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APP 
AWGN 
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cc 
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Abbreviations 

= a posteriori probability (see p. 136) 
= additive white Gaussian noise (see p. 287) 
= binary symmetric channel (see p. 6) 
= convolutional code (see p. 18) 
= central group (see p, 58) 
= convolutional self-orthogonal code (see p. 138) 
= codeword 
= definite decoding (see p, 139) 
= discarded input group (see p. 87) 
= discrete memoryless channel (see P• 5) 
= encoding array (see p. 220) 
= equation 
= feedback decoding (see p. 139) 
= front-end group (see p. 58) 
= feed-forward (see p, 317) 
= Figure 
= greatest common divisor (see p. 435) 
= initial array (seep, 183) 
= if, and only if 
= input group (see p. 87) 
= input 
= left-hand side 
= least significant bit 
= linear sequential circuit 
= memory group (see p, 58) 
= memory input group (see P• 87) 
= maximum likelihood decoding (see P• 10) 
= most significant bit 
= mul tiplexing (see p. 283) 
= output 
= pulse code modulation 
= phase-shift keying 
= rear-end group (see p. 58) 
= relation 
= right-hand side 
= syndrome array 
= signal-to-noise 
= self orthogonal 
= shift register 

(see p, 517) 
ratio 

(see P• 138) 

= syndrome register (see p. 210) 
= exclusive-or = with respect to 



A! = = 
A! = = 
J3 = = 
C(•) = 
C(n,k) 
r = = 
D = = 

Not;ation 

= number of states (Chapter 4) (seep. 89) 
= composite parity-check (Chapter 6) (seep. 135) 
= IA generating element (Chapters 7 & 8) (see p. 218) 
= autocovariance function (see p. 257) 
.::0 n! I [ k! (n-k)!] = binomial coefficient 
= signal-to-noise ratio per information-bit 
= delay operator 

d•in = = minimum distance of a code 
E = = = energy per received bit (seep. 4) 
E[?] = = expected value of ? 
e = = = channel-error sequence (see p. 46) 
erfc = = complementary error function ·(see p. 291) 
f = = = coherent demodulator 0/P (Chapter 1) (seep. 286) 
f - = = number of zero-length SRs (Chapters 3 & 4) (see p. 57) 
f(i) ==memory-density function (Chapter 4) (seep. 102) 
F(i) = = memory-distribution function (Chapter 4) (seep. 114) 
~ = = = Euler totient (Chapters 7 & 8) (seep. 436) 
G = = = net coding-gain (see p. 13) 
G = = = generator matrix (see p. 30) 
GF(q) = Galois field q (seep. 297) 
H = = = parity-check matrix (see p. 45) 
I = = = identity matrix 
J = = = number of orthogonal check-sums 
M = = = total circuit memory (see p. 55) 
m = = = memory order (see p. 19) 
M

1 
= = = length of the i th SR of a normal LSC (see p. 33) 

ft = = = single-sided noise power spectral density 
nA = = = actual constraint-length (see p. 20) 
n

1 
= = = effective constraint-length (see p. 145) 

Q = = = number of input blocks (Chapter 4) (see P• 89) 
P4 ,P4 =probability of bit decoding error 
P = = = probability of channel error • r = = = received sequence (see p. 46) 
R( "t) = = autocorrelation function (see p. 257) 
s = = = syndrome sequence (see p. 47) 
T = = = syndrome threshold (see p. 151) 
t = = = error-correcting capability (see p. 85) 
T

0 
= = = optimum threshold (see p. 151) 

U = = = message (or information) sequence (seep. 25) 
= = = channel sequence (see p. 25) V 



Notation 

w[?] = = Hamming weight of ? 
i = = = • • • • • (see p, 89) 
9 = = = theta function (see P• 218) 
LxJ = = greatest integer Sx 
rxl = = smallest integer ~X 
5 
A - = = = congruence symbol (see p. 441) 

= = = equal by definition 
<A,B> = partitioned _by sets __ A_&. B (see p. 352) 

A~B = = A is a subset of B 
ACB = = A is a proper subset of B 
(a,b) = greatest common divisor of a & b 
x/y/z = (x/y)/z = x/(yz) 

(seep. 435). 
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The thesis Investigates various aspects of convolutional code (CC) 

theory, design and decoding. 

A relatively novel approach to CC theory has been developed. It Is 

based on the concept of convolution and the properties of the encoder 

(a linear sequential circuit). Some new concepts & results were obtained. 

The complexity of the trellis diagram of a 'normal' CC encoder Is re

lated to code parameters. The associated 'constrained trellis Is obtained 

by deleting states & transitions, according to a certain criterion, while 

Its complexity Is linked to code parameters. Finally, the • simplified trel

lis evolves from the constrained one by permltlng transitions of length 

more than one time unit. The existence, number and state of origin of 

these long transitions Is again related to code parameters, both for the 

general and for special cases; a decoding algorithm using the 'simpli

fied trellis Is finally developed. 

The algor1thm for the majority-logic decoding of systematic CCs Is 

optlmlzed via the Introduction of a syndrome threshold which depends 

on the channel probability of error, as well as on code parameters. Ana

lytical expressions for the optimum threshold have been developed. 

A systematic search for the generation of systematic self-orthogonal 

CCs, with given properties, resulted In some new classes of such codes. 

A family of codes, discovered by D McQullton, Is examined both theo

retically & experimentally. Some new results concerning the codes' struc

ture, have been obtained. A great number of these codes were tested on 

a computer-simulated binary symmetric channel. Graphs of the net cod

Ing-gain vs SNR per Information-bit have been produced. From the re

sults, conclusions were obtained about the codes' error-propagation per

formance, the associated power-loss ·and the correlation of the decoding 

errors. The codes were also tested with the optimum threshold to deter

mine the power gains obtained. Finally, some results on the codes' un

equal error-protection properties were related to their parameters. 
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The thesis consists of eight 

appears throughout the thesis, 

chapters. Original 

but especially in 

material 

Chapters 

4, 6, 7 & 8. A set of appendices, attached to each chapter, 

contains background material and proofs of theorems & exam

ples that are either long or do not directly contribute to 

the understanding of the subject. The appendices have, also, 

been used to keep the size of the main body of the thesis to 

within the 250-page limit*. 

Chapter 1 ("Introduction to Error-Control Coding") devel

ops the model of an error-control coding system, starting 

from a typical digital communications system. It, also, dis

cusses the various binary channel models, the characteris

tics of error-control codes and the concepts of maximum 

likelihood decoding & net coding-gain. A binary PSK coherent 

demodulator, receiving over the additive white Gaussian 

noise channel, will be used as the 'test-bed' of error-cor

recting codes. Its error performance is analysed in the ap

pendix. 

Chapter 1 aims to act as an interface between the 'real' 

communications system and the 'world' of error-control 

codes. 

Chapter 2 ("Structure of Convolutional Codes") introduces 

the relevant terminology and builds the theory of the codes, 

starting from the concept of convolution between the input 

to, and the impulse response of, the encoder. Topics dis

cussed include generator sequences, generator matrix, gener

ator polynomials, composite generator polynomials, catas

trophic codes, distance measures, systematic codes, parity

check matrix & syndrome. Both approaches ("matrix" & "poly-

* Although this liait was exceeded, by 10.8~. 
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nomial") to the theory of convolutional codes (CCs) are cov

ered, 

The original material in this chapter concentrates on the 

characteristics of the normal & the type-!! encoders and on 

the code matrices. With respect to the latter, a matrix 

equation is developed which relates an arbitrary, but fi

nite, portion of the encoder's output to the corresponding 

input, via a finite-dimensioned 'system' matrix. The latter 

is shown to be a generalization of the generator matrix. 

Similar results have been obtained for the parity-check ma

trix. 

The aim of this chapter is to build the necessary CC in

frastructure for the development of the rest of the thesis. 

Chapter 3 ("Decoding of Convolutional Codes") classifies 

and explains the various decoding techniques, but concen

trates on one aspect of one of them, namely the state-tran

sition diagram of a normal convolutional encoder (a struc

ture used in trellis decoding), This diagram is analysed and 

results are obtained which link its complexity to the encod

er parameters. A very powerful tool, used to that end, is 

the partition of the encoder memory in groups, which play a 

specific role during a state transition. 

The aim of Chapter 3 is both to complete the general in

troduction of CCs and to build an infrastructure for the 

next chapter. 

Chapter 4 ("Error-Trellis Syndrome Decoding") retraces 

the decoding technique of the title (in the first two sec

tions) and develops the algebra of the generalized trellis 

(in the remaining five sections), Reed & Truong [24] intro

duced the idea of a state diagram with a Hamming-weight con

straint, t, on the input and contents of the encoder, The 

first section develops the general solution of the syndrome 

eqn [s = f(e)], while the third section introduces the de

coding algorithm; the material generalizes, adds to and cor

rects the work by Reed & Truong, The rest of the sections 

(especially Sections 4.4-7) contain original work which con

centrates on three issues: 1. The constrained trellis is 

analysed and results linking its structure to the circuit's 
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parameters are obtained. 2. The simplified trellis, obtained 

from the constrained-one by removing all single-input tran

sitions, contains transitions of length greater than one 

time-unit. Their length, number and existence conditions are 

related to the circuit's parameters. 3. The simplified trel-

lis is used to improve the decoding algorithm. 

The aim of Chapter 4 is the development of the algebra 

linking the parameters of a 'normal' linear sequential cir-

cuit to the complexity of its generalized trellis. 

Chapter 5 ("Threshold Decoding") introduces the threshold 

decoding algorithms (developed by Massey [18]), defines the 

relevant concepts and discusses the properties of codes 

suitable for threshold decoding. Some original work is in-

-cluded in the discussion of the structure of the code sys

tem-matrix, both for definite and for feedback decoding. The 

chapter concludes with some results on convolutional self

orthogonal codes (CSOCs), including a new term, called block 

effective constraint-length. 

This chapter forms the backbone of the rest of the the

sis, which concentrates on the design and performance of 

csoc •• 

Chapter 6 ("Optimum Threshold for Majority Oecodi ng of 

CSOCa") represents original work, which concentrates on the 

improvement of Massey's majority-decoding algorithm. In par

ticular, the threshold used in majority decoding was set at 

T = ~/21 (where J is the minimum number of syndromes check

ing on any error bit). That setting guarantees correct de

coding if no more than LJ/2J errors have occured among the 

error bits checked by the J syndromes. It is obvious, 

though, that as the channel error rate increases, correct 

decoding becomes less and less frequent. 

An expression between the probability, P4 , of a bit de

coding-error and the syndrome setting, T, is developed and 

the value of T which minimizes P4 is obtained. The case of 

constant-size syndromes (usually the case of definite decod

ing) results in a closed-form expression for the optimum 

threshold. The case of feedback decoding results in a recur

rent equation and in a set of approximate closed-form ex-
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pressions, as well as in upper & lower bounds. 

The aim of Chapter 6 is the determination of that syn

drome threshold which, for majority decoding, minimizes the 

probability of a decoding error. 

Chapter 7 ("Structure of 'Cyclic' CSOCa") introduces & 
generalizes the above class of codes (discovered by McQuil

ton [ 42]), studies their properties and elaborates on the 

code-design technique. In particular, the problem of system

atically constructing systematic CSOCs is tackled via the 

discovery of the necessary and sufficient conditions so that 

a general systematic CC is self-orthogonal (SO). A general 

solution is developed until either a class of SO codes is 

obtained, or a simplification becomes necessary. In this 

way, new classes of codes are discovered (which include 

McQuilton's codes), while the way for the discovery of other 

classes of codes has been left open. The basic difference 

between McQuilton's approach and that of the author is that 

the latter concentrates on the equivalent conditions for the 

existence of CSOCs with certain properties. Of necessity, 

the results obtained include McQuilton's work, as well as a 

definite opinion about the existence, or not, of other 

codes. 

The last three sections contain some new results on the 

properties of McQuilton's codes. 

Chapter 7 aims to analyse the structure, and investigate 

the relatives, of the class of 'cyclic' CSOCs, whose per

formance will be studied in the next chapter. 

Chapter 8 ("Computer Simulation of 'Cyclic' CSOCa") 

presents & analyses the simulation results. The main comput

er-simulation programme used requires a minimal set of input 

data in order to generate a number of points of the "net 

coding-gain" vs "signal-to-noise power-ratio per informa

tion-hit" graph, As a result, the main programme requires 

the support of about twenty general-purpose subroutines 

(built and tested by the author) whose flow-charts, back

ground theory and FORTRAN listings are given in appendices. 

Also, the very long actual constraint-length (= 1.7 Mbytes) 

of some of the codes required a special software implementa-
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tion technique (for the decoder) that made use of bit

manipulation commands. 

For the class of CSOCs, experimental (simulation) results 

were obtained on the net coding-gain of the codes, their 

performance using the optimum threshold, their 'behaviour' 

under error propagation and on their unequal error

protection properties, 

The aim of Chapter 8 is to describe the computer-simula

tion techniques used and to explain the results of the simu

lation, using the previously developed theory. 

A formal mathematical structure is used to develop this 

thesis, following the general-to-particular approach. Five 

main areas have been researched: 1. The algebra of the gen

eralized trellis. 2. The optimum threshold for majority de

coding. 3. Construction of systematic convolutional self

orthogonal codes, 4. Simulation of the class of 'cyclic' 

CSOCs (discovered by McQuilton [42)), 5. Simulation tech

niques, development of a library of number-theoretic subrou

tines and computer-selection/generation of 'cyclic' CSOCs. 

All results are proved mathematically, except for a small 

number of general and well-known theorems (for which a ref

erence is given). Examples are used to verify the 'predic

tions' of the theory, while the simulation results contrib

ute to a deeper understanding of the 'behaviour' of the 

codes, 

The aim of the thesis is to extend our knowledge about, 

and deepen our understanding of convolutional codes. 

The thesis is organized into two volumes. Volume 1 con

tains the main body (Chapters 1-8 and Conclusions), while 

Volume Z contains the Appendices and the References. 

Nikos P. Fr')''das 

Leicester, 1 January 1990 

) 
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Chapter 1 will act as an introduction to the thesis. The 

functional block diagram of a typical digital communications 

system will serve as the starting point. This diagram will 

be reduced to one including only what the error-control en

coder & decoder 'see' as their channel, source and destina

tion. Based on this abstraction, channel models will be in

troduced, the general concept of error-control coding will 

be briefly discussed and some performance criteria will be 

considered. 

In 1948 1 Claude Shannon proved that if the information 

signal is appropriately encoded, the rate of errors injected 

by a noisy channel can be reduced to any desired level with

out sacrificing the rate of information transmission or 

storage. What Shannon did not tell us though is how this 

objective will be achieved. The theory of error-control cod

ing is concerned with this problem and has gone a long way, 

since 1948. Error-control coding forms today a 'stand-alone' 

branch of communications and is supported by a long list of 

error-control textbooks and journals (see, for example, the 

reference list, pp. 586-90). 
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1.1 8LQCK DIAGRAM OF EBBQR-CQNTROL SYSTEMS 

In this section, a 

tem will be gradually 

J • model of an error-control cod1ng sys-

developed. The 'effort' starts with a 

'complete' functional block diagram of a digital communica-

PRO M 
OTHER .-----.CB _jr-1T--s-TR-EA--,M ~u RCEs 

s 0 u Jl(! I! 

XMT 

CHANNEL 

RCV 

SOU:; 

Poll< MAT DECODE 

EN CRYPT 

MULTIPLE 

ACCESS 

MULTIPLE 

ACCESS 

DECRYPT 

CHANNEL 

ENCODE 

M OVULATE 
' 

CHANNEL 

DECODE 

MUX 

DEMUX 

\'-----BIT STREAM~ TO 
OTHER 

SOURCES 

Ei gure 1 .1: Functional block diagram of a typical digital commu

nications system (after Sklar [1]), 

tions system (see Fig. 1.1). This is reduced to a diagram 

with the minimum number of units necessary, to study error

control coding. 
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1.1.1. The Elements of a Digital Communications System 

From a functional point of view, a digital communications 

system may be divided in a number of blocks, which have to 

be linked in a certain order (see Fig. 1.1), 

Note that the transmission and the storage systems have 

such a point of view the same structure, From essentially 

they differ in that the one transmits information from here 

to there, while the other from now to then. Note also that 

all blocks appear in pairs (processor-deprocessor) except 

for synchronization (SYNC) and the channel. 

The formatting units act as an interface between the com

munications system and the outside world. The channel links 

the transmitting with the receiving site. The modulator and 

the demodulator form the interface between the bit-stream 

and the waveform parts of the system. For a brief descrip

tion of each block, see Appendix 1.1 (p, 281). 

' 

CHANNEL 
SOVR<"B 

ENCODER 

DISTURBANCE 

' 

CHANNEL 
SINE 

DECODER 

DIGITAL CHANNEL 

r---------------l 
I 
I 
I 

; 
I 
I 
I 
I 
i 
I 
I 
I 

i 
; 
I 
I 
i 
I 
I 
I 
I 
I 

! 
; 
I 
I 

MODULATOR 

WAVEFORM 

CHANNEL 

DE MODULATOR 

I 
I 
I 
I 

I 
I 
I I ·----------------.J 

Figure 1 . 2: Simplified block diagram of an error-control coding 

system. 

1.1.2. !be Wayeform Channel 

The waveform channel consists of all the hardware and 
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physical media between the modulator output (0/P) and the 

demodulator input (I/P) (see Fig. 1.2). If one compares the 

waveform at the channel I/P, with the waveform out of the 

channel, one will find out that the latter is a scaled rep

lica of the former to which some disturbance has been super

imposed. This disturbance may be due to any combination of 

additive random noise, man-made interference, distortion, 

signal fading (time-varying attenuation), or even intention

al jamming. 

The most widely considered type of disturbance is the so

called additive white Gaussian noise (AWGN). If the modula

tor 0/P is denoted by s(t), the AWGN by n(t) and the demodu

lator I/P by r(t), then: 

r(t) = s(t) + n(t) ( 1.1) 

In the presence of AWGN, : a good' modulation method is 

binary PSK (BPSK), with coherent demodulation [2]. In this 

case the modulator transmits one of the two waveforms: 

s 0 (t) = {(2E/T)sin(2nf
0
t+n/2) 

s 1 (t) = {(2E/T)sin(2nf
0
t-n/2) 

O:St:ST 

O:St:ST 

( 1. 2a) 

( 1. 2b) 

The modulator transmits s 0 ( t) & s 1 ( t) in the place of 
! 

binary 1 and 0, at a rate of 1/T. f
0 

is a multiple of 1/T 

and E is the energy of each signal element (see Appendix 

1.2, § A1.2.1., p. 285). An optimum demodulator 'may: in

clude a correlation detector followed by a sampling switch 

[2] (see Fig. A1.2.1, p. 286). The 0/P of the sampling unit 

is a real number (see§ A1.2.2., p. 286): 

I= J'r(t){(2E/T)sin(2nf t+n/2)dt = 
0 0 

+E+n - c ( 1. 3) 

ne is a zero-mean Gaussian random variable with variance 

a 2 = Efi/2 1 where fi/2 is the double-sided noise power spec

tral density. I = E+nc if s 0 (t) is transmitted and -E+nc if 

s 1(t) is transmitted. 

If I is processed as an analogue number then the demodu

lator operates in analogue fashion. A more common approach 

is for I to be quantized by a q-bit quantizer to produce, 

thus, one of 2q=Q different 0/P symbols. 
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If hard-decision demodulation is used (Q=2), then the 

bit-error probability, P
8

, is given by (see Appendix 1.2, § 

A1.2.5., p. 290): 

P
8 

= ierfc[{(Eifi)1 ( 1.4) 

where erfc(x) is the complementary error-function. Bounds 

on, and an approximation to P
8

, are obtained in Appendix 1.2 

(§ A1.2.6., p. 291): 

[ 1-1 I ( 2r) 1 e-r I [ 2{( nr) 1 < P • < e-r I [ 2{ ( nr) 1 

1.1.3. 

-11(2r) < 2er{(nr)P
8
-1 < o 

P
8 

~ e-rl[2{(nr)1 as r -> +m 

where, r ~ Elii 

The oisital Channel 

( 1. 5a) 

( 1. 5b) 

( 1. 5c) 

( 1. 5d) 

Consider the block diagram of Fig. 1. 2. Note that from 

the point of view of the channel-encoder and channel

decoder, the channel between them, called the digital chan

nel, is the most important. This channel is composed of the 

modulator, the waveform channel and the demodulator. If the 

modulator uses M different waveforms (i.e. if it replaces k 

given IIP bits by a specific waveform, where 2k=M) and the 

demodulator uses a q-bit quantizer to represent the corre

lated & sampled outputs f, then the channel is characterized 

by a set of M IIP symbols and a set of Q(=2q) OIP symbols; 

it is then called an M-ary 1n, Q-ary out, digital (or dis

crete) channel. 

Furthermore, if each channel output depends only on the 

corresponding channel input symbol, and not on any previous 

transmissions, the channel is said to have no memory and is 

called a discrete memoryless channel (DMC). Such a channel 

is completely defined by the set of conditional probabili

ties P(rjls1 ) li=1,2, ••• ,M & j=1,2, ••• ,Q, where P(rjls1 ) de

notes the probability that rj will be received, given that 

s 1 was transmitted. 
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1.1.4. Piscrete Channel Models 

The most common channel model used to test various coding 

schemes is a DMC with binary modulation (M=2), symmetric 

noise-amplitude distribution and two-level quantizer (Q=2 -

hard-decision demodulation). This is called the binary sym

metric channel (BSC) and it can be realized with a BPSK mod

ulator, an AWGN waveform channel and a coherent hard-deci

sion demodulator. 

u CHANNEL V 
SOURCE 

ENCODER 

+:r ERRORS 

"' u CHANNEL 
SINK 

DECODER r = v+e 

(a) 

0 
1-Pe 

0 

1 1 
1-P e 

(b) 

Figure 1.3: a} Channel coding over the BSC; b) transition dia

gram of the BSC. 

Since the noise-amplitude distr1bution is symmetrical, 

P(r 1 ls 2 } = P(r2 1s1 }. Since also, P(r2 ls 1 )+P(r 2 1s 2 }=1 and 

P(r1 ls1 }+P(r1 ls2 }=1, there is only one independent parameter 

in this channel model. If one lets P
8
=P(r1 1s2 ), then the BSC 
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transition-diagram will be as in Fig. 1.3b. The bit error

rate (bit-error probability) is Pe [given by eqn (1.4)]. 

The BSC is a good test-channel for coding schemes operat-

ing over optical, f1bres*, 

nels. Terrestrial links 

satellite channels and space chan

though, produce discrete channels 

with memory. A simple two-input, two-output, channel with 

memory would have two states; a 'good' state where the bit 

error-rate, p 1 , will be very small and a 'bad' state where 

the bit error:rate, p 2 , will be high (p2»p1 ). The channel 

remains in the 'good' state for most of the time, but on 

occasion it shifts into the 'bad' state 1 where it remains 

for a brief period of time. If q
1 

denotes the probability of 

a shift from the 'good' to the 'bad' state, and q
2 

the prob

ability of a shift from the 'bad' to the 'good' state, then 

q 1«q2 • The state-transition diagram of such a channel is 

shown in Fig. 1.4. See Appendix 1.3 (p. 294), for the calcu

lation of the average error-rate of such a channel. 

/ ' 
q I / 

/GOOD BADJ 

""'" 
./ ~./ 

0 1 0 1 

0 1 0 1 

Figure 1 • 4: State transition-diagram of a binary channel with 

memory. 

r, 2 THE" INGREDIENTS OF ERROR-CQNTROL CODING 

Error-control codes are based on diverse mathematical 

! -*--Al th~ugh- a- direct-det~tion--(~n-~oherent) --OPtiCalSYst~-;ct~. ;:~ a--. z-=-ch~n~;p. I 
---- - -- ---- -- - -- -- -
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disciplines. Nevertheless, they have two common ingredients: 

Redundancy and noise averaging. 

1.2.1. Redundancy 

Error-control coding, like most signal-processing tech

niques, operates on blocks rather than on individual bits. 

The channel encoder 'breaks' the source bit-stream, u, in 

blocks of k and replaces this with a block of n bits, to 

form the channel bit-stream, v. 

Like in all coding schemes, the mapping should be one-

to-one, so that the process is reversible; hence, n~k. Be

cause of the action of the error sequence, e (see Fig. 

1.3a), the transmitted block of n bits is altered so that 

any n-bit pattern is possible to be received by the decoder. 

The latter is asked to decide, if the received n-tuple is a 

legitimate message, or not. Clearly, the only way this can 

be accomplished is by not permitting all possible received 

messages to be valid ones. So, zn>zk <---> n>k, hence redun

dancy is a necessary ingredient of error-control schemes. 

So, for an (n,k) code, only k out of every n channel bits 

are message bits. The ratio R ~ k/n is called the code rate. 

If the rate of reception of message bits is 1/T bps, then 

the transmission bandwidth, W, is W = c/T, where c is a con

stant that mainly depends on the unit-pulse used, Since the 

encoder has to transmit at (n/k)(1/T) = 1/(RT) bps, the 

channel bandwidth increases:-* by a factor ;of 1/R; this factor 

is called the bandwidth expansion ratio. 

Consider now the redundancy ingredient in more detail. 

Assume that one wishes to correct all patterns of t or fewer 

errors in a block of n bits. This means that even with t 

errors, an n-tuple should still be identifiable with no oth

er block apart from the original, Hence, all n-tuples should 

differ in at least 2t+1 positions. In this way, an n-tuple 

with t errors will differ from any other n-tuple in at least 

t+1 positions, but it will differ from the original in only 

t positions, so correct decoding can be accomplished. 

if all pairs of codewords (valid channel n-tuples) Hence, 

differ in at least d•1n=2t+1 positions, the code can correct 

I - - ----~- - - -- -- -- ---- - -, • * This is usually the case; an exception is mult1level/phase modulation comb1ned with, 
' a state-oriented trell1s coding scheme. 



Section 1.2 Page 9 

all patterns of t or fewer errors, in a block of n received 

bits. t is the error-correcting_capability_of the code. The 

number of positions any two sequences differ'in,' is called the 
' 

Hamming distance between th-em, d•in, mentioned above, is 

known as the minimum distance of the code and is defined to 

be the minimum Hamming distance between any two codewords. 

At this stage, one is able to relate the amount of redun

dancy in a code to its error-correcting capability, t. Since 

there are C(n,i).::. n!/[k!(n-k)!l': n-tuples with i errors, the 

decoder is asked to be able to recognize, in a unique way, 

and in any of the zkpossible legitimate messages, any of 

the 1+C(n,1)+C(n,2)+•••+C(n,t) error patterns, in that mes

sage; hence, for a t-error correcting code, there exist 

[l+C(n,l)+C(n,2)+•••+C(n,t)]2k error conditions. The decoder 

is asked to relate, in a unique way, any of these error con

ditions to a specific n-tuple. Hence, 

[ 1 + ( y) + ( ~) + • • • + ( ~) ] zk ~ zn <-> 

<-> 1 + ( y) + ( ~) + • • • + ( ~) ~ zn-k ( 1. 6) 

1.2.2. Noise Averasing 

It has been mentioned already that the channel bit-stream 

is 'enriched' with n-k redundant bits. These bits depend on 

a sequence of k message bits. The question that arises natu

rally is, if it is an advantage to use a large value of n. 

Assume that an error-control coding scheme is able to 

correct all error patterns with Pn or less errors, where 

O~PSl. If a BSC with probability of error p is used, then 

the probability that a block of n bits contains i errors is 

p1 (1-p)~1c(n,i). The coding scheme will fail, if Pn+l or 

more errors occur. So, the probability of decoder failure is 

n 

P(E) = I;p1{1-p)n·ic(n,i) ( 1. 7) 
i=nP+l 

Consider, for example, an error-control scheme which can 

correct up to 5% of the block bits (P=0.05), when the BSC 

error-probability is p=10"3 , The probability of a decoder 
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error, for block-lengths of 20, 40 & 100, is [eqn (1.7)]: 

For 13=0.05 & n'"20! 1>(1!:) .. 1. 9x10~4 

For 13=0 • .05 t. n=40: 1>(~) .. 9. 6xto~• 

For 13=0.05 & n=lOO: P(~) = 1.1xto•' 

From the example above it is seen that, if a codJ.ng 

scheme can correct up to 5% of the bits of a block of n, 

then, on average, if n=20 one block in 5,327 will be errone

ously decoded, if n=40 one block in 104,000 will be errone

ously decoded and if n=100 one block in 909,000,000 will be 

erroneously decoded. Eqn (1.7) & the above example show that 

the performance improvement obtained through noise-averaging 

increases with the block length. Hence, longer codes are 

expected to be more 'efficient' than shorter codes. 

1.3 MAXIMUM LIKELIHQQP PECOOING 

Consider the block diagram of Fig. 1. 3a. The decoder's 

task is to produce an estimate, u, of the message sequence, 

u, based on the received sequence r. Since there is a 

one-to-one correspondence between the message sequence, u, 

and the channel sequence (or codeword), v, the decoder's 

task is, in effect, to produce an estimate, 9, of the 

transmitted codeword, v. A decoding error occurs iff v was 

transmitted and 9 t-v. Then, the probability of a decoding 

error, given that r was received, is P(9f-vlr), while the 

average probability of a decoding error, P(E), is, 

P(E) = ~P(9f.v!r)P(r) ( 1. 8) 
r 

A decoding rule (i.e. a decoding strategy) which mini

mizes P(E) is called maximum likelihood decoding (MLD). 

Since r is fixed, minimizing P(E) is equivalent to minimiz

ing P(9t-vlr), for all r, and this is equivalent to maxi

mizing P(9=v!r). Hence, for a given r, P(E) is minimized if 

9 is chosen to be that codeword, v, which maximizes P(v!r). 

By definition of the conditional probability, 
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P(AIB) = P(A,B)/P(B) -> 

-> P(A,B) = P(AIB)P(B) = P(BIA)P(A) ( 1. 9) 

Using eqn (1.9), P(vlr> = P(rlv)P(v)/P(r). If all code

words are equally likely, then P(v) is constant, hence the 

MLD rule is equivalent to choosing that codeword, v, which 

maximizes P(rlv), for a given r. For a DMC, errors occur 

independently from each other, hence 

Since logx is a monotonously increasing function of x, a 

more useful expression is 

logP(rlv) = ~logP(r,lv1 ) 
i 

where i ranges over all bit positions in a block. 

Finally, the MLD rule has become: 

(1.10) 

Theorem 1 .1: Maximum likelihood decoding, for the DMC, 

if all codewords are equally-likely, is equivalent to choos

ing Q as this codeword, v, which maximizes the sum in 

(1,10), where r is the received sequence. 

I 
Consider now the application of the MLD rule to the case 

of a BSC. Let p(r1 1v1 )=p if r 1;tv1 and p(r1 lv
1
)=1-p if r

1
=v

1
• 

Then, if r and v differ in d=d(r,v) positions [where d(r,v) 

is the Hamming distance between r & V] d of the p(r1 1v1 )s of 

the sum in (1.10) will be p and the rest n-d will be equal 

to 1-p. Hence, 

logP(rlv) = d(r,v)logp + [n-d(r,v)]log(1-p) -> 

---> logP(rlv) = d(r,v)log[p/(1-p)] + nlog(l-p) (1.11) 

Since nlog(1-p) is a constant and because, for p<0.5, 

p/(1-p) is less than 1, then log[p/(1-p)] is negative. 

Hence, the MLD rule for the BSC becomes: 
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Theorem 1.2: Maximum likelihood decoding, for the BSC, 

if all codewords are equally-likely, is equivalent to choos

ing v as this codeword, v, which minimizes the Hamming dis

tance d(r,v), where r is the received sequence. 

I 
At this stage it is useful to refer to the noisy channel 

coding theorem, as stated in Lin & Costello [2], p. 10: 

Theorem 1.3: Every channel has a capacity C and for any 

rate R<C, there exist codes of rate R which, with maximum 

likelihood decoding, have an arbitrarily low decoding error 

probability P(E). In particular, for any R<C, there exist 

(n,k) block codes, of length n and with k information bits 

per block, such that 
P(E) ~ 2-nEb(R) (1.12) 

and there exist (n,k,m) convolutional codes, of memory 

order m, such that 
P(E) ~ 2-n(m+1)Ec(R) (1.13) 

where Eb(R) & Ec(R) are positive funct~ons of R for R<C 

and are completely specified by the channel characteristics. 

I 
Note that the above bounds hold true for the average er

ror probability of the ensemble of all codes. Hence, since 

some codes are bound to be better than the average code, 

Theorem 1.3 guarantees the existence of codes meeting these 

bounds. Furthermore, one can see from these bounds that the 

way to achieve very low probabilities of decoder failure is 

via the use of very long codes. But since a maximum likeli

hood decoder has to examine all possibilities before it 

makes a decision and since, for an (n,k,m) convolutional 

code, there are approximately 2k(a+ll computations per block 

of k information bits, it becomes obvious that the way to 

achieve what Shannon predicted (i.e. arbitrarily low proba

bilities of decoder error) is by no means easy. If the seri

al channel bit-rate is C bps, then the decoder examines C/n 

blocks/sec or, otherwise, it has n/C sec to make 2k(m+ll com

parisons. Consequently, the decoder can spend no more than T 



Section 1.3 Page 13 

= n2~<~1>;c sec per comparison. So, in effect, the computa

tion load increases exponentially with the product km. Using 

inequality (1.13) it becomes obvious then that the achieva

ble performance of error-control coding schemes is limited 

by practical considerations: 

P(E) S (CT/n)Ec(R)/R ( 1. 14) 

So, if MLD is to be used, the obtainable performance 

strongly depends on data rate C and the processing speed of 

the available hardware (included in T). 

One further problem arises from the fact that the noisy

channel theorem does not show the way to achieve the above 

mentioned performance, even if the practical considerations 

were not a problem. 

Coding theory came to tackle both problems. There are 

techniques to design codes of given performance and there 

are decoding methods, other than MLD, that are sub-optimum 

but whose computational load does not increase exponentially 

with the code length. 

1,4 NET CQDING-GAIN 

Consider the relation between the probability of a bit 

error and the signal-to-noise ratio (SNR) r ~ E/fi, where E 

is the energy per bit and fi/2 is the double-sided noise pow

er spectral density. For uncoded BPSK transmission over the 

AWGN channel and coherent demodulation with hard decisions, 

this is relation (1.4), One would be interested to examine 

the E/fi ratio required (by the uncoded system) to achieve 

the same error-rate performance with a coded system of 

code-rate R, A 'fair' comparison should take into account 

the fact that the coded system uses more bits/sec to commu

nicate the same information and hence it needs more power in 

order to maintain the same SNR in the channel. A 'fair' com

parison should use the same SNR per message (or information) 

bit. This means that the coded system operates with a re

duced (by a factor of R) energy/bit ratio. 
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Consequently, in order to assess the gains obtained from 

a particular channel-coding scheme, one would have to plot 

the probability of bit-error versus the SNR per 

information-bit, which is obviously the SNR/bit divided by 

R, (R=1 for the uncoded system), for each of the two cases 

(under, of course, the same conditions - modulation, demodu

lation, waveform channel). Then, for a given bit error-rate, 

the dB-difference between the two required SNRs, called the 

net coding-gain, would be a fair 'estimate' of the benefits 

of channel coding. A complete comparison, though, should 

take into account the delay imposed by the encoder & decod

er, as well as their cost. 

Coming back to the net coding-gain, G, let r denote, from 

now on, the SNR per information-bit. Then rR is the SNR per 

bit and the decoder 'sees' a channel error-rate [see (1.4)] 

Pe = ierfc[.{(rR)] (1.15) 

In response to this Pe, the decoder 'generates' P4 , the 

probability of decoding a bit in error. Let r• be the SNR 

required by the uncoded system so that the latter achieves 

the same error-rate performance. Then, 

Pd = ierfc(.{r') 

Let erfc"1 be the inverse of erfc, i.e. 

Then, 

and 

erfc"1 [erfc(x)] = x 

r• = [erfc"1 (2Pd)] 2 

net coding-gain= G ~ 10log(r'tr) dB 

(1.16) 

(1.17) 

( 1.18) 

(1.19) 

Asymptotic coding gain is often used as a figure of merit 

for a particular coding scheme. This is the limit value of 

G, as SNR tends to infinity. See Appendix 1.4 (p. 294) for a 

discussion on the asymptotic coding gain of a block code. In 

there, it is shown that Ga"' 10log[R(t+1)] dB. So, for a 

rate-3/4 single-error correcting code, G.=1.8 dB, for an 

R=3/4 double-error correcting code, G.=3.5 dB, etc. 



Section 1.5 Page 15 

1.5 CQNCLUSIQNS 

In this introductory chapter, the model of a real digital 

communications system was considered as the starting point 

of the thesis. This model is based on the functional block 

diagram of the system (see Fig. 1.1). The remarkable feature 

of this diagram is its symmetry. Specifically, for every 

processing block-unit at the transmi ting site, there is a 

de-processing one at the receiving site (with the exception 

of the channel and of SYNC). Of particular importance is the 

order according to which the various block units are linked, 

and the fact that this order is reversed at the other site. 

The block diagram of Fig, 1.1 was easily (and quickly) 

reduced to that of Fig. 1.3a, made only of the channel en

coder and decoder and their source, destination & channel. 

The last three units are logical, in that they do not exist 

physically but they simulate the corresponding portions of 

the system of Fig, 1.1. For example, the channel encoder 

'sees' as its source the encryption unit (if there is one) 

and all that lies before it. 

Of particular importance, for the study of error-control 

coding, is the encoder-to-decoder channel. This was assumed 

to be a 'black box' which reproduces at its 0/P the bit

stream at its I/P. The two bit-streams are identical, except 

that some of the 0/P bits have been inverted, at random. Two 

such binary channel-models were mentioned, the BSC and one 

with memory. Their only difference is the correlation among 

the errors they inject. The BSC corrupts bits independently 

from previous corruptions, while the other channel produces 

bursts of errors. 

Having defined a channel model, over which an error

control scheme may be tested, the next two (obvious) prob

lems are concerned with encoding and decoding. 

In Section 1.2 it was reasoned that, if a code is to cor

rect it needs to process bits in blocks (of k) and 'enrich' 

each block with n-k parity-checks (redundancy), More 

parity-checks are expected to result in a greater error-cor

recting capability, t, but they will definitely increase the 

overhead (a penalty). Furthermore, it was found that 'long-
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er' codes are expected to be better codes (noise averaging). 

This is, in effect, a collective security of the transmitted 

bits, where the greater their number the better their de

fense against errors. 

As far as decoding is concerned, it was concluded that 

the optimum method, called maximum likelihood decoding (MLD 

- see Section 1.3), requires 2k calculations per received 

block, in order to determine the nearest codeword. Shannon's 

second theorem guarantees the existence of codes which can 

make the probability of error arbitrarily low (under certain 

conditions). The problem is to find these codes and propose 

a feasible decoding method. It is not surprising that, usu

ally, one has to start from the end because the decoder is 

very complex. Code length is limited by the technology of 

the day, and then by cost (MLD complexity increases as 2k). 

A sub-optimum method would sacrifice some error-correct1ng 

power to allow the use of longer codes, or faster bit-rates. 

In designing a code, the obvious trade-off is between code 

rate, R, and error-correcting capability, t. 

Finally, the performance (of an error-control system) is 

measured by the relative frequency of decoded-bit failures 

(Pd), for a given BSC bit error-rate Pe. Since, though, a 

coded system uses more bits/sec than the uncoded one, a 

'fair' comparison should take this into account. The net 

coding-gain (see Section 1.4), G, measures the net gain in 

signal power per information-bit, achieved by the introduc

tion of coding. This means though that the test-bed used 

should include the modulator & demodulator, as well as their 

(waveform) channel. The most widely used (and easy to simu

late) waveform channel is the AWGN one (see § 1.1.2.). The 

best choice for the modulator-demodulator pair is then, BPSK 

with coherent demodulation. Note that the set of such a mod

ulator, channel and demodulator is equivalent to the BSC, if 

the demodulator uses hard decisions (i.e. a one-bit quantiz

er). 
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Chapter 2 has been designed to serve as a formal intro

duction to the general theory of convolutional codes. Choice 

of material and emphasis have been determined by the needs 

of the thesis and of mathematical formalism. As a conse

quence, otherwise important aspects of the theory have not 

been given much attention. On the other hand, a few topics 

that contain some original material have been treated rather 

extensively. 

