPI9*DFTLCY)Y = [ADOSI=NTEN I/ TCSY VHERES NTCIILKRCCJYD = NC
1 OF DFCODEP ERRCRS IN COSET J OF A SUBLGOKs WITH TXC(DE)Y F/E*/1IH 41
3120«) /IFDGOPTI(JY = % INCLEICRELSE Il THE NUMEER CF DECODER ERR
IORSy IM THE JTR CCSET NF A SUBLCCK CUE TU (IMYCCRRECT DECODER F/RY
G/1I1Y q11E(=)2 F s54X g LT SToF T42/71H 454 ellt =)/ /1Hl 11X gt 48),

Appendix 8.4 Page 555

eV JKCEED Te/1¢ OFT=1 PULHP FTN 4.8+2328 it,

Col MFPGI= P TLUYY2 RTLU)Y = PE=NT/Z P'TUJ)Y = [FTOGJ) %417 Xg%00 40,
tRE=-LT7 PTCLY = EBFTLCJ) %)

T FURPATCIH I *LEILCGY) = [PLODI=RDJII/ZLC Y)Y WBEREDY ALGUIIKDIU)DY = A\C
1 CF DECCDER ERRChE IM COSEY J OF & SUELCCksy WITH KNGICE) F/E®/1H o1
CIItv=") /1P e *CIEMCIY = ¥ IN(IEYCREASE IN THE WUV'BLR CF CECCULEZR ERR
I0RSe IK THEL JTH COSET OF A SUFLCCK DUE TG NC SYRDROME RESETTING'/1
G q11A(T=2)/1H. ¢R4Y g *'QF =V FTeZ/1H o504 Xg11C*=2)//71PlslIxgtUtgaXyt[
5 PRCJY= LDCJYY/ NLtdY = KE=RD/Z NODUGJ)Y = DPDPCJ) X P ql3N et It eEXg i
E=nD/ NDUOJY = DIHIM(J) %*) ' :

TED FORPATULIR Tl vaXe (0 g I o ?=0q]89%) /% C0? =04]74%/%4169% =*4F1Ce3e
IR ARDRBEELIY CR I N A NAL R IR RAE AR BT AR

T70 FCRYATCIH 1Y)

TEL FOFMATUINCweY o *FEOFARILITY €F A I/7¢ITH+1) VOCTEse EY THE®*¢124* SYAL
1ROMES GE ¥ gFTe2/1H y26X068("=*)/2//1H0¢*I/C1TH*Y) VOTE®*421XeF
2OR DECPDING EFGCF Y9 1CXe *FCF CCRKECT LECOETINGY 23X *T1CTELY)

TG7 FORMATOIH CaTto ¥ /%0120 1 Ta?/*glTe® =vgFllaSa vy (I124" /%4184 =%,F
111.54%%%))

EtD

Figure A8.4.2: The complete FORTRAN programme for the simula-

tion of ’'long’ codes, over a number of differ-
ent channel error rates, and with any choice

of syndrome-resetting modes and syndrome

threshold; the programme also calculates re-

sults for each coset.

for any combination of syndrome-resetting modes {(definite-
decoding, feedback decoding & correct syndrome-resetting, or

'genie’ decoding).

A processing-speed performance comparison between pro-
gramme IKOSI5 and its version which used the decoder imple-
mentation of Fig. A8.4.1 concluded that the 'long’-codes
version is also economical with processing~time (apart from
being economical with storage space). For example, 10,000
blocks of the (144,4) code were simulated with both versions

and while the older one required about 140 secs per 10,000
blocks, IKOSI5 required about 50 secs (both run on a CDC-

7600 mainframe}.

Appendix 8.5 Page 556

APPENDEX 8,5

In Appendix 8.1, a number of routines necessary for the
implementation of the chosen code, was presented. Appendix
8.5 will introduce the subroutines that are necessary for
the processing of the simulation results.

According to reln (A6.2.5), the BSC error rate, P,, must
be such that the code rate, R, satisfies R <1+ PJlog,P, +
(1-P_)1log,(1-P,). Function CHAMER(O.S,R)* returns the maxi-
mum allowed P,, for a given R, by solving eqgn Eulogﬂa +
(1-P_)log,(1-P_)) + 1 - R = 0.**

From eqn (1.4), P, - terfc(4I') = 0 must be solved for T,
given P_. Function SINORAO(PQ)* solves eqn P, - Q{3c0) = 0,
for 1/o0. Note, from (A1.2.26), that Q(x) = 2erfec(x/4{2).
Also, T = (1/0)2/8.**

Function PRODEZ(k,J,Pe,T)* returns the probability of
4 for the (k,J) type-C5 code over the BSC
with error probability P, under DD and with syndrome
threshold T (it uses the results of Theorem 6.8, p. 164).

decoding error, P

Subroutine PRODEI(k,J,Pe,T,Parr,Iarr) returns the (theo-
retical) probability of first decoding error, under FD, for
each coset {(in array Parr) of the (k,J) type-C5 code. Peis
the channel error rate, T is the threshold used and Iarr(i)
are the cosets to be examined {(see § A8.6.2., p. 561).

The routine uses the results of Theorem 6.3 (p. 157). As
a consequence, it requires the facility of another routine
that returns 211 the combinations of t, out of N things, for
the calculation of the generalized means. This routine is
actually incorporated into PRODEl, for practical reasons,

and it is briefly described below:

Given N *things?, denoted by 1,2,...,N, one would like
all the C{N,t) distinct combinations of t, out of the N. For
instance, if N=5 & t=3, the C{5,3) = 5!/31/2!' = 10 combina-
tions are listed below, in their ’'natural’® order:

123 124 125 134 135 145 234 235 245 345
Note that the rightmost element changes faster than the

* See Appendix 8.6 (§ A8.6.1., p. 559).

The NAG-Library subroutine CO5ADF i= used to solve, numerically, the eqn.

Appendix 8.5 Page 557

rest and when it reaches its maximum (5), the previous ele-
ment is increased by 1, the last is set at 1 plus the previ-
ous element, etc. Let array Ca(i) /i=1,2,...,t contain the
current combination [if this is 135, Ca{l)=t, Ca(2)=3 &
Ca{3)=5]. Consider now a pointer, IND, indicating one of the
t elements. Note that the rightmost element of the combina-
tion, Ca{(t), must be Ca(t) £ N, while the 2nd from the right
Ca(t-1) = N-1, etc, Ca(t-r) £ N-r /r=0,1,...,t-1. If t-r =
IND, then:

Ca(IND) £ N-t+IND JIND=1,2,...,t (A8.5.1)

When Ca{IND)=N-t+IND, it means that this element has
reached its maximum value. Hence the previous element,
Ca(IND-1), is considered and, provided that IND21, test
(A8.5.1) is repeated. If it fails, IND is reduced once more
by one, etc. If all subsequent tests fail, and IND becomes
0, then there is no other combination. If, for a value of
IND, the test succeeds, then element Cal(IND) is increased by
1, while the rest of the elements, Ca(IND+1)}, Ca(IND+2),...,
Ca(t), take on values Ca{(IND)+1, Ca(IND)+2,..., Ca{IND)+t,

respectively.

Specification: "Given N, t & 8§ integers, such that N21,
15tsN & 821 and a 1 X t array Ca, return in Ca the 6th next

combination of t out of the N things. On entry, Ca contains

the current combination. If there is no such combination,
return Ca(1)=0." The algorithm (Fig. A8.5.1) is original.