It is the author's opinion that proofs are an integral 

part of the process of learning but that they do not always 

offer 'good value for money'; so, the proofs that add rela

tively little to the understanding of the subject are given 

in appendices. 

An effort has been made to document the results properly. 

To achieve this, some basic theorems are treated as axioms 

and the rest of the thesis is built on them, by use of math

ematical logic. 

Various authors present convolutional codes in various 

ways and use different notation. The author of this thesis 

finds the approach of Lin & Costello [2] more suitable. 

Chapter 2 is made of twenty-one sections; it covers a 

comparison between the matrix and the polynomial approaches 

to convolutional-code theory, constraint-length, code rate, 

distance measures, generator sequences, generator matrix, 
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generator polynomials, encoder-output equations, generator

polynomial matrix, composite generator polynomials, catas

trophic codes, systematic codes, parity-check matrix, syn

dromes, normal encoder and type-!! encoder. 

The decoding techniques for convolutional codes are dis

cussed in the next chapter. 

Throughout this thesis, and unless otherwise stated, only 

non-catastrophic codes (see Section 2.14) will be consid

ered. 

2.1 COMPARISON WITH BLOCK COPES 

Consider an (n,k) block code. The n channel digits of any 

block are calculated on the basis of the k message digits of 

this block only. 

An (n,k,m) convolutional code can be viewed as a general

ization of block codes: The n channel digits of block h are 

calculated on the basis of the k message digits of blocks 

h,h-l, ..• ,h-m (or stated otherwise, then channel d1gits of 

the current block depend on the current and the previous m 

blocks). Note that each channel block depends on m+l other 

blocks and, from this point of view, linear block codes are 

convolutional codes with m=O. 

Note also that the n channel digits do not form a code

word of their own but they constitute a frame within the 

codeword. In fact, the codeword is nL digits long, where kL 

is the length of the message sequence, To state it other

wise, the codeword lasts for as long as the encoder is in 

operation. 

Hence, for a kL-digi t message, a block encoder will 

transmit L codewords, while a convolutional encoder only 

one. Finally, while in a block code the codeword has the 

length of a single channel block (i.e. n), in a convolution

al code the codeword is nL digits long. 
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2.2 ENCODER 

A (linear)* '(n,k,m) convolutional encoder can be implement

ed with a--k::.input, n-output, linear sequential circuit (LSC) 

with input memory m [2] (see Fig. 2.1). 

(1) 

(2) 

(k) 

Linear 
Sequential 

Circuit 

(1) 

(2) 

(n) 

Figure 2.1: A general linear convolutional encoder with its se

rial-to-parallel and parallel-to-serial interfaces. 

Such an encoder can be realized with k shift registers of 

various lengths and with up to n exclusive-or (X-OR) gates, 

as shown in Fig. 2.2. Note that the length of each shift 

register (SR) varies between 0 and m. In fact: 

Definition 2.1: The length of the longest shift regis-

ter of an encoder, for an (n,k,m) convolutional code, is m; 

for this reason, m is called the memory order. 

(1) .... -{]-----

(2) ..... -{]-----

(k) 

Figure 2. 2: General diagram of a (parallel-in, parallel-out) 

'normal' convolutional encoder. 

I 

* Strictly- speaking,-ccs'are-linear by deftD.1tton sinCi-they are a class of l:iJ;e;r- tree I 
codeaj unless otherwise stated, only linear codes will be considered. 

--------- ~ 
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An encoder for an (n,k,m) convolutional code is called 

normal iff it is realized with k SRa of various lengths and 

n X-OR gates (see Definition 2.9 for a complete 

description), 

2.3 'CONSTRAINT-LENGTH 

It is obvious, from Figures 2.1 & 2.2, that each channel 

block depends on m+1 source blocks, 

Definition 2.2: 
straint-length. 

The quantity N=m+1 is called block con-

I 
Inspection of the encoder of Fig. 2.2, reveals that a 

certain source digit may stay in the encoder for up to m 

time-units (in fact there is at least one shift register in 

which this occurs, according to Definition 2.1); during each 

time-unit, it affects up to n channel digits. Therefore, a 

certain message digit may affect up to (m+1)n channel digits 

(this includes the current block). 

Definition 2.3: The actual constraint-length, nA, of a 

convolutional code is defined as 

n .::. (m+1)n 
A 

(2.1) 

I 
Note that nA participates explicitly in the "noisy-chan

nel coding theorem", as may be seen in the next section. 

Ifli COOING It! !iOffEM 

Theorem 2.1: 
volutional codes: 

The noisy-channel coding theorem, for con-

For any R<C, there exists an (n,k,m) convolutional code 

such that, with maximum likelihood decoding, 
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where: R = k/n = code rate 

C = channel capacity 

P(E) = probability of decoding-error 

nA = actual constraint-length 

Page 21 

(2.2) 

Ec(R) = posit~ve function of R (if R<C), completely 

determined by the channel characteristics 

I 
The bound (2.2) implies that for a fixed code-rate, R, 

arbitrarily small error probabilities can be achieved, by 

increasing the memory order m, or in general by increasing 

the actual constraint-length nA, while keeping the ratio k/n 

constant. 

2.5 COMPARISON BETWEEN THE POLYNOMIAL ANO MATRIX APPROACH 

Many quanti ties will be introduced in the remaincl.e..- of 

this chapter; they include the I/P and the 0/P of the encod

er, of the channel and of other block units of the communi

cations system. These quantities, and the relationships 

among them, can be expressed using either the matrix ap

proach or the polynomial approach to convolutional codes. 

The formal introduction of both appoaches is necessary, 

because both are useful and both are used by various au

thors. On the other hand, complexity and confusion increases 

by a significant amount. Appendix 2.4 (p. 307) explains the 

basic difference between these two approaches and hence 

(partly) alleviates this problem. 

2.6 COPE RATE 

It is clear from Fig. 2.1 that a convolutional encoder 

generates n channel digits for every k message digits. 

Therefore: 

Code rate = R ~ k/n (2.3) 

Nevertheless, the effective code-rate is somewhat smaller 
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than R and their difference becomes negligible, if the mes

sage length L becomes sufficiently large. 

To understand this, consider the general convolutional 

encoder (see Fig. 2.2). At the time the 1st block of k mes

sage digits is applied at the input ports the encoder memory 

should be clear from any past digits; otherwise, the channel 

digits will depend not only on the source digits but also on 

a collection of unknown digits, hence the decoder would be 

unable to uniquely decode, even if there are no channel er

rors. These unknown digits, would reside in the encoder 

memory since the times of the previous message. 

Consequently, each message should be followed by an en

coder-resetting sequence of 'zeros' • Since the longest SR 

has length m {see Definition 2.1) this resetting sequence 

should be made of m blocks of zeros. '*' 

Note 2.1: A message sequence must be terminated with mk 

'zeros' in order to clear the encoder memory (for the next 

message sequence) [2]. 

I 
Consider a message sequence of kL digits. According to 

the conclusion above, kL+km digits must be shifted in the 

enoder and consequently nL+nm channel digits must be trans

mitted. So: 

Note 2.2: The encoding of a kL-digit message results in 

n(L+m) channel digits and this means that 

Effective code-rate = Reff = kL/(nL+nm) 

From eqns (2.3) & (2.4), one can obtain: 

Reff = R/( l+m/L) 

(2.4) 

I 

( 2. 5) 

Note [from eqn (2.5)] that the code rate R is reduced by 

a factor 1/(l+m/L)<l and that 

As L->+.,, Reff->R ( 2. 6) 

Definition 2.4: The ! relative; decrease in code rate is 

called fractional rate loss [2] and equals: 



Section 2.6 

(R-R
0
ff)/R = 1 - L/(L+m) = 1/( 1+L/m) 
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(2.7) 

I 
For example, in order to keep the fractional rate loss 

below 1% 1 the message must be at least 99m blocks long. 

2.7 GENERATOR SEQUENCES 

For the rest of this chapter, and unless otherwise stat

ed, only binary codes will be considered; so instead of 

"digit" the term "bit" will be used, if .appropriate· (note 

that BIT= Binary digiT).: 

Let the response of the encoder's jth output (see Fig. 

2.1), to the binary impulse (1000•••) applied at input i 

( 1:Si:Sk), be represented by the row vector g~•> ( 1:Sj:Sn). 

Since the encoder has an m time-unit memory and no feed

back loops, the impulse response can last for at most m+1 

time-units. 

Definition 2.5: The kn N-tuples g 11 > ( l:Si:Sk & l:Sj:Sn) 
J 

gli) ~ ( gli) gli) • • • g(i)) 
j j,O j,l J 1 111 

( 2. 8) 

are called generator sequences and they specify the code 

completely. 

I 

2. 8 ~ IH!i QtJTPtJT OF A BINARY CONVOLUTIQNAL ENCODER 

For the whole of Chapter 2 1 the terms addition and ~. 

as well as related symbols, will stand, indiscriminately, 

both for ordinary addition and for scalar or vector addition 

over GF(2). Explanations wil be provided only when confusion 

might arise. 

It is well known* that the convolution between the input 

and the impulse response of a linear time-invariant (LT!) 

system, equals the output of the system. The convolutional 

encoder is made of delay elements and X-OR gates (see Fig. 

2.2), hence it is an LT! system. 

* See for example Rabiner & Gold (ll), pp. 12-4. 
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Let the semi-infinite vector, 

ulil.::. (ulil u<il ulil • • •) 
0 1 2 /1:Si:Sk ( 2. 9) 

represent the input (or message, or information) sequence 

at port i of the encoder. From eqn (2.8), the code generator 

sequence glil = ( glil g11 l • • • g< 1l) is the impulse response cor-
j j,O j,l j,• 

responding to I/P i and 0/P j. Hence: 

Note 2. 3: u< 1 >*g~il is the response of the encoder at its 

jth output port (1:Sj:Sn), when the ith input port (1:Si:Sk) is 

excited by u<il and all other ports are held to zero (i.e. 

they receive the all-zero sequence). The symbol '*' denotes 

convolution. 

I 
Consider the case where all k I/P ports are excited by 

the general binary sequences ulil /i=1,2, •.• ,k. Since the 

system is linear, the jth encoder 0/P will be the sum of all 

responses u11 l*g~il. 

Specifically, if the semi-infinite vector, 

v(jl.::. (v<j) v 1Jl v<j) • • •} 
0 1 2 

/1:$j:$n (2.10) 

represents the output (or channel) sequence at port j, then 

k 

v<j) = ~ u< 1 >*g~ 1 l , for all j=1, 2, ••• ,n 
1=1 

(2.11) 

According to the definition of convolution*, u<il*g11l is a 
j 

semi-infinite row vector with elements 

( ul 1 l*g<i>) = ""u!i>g<il /h=0,1,2, ••• 
j h ~ h-z j,z (2.12) 

z 

Since 

vary from 

g (i) = 0 
j ,z , for z<O or z>m [see reln (2,8)], z should 

0 to m. Since also 

(2,9)], h should be kept h>z. 

where 6.;. MIN{h,m}. 

u!il = 0, 
z 

Then eqn 

for z<O [see relation 

(2.12) will give: 

/h= 0. 1 ' 2 ' ••• (2.13) 

* See for example Rabiner & Gold [11), pp. 12-4. 
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Combining equations (2.11) & (2.13) and interchanging the 

order of summation: 

Theorem 2. 2: 

given by, 

The jth bit of the hth channel block is 

where e -
source block 

sequence. 

k 
~ u<ilglil 
.L.I h-z j .z 
i=l 

/h2:0 & j=1,2, ... ,n (2.14) 

MIN{h,m}, u< 1 l is the ith bit of the zth source z 

& glil is the zth bit of the ijth code generator j,z 

I 
The serial input and output sequences are represented by 

the semi-infinite row vectors u and v, respectively: 

u ..::. [ u 0 , u 1 , ••• , uh, ••• ] 

v ~ [v0 ,v1 , ••• ,vh, ... ] 

/u ..::. (uO> u<2> 
h h h 

/V ..::, (vOl v<2l 
h h h 

... (2.15) 

(2.16) 

Careful inspection of eqn (2.14) reveals the following: 

Note 2.4: 

the formation 

Source blocks 

of vljl unless 
h ' 

source blocks participate. 

uh' uh-1' ••• ' uh-m participate in 

hSm in which case all the past 

I 
Note 2.5: A particular source bit, say, u~il takes part 

in the calculation of a particular channel bit, say, v~jl if, 

and only if, g~~~-z = 1. 

I 

2. 9 DISTANCE MEASURES FOR CQtiVOWTlONAL CODES 

The material on distance measures is given in Appendix 

2.5 (p. 309) because, alhough it is an important part of 

convolutional-code theory, it is not directly useful to this 

thesis. 
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A MATRIX EQVAJIQN EQR THE bJH CHANNEL SLQCK 

The objective of this section is to derive a matrix eqn 

for the hth output block vh. The derivation is important for 

three reasons: Firstly, this matrix eqn does not seem to 

appear in the literature [although, of course, the result is 

certainly well-known and appears in other forms like in eqn 

(2.14) and in polynomial expressions]. Secondly, the genera

tor matrix of the code (see Section 2.11) can be easily de

duced from the above-mentioned matrix equation. Thirdly, it 

assists the reader to improve his/her understanding of the 

structure of convolutional codes. 

Consider reln (2.14), which gives the jth bit of the hth 

channel block. Note that the inner summation in (2.14) can 

be replaced by the dot product of two vectors: 

k 

For h-z~O, z~O & 1~j~n: ""u!ilg(il - u g 
~ h-z j,z - h-z j,z 
1=1 

where: g A (gill gC2) • • • gCkl )T 
j,z- j,z j,z j,z 

(2.17a) 

(2.17b) 

Note that u~z is defined by eqn (2.15). Upon combin1ng 

(2.17a) with (2.14): 

e 
If a~ MIN{h,m}: vhCjl = ""u g /h~O & 1~j~n 

~ h-z j,z 
z=O 

Expanding the summation in the above equation, 

vCll = 
h 

v<2l = 
h 

... 
••• 

............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
v<nl - U g + U g + • • • + U 9 h - h-• n,a h-m+l n,a-1 h n,O 

> 

(2.18) 

(2.19) 

It is understood that, in (2.19), h=0,1,2, ••• and ux=O 

for x<O. The system of equations in (2.19) can be written in 

matrix form: 
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••• 
(2.20) ................ . . . . . . . . . . . . . . . . 

where h=0,1,2,... and ux = 0 if x<O. 

The matrix equation above can be written in a simpler 

form, if the following notation is adopted: 

For z=O,l, ... ,m: 

Combining eqns (2.20) & (2.21): 

where h=0,1,2, ••• and u = 0 if x < 0 • 
X 

(2.21) 

(2.22) 

Note 2. 6: Matrix equation ( 2. 22) relates the hth chan-

nel block with the current and the past m message (source) 

blocks, through a (kN) X n system matrix (made of the coef

ficients of the encoder's impulse responses). 

I 
Examining eqn (2.21), one can easily deduce [using eqn 

(2.17b)] that 

gill gill ••• g<ll 
l,z 2,z n,z 

gl2l g<2l • • • gl2l 
For all z=O,l, .. ,m: G = l,z 2,z n,z (2.23) z 

• • • • • • • • 
• • • • • . . • 
g<kl. glkl ... g<kl 

l.z 2,z n,z 

Finally, using a theorem on tne multiplication of parti-
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tioned matrices (see Appendix 2.6, p. 311), matrix equation 

(2.22) can be written in a more compact form: 

For h~O & a ~ MIN{h,m}: 
8 

Vb: ~ Ub-zGz 
z=O 

(2.24) 

It is the opinion of the author that matrix equations 

(2.22) & (2.24) are more useful for the representation of 

the encoder 0/P, than any other expression found in any of 

the textbooks (Lin & Costello [2), Blahut [10), Lin [12), 

Clark & Cain [13), Wiggert [14), Peterson & Weldon [15), 

Lucky et al [16), Heller [17) & Massey [18),[19)) or papers 

( Forney [ 20 ), [ 21)) known to the author and discussing the 

matrix (or polynomial} theory of convolutional codes. 

A NOYEL APPROACH TO ]HE GENERATOR MAIRIX 

The objective of this section is to develop a matrix 

equation for an arbitrary and finite portion 

[ vh, vh+l' ••• , vhu: l of the channel sequence v, where h & x are 

nonnegative integers. This will be related to the corre

sponding message sequence through a system matrix, denoted 

by [G)~. What is called generator matrix in the literature, 

will be readily obtained from [G)~, if h=O and x-->+m. For a 

proof of the following theorem see Appendix 2.7 (p. 312): 

Theorem 2.3: Consider an (n,k,m) convolutional code. 

Let vh denote the hth channel n-tuple and uh the hth source 

k-tuple. For h~O, x~O and a~ MIN{h,m}: 

If (2.25a) 

(2.25b) 

• • • 

• • • 
and (2.25c) ............. 

• • • • • • • • • • • • • 
G G • • • G 
~x -x+l 0 
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then (2.26) 

where G1 is specified by eqn (2.23) and it is understood 

that G1 = 0 for i~[O,m]. 

I 
In eqn 

[u]~ is a 

(x+1+e) x 

(2.26), [V]~ 

1 x (x+l+e) 

is a 1 X (x+1) matrix of n-tup1es, 

matrix of k-tuples and [G]~ is an 

(x+1) matrix of k x n submatrices. 

The following results are special cases of eqn (2.26): 

Lemma 2.1: For h2:m and x2:0: 

G• 0 0 

G G • • 0 •-1 • 

••••••••••• . . . . . . . . . . . 
0 0 • • G 

0 

(2.27) 

Proof: It follows from eqns (2.25) & (2.26), noting that e 

~ MIN{m,h} =m and G
1 

= 0 for i~[O,m]. 

I 
Lemma 2.2: For all h2:m & h'2:m and x2:0: 

(2.28) 

Proof: It follows from inspection of eqn (2.27). 

I 
Lemma 2.3: If G1=0 for i<O, for x2:0 & h2:0 /x+h~m: 

• • • 

• • • 
(2.29) 

••••••••••••• . . . . . . . . . . . . . 
G G • • • G -x -xtl 0 

Proof: It follows from (2.25) & (2.26), noting that x+h~m 

and e ~ MIN{h,m} = h. 

I 
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Lemma 2.4: For all x~O: 

Go Gl •• • Gx 

0 G • • • G 0 x-1 ........... (2.30) . . . . . . . . . . . 
0 0 • • • G 

0 

where G1=0 if i<O or i>m. 

Proof: It follows from (2.25) & (2.26), if h=O (in which 

case a~ MIN{O,m} = 0). 

I 
Definition 2.6: The generator matrix, G, is defined by: 

G ~ LIM [G] 0 

x->+• x 
(2.31) 

I 
Using the definitions of G and [G]~, one can obtain the 

following well-known form of the generator matrix (the ele

ments outside the boxes are all zeros). 

(2.32) 

a .. 1 a •. . . . G '" a,._; ~ .... ..... 2 

.G ... ll . G ... 2 a .. ; a • " 
'Y' '" ' ., ' -- -~ ' •.. ''·' . ~ . • ,,•,,•,, 

• __ ,.,. • ,•.,,,, .. ; •"• 

• • • ~ ... 
a-- . • . ... 1 

9 .. 2 
( '" ~ . 

a··· .. · a .. G . a'l.'. 
I} 1" :2-- s ' 

G""'' a ..... G""' 
I} j ~ " G .. ,. .... a','',,'' 

I} ' 1 

a''•"' I} 

G = 

• '' 

• ' '' 
.~ ........ 
a~~ 

' 1 ... 

G., --

Theorem 2.4: V = UG (2.33) 
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Proof: It follows from (2.30), if xis left to -->+m and 

if the definitions of G (2.6) and V & u [eqns (2.15) & 

(2.16), respectively] are employed. 

I 
Matrix equation (2.30) appears also in Lin & Costello [2] 

(Sec. 10.3), in the discussion on minimum distance. But eqn 

(2.30) is a special case of Theorem 2.3; it represents orig

inal work and, to the best of the author's knowledge, it 

does not appear in any publication. On the other hand, Theo

rem 2.3 is not a new result; it is simply another way to 

look at the same thing. But the theorem certainly improves 

the presentation of convolutional codes because it is more 

general (it includes v=uG) and at the same time more specif

ic (it offers controls that permit 'zooming' onto spe

cific portions of the encoder's output sequence). Finally, 

note that this result (as well as preceding ones) follows 

analytically from the concept of the impulse response of a 

linear time-invariant ciruit (see Section 2.8). 

2.12 GENERATOR ?OLYNQMIALS 

The objective of this section is to introduce the reader 

to the polynomial approach to convolutional codes. 

Let the coefficients of polynomials in D represent the 

various binary sequences. In accordance with the notation 

previously introduced, 

For i=1,2, ••• ,k, the ith message polynomial is defined by 

A - (2.34) 

For j=1,2, •.. ,n, the jth channel polynomial is defined by 

A - ... (2.35) 

The
1
indeterminate D can be interpreted as a delay opera

tor, the power of D denoting the number of time-units a bit 

is delayed with respect to the initial bit, in the sequence 

[2]. It can be shown (see Appendix 2.8, p. 313) that, 
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k 

yW(D) = ~ uUl(D)g~il(D) (2.36) 
i•l 

9 u>(n) .::. gCil + gU>n + ••• + gu>n• /l:Sj:Sn & l:Si:Sk 
j j,O j,l j,m (2.37) 

Definition 2.7: The kn polynomials g~il (D), defined in 

(2.37), are called the generator polynomials of the corre

sponding code and they completely specify the code. 

I 
A comparison between the generator sequences [eqn (2.8)] 

and the generator polynomials [eqn (2.37)] reveals that: 

~N~o~t~e~2~.~7: The coefficients of the generator polynomial 

g~il(D), form the generator sequence g (i) 

j ' 
for i=1,2, .•• ,k & 

j=1,2, ... ,n. 

I 

1 2 3 

1-------- yOl(D) 

From other SR's 

Figure 2.3: The ith SR with connections to the jth gate (l:Si!9t & 

l:;;j :sn) • 

The generator polynomials can be easily deduced from the 

inspection of the circuit diagram of the normal encoder*. 

According to Note 2.5, in order to determine gjCil /z=O,l, .•• ,z 
,m, one should examine the connections from the ith SR to 

* See Note 2.9. 
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the jth gate (see Fig, 2.3), 

Note 2.8: 

is 1 iff there 

For a normal encoder realization, g(jil /O~z~m ,z 
is a connection from the 0/P of the zth stage 

of the ith SR (lSiSk), to the jth X-OR gate (lSjSn), It is 

understood that the 0/P of the zeroth stage is the I/P of 

the SR. 

It can be easily deduced that, 

Length of the ith SR = M
1 = MAX {degg~1>(n)} 

I!J!n 

and 

2.13 GEHERATQR-POLYNQMIAL MATRIX 

Expanding the system of eqns (2.36): 

y(ll (D) = uO> (D) g~1 l (D )+u(Zl (D )g~2 l (D)+ • • • +u(kl (D) g~kl (D) 

v(Zl (D) = um (D) 9~11 (D) +u(Zl (D) 9~21 (D)+ • • • +u(kl (D) g~kl (D) 

..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

System (2,40) can be written in matr1x form: 

where: 

G(D) 

V(D) = U(D)G(D) 

U(D) .::0 [ uOl(D) ,u( 2 l(D),,,, ,u(kl(D)] 

V( D) .::0 [ vm(D) ,v(2 l(D),,,, ,v(nl(D)] 

A -
g11l(D) 

g~Zl(D) 

g~ll(D) 

g~Zl (D) 

... gO>(n) 
n 

.. , g(Zl(D) 
n 

•••••••••••••••••••• 
• • • • • • • • • • • • • • • • • • • • 

I 

(2.38) 

(2.39) 

(2.40) 

(2.41a) 

(2.4lb) 

(2.41c) 

(2.4ld) 
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Definition 2.8: The k x n matrix G(D) of generator 

polynomials with ith-row, jth-column, entry g~ 1 l(o), is cal

led the generator-polynomial matrix*. 

I 

2.14 NORMAL ENCODER 

The generator-polynomial matrix G(D) offers a very com

pact description of the code and also an easy way to deduce 

the normal encoder, which is defined below. 

Definition 2.9: Let G(D) be a k x n matrix of polynomi-

als in D. Then, the normal encoder corresponding to G(D) is 

made of k shift registers and n X-OR gates. The I/P of the 

ith SR is the ith (l~i~k) I/P port, while the 0/P of the jth 

gate is the jth (l~j~n) 0/P port. The length of the ith SR 

is the maximum exponent of D, along the ith row of G(D) [as 

defined by eqn (2.38)]. 

I 
The following supplementary results are easily obtained: 

Note 2. 9: With respect to the normal encoder, corre-

spending to the k X n generator-polynomial matrix G(D): 

The number of inputs to the jth gate (l~j~n) equals the 

number of non-zero polynomial terms along the jth column. 

The connections to the jth gate are determined by the jth 

column of G(D) (l~j~n). Specifically, g~ 1 l(D) determines the 
' contributions from the ith SR to the jth gate. In particu-

lar, a connection from the 0/P of the hth stage (OSh~m) of 

the ith SR (lSiSk) to the jth gate (l~j~n) exists iff the 

coefficient of oh, in g~1 l(D), is non-zero. 

I 
Note that the type of encoder which was called normal, 

above, has been given other names by various authors. For 

example, Lin &. Costello (see [ 2], p. 305) use the name 

straightforward, while Forney (see [20] & [21]) uses the 

terms obvious and controller canonical form (the latter term 

* Lin & Costello [2] call it, transfer function .atr1K. 
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is used in system theory). Note also that there exists 

another type of standardized encoder which was introduced by 

Massey [18], in 1963. This encoder will be introduced after 

the discussion about systematic codes (see Section 2.18). 

Appendix 2.9 (p. 314) illustrates the construction of 3 

normal encoders, given their generator-polynomial matrices. 

2.15 CATASTROPHIC CQDES 

There are several convolutional codes for which a message 

sequence of infinite Hamming weight might produce a channel 

sequence of finite Hamming weight; if the latter is corrupt

ed by a few channel errors it can be transformed into anoth

er codeword corresponding to a message sequence of finite 

Hamming weight. In such a case, the original and the decoded 

message sequences will differ in an infinite number of 

places. Such codes are called catastrophic, and are br1efly 

discussed in Appendix 2.10 (p, 317), 

2.16 SERIAL ENCOPER 

Expressions for serial bit-streams in to, and out of, the 

encoder are obviously useful and constitute a part of the 

theory of convolutional codes. Nevertheless, the parallel

in, parallel-out, approach is much more useful in describing 

their structure. In any case, the serial bit-stream expres

sions are not useful for the development of this thesis. For 

this reason, the relevant theory (of composite generator

polynomials) is given in Appendix 2.11 (p. 320), 

2.17 .SYSTEMATIC' CONVOLUTIONAL CODES 

Definition 2.10: An (n,k,m) convolutional code is 

called systematic iff the first k output polynomials vC 11 (D), 

vC 2>(n), ••• ,vCkl(D) equal the k input polynomials u 01 (D), 

uC2l(D),,,, ,uCkl(D), 
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For i=1,2, ... ,k: (2.42) 

I 
The objective of this section is to restate the main re

sults, so far, simplified for systematic codes. 

2.11.1. GeneraU>r Matrix 

Its basic building block is the k X 

.,m, whose ijth element (1SiSk & 1SjSn) 

(2.21) & (2.23)]. 

_It can be proved that: 

n matrix Gz /z=O, 1, •• 

is g<j•> [see equations ,z 

Theorem 2.5: For systematic convolutional codes, 

-{ 
where I is the k x k identity matrix 

0 is the k x k all-zero matrix 

(2.43) 

& Pz /z=0,1, ••• ,m, is the k X (n-k) submatrix of Gz, 

made of columns k+1,k+2, .•. ,n. 

Proof: See Appendix 2.12, p. 323. 

I 
Theorem 2.6: If I is the k X k 

the k X k all-zero matrix and Pz is 

matrix (z~O), given below, 

identity matrix, 0 is 

the k X (n-k) system 

(1) (1) ••• gill 
gk+l,z gkt2 1z n,z 

(2) (2) ••• g<2) 

For all z=O,l, •. ,m: p = glt+l,z gk+2,z n,z (2.44) z 
• • • • • • • • • . • • • • • . ' . • 

(k) (lt) ••• g(k) 
gk+l,z gk+2 ,z n,z 

then the generator matrix G has the form: 
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(2.45) 

I P0 0 p1 0 p:i ••• 0 P,._1 0 P. 

I PO 0 p ••• 
1 0 P ... z 0 P ... 1 0 P. . • . . 

• • 
• • 

I PO 0 pl 0 P2 

I Po 0 pi 
G = I P0 • • • 0 P. 

0 P.,_1 
• . 

Proof: The form of G follows from Theorem 2.5 and eqn 

(2.32), while the form of Pz from eqn (2.23). 

I 

2.17.2. The Outout ~f the Encoder 

Lemma 2. 5: For an (n,k,m) systematic convolutional 

code, 

9 

~ uh-zpz /h!!:O (2.46) 
z=O 

where a~ MIN{h,m}. 

Proof: It follows from eqn (C) of Appendix 2.12 (p. 323). 

I 
Lemma 2. 6: For an (n,k,m) systematic convolutional 

code, 

v<k+Jl = 
h 

9 

~ 
z=O 

vU>:u<1> /i=1,2, •• ,,k 
h h 

k 

"" u<1>g<1l 
~ h-z k+j,z 
1•1 

/j=1,2, ••• ,n-k 

where h!!:O and a~ MIN{h,m}. 

(2,47a) 

(2.47b) 

Proof: It follows from the definition of systematic codes 

and eqns ( 2. 45) & ( 2. 46). 

I 
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2.17.3. GeneraU)r Sequences 

The generator sequences g~1 > /i=1,2, ••• ,k & j=1,2, ••• ,n 

[see eqn (2.8)] are made of the elements of the k x n ma

trices Gz /z=O,l, ••• ,m [see eqn (2.23)]. Indeed the ijth 

element of G [gj!il] is the (z+1 )th element of gJU>. z ,z 
.- - Tlie-orem- 2.5 states that, -,for systematic convoluti;;nait 

codes,· all the elements in. the first k .columns of G · /z=O, 1, i z 

.. ,m· are zero, apart· from t~e.d1agonal, g~~~. g~~~·-· •• , gi~~,;, ofl 

G0 • It follows "then· that· the generator' sequences g~O I j=1; 2,: 

k ' t f ·• gCl) , g!2) (k) h · h · .. , , are zer?, excep. rom 1 , 2 , ••• , gk , w 1c are 1m-
1 

'pulsive.-The.following theorem has been proved: 

Theorem 2. 7: For an (n,k,m) systematic convolutional 

code, the generator sequences, g~i> /i=1,2, ••• ,k, have the 

form below: 

-E 
0 if j;ii & 1~j~k 

t' gCi) (1 0 0 0) if i=j & 1~j~k (2.48) j 

( g!i) g<il ••• gCi)) if k<j~n j,D j,l j,m 

I 
Using the above result and Definition 2.5, one can easily 

prove the following: 

Lemma 2.7: A systematic convolutional code is complete-

1 . f. d b . t k( k) t (i) (1) (1) y spec1 1e y 1 s n- genera or sequences gk+l, gk+Z, •• •, 9n 

/i=1,2, ••• ,k. 

I 

2.17.4. §enerator PQlvnomiaJs 

Lemma 2.8: For an (n,k,m) systematic convolutional 

code, the generator polynomials g~ 1>(o) /i=1,2, ••• ,k, have 

the following form [~(z) = 0 if z;iO and ~(0) = 1]: 

oj"(D) { 

~(i-j) if 1~j~k I_ 

if k<j~n _____r--> 
(2.49) 
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Proof: It follows from Note 2.7 & Theorem 2.7. 

I 

2.17.5. Generator-polynomial Matrix 

Using Definition 2.8, of the generator-polynomial matrix 

[see also reln (2.4ld)] and Lemma 2.8, the following is 

easily proved: 

Lemma 2. 9: For an (n,k,m) systematic convolutional 

code, the generator-polynomial matrix has the form 

G(D) = [I,P(Dl] (2.50) 

where I is the k x k identity matrix and P(D) is the 

k x (n-k) polynomial matrix 

g<ll(D) g<ll (D) ••• g<ll(D) 
k+l k+2 n 

g<2l(D) g<2l (D) ••• g<2l(D) 
P(D) = k+l k+2 n (2.51) ..................... . . . . . . . . . . . . . . . . . . . . . 

g<kl(D) g<kl (D) ••• g<tl (D) 
k+l k+2 n 

I 

2.17.6. Composite Generator-PolYnomjals 

See Appendix 2.13 (p. 323). 

2.17.7. Encoder 

Since the generator polynomial matrix, for the first k 

outputs, is the k X k identity matrix [see eqn (2.58)] the 

first k 0/Psare identical with the k I/Ps (see Fig. 2.4). 

Note 2.10: A normal encoder for an (n,k,m) systematic 

convolutional code is implemented with a k-input, (n-k)

output, LSC containing at most n-k X-OR gates, and k shift 

registers of lengths varying between 0 and m stages. 

I 
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(1) (1) 

(2) (2) 

. . . . 
(t) (t) 

(t+1) 

l.SC with (t+2) 

Transfer . . 
Function . 

P(D) (n) 

F 1 gure 2. 4: Systematic convolutlonal encoder. 

2.17.8. Non-Catastrophic Codes 

Theorem 2.8: Every systematic convolutional code is 

non-catastrophic. 

Proof: From eqn (2.50), the first k x k submatrix of the 

generator-polynomial matrix, G(D), is the identity matrix I, 

whose determinant is, of course, equal to 1. Then ~1 (D), of 

Theorem A2.10.2, is 1 and so gcd[1,~1 (D) /2SiSC(n,k)] = 1 = 
D0 • Then, the systematic convolutional encoder has an FF 

inverse and hence the code is non-catastrophic (see Theorems 

A2.10.1 & A2.10.2, pp. 317-8). 

QED 

2.18 ' TYPE-II ENCOPER 

Consider the normal encoder of Fig, A2.9.3 (p. 316), It 

has 4 SR stages (hence its state-transition diagram has 16 

states) but, it may be illustrated that the corresponding 

code can be realized via a 2-SR stage encoder. It will be

come clear, in the next chapter, that a reduction of the 

number of SR stages is highly desirable since the complexity 

of the Viterbt, (and other decoding algorithms) strongly de-
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pends on this number. 

In most of the cases, the normal encoder uses the minimum 

number of SR stages. In some cases another type of encoder 

offers reduced complexity. For example, with systematic 

rate-(n-1)/n codes, Massey's ([18], p. 23) type-II encoder 

uses one SR of length m, instead of n-1 SRs of lengths be

tween 0 & m. In what follows, the above observations will be 

systematized. Note though that the results will concern the 

general (non-systematic) case. Although the encoder to be 

introduced below is not minimal (i.e. using the minimum num

ber of SR stages) unless at least the code is systematic and 

n-k < k. Nevertheless, it was felt that a specialization 

for the systematic case only would introduce an unecessary 

restriction. 

Definition 2.11: Let G(D) be a k x n matrix of polyno-

mials in D. Then, the type-II encoder corresponding to G(D) 

is made of n shift registers (SRs) and a number of X-OR 

gates interspersed among the stages of the SRs. The jth SR 

ends in an X-OR gate whose 0/P is the jth 0/P port (1SjSn). 

The length (number of stages), Mj, of the jth SR is the 

maximum exponent of D, along the jth column of G(D): 

Length of the jth SR = Mj .::. MAX {aegg11>(ol} 
ISHt j 

(2.52) 

I 
A comparison between the normal and the type-II encoders 

reveals that while the former's SRs are defined by the rows 

of G(D), the latter's SRs are defined by its columns. In 

both cases, the n 0/P ports are the 0/Ps of n X-OR gates. 

Finally, in the normal encoder the connections are from the 

various stages of the SRs to the n X-OR gates, while in the 

type-II encoder from the k I/P ports to the stages of the 

SRs, via the X-OR gates (see Fig. 2.5, below). 

The following supplementary results are easily obtained: 

Note 2.11: With respect to the type-II encoder, corre

sponding to the k x n polynomial-generator matrix G(D): 

The maximum number of gates along the jth SR is Mj + 1 

(see Fig. 2.5). The jth column (1SjSn) of G(D) describes the 
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connections to the jth SR, while the ith row (1SiSk) de

scribes the connections from u!il(D). 

The number of inputs to the hth gate of the jth SR (1SjSn 

& OShSMJ) is equal to the number of non-zero coefficients of 

Db along the jth column of G(D) (note that the gates are 

counted from right to left - see Fig. 2.5). Note finally 

that, gates number 0,1, •.• ,~-1 have one more I/P, from the 

previous stage of the SR. Obviously, gates with one I/P do 

not exist. 

A connection from the ith I/P port u(il(D) (1SiSk) to the 

hth gate of the jth SR (1SjSn I 0ShSM
3

) exists iff the coef

ficient of Db in 9/1'(D) is non-zero. 

I 

u< 1 'CD) 

u(2JCD) 

u< kJCD) 

.4 ·EJ .4 ·5J .4 ' vtl 'CD> 
MI M(2 2 I 0 

4 [] .4 {] .4 .4 ·Ea .4 ·[;] .4 ( 2)CD) .... ' V 
M2 Mzt M2 z 2 I 0 

4 {] .4 {] .4 .4 ·D .4 ·[;] .4 <•to) I ••' ' V 
M a M·l M·2 2 1 0 • • 

Figure 2.5: General diagram of a type-II convolutional encoder. 

Note that the type-II encoder has n-k more SRs than the 

normal one. The number of 0/P gates is the same (i.e. n), 

while the type-II encoder has a great number of extra gates 
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dispersed among the stages of the SRs. Although a proof is 

required, in order to be certain, it is safe to state that 

for a non-systematic code it is unlikely that the type-!! 

encoder is minimal (i.e. with the minimum number of SR 

stages). That is not the case, though, with systematic 

codes, and especially when n-k < k, or the same, R > 1/2. 

Note 2.12: A type-!! encoder, for an (n,k,m) systematic 

convolutional code, can be implemented with a k-input, 

(n-k)-output, linear sequential circuit, containing n-k SRs 

and a number of X-OR gates. 

I 
In Appendix 2.14 (p. 324) the type-!! encoder, corre

sponding to the code of Example A2.9.3 (p. 316), is de

veloped. Consider the savings obtained through the adoption 

of the type-!! encoder. The normal encoder has 24 = 16 

states, while the type-!! encoder has only 22 = 4 states 

(for a formal treatment of the encoder state-diagram, see 

Section 3.2, pp. 55-64). 

One question remains to be answered, before the conclu

sion of the current section. Given the code polynomial-gen

erator matrix G(D), which of the two types of encoder should 

be used? 

Before attempting to answer the question above, one has 

to decide which (if any) is more important, the gates or the 

SR stages? It is rather obvious that the total number of SR 

stages is a 'fair' measure of the complexity of an encoder. 

In any case, the complexity of the trellis increases expo

nentially with the total number of encoder SR-stages. 

The complexity measure is therefore M1+M2+• • •+Mk for the 

normal encoder [see (2.38)], and M1+M2+•••+M
0 

for the type-!! 

encoder [see (2.52)]. Hence, the following theorem: 

Theorem 2.9: Let G(D) = [g~1>(D)] /i=1,2, ••• ,k & j=1,2, 

••• , n be a generator-polynomial matrix. Then corresponding 

to G(D), the type-!! encoder is less complex than the normal 

one if, and only if, 
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n 

:E 
J=l 

MAX { deggJ(i) (D)} 
l~i!t < 

1•1 

MAX {degg~1 >(nl} 
l!j~ 

2.1~ PARITY-CHECK fOLYNQMIAL MATRIX 

Page 44 

(2.53) 

I 

Definition 2.12: The parity-check polynomial matrix 

associated with the k x n generator-polynomial matrix G(D), 
is any full-rank (n-k) x n matrix H(D) of polynomials with 

elements in GF(p4 )*, satisfying ([24]): 

(2.54) 

I 
Theorem 2.10: Let G(D) = [Ik,P(D)] be the generator-

polynomial matrix of an (n,k,m) systematic convolutional 

code. The parity-check polynomial matrix H(D), associated 

with G(D), has the general form: 

(2.55) 

where X(D) is any nonsingular (n-k) x (n-k) matrix of 

polynomials over GF(p4
). 