If [N<1 or t<1 or t>N or 86<1 or Ca(i)sCa{i-1) /some il, then: STOP
If else, then: IND=¢
—> Step 1: I1f [Ca(IND)-IND # N-t], then: Go to step 2 -
If else, then: IND = IND-1
I1f (IND > 0), then: PRepeat step 1
1f else, then: Ca(l) = 0 —> END
Step 2: Ca(IND) = Ca(IND)+1 <)
r—) Step 3: If (IND # t), then: IND = IND+1 & Ca(IND) = Ca{IND-1)+1
Repeat step 3
If (IND = t), then: &8 = §-1
If (8 > 0), then: Repeat step 1
If else, then: > END

Figure A8.5.1: Flow-chart for next combination.

Also required by PRODEl, is a reordering subroutine OR-

Appendix 8.5 Paga 558

DER(N,Da,Po)*. This is supplied with the number, N, of ele-
ments to be reordered and two 1 X N arrays, Da & Po. Da con-
tains the elements to be reordered {(unchanged on exit). On
exit, Po contains the indices of array Da in such a way that
Da(Po(i)) /i=1,2,...,N are, in ascending order if on entry
Po(1)=1, or in decsending order if Po(1)=otherwise.

Reordering is in descending order, If required, it is
reversed at the end. Initially, Po(i) is set to i /i=1,2,..
+sN. There are n & |[N/2] steps. In the first one, Po(l) and
Po(N) are determined. In the 2nd step Po(2) & Po(N-1), etc.

For each step i=1,2,...,n, Dmx denotes the maximum be-
tween Da(Po(i)) & Da(Po(N+1-i)) and Dmn their minimum. Simi-
larly, Po{(Nmx) is the position of Dmx within Da and Po(Nmn)
the position of Dmn., Before Dmx & Dmn are compared with the
elements between them, M1 [=Po(Nmx}] & M2 {=Po(Nmn)] store
their positions and Inn=Inx=0 (they will be used later to
indicate the type of changes on Dmn & Dmx}.

For all the elements Da(Po{j)) /j = i+l1l, i+2,..., N-i (if
there are any), Dmn, Dmx, Nmn & Nmx are modified according-
ly. If a minimum is found, Inn=1; if a maximum is found,

Inx=1. Then, the two Po elements are set to Po(i)=Po(Nmx)

and Po{N+1-i)=Po(Nmn), unless i=Nmn in which case Po(N+1-i)
= M2, If a min was found (Inn=1) between DalPo{i)] &
Da{Po(N+1-i)), then this means that Po(N+1-i) took on the
value of Po{(Nmn); hence the latter must take the previous
value of Po(Nmn), which was stored in M2. Similarly, if a

max was found. The algorithm (Fig. A8.5.2) is original.

A number of other subroutines were also used {like deci-
mal-to-binary conversion, calculation of the binomial coef-
ficient without overflow, etc), but because their flow~chart
is straightforward, they will not be mentioned. Concerning

the binomial coefficient, note that**

n k n-k n n-k
log(R) = logi - Flogi - Flogi = IHlogj - Jlogi
i=1 1=1 i=1 J=k+1 i=1
n-k
—> log(R}] = Xlog(1l+k/i) (A8.5.2)

i=1

* sSee Appendix 8.6 (8§ AB.G.2., p. 583).
C(n,k) may be small, but n! may still cause overflow.

Appendix 8.5 Page 559

Da{i) =i for i=1,2,...,N

—> FOI‘ i=1.2,|oo,N/2

I1f {Da(Po(i)) 2 Da(Po(N+1-i))], then: Nmx=i & Nmn=N+1-i

If [Da{Po(i)) < Da(Po(N+1-i))], then: Nmn=i & Nmox=N+l-i

Don=Da({Po(Kmn)) & Dmx=Da(Po(Nmx))

Inn=Inx=0 & M1=Po{Nmx) & M2=Po(Nmn)

If (2i = N), then: Go to step 1
~>» For j=i+l,i+2,...,N-1
— If [Dmn < Da{Po(j)) < Dmx], then: next j
1f [Dmn > Da{Po(j))}, then: Dmn = Da(Po(j))
Nmn=j & Inn=1
If [Dmx < Da{Po(j))}l, then: Dmx = Da(Po(j))
Nex=j & Inx=1

Step 1: Po(i) = Po(Nmx) <
If (i = Nmn), then: Po(N+i-i) = M2
If else, then: Po(N+1-i) = Po{Nmn)

If (Inn=1), then: Po(Nmn) = M2
If (Inx=1), then: Po(Nmx) = Ml
next i

ND

Figure A8.5.2: Flow-chart for array reordering.

APPENDIX 8.6:

AB.6.1,

FL"CTY™ LPMERIET 4R

ECI A JCHAN/C

L¥YTET Lol Lt

ToR+E DRTPY (P) =2

CrlL CiLlT R e g B q?E=CglF=TyDityXy)
CtrvEi =

R TUFR.

Iro

FUNCTIOT DEOX)
cannnt FCHEZCT
Lh=ELRGrY (X)+C
RETURM

ErD

FULCTINYN EDROPY(F)

ECRCPY=D

TF{P el e oif o PeFNal) FETURY

ELROPY= (=1)+ (PxALAGCT _(FY+{1=F)*ALOGI"{1=-P)Y /ALOGIZ(2.45)
RETUF

&

Figure A8.6.1: FORTRAN programme for function CHAMER.

Appendix 8.6 Page 560

FUNCTION SINCRAZ(FE)
COMMORN/SINMG/PEE
E¥TERNAL DR
SINCRAQD=0,0
IF(PEGE«Cs5) RETURN
PEC=PE
A1 4705 a((=1)+ALCOLO(PE)) x4 ,5T1=(4"
ESA+]
170 IF(DRCA)*DR(E)LTal) GO TO 210
ASA=1,5
EzEBEel.5
ASAMAX1(A41E=9)
G0 TO0 17¢C
210 CALL CCSACF(A4Be1E=S41E=-94DRsSe7)
SINCRAC=248§
EETURN
END

e

FUNCTICK DR(X)
COMMON/SINI/FEE
DE=S182CF (¥40)=FEEL
RETUR™

END

Figure A8,6.2: FORTRAN programme for function SINORAO.

FUMCTIOM PRIDCE2(KIZISHDELITH)

C PRGDE2 PETURNS THE EER CF THE CC(DEy FOR THE %0 F/BE MOODEe=-
DOUBLE PRECISICHK DQEsFLACIeFACZePPoPPE POl o CCo QP oGREsRF ¢SUM
DRE=QE
PRE=POE=DRE/NC#CIS/2Y/tKD4TIR)

QQL=1=-FFE
ITr=1TH
TF{IS=2+TTH=1.6GE0) 62 TO 1°f:
PCE=R4E
ITH=IS=ITH=-1 -

170 GPE=1=-PQC -
PRODE2=GPE/PPL
IFtTTH«LT«l) PETURN
PF={l=(1=2%PPE)w+¥{}/2
GE=1=PP - -
RR=1/PP-1 -
FACI=PQE»PP*=]IS
FACZ2=QPE~GO*»x]IS
SUM=FAC1-FAC2
IF{ITH«EQetd) GO TC 1190
DO 120 I=1,1T¥
FAC=(IS=1+1.,0)/1
FACI=FACI«RR+FAC
FRC2=FAC2/RR+*FAC

122 SUM=SUM+FAC1=FAC?

110 PRODE2=PRODEZ+SUM/PPE
FETURN
£ErD

Figure A8,6.3: FORTRAN programme for function PRODEZ.

OO0 00

C

Appendix B.6 Page 561

AB.6.2, i Eji or D

SUEROQOUTINE PRCCEI(K "o NOCo+QEGyIDT4ERERGIAF)
FROCE1 RETURKS THL ERROR EXTEANSION RATIO FEP COSETe WITE TX F/be-
CCPE (NeK) = (FLeKL/NVDCoKT)u=
CH ENTRYs OLC = PRCEAFILITY OF A CHANMNEL EKROR / GUARANTFED ERRCR
CORRECTING CAPESILITYe~
e ENTRYy TAR(1)=T1 R TAR(2)=12 SPECIFY THL COSLTS TO EE CALCULATEL:
T14ll4lseeerl2,-
QN EXITe GEQ = AVERAGE ERROR EXTENSION RATIGCy IF I12=11=NOC=le-
IDT = DEVIATION FRCM NOMINAL SYNDROGME THRESHOLDe=-
ERERC(I) = ERRCE EXTEPSION RATIC FOR ITH CCSET /7 I=11311414eveslle~
CF EXITe IAR(KC+I) = NUMPER OF MESSAGE EKRROF DIGITSe AFTER CORRECT
RESETTINGe IN THE ITH SYNDRCME 7/ I=1s24ees91S ¢ ORTHOGONAL ON
MESSAGE DIGITS OUF KCTH COSET / KC=1424eeeyh0C =~
JAR(FC+TI) < JAR(KC+I+1) ¢ FOR T=1429e0e91Se~

CIMENSION ERERCNCC)4TARIKC)I ¢AAC22)4JU(2°0)

DOUBLE PRECISION BEP(235)oDEREgPoP29PRPoPRGCePFRoPC19GF 1 oRRADEGIPGT o

1PE+GE+GPE o SUMP 4 SU»Q

COMMON/COD2/JEXP

DEG=QEQ

MzK2+]

IS=Ke/NCC

PE=POQE=PEG/ K+ (IS/2V/(KT+1I8)

ITH=(18+1)/2

JTH=K XTI TH+IDT
CHPYCE °F MCDE A CR Ee=

QE=1-PL

IF(IS=2+JTH=146E47) GO TO 177

PGE=GE

WrX=IS=JTH=1

1.0 GPE=1~PCGE

I1=1AR(1)

T22TIARL(2)

JFCT] el TeleCReI1CT,I2) T1=1
IF(I24LTaIleOReI24GTaNOC) 12=N0OC
IF(KMXeCE«2) GO TC 1125

CEQR =GPE/FE

B0 177 I=11,12

137 £RER(I)=QLG
1¢S5 P2=1-2+PE

CALCULATION & REGRDERING OF JAR.-
NC=1
KC=¢(
DO 117 I=14%N0C
MC=NC
DO 120 J=1+18
MC=MOD(MC+JEXPy M)

120 AACUY=MC

JJgl1i=1

CALL ORDERC(ISeAAsJIJ)
DO 132 J=1s18
JAR(JI+KCI=LLC(JJ(UY)
IFtI.EGeNCC)Y GO TO 110
KC=KC+IS

N
L]

14(NC=MNC+1

DO 15" J=14KC
IFLIAR(JISEGNC) GO TO 146

180 CONTIMUE

Appendix 8.6 Page 562

117 CONTINUE
KC=(=1)+%]S
CEG=:
c CALCULATICN OF ERfRa~-
DC 13 1J=11,.12
KC=XC+1S
c CELCULATICH OF PRCDUCTS OF F ALD OF Qe-
PRP=2 e *a ((=142)*]IS)
PRG=PRP
B0 172 Iz=1,478
P=1=P2*+JAR(KC+1)
BECII=P/(Z=-P)
PRP=PRPsP
17C PRA=PRE@+*(2=P)
PC1=PRE+PRP
QP1=GPE*PRE
DERE=(PR1=0Fl«QFPE)Y/PT
IF(KMPYEGa D} GO TO 15
suve=-
suvQR="?
Lk=0
127 Lh=LNe+1
DC 187 I=14LMN
150 JJ(I¥=1
C CALCULATICSN OF FPRODUCTS QOF Ra-
2.2 PRR=1
DC 217 I=14L 0
210 PRRSPRR*EE(JJ(1))
SUMP=SU¥P+1/PPFR
SUMG=SUYG+FkR
C CALCULATICN CF COMFINATIONS OF PRACUCTS 0OF R,=

K=LN
220 JUKI=JI(K)+]
LKK=LM=K

IFCJIIKI 4GTLIS=L*K) GO TO 23-
IFILNKSEGeD)Y GO TOC 20
DO 247 J=leitK
247 JJUIK+T)I=J(K+TI=1)+1
GC To 277
231 K=K=1
IF(K,GEL1) (C T Z2°
IF(LNJLTeKPX)} GO TO 18"
DERE=DERE+(FOL1+SUMP-QP1*SUMG)/PE
1€% ERERtIJI=DEFEL
167 QEG=CEC+DERE
GER=QREG/NCC
RETURN
£ErD

Figure A8.6.4: FORTRAN programme for subroutine PRODEL,

Appendix 8.6

SUFRCUTINE CRDER (N,

DIMENSION ALAIN)Y ¢JJC

NRNsWL T2

PN+l

IL.P=Jd(1)

DC 123 I=1le¢N

JJili=1

Do 110

Ax=1

M‘;: HH-I

DYZCDX=AAC(JI(I D)

DlL.zAA(JJ(M=1))

IF(DYJ.GESLCN)Y GO TO

DX=DN

DN=DDX

NX=NN

whe]

H1=JJINY)

M2=JJENR)

INX=INN=2

IF(I+I.ECeN) GO TO

I1=]1+1

Hlzh-1

CC 1373'J=2114N1

DE=A2{JJ(J))

IF(CLLE.CXY GO TO

It X=¢

Cx=pr

NX=J

GC TO 137

IF(DD.CEJDNY GO TO

INN=1

Dh=LD

NE=J

¢ COMTINUE

172 JIUIY=SJUJINX)
JJIJd=JJIRN)
IF(IEQsNNY JJJ=M2
JJhER=Ty=JJd!
INYYSINXe IR+

I=1eNUh

129

~Aedd)
K)

120

173

140

134

GO TOC11(04+1E"41C%915,)4IRRX

JJIKh)=V2
IF(INNX.EQGe2) GG TO
JJ(NXI=N1

COMTINVE
IFCIND.HEL1) RECTURN
DO 183 I=1eNNN
JH=JJI(D)
JII)ISIIEN=-T)
JJ(MM=T}=JH

RETURN

END

1590
1119

180

Figqure A8.6.5:

112

FORTRAN programme for subroutine ORDER.

Page 563

Appendix 8.7 Page 584

AVPENDIX 8.7

In this appendix, three algorithms will be presented. For
each one of them, given two code parameters the routine re-
turns the (k,J) type-C5 code with one parameter matched ex-

actly and the other being as close as possible,

This function [IORD1(k,J) = fl]* returns f1 so that
(k,fl1) is a type-C5, or type-B4 code, with fl1 as close to J
as possible. The algorithm (Fig. A8.7.1) is original.