Proof: See Appendix 2.15 (p. 325). 

I 
Note 2. 13: The parity-check polynomial matrix is not 

unique, as is obvious from the previous theorem. 

Lemma 2.10: 
ed with G(D) = 

I 
A parity-check polynomial matrix, associat

[Ik,P(D)], over GF(2), has the form: 

Proof: It follows from Theorem 2.10, if X(D) = In-k (I is 

nonsingular) and noting that -P(D) = P(D) over GF(2). 

I 
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2.2() PABITY-CHECK MATRIX 

The definition given below is a modification of the def~

nition proposed by Blahut [10], for the parity-check matrix. 

Definition 2.13: Let G be the generator matrix for an 

(n,k,m) convolutional code. A parity-check matrix is any 

matrix H determined as following: 

(2.57) 

where [H]z is a (z+l) x (z+l) matrix of the submatrices 

h1 ,j /O:Si:Sz & O:Sj:Sz. h1 ,J are (n-k) x n matrices with elements 

in GF(p") and [H]z satisfies the following condition: 

/z=0,1,2, ••• (2.58) 

where [G]: is defined by eqn (2.25c). 

Theorem 2. 11 : A parity-check 

systematic convolutional code, has 

pT 
l) -I 

pT 
1 0 pT 

0 -I 

pT 
2 0 pT 

1 0 pT 
0 -I 

H = pT 0 P!-,1 0 P!..z 0 . . . 
• 

pT 0 P!_t 0 • • • • 
pT 0 • • • • 

I 
matrix H, for an (n,k,m) 

the following form*: 

pT -I ... (2.59) 0 

pT :Q ••• 1 

pT 
2 0 ••• 

where P
1 

/i=O,l, ... ,m are k X (n-k) submatrices defined 

by eqn (2.44), I is the (n-k) X (n-k) identity matrix & 0 is 

the (n-k) x (n-k) all-zero matrix; the elements of all subma

trices belong to GF(p"). 

\ * Non-binary cOdes • are now colistdered.' 
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Proof: It can be easily verified that GHT = 0; G is given 

by eqn (2.45). 

I 
Theorem 2.12: Let G be the generator matrix for an 

(n,k,m) systematic convolutional code. A parity-check matrix 

associated with G has the following form: 

H 

where 

G -0 -

and G -i -

pi= 

A - LIM [H]., 
!->+• 

[rt,Po] 
[o. Pt) /1SiSm 

0 /i>m 

Proof: See Appendix 2.16 (p. 326). 

SytjOROME 

(2.60a) 

z<:l (2.60b) 

(2.60c) 

-+-> (2.60d) 

I 

Let u and v denote the semi-infinite source and channel 

sequences, respectively [see eqns (2.15) & (2.16)]. Consider 

the following semi-infinite sequences (see also Fig. 1.3a): 

Received sequence: r .::. [ r 0 , r 1 , r 2 , ... ] (2.61a) 

where ri 
A ( r<ll r<Zl rln)) (2.61b) - ••• i i 

Channel-error sequence: e .::. [ e 0 , e1 , e 2 , ••• ] (2.62a) 

where ei 
A ( e<ll e<Z> ••• eln)) (2.62b) - i i 

Estimated information sequence: il .::. [ 00 , il1 , il2 , ••• ] (2.63) 
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Note that if the transmitted sequence V is corrupted by 
additive noise, only, 

Definition 2.14: 

is defined by: 

r = v + e 

The syndrome sequence 

/Si ~ ( sfll sf2> • • • sln-k)) 

S ~ rHT 

(2.64) 

(2,65a) 

(2.65b) 

I 
Theorem 2.13: If e is the error sequence, in a channel 

with additive noise, then: 

(2.66) 

Proof: From Theorem 2.4, v = uG -> vHT = (uG)HT = u(GHT) 

[using Definition 2.13] -> (2.67) 

If the channel suffers from additive noise: 

= (v+e)HT [by (2.64) & (2.65)] -> 

[and using (2.67)] -> 
QED 

The above results can also be given in polynomial nota

tion. Let: 

Received polynomial: 

R(D) ~ [ r(l>(D), r12>(D), ... , rCn>(D)] (2.68a) 

where (2.68b) 

Channel-error polynomial: 

E(D) ~ [ e<ll(D) ,e<2>(D), ••• ,e<n>(D)] (2.69a) 

where (2.69b) 

V(D) & U(D) are defined by (2.41), 

If the noise in the channel is additive, then 

R(D) = V(D) + E(D) (2.70) 

Following Defin~tion 2.14, one may write: 
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S(D) = R(D)HT(D) (2.71) 

Note that R(D) is a 1 X n vector and H(D) is an (n-k) x n 

matrix, so S(D) is a 1 x (n-k) vector of polynomials: 

Syndrome polynomial: 

S(D) .::. [ s 111 (D) ,s12 >(o), ••• ,s<n>(o)] (2.72a) 

where s!i> (D) .::. s 111 + s 111D + s!i>oz + • • • 
0 1 2 (2.72b) 

Theorem 2.14: In a channel with additive noise, 

S(D) = E(D)HT(D) (2.73) 

Proof: Similar to Theorem 2.13. 

I 
Lemma 2. 11: Let H(D) = [-P(D),I

0
_k] be the parity-check 

polynomial matrix of an (n,k,m) systematic convolutional 

code. Then: 

S(D) = RP(D)-R'"(D)P(D) = EP(D)-E'"(D)P(D) 

where: R'"(D) .::. [ r 111 (D), r< 21 (D), .•• , r<~<>(o)] 

RP( D) .::. [ rO<•l>(o) ,r<t•2>(o) • •.• ,r<n>(o) ] 

E•(o) ~ [ e<1>(o) ,e<2>(o), ••• ,e<k>(o)] 

and EP (D) .::. [ e<k+l > (D) , e<~<•2 > (D) , .•• , e<n> (D) ] 

Proof: The result, above, follows easily from 

& (2.71). 

(2.74a) 

(2.74b) 

(2.74c) 

(2.74d) 

(2.74e) 

eqns (2.70) 

I 
Consider the product, [ r<1>(o), r< 2>(o), ••• , r<k>(o) ]P(D). 

Using the partition of P(D) 

(i=1,2, ... ,k & J=1,2, ... ,n-k) 

arrives at the following: 

into the polynomials 

[see eqn ( 2. 51 ) ] , one 

g<il(D) 
k+j 

easily 

Lemma 2. 12: For an (n,k,m) systematic convolutional 

code, the jth /j=1,2, ... ,n-k syndrome polynomial is given 
by: 
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k 
s(jl(D) = r<k+J> (D) - 2: r!1l(D)g<il(D) 

k+J (2.75a) 
1=1 

k 

5 cJ>(D) = elk+J> (D) _ 2:e!il(D)gl1l(D) 
ktj 

(2.75b) 
1=1 

I 
It would be useful to obtain the result of Lemma 2.12 in 

non-polynomial form. This can be achieved by replacing the 

polynomials in D1 in relation (2.75) 1 with the corresponding 

sums of terms: 

I I 
' I 

(2) i \ 
• I I 
• I I 
· I I 

(t) \ I 
V 

(1) 

(2) 

ENCODER 

(k) 

(n) .•.• (k+2) (k+l) 

(k+l) •'• \ \ ~ fl) 
11 ~I 
I I I 
I I 

1
• 

I I 
I I I 
' I 
I I I 
' I I 

(k+2) I ! ~) 
I I 

I I 
I I 
I l 
i ! 
I I 

I I 
en) I I 

,< p) ......... -
~+. 

y 

~:I 

\I 
i i 
11 '. I I 

i i 
I I 

d 
. (?-t) 

Syndrome Register 

··+•·l ·~ 

Figure 2. 6: The syndrome portion of a decoder for an (n 1 k 1 m) 

binary systematic convolutional code. 
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Theorem 2. 1 5: For 

code, the jth syndrome 

given by: 

9 
s(jl = r<k+Jl -

h h ~ 
z=O 

9 
s<Jl = e<k+Jl -

h h ~ 
z=O 

where 9 ~ MIN{h,m}. 
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an (n,k,m) systematic convolutional 

digit of the hth received block is 

k 

~rU>g<il 
h·z k+j,z /1SjSn-k & h~O (2.76a) 

i=l 

k 
~e(ilgUl 

h-z k+j,z /1SjSn-k & h~O (2.76b) 
i=l 

Proof: See Appendix 2.17 (p, 328), 

I 
If one compares eqn (2.47) with eqn (2.76), one readily 

concludes that the syndrome bits can be calculated by re

encoding the received message bits and adding the last n-k 

bits of the re-encoded received block, to the n-k received 

parity-check bits, as shown in Fig, 2.6. 

2.22 CONCLUSIONS 

This chapter contains the theory of convolutional codes 

(CCs). In Section 2.1, an (n,k,m) CC was defined as an er

ror-correcting code whose current channel block depends on 

the current and the past m message blocks. In other words, a 

CC is a generalized block code. Furthermore, it was argued 

that an encoder, for a CC, may be implemented with a k-in, 

n-out, linear sequential circuit (LSC), made of up to k 

shift registers and up to n X-OR gates (Section 2.2), Such 

an LSC is completely described by a set of kn (m+1)-tuples, 

called the generator sequences (Sec. 2.7), which are the 

impulse responses of the circuit. 

The next logical step was to relate the 0/P with the I/P, 

via the set of generator sequences. To this end, the concept 

of convolution was used justifying, thus, the name of the 

codes. In particular, the 0/P of the encoder's jth port 
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equals the sum of the I/P sequences, each convoluted with 

the corresponding generator sequence [see eqn (2.11)]. 

CC literature uses either the matrix, or the polynomial, 

(or both) approach(es) to the code-theory. Appendix 2.4 il

lustrates (in an original way) the difference between these 

two techniques so that the reader may grasp the reason of 

their existence and their advantages. In the matrix ap

proach, the digits are grouped per block time-unit, while in 

the polynomial approach are grouped per port. Thus, the for

mer technique uses semi-infinite dimensioned matrices of 

submatrices, while the latter uses finite matrices of poly

nomials in o* of infinite degree. Note that this awkward 

'infinite' arises because a CC encoder (unlike a block one) 

generates only one codeword (see Sec. 2. 6) of infinite 

length, when it operates continuously. 

Another piece of original work was developed in Sec. 

2.11. Eqn (2.26) relates an arbitrary, but finite, portion 

of the encoder 0/P (made of blocks h to h+z) to the corre

sponding part of the input sequence (made of blocks h

min{h,m} to h+z) and a finite-dimensioned 'generator matrix' 

[G]~. A number of special cases are also examined and, fi

nally, the generator matrix G is defined to be the limit of 

[G]~, as z --> +m. The importance of [G]~ lies in its fle

xibility. It is a generalization of previous work, but it 

also permits a simple treatment of special cases. 

The corresponding polynomial expressions are easily 

translated from the matrix ones. Furthermore, the 

generator-polynomial matrix, G(D) (also called transfer

function matrix- with good reason), is linked to what was 

called normal encoder (Sec. 2.14). Usually, the normal is 

also the minimal encoder ('exponentially' important for 

trellis decoding). Occasionally, though, the type-II encoder 

is the minimal one, especially if high powers of D concen

trate along relatively few columns of G(D) (Sec. 2.18). 

The results of Sections 2.1-2.16 are simplified for the 

case of systematic codes (Sec. 2.17). The most important 

result is the form of the polynomial-generator matrix, G(D) 

= [It,P(D) ]. 

* D is the delay operator. 
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The parity-check polynomial matrix (Sec. 2.19) is defined 

by G(D)HT(D) = 0. It is not unique and, for systematic 

codes, it has the form H(D) = X(D)[-PT(D) ,In-k], where X(D) 

is any nonsingular matrix. 

The parity-check matrix (Sec. 2.20), H, is defined as the 

limit of [H]z, as z -> +a>, where [G]~[Hl! = 0 /z2:0. This 

constitutes an effort to avoid again infinite-dimensioned 

matrices. Theorem 2.12 shows that [H]z may be defined by a 

recursive matrix equation. Both the idea of [H]z and the 

theorem, are original work. 

Finally, Sec. 2.21 defines the syndrome as the product of 

the received sequence with the transpose of the parity-check 

matrix. It is proved that, if noise is additive, the syn

drome digits are linear combinations of the channel-error 

digits only. This is central to the theory of CC for thresh

old decoding (see Chapters 5, 6 & 7), It is also shown 

that, for binary systematic codes, the syndrome is formed by 

adding .to the received parity-bits, the parity-bits corre

sponding to the received message-bits (see Fig. 2,6), 
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Chapter 3 has been designed to serve as a brief presenta

tion of decoding techniques for convolutional codes. 

Choice of material and emphasis are again determined by 

the orientation of the thesis towards syndrome decoding and 

perhaps by the subjective opinion of the author. 

Since the material in this chapter mainly helps to bridge 

the gap between convolutional code structure and syndrome 

decoding, the presentation has a tutorial flavour. 

DECODINGOFCONVOUJllONALCODFS 

SYNDROME 

APP Majority 

Figure 3.1: Classification of decoding techniques for convolu

tional codes. 
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Figure 3.1 illustrates the relation among the various 

decoding techniques for convolutional codes. Chapter 3 con

tains six sections: Introduction, convolutional encoder 

state-transition diagram, trellis diagram, Viterbi decoding, 

sequential decoding & syndrome decoding, Of these, greater 

attention is paid to the structure of the transition and 

trellis diagrams. In spite' of the tutorial flavour of this 

chapter, some new (or at least originally presented) results 

were obtained during the consideration of the convolutional 

encoder transition and trellis diagrams. 

3.1 INIRQOUCIIQN 

Convolutional decoding techniques have been studied for 

many years. About three years after the introduction of con

volutional codes (CCs) (by P. Elias, in 1954), Wozencraft 

devised sequential decoding; this is, in effect, a trial and 

error search-decoding technique, of variable duration, which 

offers very good performance, but at that time it would have 

required a very costly implementation, To overcome this dis

advantage of sequential decoding, researchers devised other 

techniques grouped under the name syndrome decoding, Gener

ally, a set of syndrome equations is obtained which is then 

used to provide an estimate of each channel error-digit 

(each syndrome digit equals a specific linear combination of 

channel error-digits - see Theorem 2.15, p. 50), Syndrome 

decoding are suboptimum, easily implementable, techniques; 

they are also deterministic since each block is decoded 

within a computational cycle, 

A Viterbi decoder is, in effect, a maximum likelihood 

decoder for convolutional codes that adopts a clever optimi

zation strategy which minimizes the number of computations 

and/or memory cells required. It was introduced in 1967 by 

Andrew Viterbi and has since become one of the most widely

used decoding techniques, 

The above mentioned techniques will be introduced brief

ly, in this chapter. Some of these will be studied further, 
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in subsequent chapters. Firstly, though, the encoder transi

tion & trellis diagrams will be extensively discussed in 

Sections 3.1 & 3.2; some new results concerning the struc

ture of thes'e two diagrams are included in these sections. 

The reader will notice that the material that follows 

discusses only the normal* encoder (and not the type-!! 

one). This is so because for most codes the normal is also 

the minimal encoder and because most results are valid for 
- - -

both implementations 

simple modification). 

(if not, 1all.that is usually needed, is a 
_, 

3, 2 CONVOLUTIONAL ENCOOER STATE-THANSIUON QIAGRAM 

As Forney [25] wrote, convolutional codes may be easier 

to decode but they are harder to analyse, compared to block 

codes. The reason seems to be their complex structure. This 

forced many researchers to propose various approaches to the 

problem of convolutional code analysis. One of them is the 

finite-state machine approach. 

3.2.1. Introduyt,i on 

Consider a binary (n,k,m) convolutional code and the nor

mal encoder* realization. Let Mi = length of the i th shift 

register (lSiSk). Obviously, OSMiSm, for i=1,2, ••• ,k and: 

.. 
Total Encoder Memory ~ M = ~Mi (3.1) 

The state of the encoder is determined by the contents of 

its memory, which in turn is a selection of its past m in

puts (an input is a k-tuple). Using standard notation, the 

contents of the encoder memory (and hence the state of the 
encoder), at time-unit h, is 

S(h) ~ [u<t> ••• u<t>u<t> ••• 
h-"t h-2 h-1 

u<2>u<2l • • • 
h-2 h-1 

h <il ' t . f d 1 'f M > 1 w ere, uh-"i ex~ s s ~ , an on y ~ , i _ 

* See Definition 2.9 • Note 2.9, p, 34. 

( 3. 2) 

u<1lu<1l] 
h-2 h-1 

/lSiSk. 
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It is usually written, S(h) = Sj, where Sj is the symbol 

identifying the particular state. Normally, j is the decimal 

equivalent of the M-tuple in (3.2). 

If q is the number of code symbols (usually, q=2): 

Total number of states = qM (3.3) 

Example 3.1: Consider the encoder of Example A2.9.1 (p. 

314). It is a normal encoder for a (3,2,1) code. It is made 

of 2 shift registers of length 1 (M1=M2=1). Hence its total 

memory is M=2 and it has 22=4 states. If S(h) = [BA], then: 

50 = [00], 51 = [01], s
2 

= [10] & s
3 

= [11]. 

I 
Example 3.2: Consider the encoder of Example A2.9.2 (p. 

315). It is a normal encoder for a (4,3,2) code. It is made 

of 3 shift registers with :le!lgths M1=0, M2=1 & M3=2. Hence, 

its total memory is M=0+1+2=3 and it has 23=8 states. If 

S(h) = [CBA], then: 50 = [000], 51 = [001], 5
2 

= [010], 5
3 

= 

[011], 54 = [lOO], 5
5

= [101], 5
6

= [110] & 5
7

= [111]. 

I 
A state-change takes place iff at least one of the memory 

cells of the encoder changes content [as is evident from 

reln (3.2)]. Under normal operation this happens only when a 

new input is applied at the encoder; this causes the con

tents of each SR to be clocked one position towards the 0/P, 

to make space for the new I/P. So, the current state of a 

convolutional encoder (and any general LSC) can be deter

mined by its previous state and the current input. 

Assume that the encoder is currently at state: S(h)=Sc, 

where OScSqM-1. An interstate transition is caused when the 

current input uh is clocked into the encoder. Consequently, 

given the current state, the next one depends entirely on 

the current input; it follows then, that to each transition 

there corresponds a unique group* of input blocks. 

3."2.2. peguentjal Machines 

The discussion above indicates that a convolutional en-



Section 3.2 Page 57 

coder should be treated as a sequential finite-state ma

chine; furthermore, the analysis of the encoder should be 

assisted by the results that have been obtained in the field 

of Sequential Machines and Automata Theory. 

Appendix 3.1 (p. 329), contains some definitions and 

examples on state-transition diagrams. 

3."2.3. St.ructyre of ;t.be EP!;iott@r S1;ate-Trans1tjon piagram 

The following results relate the code parameters with a 

few state-transition diagram details, like number of states, 

number of transitions per state, multiplicity of transitions 

(multiple-edge transitions), etc. The analysis that follows 

considers only the normal encoder. The difference between 

the normal and the type-!! encoders lies in the fact that 

the latter's SRs are interspersed with gates; in this way, 

the memory contents are not just shifted but also altered, 

with each block time-unit. Nevertheless, the analysis that 

follows needs a few minor (hopefully and most probably) 

modifications in order to be able to describe the behaviour 

of any general LSC. 

Theorem 3.1: Consider an (n,k,m) normal* encoder with 

generator-polynomial matrix G(D). Let f[G(D)] denote the 

number of rows of G(D) that contain only ls and Os. Then, 

the number of encoder SRs of length Mi > 0 is k - f [ G( D)). 

Proof: See Appendix 3.2 (§ A3.2.1., p. 333). 

I 
From above: 

f[G(D)] = f =Number of zero-length shift registers (3.4) 

For instance, in Example A2.9.1 (p. 314), j = 0, while in 

Example A2.9.2 (p. 315), j = 1 [the 1st row of G(D) contains 

only ' ones ' ) • 

The following definition will help to prove & discuss the 

basic results of the current and the next chapter. The con

cepts that will be introduced have a dual meaning; they can 

either be taken to mean parts of the physical or the logical 

* See Definition 2.9 & Note 2.9. 
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memory of an encoder (and in general of any LSC), or sets of 

variables. The general term group will be used throughout 

and it will stand either for a set of specific and fully 

identifiable physical or logical SR-stages, or for a set of 

specific variables that represent digits from the message 

sequence u (which digits, reside in the above-mentioned 

memory parts). The two concepts meet because an SR-stage can 

be identified by u~~~ where, i is the SR number (lSiSk), j is 

the stage-number within the ith SR (1SjSM
1

) and h is the 

reference time-unit. 

Definition 3.1: Consider the memory of an encoder; let 

the term memory group (MEG) denote the set of its physical 

or logical SR-stages. The following subsets of MEG are in

troduced: The front-end group (FEG) contains the 1st stage 

of each SR; the rear-end group (REG) contains the last stage 

of each SR; the central group (CEG) contains the stages that 

do not belong to either the FEG or the REG (see Fig. 3.2). 

The above-mentioned terms are defined analytically below; 

note that this time they are given as functions of h, the 

reference time-unit: 

MEG(h) .::0 {u~~~ I i=1,2, ... ,k: M1 H & j=1,2, ... ,Md 

FEG(h) .::0 {u~~~ I i=1,2, ... ,k: M1 ~1} 

REG (h) .::0 { u~~~/ i = 1 , 2 , ... , k: M1 ~ 1} 

CEG(h).::. {u~~ I i=1,2, •• ,k: M1 ~3 & j=2,3, •• ,M1 -1} 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

I 
Notation: The 'groups', defined above, will be denoted 

without the reference time if they are taken to mean memory 

parts, while inclusion of the time variable will denote sets 

of variables. 

I 
The various groups, defined above, are sets of SR-stages. 

The terms to be introduced below are ordered sequences of a 

finite number ''say, x, of components. These x-tuples repre-,, 
sent the state of the various groups defined above, at a 

given time-unit. For example, the state of MEG is simply 
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••• 

Figure 3.2: The various groups of digits that influence the 

state of the encoder (note that the ith SR exists 
iff M1>0 I lSiSk). 

S(h)=SJ' where je[0 1 qH) [see eqn (3.2)]. Similarly, and us
ing standard notation, the state of the FEG, CEG & REG at 

time-unit h, is denoted by F(h), C(h) & R(h), respectively: 

If S(h) = SJ then: F(h) A - [ u(t), • •u(2l uOl ] 
h-1 h-1 h-1 = 

where, u~~I is included iff M1 2: 1 /i=1,2, •.• ,k. 

If S(h) = SJ then: R(h) A - = 

where, u~~~ is included iff M1 2: 1 /i=1,2, ••• ,k. 
1 

If S(h) = SJ' then C(h) = CJ' where: 

(3.6a) 

(3.6b) 

(3.6c) 

C(h) .:0 [u(k) • • u(tlu(t) • • uiZl • • u1Zlu(2l • • uU> • • u( 1lu( 1l) 
h-Ht+l b-3 h-2 h-Ma+1 h-3 h-2 h-Hl+1 h-3 h-2 

and, u~:!. /a1e(l,M1 ) is included iff M1 2: 3 /i=1,2, ••• ,k. 
1 

Note for instance that in the encoder of Fig. A2.9.1 (p. 

314), FEG = {A,B} = REG and CEG = ~. For the encoder of Fig. 

A2,9,2 (p. 315), FEG = {A,B}, REG = {A,C} and CEG = ~. For 

the encoder of Fig. A2.9,3 (p. 316), FEG = {A,C}, REG = 
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{B,D} and CEG = ~. 

Theorem 3.2: Consider a q-ary (n,k,m) normal encoder* 

with generator-polynomial matrix G(D). With repect to its 

state-transition diagram, the number of transitions leaving 

a state equals the number of transitions entering that state 

and·both are equal to qk·f. Furthermore, each transition has 

qf labels, i.e. it represents qf input (and output) block(s). 

Proof: See Appendix 3.2 (§ A3.2.2., p. 334). 

I 
Consider the encoders of Figs A2.9.1 (p. 314) & A2.9.2 

(p. 315). Both are binary, hence q=2. The 1st has I = 0 & k 

= 2, hence according to Theorem 3.2, in its transition dia

gram qk·f = 22" 0 = 4 transitions should leave each state. This 

can be verified from Fig. A3.1.1 (p. 331). The 2nd encoder 

has I = 1 & k = 3 1 hence 23" 1 = 4 transitions leave each 

state (see Fig. A3.1.2, p. 332). 

There is a disagreement in the literature about the rep

resentation of convolutional encoders. Some authors adopt 

the Mealey representation, some others the Moore one. Fur

thermore, there seem to be variations of the Mealey model. 

Specifically, some authors, although they adopt the Mealey 

model, they do not use the minimal-memory approach; they 

seem to reject the notion of SRs of length 0 [i.e. they set 

M1=MAX{l,M1 }]. In such a case, the modified encoder will 

contain f SRs of length 1, whose 0/P is not used (see for 

example, Fig. 4.2 in [26]) 1 while total memory will be in

creased by I, hence total number of states will be increased 

qLfold. In such a case 1 each transition will represent a 

single I/P (& 0/P) block (single-edge transitions). 

Another group of authors employ the Moore model. Specif1-

cally, they add an extra stage at the begining of each SR 

(i.e. they set M1 = l+M1 ) 1 so that the 0/P gates are fed 

only from the encoder memory (see for example, Figures 6.1 & 
6.6 in Clark & Cain [13] and Figures 5.3.1 1 5.3.2, 5.3.3 & 
5.3.10 in Proakis [27]). Nevertheless, when it comes to the 

transition diagram these authors use the minimum-memory en-

* A q-ary encoder is aade of q-ary SI-stages and Gl(q) gates. See also. Definition 2.9. 
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coder realization; for instance, Proakis [27], uses a 4-

state transition diagram for an encoder with total memory 4. 

In this thesis, the Mealey-model minimum-memory approach 

has been adopted. It is the approach suggested by a great 

number of authors (see for example, Section II in Forney 

[20], Figure 1 in Forney [21], Figure 12.9,in Blahut [10], 

pp. 288-305 in Lin & Costello [2], etc). Its disadvantage is 

the introduction of the variable J (the number of SRs of 

length 0), while the definite advantage is the adoption of 

the minimum-memory encoder. Note that in both the Mealey 

models, mentioned above, the product " (number of transi

tions from any specific state) X (number of I/P blocks that 

cause this transition)" is qt. 

Some more results, on the structure of the encoder 

state-transition diagram, will be presented: 

Theorem 3.3: Consider the state-transition diagram of a 

q-ary (n,k,m) normal encoder*, with generator-polynomial 

matrix G( D). Each of the qk-f transitions that enter any spe

cific state is generated by the same group of qf I/P k

tuples. 

Proof: See Appendix 3.2 (§ A3.2.3., p. 335). 

I 
Consider the transition diagram of Fig. A3.1.1 (p. 331). 

Only one I/P block causes a transition into a specific state 

(00 leads to S0 , 10 leads into S1 , etc); note that f = 0, 

for this code, and so qf = 1. 

In the transition diagram of Fig. A3.1.2 (p. 332), f = 1 

& k = 3. The 4 transitions that enter any specific state are 

caused by the same group of qf = 21 = 2, I/P 3 -tuples. For 

example, the two I/P blocks that lead into state Ss are 010 

& 110; to state it otherwsise, each of the 4 transitions 

that lead into Ss has a double-edge label with I/P part x10, 

where x=0,1. 

According to the above theorem, the number of ways one 

may arrive into any particular state is (qk-f) x (qf) = qt. 

So, one may arrive at S5 (of Fig. A3.1.2, p. 332), from S2 

* A q-ary encoder is aade of q-ary SI-stages and Gf(q) gates, See also, Definition 2,9. 
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with I/Ps 010 & 110, from s 3 with I/Pa 010 & 110, from 5 6 

with I/Ps 010 & 110 and from 5 7 with I/Ps 010 & 110. 

Theorem 3.4: Consider the state-transition diagram of a 

q-ary (n,k,m) normal encoder*. A state 5
8 

may undergo a one 

time-unit transition to itself (a self-loop in the transi

tion diagram) if, and only if, the M digits that constitute 

state 5
8 

satisfy the following restriction: 

S(h) = S(h+1) 

uCil = ci 
h-j /all je[O,M1 ] & all ie[1,k] : M1 ~1 

where c 1 , is a constant [an element of GF(q)]. 

(3.7) 

Proof: Let zs represent the encoder contents before the 

transition and ws after the transition. Consider two neigh

bouring digits, u~~! & u~~!-1 (O~a.<a+1~M1 ), in the ith SR. After 

any kind of transition, and for all ie[1,k] /M1~1, 

wCil = zCil 
h-o-1 h-a.' for all ae[O,M

1
-1] (A) 

i) Let S(h) = S(h+1) = 5
8

• Then, 

for all ae[O,M1 -1] (B) 

From relations (A) & (B), 

zCil = zCil for all a.e[O,M
1
-1] 

h-4 h-4-1 -> 

-> zCil = zCil =•. •= zCil = zCil = constant = c
1

, say. 
h h-1 h-'\ +1 h-'\ 

ii) Let 

transition. 

O~a<M1 : 

condition (3.7) hold true. Consider a state 

From (3.7), provided that O~a.<a+1~M1 -> 

zCil = zCil for all ae[O,M
1
-1] 

h-4 h-4-1 

and combining with (A): 

wCil = zCil for all ae [ 0, M
1
-1] 

h-4-1 h-4-1 

-> w<il = z< 1l for all ae[1,M
1

] (and all ie[1,k]) h-Cl h-u 

Hence, the two states are identical. 

QED 

In non-mathematical language, the above theorem states 

* A q-ary encoder is aade of q-ary SI-stages and Gl(q) sates. See also, Definition 2.9. 
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that a specific state S
8 

has a self-loop if, and only if, 

the digits that constitute this state [see eqn (3.2)], when 

organized in the encoder memory, are such that all stages of 

any specific SR contain the same digit. Furthermore, if s. 
has a self-loop, then it will occur if, and only if, the 

digits of the current input block are identical with the 

contents of the SR they will reside in (excluding any digits 

that will not reside in an SR, because they correspond to a 

port whose SR does not exist). 

An encoder with SRs of length 1 (like that of Fig. 

A2.9.1, p. 314), has a state diagram where all states have a 

self-loop. 

For the encoder of Fig. A2.9.2 (p. 315), with one SR of 

length 1 (stage A) and one SR of length 2 (stages B & C), 

the states with self-loops have the format [xxy], where x & 
y are binary variables (note that the state is [CBA]). Hence 

there are four states with self-loop, corresponding to the 

four pairs x,y (000,001,110,111, i.e. S
0

, S
1

, S
6

& S
7
), as 

can be verified by Fig. A3.1.2 (p. 332). 

Theorem 3.5: Consider the state-transition diagram of a 

q-ary (n,k,m) normal encoder*, with generator-polynomial 

matrix G(D). The I/P k-tuples that mark the self-loops of 

the transition diagram are identical with the front-end 

group (FEG) of the encoder in the corresponding k-f posi

tions. Hence, the format of the I/P k-tuple ub = 
[u~ll,u~2 l, ••• ,u~tl] that marks a self-loop is given by the re

lation, 

Proof: 

arbitrary 

u!il 
b-1 

if ie[1 ,k] M1 = 
(3.8) 

if ie[1,k] : M1 <: 

Let us represent the encoder contents before a 

transition and wa after a transition. Assume that state S
8 

goes through a self-loop. Then, for all ie[1,k] /M1 <: 1, 

uUl = w!il (A) 
b-1 b-1 

Also, since during a transition, I/P block --> FEG: 

* A q-ary encoder is aade of q-ary SR-atages and GF(q) &ates. See also, Definition 2,9, 
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w<i) = u<i) (B) 
h-1 h 

From eqns (A) & (B), it follows that 

u<U = uU> for all ie[ 1 ,k] 
h h-1 

QED 

For example, for the encoder of Fig. A2.9.2 (p. 315) 

(state diagram in Fig. A3.1.2, p. 332), the I/P block that 

marks a self-loop must have the format uh+1 = (xAB), where x 

is a binary variable and A & B are the current contents of 

the corresponding stages. So, for state S1 the I/P block is 

( xl 0). 

Theorem 3.6: Consider the state-transition diagram of a 

q-ary (n,k,m) normal encoder*, with generator-polynomial 

matrix G(D). The number of states with self-loop is qk-f. 

Proof: State S0 is a state with self-loop. In how many 

ways can one change it and still preserve the self-loop 

property? From Theorem 3.4, one concludes that this property 

is preserved iff 

Then, since the number of states satisfying the above 

condition is equal to the number of different combinations 

of the k-j constants c 1 , the theorem is proved. 

QED 

The trellis diagram is obtained from the transition dia

gram, if the latter is expanded in time so that there is a 

separate transition diagram for each time-unit. Obviously, 

all the theorems proved for the state-transition diagram can 

be used for the trellis, as well. 

3.3 TRELLIS PIAGBAM 

Consider a q-ary ( n, k,m) normal convolutional encoder* 

and a message of L blocks. The encoder goes through a spe

cific sequence of states, in response to the kL-digit input 

* A q-ary encoder is .ade of q~ary sa-stages and CF(q) gates. See also. Definition 2.9. 



Section 3.3 Page 65 

message. The task of the decoder is to reconstruct this time 

sequence of state transitions, based on the information pro

vided by the received sequence r. The decoder will, in fact, 

consider a number of possible time sequences of state tran

sitions and choose the most 'promising' candidate. To depict 

these time sequences of state transitions one would need a 

time sequence of transition diagrams, i.e. one would need a 

trellis diagram. 

It has already been mentioned (see Note 2.1) that a mes

sage sequence must always be terminated with mk zeros, in 

order to clear the encoder memory. Hence, the first message 

block finds the encoder in state S0 , while the 2nd message 

block finds the encoder in one of the states that can be 

reached from S0 , in one time-unit, and so on. Since the mes

sage is terminated with m Os, L+m blocks are considered, 

while a time sequence of L+m+l transition diagrams is re

quired, or the same, a trellis of length L+m+l. Obviously, 

at time-unit L+m+l, the encoder returns to state S0 • 

According to the discussion above, the following con

struction is proposed: 

Note 3.1: Consider a q-ary (n,k,m) normal convolutional 

encoder* and a message of L blocks. A trellis for this en

coder is made of an array of points interconnected in the 

following way: 

i) The points are arranged on a rectangular grid in a 

maximum of, 

L+m+l columns, labelled O,l, ••• ,L+m from left to 

right and 

q" rows labelled O,l, ••• ,q"-1 from top to bottom 

(L=message length, in blocks). 

ii) The points of column j represent the possible en

coder states at time-unit j (OSjSL+m), while the points of 

row i represent state S1 (OSiSq"-1) through time. During the 

discussion of the trellis diagram the terms state and point 

will be interchangeable. 

iii) Column 0 contains only one state, S0 ; column 1 

* A q·ary encoder is aade of q-ary SR·atages and GP(q) sates. See also, Definition 2.9. 
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contains those states that can be reached from S
0

, in one 

time-unit, and so on. Column L+m contains only state S
0

• 

iv) The trellis diagram contains exactly q" states in 

columns m,m+1, ••• ,L. This part is called the central portion 

of the trellis. 

v) Only states belonging to neighbouring columns are 

interconnected. In particular, from any state Sx of any spe

cific time-unit i ( O:Si<L+m) originate interconnections to 

specific states of time-unit i+1; these interconnections 

correspond to all the transitions leaving Sx. 

I 
According to Note 3.1 the trellis diagram grows from left 

to right until it reaches the maximum number of rows (q11 ), 

at time-unit m. This is so because at any time-unit i<m part 

of the encoder memory is still reset to zero (in fact, the 

last m-i stages of any SR), The central portion of the trel

lis will be reached when the whole of the encoder's memory 

has been 'upset' by the incoming source blocks. An 1/P block 

needs m time-units to cover the length of the longest SR 

hence part (iv) of Note 3.1, above. Appendix 3.3 (p. 335), 

gives an example of a simple state-transition diagram with 

the associated trellis diagram. 

The results developed for the normal encoder state-tran

sition diagram will now be applied to the trellis diagram. 

Lemmas 3.1 & 3.2 below, follow easily from Theorems 3.2 & 

3.3, respectively. 

Lemma 3.1: Consider a q-ary (n,k,m) normal encoder*, 

with generator-polynomial matrix G( D), Within the central 

portion of the encoder trellis-diagram, the number of tran

sitions leaving a state equals the number of transitions 

entering that state and both are equal to qt-f. Furthermore, 

each transition represents qf input (and output) block(s). 

I 
Note that the result of Lemma 3.1 is valid only within 

the central portion of the trellis, and not at the limits 

* A q.ary encoder is aade of q-ary Sa-stages and CP(q) sates. See also, Definition 2.9. 
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(i.e. at time-units m & L). This is so because at time-unit 

m-1 some states have not been reached, hence the group of 

transitions from time-unit m-1 to time-unit m is not from 

all possible states to all possible states; this means that, 

in general, the number of transitions entering a state at 

time-unit m, are less than the number of transitions leaving 

it. The situation at time-unit L is symmetrically similar. 

Lemma 3. 2: Consider a q-ary (n,k,m) normal encoder*, 

with generator-polynomial matrix G( D). Within the central 

portion of the encoder trellis-diagram, all the qk-f transi

tions that enter any specific state are caused by a specific 

group of qf source blocks (k-tuples). 

I 
Any trellis diagram contains some 'horizontal' lines that 

extend 

states 

along 

S0 and 

particular rows; this happens at least with 

S H 1 • These horizontal lines are transitions q-

of a state to itself. Their occurence is defined by the fol

lowing lemma, which is based on Theorems 3.4, 3.5 & 3.6. 

Lemma 3. 3: Consider 

with generator-polynomial 

a q-ary (n,k,m) normal encoder*, 

matrix G(D). In the central por-

tion of its trellis-diagram there exist qk-f horizontal lines 

(i.e. transitions of a state to itself). These lines corre

spond to states that satisfy the following condition: 

ulil = c /all je[O,M1 ] & all ie[l,k] : M
1
2:1 h-j i ( 3. 9) 

where c
1 

is a constant and 

stage of the ith SR [see Fig. 

u(il is the content of the jth 
h-j 

(3.2)]. 

Also, the I/P k-tuples that mark the horizontal lines of 

the trellis diagram are identical with the front-end group 

(FEG) of the encoder in the corresponding k-f positions. The 

format of the I/P k-tuple, uh = [u~1 l,u~2 l, ••• ,u~kl], that marks 

a horizontal line is given by the relation, 

arbitrary if ie[1,k] 

(3.10) 

if ie[l,k] 

* A q-ary encoder is aade of q-ary sa-stages and GP(q) gates. See also. Definition 2.9. 
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where u< 11 is the digit in the jth stage of the ith SR. h-j 

3.4 ' VITEBBI PECOOING 

I 

In 1967, Viterbi [28] introduced a decoding algorithm 

which he called "A Probabilistic Nonsequential Decoding Al

gorithm" but which is since known by his name. Two years 

later, Omura suggested that "the Viterbi Algorithm c~~:n be 

thought of as a forward dynamic programming solution to a 

generalized regulator control problem" [29] or, as Lin & 
Costello put it, "•••to the problem of finding the shortest 

path through a weighted graph" [2]. In 1974, Forney [25] 

wrote: "Convolutional codes are characterized by a trellis 

structure. Maximum likelihood decoding is characterized as 

the finding of the shortest path through the code trellis, 

an efficient solution for which, is the Viterbi Algorithm". 

The encoder's sequence of states, during the encoding of 

a kL-digi t long information sequence, is represented by a 

path in the trellis. The decoder attempts to retrace this 

path, using the received sequence r. This sequence is proc

essed in blocks, but final decisions are delayed until the 

end of the sequence. 

Definition 3.2: A path in the trellis is a time se-

quence of states that is represented by a sequence of mes

sage or channel digits. Note that in case j>O* a sequence of 

two states corresponds to qf paths, hence a path cannot be 

uniquely represented by the time sequence of states alone 

(see Theorem 3.2). A path that starts at time-unit j and 

ends at time-unit i, is said to have length i-j. A single 

path is any path of length 1. 