If k+1<2, there is no code and f1=0. If k+l=even there is
only a type-B4 code, with f1=2. For the rest of the cases,
f1 must divide ©8(k+l1). Since k is fixed, 6(k+l) will deter-
mine the solution. If J<2, then f1=2 [6(k+1l) is even]. If
J208(k+1) then fl=0(k+1l). If @(k+1) < 3, then f1 = 0(k+l).
For the rest of the cases, test fls are J, J-1, J+1, J-2,
J+2, etc. A solution will be found eventually, because the
sequence of test fls starts with a fle(2,0(k+1l)), hence it
will terminate either with f1=2, or with fi1i=0(k+1l), both of

which are valid solutions.

If (k < 2), then: fi=0 y END
If (k+1 = even or J £2), then: f1 =2 > END
If [6(k+1l) €3 or o(k+l) £J], then: f1 = 06(k+1l}) —> END
fl=J & 8=0 & s8=-1
> Step: If [f1 | 8(k+1)], then: > END
If else, then: s =-s & 8 =68+1 & f1 = fl+axb
Repeat step

Figure A8,7.1: Flow-chart for given k and nearest J.

A3'7'2v

This function [IORD4(c,k) = f4]** returns f4 so that
(cf4,f4) is a type-C5, or type-B4 code, with cxf4 as close
to k as possible. The algorithm (Fig. A8.7.2) is original.

Because k = cxJ = even, if ¢ = odd, then J must be even.
Also, since J 2 2, then k/c 2 2. The first candidate for f§4
is |k/e¢]; if this is odd and ¢ is also odd, it is reduced by
1. The next candidate will be f4+4sx8, where s = %1, Before a

new value of f4 is generated, s changes sign and & is in-

1-' P 588)-
A8,8.2., D. 567).

* see Appendix 5.8 (§ AS,8.
§

See Appendix 8.8 (

Appendix 8.7 Page 585

creased by 1 if c=even, or 2 if c=odd. Since the information
block length is cxf4, the test for each candidate is f4 |
0(cxf4+1). The search will terminate at least with f4=2.

§4 = MAX{2,INT(k/c)} & Md = c mod 2
If {(c & §4 are odd), then: f4 = f1-1
= Sign(cxf440.5-k) & & =

> Step: If [f4 | 0(cxfa+l)], ¢t > END
l g8=-8 & § = 5+14Md & f4 f4+3x8
If (f4 > 2), then: Repeat step
If else, then: f4 =2 > END

Figure A8.7.2 Flow-chart for given code-rate and nearest k.

AB.7.3. Cedes with Given Number of Orthogonal Chacks...

This function ([IORD6{J,k) = IG]* returns f6 so that
(f6,J) is a type-C5, or type~-B4 code, with f6 as cleose to k

as possible. The algorithm (Fig. A8.7.3) is original.

If J < 2, f6 = 0, If J = 2, there is either a k type-B4
code (if k=odd), or a {(k,2) type-C5 (if k=even). For the
rest of the cases, J23. To avoid a very long search, an up-
per limit, KMAX, is placed upon f6. Also, f6 must be even
and a multiple of J. If the latter is odd, then q = f6/J =
even, If &8 = J for J=even & 8 = 2J for J=odd, then §f6 = qx8
£ KMAX /q=1,2,... Hence, the maximum value of q is EKmx =

LKMAX/8]. So, the candidates for f6 are gx8 /q=1,2,...,Kmx.

If {(J < 2), then: §f6 =0 > END
If (J = 2), then: {6 = MIN{MAX[2,k]),KMAX} > END
If {J 2 3), then: & = [1+MOD(J,2)]J & Kmx = INT(KMAX/8)
q = INT{k/8+0.5) & q = MIN{MAX[1,q],Kmx}
8 = Sign{gx8-k-0.5) & i=0
Step 1: If [J | 8(qx6+1)], then: §6 = qx8 > END
If else, then: 1 =i+l & s =-8 & q = g+sxi
If {1 £ q £ Emnx), then: Repest step 1
If (q > Kmx), then: Go to step 3
If (q < 1), then: q = q+i
—> Step 2: q=q+1 & If [J | 8(qx8+1)], _rl §6 = qx8 —|—> END
If (else & q > Kmx}, then: f6 = -l => END
If else, .ﬂm M step 2
Step 3: q = qg-i
—> Step 4: q = q-1 & If [0] 6(qx8+1)], then: f6 = qx8 —> END
If (else & q < 1), then: f6 =1 > END
If else, then: Repeat step 4

Figure A8,7,3: Flow-chart for given J and nearest k.

* see Appendix 8.8 (§ AS8.8.3., p. 588).

Appendix 8.7 Page 566

The test is J | @(f6+1). The first candidate is the multiple
of 8, closest to k: 6 q6, with q = |k/8+0.5]. Thereafter,
q is decreased by 1 if 96 > k, or increased by 1 if other-
wise and the search considers q*l, q*2, etc. If g becomes

less than 1, only higher values are considered. If q becomes

greater than Kmx, only smaller values are considered. If no

suitable value is found, f6 = 1.

APPENDIX 8.8: [FORTBAN PROGRAMMES FOR AFPENDIX 8.7

48.8.1. Qodes with Siven Information-Block Length, Kk

FUNCTION IORD1(IMO,IS)

C IORD1 = CLOSEST TO IS INTEGER, SUCH THAT, IORD1>7, AND IORD1 DIVIDES
£ IL=6.C.D.C IPR(1)-1,IPR(2)=1,...,IPR(NR)-1), WHERE IPR(I)/1=1,2,.0.,
C NR, ARE THE PRIME DIVISORS OF IMO.~-
C IF THERE IS NO SOLUTION, IORD1=1 - IF IMO<3, IORD1=0.~-
DIMENSION KAR(10,2)
COMMON/ORD/KAR, IL,NR
IF(IMO.GE.3) GO TO 200
I0RD1=0
RETURN
200 IF(MOD(IMO,2).NE.O) 60 TO 230
210 IORD1=2
RETURN
230 CALL PRIDE2(IMO,IL,NR,KAR)
IORDI=IL
IF(IL.LE.3) RETURN
IF(IS.GE.IL) RETURN
IF(IS.LE.2) GO TO 210 |
IORD1=1I5 \
INC=0
Is$I=-1
310 IF(MOD(IL,IORD1).EQ.0) RETURN
ISI=(=-1)*1SI
INC=INC+1
IORD1=IORDT+ISI*INC
60 TO 310

Figure A8.8.1: FORTRAN programme for function IORDI.