I 
Definition 3.3: Consider a path characterized by the 

sequence of channel digits vj and let rj be the correspond

ing sequence of received digits. Then, the log-likelihood 

function logP(rjlvj) [where P(rjlvj) is the conditional prob-

* See Theore. 3.1, for a definition of I• 
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ability that rj is received, given that vj was transmitted], 

is called the metric of the path. The metric of a single 

path is called the branch metric. 

I 
Theorem 3.7: Consider the Viterbi algorithm: 

Step 1: At time-unit j=m the decoder examines all paths 

that lead to each of the 2H states. Each path corresponds to 

a particular channel sequence v which is compared with the 

received sequence r; a metric is computed for each path. 

The metrics of all paths entering each state are compared 

and the path with the largest metric (the survivor) is 

stored, together with its metric. This is repeated for all 

states. 

Step 2: Increase j by 1. For each state and for each 

single path entering this state, compare the received block 

rj with the channel block vj that corresponds to this par

ticular path; deduce the branch metric logP(rjlvj), 

Add this branch metric to the metric of the connecting 

survivor at the preceding time-unit. For each state, store 

the path with the largest metric (survivor), together with 

its metric. 

Step 3: If j<L+m go to step 2; otherwise stop. 

If transmission is over the discrete memoryless channel, 

the final survivor has the largest metric, i.e. it is the 

maximum likelihood path. 

Proof: See Lin & Costello [2], p. 318. 

Note 3.2: If transmission is over the 

channel (2-input - 2-output DMC), then the 

I 
binary symmetric 

branch metric is 

the Hamming distance d(rj,vj) and the algorithm must find 

the path through the trellis with the smallest metric. 

I 
See Appendix 3.4 (p. 337), for two examples on Viterbi 

decoding. 
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3,5 SEQUENTIAL PECOQING 

For a brief description, see Appendix 3.5 (p. 339). 

3, 6 SYNPROME DECODING 

The general outline of a syndrome decoder, for a system

atic binary convolutional code is shown in Fig. 3.3. 

Correction takes place in the right-hand side of the de

coder by the mod-2 addition of the received sequence of mes

sage bits and the decoder's estimation of the corresponding 

channel error sequence. 

The estimates of the error bits are obtained from the 

decision device (the 'brain' of the decoder) on information 

supplied by the syndrome register. 

Syndrome generation for a systematic code requires a rep-

Received parity-check bits D·k bits For feedback decoding 
!\ ,, 

J bits -- ... 
---

SYNDROME 
' ' deMUX ENCODER 
~ + y 

REGISTER \ / 
\ / . " f-·.: :-::::.::. D·k bits ,----<,;: 1-

-·- k bits I 
I 

/ 
I DECISION 

J bits 
Received DEVICE 
bits Received message bits 

Estimated error bits 

DELAY MUX + Estimated 
message bits 

Figure 3.3: Block diagru of a syndrome decoder for binary sys

tematic convolutional codes. 

lica of the encoder and an X-OR gate. It has been shown in 
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Chapter 2 (see Theorem 2.14, p. 48) that the syndrome bits 

are linear combinations of the channel-error bits only (if 

channel noise is additive). 

So far, the decoder is assumed to operate in the so

called definite decoding (DD) mode. It is possible though, 

to subtract every estimated error bit from the syndrome, via 

a feedback loop (see Fig. 3.3). In this mode, the so-called 

feedback decoding (FD) mode, the number of channel error 

bits that affect a syndrome bit is reduced. 

The basic task of the decision device is: 

Given the syndrome sequence s, find the channel error 

sequence e; since (by Theorem 2.14) s = f(e), the task of 

the decision device is specified to be: 

Calculate e = f-1 ( s), where r-1 is such that the probabil

ity of a decoding error is minimized, under the given con

straints of hardware complexity. 

There are three basic syndrome decoding techniques for 

convolutional codes: 1. Table look-up decoding (see Appendix 

3.6, p. 341), 2. Error-trellis syndrome decoding (see Chap

ter 4) & 3. Threshold decoding (see Chapter 5). They only 

differ in their respective decision devices. 

3,7 CQNCLUSIQNS 

The decoding techniques for convolutional codes were 

classified (see Fig. 3.1) and briefly described. They come 

under three main categories namely, Viterbi, sequential and 

syndrome decoding. 

Syndrome decoding (Sec. 3.6), is distinguished in table 

look-up and threshold decoding, while the latter is further 
- -, 

divided into majority and APP decoding. Because all these 

techniques are very simple to implement, they permit a cheap 

hardware realization and hence very high bit-rates. On the 

other hand, they are suboptimum because they make irreversi

ble decisions for each block, based on one constraint-length 

of received digits. 
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Sequential decoding (Appendix 3. 5) is a nearly optimum 

adaptive technique, which is fast when the channel is quiet 

but slow otherwise. Apart from its complexity, it suffers 

from randomly varying processing-time per block. On the oth

er hand, it offers relatively high coding gains* (2-3 dB 

more than syndrome decoding), at bit rates of 1-20 Mbps 

(threshold decoders can offer their coding gain at higher 

bit rates, though- see Clark & Cain [13], pp. 342-4). 

The maximum likelihood decoding technique, for convolu

tional codes, is the Viterbi algorithm (Sec. 3.4). This is a 

very clever method (widely used today), which returns high 

coding gains, at moderate to high bit rates (ibid.), depend

ing on the channel and the modulation method employed. The 

algorithm is based on the encoder state-transition diagram. 

A very important aspect of Viterbi decoding is the struc

ture of the trellis (or the state-transition) diagram. This 

is so because the decoder has to store q11 paths, each Lk 

digit long, with L increasing by 1 with every new received 

block. Furthermore, at each block time-unit, and for each of 

the q 11 paths, the decoder has to calculate qlt metrics, 

choose the best and store it. Hence, at each block-time

unit, q11qlt calculations have to be performed. Thus, the com

plexity of this technique increases exponentially with M & k 

(M is, usually, more important). 

Section 3. 2, contains a number of theorems on the com

plexity of the state-transition diagram (and hence on the 

complexity of trellis decoding). These results predict the 

structure of the state-transition diagram, given the code 

generator-polynomial matrix, G(D) (assuming that a normal 

encoder is used - a reasonable assumption, since this is, 

usually, the minimal encoder). So, it is shown that the num

ber of transitions into a state (or out of it) is qk·l, while 

each transition has ql labels. f = f[G(D)] is defined in 

Theorem 3.1. Furthermore, it is shown that all transitions 

entering a state are caused by the same group of qf input k

tuples. In Theorems 3.4 - 3.6, the self-loops are studied. A 

necessary & sufficient condition is developed, for the ex

istence and generation of such a loop and it is shown that a 

* See Section 1.4. 
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state-transition diagram has qk-f such loops. 

The originality of the work in that section lies in the 

generalization and systematization of some previously known 

observations about the state-transition diagram, as well as 

in some of the results themselves. 

A final piece of original work is in Paragraph 3.2.3., 

where the (normal) encoder memory is divided into three sec

tions, the one immediately affected by the current input

block (FEG), the one that looses its contents with each 

transition (REG) and the rest of the memory (CEG) which lies 

in between (see Fig. 3.2). 

The work in Section 3.2 is also very useful to Chapter 4. 
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This chapter examines in detail the, so-called, con

strained trellis, proposed by Reed & Truong [24] (their work 

was on error-trellis syndrome decoding). The material is 

divided into seven sections, of which the first and the 

third report on the background results, while the rest in

vestigate the structure of the constrained trellis. An ef

fort to relate a given circuit to the complexity of its con

strained trellis has produced some original results and 

ideas. A constrained trellis is one in which the Hamming 

weight* of the current input block, together with the cur

rent state, is not allowed to exceed a certain threshold; 

this is, clearly, a 'generalized trellis' with a reduced 

number of states and transitions per state. 

Section 4.1 aims to convince the reader about the exist

ence of error-trellis syndrome decoding. Section 4.2, intro

duces the restriction which generates the constrained trel

lis and presents some fundamental relations about its com

plexity. Section 4.3, introduces the decoding algorithm. 

Section 4.4, develops the idea of the 'simplified' trellis. 

The latter arises from the existence, in a constrained trel

lis, of states with only one path allowed in (or out of) 

them. In Section 4.5, a number of theorems are proved which 

relate the complexity of a constrained trellis with the as

sociated circuit. Section 4.6, concentrates on the transi

tions of the simplified trellis and relates them to the as

sociated circuit. Note that the simplified trellis contains 

transitions lasting for more than· one time-unit, Finally, 

* A b1.nary code is assumed. 
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Section 4.7 discusses special cases. 

4.1 ANALYSIS OF ERBQR-TRELLIS SYNOBQME DECODING 

The first objective of this section is to obtain the gen

eral solution of the syndrome equation. This result will 

then be modified for the case of systematic codes. Equations 

for the best estimate of the source sequence will also be 

derived and finally the block diagram of an appropriate de

coder will be proposed. 

The work in this section is based on Reed & Truong [24], 

but because of its importance for the rest of this chapter 

(which is mainly original work), it is repeated here, The 

proofs, though, of the algebraic material are given in ap

pendices. 

4.1.1. General Solutjon of the Svndrome Equation 

If the channel suffers from additive noise only, the task 

of the decoder is reduced to estimating the channel error-- -polynomial E(D). This is so because V(D) = R(D)-E(D) [see - -eqn (2,70), p. 47] and U(D) = V(D)G'(D), where G'(D) is 

the right-inverse of G(D) (the code is assumed to be non

catastrophic - see Note A2.10.1, p, 319), 

On the basis of the received polynomial R(D), the decoder 

calculates the syndrome polynomial S(D) = R(D)HT(D) [see eqn 

(2,71)] and on the basis of S(D) it provides its best esti

mate of E(D), This latter calculation is based on the so

called syndrome eqn S(D) = E(D)HT(D) [see eqn (2.73)], which 

represents a linear system of n-k equations in n unknowns 

[the polynomials e< 1>(n) ,e<2>(n),,,, ,e<n>(n)], It is obvious 

that this system of equations accepts many solutions, of 

which only one is valid [i.e. coincides with the channel

error polynomial E(D)], The encoder has not enough informa

tion to make the correct choice each time, but it has a way 

to minimize its losses, This minimization procedure uses the 

general solution of the syndrome equation (the two of them 

constitute the 'heart' of this decoding technique), 
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Lemma 4.1: The polynomial-generator matrix of a non-

catastrophic convolutional code can take the following form 

(usually called Smith normal form): 

G(D) = A( D) [It,O]B(D) ( 4 .1) 

where 0 is the k X (n-k) zero matrix, 

A( D) is a k x k nonsingular matrix, 

and B(D) is an n x n nonsingular matrix. 

Proof: See Appendix 4.1 (§ A4.1.1., p. 342). 

I 
Note 4.1: Let the following partition of B(D) & e-1 (D): 

& ( 4. 2) 

where X1 (D), X2 (D), Y1 (D) & Y2 (D) are k x n, (n-k) x n, 

n x k & n X (n-k) matrices, respectively. 

I 
The Smith normal form and the two partitions introduced 

above, are key steps towards the inversion of the syndrome 

equation. One important result based on them is the follow

ing theorem: 

Theorem 4.1: Let H(D) be the parity-check generator 

matrix of a non-catastrophic convolutional code. Then, 

H(D) = Y~(D) (4.3) 

where Y2 (D) is defined by partition (4.2), above. 

Proof: See Appendix 4.1 (§ A4.1.2., p. 342). 

I 
The above result is important in its own right, because 

it links G(D) with H(D); in this discussion it constitutes 

the basis for the following theorem, which is in fact the 

main result: 
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Theorem 4.2: For a non-catastrophic convolutional code, 

the general solution of the syndrome equation is 

E(D) = T(D)X1 (D) + S(D)X2 (D) (4.4) 

where T(D) is an 1 x k matrix of polynomials which will 

be considered to be arbitrary and X
1
(D), X

2
(D) are defined 

by partitions (4.1) & (4.2). 

Proof: See Appendix 4.1 (§ A4.1.3., p. 343). 

I 
Two more variations of the above result will be intro

duced. The first expresses E(D) in terms of G(D), H(D) & 
S(D), while the second avoids the use of S(D). 

Theorem 4.3: For a non-catastrophic convolutional code, 

the general solution of the syndrome equation can take the 

form 

E(D) = Z(D)G(D) + S(D)H'T(D) ( 4. 5) 

where, H'(D) is the right-inverse of H(D) and Z(D) is a 

1 x k matrix, which will be taken to be arbitrary. 

Proof: See Appendix 4.1 (§ A4.1.4., p. 344). 

I 
In the paper by Reed & Truong [24], X~(D) is (mistakenly) 

referred to as the "left inverse of the parity-check matrix" 

[twice, in p. 78, between eqns (18) & (24)]. Since H(D) is 

an (n-k) x n matrix of rank n-k, it can only have a right

inverse (see Theorem A2.2.11). 

Lemma 4.2: For a non-catastrophic convolutional code, 

the general solution of the syndrome equation can take the 

form 

E(D) = Z(D)G(D) + R(D)Q(D) (4.6) 

where, Q(D) .::0 Y2 (D)X2 (D), defined by partitions (4.1) & 

(4.2) and Z(D) is a 1 x k matrix (taken to be arbitrary). 

Proof: See Appendix 4.1 (§ A4.1.5., p. 345). 

I 
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4.1.2. The Case of Systematic Codes 

Application of the above results, for the case of system

atic codes is straightforward, but first it is necessary to 

elaborate on partition (4.2). 

Theorem 4.4: For a systematic convolutional code, B(D) 

& e-1 (D) have the following general form 

[ 

A-1 (D) 
B(D) = 

C(D) 

A-1 (D)P(D) ] 
F-1 (D) + C(D)P(D) 

[ 
A(D) + P(D)F(D)C(D)A(D) 

-F(D)C(D)A(D) 
-P(D)F(D) ] 

F(D) 

(4.7a) 

(4.7b) 

where A(D) & B(D) are part of the Smith normal form of 

the polynomial-generator matrix G(D) = [Ik,P(D)], defined by 

eqn (4.1), F(D) is an (n-k) X (n-k) nonsingular matrix and 

C(D) is an (n-k) X k matrix. 

Proof: See Appendix 4.1 (§ A4.1.6., p. 345). 

I 
Note that (4.7) is the most general form of B(D) & 

e-1 (D), more general than those used by Reed & Truong [24]. 

In these expressions, A(D) & F(D) may be any nonsingular 

k x k & (n-k) x (n-k) matrices, respectively and C(D) can be 

any (n-k) X k matrix. If A(D) = Ik, F(D) = I~kand C(D) = O, 
the following lemma is proved: 

Lemma 4.3: For a systematic convolutional code, B(D) & 
e-1 (D) may take the following form: 

[ I Pin(-Dk) ] B(D) = Ok and 
[ 

I -Pin(-Dk) ] e-l<n> = ok (4.8) 

where [Ik 1 P(D)] = G(D) is the polynomial-generator matrix 

of the code. 

I 
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Theorem 4. 5: For a systematic convolutional code the 

general solution of the syndrome equation is 

E(D) = [z(D),Z(D)P(D)+S(D)F"1 (D)] (4.9a} 

where [Ik,P(D)] = G(D), F(D) is an (n-k) x (n-k) nonsin

gular (arbitrary) matrix and Z(D) is a 1 X k (arbitrary) 

matrix. Since, usually, F(D) = I k: n-

E(D) = [z(D),Z(D)P(D)+S(D)j (4.9b) 

Proof: See Appendix 4.1 (§ A4.1.7., p. 347). 

I 

4.1.3. Estimation of the Channel Error pjgits 

So far, the main results concern the invertion of the 

syndrome eqn. In the solutions obtained, an arbitrary quan

tity is present; this quantity is chosen by the decoder so 

that the probability of a decoding error is minimized. For a 

binary code, this is equivalent le minimizing the Hamming 

weight of the channel-error sequence e, or the same, 6 
minimizing the Hamming weight of the coefficients of E(D). 

This is the application of maximum likelihood decoding for a 

BSC (see Theorem 1.2, p. 12). 

Note 4.2: For a binary code, the arbitrary quantity in 

the general solution of the syndrome equation is chosen so 

that the Hamming weight of the channel-error sequence is 

minimized, The Hamming weight of, say 1 X(D) is denoted by 

w[X(D)] and is equal to the number of non-zero terms of the 

polynomial. The best estimate of, say, X( D) is denoted by -X(D). It is understood that X(D) denotes the objective val--ue of whatever X(D) represents, while X(D) represents a 

'subjective' evaluation of X(D), 

I 
From Note 4.2 and the solution of the syndrome equations, 

the lemmas below follow easily: 

Lemma 4.4: For a non-catastrophic convolutional code, 
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(4.10) 

~ 

where, for a binary code, Z(D) is chosen so that 

w[i(D)G(D)+S(D)H'T(D)] is minimized. 

I 
Lemma 4.5: For a systematic convolutional code, 

E(D) = [i<n),i(D)P(D)+S(Dl] (4.11) 

~ 

where, for a binary code, Z(D) is chosen so that 
~ ~ 

w[Z(D),Z(D)P(D)+S(D)] is minimized. 

I 

4 .1.4. Esti~tion of the Source pigits 

The analysis of the examined decoding technique will be 
~ 

finalized with the derivation of an expression for U(D), 

the decoder's best estimate of the source message U(D). 

Theorem 4.6: For a non-catastrophic convolutional code, 
~ ~ 

U(D) = R(D)G'(D)- Z(D) (4.12) 

where G'(D) is the right-inverse of G(D) and Z(D) is an 

arbitrary 1 x k matrix of polynomials. 

Proof: See Appendix 4.1 (§ A4.1.8., p. 348). 

I 
Theorem 4.7: For a systematic convolutional code, 

~ ~ 

U (D) = R<ml (D) - Z (D) (4.13) 

where Z(D) is an arbitrary 1 X k matrix. 

Proof: See Appendix 4.1 (§ A4.1.9., p. 349), 

I 
Note that eqn ( 4.13) was derived using the general form 

of B(D) & B"1 (D) (see Theorem 4.4), instead of the simpli

fied form used by Reed & Truong [24] (see Lemma 4.3). Never

theless, the two results are identical. 

It would be useful to mention two results obtained in 

Appendix 4.1, during the proof of the last two theorems. 

Since G(D) is a k x n matrix of rank k (by Lemma A2.10.1, 
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p. 319), it has a right-inverse (by Theorem A2.2.11, p. 

303), denoted by G'(D). From eqns (A4.1.8) & (A4.1.9): 

For a general non-catastrophic convolutional code: 

For a systematic convolutional code: 

[ 
Ilt + P(D)F(D)C(D)] 

G' (D) -
-F(D)C(D) 

(4.14) 

(4.15) 

where A( D) & B( D) are defined by Lemma 4 .1, and C{ D) & 

F(D) have been introduced in Theorem 4.4. 

NOISE 

e 
,-------------------~------------------l 
I I 
I I 

U
1 

V r 1U 
J CHANNEL DIGITAL CHANNEL J 

SOURCE 1---+->1 f--+--l 
J ENCODER CHANNEL DECODER J 
I I 
I I 
l I 
~---------------------------------------J 

SINK 

(a) 

NOISE 

z 

-u u 

SOURCE DIGITAL HYPERCHANNEL SINK 

(b) 

Figure 4.1: The communications system as seen by the channel 

codec (a) and by the user (b). 
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4.1.5. The Hvperchannel Error polynomial 

-Note that for a noiseless channel, U(D) = R(D)G'(D) = 
U(D), for general non-catastrophic codes, while for system

atic codes, U(D) = R<ml(D) = U(D), 

Comparing with the results of Theorems 4.6 & 4.7 above, 

one readily concludes that the arbitrary quantity Z(D) plays 

the role of a 'correcting factor' (as Reed & Truong have put 

it). In effect, this arbitrary quantity represents noise 

referred to the information source or, to put it otherwise, 

it represents the noise digits of the (hyper)channel between 

the source 0/P and the sink I/P (see Fig. 4.1), For this 

reason, the term hyperchannel error polynomial is proposed 

for Z(D). 

4.1.6. Error-Trellis Syndrome Decoder 

From the analysis, so far, one concludes that for a gen

eral non-catastrophic convolutional code, 

- -U(D) = R(D)G'(D) - Z(D) 

- -E(D) = Z(D)G(D) + S(D)H'T(D) 

where, for a binary code, 
> (4.16) 

The set of relations ( 4.16) can be translated into the 

block diagram of Fig, 4.2. 

The analysis for a systematic convolutional code gave the 

following results: 

- = R<•> (D) -U(D) - Z(D) 

- [z(D),Z(D)P(D) + S(Dl] E(D) = 
> (4.17) 

where, for a binary code, 

w[E<Dl] = MIN{w[Z(D),Z(D)P(D) 
Z(D) 

+ S(D)]} 

The set of relns (4.17) suggest the decoder of Fig. 4.3. 
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H'~D) ~ G(D) 

-E(D) 

COUNTER 

-w[E(D)) 

HYPERCHANNEL 
Z{D) 

ERROR ESTIMATOR 

-
+ U(D) 

Fi qure 4. 2: Block diagram of the error-trellis syndrome decoder 

for a binary non-catastrophic convolutional code. 

P(D) 

R(D) Jtp(o) s (D) 

de MUX + + MUX 

E(D) 

fi•l (D) 
~ P(D) - COUNTER 

-w[ E(D)) 

HYPERCHANNEL 
Z(D) -OlJI'PliT Ti•l•l 

BUFFER ERROR ESTIMATOR 

-
+ U(D) 

Fi qure 4. 3: Block diagram' of the error-trellis syndrome decoder 

for a binary systematic convolutional code. 

The solid line in these block diagrams represents multib

it buses. The counter counts the number of ones (i.e. it 
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evaluates the Hamming weight). The decoder's 'brain' is the 

hyperchannel error estimator (HEE); the name follows after 

eqns (4.12) & (4.13). The task of the HEE is best described 

in Section 4.3. The output buffer is used to delay the cur

rent input block until the HEE is satisfied that the coeffi

cients of the hyperchannel error-polynomial are such that 

the estimate of the channel error-sequence has the minimum 

possible Hamming weight. 

4.2 THE CQNSTRAINED REGULATOR TRELLIS OF A SYSTEMATIC CODE 

It has been shown that for a binary* systematic convolu-
~ ~ ~ 

tional code, E(D) = [Z(D) ,Z(D)P(D)] + [O,S(D) ]. The de-
~ ~ 

coding rule 

ming weight 

is to choose [Z(D),Z(D)P(D)], so that the Ham-
~ 

of E(D) is minimized. This rule can be stated 
~ 

otherwise: Choose Z(D), so that the Hamming distance be-
~ ~ 

tween [Z(D) ,Z(D)P(D)] & [O,S(D)] is minimized. The reader 

should recall that in Viterbi decoding, the rule is: Choose 
~ ~ ~ 

U(D) so that the Hamming distance between [U(D) ,U(D)P(D)] 

& [R<'">(D) ,R<P>(D)] is minimum. It is obvious then that the 

technique under discussion leads naturally to some sort of 

trellis decoding. 

Indeed, the part of the decoder that is a replica of the 
~ 

encoder and takes as input the arbitrary quantity Z(D), to 
~ ~ 

produce [Z(D),Q(D)], where, 

Q(D) ~ Z(D)P(D) (4.18) 

has been named the regulator circuit, by Reed & Truong 

[24] and has a trellis diagram. The advantage of this tech

nique, over Viterbi decoding, is that the trellis diagram, 

here, is considerably simpler. In particular, the number of 

states is reduced and also the number of branches that leave 

a particular state is, in general, reduced. This is achieved 

by exploiting the existence of the bounded error-correcting 

capability of the code. 

Coroplexjty of the eonstrained Regulator Trellis 

In this paragraph, the constrained trellis of the regula-

* Unless otherwise stated. only binary codes will be cons1dered. 
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tor circuit will be introduced. The analysis that follows is 

based on the restriction introduced by Note 4.3 (below). 

Definition 4.1: The error-correcting capability of a 

convolutional code is denoted by t and is defined to be the 

maximum number of errors the code guarantees to correct, in 

any actual constraint-length, n ~ (m+1 )n. 
A 

I 
If the need to relax the maximum likelihood search is 

accepted, then the reduced range of search should include 

(for best performance) the most critical elements. Since the 

code guarantees to correct t or less errors in m+1 blocks, 

the following restriction may be introduced. 

Note 4.3: In error-trellis syndrome decoding, the error 

sequences examined must have a weight of t or less, over a 

length of m+1 blocks: 

11 

~w[ eh.t) ~ t I for all h:!:O (4.19) 
1=0 

where eh is the hth channel-error block [defined by eqn 

(2.62b)]. 

I 
In Lemma 4.5, the general solution of the syndrome equa

tion was given in polynomial form. Using eqn (4.18), 

(4.20) 

Definition 4.2: Given the generator-polynomial matrix 

G(D) = [Ik,P(D)] of an (n,k,m) systematic convolutional 

code 1 the regulator circuit of the error-trellis syndrome 

decoder is understood to be the k-input, (n-k)-output, lin

ear sequential circuit ( LSC) with transfer-function matrix 

P(D). Furthermore, any LSC, structured like the 'normal en

coder' (see Definition 2.9, p. 34), will be called a normal 
I - - I 

LSC. The regulator circuit is 1 then a·normal LSC. 

I 
It is obvious from the definition above, that the regula-
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tor circuit is a replica of the encoder; hence they have the 

same total memory M [see eqn (3.1)] and the same transition 

diagram if no constraints are imposed [see eqn (3.2)]. 

It is easy to show that the matrix version of (4.20) is, 

(4.21) 

where sb is the current syndrome block, 

zb is the current 0/P block of the HEE and 

qb is the current 0/P block of the regulator circuit. 

Note that zb is the hth hyperchannel error block, i.e. 1t 

represents the block of k channel error bits that have cor

rupted the corresponding block of k message bits ub. 
From Note 4.3 and eqn (4.21), one concludes that the 

weight of z, over m+1 blocks, should not exceed t. 

Theorem 4. 8: In error-trellis syndrome decoding, the 

Hamming weight of m+1 consecutive hyperchannel error blocks, 

zb, must not exceed the error-correcting capability, t, of 

the code: 

• 
~w[zh+ 1 ] :S t /for all h<!:O 
i•O 

Proof: From eqn (4.21): 

Substituting the above equation in (4.19): 

• 
:S t - ~w[ qb+i+sb+t] 

i•O 

(4.22) 

QED 

The following is based on Definition 3.1 which deals with 

various parts of the (logical or physical) memory of an LSC. 

Since the next state contains part of the current input, it 

is necessary to introduce terms that describe various parts 

of the I/P block; furthermore, these terms should be compat

ible with those introduced by eqns (3,5) (seep. 58). 
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Definition 4.3: Consider the I/P block uh and assume 

that prior to its clocking in the memory it resides in a 

separate memory which will be called the input group (ING); 

logically, ING should be visualized as a set of k shift reg

isters (SRs) of length one, each. The following two subsets 

of ING are introduced: The memory input group (HIG) contains 

all the (logical or physical) SR-stages of ING that are con

nected with SRs of length one or more. The discarded input 

group (DIG) contains all the SR-stages of the ING that are 

not included in the MIG. Note that the ING contains k ele

ments, the MIG contains k-f elements, while the DIG contains 

f elements: 

ING A {u~1 l I i=1,2, ••• ,k} (4.23a) -
MIG A {u~il I i=1,2, ... ,k: Mi~ 1} (4.23b) -
DIG A 

{ u~il I i=1,2, ... ,k: Mi = o} (4.23c) -
I 

The various groups defined above are sets of logical or 

physical SR-stages. Notation ING(h), MIG(h) & DIG(h) will be 

used to denote the set of bits that reside in ING, MIG & 
DIG, respectively, at time-unit h. 

To complete the picture, the ordered sequences of the 

contents of the above sets of SR-stages will also be intro

duced. Clearly, the state of the ING, at time-unit h, is 

simply uh. In a fashion similar to the one used by eqns 

(3.6), the states of the MIG and the DIG, at time-unit h, 

are denoted by M(h) and D(h), respectively. 

The results below will help develop some very useful re

suits. They can be considered as an interface between the 

algebra of the various groups (FEG,MEG,ING, etc) and the 

algebra of the weight of their state, at some time-unit. 

_Theorem 4.9: Let the partition B = <A1 ,A2 , ••• ,A
4
>, where 

B .Q MEG *·and'A1 /i=1,2, ... ,a is a set of logical or physical 
- - ~--~--- --
SR-stages from the MEG; let also B(h) & A1 (h) denote the 

state of B & A1 , respectively, at time-unit h. Then: 

4 

w[B(hl] = ~w[A1 (hl] 
1=1 

/for all h~O (4.24) 
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Proof: See Appendix 4.3 (§ A4.3.1., p. 353). 

I 
Lemma 4.6: Let A & B be any two subsets of the MEG. 

Then: 

If A CB -> (4.25) 

Proof: Let A,B be any two subsets of the MEG. If A C B, 

i.e. A is a proper subset of B, then from Theorem A4.2.1, B 

= <A,B-A> and from Theorem 4.9, for all time-units h: 

since the Hamming weight is a non-negative integer. 

QED 

Theorem 4. 10: If the Hamming weight of the current 

state S(h) of the regulator circuit is w (O~w~t), the weight 

of the current input zhmust be t-w, or less: 

Proof: 

w(zh] + w(S(hl] ~ t for all h~O 

See Appendix 4.3 (§ A4.3.2., p. 354). 

(4.26) 

I 
Lemma 4.7: The Hamming weight of any state of the regu-

lator circuit does not exceed t: 

w(S(hl] ~ t for all h~O (4.27) 

Proof: From Theorem 4.10: w[S(hl] ~ t- w(zh] ~ t /h~O. 
QED 

Lemma 4.8: The Hamming weight of any I/P block to the 

regulator circuit must not exceed t: 

for all h~O (4.28) 

Proof: From Theorem 4.10: w(zh] ~ t- w(S(hl] ~ t /h~O. 
QED 

The results that follow will link the complexity of the 

constrained trellis to the associated circuit parameters. To 

facilitate discussion, suitable notation will be introduced. 
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Note 4.4: Consider the following notation with respect 

to the central portion of the constrained regulator trellis: 

~(i) ~Number of different allowable states of weight i. 

Q(i,w) ~Number of different allowable input blocks of 

weight i, when current state has weight w, 

¥(i,w) ~ Number of different allowable states that can be 

reached within one time-unit, from a given state 

of weight w, via an I/P block of weight i. 

~~ ~ Total number of different allowable states. 

~Q(w) ~ Total number of different allowable input blocks, 

when current state has weight w. 

~¥(w) - Total number of different allowable states that 

can be reached within one time-unit, from a gi

ven state of weight w. 

Expressions for ~. Q & ¥ can be easily developed: 

Theorem 4.11: Consider 

I 

with transfer-function matrix 

an (n,k,m) regulator circuit 

P(D). Let t be the error-cor-

recting capability of the associated code and M the total 

circuit memory. Then, with respect to the central portion of 

its constrained trellis: 

~( i) = (~) /O~i:H (4.29a) 

Q(i,w) = (f) /O:H~t-w & O~w~t (4.29b) 

¥(i,w) = (kif) /O~i~t-w & O~w~t (4.29c) 

' f f[P(D)] (see 57) (~) ~ where = Theorem 3.1, p. and --

n!/[k!(n-k)!]~ = the binomial coefficient. 

Proof: See Appendix 4.4 (p. 355). 

I 
Lemma 4.9: Consider an (n,k,m) regulator circuit with 

transfer-function matrix P(D). Let t be the error-correcting 

capability of the associated code and M the total circuit 

memory. Then, with respect to the central portion of its 

constrained trellis: 
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where f 

n! /k! /{n-k)! 

= f[P{D) 1 
A C{n,k) -

C{n,k) = O, for n < k. 

= 
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t 

~£ = ~(~) 
1=0 

{4.30a) 

t-w 
~Q{w) = ~(f) 

1=0 

/OSwSt {4.30b) 

t-w 

~¥{w) = ~(kif) /OSwSt {4.30c) 
1=0 

{see Theorem 3.1, p. 57) and (~) A -
the binomial coefficient. Note that 

Proof: The results are the cummulative quantities of Theo-

rem 4.11. 

I 
According to the discussion above, the state-transition 

diagram of the regulator circuit is made of a total of ~£ 

states of weights ranging from 0 to t [there are exactly 

£{i) states of weight i1. From each state of weight w origi

nate Q{i,w) transitions of weight i, where i is restricted 

between 0 and t-w. Some transitions may be multiple-edge 

ones {see Note A3.1.1, p. 330). 

Each transition needs to be marked by the input block 

{zh) that caused that transition. To facilitate decoding, 

each transition is marked by zh/qh, i.e. it includes the 

corresponding 0/P block qh. Note that, in reality, the cir

cuit 0/P is [zh,qh1, since the circuit's transfer-function, 

P{D), is part of G{D) = [Ik,P{D) 1; but since the regulator 

circuit for systematic-code cases is only examined, qh is 

taken to be its 0/P {see, also, Definition 4.2). The discus

sion above leads easily to the following note. 

4.2.2. Constructipn of the Trellis 

Note 4.5: The constrained regulator trellis is con-

structed exactly like the (unconstrained) encoder trellis 

{see Note 3.1, p. 65), except that only states of weight t 

or less are considered. The states are arranged in groups 

according to weight, with the all-zero state on top, below 

the weight-one group, etc. From a given state of weight w, 
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only transitions that are caused by an I/P block of weight 

t-w, or less, are considered. 

I 
For an example see Appendix 4.5 (p. 356). 

At this stage, one is able to assess the importance of 

the proposed decoding technique. Although it introduces some 

degradation, it compensates by allowing the use of longer, 

and hence more powerful, codes. 

For example, according to Lin & Costello ([2], p. 337), 

the practical limit for the Viterbi algorithm is codes with 

a total encoder memory of M=8 (1983), i.e. with a total of 

28 = 256 trellis states. For error-trellis syndrome decod

ing, the number of states considered is 1 + M +•••+ C(M,t) 

(see Lemma 4.9). For a t=2 code, the constrained trellis has 

1+M(M+1)/2 states, while the unconstrained one has 2M; a 

Viterbi decoder for an M=8 code needs to consider a 256-

state trellis, while an error-trellis decoder only about 

(1/6)th of that (37-state trellis). From another point of 

view, if the maximum number of states is not to exceed 256, 

a t=2 code with an encoder of total memory M=22 can be used 

in combination with error-trellis syndrome decoding. 

4.3 QECOOING ALGORITHM FQR SYSTEMATIC BINARY CODES 

Given the trellis diagram of the regulator circuit (de

fined above), the Viterbi algorithm (introduced in Section 

3.4), the general solution of the syndrome equation (ob

tained in Section 4.1) and the decoding equation (Theorem 

4.7) the procedure for error-trellis syndrome decoding fol

lows easily: 

Note 4.6: To decode: 

Step 1: Let time-unit be h=O. 

Step 2: Calculate the current syndrome block sh. 

Step 3: For each branch, with label zh/Qh, form the sum 

Qh + sh and append the label with the number W = w[zh] + 

w[ Qh +sh] • 
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Step 4: For each state, at time-unit h+l: From all 

paths entering that state, keep the one with the smallest 

metric Mh+l and store the path & the metric (Mh+l = Mh + W). 

Step 5: If there are more blocks to be decoded, in

crease h by 1 and go to step 3; otherwise proceed. 

Step 6: From the survivor path, deduce the hyperchannel 

error sequence z = [ z
0

, z
1

, z
2

, ••• ] and subtract it from r(ml, 

to obtain u. 
I 

For an example, see Appendix 4.6 (p, 361), 

4,4 SIMPLIFICATION OF THE CONSTRAINED TRELLIS 

The purpose of this section is to investigate the gains 

obtained from a simplified trellis. Savings will be possible 

if one can exploit the redundancy of the diagram. In partic

ular, the reader may have already noticed that some states 

have only one I/P (and one 0/P) transition. The lack of 

choice, when the circuit is at such a state, suggests their 

elimination. If such a simplification is not accompanied by 

an increase in complexity (which may be a by-product of this 

modification), then net gains will have been obtained. These 

gains mean that for a given code, the memory requirement 1s 

reduced, or that for a given memory-constraint more powerful 

codes may be 1mplemented. 

The proposed simplifications may be very useful, because 

a reduction in the decoder memory-requirement makes the use 

of larger-distance codes possible. In order to assess the 

memory savings, quantitative results should be produced. 

The idea of the constrained state-transition diagram be

longs, of course, to Reed & Truong [24]. In the l!emainder7of 

this chapter, the structure of the constrained trellis, and 

of its simplified version, will be studied. The direct ap

plication of such an effort is on error-trellis syndrome 

decoding, but the results that follow are more general. They 

apply to any normal LSC (see Definition 4.2), while the con

straint on the Hamming weight of the error sequences exam

ined, need not be the associated-code error-correcting capa-
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bility, t. For this reason the terms, constrained trellis 

(instead of constrained regulator trellis), normal LSC (in

stead of regulator circuit) and weight-constraint t (instead 

of error-correcting capability t), will be used. 

In fact, it will be interesting to attempt error-trellis 

syndrome decoding with a weight-constraint different than 

the error-correcting capability of the code. 

4.4.1. eartition of tbe Cir~uit Hemor~ 

Theorem 4.12: Consider a normal LSC and let MEG repre

sent the set of the contents of its memory.* Consider also 

the parts of the memory REG, CEG & FEG.* The following rela

tions hold true: 

FEG U CEG U REG = MEG (4.3la) 

FEG n CEG = CEG n REG = l1l (4.31b) 

FEG n REG = {u(il 
h-1 /i=1,2, ••• ,k: M -i- 1} (4.31c) 

Proof: See Appendix 4.7 ( § A4. 7 .1. , p. 363) . 

I 
Theorem 4.13: Consider a normal LSC and let MEG repre-

sent the set of the contents of its memory.* Consider also 

the parts of the memory REG, CEG & FEG.* MEG can be parti

tioned in many ways, including the following: 

Partition I: MEG = (FEG,CEG,REG') (4.32) 

where REG' ~ REG - FEG 

Partition II: MEG = (FEG',CEG,REG) (4.33) 

where FEG' ~ FEG - REG 

Proof: See Appendix 4.7 (§ A4.7.2., p. 364). 

I 
The following very useful results, partition the contents 

of the memory of a normal LSC, in terms of its contents one 

time-unit before. But first an example to illustrate the 

concepts introduced, so far. 

* See Definition 3,1 (p, 58), 
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Example 4.1: Consider a normal LSC with SRs of various 
lengths, say 0,1,2,3,4 & 5 (see Fig. 4.4). The various sets, 

defined above, will be as following: 

TABLE 4. t 

At time-unit h 
At time-unit h+l 

FEG(h) = {A,B,D,G,K} 
{ x2,x3 ,x4' Xs ,xs} FEG(h+l) = 

FEG' (h) = {B,D,G,K} 
{ x3 'x4' Xs 'xs} FEG' (h+l) = 

CEG(h) = {E,H,I,L,M,N} 
{n,G,H,K,L,M} CEG(h+l) = 

REG(h) = {A,C,F,J,o} 
{ x2, B , E , I , N} REG(h+l) = 

REG' (h) = {c,F,J,o} 
{B,E,I,N} REG' ( h+l) = 

ING(h) = { xl' x2' Xa' x4 'xs' xs} 

MIG(h) = { x2 , x3 , x4 , x5 , x6 } 

DIG(h) = {xt} 

·---+ DIG(b) 

XI --------------------------------------------------------------+ 

~--~~·c;J~------------------------------------
%3----~·~r----.. ~·~~-------------------------------------+ 

........ 

~--~~·~ ·~~~~.·~~----------------------+ 

G H I J 

.. 
x, K L M N 0 

r· • 
I r .. 
I r r· 

I 

+ ~ 
I • • MIG(b) FEG(b) CEG(b) REG(b) 

Figure 4. 4: The memory partitions of an arbitrary normal LSC. 
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From the point of view of this discussion, this is the 

most complete circuit because all limit situations are con

sidered (all SRsof length 5 or more behave alike). 

I 
Theorem 4.14: Consider a normal LSC and let MEG ( h+ 1 ) 

represent the set of the contents of its memory at time-unit 

h+l. Then, the following hold true: 

MEG(h+l) = (MIG(h),FEG'(h),CEG(h)) 

FEG' = {uUl 
h-1 /i=l,2, ••• ,k: M1 ~ 2} 

MIG(h) U FEG'(h) U CEG(h)--, 

L {u~~~ /ie[l,k], je[O,M1 ) & M1 ~ 1} 

(4.34) 

(4.35) 

(4.36) 

where MIG is defined by eqn ( 4. 23b), CEG by eqn ( 3. 5d) 

and FEG' by eqn (4.33). 