Appendix 8.8 Page 567

A8.8.2. Qodes with Given Rate. s/{c¥l)

FUNCTION IORD4(IR1, IR2,N)

A} IF: IR1>IR2-1, OR 2*IR1<IR2, THEN IORD4=0.-

B) IF: IR2-IR1>2*(IR1,1R2), THEN IORD4=l.-

C) IF: IR2-IR1=2*(IR1,IR2), THEN IORD4=2,-

D) IF: IR2-IR1=(IR1, IR2), THEN IORD4 = CLOSESEST TO N*(IR2-IR1)/IR1
INTEGER, SUCH THAT: 1) IORD4>]1.- |
2) IORD4 DIVIDES IL, WHERE IL=G.C.D.(IPR(1)-1,IPR(2)-1,...,

IPR(NR)-1), AND IPR(I)/I=1,2,...,NR, ARE ALL THE PRIME DI-
VISORS OF IR1/(IR1, IR2)*IORD4+1.~

AND 3) IF 2 INTEGERS, SATISFYING CONDITIONS (1) AND (2), ARE EQUI-
DISTANT FROM N, THE LOWER IS CHOSEN AS IORD{.-

IN OTHER WORDS: IORD4 RETURNS THE NO OF ORTHOGONAL CHECK SUMS J, FOR
A CODE OF RATE R=IR1/IR2 AND BLOCK CONSTRAINT LENGTH AS CLOSE TO N AS
POSSIBLE, WITH PREFERENCE TO LOWER VALUES - IN PARTICULAR, J=8 IF THE
C VALUE OF R IS ILLEGAL, AND J=1 IF THERE IS NO CODE FOR THIS R.~

DIMENSION KAR (22,2)
IF(IR1.LT.IR2.AND. 2*IR]1. GE.IR2) GO TO 299
IORD4 =0
RETURN

298 IC=IGCD (IR1,IR2)
JR1=IR1/IC
JR2 =IR2/1IC
IF(JR2.EQ.JR1+1) GO TO 350
IORD4*=1+2/ (JR2=-JR1)
RETURN

350 IORD4=MAX® (N,2*JR1)/JR]1
IV=MOD (JR1, 2)
IW=IV+MOD (IORD 4, 2)
IORD4=IORD4-IW/2

ISI=ISIGN (1,2* (IORD4 *JR1-N)+1)
IM=P
41¢ CALL PRIDE2(JR1*IORD4+1, IL,NR,KAR)
IF(MOD (IL,IORD4) .EQ.8) RETURN
ISI=(-1)*ISI
IM=IM+]1+IV
IORD4=IORD4+ISI*IM
IF(IORD4.GT.2) GO TO 410
IORD4=2
RETURN
END

QOO0 0O000

~t

|

|
Fiqure A8.,8.2: FORTRAN programme for function IORDA.

\

|

Appendix 8.8 Page 568

AB.B.3.

FUNCTION IORD6(J,N)

A) IF: J<2, IORD6=0.~

B) IF: J=2 AND N<2, IORDG6=2,~-

C) IF: J=2 AND N<MAXN+1, IORD6=MAXN,-

D) IF: J=2 AND 1<N<MAXN+l, IORD6=N.-

E) IF: J>2 THEN IORD6=CLOSEST TO N INTEGER SUCH THAT:

1) J DIVIDES IL, WEERE IL=G.C.D.{ IPR(1)-1,JPR(2)-1,...,IPR{(NR)=1),
AND IPR(I)/I=1,2,...,NR, ARE ALL THE PRIME DIVISORS OF IORD6+1.-

2) IF TWO INTEGERS, SATISFYING CONDITION (1), ARE EQUIDISTANT FROM

J, THE LARGER IS CHOSEN AS IORD4,.-

3) IF THBERE IS NO INTEGER, SATISFYING THE ABOVE CONDITIONS, IN THE
RANGE [1,MAXN], IORD6=1, WHERE MAXN IS EVALUATED IN 310.-

IN OTHER WORDS, IORD6 RETURNS THE BLOCK-CONSTRAINT LENGTH, FOR A CO-
DE WITH J ORTHOGONAL CHECK-SUMS AND BLOCK~-CONSTRAINT LENGTH, AS CLOSE
AS POSSIBLE TO N, WITH PREFERENCE TO HIGHER VALUES - IN PARTICULAR,
IORD6=0,IF THE VALUE OF J IS ILLEGAL, AND IORD6=1 IF THERE IS NO CODE
WITH NUMBER OF ORTHOGONAL CHECK SUMS J AND BLOCK CONSTRAINT LENGTH
LESS THAN MAXN+1.- y

INTEGER X082BBF
DIMENSION KAR (22,2}
COMMON/TR6/MA XN
310 MAXN=9999
IORD6=0
IF(J.LT.2) RETURN
KX=J*{MOD (J, 2)+1)
NN=MIND (MAXG (J,N) ,(MAXN/KX+1-1/(14MOD (MAXN, KX))) *KX/2-1)
IORD6=NN
IF(J.EQ.2) RETURN
IORD 6 =KX *INT (FLOAT (NN) /KX+86.5)
JR=ISIGN (1, 2*(IORD6-NN)-1)
JS =0
JA=1
JB==1
JN=D
JNM=2 *IORD6 /KX~ (JR+3) /2
450. IMO=IORD6+1
CALL PRIDE3 (IMO,IL,NR, KAR)
IF(MOD (IL,J).EQ. @) RETURN
IF (JN.GE.JNM) GO TO 548
490 IN=JN+1
JS=JA*J5+1
JR=JB*JR
IORD6=I0ORD6+JR*JS *KX
GO TO 45¢
548 IF(JA.NE.l1) GO TO 5389
JA=0
JB=1 . 1
JNM=MA XN /KX~-1
GO TO 490
598 IORD6=1
RETURN
END

aOQOOaQOOOO0OO000000A00

Figure A8.8.3: FORTRAN programme for function IORDS.

Appendix 8.9 Page 569

APPENDIX 8,9:. CONFIDENCE INTERVALBL "~ ~°

Consider a sample of size n, and let m denote the sample
mean. Then, if n 2 30, the sample means, m, are normally-
distributed random variables with mean, say, n, and standard
deviation, say, c-(see Erricker [49], p. 196). It can also
be shown (ibid, pp. 196-9) that,

p=n (A8.9.1)

and that
o, = o/4{n (AB.9.2)

where n1 & o are the population parameters.

Of course, n & o are not known, but they can be estimat-
ed. As mentioned earlier, the best estimate of p is the sam-
ple mean, m. The best estimate of o* is ns?/(n-1) (see Er-
ricker [49], p. 226), where s* is the variance of the sam-

rle,

g% = {1/n)2(xi-m)’ (A8.9.3)
i=1

and X, are the sample values.

Frofh the graphs of the normal probability density func-
tion, it may be deduced that:

299% of the area lies bhetween u » 2,582 & u + 2.880
95% of -the area Ilfes between p - 1,980 & u + 1,986¢
40% of the area lies between u - 1,64%c & p +71,6456u
BOX -af the area liem between p « 0.6748c & u + 0.67408u

Hence, if o, is known, one may state that p lies between
m-2.580 & m+2.580;,'with confidence 99% (i.e. 99% of the

sample means m, lie in mi2.580.).

From (A8.9.3):

n n n
82 = (lln)fo -~ 2m(1/n)x, + 0*(1/n)3]1 w——>
iz1 i=1 i=1

Appendix 8.9 Page 570

n
(1/m)2xF - 2m® + m® =—>

g% =
i=1
n

82 = (1/n)Q)x} - m? [since x, = 0 or 1 - bit streanm]
i=1

s? =

n
(1/n)2x1- m* = m - m® -
i=1

82 = m(1-m) (A8.9.4)
Then: o2 = nn{1-m)/(n-1) {A8.9.5)

From (A8.9.2) & (A8.9.5), since m, the sample mean, is
the estimate of the probability Pxof the bit stream (x = e
or d), and since the sample size is very large (of the order

of 10* , or more), n-1 = n = Nb:
o, = {[P,(1-P,)/Nb] (A8.9.6)

{A8.9.6) may be used to obtain the 99% confidence

intervals in estimating P_.

Appendix 8.10 Page 571

APPENDIX 8,10: GRAPHS OF EER & NET CODING-GAIN ve.r* .
3 2-4 - ‘
g e . (k)
yoo2 ¥y oy , & @

c == {49,7)

¢ Lé * Egﬁ;

1,3 e “+ D)

[}

‘:j 88

¢ a4

{ R=16/17

I L : . : i
5 ‘5.5 §] ?