Proof: See Appendix 4.7 (§ A4.7.3., p. 365). 

I 
Lemma 4. 1 o: Consider a normal LSC and let MEG(h+l) rep-

resent the set of the contents of its memory at time-unit 

h+l. Then, the following partition holds true: 

MEG(h+l) U DIG(h) = (ING(h),FEG'(h),CEG(h)) (4.37) 

where DIG & ING are defined by eqns (4.23), CEG by eqn 

(3.5d) and FEG' by eqn (4.33). 

Proof: See Appendix 4.7 (§ A4.7.4., p. 366). 

I 

4.4.2. §tryctyre of the Constrained Trelljs 

It is evident from the above that during a transition, 

the I/P block feeds the FEG, the FEG feeds the CEG (and the 

REG in SRs of length 2), the CEG retains most of its ele

ments with the rest feeding the REG, while all the elements 

of the REG are discarded. So, the only digits of S(h) that 

do not participate in the formation of S(h+l) are those of 

the REG(h). To arrive at a specific state S(h+l) = SY one 

has to start from a state S(h) = S * with a specific and 
X 

* Asswling that transition Sx -> Sy is possible. 
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unique FEG'(h) & CEG(h) and to use a specific I/P block 

ING(h). Nevertheless, one is at liberty with respect to the 

elements of the REG, hence the various states from which 

S(h+l) can be reached are generated by letting REG(h) go 

through all permissible combinations of bits. The theorem 

that follows makes use of the discussion, above. 

Theorem 4.15: Within the central portion of the con-

strained trellis, the number of transitions entering a state 

equals the number of transitions leaving that state. 

Proof: Although this result is original, it is rather 

'expected', since it holds true for the special case of the 

unconstrained trellis (see Lemma 3.1, p. 66). For this rea

son, and because its proof is a 'lengthy' one, it is given 

in Appendix 4.8 (p. 366). 

I 
A useful expression obtained during the course of the 

proof of the theorem, above, is: 

(4.38) 

Note that the different I/P blocks zh that cause a tran

sition into a specific (next) state S(h+l) = Sn, of we1ght 

fi, can only differ in DIG(h); this is so because the ele

ments of DIG(h) will not reside in the circuit memory, while 

all the elements of MIG(h) will do so. Hence MIG(h) has to 

be fixed because it will be part of S(h+l), which has a spe

cific composition. 

The following theorem gives the number of different zhs 

that may lead to a specific state of weight fi. 

Theorem 4.16: Within the central portion of the con-

strained trellis, the number of input blocks zh that cause a 

transition to a specific state S(h+l) = Sn, is C(f,O) + 

C(f,l) +•••+ C(J,a), where a~ t- w[S(h)] - w[M(h)] = t
w[S(h+l)] - w[R(h)], 

Proof: From the above discussion, the number of I/P blocks 

zhdiffer only in their DIG part (i.e. the group of I/P bits 
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that will not reside in the circuit memory). The size of 

this group is f (f~O). Hence there are C(f,i) different 

DIG(h)s of weight i, where i may vary between 0 and the max

imum permissible weight of D(h), the state of DIG(h). 

From reln (4.38), 

w[D(hl] S t- w[S(h+1l] - w[R(hl] (A) 
From Theorem 4.14, 

MEG(h+1) = (MIG(h),FEG'(h),CEG(h)) ---> 

MEG(h+1) = MIG(h) U FEG'(h) U CEG(h) -=-> 
MEG(h+1) U REG(h) = MIG(h) U FEG'(h) U CEG(h) U REG(h) 

-> MEG(h+1) U REG(h) = MIG(h) U MEG(h) (4.39) 

Since REG(h) is mutually exclusive with FEG' (h) [see 

(4.33)] and with CEG(h) (see Definition 3.1) and with 

MIG(h), it will also be mutually exclusive with MEG(h+1) 

(which is partitioned by these three sets). Also, MIG(h) & 
MEG(h) are obviously mutually exclusive. 

(MEG(h+1),REG(h)~ = (MIG(h),MEG(h)) (4.40) 

Applying Theorem 4.9 to reln (4.40), 

w[S(h+1l] + w[R(h)j = w[M(hl] + w[S(hl] (4.41) 

From relns (A) & (4.41), 

w[D(hl] S t- w[S(h+1l] - w[R(hl] = t- w[S(hl] - w[M(hl] ~a 

Note that if a > f, then when i (which ranges between 0 & 
f) exceeds f, C(f,i)=O. 

QED 

Lemma 4. 11 : Consider a normal LSC with weight-con-

straint t and total memory M. Within the central portion of 

its constrained trellis there are exactly C(M,t) states that 

have a single I/P (and 0/P) transition; these states have 

weight t, while the transition from any of these states is 

caused by zh =0. 

Proof: According to Theorem 4.10 the sum of the Hamming 

weights of the current I/P, zh, and the current state, S(h), 

cannot exceed t. Hence, if w[S(h)] = t ---> w[zh] = 0 
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---> zh = 0. So when the circuit memory contains t 'ones' 

only one I/P block is allowed, hence there is only one tran

sition to and from a state of weight t and there are C(M,t) 

such states. 

QED 

Note that this situation, where a state has only one I/P 

(and 0/P) branch, is unique. It is the result of the re

striction introduced by Note 4.3. 

Usually, a node exists where there is choice. In the case 

discussed above there is only one path in and one path out 

of the node, hence there is no decision to be made. This 

type of nodes can be eliminated. Inevitably, such a 'simpli

fied' trellis diagram will include interstate transitions of 

length greater than one. The reader should recall* that in 

an encoder trellis, all node-to-node transitions have length 

one. 

4.4.3. The Simplified Trellis 

The results in this paragraph are applications of the 

constrained-trellis results of the previous sections. They 

are largely based on the observation that some states have 

only one incoming and one outgoing path. 

Defin1t1on 4.4: In the constra~ned-trellis, unlike in 

the ordinary one, the states are arranged according to 

weight. A region of weight w is the set of all states of 

weight w (O~w~t}. 

I 
Note that the regions are arranged starting from the w=O 

one on top and ending with the w=t one in the bottom. Inside 

a region the states may be arranged in any way, suitable to 

the application at hand; one possibility is the way used in 

the ordinary trellis. 

In Lemma 4.11, above, it was mentioned that when the cir

cuit is at a state of weight t, only the all-zero I/P block 

zh=O is permitted. Hence, once the normal LSC finds itself 

in the w=t region, it will be driven by an all-zero bit-

* See Definition 3.2 (p, 68), 
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stream until it exits from this region. To put it otherwise, 

the circuit will be in its so-called autonomous state for as 

long as its memory contains t 'ones'. 

The duration of the stay of the normal LSC in the autono

mous state may vary between one time-unit and a maximum of m 

time-units. More precise information cannot be obtained for 

the general case because it depends on the way t 'ones' can 

be arranged in a set of k-f SRsof lengths varying between 1 

& m. Nevertheless, some results for special cases will be 

developed. 

The simplified trellis, discussed above, is easily con

structed from the ordinary one by removing the weight-t 

states and modifying the diagram as necessary: 

Note 4.7: Given the constrained-trellis of a normal 

LSC, with total memory M and weight-constraint t, the corre

sponding simplified trellis is obtained from the original 

constrained-one as following: 

Step 1: All nodes corresponding to states of we1ght t 

[there are exactly C(M,t) such states] are removed from the 

diagram. 

Step 2: Step No 1, above, generates state-to-state 

transitions of length greater than one. These 'long' transi

tions are made by concatenating all single paths that come 

into contact after removing the weight-t nodes. 

Step 3: The label of a 'long' transition is the concat

enation of the corresponding single-path labels. 

Step 4: Any transitions that start from, and end to, 

the same state are replaced by the c6rreponding mu! tiple

edge transition. 

I 
Example 4. 2: Consider the constrained-trellis diagram 

of Fig. A4.5.3 (p. 360). Note that all states, apart from 

S0 , have one I/P and one 0/P transition. If the above men

tioned modifications are adopted, only S0 will remain. From 

Fig. A4.5.3, one can deduce that the simplified trellis will 

have only three transitions, all from S0 to S
0

• One will 
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have length 1 and label "0/0", the other will have length 2 

and label "20/11" (which is the concatenation of "2/1" & 
"0/1"); finally, the third label will be a double-edge one, 

of length 3: labels "3/1", "0/1" & "0/1" collapse to 

"300/111" and labels "1/1", "0/0" & "0/1" collapse to 

"100/101". Fig. 4.5, shows the new diagram, the simplified 

trellis. 

0 

-----Time Unit-----+ 

1 2 3 4 5 6 7 

20/11 20/11 20/11 20/11 20/11 20/11 20/11 

300/111 300/111 300/111 300/111 300/111 300/111 300/111 
1 00/101 1 00/101 1 00/1 01 1 00/101 1 00/101 1 00/101 1 00/101 

8 

Figure 4. 5: Simplified trellis diagram corresponding to the con

strained trellis of Fig. A4.5.3 (p. 360). 

9 

Note that within the central portion of the simplified 

trellis, there are three transitions entering each state and 

three transitions leaving it. 

I 
The simplified and the constrained trellis diagrams dif

fer in that the weight-t region of the former has been re

moved according to Note 4.7. This modification has generated 

transitions of length greater than one. Hence, any such 

transition is associated with states of weight t. In fact, 

the instructions for the construction of the simplified 

trellis, from the constrained trellis (see Note 4.7), lead 

easily to the'following theorem: 
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Theorem 4.17: Consider a simplified trellis* and any 

particular transition of length ~ > 1. In the corresponding 

constrained-trellis* this long transition will correspond to 

a sequence of ~ transitions, of which the 1st enters the 

weight-t region, the last leaves the region and the rest are 

transitions between states of the region. 

I 
Although Theorem 4.17, above, is neither difficult to 

prove (since it is based on the construction notes for the 

simplified trellis), nor very useful by itself, it forms the 

backbone for a number of interesting results. 

Theorem 4.18: The longest transition in the simpl1f1ed 

trellis* of an (n,k,m) normal LSC cannot exceed m+1 time

units. This maximum can be achieved only if the circuit con

tains at least t SRs of length m (where t is the circuit's 

weight-constraint). 

Proof: According~~o Theorem 4.17, any transition of length 

~ > 1 is associated with a sequence of ~ single-path transi

tions in the corresponding constrained trellis. Furthermore, 

the 1st of the transitions brings the circu1t in the 

weight-t region and the ~th takes it out of the region. This 

means that the last 'ones' are injected in the circuit memo

ry during the 1st single-path transition. 

Since the circuit memory contains the max1mum permissible 

number of 'ones' (i.e. t- see Theorem 4.10), during the 

remaining ~-1 time-units no other 'ones' are injected, i.e. 

the circuit will be in its autonomous state. The 'long' 

transition terminates when the circuit memory leaves the 

region, i.e. when at least one 'one' leaves the memory. 

Hence, the length of the longest possible transition will 

correspond to the maximum possible number of time-units the 

circuit can keep t 'ones' while in its autonomous state. 

According to Definition 4.2, the normal LSC and the en

coder have the same transfer-function matrix P(D) (which for 

the encoder is called generator-polynomial matrix). Hence, 

the encoder-synthesis instructions, given in Note 2.9, hold 

true for the normal LSC, as well. According to Note 2.9, 

* The central portion of the trellis is, only, considered. 
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there is at least one SR of length m. Any particular 'one' 

can remain in this SR for at most m time-units, i.e. it 

needs m+l units to clear off this register. The maximum num

ber of time-units t 'ones' can reside in the circuit is de

termined by the 'one' which at time-unit 1 is closest to the 

end of its own SR. So, at time-unit 1, the t 'ones' should 

reside as far left as possible, in an as long as possible 

SR. In other words, right after the 1st single-path transi

tion each of the t 'ones' should be at the first stage of an 

SR of length m. 

Clearly, the circuit should contain at least t SRs of 

length m; also these t 'ones' need m+l time-units to clear 

of the circuit memory. 

QED 

4.5 CHA~ACTERISTICS OF THE GENERAL CONSTRAINED TRELLIS 

In the last four sections numerous aspects of the con

strained and simplified trellises were discussed and a num

ber of examples were given. The accumulated experience can 

then assist in a deeper and more abstract elaboration of the 

structure of the constrained state-transition diagram. 

-4..5.1. General Partition of the Meroorv of a Normal LSC 

The memory partition in FEG', CEG & REG (or FEG,CEG & 
REG'), firstly introduced by Definition 3.1, was very suc

cessful in explaining the mechanics of the state diagram. In 

this paragraph this idea is reformulated in an abstract way 

and is also extended with the introduction of a few more 

parameters, like the memory-density function. 

Definition 4. 5: For a normal LSC , the memory-density 

function f( i) denotes the number of shift registers of 

length i /i2:0. 

I 
Theorem 4.19: Consider an (n,k,m) normal LSC, with to

tal memory M. Then the following results hold true: 
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i) f(O) = f (4.42a) 

ii) f(i) = 0 for it[O,m] (4.42b) 

iii) f(m) 2: 1 (4.42c) 

.. 
iv) ~f(i) = k (4.42d) 

1•0 

• 
v) ~if(i) =M (4.42e) 

1=1 

Proof: The results follow easily from Definition 4.5. 

I 
Consider, at first, the partition of the circuit memory 

and of the current I/P block, shown in Fig. 4.6. Note that 

the circuit-memory Partition II (see Theorem 4.13), and the 

input-block partition into MIG & DIG [defined by eqns 

(4.23)], have been adopted. 

INPUT CIRCUIT MEMORY 

i"-f;/(1);/(2) 
CEG 

i"-f;/(1)-f(2) 
i";/;/(1) 

,, Jl 

[I . • 

" FEG' M-2k+2/+/(1} i";/ 
(\ 

MIG REG . 
~ 

k 
I' V 

/(1) / 

I rno ~~-----------------------·~9-----------------------+ 
Figure 4.6: Partition of input block and circuit memory, of a 

normal LSC. 

Referring to Fig, 4.6, the reader should note the follow

ing: Each box represents a parallel-in parallel-out memory 

block; all blocks impose a one time-unit delay, with the 

exception of CEG whose delay per bit varies between one and 

m-2 time-units; the size of each transition line is denoted 

by their label, while the number displayed in the CEG de-
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notes its memory size. 

According to the above notes, the memory size of the oth

er blocks is: k-f for the MIG, f for the DIG, k-f-f(l) for 

the FEG' and k-f for the REG. The transition lines represent 

a one time-unit parallel transition of the marked number of 

bits. Finally, the transitions in the RHS of the diagram 

represent bits that are discarded, i.e. bits that leave the 

memory. 

The idea of the partition illustrated in Fig. 4.6, has a 

general application in life: For each process, the next 

state depends on the current action (I/P) and the current 

state. A part of the current action (DIG) does not partici

pate in the shaping of the next state. Part of the current 

state (REG) will not influence the next state, while part of 

the next state (FEG) will be entirely due to the current 

action. 

4.5.2. oe§crjptjon of the Curr@nt State 

The current paragraph will discuss the current state, and 

specifically its partition and enumeratation. 

According to the adopted partitions: 

MEG(h) = (FEG'(h),CEG(h),REG(h)) 

~> (4.43) 

ING(h) = (MIG(h),DIG(h)) 

Let ~ be the weight of the current state. Then: 

(4.44) 

Let • denote the weight of R(h), Obviously 0 ~ • ~ ~ ~ t, 

but since REG has k-f positions, • has to satisfy 0 ~ • ~ 

MIN{k-f,~}; since also the rest ~-• 'ones' have to reside in 

the rest of the memory ~-• ~ M-k+f ---> • ~~+k-M-f. 

(4.45) 

If • satisfies (4,45) then there are C(k-f,•l ways to 

place the • 'ones' in the REG, and for each of these there 

are C(M-k+f,~-•) ways to place the rest of the 'ones' in the 

rest of the memory. 
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So the total number of states of weight 9, with • 'ones' 

in the REG, is 

C(k-f,•)C(M-k+f,9-•) = (k~f)(M~~~f) (4.46) 

Note that it is not necessary to restrict • with (4.45). 

One can adopt a more relaxed range for •• i.e. 0 S • S 9 and 

use the fact that C(a,b)=O if a<b. 

4.5.3. Transition from a Giyen State 

During the next transition the contents of the REG will 

be discarded, hence the next state's weight will be reduced 

by w[R(h)], but on the other hand it will be increased by 

w[M(h)], i.e. by the number of 'ones' in the part of the I/P 

block that will reside in the circuit memory. 

Hence, w[S(h+ll] = w[S(hl] - w[R(hl] + w[M(hl] (4.47) 

Theorem 4.20: Consider the central portion of the con-

strained trellis of an (n,k,m) normal LSC, with weight

constraint t. If the current state, S(h), is given, the 

weight of the next state, S(h+l), satisfies the inequality 

Q- • S w[S(h+ll] S MIN{t-•,k-f+9-•} 

where: 9 ~ w[S(hl] & • ~ w[R(hl] 

(4.48) 

Proof: For a given current state 5( h), 9 & ' are fixed; 

hence, the weight, fi, of the next state depends on p ~ 

w[M(h)], according to eqn (4.47): MAX{fi} = 9 - • + MAX{p} & 
MIN{fi} = 9- • + MIN{p}. 

Obviously MIN{p} = O, hence: MIN{fi} = 9 - •· 

There are two restrictions on p. Obviously, it should not 

exceed the capacity of the MIG (i.e. p S k - f) and it 

should not violate the fundamental restriction of Theorem 

4.10, i.e. 9 + i + p S t <---> 

w[D(h)], Since the DIG does not 

p S t - 9 - i, where i ~ 

participate in the formation 

of the next state, restrictions on its weight, i, are rather 

relaxed, hence its value can be arbitrary, within limits. In 

the case examined i will be given the value that allows a 

greater freedom for p, which is equivalent with the ability 

to reach a maximum number of states from the current given 
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state: 

p ~ MAX{t-~-i} = t - ~ - MIN{i} = t - ~ 

Hence: MAX{n} = ~ - T + MIN{t-~,k-f} = MIN{t-T,k-f+~-•} 
QED 

Note that a restriction on p was considered during the 

discussion of the proof of Theorem 4.20: 

(4.49) 

Consider now the total number of transitions from any 

given state S(h) to any state of given weight, say, fi (fi 

should satisfy, of course, Theorem 4.20). 

Since S(h) is given so is its weight ~ and the distribu

tion of the ~ 'ones' in the memory of the associated cir

cuit. Hence ~ & • are given as well; if fi (= w[S(h+l)]) is 

given, then p is also given, since eqn (4.47) determines 

that p = fi + • - ~· 

Note that the various .transitions leaving a specific 

state are generated by 'playing' with the I/P block. In this 

case, the only restriction on zh is on its weight. Specifi

cally, w[zh] must satisfy Theorem 4.10 and eqn (4.47): 

i+p+ .. ~t & -> i :s t - fi - • 

Since the size of the DIG is f, i may assume any value 

between 0 and f, provided it does not exceed t- fi- •· 

Hence, 

]-> (4.50) 

Note that the contents of the DIG do not reside in the 

memory, hence they do not participate in the formation of 

the next state. The DIG provides only the multiplicity of 

the labels. On the other hand, the chosen combination of p 

'ones' will determine the next state, hence the MIG speci

fies S(h+l), although w[S(h+l)] is fixed. 

Hence, the number of combinations of p 'ones' in the MIG 

equals the number of transitions from S(h) to a state of 

weight fi; for each such transition the number of single-edge 

labels (or label multiplicity) equals the total number of 
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combinations permitted in the DIG. If a~ MIN{f,t-n-•}: 

4 

Label multiplicity, per transition= ~C(f,i) 
1=0 

(4.51) 

Obviously, the number of transitions equals the number of 

combinations of p 'ones' in the MIG, which is the same with 

the number of ways one can place p indistinguishable objects 

in k - f places. Since p = fi + • - Q, the number of transi

tions equals 

( k-f ) 
fi+•-Q (4.52) 

The results of the above discussion can be summarized in 

the following theorem: 

4.5.4. Summary of Results 

Theorem 4.21: Consider the central portion of the con-

strained trellis of an (n,k,m) normal LSC, with transfer

function matrix P(D), total memory M and weight-constraint 

t. If f ~ f[P(D)]*, the following hold true: 

i) 0 S w[S(hl] ~ Q S t 

and MAX{O,Q+k-M-f} S w[R(hl] ~ • S MIN{k-f,Q} 

ii) Number of states of weight Q, with an REG 

of weight • = (k~f)(M~~~f) 

i~i) Total number of states of weight Q = (~) 

iv) Q - • S w[S(h+ll] ~ fi S MIN{t-•,k-f+Q-•} 

v) Number of transitions from a given state, 

of weight Q, to some state of weight fi = (n~~! 9 ) 

4 

vi) Label multiplicity, per transition = ~C(f,i) 
~0 

where: 

vii) & 

iix) 0 S w[D(hl] ~iS MIN{f,t-n-•} 

I 

* See Theorem 3.1 (p. 57). 
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4.6 CHARACTERISTICS OF THE GENERAL SIMPLIFIED TRELLIS 

The only difference between the constrained trellis and 

its simplified version is the removal of the weight-t region 

from the latter; this generates transitions of length more 

than one time-unit (the so-called long transitions - see 

Note 4.7). 

The existence of the 'long' transitions is a feature of 

the simplified trellis. Since the rest of the details of the 

general constrained trellis (and hence of the simplified, as 

well) were discussed in the previous section, what remains 

to be examined is the number, length & labels of the 'long' 

transitions and, if possible, their destination. 

4.6.1. Introduct,ion 

Consider any given state S(h) of weight w[S(h)] = w, and 

an I/P block zh that causes a one-time-unit transition to a 

state S( h+1) of weight t. Since the circuit contains t 

'ones' at time-unit h+1, it is assumed that no other 'one' 

will be loaded until it looses at least one of these bits 

(see Theorem 4.10). Hence, what is important here is the 

time-unit at which the circuit looses the first of its t 

'ones'. This will be determined by the 'distance' (in SR 

stages) of the foremost 'one' in each of the SRs, from the 

SR's end. Obviously, the minimum of these 'distances' deter

mines the duration of the stay of the circuit in the w=t 

region, and consequently the length of the corresponding 

'long' transition. 

A 'long' transition of length D starts from a state of 

weight less than t and ends in a state of weight less than 

t; hence at the Oth and the Dth time-units the circuit con

tains less than t 'ones', while it contains exactly t 'ones' 

at time-units 1, 2, ... , D-1. Note that it makes no sense to 

expand the term 'long' transition to normal transitions, 

i.e. of length D=l. Hence, from now on the 'long' transition 

will have length D>l. 
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Theorem 4.22: Consider the central portion of the sim-

plified trellis for a normal LSC with weight-constraint t. 

If a 'long' transition is to start at time-unit h, then 

]-> (4.53) 

where, it is repeated that, S(h) is the current state of 

the circuit and R(h), D(h) & M(h) are the current states of 

the REG, DIG & MIG, respectively, 

Proof: During the 1st time-unit (i.e. between time-units 0 

& 1) the circuit looses • 'ones', where • ~ w[R(h)] and 

gains p 'ones', where p ~ w[M(h)]. 

There are two restrictions on •• p & q ~ [S(h)]: 

Firstly, Theorem 4.10 requires that the combined weight 

of the I/P block and of the state must not exceed t, at any 

time, which means that •• q and i ~ [D(h)], must satisfy: 

i + p + q ~ t (A) 

Also, the next state's weight must be t, hence (by Theo

rem 4.21), 

q-•+p=t (B) 

From relns (A) & (B) it is easily concluded that 

i + p + q ~ q - • +p i + • ~ 0 -> i = • = o. 

Since • = O, p = t - q, 

QED 

So far, it has been concluded that the I/P block will 

contain no 'ones' in the DIG and t-w 'ones' in the MIG, 

while the current state should be such that the REG contains 

no 'ones'. If the transition is to last exactly~ time

units, then between time-units h+~-1 & h+~ the circuit must 

loose its first 'one' (or 'ones'), These 'foremost ones' 

should be in the last stage of their corresponding SRs at 

time-unit h+~-1. Since at time-unit h+~-1 these bits are at 

the MJth stage of their corresponding SR, at time-unit h+1 

they should have been at the (MJ-~+2)th stage, 
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4.6.2. preparation 

The main conclusion of the previous paragraph is ex

pressed by the theorem below: 

Theorem 4. 23: Consider the simplified trellis* for a 

normal LSC with weight-constraint t and SRs of length MJ 

/j=1,2, ... ,k. If a transition of length at least ~>1 is to 

start at time-unit h, then at time-unit h+1 the circuit must 

contain exactly t 'ones', restricted at stages 1,2, ..• ,(Mj

~+2) of their corresponding SRs, which must satisfy Mj-~+2 ~ 

1. 

I 
From the theorem above, the following three results/con

ditions, are extracted: 

Theorem 4.24: Consider the central portion of the sim-

plified trellis for a normal LSC with weight-constraint t 

and SRs of length Mj I j=1, 2, •.. , k. If a transition of length 

.0>1, is to start at time-unit h from a state of weight w 
(OSwSt)_;_ then it is necessary and su~f-~cient that:' 

i) At time-unit h, the circuit's memory should con-

tain exactly w 'ones' restricted to stages 1,2, .•• ,(MJ-i3+1~ 

of those of the k SRs that have length Mj~,O. 

ii) The I/P block zh should contain exactly t-w 1s, at 

positions that correspond to SRs of length .0-1 or more. 

iii) Either, a) at least one of the w 'ones' of S(h) 

must_be i!l the (·Mj-~+1)th stage of its SR, or b) at least 

:one of the t~w 'ones' of zh must be in a position ·that· cor] 

responds to an_~~()_f:·length·D=1· -

Proof: Let a transition of length .0 start at time-unit h. 

Then, according to Theorem 4.23, at time-unit h+1 t 'ones' 

are stored in the memory; furthermore, these 'ones' are re

stricted in the first Mj-.0+2 stages of the 'long' SRs (i.e. 

of the SRs that have at least as many stages). 

At time-unit h the circuit is at the given state, of 

weight w, hence it contains exactly w 'ones'. If at time

unit h+1, no 'ones' are to be found beyond the (Mj-.0+2)th 

* The central portion of the trellis 1s. only. considered, 
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stage of their corresponding SR, then at the previous time 

unit the w 'ones' would have been restricted in the first 

Mj-.0+1 stages of their corresponding SRs. The SRs that can 

accomodate 'ones' at time-unit h are, obviously, those for 

which stages 1,2, ... ,(M
3
-.0+1) do exist, i.e. those SRs for 

which Mj- .O+n1 <-> Mj<:.a. 

According to Theorem 4. 22, the I/P block zh must contain 

t-w 'ones' all in the MIG. The only remaining question now 

is, in which positions of the MIG are these t-w 'ones' al

lowed to be placed? Firstly, there is no restriction because 

of the existence of the w 'ones' in the circuit memory, Even 

if some of the w 'ones' do reside in the FEG at time-unit h, 

they will evacuate it during the S(h) --> S(h+1) transition, 

so that all the k-f positions of the FEG can accept the I/P 

'ones'. The restriction is imposed by Theorem 4. 23. At 

time-unit h+1 the t-w I/P 'ones' should not be beyond the 

(Mj-.0+2)th stage of their SR. Since these bits are launched 

at the 1st stage of their SR, anyway, the restriction is 

reduced to the choice of SRs whose 1st stage does not exceed 

(Mj-.0+2)<:1 <-> M >.0-1. J-

The first two restrictions consider the case of a transi-

tion of length .a, or more. If this transition is to last 

exactly .0 time-units, then at least one 'one' should leave 

the memory at time-unit h+.O or, the same, at time-unit h+1 

there must be at least one 'one' in the (Mj-.0+2)th stage of 

its SR. The question now is, where this bit will originate 

from? The t 'ones' that exist in the circuit at time-unit 

h+1 come 

i) either from the I/P block zh (exactly t-w of them), or 

ii) from the 'early' stages of the circuit memory (exactly 

w of them). 

So, either at least one 'one' of the I/P block should be 

in a position corresponding to an SR of length .0-1, or at 

least one 'one' of the current state should be in stage 

(Mj-.0+1) of its SR. 

QED 

According to part (i) of Theorem 4.24, states of weight w 

from which transitions of length .0 or more may start, can be 
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generated by placing w 'ones' in stages 1,2, ••. ,(Mj-~+1), of 

those SRs with length ~ or more. At this point it would be 

useful to define some new terms: 

Definition 4.6: Consider an (n,k,m) normal LSC and its 

set of SR stages, MEG*. The REG was defined as the part of 

the circuit-memory made of the last stage of each SR. An 

extension of this concept is the REG of order i, denoted by 

REG(i,), 1~i~m, which is defined to be the set of the last i 

stages of each SR. To preserve compatibility, the contents 

of the REG(i,), at time-unit h, are denoted by REG(i,h). 

I 
Definition 4.7: Consider an (n,k,m) normal LSC and its 

input group, ING* (i.e. the k X 1 memory which holds the 

current input block, pr1or to its shifting into the LSC). 

The DIG was defined as the part of the I/P block that corre

sponds to SRs of length 0. An extension of this concept is 

the DIG of order i, denoted by DIG(i,), 1~i~m, which is de

fined to be the set of the I/P block positions that corre

spond to SRs of length i or less. To preserve compatibility, 

the contents of the DIG(i,), at time-unit h, are denoted by 

DIG(i,h). 

I 
Note here that the REG is the REG of order one, while 

REG(1,h) = REG(h). Similarly, the DIG of order 0 is the DIG, 

while DIG(O,h) = DIG(h). A quantity of particular importance 

is the number of elements in the previously-defined sets. 

REG(i,) & DIG(i,) are sets of memory SR-stages. REG(i,h) 

& DIG(i,h) are sets of bits residing in REG(i,) & DIG(i,), 

respectively, at time-unit h. These four sets can, also, be 

thought of as functions of i (and of h, for the first two). 

Notation: Let A represent any part of the memory of a 

circuit. Then jAj denotes the number of SR-stages in A. 

Let f(i) be any function of an integer variable i. Then 

the difference f(i) - f(i-1) will be denoted by 5f(i). 

I 

* See also Definition 3.1 (p. 58) ~Definition 4,3 (p, 87). 
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For example, since MEG represents the total of the cir

cuit's memory, then -MEG = 0, while IMEGI = M. Also, 

8REG(1,) = REG(i,) - REG(i-1,), etc. Also, from Definition 

A4.2.2, MEG- REG(i,) = -REG(i,), etc. 

The following lemma defines the parts of the memory and 

the I/P block that are allowed to accomodate 'ones', if a 

'long' transition is to be launched. This lemma is a combi

nation between Theorem 4.24 and Definitions 4.6 & 4.7. 

Lemma 4.12: Consider the central portion of the simpli

fied trellis for a normal LSC with weight-constraint t and 

SRs of length Mj /j=1,2, ... ,k. If a transition of length /3 

(/3>1) is to start at time-unit h, from a state of weight w, 

then: 

i) At time-unit h, the w 'ones' of the circuit's 

memory should be concentrated in the -REG(/3-1,) (# 0). 

ii) The 'ones' of the I/P block zh should be concen-

trated in the -DIG(/3-2,) (# 0). 
iii) At least one 'one' should reside either in the 

8REG(/3,) (# 0), or in the 8DIG(/3-1,) (# 0). 

Proof: According to Definition 4.6, the REG(/3-1,) is made 

of stages Mj,Mj-1, ..• ,Mj-/3+2 of each SR, hence its complemen

tary, -REG(/3-1), will be made of SR stages 1,2, ... ,MJ-/3+1. 

Similarly, according to Definition 4.7, the DIG(/3-2,) is 

made of the I/P block positions that correspond to SR 

lenghts 0,1, .•• , !3-2, Hence, the -DIG( /3-2,) will be made of 

the I/P block positions that correspond to SRs of length /3-

l, ••• ,m. 
Finally, the 8REG(/3,) is made of the (Mj-/3+1)th stage of 

each SR. Similarly, the 8DIG(/3-1,) contains those I/P block 

position(s) that correspond to SR(s) of length /3-1. 

QED 

4.6.3. Intermediate Results 

This paragraph will use the tools introduced by the 

previous paragraphs to produce some intermediate results, 

which in turn will be useful for the conclusion. Specifical-



Sect1on 4.6 Page 114 

ly, the number of stages in the REG(i,) and in the DIG(i,) 

are parameters of particular importance, 

In order to assist the presentation of the results the 

memory-distribution function, F, is defined below. Clearly, 

f & F have been modelled on the probability density function 

and the probability distribution function. 

Definition 4.8: For a normal LSC, the memory-distribu-

tion function F(i) denotes the number of shift registers of 

length i or less: 

1 

F( i) .::. ~f( j) /j2:0 (4.54) 
j=O 

I 
Theorem 4.25: Consider an (n,k,m) normal LSC, with to-

tal memory M. Then the following relationships hold true: 

f(i) -c F( i) if i=O 
::J-> i) 

8F( i) if 
(4.55a) 

i>O 

ii) F(m) = k (4.55b) 

m 

iii) ~F(j) = (m+1)k - M (4.55c) 
j=O 

Proof: See Appendix 4.9 ( § A4.9.1., p. 368). 

I 
The following two lemmas will provide some useful in

termediate results: 

Lemma 4. 13: Consider an (n,k,m) normal LSC with total 

memory M. Then the following relationships hold true, for 

all .6e [ 1, m]: 

B ~l 

~if(i) = /JF( .6) - ~F( i) (4.56a) 
1=1 i=O 

• ~l 

~if(i) = M - /JF(JJ-1) + ~F(i) (4.56b) 
i=B i=O 

Proof: See Appendix 4.9 (§ A4.9.2., p. 368). 

I 
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Lemma 4. 14: Consider any two parts A & B of a circuit's 

memory, Then 

and if, 

lA - Bl = lA u Bl - IBI 

* B ~A, then: lA - Bl = IAI - IBI 

where, if X n y = ~. then lXI + IYI = IX u Yl 

Proof: See Appendix 4.9 (§ A4.9.3., p. 369), 

(4.57al 

(4.57b) 

(4.58) 

I 
Theorem 4. 26: With respect to an (n,k,m) normal LSC, 

with total memory M, for all ~e[1,m): 

~1 

i) IREG(~.) I = ~k - ~F(i) 
1=0 

ii) IREG(1,ll = k- f & IREG(m,ll =M 

iii) 
~1 

1-REG( ~. ) I = M - I REG ( ~' ) I = M - ~ + ~ F( i ) 

iv) 

v) 

vi) 

vii) 

iix) 

1=0 

IBREG(~.ll = k- F(~-1) 

I DIG(~.) I = F(~) 

IDIG(O,) I = f & IDIG(m,) I = k 

I-DIG(~.) I = k - I DIG(~.) I = k - F(~) 

IBDIG(~.) I = f(~) 

(4.59a) 

(4.59b) 

(4.59cl 

(4.59d) 

(4.59e) 

(4.59f) 

(4.59g) 

(4.59h) 

Proof: By Definition 4.6, the REG(~,) is made of the last 

~ stages of each SR, i.e. of stages M1-~+1,M1-~+2, ••• ,M
1 

for 

all ie[1,k) for which M1-~+H:1 <-> M12:~, where ~e[1,m). 

Since REG(~-1,) is made of stages M1-~+2,M1-~+3, •.• ,M
1 

then 

the relative complement, 8REG(~,) = REG(~,) - REG(~-1,), 

will be made of those stages of the REG(~,) that do not be

long to REG(~-1,), i.e. of the (M1-~+1)th stage of each SR 

that has length M1 2:~. IBREG(~,ll is then equal to the number 

of SRs that have length at least ~. or since the number of 

SRs is k, I8REG( ~.)I equals k minus the number of SRs that 

have length at most ~-1 [the latter quantity is F(~-1), ac

cording to Definition 4.8). Hence, 

, * BQA = _ :B 18 a subset of A:_.! 
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loREG(~, ll = k- F(~-1) (d) 

Since REG(~-1,) .Q REG(~ 1 ), then according to Lemma 4.14 

and eqn (d): 

I6REG ( i, ) I = I REG ( i , ) I - I REG ( i -1 , ) I = k - F( i -1 ) I i = 2, •• , m 

/J ~l ~l 

-> ~IREG(i,)l - ~IREG(i,)l = ~[k- F(il] 
i=l 

~l 

-> IREG(~.ll- IREG(l,)l = (~-l)k- ~F(i) 
i=l 

REG(l,) is simply the REG, which contains k-f stages. 

Since, f = F(O) [see eqns (4.42a) & (4.55a)]: 

~l 

-> IREG(~.) I = ~ - ~F(i) (a) 
1=0 

Eqns (b) are trivial cases, while eqn (c) is based on the 

fact that MEG- REG(i,) = -REG(i,) and on eqn (a). 

According to Definition 4.7, IDIG(~,)I is the number of 

SRs of length ~ or less and this is simply F( ~), according 

to Definition 4.8: I DIG(~.> 1 = F<m (e) 

From eqn (e), IDIG(O,) I = F(O) = f [by eqns (4.55a) & 

(4.42a)] and [by eqn (4.55b)]: IDIG(m,)l = F(m) = k (f) 

Since DIG( i-1,) .Q DIG( i,), then according to Lemma 4.14 

and eqns (e) & (4.55a) (the latter eqn holds true since 

~e[l,m]): 

IBDIG(~.>I = IDIG(~.>I- IDIG(~-l,JI = F(~)- F(~-1) 

Hence: 

Finally, since -DIG(~,) = 
4.3): 1-DIG(~.>I = IINGI 

4.6.4. Conclusions 

loDIG(~,)I = f(~) (h) 

ING - DIG(~,) (see Definition 

- IDIG(~.ll = k- F(~) (g) 

QED 

The results of the previous paragraphs will now be com

bined to produce the main theorem of this section. 

Consider an (n,k,m) normal LSC, with total memory M and 
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weight-constraint t. Let a transition of length ~>1 start at 

time-unit h, from a state of weight w. 

According to Lemma 4.12, the w 'ones' of the memory 

should reside in the -REG(~-1,). 

Hence, there are ( 1-REG~~H') I) such states. 

Consider now any specific state from which a transition 

of length ~ may start. There are two possibilities with re

spect to such a state. Since 8REG(~,) is a subset of 

-REG( ~-1,), 

i) either there is no 'one' in the 8REG(~ 1 ), or 

ii) there is at least one 'one' in the 8REG(~,). 

This distinction is important because if the transition 

is to have length ~. exactly, then the state has to be such 

that ( ii) above holds true (see Lemma 4.12). If though ( i) 

holds true, the I/P block should be such that at least one 

'one' resides in the BDIG(~-1,). 

i) There are no 'ones' in the 8REG(~,). Then, this 

means that the w 'ones' of the memory are concentrated in 

the rest of the permitted region, i.e. in 

-REG(~-1,) - 8REG(~,) = -REG(~-1,) - [REG(~,)- REG(~-1,)] 

-> -REG(~-1,)- 8REG(~,) = -REG(~,) (A) 

The result, above, is based on Theorem A4.2.2 [eqn (c)] 

and on the fact that REG(~-1,) ~ REG(~,). 

So, there are ( 1-REG~~.) I) such states. 

ii) There is at least one 'one' in the 8REG(~,). The 
number of different ways one can place w 'ones' in a certain 

region R so that at least one 'one' is in a specific part A 

of that region, equals the total number of ways the w 'ones' 

can be placed in R, minus the number of ways the w 'ones' 

can be placed in R so that no 'one' is placed in A; the lat-

ter equals the number of ways the w 'ones' can be placed in 

R-A (which is the number of 'unacceptable' cases) • In the 

case under examination, R is -REG( ~-1,) and A is 8REG(~,). 

Then the 'unacceptable' region [according to eqn (A), above] 

is -REG(~-1,)- 8REG(~,) = -REG(~,) and therefore: 
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There are (1-REG~~-1,)1) _ (1-REG~~.ll) such states. 

From each of these states there is a number of transi

tions of length ~. This depends on the number of permitted 

I/P blocks. This, in turn, is defined by Lemma 4.12, part 

(ii). The t-w 'ones' of the I/P block should be concentrated 

in the -DIG(~-2,). 