SR 7 wdormstion-tat (4B
Figure A8.10.1: EER vs T, for rate 16/17 codes. ¥

¢ ! 2 G b=l

. 24 pe22/29 R=36/37 i Iz‘éz

f A S

- i3

§ L F ki#

ERW,

:

I; 8.8 \

L ad

. R=24/25

&]

] L ' y T

3 33 4 45 5) ¢ 6.3 7 P
SR 7 inforsstionrhat () |

Figure A8.10.2: EER vs T, for J = 4 codes. *

¥ EER = error-extension ratio.
I' = gignal-to-noise pcwer-ratio per information-bit.

Appendix 8.10 Page 572

I 5 -
8 Ir=3/4
[
‘ -
? -
R B i
L . 4 (88
7 - - 30,1
5 17 | (6,9’
¢]
z .3 - Y& . T T L} e
2.3 39 45 59 6.5 25
S8 7 irborsation-bit ()
a 5 R=8/9
T 2|5 |
W 2 _
c
: 1.5 =
Pl
o 85 — £ 48,5
c) == {8211
g 8- ;/ (k,J)
v o =]
. a- v
A R . ‘ : , .
45 S N3 b £.3 7 7.3
SR / wdorgationrbet (AR
n 2.5 =1 .
% 2_ R=9/10
E 1!5 1
¥ 1 -
P
a 035
L g -
?
v ‘9.5 b g F
_— .
' 44 -
| 4.5 9 5.5 6 6.3 ? .9 8 8.5

SR / idormatron-tat (dB)

Figure A8.10.3: Net coding-gain vs I’ for codes of rate 3/4
(top), R=8/9 (middle) & R=9/10 (bottom}. *

¥ r = signal-to-noise power-ratio per information-bit.

Appendix B.10 Page 573

"8-5'" . (k,.)

% y _'! R=10/11] ! 3
v 3 X
c ? ;r‘/
- 2
&
8
b | - (88
L o (3D
v @ : * (1%15)
o - - (K)
3 e T
z -2 1 T L] T 1 d LS T
4,5 5 5.3 § 4.3 ? 2.3
9R / informabionebit (dB)
n 3 = .
% ' 2"5 - R=14/15 . X
.-
VIR . b
o1 -~ (B
¢ Bie < @,
- a_)'((?8.5,‘
g | (12,8
v B Lk,)]
3 1
- R R : _ , . , , -
4. 5 53 6 6.3 7 7.5 8
SR 7 wntorsationebat (dB)
a 2.5 =
: 2] R=15/161
.5 1-5 -
81
i - & D
o B 3 @
- § - -+ (9,8
3 o/
0
1]
¥
&
z

4.3 5 509 6 63 7 23 8
SR 7 intorsationbat (dB)

Figure A8.10.4: Net coding-gain vs ' for codes of rate 10/11
(top), R=14/15 (middle) & R=15/16 (bottom). *

¥ p = signal-to-noise power-ratio per information-bit.

Appendix 8.10

Page 574

A 3 -
1]
7 25— Rr=16/17
Do -
E 1-5—
| 1= B o
g 8.3 — = (480
-l B-' K (64!4}
) -~ (3,8
v -85 - (12,7
m -l p— (k,J)'
[
z -5 . . , : , , ,
5 5,5 b T4 ? 2.5 8 85
SR / indormationbat (dB)
- 1!5 i -
W] 'R=36/37 f
T
v |
L
Y /H
!Il 'E" (1@91;3
c B - (14,4
‘g‘ k)
v 45
'
ra - 4 . d . . : .
5.5 é 45 7 2.5 8 8.5

SR 7 wforsation-hit {dB)

Figure A8.10.5:

G vs T for R=16/17 (top) & R=36/37, codes. *

A 1.5 ¢ﬁ=13/14w
7 s
1Y) 1 é _
c M R=9/10
585
: D gy
- =

-5 8 X k=
s
v 43
'
z -1 T T T T T T T T T

4 4.5 3 239 é (%] ? 7.5 g 8.5

S8 7 inforgationtat (D)
Figure A8.10,6: Net coding-gain vs I' for J = 2 codes. *

X r = signal-to-noise power-ratio per information-bit,

Appendix 8.10 Page 575

o

=

wn
|

R=15/16

¢

”~ } _
-~ . XiRs16/17,

X
; & 3
, -0 b3

a.é.x X k=32

4

=x

b
[

Llllllllllll'

Het codimg—gain <dB>

]
—

4.5 b 5.5 é 6.5 7 P
SR / informationbat (dB)

L3

8.9

23 el

-115

NHet codinmng—amin <(dAB>»
=

33 4 4% 0§ 5% 6 &5 7 35 B &S
SE 7 irdoemationrtat (0B

R=3/4-

R=239/40!

—
~>

" ;&é L1}

Fk$d
=

A

R=18/19

Het codimg—aalin <dB>
L)
1

3 4 3 é 7 8 §
SR / inforsationhet (B

Figure A8.10.7: Net coding-gain vs T' for codes with J=2 (top),
J=3 (middle) & J=4 (bottom). ¥

¥ r = signal-to-noise power-ratio per inforsation-bit.

Appendix 8.10 Page 576

Fal 15 “ =
a 2 R=15/16
7 2
‘ 1,9 ~ $~— R=37/38
P 1
A
P -
7 A5 4
0 4 > k=3
v | R=17/8| i i + k=148
v -5 - 42 R=21/22
‘
z -2 . T 1 v T T T
3.5 4.5 5.5 8,9 PA 8.5
9B 7 intorationtat ()
A3
&
v
W 2 _
C R=16/17
£
a 2 1
£ -
3
v A
¢ DOEEEE
z 24

4.5 5 55 ¢ £.5 7 P& §
S8 7 wdorsbionetat (dB)

& 47 b | R=3/4]
. oo o R

L /s ¥ :

- | - ¥ /}::14/15
h ;

e 17 (1128
3 1S X _ 4 (010
0 34 & $ == (1)
v _ X * (3,30
¢ -4 R=1/2 o (k,J)
L : ¥ .y

T L} T

3 3.5 4 4.5 5 5.3 § 6.5 ? 23
SR 7 informationtot (dB)

Figure A8.10.8: Net coding-gain vs I for codes with J=4 (top),
J=6 (middle) & higher Js {bottom). *

|
|
|
£ 18 |
“ |8

* r = signal-to-noise power-ratio per information-bit,

Appendix 8.10 Page 577

R=4/5,

2 B J=
% 4
i : o J=7

R=14/15"

Het codimg—gairn <dB>

3 L 4 45 %9 § 69 ? %3

SR 7 intorsatioebit (dB)

HNet codimg—gainm <(gdBR>

Y

3.5 4.5 5.5 5.5 25 8.5
SR / idersstioebnt (@)

R=18/19

L3

| R=24/25"

£ 3
~+ 4

HNet codimg—aain <(dB>)>
o=

3 53 b 6.3 ? 23 L] 8.3
SR 7 wforsaticerdnt (dB)

ure A8,10,8: Net coding-gain vs I' for codes with k=28 (top),
k=36 (middle) % k=72 (bottom). ¥

¥ T = signal-to-noise power-ratio per information-bit.

Appendix 8.10 Page 578

A3]
% R=16/17,
Yo
:
£ IB=24/25 |
n 3
E g & I
3 - =
¢
v
@
FA A — ' i . ' —
] 5.3 $ 6.3 ? .5 §

SR 7 information-bit (dB)

Figure A8.10.10: Net coding-gain vs T' for k=96 codes. ¥

APPENDIX 8,11:; ERROR PROPAGATION

T™ f/b (transmitter feedback) denotes what has been
called ’genie’ decod:i.ng.""'= Under this mode, the syndrome
register is reset using the true values of the error bits,
instead of the estimated ones. DE f/b {decoder feedback)
denotes normal FD. The decocder-output error-sequence is the

number of decoding errors per b (k-bit) blocks, where b 2 1.

s 9

L X
t @ — Wb
]

7 ,

o

¥

T

. 10

0

2 9

] i@ i K 4 B 8 b)
Tise-umit (68 blocks)
Figure A8.11.1: The decoder-output error-sequence {60 blocks per

element), of the (60,6) code, at QE=5, with DE &
TX £/b.

¥ 1 = gignal-to-noise power-ratio per information-bit.
*% see § 6.1.4. (p. 157).

Appendix 8.11 Page 579

8,18

8,15 -
812 -

-

8.8
B

8.8 5

RCEDARCAN

CC<t>»~CCAN

Tiwe-rat (1 bleck)

8,18 =
8,14 <
8.12
8.1 -
0.8 —
8.8 -
0.4 —
8.62

CCE D TCAD

.82

8 3 B 15 2 5 B OB § W
Tiee-umat (2 blocks)
Fiqure A8.11.2: Autocorrelation fn (top) & autocovariance fn

{middle) for the (16,4) code, with b=1l. Autocov.
fn for the (84,4) code, with b=2 (bottom). *

* All fns are normalized.

Appendix 8.11 Page 580

B
Bi2 e,

. " are g
s ™ St ea .,
AR AP IC s S LT P

L4
[
-.’ .-.....------I'..-.. ------- "-"..hbbbf
pg = - asgeresatt
o«

4.8 —

CdCEt >~ Ch <>
-~

B 3 18 b P 5 3 R 48

Time-umt (! block)

CeEDPATCDS
=
—
wn
1

Trwe=yrut (3 blocks)

CcEd> CCad
o
>
k

Tie-umt (3 blocks)

Figure A8.11.3: Cn(t)-C,(t) for the (28,4) code, with b=1 (top).
Cn(t) for the (60,6) cocde with TX & DE f/b and
b=3; QE=5 (middle), QE=10 (bottom).

Appendix 8.11 Page 581

o

SR / idormstionrint (dB)

Figure A8.11.4: Net coding-gain ve ', with DE & TX £/b, for the
(12,4) code {(top), the (40,5) code (middle) &
the (42,7) code (bottom), *

: w500 . -
R |
L
-
2 |
LR 4 |
T ! §h
b
1
zZ 43 . .
3 4 5 é ?
SR 7 indorsetionebat (dB)
A3
8
3
¢ 2
P
f
a |
<
3
g f
13
I 4 ' ,
4.5 5 53 b 63 7 7.5
S8 7 wdorastionrtat (0B
n 3.2 . .
T g4 meepr!
c
- 1.4
P
a B8
£ : | ¥ #t
‘6 -4~ Tt
Y48 B_a,.,av‘*’a'érff
H
. LE . . . ' - :
1.5 4 4.5] 55 é]

¥ Pz signal-to-noise power-ratio per information-bit.

Appendix 8.11 Page 582

R R T T WS

% R=16/17

W 1|2 /_/

o

: 8.9 /

2

5 6.6

g ' ~“ Titb

v)

¥

z 43 . —_ ‘ . _ . .
K]) 7 8 ¢ 18 i1

R / informationrbat (B

E ilg (72'3)

T s R=24725

512

e 4

5 8.9

Lo " £ 4

Y 8.6 /_/& - T Q,fg

0

YRl B#”f

b

ra 8 < ' : ! .
6.3 ? P 8 S

SR 7 inforsationtat (0B
g i R=6/7 R:8/9

% 7 ’ u _

% e f’/c ¥ B=16/17

M X 4

.

o 49

7 g a9

L 1,2 == (2,0

! AT

E {5 (k)

1.8

3 4 g 6 ? 8 9 18 1
SR 7 irdormtiorhit (4D

Figure A8,11.,5: Net coding-gain vs I', with DE & TX f/b, for the
(48,3) code (top) & the (72,3) code (middle).
Power-loss due to error-propagation (bottom). *

¥ p = aignal-to-noise power-ratio per information-bit.

Appendix 8.11 Page 583

Power—losa <dB>

irmncress=s imn Pd

e

incresse i Pd

~

8.5
8
2.3
-1
== (64
(b3
-1.5 (k,)
2 _ .
3 4] é 7 8
SE 7 indorsatiorhit ()
(& R=6/7 5 (a8
4 @4
8 - l;'é!f-i
(k,J)
154 $
1]
R=3/4
fﬂ »
=l ! 6 Re7/8
1E-3 8.4l 6.1
Charrel errar-ratey Pe
A (484
4 (R
i -~ (93.4_3_
158 ' (k,d} |
108
4 R=22/23
) R=10/11
'w L) T L] T
fE-4 153 8.8t 8.1

Charre] errorratey Pe

Figure A8.11.6: Power-loss due to error-propagation, vs I' (top).

X increase in decoding errors due to error-
propagation vs P, {middle & bottom). *

¥ r s signal-to-noise power-ratio per information-bit,

Appendix 8.12 Page 584

APPENDIX 8.,12: UNEQUAL ERROR-PROTECTION ’
37 B eqer }P
] - ¢ ﬂ'lEGf‘. !
{ i
0
{ /
¢ 4 ' '
¢ /
) -
t 1- B g
3
3 .
z -
B- T L)
| 2 3] 5 b ? g
Coset number
1 == exper,
A v theor,
£ 1
{
{
L
[
0 .
[@ /ﬂ X, /f
& I
.E ¥’
2 " /
m Sveery T T T T
| 2 3 4 5 ¢ bi B
Coset nusher
|

Figure A8,12.1: Number of errors per coset with TX f£/b, for the
{40,5) code; QE=1 over 45,000 blocks (top) and
QE=10 over 20,000 blocks (bottom).

Appendix B8.12 Page 585

devistiorn of FPd

2

Coset ruaber

{08

E g
e
i\.
%

o~

{ozet rusher

Figure A8.12.2: For the (40,5) code: ¥ deviation of P, from the
average, per coset (top); number of decoding
errorg per coset, over 20,000 blocks, under DD,
with QE=5 (bottom).

IUDDDDDUDUEDDDDDDDDDUDI

-t |=-‘irrrr Friefiedr apr et e v v reE SF geRr YUY Er SR

crod D L ke

10.

11.

B. Sklar: " ctured Qv jew o jgita ommuynica-
tions - a Tutorial Review = t I", IEEE Communications
Magazine, pp. 4-17, Aug 1983, and " - I", pp. 6-

21, Oct 1983.

S. Lin & D.J. Costello, Jr: "Error Control Coding:
Fundamentals and Applications", Prentice-Hall, 1983.

A. Papoulis: "Probabilit andom Variables, a Sto-~
chastic Processes", McGraw-Hill Kogakusha Ltd, 1965. -
W.B. Davenport, Jr: "Probabiljt an andom

Processes", McGraw-Hill, 1970.