Hence, there are ( 1-DIG(~-2.) I) t-w such transitions, 

i) Returning to the 1st case, for a transition of 

length ~ to start, at least one 'one' should reside in the 

BDIG(~-1,) [see Lemma 4.12, part (iii)]. Then, using the 

same argument as above, one can count the number of 'ac

ceptable' I/P blocks by subtracting the number of the 'unac

ceptable' ones, from the total. The 'unacceptable' region is 

-DIG(~-2,) - BDIG(~-1,) = -DIG(~-2,) - [DIG(~-1,)-DIG(~-2,)] 

= -DIG(~-1,), where the above result is based on Theorem 

A4.2.2 and on the fact that DIG(~-2,) ~ DIG(~-1,), So: 

There are ( 1-DIG(~-2.) I) - ( 1-DIG(~-1.) I) 
t-w t-w 

transitions of length ~ out of such a state. 

If the results of Theorem 4.26 are also used, the follow

ing has been proved: 

Theorem 4.27: Consider the central portion of the sim-

plified state-transition diagram of a normal LSC, with total 

memory M and weight-constraint t. Then, 

i) The number of states of weight w, from which a 

transition of length ~>1 may start is 

where: 

ii) 

( I-REG~.6-1') I) 
~2 

1-REG(~-1,)1 =M- (~-l)k + ~F(i) 
i=O 

There are (1-REG~~-l,ll)- (1-REG~~~ll) 

states, of weight w, from which 

( 1-DIG(~-2,)1) = (k-F(~-2)) 
t-w t-w 

transitions of length .6>1 start, where: 

(4.60a) 

(4.60b) 

(4.60c) 

(4.60d) 
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1-REG(~,)I = 1-REG(~-1,)1 + F(~-1)- k (4.60e) 

iii) There are ( 1-REG~~.) I ) (4.60f) 

states, of weight w, from which 

( 1-DI~~e-2, >I)_ (I-DIGt~;1, >I)--, 

L (k-F(~-2))- (k-F(~-1)) t-w t-w (4.60g) 

transitions of length ~>1 start. 

I 
Ex amp 1 e 4. 3: Consider the arbitrary LSC of Fig. 4. 7. 

Then, m = 4, k = 6 & M = 12. The f & F functions have the 

following values: 

ING MEG 

·5J 
·5J [~] [~] 

·5J ·0 
x. I H G F 

~ 

' 

xs E D c B' 

----~·5] ·~~-------------------------------

Figure 4. 7: The input group (ING) and the memory group (MEG) of 

an arbitrary normal LSC. 

f(O) = 1 

F( 0) = 1 

!(1) = 2 

F( 1) = 3 

TABLE 4.2 

!(2) = 1 

F( 2) = 4 

f(3) = 0 

F( 3) = 4 

!(4) = 2 

F( 4) = 6 
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Note that the f & F functions do indeed satisfy previous 
results, like Theorems 4.19 & 4.25 and Lemma 4.13. 

Consider now the REGs & DIGs of various orders: 

TABLE 4.3 

REG(1,) = {A,B,F,J,K} 

REG(2,) = {A,B,C,F,G,J,K,L} 

REG(3,) = {A,B,C,D,F,G,H,J,K,L} 
REG ( 4 , ) = MEG 

8REG(2,) = {C,G,L} 

8REG(3,) = {D,H} 

8REG(4,) = {E,I} 

-REG(1,) = {C,D,E,G,H,I,L} 

-REG(2,) = {D,E,H,I} 

-REG(3,) = {E,I} 

DIG(O,) = {x
1

} 

DIG(1,) = {x
1 

,x
3 

,x
6

} 

DIG(2,) = {x
1

,x
2

,x
3

,x
6

} 

DIG(3,) = {x1 ,x2 ,x3 ,x6 } 

DIG(4,) = ING 

8DIG(1,) = {x3 ,x6 } 

8DIG(2,) = {x
2

} 

8DIG(3,) = J21 

8DIG(4,) = {x
4 

,x
5

} 

-DIG(O,) = {x2 ,x3 ,x4 ,x5 ,x6 } 

-DIG(1,) = {x2 ,x4 ,x5 } 

-DIG(2,) = {x
4 

,x
5

} 

-DIG ( 3 , ) = { x
4 

, x
5 

} 

-DIG(4,) = J21 

I REG ( 1 , ) I = 5 
I REG ( 2 , ) I = 8 

IREG(3,)I = 10 

IREG(4,)1 =M= 12 

I8REG( 2, ) I = 3 

I8REG(3,)1 = 2 
I8REG ( 4, ) I = 2 

I-REG(1,)1 = 7 

I-REG(2,)1 = 4 
1-REG ( 3 , ) I = 2 

IDIG(O,) I = 1 

IDIG(l,) I = 3 

IDIG(2,) I = 4 

IDIG(3,) I = 4 

IDIG(4,)1 = k = 6 

I8DIG ( 1, ) I = 2 

I8DIG ( 2, ) I = 1 

I8DIG(3,)I = 0 
I8DIG(4,)1 = 2 

1-DIG(O,)I = 5 

I-DIG(1,>1 = 3 

I-DIG(2,)1 = 2 

I-DIG(3,) I = 2 

I-DIG(4,)1 = 0 

Consider transitions of length ~ = 3, from a state of 

weight w = 2; let t = 4. According to Theorem 4.27, 

there are (I-REe(2,)1) = (~) = 6 such states. 

From these 6 states of weight 2, 
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(I-REe(2,ll)- (I-REe(3,ll) = (~)- (~) = 5 states have 

(1-Df~~l,ll) = (~) = 3 transitions (of length 3) 

each, 

while one state has 

(1-D{~~l, ll) - (I-D{~~2, ll) = (~)- (~) = 2 transitions. 

For a transition of length 3 to start from a state of 

weight 2, if t=4 the I/P block must have weight 2. The ques

tion is where to place the 2 'ones' of the MEG and where the 

2 'ones' of the ING, According to Lemma 4.12, at time-unit h 

the 2 'ones' of the MEG should be concentrated in the 

-REG(2,)={D,E,H,I}. Note that there are indeed 6 ways to 

place these 2 'ones' in the -REG(2,): (H,D),(H,E),(H,I), 

(D,E),(D,I),(E,I). Note, also, that the first 5 combinations 

will result in a transition of length 3, provided of course 

that the 'ones' of the I/P block are concentrated in the 

-DIG(l,) = {x2 ,x4 ,x5 }. Hence, for each of these first 5 

states there are 3 I/P blocks that cause transitions of 

length 3: (x2 ,x4 ),(x2 ,x
5
),(x4 ,x

5
). For the 6th state though 

[with 'ones' in (E,I)], at least one of the 2 I/P-block 

'ones' should be in the 6DIG(2,)={x
2
}. Hence there are two 

transitions from such a state: (x2 ,x4 ) & (x2 ,x5 ). 

I 
Appendix 4.10 (Example A4.10.2, p. 372), contains a sec

ond example, on Theorem 4.27. 

4,7 CQNSTRAINEQ! SIMPLIFIEQ TRELLIS FQR SPECIAL CASES 

In this last section, simplified results for various spe

cial cases will be developed. The general parameter of in

terest is t and the simplest case is the one of t=l. Some 

other special cases correspond to the value of k; the sim

plest case here is the one of an (n,l,m) circuit. Finally, 

the case of a circuit with equal-length SRs is of particular 

interest. 
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-4.7.1. Normal LSC with t=t 

The following lemma is a special case of Lemma 4.9. 

Lemma 4.15: Consider an (n,k,m) normal LSC with total 

memory M and weight-constraint 1. Then: 

l:£ = M + 1 (4.61a) 

-c k + 1 if w=O 
l:Q(w) 

if w=1 1 
(4.61b) 

-c k - f + 1 if w=O 
l:¥(w) 

1 if w=1 
(4.61c) 

I 
So, according to Lemma 4.15 above, the constrained trel

lis has exactly M+1 states; in its central portion, from a 

state of weight w=1 only one other state can be reached, 

while from S0 , k - f + 1 states can be reached. 

Theorem 4.28: Consider an (n,k,m) normal LSC with SR 

lengths M1 ,M 2 , ••• ,Mk and weight-constraint 1. The central 

portion of its simplified trellis has the following charac

teristlcs: 

i) The only state is S0 • 

ii) The total number of different labels is k+1. 

iii) Its transitions have lengths 1,1+M1 ,1+M2 , ••• ,1+Mk, 

(and hence, they vary between 1 and m+1). 

Proof: Consider the corresponding constrained trellis and 

let M denote the total memory of the LSC; according to Lemma 

4.15 the total number of states is M+1 (one state of weight 

0 and M states of weight 1), while according to Lemma 4.11 

there are M states with a single 0/P (and I/P) transition, 

which are removed from the diagram in order to generate the 

simplified trellis (see Note 4.7). That leaves only S
0

• 

According to Lemma 4.8 only I/P blocks of weight 0 or 1 

are allowed. Obviously there are k+1 different blocks and 

hence k+1 labels (note though that the labels might be of 

various lenghts). 

The simplified trellis has only one state, S
0

• Hence 
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transitions are from S0 to S0 • Obviously transitions of the 

same length will merge into a multiple-edge one. According 

to Theorem 4.10, the I/P block zh may contain up to one 

'one'; this block is injected into the circuit only if the 

latter is at state S
0

, i.e. with its memory 'clear', If zh = 

0 then the transition triggered, has length 1 because the 

circuit remains in state S0 • If w[zh] = 1 then there are k 

places for the single 'one'; these are the 1st stage of each 

of the k SRs of the circuit. The transition will end when 

the circuit returns to state S
0 

again and this happens when 

the single 'one' leaves its SR. If its SR has length one 

then the transition will have length two because during the 

1st time-unit the 'one' is stored in the SR and during the 

2nd time-unit it is discarded. In general, if M
1 

is the 

length of the ith SR (1~i~k) then the lengths of the k+1 

transitions are 1, 1+M1 , 1+M
2

, ••• , 1+Mk. Since 0:SM1~m (for 

all i=1, 2, ••• , k - see eqn ( 3.1)] then the minimum trans1-

tion-length is one and the maximum one is m+1. 

QED 

Finally, the decoding algorithm (which is introduced by 

Note 4.6) will be modified for the simplified trellis of t=1 

codes. Note that this special case is very important because 

at each time-unit there is only one path, hence the decoder 

memory requirement is very much relaxed, This is the result 

of the simplification of the constrained trellis. 

Nevertheless, it is not easy to deduce the exact memory 

requirement. This is so because even if ties are not consid

ered, there may exist 'dead-end paths' of various lengths, 

that need to be stored until it is made certain that they 

are not needed. This matter will be discussed later on, but 

it is clear that it needs further investigation. 

Note 4.8: To decode: 

i) Let time-unit be h=O. 

ii) Calculate the current syndrome block sh. 

iii) If ~+1 is the length of the branch, for each one, 

with label [Zh-II••Zh-lzh]/[qh_11 ••qh_1qh], calculate W, where W.::. 

w( [zh-11' •zh_lzh] l + w( [qh-a' •qh-lqh]+[sh-11' •sh-lsh] l • 
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iv) For time-unit h+1 and for all paths entering S0 , 

keep the one with the smallest metric Mb+l and store the path 

and the metric (Mb+l = Mb + W) • 

v) Store any dead branches with their own metric and 

the time-unit at which they leave the main path. Discard all 

information about dead branches ending m+1 time-units be

fore. A dead branch is a part of the main path that is aban

doned for another route forward. 

vi) If there are more blocks to be decoded, increase h 

by 1 and go to (iii), otherwise proceed. 

vii) Subtract the survivor path (which is the hyperch

annel error sequence, 1) from r(•l, to obtain u. 
I 

Example 4.4: Consider the simplified trellis diagram of 

Example 4.2 (see Fig. 4.5). For comparison, the message and 

0 

0 

Syndrome sequence s 

Time Unit 

1 2 3 4 5 6 7 

0 1 0 1 0 1 1 
20/11 20/11 20/11 20/11 20/11 20/11 20/11 

3 2 2 2 2 2 

300/lll 300/lll 300/111 300/111 300/111 300/lll 300/lll 
100/101 100/101 100/101 100/101 100/101 100/101 100/101 

8 

Figure 4. 8: Decoding using the simplified trellis diagram of 

Fig. 4.5. 

9 

1 

error sequences of Example A4.6.1 are used, i.e. u=(OOO 111 

111 000 000 111 111) and e=(OOOO 0000 0010 0000 0000 0000 
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1000 0000 0000). v, rand shave been calculated in Example 

A4.6.1. As can be seen in Fig. 4.8, the same z is obtained. 

I 
Further to the discussion earlier on, the path enter1ng 

S
0 

for each time-unit, is considered (see Fig. 4. 9 - 3 more 

time-units have been added, corresponding to no channel er

rors). Obviously, the final survivor is the path marked 

ABDEHI, while the dead paths are BC, EF & EG. 

The memory-size problem arises because the decoder, at 

any time-unit, must store the main path so far, as well as 

some of the dead ones. The dead paths should be stored be

cause some of these may be activated later to form part of 

the main path; hence they are dead, given the information 

available at a certain time-unit. 

TABLE 4.4 

Time-unit Main Path 

2 00/0 

3 000/1 

4 0000/1 

5 00100/1 

6 001000/1 

7 0010000/2 Tie 0000100 

8 00100020/2 

9 001000300/2 

10 0010003000/2 

11 00100030000/2 

12 001000300000/2 

Dead Paths 

2/00/1 

2/00/1 

2/00100/2 

2/00100/2 

2/00100/2 

6/20/1 

6/0/1 

6/0/1 

6/0/1 

6/20/1 

6/20/1 

NOTE: The 2nd column contains: (main path)/(metric). The 3rd col

umn contains: (originating time-unit)/(dead path)/(metric). For the main 

,_path & dead branch;s:~- o_-~: [ooo];~1 ~,;.~ [~01] ;_ 2 ~~ [010] &' 3_~ [100].:. 

I 
One observation from the 3rd column of TABLE 4. 4 .is the 

randomly varying amount of storage space required (when 

channel is noisy). Note, though, that if a dead branch ter

minates m+1 time-units before, it cannot be reactivated be

cause the longest transition is m+1 time-units (see Theorem 
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0 1 2 3 

A B 

------Tame Unit -----+ 
4 5 

c D 

6 7 
20 

8 9 10 11 12 

H I 
.,__ 0--+--- 0 o--.- o--.--o-.- o-. 

0 0 1 2 2 2 2 

100 100 300 

Figure 4.9: The survivor path at each time-unit, for the decod

ing example of Fig, 4.8. 

4.28). Note, also, that at node F there is a tie, which may 

be resolved (if needed), by tossing a fair coin. 

Hence the buffer for the dead paths need~ not be large. 

But the question that must be answered is: "Is there an up

per bound in the number and length of the dead paths, and ~f 

yes what is it?" 

4.7.2. Normal LSC with t=2 

Consider an ( n, k, m) normal LSC with total memory M and 

weight-constraint 2. According to Theorem 4.21, its con

strained trellis will have C(M,Q) states;of weight Q1 where 

0~Q~2. In particular, for each •e[MAX{O,Q+k-M-f},MIN{k-f,Q}] 

there will be C(k-f,•)C(M-k+f,Q-•) states of weight Q• 

From each particular state of weight Q and for each '• as 

defined above, C(k-f,fi+•-Q) other states of weight fi can be 

reached, where fiE[Q-'t 1 MIN{2-• 1 k-f+Q-•}]. The l+M(M+1 )/2 

states are grouped as following: 

There is one state of weight Q=O, S0 • Since •=0, the 

weight, fi, of the next state satisfies the inequality: 

O~fi~MIN{2 1 k-f}. There is one transition from S0 to S0 • There 

are k-f transitions from S0 to the weight-1 region. If k-!~2 



Section 4.7 Page 127 

there are C(k-f,2) transitions to the weight-2 region. 

There are C(M,l)=M states of weight Q=l, •• the weight of 

R(h), satisfies MAX{O,l+k-M-f}~T~MIN{k-f,l}. Since, k-f~l & 
M~k-f, l+k-M-f~l, then 0~•~1; if, though, M=k-f, then •=0. 

There are M-k+f states of weight Q=l, with •=0. The 

weight, fi, of the next state satisfies l~fi~MIN{2,k-j+1}=2, 

since k-j~l. There is one transition to the weight-! region 

and k-j transitions to the weight-2 region. 

There are k-j states of weight Q=l, with •=1. The weight, 

fi, of the next state satisfies O~fi~MIN{l,k-j}=l since k-!~1. 

There is one transition to S0 and k-j transitions to the 

weight-1 region. 

There are C(M,2) states of weight Q=2. The restriction on 

T becomes: MAX{0,2+k-M-j}~T~MIN{k-j,2}. 

There are C(M-k+f,2) states of weight Q=2 with •=0, pro

vided that M-k+j~2. The weight, fi, of the next state is re

stricted to fi=2. There is one transition to the weight-2 

region. 

There are (k-j)(M-k+f) states of weight Q=2 with •=1, 

provided that M-k+j~l. The weight, fi, of the next state is 

restricted to fi=l. There is one transition to the weight-2 

region. 

There are C(k-f,2) states of weight Q=2 with •=2, provid

ed that k-j~2. The next state is S0 • 

Finally, each of the examined transitions has label mul

tiplicity a, where, if fi is the weight of the next state and 

T the weight of R(h): 

a~ l+C(j,l)+C(j,2)+•••+C(j,a) /a~ MIN{j,2-fi-•} (4.62) 

The following theorem has been proved (for an example see 

Appendix 4.10, p. 369), 

Theorem 4.29: Consider an (n,k,m) normal LSC with total 

memory M and weight-constraint 2. If a denotes the label 

multiplicity per transition, then in the central portion of 

its constrained trellis: 

There is one state of weight O, S0 , with one transition 

to itself [a=l+C(j,l)+C(j,2)], k-j transitions to the 
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weight-1 region [o=1+min{1,f}] and, if k-f~2, (k-f)(k-f-1)/2 

transitions to the weight-2 region [o=1]. 

There are M states of weight 1. M-k+f of them have one 

transition, each, to a weight-1 state [o=1+min{1,f}] and k-f 

transitions, each, to the weight-2 region [o=1]. The rest, 

k-f, states have one transition, each, to S
0 

[o=1+min{1,f}] 

and k-f trans~tions, each, to the weight-1 region [o=1]. 

There are M(M-1)/2 states of weight 2, with one transi

tion each [o=1]. (M-k+f)(M-k+f-1)/2 states transit to anoth

er weight-2 state, provided that M-2~k-f. (k-f)(M-k+f) 

states transit to a weight-1 state, provided that M-1~k-f. 

The rest, (k-f)(k-f-1)/2, states transit to S
0

, provided 

that k-f~2. 

I 
Following the directions of Note 4.7, about the construc

tion of the simplified from the constrained trellis, one 

readily concludes that the simplified trellis will have M+1 

states only, which is an -improvement of [(M-1)/M]x100% for 

large M, say M>5. Note that the % improvement approaches 

100% as M increases (for M=lO, it is 90%). The reduced num

ber of states means, of course, a reduced number of paths. 

4.7.3. Equal-Length Shjft Registers 

The following theorem deals with the above-mentioned spe

cial case. It is based on Theorems 4.21 & 4.27. 

Theorem 4. 30: Consider an (n,k,m) normal LSC with 

weight-constraint t and shift registers of equal length. 

With respect to the central portion of its constrained 

trellis: 

i) There are states of weight Q, where: 

0 s w[s(hl] ~ 9 s t 

ii) For each • e [max{O,Q-(m-1)k} , min{k,Q}] 

there are states of weight Q, 

each of which has (ri+~-Q) single-edge 
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transitions, to the weight-fi region, where: 

With respect to the central portion of the simplified 

trellis: 

iii) There are (t) maximum-length transitions 

(~ = m+l), all starting from state S0 • 

iv) There are (k(m9~+1)) - (k(~-~)) states 

of weight ~. with {t~~) transitions of length 

~each, where ~ e [2,m]. 

v) There are (~) states of weight ~. where ~>0, 

with {t~~) transitions of length m, each. 

Proof: See Appendix 4.11 (§ A4.11.1., p. 374), 

I 
In order for one to verify (part of) the above results, 

qualitatively, one has to remember that a transition of 

length ~. starting at time-unit h, implies that the circuit 

memory contains t 'ones' at time-units h+l, h+2, h+~ (see § 

4.4,3,); otherwise, the memory will arrive at a state (of 

the constrained transition diagram) of weight <t, hence with 

more than one transitions out of it. 

From part (v), above, there are no transitions of length 

m, from S0 • This is expected, since if the current state is 

S0 , any 'ones' injected into it will remain in the circuit 

memory for m time-units, since all SRs have length m (caus

ing thus a transition of length m+l), Furthermore, for a 

transition of length m to occur, at time-unit h there must 

be ~ 'ones' in the 1st stage of as many SRs, hence there are 

C(k,~) starting states of weight ~· For each one of them, 

the I/P block must contain t-~ 'ones', hence there are 

C(k,t-~) such blocks and because all transitions are 

single-edge (f=O), there are as many transitions out of each 

state. 

According to part (iii), above, transitions of length m+l 

may start, only from S0 , This is so because for such a long 
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transition to occur, and since all SRs have length m, at 

time-unit h there must be no 'ones' in the memory (hence one 

must start from S0 ), while at time-unit h+l, there must bet 

'ones' in the 1st stage of t different SRs. Furthermore, 

there are C(k,t) ways to place these t 'ones' in the 1st 

stage of k SRs. 

4.7.4. (n,t.ml Normal LSCa 

The following theorem deals with the above-mentioned spe

cial case. It is based on Theorem 4.30. 

Theorem 4.31: 
weight-constraint t. 

Consider an ( n, 1, m) normal LSC with 

With respect to the central portion of its constrained 

trellis: 

i) There are (~) states of weight ~. where: 

0 ~ w[S(h)] ~ ~ ~ t. Transitions are single-edge. 

ii) From S0 , there is one transition to S0 and one to 

S1 • There are states of weight ~e[l,t), 

each with two transitions, to states of weight ~ & 

~+1 and (mtl) states of weight t, each with 

one transition to a state of weight t. Also, there 

are (m-1) ~-1 states of weight ~E[l,t), each 

with two transitions to states of weight ~-1 & ~ 

and (m-1) t-1 states of weight t, each with one 

transition to a state of weight t-1. If t~m, there 

is one state of weight m with one transition to a 

state of weight m-1 if t=m, and two transitions to 

states of weight m-1 & m if t>m. 

With respect to the central portion of the simplified 

trellis: 

iii) There is one maximum-length transition (~ = m+l), 

if t=l, starting from state s0 , and none if t>l. 
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There are · (m-g+l) - (m~.t3) states of weight 

~e[t-1,t], with one transition of length .t3 each, 

where .t3e[2,m+1-~]. There are no such transitions 

from states of weight less than t-1. 

v) The longest transition has length m+2-t. There is 

only one such transition, and starts from state 

S
0

, where a=zt-1-1, with an input of 1. 

Proof: See Appendix 4.11 (§ A4.11.2., p. 375). 

I 
An (n,1,m) normal LSC is made of one SR of length m. 

Since the I/P block is made of one bit, there are, at most, 

two (single-edge) transitions from each state. 

If the current state is S0 , the next one may be [00•••0] 

= S0 , or [00•••01]=S1 • Remember that the bits of a state are 

arranged starting from the end [see (3.2)]. 

If the current state has weight ~e[1,t) and the last bit 

of the SR is O, there are C(m-1,~) ways to arrange the ~ 1s 

in the rest of the stages, and hence as many states of 

weight~ [note that C(m-1,~)=0, if ~:!:m]. Then, during the 

transition, the SR will not loose any 1s, hence the next 

state will have the same weight (if the I/P is 0), or weight 

~+1 (if the I/P is 1). If though the state has weight t, the 

I/P must be 0. 

If the current state has weight ~e[1,t) and the last bit 

of the SR is 1,- there are C(m-1,~-1) ways to arrange the 

rest of the 1s in the rest of the stages, and hence as many 

states of weight ~· During the transition, the SR will loose 

one 1, hence the next state will have the same weight (if 

the I/P is 1), or weight ~-1 (if the I/P is 0). If though 

the state has weight t, the I/P must be 0. 

If t>1, there is no maximum-length transition (see the 

proof of Theorem 4.18). For a transition of length m to oc

cur, one must start with one 1 in the first stage, hence 

from state S1 , and inject a 0 if t=1, or a 1 if t=2, but if 

t>2, the transition will have length <m. 

A one-SR memory can be brought into a weight-t state*, 

only if, at most, one 1 is missing. 

* And, hence, start a long transition. 
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4.8 CQNCLUSIQNS 

In this chapter, the theory of the constrained state

transition diagram, for binary normal LSCs*, was developed. 

Such a diagram may be obtained from the ordinary one by im

posing a limit on the sum of the Hamming weights of the cur

rent state and the current input. 

The idea is due to Reed & Truong [24], who used it to 

develop error-trellis syndrome decoding (its analysis may be 

found in Sec. 4.1). The advantage of using a constrained 

trellis lies with its reduced complexity (which may be a 

fraction of the ordinary trellis complexity) and as a conse

quence with the opportunity to use 'longer' codes. If a con

strained trellis was to be used at all, for decoding, it 

seems rather obvious that it could not be the encoder

trellis, because all channel sequences, v, are equally prob

able (normally). On the other hand, the error sequence e 

tends to have small Hamming-weight (in fact its probability 

decreases exponentially with w[e]), hence a trellis operat

ing with e is required. e is, of course, unkown but the syn

drome sequence, s, is a function of e (s=eHT), 

For binary systematic codes it was proved that u = r<•l+z, 

where e = [z,zP+s]. Clearly, z is the message-bit error se

quence, and it is the quantity to be estimated. The estima

tion criterion is obviously w[e], which must be minimized. 

Because high-weight es are less likely, they are not consid

ered. The weight-constraint is t, over an actual con 

straint-length. The decoder's task is to find z, so that the 

distance between [z,zP] & [O,s] is minimized. The trellis 

arises because an LSC is assumed to exist (the 'regulator 

circuit') driven by z and responding with [z,zP]. This is 

clearly a replica of the encoder. The decoding algorithm 

{Sec. 4.3) is very similar to the Viterbi one. The work, in 

Sec. 4.1, is a more complete and formal repetition of that 

by Reed & Truong [24]. It resulted in a deeper understanding 

of the theory of convolutional codes and syndrome decoding. 

The rest of the work is original and is concerned with 

the complexity of the constrained trellis. A binary normal 

* See Definition 4,2, 
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LSC is assumed with a total memory M and a general weight-

constraint, t, on the sum of the weights of the current 

state & I/P block. The work in Sec. 4.5 evolves to Theorem 

4.21 which, given the weight of the current state, provides 

expressions about the number of transitions to states of a 

given weight, the number of labels of a particular transi

tion, etc. The theorem also provides the conditions for the 

existence of transitions, given certain information about 

the current state, etc. 

The concept of the simplified trellis was introduced in 

Sec. 4.4; this is obtained from the constrained one, by re

moving all states with one transition, introducing, thus, 

long transitions. The aim of the rest of the work is to ob

tain formulae about the number and length of the long tran

sitions. To this end, the following concepts were intro

duced: f( i) = No of SRs of length i; F( i) = No of SRs of 

length ~i; REG(i,) =set of the last i stages of each SR; 

DIG(i,) =set of I/P block positions corresponding to SRs of 

length ~i.* The next step was to obtain relations between 

the number of elements of the various sets and the memory 

functions ! & F (Theorem 4.26). Finally, Theorem 4.27 pro

vided expressions (in terms of F, k, M, t, P & w) about the 

number of transitions of length P from states of weight w, 

the' number of such states 1 the maximum-length transitions 

and associated existence conditions, etc. 

The last section (4.7) examined special cases (t=l, t=2, 

M1=m & k=l). For t=l the simplified trellis has only one 

state, The decoding algorithm was modified and it was shown 

(via some examples) that the simplified trellis offers gains 

in decoding complexity. 

cussed, like the need to 

Some complications 

store 'dead paths' 

were also dis

for a brief pe-

riod of time (see Example 4.4). The rest of the cases were 

restricted to a restatement of Theorems 4.21 & 4.27. The 

formal mathematical language of these theorems was followed 

closely for the special cases and for some examples. The 

'predictions' obtained were contrasted with qualitative ex

planations and corresponding state-transition diagrams. The 

main result here was the verification of the 'prediction' 

power of these theorems. 

* See Definitions 4.5 1 4.8 1 4.6 & 4.7, respectively. 
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Chapter 5 is an introduction to the basic terminology and 

theorems of threshold decoding, This technique, discovered 

by Massey [18], offers net coding-gains of 1 to 3 dBs, with 

relatively simple implementations and hence at very high 

data rates [13]. 

Unless otherwise stated, the communications channel be

tween the encoder and the decoder is assumed to suffer from 

additive noise, which is statistically independent from di

git to digit, 

5.1 THE THBESHOLQ=DECODING PROBLEM 

In this section the basic decoding problem will be intro

duced. The various digits involved in the discussion will 

be, initially, denoted using a single subscript, like for 

example ej for the various error digits. The proper notation 

for the error digits is of course e~1 l /i=1,2, ... ,n & h = 

time-unit, but this notation would unecessarily complicate 

the discussion, at this stage. This section is mainly based 

on the work by Massey [18], 

Definition 5.1: Let the error digits ej /j=1,2, ... ,N 

take values from GF(q), Consider J linear combinations of 

the ejs: 

N 

A!1 ~ ~a1jej /i=1,2, .. , ,J & a 1jeGF(q) 
j=l 

( 5 .1 ) 
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£ 1 is called the i th composite parity-check. A composite 

parity check £ 1 is said to check an error digit e,. iff 

0.
111

#0, i.e. iff e., participates in the formation of £
1

• The 

set of all £
1
s is denoted by {£

1
}. 

I 
Definition 5.2: A set of composite parity-checks {£

1
} 

an error digit e
11 

i ff e,. is is said to be orthogonal on 

checked once by each member of the set, but no other error 

digit is checked by more than one member of the set: 

a.~=1 for all ie[1,J] 

a.1 j=O for all ie[1,J] 
except at most one i 

For j=1,2, •.• ,n /jjl!m (5.2) 

I 
Note that, although a.

13
eGF( q), most of the a.

1
js are either 

0 or 1. 

It follows from Definition 5.2 that if {£
1

} is orthogonal 

on e
11 

then this digit affects all composite parity-checks, 

while any other error digit affects at most one. Then, the 

following formulation can be proposed: 

Decoding Problem: Given a set of J composite parity-

checks, orthogonal on e
11

, determine e,. so that a certain 

'criterion of goodness' is satisfied. 

I 
Massey [ 18] proposed two algorithms [for the non-binary 

case of GF(q)], that solve the above problem; the majority

decoding algorithm and the a posteriori probability (APP) 

decoding one. 

5.2 THE DEOOQING ALGQRITHMS 

This section is made of four theorems; they cover majori

ty & APP decoding for the nonbinary and the binary case. 

Again, the concern is on how to decode an abstract set of 

error digits, so the latter remain unstructured. The results 
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follow closely the work by Massey [18]. 

5.2.1. The Non-Binary Case 

Theorem 5.1: Consider a set of J composite parity-

checks £ 1 ,£2 , ••• ,£J, orthogonal on e., and the set {el} of 

error digits that are checked by {£
1
}. Assume that no more 

than LJ/2J of the els are non-zero. Then, according to the 

majority-decoding algorithm, e. is given correctly as that 

value of GF(q) which is assumed by the majority of the com

posite parity-checks. If there is a tie that involves 0, let 

e = 0. LxJ denotes the greatest integer Sx. m 

Proof: See Appendix 5.1 (§ A5.1.1., p. 378). 

I 
Definition 5.3: The a posteriori probability (APP) de-

coding algorithm assigns to e. that value of VeGF(q) for 

which the conditional probability P(e.=VI {£
1
}) is maximum, 

where {£1 } is orthogonal on e •. 

I 
The APP decoding algorithm "• • • makes the best possible 

use of the information contained in a set of J parity-checks 

orthogonal on em in arriving at a decision on the value of 

e"[18]. 
m 

Theorem 5.2: Consider a set of J compos1te parity-

checks orthogonal on e •• For APP decoding, let em= V, where 

VeGF(q) is such that (5.3), below, is maximized. 

J 

logP(e.=V) + ~ logP(£de.=v) 
1=1 

( 5. 3) 

Proof: See Appendix 5.1 (§ A5.1.2., p. 378). 

I 

5.~.2. The Binary Case 

The two theorems that follow are special cases of Theo

rems 5.1 & 5.2. 
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Theorem 5.3: Consider a set of J composite parity-

checks ~ 1 .~ 2 , •••• ~J' orthogonal on e., and the set {ej} of 

error bits that are checked by {~1 }. Assume that no more 

than LJ/2J of the ejs are one. Then, according to the majo

rity-decoding algorithm for the binary symmetric channel, e. 

= 1 iff 
J 

I .::. ~~1 > rJ/21 (5.4) 
1=1 

where the summation, above, denotes real-number addition 

and rxl denotes the smallest integer ~ x. 

Proof: See Appendix 5.1 (§ A5.1.3., p. 379). 

I 
Theorem 5. 4: The APP decoding rule for the binary sym-

metric channel is: Choose e = 1 iff • 

J J 

~~1 [2log(qJp1 )] ) ~log(qi/pi) ( 5. 5) 
1=1 1=0 

where, p 0 = 1 - q 0 .::. P(e
8
=1) and p 1 = 1 - q

1 
is the proba

bility of an odd number of 'ones' in the error bits, exclu

sive of e
8

, that are checked by the ith parity-check ~1 • 

Proof: See Appendix 5.1 (§ A5.1.4., p. 380). 

I 

5,3 GENERAL ASPECTS OF CQPES FQR THRESHOLD PECODING 

From Theorem 2.13 (p. 47), if e is the error sequence of 

an additive-noise channel, then the syndrome sequence is 

given by: 

(5.6) 

It is obvious from the above that the syndrome bits* are 

linear combinations of the channel-error bits. If H is such 

that orthogonal check sums can be formed, for each of the 

error bits, then the code can be majority-logic decoded. 

* Unless otherwise stated. only binary codes will be considered. 
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5.3.1. totpoduction - Termjno]ggv 

Consider the result of Theorem 2,15 {p. 50): 

/l:Sj:Sn-k & h~O (5.7) 

where 9 ~ MIN{h,m}. 

Consider all those syndrome bits that may check on e 0 : 

k 
s(j) 

0 = e (k+j) 
0 + ~eU>g<il 

0 ktj .o /l:Sj:Sn-k (5.8a) 
1=1 

1 k 
s<jl = e<k+j) + ~ ~e<1lg<1l /l:Sj:Sn-k 1 1 1-z k+j ,z (5.8b) 

z=D 1•1 

• 

• k 
s<Jl 
• = e<k+jl 

• + ~ ~e<1>g<1l •-z k+j,z /l:Sj:Sn-k (5.8c) 
z=O 1•1 

• k 
s<J> 

••1 = e<k+jl 
•+1 

+ ~ ~e<1l <1> 
••1-zgk+j ,z /l:Sj:Sn-k (5.8d) 

z=O 1=1 

Note from eqn (5.8a) that the Oth syndrome block, s 0 , 

checks on the Oth error block, e
0

; note also, 

(5.8b), that the 1st syndrome block, s 1 , checks on 

from eqn 

the first 

two error blocks 1 e
0 

& e1• Note finally [from eqns ( 5. Se) & 

(5.8d)] that the mth syndrome block, s., checks on e0 ,e1, ••• , 

e., while the (m+l )th syndrome block does not check on e 0 • 

So the (n-k) (m+l) syndrome bits of the 1st constraint

length, nA ~ (m+l )n, check on the Oth error block, e0 • 

Definition 5.4: An (n,k,m) convolutional code is called 

selt'-orthogonal iff the set of J 1 syndrome bits which check 

e~il are orthogonal on e~il for i=l 1 2,,,, k. This code is capa

ble of correcting any error sequence with LJ/2J or fewer 

errors in a span of nA consecutive positions, where J ~ 

MIN { J 1' J2 I ••• I Jk} • 

I 
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Definition 5.5: Consider a set {~1 } of J composite 

parity-checks, orthogonal on e •• The number of error digits, 

exclusive of e., that are checked by £ 1 is called the size 

of £ 1 and is denoted by c
1

• The total number of distinct 

error digits checked by {.£1 } is called the effective con

straint-length for the decoding of e. and is denoted by 

n1 (e.). It follows from the definition that, 

(5.9) 

I 
Definit1on 5.6: An (n,k,m) convolutional code is called 

J-orthogonalizable if it is possible to form J or more pari

ty-check sums, orthogonal on e~11 for i=1,2, ••• ,k by taking 

linear combinations of the first (m+l)(n-k) syndrome digits. 

If d•in is the mimimum distance of this code and J=d•1n-1, 

then this code is called completely orthogonalizable.[12] 

I 

5.3.2. Oec051 j ng Modes 

Consider again eqns (5.8). Clearly, by the time s
1 

is 

formed the decoder has already an estimate of the Oth error 

block (~0 ). If this estimate is fed back into the syndrome 

register, in an appropriate way, the effect of these past 

error bits will be removed. Obviously, this feedback opera

tion can become permanent so that every error block that is 

estimated is fed back into the syndrome register to cancel 

its effect on the syndrome. 

Definition 5.7: Under the feedback decoding (FD) mode a 

convolutional decoder will use the estimate of the currently 

decoded error block, eh = ( e~1 l e~2 l • • • e~nl) , to remove its 

effects from all those syndrome bits that check on these 

error bits. The altered 

the estimation 

syndrome bits are 

of the subsequent 

then used normal

error blocks. The ly, for 

mode of operation of a convolutional decoder where no feed-

back takes place, is called definite decoding (DD). 

I 
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5.3.3. ;Pefin11;e ;Pecodjng ~ farU<v Square§ 

The following theorem has been discussed and proved in 

Appendix 5.2 (p. 381): 

Theorem 5. 5: Consider an (n,k,m) 

tional code with generator sequences g~!~ 

2, ••• ,n-k. Then, under definite decoding, 

systematic convolu

/i=1,2, ••• ,k & j=1, 

for ai!:O: 

(5.10) 

where the syndrome & parity error vectors extend from 

block a to block a+m, while the message error vector from 

block a-m to a+m (for their precise definition, see Appendix 

5.2). If a<m, the message error vector is suitably truncat

ed. If -mS~Sm, 1SpSk, OSTSm & 1SoSn-k, then: 

s<al checks on e<lll iff g<lll = 1 
a.+l: a.-J k+a ft+J 

(5.11) 

The syndrome bits checking on 

the [(p-1)(2m+1)+m+1-~]th column 

e~~! correspond to 1s along 

of H(r). The message error 

bits, checked by syndrome bit s~:~, correspond to 1s along the 

[(o-1)(m+l)+T+1]th row, of H(r). 

Furthermore, if J 1 /1SiSk denotes the number of syndromes 

checking on error bit e~1 l /hi!:m and cj /1SjSn-k denotes the 

size of syndrome bit s~j) /hi!:m, then: 

n-k 

Ji = ~w( g~!H /1SiSk (5.12) 
j•l 

k 

cj = 1 + ~w(~!H /lSjSn-k (5.13) 
i•l 

I 
In Example A5.2.1 (p. 387), the above theorem is tested 

against a (2,1,6) systematic code. 

Note, from (5.13), that under DD the various syndrome 

bits do not have the same size. The analysis is valid for 

any block h 1 'beyond the first constraint-length (hi!:m). The 

results for the first constraint-length are similar to the 

FD case (to be examined below). 
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s. 3 .4. :Etf!J;Ibas;Js Ptc;P.Pins - parity Trtanglu 

Consider now the alterations on the syndrome eqns ( 5. 7) , 

due to the action of a FD decoder. 