W. Feller: "An Introduction to Probabili eo and
its_Applications", vol. 1, 3rd edition, John Wiley, 1968.

T.L. Booth: "Sequential Machines and Automatsa Theory",
John Wiley, 1968,

B. Noble & J.W. Daniel: " jed ine ebra”,
Prentice~Hall, 1977.

H.G. Campbell: " troduct to Matrices, Vectors
es 0 ing", Prentice-Hall, 1977, 2nd edn.
F. Ayres, Jr: "Theo a oblems o es”,

Schaum’s Outline Series, McGraw-Hill, 1974.

R.E. Blsahut: "The and actice o ro o) o]l Co-~
des", Addison-Wesley, 1983.

L.R. Rabiner & B. Gold: "The d ions of
Digital Signal Processing", Prentice-Hall, 1975,

References Page 587

12.

13.

14,

15.

16.

17.

18.

138.

20.

21.

22.

23.

24.

S. Lin: "An Introduction to Error-Correcting Codes",
Prentice-Hall, 1970,

G.C. Clark, Jr & J.B. Cain: "Error-Correction Coding
for Digital Communications", Plenum Press, 1981,

D. Wiggert: "Error-Control Coding and Applications",
Artech House, 1978.

W.W. Peterson & E.J. Weldon, Jr: "Error-Correcting
Codes", 2nd edition, MIT Press, 1972.

R.W. Lucky, J. Salz & E.J. Weldon, Jr: " c egs of
Data Communication", McGraw-Hill, 1968.

J.A. Heller: "Feedback Decoding of Convelutional

Codes", in A.J. Viterbi (ed), "Advances in Communication Sys-
tems", vol. 4, Academic Press, pp. 261-278, 1975.

J.L. Massey: "Threshold Decoding", MIT Press, 1963.
J.L. Massey: "Advances in Threshold Decoding", in A.V.

Balakrishnan (ed), "Advances in Communication Systems”, vol. 3,
Academic Press, pp. 91-115, 1968,

G.D. Forney, Jr: "Convolutional Codes I: Algebraic
Structure", IEEE Trans. Inf. Theory, vol. IT-16, pp. 720-38,

Nov 1970.

G.D. Forney, Jr: "Structural Analvysis of Convolu-

tional Codes via PDual Codes", IEEE Trans. Inf. Theory,
VO].. IT-].g’ Pp. 512"'8' Jul 1973-

J.L. Massey & M.K. Sain: "Inverses of Linear Sequen-
tial] Circuits"”, IEEE Trans. Comput., vol. C-17, pp. 330-7,

Apr 1968.

D.A., Huffman: "The esis o inear Sequential Cod-
ing Networks", in W.H. Kautz {ed), "Linear Sequential Switch-
ing Circuits", Holden-Day, pp. 1-19, 1965,

I.S. Reed & T.K. Truong: " or-trellis ome De-
co iques for Convolutional Codes", IEE Proceed-
ings, Vol. 132. Pt F’ PP. 77"83, Apl." 19850

.
1

References Page 588

25.

26.

27.

28,

29.

30.

31.

32.

33.

34.

35.

36.

37.

G.D. Forney, Jr: "Convolutional Codes II: Maximum
Likelihood Decoding", Inform. Control, vol. 25, pp. 222-66,
Jul 1874, P

A.J. Viterbi & J.K. Omura: "Principles of Digital Com=-
munication and Coding", McGraw-Hill, 1979.

J.G. Proakis: "Digital Communictions", McGraw-Hill,
1983.

A.J. Viterbi: "Error Bounds for Convolutional Codes

and Asymptotic Optimum Decod orithm",
IEEE Trans. Inf. Theory, vol. IT-13, pp. 260-9, Apr 1967.

J.KE. Omura: "On the Viterbi Decoding Algorithm", IEEE
Trans. Inf. Theory, vol., IT-15, pp. 177-9, Jan 1969.

J.M. Wozencraft & B. Reiffen: "Sequential Decoding”,
MIT Press, 1961,

R.M. Fano: "A Heuristic PDiscussion of Probabilistic
Decoding", IEEE Trans. Inf. Theory, vol. IT-9, pp. 64- 74, Apr

1963.

K.Sh., Zigangirov: "Some Sequential Decoding Proce-
dures", Problemy Peredachi Informatsii, vol. 2, No 4, pp. 13-
25, 1966 (engl. transl. in "Problems of Information Transmis-

sion", vol. 2, No 4, pp. 1-10).

F. Jelinek: "Fast Sequential Decoding Algorithm Using
a Stack", IBM J. Res. Develop., pp. 675-8, Nov 1969.

H.B. Enderton: "Elements of Set Theory", Academic
Press, 1977.

S. Lipschutz: "Discrete Mathematics", Schaum’s Outline

Series in Mathematics, McGraw-Hill, 1976.

N.L. Biggs: "Discrete Mathematics", Clarendon Press,
1985.

J.L. Massey & R.W. Liu: "Application of Lvapunov’s

Direct Method to e ror=-Propagation Effect in Con-

volutijonal Codes", IEEE Trans. Inf. Theory, vol. IT-10, pp.
248-50, Jul 1964.

Refarences Page 589

38.

39.

40.

41.

42,

43.

44,

45.

46.

47,

48.

49.

J.P. Robinson & A.J. Bernstein: "A Class of Binary

Recurrent Codes with Limited Error Propagatjon", I1EEE
Trans, Inf. Theory, vol. IT-13, pp. 106-13, Jan 1967,

J.P. Robinson: "Error Propagation and Definjte Decod-

ing of Convolutjonal Codes", IEEE Trans. Inf. Theory, vol.
IT-14, pp. 121-8, Jan 1968.

E. Kreyszig: "Advanced Engineering Mathematics", 3rd
edition, John Wiley, 1972.

S, Barnard & J.M. Child: " e ebra", Mackillan &
Co Ltd, 1949,

D. McQuilton: "Some New Results on Majoritv-Logic
Codes for Correctjon of Random Errors", Ph.D. thesis,
University of Loughborough, 1979.

D. McQuilton: "More High-Rate 'Cyvelic’! Convolutional

Self-Orthogonal Codes", IEE Proc., vol. 127, Pt F, pp. 427-
9, Dec 1980,

T.M. Apostol: "Introduction to Analvtic Number
Theory", Springer-Verlag, 1976.

W.W. Wu: "New Convolutional Codes - Part III", 1IEEE
Trans. Communications, vol. COM-24, pp. 946-55, Sep 1976.

I.M. Vinogradov: "Elements of Number Theory", Dover
Publications Inc, 1954.

D. McQuilton: " ective Constraint Length of 'Cyeclic’?

Convolutional Self-Orthogonal Codes", IEE Proc., vol.
128, Pt F’ ppo 69-73’ Apl‘ 1981.

H. Davenport: "Multiplicative Number Theory", 2nd edi-
tion, Springer-Verlag, 1980.

B.C. Erricker: "Advanced General Statistics", Hodder &
Stoughton, 1971.

The thesig was typed by the author

The following were used:
Computer: Amstrad PC1512 HDZ20
Printer: Epson LQ-850
¥ordprocessor: Wordstar 5
Graphics: GEM Draw Plus
Plotting: Statgraphics 3.0

The following statistics were obtained:
Character count (total): 2,717,000 bytes
Word count: 121,751 words

GEM Draw Plus diagrams: 43 diagrams - 251,070 bytes
Statgraphics graphs: 91 graphs - 1,680,192 bytes