To decode e 0 , syndrome blocks s 0 , s 1, •• , , s. are needed, As 

soon as the estimate of e 0 is obtained, and before decoding 

e 1, all bits from e 0 are added mod-2 to all syndrome bits 

that check on them. In general: 

In order to decode eh, syndrome blocks sb, sh+1, ••• , sh•• are 

needed. With FD, all error bits in e~1 l /i=1,2, •• ,k & x<h 

have been cancelled (assuming correct decoding) from the 

above collection of syndrome blocks, Then, immediately after 

the decoding of eh_1, the m+l syndrome blocks of the regis

ter have the following composition: 

k 
s(jl 

b = e (k+j) 
h + ~e<ilg<il 

h k+j,O /l:Sj:Sn-k (5.14a) 
1•1 

1 k 
s<jl 

h+1 = e<t+j l 
h+1 + :E :E (1) (i) 

eh+l-zgt+j ,z /l:Sj:Sn-k (5.14b) 
z•O 1=1 

• . • • • • • • • • 

• • 

/l:Sj:Sn-k (5.14c) 

Note that equations (5,14) are identical (for h=O) to 

eqns (5.8), Hence, the decoding circuit for the zeroth 

block, e 0 , is identical to the circuit for any subsequent 

block, eh. Consider also the feedback process. The syndrome 

bits that are used for decoding have been modified by this 

process. If the corresponding decoding decisions were not 

correct, then the syndrome bits are inverted and hence a 

decoding error becomes more possible. This is called the 

error-propagation effect. 

Theorem 5. 6: Consider an (n,k,m) systematic convolu-

tional code with generator sequences g~!~ /i=1,2, .. , ,k & j=1,2 

, ••• ,n-k. Then, under feedback decoding: 
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(5.15) 

where the syndrome & the two error vectors extend from 

block 0 to block m and H(h,) is the parity-triangle matrix 

(for their precise definition, see Appendix 5.3). 

If O~a~m, l~p~k, O~T~m & l~a~n-k, then: 

s<ol checks on e<P> iff g<P> = 1 
"' 4 k+O'. ~-Cl 

(5.16) 

The syndrome bits checking on e~Pl correspond to la along 

the [(p-l)(m+l)+a+l]th column of H(~). The message error 

bits checked by syndrome bit s~o) correspond to la along the 

[(a-l)(m+l)+T+l]th row, of H(~). 

Furthermore, if J
1 
/l~i~k denotes the number of syndromes 

checking on error bit er> and cj,h /l~j~n-k denotes the size 

of syndrome bit s~Jl /h~O, then: 

Proof: 

J -i -

n-k 

~w( 9~!~] 
j=l 

k h 

cJ,h = 1 + ~ ~g~!L 
1=1 z=O 

See Appendix 5.3 (p. 389). 

/l~i~k (5.17) 

/l~j~n-k (5.18) 

I 
In Examples A5.3.1-2 (pp. 394-7), Theorem 5.6 is tested 

against a (2,1,6) and a (3,2,13) systematic code. 

Parity triangles are very useful tools for the analysis & 
synthesis of convolutional self-orthogonal codes (CSOCs). 

Nevertheless, they will not be useful for the further devel

opment of this thesis. The results obtained, in Appendices 

5.2 & 5.3, are original, at least in their generality. This 

includes the matrix eqns involving the syndrome & error bits 

of one constraint-length. 

Two interesting questions arise now that the structure of 

the parity-check matrix has been linked to the formation of 

orthogonal parity checks. First, what conditions should be 

imposed on the generator sequences so that the syndromes 

that check on an error bit are orthogonal on that bit? Sec

ond, how can one construct codes that are self-orthogonal? 
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5,4 DISTANCE PRQPERTIES Of CODES fQR THRESHOLO QECODING 

Consider a binary (n,k,m) convolutional code. According 

to Definition A2.5.3 (p. 310), 

dain ~ MIN{ d( [v' 1 •• [v' '1.) [u'1 t- [u"1} 0 0 (5.19) 

Note that in computing d111n only the 1st constraint-length 

is considered and only codewords that differ in their first 

source block are compared [21. Hence, d
111

n is a useful esti

mate of the code's power when decoding is based on only one 

constraint-length; this is the case with threshold decoding, 

but not with Viterbi, error-trellis or sequential decoding, 

The following theorems relate d.,m with J. 

Theorem 5. 7: For an (n,k,m) convolutional code, with 

minimum distance dmin' the 1st source block [u1 0 can be cor

rectly decoded provided L( d111n -1) /2J or fewer errors have cc

cured in the first constraint-length [ r1
11 

of the received 

sequence. Conversely, there are some received sequences, 

containing L( d,.1n -1) /2J + 1 errors in the first constraint

length, which will result in [u1 0 being incorrectly decoded. 

Proof: See Appendix 5.4 (§ A5.4.2., p. 398). 

I 
Definition 5.8: The maximum error-correcting capability 

of a code, when the decoding of the 1st source block [u1
0 

is 

based on the 1st constraint-length, is denoted by t and is 

defined as: 

(5.20) 

A feedback decoder which achieves the maximum error cor

recting capability t is called an optimum feedback decoder. 

I 
Theorem 5.8: Consider an (n,k,m) convolutional code. If 

at least J orthogonal parity checks can be formed for each 

of e~1 l/i=1,2, .•. ,k, then J ~ d.,
1
n- 1. 

Proof: See Appendix 5.4 (§ A5.4.3., p. 400). 

I 
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5. 5 CONVOLUTIONAL SEU=-OBTHOGQNAL COOES !CSOCtl 

In this section the very important class of CSOCswill be 

briefly examined. The previously derived results will be 

simplified for the case of CSOCs. 

5.5.1. Pefinjte Oecoding of CSOC• 

Theorem 5.9: The syndrome bits checking 

orthogonal on e~11 if, and only if 1 the code is a 

Proof: See Appendix 5.5 (p, 400). 

on e<il are 
h 

csoc. [ 19] 

I 
The implication of the above theorem is that a CSOC is 

capable of correcting up to LJ/2J errors in both the DD & 

the FD mode. The difference between the two modes arises 

when one considers the total number of error bits which are 

'allowed' to contain LJ/2J or fewer errors. From Definition 

5.5, it is obvious that a CSOC can correct up to LJ/2j or 

fewer errors in a set of nE error bits; nevertheless, nE for 

a CSOC in the FD mode is less than nE for a CSOC in the DD 

mode. Hence, the error correcting capability of the CSOC is 

weakened, by DD; on the other hand, a DD does not suffer 

from error propagation. Nevertheless, "• • • an analysis • • • 

comparing the effect of error propagation with feedback to 

the reduced error correcting capability without feedback ••• 

concludes that feedback decoders will usually outperform 

definite decoders." [2), 

5.5.2. Structure of paritv Trjaogles for a CSOC 

As mentioned earlier, parity triangles are useful, in 

general, for the study of orthogonal codes, In particular, 

for CSOCs they can provide an easily digested, illustration 

of the orthogonality conditions and how these can be ful

filled. A brief discussion and some examples, are included 

in Appendix 5.6 (p, 402). 
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5.5.3. Eff§ctjye Constrajnt-Length of a CSOC 

Note that the effective constraint-length depends on the 

specific error bit considered. Hence, what is required is a 

definition for the code, i.e. one that takes into account 

all error bits of a block. The adopted definition considers 

the code parameter to be the maximum among the bit parame

ters. It is felt, though, that this term is not very effec

tive in describing how many bits are (in effect) involved in 

the decoding. Where the actual constraint-length includes 

all bits that are involved in the decoding of a block (and 

also of a bit, of that block) the effective constraint

length considers the exact maximum number of bits that are 

involved in the decoding of any one bit of a block. Maybe a 

more 'fair' parameter is a cummulative one, that considers 

the exact number of error bits that participate in the de

coding of a block. 

Definition 5 . 9: Consider an (n,k,m) systematic CSOC. 

Let J 1 be the number of syndromes checking on erl /i=1,2, .. 

• ,k. The maximum of Jl'J2 , ••• ,Jk is called the effective con

straint-length of the code and is denoted by nE' Further

more, the total number of distinct error bits checked by the 

J 1+J 2+• • •+Jk syndrome bits will be called the block effective 

constraint-length of the code and will be denoted by NE. 

I 
For instructions on how to calculate NE and an example, 

see Appendix 5,7 (p, 405). 

5.5.4. £rror propagation jn csoc. 

As mentioned earlier, feedback decoding (FD) suffers from 

error propagation. This occurs when an erroneous decision is 

made by the threshold decoder; because of the feedback mech

anism, a number of syndrome bits (specifically those that 

check on the error bit that was erroneously decoded) are fed 

with the wrong information. 

Consider an erroneous decoding decision on error bit 

where pe[l,k] & a~O. The question that will be considered is 

if, in the absence of any channel errors, the decoder will 
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cease eventually to make decoding mistakes. The part of the 

decoder that needs examination is the syndrome reg1ster. 

Because the decoding decisions are based on one actual con

straint-length, the syndrome register is an (n-k)-input 

memory, organised in as many shift registers ( SRs) of 

lengths up to m stages [for an (n,k,m) systematic CSOC - see 

Fig. 5.1]. In the absence of any channel errors, starting at 

time-unit a.+l, all subsequent syndrome blocks will be 

'zero', hence the I/P to the syndrome register may be dis

connected and the circuit is driven by the outputs of the k 
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Figure 5.1: Complete majority-logic decoder for an (n,k,m) sys

tematic convolutional code. 

majority gates. Because of these gates, the circuit is a 

nonlinear feedback shift register (NFSR) and the task is to 

study its autonomous behaviour. For an interesting study, 
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the reader is referred to Massey & Liu [37]. 

Consider the syndrome register (SYRE) in its autonomous 

behaviour. The decoder will be able to 'safely' tackle chan

nel errors again when the SYRE is completly reset (and in 

general earlier than that, but that depends on the specific 

circuit). Note that if no 'ones' are fed back, the SYRE will 

reset itself after at most m time-units; this sitution cor

responds to ~~~l = 0. 
a 

If, on the other hand, ~!Pl = 1, then more than T = J/2 of 

the syndromes that check on the corresponding error b1t are 

'one', say T+d of them, where lSdST. Because of the feedback 

action, these J syndromes are inverted. So, J-T-d of these J 

syndromes are now 'one', i.e. the number of 'ones' in the 

syndrome register was reduced by T+d-J+T+d = 2T-J+2d = 2d ~ 

2. Hence, in the autonomous state, every 'one' that is fed 

back reduces the weight of the syndrome register by at least 

2. Hence, eventually all syndrome bits will be 'zero' and 

the decoder will be able to tackle channel errors again. The 

following theorem has been proved: 

Theorem 5. 10: Consider a feedback decoder for a CSOC. 

If no channel errors follow an erroneous decoding decision, 

the decoder will always recover from error propagation. 

I 
Robinson & Bernstein [38] & Robinson [39] have developed 

upper bounds for the extension of the error propagation ef

fect in CSOCs. In particular they showed that one or two 

constraint-lengths are more than adequate for the recovery 

from a decoding error. 

5.5.5. Pistance Properties of csoc, 

In this paragraph, d•in and J will be linked. Before that, 

though, it is necessary to explain how d.~ is calculated. 

Theorem 5.11: Consider an (n,k,m) systematic convolu-

tional code with parity-check matrix H. Let [H]. be the sub

matrix of H made of the first (n-k)(m+l) rows and n(m+l) 

columns of H.* Then d•in equals the minimum number of col-

* See Definition 2.13 (p, 45). 
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umns of [H]m, including at least one of the first k, that 

sum up to zero. 

Proof: See Appendix 5.8 (§ A5.8.1., p. 409). 

I 
Theorem 5 . 12 : Consider an (n,k,m) systematic CSOC with 

parity-check matrix H. Then, JP, the number of syndromes 

orthogonal on e~Pl /1~p~k equals the weight of the pth column 

of H (or the same of [HJ.), 

Proof: See Appendix 5.8 (§ A5.8.2., p. 410). 

I 
Theorem 5. 13: Consider a systematic CSOC which has at 

least J syndrome bits orthogonal on each of e~il. Then dmin = 
J+1, i.e. the code is completely orthogonalizable. 

Proof: See Appendix 5.8 (§ A5.8.3., p. 411), 

I 

5.6 CQNCLUSIQNS 

This chapter discussed the method of threshold decoding 

and the properties required from codes so that they are 

threshold decodable. 

All work starts with Massey's results, which are briefly 

presented in Sec. 5,2. The interest, in the rest of this 

thesis, remains with majority-logic decoding, for binary 

systematic codes, This algorithm requires, from the code, 

the ability to form J orthogonal parity checks, for each bit 

to be decoded. Over the BSC, the decoder estimates the error 

to be 1 iff the sum of these parity checks exceeds rJ/21. 

For an additive noise channel, it is known that each syn

drome bit is a linear combination of error bits from the 

current and the last m blocks, These bits can then be used 

for majority decoding. Under feedback decoding (FD), the 

already estimated error bits are fed back to the syndrome 

register to cancel themselves out of those syndromes that 

check on them, This mode of operation improves the perform-
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ance of the decoder because each) syndrome depends on a 

smaller number of error bits, hence the likelihood of an 

erroneous estimation decreases; whenever the latter happens, 

though, error propagation occurs, but overall FD outperforms 

definite decoding (DD). 

Both modes were examined 1 and matrix eqns were obtained 

relating one constraint-length of syndrome bits to the cor

responding error bits, via a system matrix which was shown 

to have a structure made of triangles (for FD), or squares 

(for DD), of g-coefficients. This was then used to extract 

the necessary & sufficient conditions for a given syndrome 

bit to check on a given error bit. The last result was, in 

turn, used to obtain formulae for the number of syndromes 

checking an error bit and for the size of these checks. 

These results (original, in their generality) are given in 

Theorems 5.5 & 5.6, while examples, (which also verify 

them), are given in appendices. It is also shown that, under 

FD 1 the decoding circuit for the 1st block is identical to 

that for any subsequent block. 

In Sec, 5.4 it is proved that the number of syndromes 

orthogonal on any error bit 1 cannot exceed dmin -1. 

If all J
1 

syndromes checking on e~1 > are also orthogonal 

on this bit, the code is called self-orthogonal. The maximum 

of J 1s /l:H:Sk, is called the effective constraint-length of 

the code. A similar measure, called the block effective con

straint-length, was introduced and defined to be the total 

number of distinct error bits involved in the decoding of 

e
0

• An example and instructions on how to calculate this, 

are also given. It is felt that this latter measure may be 

related more closely to the code's performance. 

A brief discussion on error propagation concludes that it 

is limited, if no more errors occur. 

Finally, it is shown that if a systematic CSOC has at 

least J syndromes checking on each error bit, then d,.1n = 
J+l. 
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In Chapter 6, the threshold for majority decoding of 

CSOCs is re-examined; this threshold was set at rJ/21, by 

Theorem 5.3 (p. 137). In this chapter, it is assumed that 

the threshold is not known. Its value, T, will be determined 

so that a certain performance measure is optimized. This 

measure is the probability Pd of decoding a bit in error. 

An expression for Fd is developed, as a function of T, 

and then Pd( T) is differentiated wrt T and set equal to 0. 

The solution of the resulting equation will give the optimum 

value of T for the given code and channel. 

Complications arise because under feedback decoding (FD) 

the syndrome bits participating in the estimation of any 

error bit have different sizes (see Theorem 5.6) and hence 

different probabilities of error. This is true for definite 

decoding (DD) as well (see Theorem 5.5), but only in gener

al. In most practical cases, the syndrome bits have the same 

size and hence the same probability of error; as a conse

quence, a simple solution is possible for DD. 

In Sec. 6.1, some general results are obtained, including 

expressions for P4 (T). In Sec. 6.2 the case of equal-size 

syndromes is investigated, while the last section deals with 

the optimum threshold under FD. 
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6.1 PERFQRMANCE OF MAJQRITY-LQGIC PEQQOING 

Consider a set of J bits orthogonal (see Definition 5.2) 

on error bit e •• Let I represent their (arithmetic) sum 

(i.e. O~I~J) and T the threshold. e. is erroneously decoded, 

either if e. is received in error (e.=1) and the decoder 

fails to recognize this (because I~T), or if e. is received 

correctly (e =0) and the decoder 'thinks' otherwise (because • 
I>T) (see Theorem 5.3, for the majority-decoding rule): 

6.1.1. Intr9duction to the Ootimum Thresholq 

Let p denote the probability of a channel bit 

Then, P(e.=1)=p and P(e.=O)=l-p. 

(6.1) 

error. 

The probability that I~T, equals the probability that 

I=O, plus the probability that I=1, plus ••• plus the proba

bility that I=T, Also, the probability that I>J is 0 and the 

probability that I~J is 1. Then, from eqn (6.1)*: 

J T 

= (1-p) ~ P(I=JJ.Ie.=o) 
p=T+l 

+ p ~P(I=JJ.Ie.=1) 
p=O 

/T<J (6.2a) 

(6.2b) 

Note from eqns ( 6. 2) that Pd is a function of T, Then it 

is sensible to attempt to optimize the decoding algorithm by 

using that value T
0

, of T, which minimizes Pd. This can be 

achieved, of course, only if Pd decreases continuously as T 

increases from 0 and then at T=T
0 

it starts increasing 

again; T
0 

is the optimum threshold for the particular code 

and channel. T is an integer variable with range [O,J], 

Let /O<TSJ (6.3) 

Then, from eqna ( 6. 2) & ( 6, 3 ) : 

/O<T<J (6.4) 

From eqn ( 6. 4) : 

<-> /O<T<J (6.5) 

* Transaission over the BSC is assuaed (see Theore. 5.3, p. 137). 
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Note that in the above equations 1 the probabilities are 

conditioned on both e.=o & e.=1. The following lemma will 

simplify calculations: 

Lemma 6.1: Consider a set of J bits orthogonal on error 

bit e. and let I be their (arithmetic) sum. Then: 

/p=O I 1, ••• I J (6.6) 

Proof: See Appendix 6.1 (§ A6.1.1., p. 412). 

I 
From the discussion on the derivation of result (6,5) and 

Lemma 6.1, the theorem below follows easily: 

Theorem 6.1: Consider a set of J bits orthogonal on 

error bit e. and let I represent their (arithmetic) sum. If 

6Pd(T) < 0 for T < X and 6P4 (T) > 0 for T > X and, in case 

X = integer, 8P4 (X) = 0, then, and only then, T
0 

= LXJ is 

the optimum threshold for the decoding of e •• Furthermore, 

if p is the channel bit-error probability, T
0 

may be deter

mined by one of the following equations: 

Proof: 

P(I=T0 1e.=O)/P(I=T0 Ie.=1) = p/(1-p) 

P(I=T0 Ie.=O)/P(I=J-T0 Ie.=O) = p/(1-p) 

See Appendix 6.1 (§ A6.1.2., p. 412). 

(6.7a) 

(6.7b) 

I 
To solve the above eqn(s), one needs to express the con

ditional probabilities P(I=ple.=O) in terms of p and the 

code parameters. The probability that p of the J syndrome 

bits are 1 1 depends on the probability that a syndrome bit 

is 1. Let: 

/1SiSJ (6.8) 

.&.1.'2. -ixact. and Aoproximat.e VAlue of et· 

The following theorem relates the probability that a syn

drome is 1, with its size and the channel bit-error proba

bility. 
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Theorem 6.2: If p is the probability that a bit is 1, 

then the probability, P, that the mod-2 sum of c statisti

cally independent bits is 1, is 

( 6. 9) 

Proof: See Appendix 6.1 (§ A6.1.3., p. 413). 

I 
Note that p is a very small positive number (typically 

less than 10"3 ). It may be possible therefore, to obtain an 

approximate expression for (l-2p)c. 

The follow1ng two approximations of (1-2p)c are derived 

in Appendix 6.1 (§ A6.1.4., p. 414): 

LIM ( l-2p)c = e·2pc 
p->0 

( 1-2p)c"' 1-2pc /pc«l 

(6.10) 

(6.11) 

As mentioned earlier on, •typical values of p range be

tween, say, 10"6 and 10"3 • On the other hand c, the size of a 

syndrome, is usually small, say less than 100. From the re

striction (p --> 0 & pc<l) it is obvious that the approxima

tion becomes better as p --> 0. On the other hand, c=lOO 

also corresponds to a worst-case condition. TABLE 6.1, be

low, illustrates the accuracy of the approximations. 

TAiLE §.1 

( 1-2p )C e·2pc 1-2pc 

p=l0"3 c=lOO 0.818567 0.818731 0.800000 

p=lo-3 c=50 0.904747 0.904837 0.900000 

p=lo-3 c=lO 0.980179 0.980199 0.980000 

p=l0"4 c=lOO 0.980197 0.980199 0.980000 

p=l0"4 c=50 0.990049 0.990050 0.990000 

p=lo-4 c=lO 0.998002 0.998002 0.998000 

Note that for worst-case conditions (p=l0"3 & c=lOO) the 

1st approximation is perfect to within 3 significant digits, 

while for a typical case ( p=10"4 & c=50), it is perfect to 

within 5 significant digits. 

From eqns ( 6. 9) , ( 6. 10) & ( 6. 11 ) : 
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/p -> 0 

p "' pc /pc«1 

(6.12) 

(6.13) 

Note also, that: 

p=10"3 c=100 
p=10"3 c=50 
p=10"3 c=10 

p=10"4 c=100 

p=10"4 c=50 

p=10"4 c=10 

e·Zpc "' 1-2pc /pc « 

TABLE §.2 

t[l-( 1-2p)C] ( 1-e·2pc)/2 

0.090717 0.090635 

0.047627 0.047581 

0. 009910 0.009901 

0.009902 0.009901 

0.004976 0.004975 

0.000999 0.000999 

1 (6.14) 

pc 

0.100000 

0.050000 

0.010000 

0.010000 

0.005000 

0.001000 

Consider the results of TABLE 6. 2, above. Under worst

case conditions (p=10"3 & c=100}, the approximation error is 

0. 09% & 10%, while for a typical case (p=10"4 & c=50), the 

error is 0.02% & 0.5%. 

6.1.3. Calculatjon of P<!=ute.:Q} 

P1 was defined by eqn (6.8). Consider the following defi

nitions, as well: 

Q1 ~1-P1 /i=1,2, ... ,J (6.15) 

(6.16) 

P(I=ple.=O) is the probability that exactly p of the J 

syndromes are 1. Then: 

P(I=ple.=O) = ~ Pxcllx(2)···PxCI1)QyCl>QY<Z>'''Qy(J-11) 
x(i),y(j) 

lj.x(i) <x( 1+1 )iJ 
lj_y(j)<y(j+l)iJ 

x(i)#y( j) 
lj.ij_ll,lj_jiJ-11 

(6.17) 

Eqn (6.17) needs some explanation. The probability that p 

of the J syndromes are 1, is the sum of the probabilities 

that any specific combination of p syndromes, say, sxCl>' 

sx(Zl, ••• , sx(l1), are 1 and all the rest, sy(l) 1 sYC 2 >, ••• , sy(J-I1), 
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are O, over all C(J,p) distinct combinations. Obviously, 

l:Sx(i)<x(i+1):SJ & 1:Sy(j)<y(j+1):SJ and x(i)Jiy(j) for all 

i=1,2, ••• ,p & j=1,2, ••• ,J-p. The probability of the above 

mentioned combination is 

because the channel noise is random, hence the error bits 

are statistically independent. 

Using (6.15) & (6.16), eqn (6.17) can be re-written: 

P(I=pje.=O) = (Q1Q2 ••• QJ) ~K,.< 11K,.< 21 •••K,.< 11 > 
><(1) 

1_1><( 1) (X( 1+1 ).iJ 
1_i1.ill 

P(I=pje.=O) = (P1P2 • • • PJ) ~ [KY<1>Ky<Zl• • •Ky(J-p)]-1 

y(j) 
1_iy( j) <y( j+ 1).iJ 

1_ij.iJ-p 

(6.18) 

(6.19) 

Appendix 6.1 (§ A6.1.5., p. 416) contains some examples 

on the calculation of P(I=pje.=O). In Example A6.1.1, two 

expressions for P(I=3Ie.=O) were developed (corresponding 

to the two eqns, above). The first one required eight multi

plications more than the other. This illustrates the need to 

minimize the number of calculations required for the compu

tation of Pd. 

For the arbitrary case of J=4 & p=l0-4 , the probabilities 

were found to be as follows: 

P(I=Oje.=O) = 9.978x10-1 

P(I=2je.=O) = 1.467x10-6 

P(I=4je.=O) = 2.157x10-u 

P(I=11e.=O) = 2.195xlo-3 

P(I=3je.=O) = 3.415x10-10 

Note that P(I=pje.=O) decreases steadily, as p increases 

from 0 to 4. 

One important question with respect to the probability 

distribution P(I=pje.=O) /p=0,1, •• ,J arises: "Is P(I=pje.=O) 

a decreasing function of p?" If the answer is yes, then the 

existence of an optimum threshold for all codes is guaran

teed; furthermore, this threshold will depend on the code 

parameters (specifically, c1,c2 , ••• ,_cJ) and on the channel 

probability of error, p. 
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6.1.4. Glneral Expressions for ~ 

From eqn (6,2) & Lemma 6.1: 

J J 

Pd(T) = (1-p) ~ P(I=ple.=O) 
11=T+1 

+ p ~P(I=ple.=o) 
pzJ-T 
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/T<J (6.20) 

(6.21) 

Note from eqn (6.20) that the 1st summation uses the J-T 

last probabilities of the distribution P(I=p I e
11
=0), while 

the 2nd summation uses the last T+l probabilities. Since 

there is a common set of probabilities in each summation, 

from MAX{T+l,J-T} to J, this can be exploited to reduce the 

number of calculations: 

J r-1 

Pd(T) = ~ P(I=ple.,=O) + 13 ~P(I=ple.=o) (6.22) 
ll=r 11=J+1-r 

where: r.::. MAX{T+l ,J-T}, T<J and 

-E 1-p /T+l<J-T <-> T<fJ-ll/2 13 0 /T+1=J-T <-> T= J-1 /2 
p /T+1>J-T <-> T> J-1 /2 

Note that the expression for Pd, in (6,22), is economical 

with calculations, compared with (6,20), Let (6.22) be sepa

rated into its three cases: 

For J > T > (J-1)/2: 

J T 

Pd(T) = ~ P(I=ple.=O) 
11=T+1 

+ p ~P(I=ple.=o) 
11=J-T 

(6.23a) 

ForT < (J-1)/2: 

J J-T-1 

Pd(T) = ~ P(I=ple.=O) 
11=J-T 

+ (1-p) ~P(I=ple.=O) 
11=T+l 

(6.23b) 

J 

Pd(T) = ~ P(I=p!e.=O) 
11=T+1 

/T = (J-1)/2 (6,23c) 

The above relations are used in Example A6.1.4 (see Ap

pendix 6.1, § A6.1.5., p. 417), to calculate the probability 

of decoding error for the case with parameters J=4, p=lo-4 

and c 1=1, c 2=3, c 3=6 & c 4=12, The optimum threshold for this 
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case is T =2. 
0 

Page 157 

In calculating Pd(T) no attention was paid to the proba

bility of erroneous decoding at an earlier stage. In other 

words, it was assumed that there was no error propagation 

(see Paragraph 5.5.4., p. 145). It can be seen from eqn 

(A5.2.1) (p. 381) that this is not the case. Nevertheless, 

consideration of the past decoding errors would make calcu

lations virtually impossible. Hence, it is assumed that ei

ther Pd(T) expresses the probability of the first decoding 

error Pfe' or that "a magic genie always feeds back the cor

rect channel error symbol" [13], thus eliminating error 

propagation; however, the decoding decision is not affected 

in any other way by the genie action. Then, Pd is simply Pgd" 

Clearly, Pr
8
=Pgd" The results derived in this paragraph can 

be put into the following theorem: 

Theorem 6.3: Consider a 

on e. and let I denote their 

set of J syndromes orthogonal 

(arithmetic) sum. If T is the 

threshold used 1 then the probability P
18 

of first decoding 

error, or (the same) the probability F~ of 'genie decod

ing', for error bit e., is given by: 

where: 

J r-1 
= ~ P(I=ple.=O) + l3 ~ P( I=pl e.=o) 

p=r p=J+l·r 

r ~ MAX{T+1,J-T}, T<J 

-E 1-p 
0 
p 

/T+1<J-T 
/T+l=J-T 
/T+1>J-T 

T<lJ-1l/2 T= J-1 /2 
T> J-1 /2 

(6.24a) 

(6.24b) 

and 

I 
The concept of the optimum threshold will be discussed in 

the example below, for two cases and a number of channel 

error probabilities, p. 

Example 6.1: Consider the case of Example A6.1.2 ("Case 

1") and also "Case 2": J=S, c 1=4,c2=10,c 3=16,c
4
=20,c

5
=22, 

c 6=28,c7=38,c8=50. 
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IA8LE 6.3 

Probability Pfe for Case 1 

p=1o-z p=lo-3 p=10-4 p=lo-s 

1.896xlo-1 2.167xlo-z 2.200xlo-3 2.197xlo-• 

1.223xlo-z 1.463xlo-4 1.467xlo-6 1.470xlo-s 

4.058xlo-4 4.799xlo-7 4.882xlo-10 4.889xlo-13 

1. 917xlo-3 2 .169x1o-s 2. 200xlo-7 2. 200xlo-9 

1. OOOxlo-z 1. OOOxl0-3 1. OOOxl0-4 1. OOOxl0-5 

TABU: 6.4 

Probability Pfe for Case 2 

p=lo-z p=lo-3 p=lo-4 p=lo-s 

7. 904xl o-l 1. 689xlo-1 1. 860x1o-z 1. 878xl0-3 

4. 258x10-1 1. 273xlo-• 1. 447xlo-• 1. 466x10-6 

1.479xlo-1 5. 288x10-4 6 .103x10-7 6 .192xl0-10 

3. 277xlo-z 1. 304xlo-s 1. 518xlo-9 1. 541x10-13 

4 .854x10-3 2. 064xlo-7 2.413x1o-12 2.451xlo-17 

1. 864x1 o-3 5. 310xlo-7 6 .103x1o-11 6 .192x1o-15 

4. 317xlo-3 1. 274xlo-s 1.447x1o-s 1.466xlo-n 

7. 984x10-3 1. 691x1o-4 1. 860xlo-6 1. 878xlo-s 

1. 000x1o-z 1. OOOxl0-3 1. OOOxl0-4 1. 000x1o-s 

From TABLE 6.3 it is obvious that the optimum threshold 

for Case 1 is T = 2, i.e. rJ/21 (as set by Theorem 5.3). 
0 

From TABLE 6.4, it can be seen that for Case 2 the opti-

mum threshold is T
0 

= rJ/21 = 4 for p < 10-2 , but for p = 

10-2 , it is T = 5. 
0 

I 
A first conclusion may be risked at this stage: For ade

quately small channel error probabilities p, the optimum 

threshold is indeed To = rJ/21 I but as p increases so does 

T
0

; this effect becomes more dramatic for 'longer' codes 

(i.e. for codes with large c 1a, or the same for codes with 

large effective constraint-lengths n
1

- see Definition 5.9). 

Consider two more cases, both with J = 11 syndromes, but 

with different effective constraint-lengths. 
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Example 6.2: Let the following two J = 11 cases: 

Case 1: c 1=4, c 2=10, c 3 =15, c
4
=20, c

5
=30, c 6 =40, c

7
=60, c 8=80, 

c 9=100, c 10=120, ell =150 

Case 2: c 1=40,c2=45,c3=50,c4=60,c5=70,c6=80,c7=90,c8=100, 

c 9=110, c 10=120, ell =150 

The optimum threshold for each of the two cases is calcu

lated, for various channel error probabilities, p. Note that 

although both cases use the same number of syndromes, the 

effect of increased p is more dramatic for Case 2 (which has 

nE = 916, as opposed to nE = 630 for Case 1). 

TABLE 6.5 { rJ/21 ;:: 6 )_ 

p T
0 

/Case 1 T
0 

/Case 2 

0.010 7 10 

0.007 7 8 

0.005 7 8 

0.002 6 7 

0.001 6 6 

I 
Instead of the term 'codes', the term 'cases' has been 

used. This is so because the choice of the c~ is arbitrary 

and it is not known whether or not codes with such parame

ters exist. Furthermore, the channel error probability was 

used without any regard to the channel capacity. See Appen

dix 6.2 (p. 418) for an introduction to channel capacity and 

tables of R...,. versus p and P...,. versus R. 

6.2 QPTIMUM IHR£SHOLQ'fQR QEFINITE PiQQDING 

Definite decoding (DD) is the mode with no feedback from 

the decoding decision device to the syndrome register (see 

Definition 5. 7). Obviously, there is no error propagation 

effect in the DD mode, hence the probability of first decod

ing error Pfe is also the probability of decoding error Pd. 

According to Theorem 5. 9, CSOCs have the property that the 

set of syndromes orthogonal on e~1 l is the same under both 

the FD & DD modes. 
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Under DD, according to Theorem 5.5 (p. 140), the size, 

cj, of syndrome bit s~jl /1:Sj:Sn-k & h~m, is cj = 1 + w[g~!~l + 

+ w[g~!~l +•••+ w[g~~p. This implies that, unless n-k = 1, the 

syndromes used for the decoding of an error bit will have 

different sizes, in general. 

Note, though, that it is very likely for the syndrome 

bits to have the same size, under DD. In contrast, under FD, 

the size of s~jl depends not only on j, but also on h (see 

Theorem 5.6, p. 141). Hence, under FD, it is virtually impo

sible to have syndrome bits of the same size. 

6.2.1. Study of Pf!=ute.=Ol 

Consider now the case where all syndromes checking a par

ticular error bit have the same size. Let this size be c: c
1 

= c 2 = • • • = c J = c. Then, from Theorem 6. 2: 

Also, 

and: 

p ~ p - p -1- 2- [1-(1-2pJC]/2 

Q ~ 1-P 

K ~ P/Q 

From (6.13), for pc«1: K = P/(1-P) ~ pc/(1-pc) ~pc 

K ~ pc /pc«1 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

From eqn (6.18), since there are C(J,p) distinct products 

of the J K1s, taken p at a time: 

/p=O, 1, ••• , J 

Consider now the variation of P(I=ple.=O) with p: 

Then: 

8(p) ~ P(r=ple.=o) - P(r=p-1le.=O) 

8(p) :S 0 <-> 

/p~1 

<---> K/p :S 1/(J-p+1) K(J+l) - Kp :S p 

<---> p ~ (J+1)K/(K+1) = (J+1)(P/Q)/(P/Q+1) = (J+1)P 

(6.29) 

(6.30) 

If 8(p):SO, for all p, since p~1, it is enough for (J+1)P 

to be < 1. Since P depends on p & c, what is required is the 

set of conditions on p, c & J, that make (J+1)P < 1. 

' * x/y/z denotes (x/y)/z,l 
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p : [1-(1-2p)C]/2 ( 1/(J+1) 1-2/(J+1) ( (1-2p)C 

(A) 

Also: (A) 

Hence: 

(J-1)/(J+1) ( (1-2p)C 

[<J-1)/(J+l)pfc< 1-2p <-> 

p < {1-[(J-1)/(J+1)P'c}/2 

ln[(J-1)/(J+1)] < cln(1-2p) 

c < ln[(J-1)/(J+1l]/ln(1-2p) 

(A) 

Theorem 6.4: Consider an (n,k,m) binary CSOC, with J 

syndromes, each of size c, checking on e~1 l /hl!:m. Then, 

P( I=pj e~1>=o) is a continuously decreasing function of 11, 

for all 11 l!: (J+l)P /P=[1-(1-2p)c]/2. Also, (J+1)P < 1 if, 

and only if, 

either p < {1-[(J-1)/(J+1)j 1fc}/2 

or c < ln[(J-1)/(J+1l]/ln(1-2p) 

(6.31) 

(6.32) 

I 
From the above, P(I=pje~1l=O) decreases continuously, iff 

either of (6.31) or (6.32) holds true. These two inequali

ties are not difficult to be satisfied, but do not hold true 

in 'extreme' cases. For example, from the 1st one and for 

J=10 & c=50, p<2x1o-3 • 

As a conclusion, P(I=pj e~1 l=Q), 'normally', is expected to 

decrease as 11 increases, but if J, c & p are such that 

(J+1)P > 1, then P(I=pjer1=0) will increase with 11 up to ~ 

(J+1)P and then it will start decreasing. 

6.2.2. Optimum Threshold 

From eqn (6.4) and Lemma 6.1: 

6Pd(T) = pP(I=J-Tje~1 >:o) - (1-p)P(I=Tje~1 >:o) (A) 

Using eqn (6.29) in eqn (A): 

6Pd(T) = pQJKJ-T(J~T) - (1-p)QJKT(l') (B) 

Since, (J~T) = J!/(J-T)!/T! = (1')• eqn (B) gives: *, 
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(6.33) 

From (6.33): <-> 

KJ-ZT > ( 1-p) /p <-> (J-2T)1nK > ln[(1-p)/p] 

<-> J-2T < ln[(1-p)/p]/lnK * 
T > J/2- ln[(1-p)/p]/2lnK = J/2 + ln[p/(1-p)]/2lnK 

Hence, 8Pd(T) > 0 T > J/2 + ln[p/(1-p)]/2lnK 

Similarly, 8Pd(T) < 0 T < J/2 + ln[p/(1-p)]/2lnK 

and, if 8Pd(T)=O has a solution, 

T = J/2 + ln[p/(1-p)]/2lnK 

From the above results and Theorem 6.1: 

Theorem 6.5: Consider an (n,k,m) binary CSOC with J 

syndromes, each of size c, checking on error bit 

Then, the optimum threshold for e~1 >, is: 

T = LJ/2 + ·tln(p/(1-p)]/H(p,c)J 
0 -

where: 

e<il /h~m. 
h 

(6.34a) 

(6.34b) 

I 
Note that H(p,1) = ln{[1-(1-2p)]/[1+(1-2p)]} = ln[p/(1-p)], 

Consider now the behaviour of H(p,1)/H(p,c), The results 
of Theorem 6.6, are proved in Appendix 6.3 (p, 421): 

Theorem 6.6: Let F(p,c) .::. H(p,1)/H(p,c), where H(p,c) 

is defined by (6,34b), Then, the following hold true: 

F(p,c) ~ 1 

dF(p,c)/dp > 0 for O<p<0.5 

dF(p,c)/dc > 0 for c~1 

LIM F(p,c) = 1/(1+lnc/lnp} /pc«1 
p->0 

LIM F(p,c) = LIM F(p,c) = +m 
p->0.5 e-ll• 

* rro. (6.9), if p<t, then P<t. hence K<l, hence lnK<O. 

(6.35a) 

(6.35b) 

(6.35c) 

(6.35d) 

(6.35e) 

I 
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The following conclusions can be drawn about T
0

, from the 

results about F: 

From (6.35a): Fl!:1 J/2+F/2 l!: J/2+1/2 = (J+1)/2 

-> LJ/2+F/2J l!: L(J+l)/2J -> (using Theorem 6.5) 

-> T
0 

l!: L(J+1)/2J = rJ/21 (6.36) 

Consider the conditions under which T
0 

= (T
0

)•in" From 
Theorem 6.5 & reln (6.36): 

T
0 

= LJ/2+F/2J = (T
0
).,

0 
= L(J+1 )/2J 

If J=even, T0 = J/2+ LF/2J = (T0 )•in = J/2 -> F < 2. 

If J=odd, T
0 

= L(J+1)/2+(F-l)/2J = (J+1)/2+L(F-1)/2J = 

-> F < 3. 

So, if F<2, T
0 

= (T
0

)•in' and from (6.35d): 

1/(1+lnc/lnp) < 2 -> lnc/lnp > -1/2 -> 

The above condition on p is consistent with p«1/c, hence 

the optimum threshold equals r J/21 ' the nominal threshold' 

for p < l/c2 • This result was obtained in a different way, 

in Lemma A6.3.2 (p. 426). 

Note from Theorems 6.5 & 6.6 that T
0 

is an increasing 

function of c or p. Note also that since F increases without 

bound as p -> 0.5, or c -> +a>, so does T
0

; but T
0 

should 

not exceed J. 

The following theorem is based on the above results: 

-
Theorem 6.7: Consider an (n,k,m) binary CSOC with J 

syndromes, each of size c, checking on error q~t e~1 > /hl!:m. 

Then the optimum threshold, for e~1 >, is an increasing func

tion of c, or p, which satisfies the following: 

LHJ+l lJ 

! 0 _ ~- u J+_!_U2J _ _:_ ~~t21 __ _<E>_~.3J_~_>~ \ 

= rtJ1 OR T
0

= rtJ1 if pc 2 <1 (6.37b) 

' 
LIM{T } = LIM{T } = J 
p->0.5 0 c->+• 0 

(6.37c) 

I 
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In general, as p increases, T
0 

increases in steps of one, 

from rJ/21 to J. It is difficult though to obtain analytical 

expressions for the threshold values of p, i.e. for these 

values of p that cause an increase of T
0 

by one. This can be 

done numerically, or via graphs. Theorem A6.3.4 (p, 425) 

provides some information towards this end. 

6.2.3. probabil it.y of t>ecotting Error 

Consider now the probability of decoding error, with the 

optimum threshold T
0

• From (6.37a), 

-> J-T :'!: J/2 < T < T +1 
0 - 0 0 -> 

L(J+1 )/2J :0:: (J+1 )/2 < L(J+l )/2J+1 -> 

l(J+1)/2J > (J-1)/2 (and since, by Theorem 6.7) 

T
0 

2: L(J+1 )/2J -> T
0 

> (J-1 )/2 

The first two eqns of the following theorem are based on 

the above conclusions, the expression for Pd(T) (see Theorem 

6. 3) and the expression for P( I=pl e~1l=O) [see eqn ( 6, 29) ]. 

The last result is proved in Appendix 6.4 (p, 426), 

Theorem 6.8: Consider an (n,k,m) binary CSOC with J 

syndromes, each of size c, checking on error bit e~1 l /h2:m. 

If the optimum threshold is used, the probability of decod

ing e~il in error, under DD, is given by: 

(6.38a) 

.J 

Pd(To) = QJ [~Kil (~) 
p=T

0
+1 

(6.38b) 

Also: (6,38c) 

I 
Hence, the use of the optimum threshold guarantees that 

Pd<p however high the BSC's error rate, p, is. 

Consider now a few examples that illustrate the ga1ns 
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that may be achieved by the use of the optimum, instead of 

the nominal, threshold. 

Example 6.3: Let the following arbitrary cases: 

Case: 1 2 3 4 5 6 7 8 

J: 6 6 12 12 30 30 30 50 

c: 20 100 20 100 20 100 400 500 

For each of these cases, and for various error probabili-

ties, p, the following will be calculated: The optimum 

threshold, T
0

, the error extension ratio EER .::. Pd( fJ/21 )/p 

(i.e. the ratio of the probability of decoding error with 

the nominal threshold, over p), and the error gain a • .::. 
Pd(fJ/21)/Pd(T

0
) (i.e. the ratio of the probability of decod-

ing error with the nominal threshold, over that with the 

optimum threshold). p will range between 1/cz and 0 .01. Note 

that 1/cz is the approximate value of the break point, after 

which the optimum threshold 'departs' from the nominal one. 

TABLE 6.6 {c = 20; 1/cz = 2, 5x1o-s) 

J = 6 J = 12 J = 30 

p To a. EER To a. EER To a. EER 

2. 5x10"3 4 1.0 3x10"2 7 1.0 2x10"4 16 1.0 2x10"11 

4x10"3 4 1.5 1x10"1 7 1.5 2x1 0"3 16 1.5 1x1o·8 

7x10"3 4 2.3 4x10"1 7 2.2 3x10"2 16 2.2 1x10"5 

1x1 o-2 4 2.8 9x10"1 7 2.6 1x1 0"1 16 2.5 5x10"4 

TABLE 6.7 {c = 100; 1/c14 = 1x10 ... ) 

J = 6 J = 12 J = 30 

p To a. EER To a. EER To a. EER 

1x1o·4 4 1.0 1x1o·3 7 1.0 7x10"8 16 1.0 2x1o·20 

2x10"4 4 2.0 1x1o·2 7 2.0 4xl0"6 16 2.0 3x10"16 

4x10"4 4 3.7 8x10"2 7 3.6 2x10"4 16 3.5 5x10"12 

7x10"4 4 5.6 4xl0"1 7 5.3 4x10"3 16 5.0 1x10"8 

1x1o·3 4 6.8 9x10"1 7 6.0 3x10"2 16 5.5 9x1 0"7 

2x10"3 4 7.4 4x1o•0 7 5.7 6x10"1 16 4.7 2x10"3 

4x10"3 5 13.9 1x10+1 8 9.6 6x1o•0 17 6.7 6x10"1 

7x10"3 6 21.7 2x10•1 10 17.6 2x1o•1 19 10.9 1x10+1 
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TABI-i 6.3 

' 
J = 30, c = 400 J = 50, c = 500 

p To a. EER To a. EER 
4xl0"6 15 1.0 6x10"3z 26 

7xl0"6 16 1.1 3xlo-zs 26 

lx10"5 16 1.6 6xlo-zs 26 6.0 3xlo-zo 

2x10"5 16 3.1 2xlo-z1 26 7.4 4xl0"34 

4x10"5 16 5.9 4xl0"17 26 8.5 8xlo-Z7 

7xlo-s 16 8.9 lx10"13 26 11.3 4x1o-zl 

1x10"4 16 10.4 2x1o-n 26 11.8 2x1o·17 

2x10"4 16 10.3 2xl0"07 26 9.2 5x10"11 

4x10"4 17 9.7 8xlo-04 27 13.1 2xl0"05 

7x10"4 17 13.5 2xl0"01 28 15.2 6x1 o-oz 

lx10"3 18 17.8 3x1o•oo 29 19.5 2x1 o+OO 

2x10"3 22 49.0 5x10.01 36 67.8 1x1o•01 

4x1 0"3 30 85.9 9xlo•01 50 98.6 lx10+0Z 

I 
The gains obtained (in error rate) may be substantial (up 

to an order of magnitude) for long codes, as can be seen 

from the tables above. 

6.3 " opTIMUM IHRESHOLQ fOR fEEDBACK QECOOING 

The calculation of the optimum threshold for DD was not a 

very easy task. The problem becomes even more difficult for 

the case of FD. The reason is that while under DD there is 

(usually) only one K, in the case of FD there are J differ

ent (in general) Ka, for each of the k error bits e~1 l. 

As a consequence, P(I=111e~il=O) is proportional to the 

sum of all possible distinct products of 11 Ka [see eqn 

(6.18)]. There are C(J,11) such products and their sum may be 

replaced by the arithmetic mean of all the products, multi

plied by C(J,11). This arithmetic mean, a product of 11 'aver

age' Ks may be replaced by the geometric mean of these Ka, 

raised to power 11• As a consequence, the concept of the 11th 

generalized mean takes shape. 
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6.3.1. Ihe utb §toeralized Heao 

Consider J positive real numbers K1,K2,.,. ,KJ. To form 

their pth generalized mean AP, where p=1,2,,,,,J, the arith

metic mean of all distinct products of p K
1
smust firstly be 

formed. This may be expressed by: 

J-p+1 J-p+2 

[ ~ Kx(1) ~Kx(2) ' ' ' 
x(1)=1 x(2)•x(1)+1 x{p)•x(p-1)+1 

The geometric mean of the p LY!ila is the pth root of 

their product. Hence: 

Definition 6.1: The pth generalized mean, of the J 

positive real numbers K1 ,K2,,,, ,KJ, is denoted by AP and de

fined by: 

J-p+1 J-p+Z J 
AP ~ {[ ~Kx(1) ~Kx(2) ••• ~ Kx(p)] j (~)}1/p /l:Sp:SJ (6.39) 

x(1)=1 x(2)=x(1)+1 x(p)=x(p-1)+1 

I 
In the rest of this paragraph, some properties of the 

generalized means will be discussed. 

Theorem 6.9: Consider J positive real numbers K1,K2, •• 

• ,KJ' Their arithmetic and their geometric mean is their 1st 

and Jth generalized mean, respectively, 

Furthermore: 

A1 = (K1+K2+ • • • +KJ) /J 

AJ = (K1K2• • •KJ) 11J 

AP > AJ for all p<J 

Proof: See Appendix 6.5 (§ A6.5.1., p, 428), 

(6,40a) 

(6.40b) 

(6.40c) 

I 
Theorem 6.10: Consider J positive numbers K1,K2,, •• ,KJ' 

Then, if not all K1 are equal: 

If K1 :S 1: (A )P-1 > (A )P p-1 p for p=2,3, ... ,J (6.41a) 

If K1 ~ 1: for p=2,3, ... ,J (6.4lb) 
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Proof: See Appendix 6.5 (§ A6.5.2., p. 428), 

I 
Unfortunately, the most important relation among the gen

eralized means was impossible to prove. It is a very tight 

inequalitiy and all known inequalities that could help in 

this matter were not tight enough. 

Conjecture: Consider J positive numbers K1 ,K2 ,. • • ,KJ, 

not all equal. Then: 

A
11

_
1 

> A
11 

for 1 <p:SJ (6.42) 

Discussion: Note first that if K1 = K /i=1, 2, ••• , J, then 

A = K 
11 

/p=1, 2, ••• , J. If at least one of the K1s is different 

then (6.42) holds true. The difference A 
1 

- A may be very 
p- 11 

small, if the K1s are very close to each other. As an exam-

ple consider the case K
1 

= K
2 

= • • • = K
15 

= 4 & K16 = 4.1; the 

results are arranged in TABLE 6.9, below. 

TABLE §.9 

11 All 11 All p All 
1 4.006250 7 4.006221 12 4.006197 

2 4.006245 8 4.006216 13 4.006192 

3 4.006240 9 4. 006211 14 4.006187 

4 4.006235 10 4.006206 15 4.006183 

5 4.006231 11 4.006202 16 4.006178 

6 4.006226 

Notice from TABLE 6.9 that A
11

decreases continuously asp 

increases from 1 to J=16; furthermore, A 1 is consistently .. -
greater than A

11
, and what is more remarkable, by 5x10-6 (ex-

cept for one or two cases, perhaps due to rounding errors). 

It has been observed that the difference between A 1 & A 
p- 11 

increases as the K1a become more different from each other. 

Consider, for example the following three cases: 

Case 1: K =1 K2=2 K3=3 K4=4 K =5 K6=6 (a = 1. 71) 
1 5 

Case 2: K
1
=1 K -3 2- K -5 3- K4=7 K5=9 K6=11 (a = 3.42) 

Case 3: K1=1 K2=4 K -7 3- K4=10 K5=13 K -16 6- (a = 5.12) 

L_ ___________________________________________________________________ _ 
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11 

1 

2 

3 

4 

5 

6 

Case 1 

All 

3.50 

3.42 

3.32 

3.23 

3.12 

2.99 

TABLE 6.10 

Case 2 

All 

6.00 

5.80 

5.58 

5.33 

5.04 

4.67 

Consider also the effect of K
1

s less than 1: 

Case 1: 

Case 2: 

K1=0.01 K2=0.1 K3=4 K4=22 

K1=0.0001 K2=0.001 K
3
=0.01 K

4
=0.1 

TABLE §.11 

Case 1 

11 All 

1 6.53 

2 3.89 

3 1. 34 

4 0.54 

Case 2 

A ll 

0.0278 

0.0137 

0.0065 

0.0032 
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Case 3 

All 

8.50 

8.19 

7.83 

7.42 

6.92 

6.23 

I 
Many more tests were carried, via a computer, trying to 

disprove the above conjecture. The results verified the au

thor's belief that the conjecture is correct. 

A computer was used to examine why all known inequalities 

could not assist in the proof of the conjecture. The conclu

sion was that they were not tight enough. In the process of 

trying to prove the above conjecture, many partial results 

were obtained, which nevertheless will not be discussed 

here; although they may contribute towards an eventual 

proof, their value is limited to just this. 

6.3.'2. Optimum Threshold 

Consider firstly an 

bility P(I=111e~1l=O), 

expression for the conditional proba

in terms of the generalized means of 
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the quantities K
1 

= P
1
/(1-P

1
), where P

1 
~ [1-(1-2p)ci] 

(i=1,2, •.• ,J), Let AP denote the pth generalized mean of the 

K~. Then the sum of all the distinct products of p K~ is 

simply (AP)PC(J,p) (see Definition 6.1). From eqn (6.18), if 

Q(J) ~ QQ ... Q 
1 2 J 

/O~p:SJ 

(6.43) 

(6.44) 

Note that AP is not defined for values of p outside the 

interval [1,J], but in P(I=ple~1 >=o) pis defined in [O,J], 

From eqn (6.18), P(!=Ole~1 >=o) = Q(J), So: 

A .::. 1 
0 

Following eqn {6.44), an expression for Pd(T) 

(6.45) 

will be developed. This will in turn be used to derive the 

optimum threshold, as the one that minimizes the probability 

of error, Pd. 

Appendix 6.6 contains some intermediate results that lead 

to the proof of the theorem below. 

Theorem 6.11: Let J syndrome bits, with sizes c 1 

/i=1,2,., ,J, check on error bit e~m) and K1 be defined by eqn 

( 6.16). If AP /p=1, 2,, •• , J denotes the pth generalized mean 

of the K1s, with A0 =1 and p the BSC' s error probability, 

then the optimum threshold, T
0

, for FD of e~4) is at least 

equal to rJ/21 and satisfies the following relation: 

(6.46a) 

with (6.46b) 

Alternatively, T
0 

is that integer T e [ rJ/21 ,J] which 

minimizes: 

Proof: 

I T - {ln[p/(1-p)] + JlnAJ-T}/ln(AJ_,.A,.) 

See Appendix 6.6 (p. 431). 

(6.46c) 

I 
The result of Theorem 6.11 is very important, but unable 

to provide a closed-form expression for the optimum thresh

old under FD. Nevertheless, the RHS of (6.46a) is a weak 

function of T
0

, because the two generalized means, that are 
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functions of T
0

, can be approximated by other generalized 

means, independent of T
0

; this will not cause a serious ap

proximation error because the generalized means are extreme

ly close to each other. 

6.3.3. aounds & Approximation for tbe Ootjmum Threshold 

In this paragraph, an approximate solution of eqns (6.46) 

will be attempted. Note that there are two functions of T
0 

in the RHS of eqn ( 6. 46), Aro and AJ-To" From Theorem 6.11, T
0 

is at least rJI21. Then: 

1 ~ J-T ~ J I 2 ~ r J I 21 .::. T ~ T ~ J o n o (6.47a) 

From reln (6.47) and the Conjecture of Paragraph 6.3.1.: 

(6.47b) 

Since the logarithm is an increasing function of its ar

gument: 

(6.47c) 

Consider again eqn (6.46a), in relation to the inequali

ties of (6.47c): 

(6.46a) 

To create an upper bound on T
0 

replace the 1st lnAJ-To 

with something larger ( lnA1 ) and the 2nd lnAJ-To & lnAr
0 

with 

something smaller ( lnArn & lnAJ). Hence: 

(6.48a) 

Similarly, for a lower bound: 

(6.48b) 

It is understood that if the bounds exceed J, they are 

reduced to J. 

To obtain an approximate solution for T
0

, consider first 

the product AJ-ToAro• Note, from TABLES 6.9, 6.10 & 6.11, that 

A - A "' )1 )1+1 
constant A - 6. Hence A -A 4 "' d6, and then: 

)1 )1+ 

= (A ) 2 - ( d6) 2 < {A ) 2 
)1 )1 

(6.49a) 

-> A A ~ (A )2 
p-d p+d - )1 

{6.49b) 
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The above approximation is usually good, because (dB) 2 « 
(AP) 2 , Note though that the product in the LHS of (6.49b) is 

overestimated. 

Since K
1
<1, their generalized means are also <1, hence 

their logarithm is negative. To draw the right conclusions 

one may multiply both numerator & denominator of eqn (6.46a) 

by -1 and let the logs 'absorb' the minus sign: 

T0 = l {ln[(l-p)/p] + Jln(l/AJ-Tol}/ln[l/(AJ-To~o)] J (6.50) 

From approximation (6.49a): 

(6.51) 

Hence, if ( 6. 51) is used in eqn ( 6. 50), T
0 

will be over

estimated. To compensate, ln( 1/ AJ-To), which appears in the 

numerator, should be underestimated. From (6.47c): 

(6.52) 

From the last three expressions: 

(6.53a) 

The approximation, above, may be rewritten: 

(6.53b) 

Note the similarity between the above expression and eqn 

(6.34a) (for the optimum threshold under DD). This suggests 

that a 2nd approximation may be attempted, 

Consider again inequalities (6.47c): 

Then, from (6.46a): 

lnA :!: 
... In = 

T
0 

=t l (J/2) + ln[p/(1-p)]/(21~0 ) J (6.53c) 

Comparing (6.53b) with (6.53c), it is obvious that the 

latter is, in general, an overestimation of T
0

, since, from 

(6,47c), lnA1 :!: 1~0 <-> lnA1 / ln~n S. 1 (lnA<O), 

What remains to be done is to test the validity of the 

above results. Four cases will be considered, two J=ll and 

two J=lO cases. The results are diplayed below: 
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ExamQle 6,4: Consider Case 1: c 1 =4, c 2 = 10, c 3 =15, 

c 4=20, c 5=30, c 6=40, c 7=60, c 8 =80, Cg=100. c 10=120, c 11=150. 

TASLE §.12t C&se 1 * {llz = tl3~) 
p LB To Tl Tz UB 

0.200 11 11 11 11 11 

0.100 11 11 11 11 11 

0.070 11 11 11 11 11 

0.050 10 10 11 11 11 

0.020 7 8 8 9 9 

0.010 6 7 7 7 8 

0.007 6 7 6 7 8 

0.005 6 7 6 7 7 

0.002 6 6 6 6 7 

0.001 6 6 6 6 6 

I 
ExamQle 6. 5: Consider Case 2: c 1 =40, c 2 =45, c 3=50, 

c
4
= 60, c

5
=70, c

6
=80, c

7
=90, c 8 =100, c 9=110, c 10=120, c 11=150. 

'TABLE §.13; C&se 2 * {n& = 916) 

p LB To Tl Tz UB 

0.200 11 11 11 11 11 

0.100 11 11 11 11 11 

0.070 11 11 11 11 11 

0.050 11 11 11 11 11 

0.020 11 11 11 11 11 

0.010 10 10 10 10 10 

0.007 8 8 8 9 9 

0.005 7 8 8 8 8 

0.002 6 7 7 7 7 

0.001 6 6 6 6 6 

I 
Ex!!,mQle 6.6: Consider Case 3: c 1=4, c

2
= 1 o, c 3=20, 

c 4 =30, c 5=40, c 6=60, c 7=80, c 8=100, c 9=120, c 10=150. 

See overleaf for the table. 

* LB=Lower Bound, T
0

=0ptt..ua Threshold, T 1•ith approxiaation of T
0

, UB=Upper Bound. 
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TABLE 

p LB 

0.200 10 

0.100 10 

0.070 10 

0.050 10 

0.020 7 

0.010 6 

o. 007 5 

0.005 5 

0.002 5 

0.001 5 

Example 6.7: 

c
4
=70, c 5=80, c 6=90, 

I ABLE 

p LB 

0.200 10 

0.100 10 

0.070 10 

0.050 10 

0.020 10 

0.010 10 

0.007 8 

0.005 7 

0.002 6 

0.001 6 

6.14: Ca•e 3 * {n~, "! 615) 

To Tl T2 

10 10 10 

10 10 10 

10 10 10 

10 10 10 

8 8 9 

7 7 7 

6 6 7 

6 6 6 

6 6 6 

6 5 6 

Consider Case 4: c 1=40, c 2=50, 

c 7=100, c 8=110, c 9=120, c 10=150. 

§,j§: Case 4 * tn., =: 871) 

To Tl T2 

10 10 10 

10 10 10 

10 10 10 

10 10 10 

10 10 10 

10 10 10 

8 8 8 

7 7 7 

6 6 6 

6 6 6 

Page 174 

UB 

10 

10 

10 

10 

9 

8 

7 

7 

6 

6 

I 
c 3 =60, 

UB 

10 

10 

10 

10 

10 

10 

8 

7 

6 

6 

I 
Consider now the results displayed in the four tables, 

above. The two approximate expressions for T
0 

will be com

pared with the actual value of the~optimum threshold. Also, 

the width UB-LB will be examined, along with the agreement 

between the two approximate expressions for T
0

• 

1st Approximation: Out of a total of forty bit-error 

probabilities examined there is a disagreement of 1, in four 

* LB=Lower Bound, T0=0ptiau. Threshold, T1•ith approxtaation of T0 , UB=Upper Bound. 
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instances; for p = 0.050, 0.007 & 0.005, in Case 1 and for 

p=O.OOl in Case 3. 

Width of UB-LB: Consider the difference between the UB 

& the LB for each of the four cases. The differences are 

arranged in order of descending bit-error rate p. 

Case 1: 0 O'Q 1 2 2 2 1'1 0 
Case 3: 0 Q Q Q 2 2 2 2 1 1 

Case 2: Q Q Q Q Q Q 1 1 1 0 

Case 4: Q'Q Q 0 Q 0 Q Q Q 0 

Difference between the two approximations: Consider the 

difference between the 2nd & the 1st approximations; the 

results are arranged in order of descending p. 

Case 1: Q Q 0 Q 1 Q 1 1 0 Q 

Case 3: Q Q Q 0,1 0 1 Q Q 1 

Case 2: 0 0 0 0 0 Q 1'0 0 0 

Case 4: Q Q 0 Q Q Q 0 Q 0 Q 

Consider now some general conclusions about the above 

results. 

For Case 4 there was absolute agreement between the two 

approximations and the true value of T
0

; also, the two 

bounds coincided in all cases examined. From the other three 

cases, Case 2 behaved best; the 1st approximation was accu

rate while the 2nd failed only once, by one. This distinct 

behaviour is due to the smaller spread of the c
1
s (and con

sequently of the K1s), for Cases 2 & 4, compared to 1 & 3. 

The difference between the UB and the LB never exceeded 

two and was zero in 25 of the 40 instances considered. Fur

thermore, all values of T
0 

and their two approximations were 

inside the range [LB,UB]. 

The 2nd approximation of T
0 

overestimated T
0

, but only in 

7 out of the 40 instances considered and only by one. In the 

rest of the instances the two approximations of T
0

coincide. 

6.3.4. 

In this paragraph, expressions for, and approximations 

to, the probability of decoding error will be developed. 

What is remarkable, is the similarity with the corresponding 

results for DD (see Paragraph 6.2.3.). 

Consider firstly an exact expression for 11'
4

(T
0
). From 

Theorem 6.11, T
0

?: rJ/21 = L(J+l)/2J > (J+1 )/2-1 = (J-1)/2. 

Hence, T
0 

> (J-1)/2 and from eqn (6.23a) and eqn (6.44): 
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(6.54) 

Consider next the limit value of T
0

, as p --> 0. 

The pth generalized mean, AP, is the pth root of the sum 

of all the p-products of the K
1
s, divided by C(J,p). If ap

proximation K1 " pc1 [see ( 6. 28) 1 is used, each of the dis

tinct C(J,p) products of p K~ becomes a product of the cor

responding p c 1a multiplied by pP. Let CP denote the pth gen

eralized mean of the J c
1
a. Then: 

For p=1,2, ••• ,J: (6.55) 

Obviously, as p --> 0, ln[p/(1-p)1 ---> lnp (6.56) 

From the last two approximations and the 2nd approxima

tion to T
0 

[(6.53c)1: 

LIM{T } = l (J/2) + lnp/[ 2ln(pCT ) 1 J 
p->0 ° n 

(6.57) 

The limit value of T
0 

under DD is l(J/2)+lnp/[2ln(pc)]J 

[from (6.34a), with approximations (6.55) & (6.56)1. Hence, 

the role played by c under DD, is played by CTn under FD. 

Following the same reasoning as in the discussion leading to 

Theorem 6.6, one concludes that as p-->0, T
0 

assumes eventu

ally its minimum value' r J/21 ; in particular' that happens 

when p becomes (approximately) smaller than 1/(CTn) 2 • Hence: 

. - for p < 1/(CT ) 2 

n 
(6.58) 

Finally, two approximations will be attempted, on eqn 

(6.54), for small values of p. If p satisfies the condition 

in (6.58), then from (6.55) & (6.54), for J=even: 

J 

Q(J) [ !;PP(CP)P(~) 
p=J/Z+l 

+ P J/Z+l(C )JIZ ( J )] 
J/Z J /2 (6.59) 

In the above approximate expression for P4 , powers of p 

multiply each term in the summation, in the RHS. Since p is 

very small, one may assume that only the terms corresponding 

to the minimum power of p, (J/2+1) 1 are significant. Hence: 

(6.60) 
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The above expression is an approximation and hence one 

can assume that C J/ 2+1 " C J/2 • Furthermore, from eqn ( 6. 13), 

if pci« 1, then Pi" pci« 1 -> Qi" 1. Hence, Q(J)" 1. 

From the results above: 

P (T) "pJ/2• 1 ( J )<c >J'2 [c /(1+2/J)+l] d 0 J/2 J/2 J/2 (6.61) 

6.4 QQNCLUSIQNS 

In this chapter, one aspect of majority-logic decoding 

for CSOCs, was examined. Specifically, while Massey set the 

threshold at rJ/21, it was proved, by the author, that this 

is the optimum* setting only if the bit error rate, p, is 

smaller than a certain value. 

An expression for !d(T), the probability of decoding a 

bit in error, was derived, as a function of the threshold, T 

[eqn (6.1)]. Given this eqn, it seemed natural to ask, what 

is the value of T that minimizes Pd(T)? The sign of the dif

ference Pd(T) - Pd(T-1) was examined, as T ranges from 0 to 

J. If the difference is negative for T<T
0

, and positive for 

T>T
0

, then T
0 

is the optimum threshold (see Theorem 6.1). 

!d(T) is a function of the probabilities, Pi, that the 

various syndromes, checking on the bit to be decoded, are 

1. In § 6.1.2., it was proved that P1 = H1-(1-2p)ci] " pc
1

, 

where c 1 is the syndrome size. In § 6.1.3. & § 6.1.4. gener

al expressions were obtained for P(I=ple.), the probability 

that the sum of the syndromes checking on e. is p and for 

Pd(T). Example cases were considered which showed that there 

is, indeed, an optimum threshold, which is rJ/21 for small 

values of p, but which increases as p increases. 

The case of constant-size syndromes was considered, at 

first (this is, usually, the case of DD). The probability 

distribution P(I=ple.) was studied and it was proved that it 

peaks for p " P(J+1). If P(J+l) < 1 (which is usually the 

case) P(I=ple.) decreases asp increases (see Theorem 6.4). 

Eqn Pd(T)-Pd(T-1) = 0 was solved for T, and the optimum 

threshold was found to be :LJ/2+tln[p/(l-p)]/lnKJ ,,. where K.::. 

P/(1-P). The relation between T
0 

and p & c was studied and 

* 'Optiaua' •eans aini.JIUII probability of decoding error. 
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it was proved that T
0 

increases with p, or c, while it 

tends to its nominal value, T
0

.::. rJ/21, as p -> 0. It was 

also proved that T
0 

'departs' from T
0 

from about p=1/c 2 • 

Example cases showed that the error rate is improved by 

about one order of magnitude, for long codes. 

Finally the case of FD,was considered. This is very com

plicated because P(!=pje.) is proportional to the sum of all 

combinations of the P
1
s of the syndromes that check on the 

error bit to be decoded. It was thought, though, that there 

must be an 'average' syndrome size, which could play the 

role played by c, under DD. The concept of the pth general

ized mean, A~, of J positive numbers (lSpSJ) was introduced 

(an original idea), to assist in these calculations (see § 

6.3.1.). This was a successful generalization, since it was 

proved that A1 is the arithmetic mean and AJ the geometric 

mean, and also that A~> AJ /p<J. It was further observed 

(but it 'was impossible to prove), that A 1 >A for all 
~- ~ 

p=2,3, .•• ,J. This conjecture was tested and was found to be 

true, in all cases. It was also observed that the general

ized means are very close to each other. All expressions 

involving T
0 

& Pd(T), use some generalized means*. 

A non-closed-form expression for the optimum threshold, 

under FD, was derived in Theorem 6.11. The inability to ob

tain a 'useful' expression for T
0 

is due to the existence of 

syndromes of various sizes. Tight upper & lower bounds on T
0 

were obtained [see relns (6.48)] as well as two good approx

imations, [see relns ( 6. 3)]. The 2nd approximation is very 

similar to the corresponding approximation for DD. Their 

only difference is that FD uses CTn' instead of c, where C~ 

is the pth generalized mean of the sizes of the syndromes 

checking the error bit. It was also argued that T
0 

'departs' 

from T n from about p=1 I ( CTn )2 
• Four example cases were con

sidered which proved the validity and the tightness of the 

bounds and the approximations. This result then suggests 

that the way to obtain the optimum threshold, under FD, is 

to use the bounds to restrict the range of T
0 

(to usually 

one or two values), and then·to employ the exact expression 

[(6.46c)] to determine which value minimizes T
0

• 

* Either of the quantities &1 • P1/(t-r1), or of the syndroae sizes. 
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Chapter 7 will introduce the class of 'cyclic' convolu

tional self-orthogonal codes. This class of systematic codes 

was proposed by McQuilton [42], in 1979; the term 'cyclic' 

refers to the fact that these codes can be decoded cyclical

ly, using k/{n-k) threshold gates {instead of k gates), 

Another important characteristic of this class of codes is 

that it has an infinite number of members including codes 

that are multiple error-correcting at extremely high rates. 

'Cyclic' CSOCs are based on number theory and {as a con

sequence) they have a 'rich' mathematical structure. The 

latter may be exploited to achieve a number of results, in

cluding expressions for the code performance and ways to 

systematically alter the initial design in order to achieve 

specific goals. As an example, a method to shorten the codes 

was proposed by McQuilton [43], in 1980, 

The author would like to admit that he was 'intrigued' by 

number theory, In particular, this theory seems to have a 

very rich structure which remains unexploited, and on many 

occasions unknown. 

Although the class of 'cyclic' CSOCowas discovered by 

McQuilton, the work in this chapter is largely original. Its 

primary aim is to show that the above class of codes is the 

general solution of the problem of, systematically, con

structing systematic CSOCa under a small set of specific 

constraints; the latter are introduced in an effort to fa

cilitate the solution. A second aim is to generalize McQuil

ton's results, in the hope that other classes of similar 
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codes may be discovered, by other researchers. 

To that end, an alternative representation of systematic 

convolutional codes is firstly considered. Specifically, an 

array of integers is used to generate the code. The problem 

which is addressed is the determination of the necessary and 

sufficient conditions so that this array generates self

orthogonal convolutional codes. The first 1 arbitrary 1 re

striction is imposed and the previous results are according

ly refined, up to the point where the effort exceeds the 

limits of the thesis. This process is repeated until McQuil

ton's work is duplicated. 

7 .1 AN ALTERNATIVE REPRESENTATION Of CONVOLUTIONAL CQ{)ES 

Convolutional codes for threshold decoding were discussed 

in Chapter 5. It was explained there that in a CSOC the set 

of syndrome bits that check on error bit e~1 l /1SiSk should 

be orthogonal on that error bit. Hence, a systematic way of 

constructing CSOCa is equivalent to a systematic way of con

structing the syndrome equations 1 so that the orthogonali ty) 
principle is satisfied. 

'1.1.1. A pjscussjon on the Design ApProach 
' 

Consider eqn (5.7) (p. 138). Note that error bits e~1 l /i= 

1,2, ••• ,k are checked by syndrome bits s~Jl /j=1,2, ••• ,n-k & 
h=O, 1, ••• , m. Hence, the syndrome bits that check on error 

bits e~il /i=1,2, ... ,k are: 

s<n = e<t+Jl + 
h h 

h k 

"" ""e<ilg<il /1SjSn-k & OShSm ~ ~ h·z k+j,z 
zsO i•l 

(7.1) 

According to Theorem 5. 6, s~Jl checks on e~il iff g~!J,h = 1. 

Ideally, one would like to determine the necessary & suffi

cient conditions on the 'g-coefficients' so that the corre

sponding systematic convolutional code is self-orthogonal. 

Given that such a result is at least very difficult, and 

possibly impossible 1 to obtain, one would try to simplify 

the problem. This may be done either by following a differ-
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ent approach, or by attacking a partial case. 

In this section the work will start by following a dif

ferent approach and narrowing the problem a little bit. Spe

cifically, an array of integers will be used to completely 

specify the parity-check generation for systematic convolu

tional codes. The array will have n-k rows, one for each 

parity-check. The integers along each row will specify the 

message bits from each block that participate in the forma

tion of the corresponding parity-check. Since there are m+l 

blocks that participate in the formation of the current one, 

the array will have m+l columns. 'Each entry (cell)_()f the_array 

(located by the column and row numbers) contains an unspeci

fied number of integers. The above idea gives rise to a one

to-one correspondence between a systematic convolutional 

code and its associated array of integers, to be called the 

initial array. 

So, the initial array (IA) for an (n,k,m) systematic con

volutional code will be made of (n-k) x (m+l) cells. Row j 

(lSjSn-k) of cells defines the way the jth parity-check is 

formed, Column i (lSiSm+l) of cells provides the contribu

tions from the (h-i+l)th message block, where hth is the 

block currently encoded. Cell (j,i) may contain up to k en

tries (all positive integers) or it may be empty. Entry, 

say, x indicates that the xth bit (lSxSk) of the (h-i+l)th 

message-block participates in the formation of the jth pari

ty-check of the hth channel-block, i.e. bit v~k+j) depends on 

b • t (X) 1 uh-1+1 • 

Because of the similarity between the parity-check and 

the syndrome equations [compare eqn (2.47b) with eqns 

(2.76)], the IA may be used to study the syndrome equations, 

and in particular the set of syndromes which check on each 

of the k error bits e~1 l,e~2 l, ••• ,e~kl, This may be done as fol

lowing: Assume that one wishes to collect all the syndromes 

that check on error bit e?l /lSxSk. The IA must be scanned 

to determine all entries equal to x. Assume that such an 

entry is found in cell (j,i) /lSjSn-k & lSiSm+l; according 

to the above discussion, syndrome bit s~Jl checks on error 

bit e~~!.1 , hence syndrome bit s~~!-l checks on error bit e~x). 
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Since a three-dimensional array is difficult to work 

with, a partial case will be considered. A possible family 

of CSOCa could specify up to one bit from the current and 

each of the past m blocks; in such a case, Os along the row 

would indicate no contribution from the corresponding block. 

Another construction could specify exactly two (or maybe up 

to two) bits from each block, etc. These two families may be 

described by two-dimensional arrays, 

7.1."2. IntrodUCtion to Type-A CgdtA 

The class of 'cyclic' CSOCa has been given a distinct 

property: From the current and each of the past m message 

error blocks, only one bit participates in the formation of 

each of the current syndrome bits. Accordingly, a family of 

systematic convolutional codes, described by a two-dimen

sional IA, is defined below: 

Definition 7.1: An (n,k,m) type-A code is a systematic 

convolutional code satisfying 

[ 
(1) (2) 

w gk+j,z gk+J,z ., • • g<kl ] = 1 
k+j,z (7.2) 

for all j=1,2, .. , ,n-k & z=O,l, .. , ,m, Equivalently, from 

each of the message error blocks (e•)h, (e•)h-l' ••• , (e•)h-•' 

exactly one bit participates in the formation of each of the 

current syndrome bits, s~1 l, s~2l, , , , , s~n-kl, 

I 
From (7.2), it is obvious that for each g~!tz /i=l 1 2 1 ,, ,k, 

each value of j hence, for exactly one of them is 1; 

(lSjSn-k) and each value of z (OSzSm) there exists a value 

of i, a function of j & z, for which g~!tz=l. 

For 1SjSn-k & OSzSm: (i) -[ 1 if i=a,,z+l 
glttj,z 0 if ijla 

j,z+l 

(7.3) 

Notation: The a-coefficients of the initial array will 

be denoted either by a[j,z], or a, , .,z 

I 
From the discussion above, it is obvious that each cell 
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of the IA has exactly one entry, hence the IA is a two-di

mensional array of positive integers; furthermore, aJ indi-,z 

cates the bit, from message error block (e•)h-z+l' which par-

ticipates in the formation of s~Jl I j=1, 2,.,. ,n-k & z=1, 2, • 

•• ,m+1. It is also obvious that 1SaJ Sk for all j & z. Using ,z 
result (7.3) in eqn (7.1}: 

h 
s<j) = ~ efa(j,z+l)} + e<k+Jl /OShSm & 1SJ'Sn-k 

h ~ ~z h ( 7 '4} 
z=O 

The initial array (IA} for an (n,k,m} type-A code has the 

following format: 

Deter.inea contributions f~ block: (b ia the current block) 

L> h h-1 h-z+1 h-m 
Defines: 

s<ll 
h -> al,t 8 1,2 • • • 8 t,z • •• 8 t,a+l 

s<Zl 
b --> 8 2,1 8 2,2 ••• 8 2,z • •• 8 2,a+l 

. . • • • • • • ... • •• • •• 
s<x> --> b ••• ~ • •• s • • • • • • • • • • •• • • • • • • 
S (n-k) 

h --> ••• I 8 n-:t,z I . .. I an-k,a+l I 
Note 7.1: Consider an (n,k,m) type-A code. The initial 

array (IA), corresponding to this code, is the array of ele

ments a , where x=1,2, ••• ,n-k & z=1,2, ••• ,m+1. The general z,z 

element a • indicates the error bit, from message error 
"·~ 

block (e•)h-z+l' which participates in the formation of syn-

drome bit s~">, 

I 

'7.1."3. Intaxtuetjgn to Pfcodjng of IYoe~~ Codes 

To decode error bit e~1 > /1SiSk one should collect all 

syndrome bits that check on this error bit. These syndrome 

bits may be determined from the IA and eqn (7.4), which is 

repeated below in a slightly different form: 

b+l 
s<Jl = ~ efa(j,z)} + e<k+j) /OShSm & 1SJ'Sn-k 

b ~ h+l-z h 
z•l 

(7.5} 
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One should scan the IA to locate entries equal to i. If 

a =i, i.e. if an i exists in row x, column w, from (7.5), x,w 
j=x & 

h=w-1. 

z=w; from the latter and h+1-z=O, it follows that 

So, syndrome bit s<x> checks on eU>. 
w-1 0 

Assume that syndrome 

from eqn (7.5), 

bit s~~I checks on error bit e~1 >. Then 

w 

s<x> = "" ela[x,z)) + e<k+x) /1:Sw:Sm+1 
w-1 L.l w-z w-1 (7.6) 

z•1 

Because s<x> checks on e 0Ul, the z=w term in the above sum-w-1 

mation will be the bit from message error block (e•) 0 ; since 

exactly one bit from each error block participates in the 

formation of each syndrome bit (see Definition 7.1), this 

bit will be the ith one of that block, hence 

The following theorem has been proved: 

a =i. x,v 

Theorem 7.1: Let a /x=1,2, ... ,n-k & z=1,2, ... ,m+1 be x,z 
the elements of the IA of an (n,k,m) type-A code. Syndrome 

bit s~~~ /l:Sx:Sn-k & l:Sw:Sm+l checks on error bit e~ 1 l /l:Si:Sk if, 

and only if, a =i. x,w 

I 
The question that arises, at this point, is "how to con

struct the IA so that the corresponding systematic convolu

tional code is self-orthogonal?". 

7.1.4. Orthosona]jty Qonditjona for Ivpe-A Cggea 

Let us consider now the equivalent condition under which 

the type-A code generated by the IA is not self-orthogonal. 

Theorem 7. 2: Let a /x=1,2, .. ,n-k & z=1,2, .. ,m+l be x,z 
the elements of the initial array of an (n,k,m) type-A code, 

A necessary and sufficient condition for this code not to be 

self-orthogonal is that the same pair of integers, separated 

by the same number of places, appears along two of the rows 

of the IA. Stated otherwise, this condition requires that, 

for any two elements ar,u & av,w of the IA which are equal, 

there exists at least one positive integer c, less than u & 
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If a = a , there exists c: a = a r,u v,w r,u-c v,w-c (7.7a) 

where lSr,vSn-k & l<u,wSm+l & O<c<MIN{u,w} (7.7b) 

Proof: See Appendix 7.4 (p. 447). 

I 
Note that in the above theorem it is not necessary to 

have rt-v, i.e. to consider two distinct rows. Hence, even 

if the same number appears in the same row, more than once, 

the code will not be self-orthogonal if (7.7) do hold true. 

TYPE-S COQES THE USE OF NUMBER THiORY 

Although Theorem 7.2 sets the conditions for orthogonali

ty, it does not do so in a way that is practically useful. 

It may be possible to persist and be rewarded, but it is 

tempting to simplify the problem by introducing a new re

striction. This time it concerns the way the elements of the 

IA are generated. 

Definition 7.2: 

be the elements of 

Let a x.z /x=1,2, •• ,n-k & z=1,2, •• ,m+l 

the initial array of an (n,k,m) type-A 

code. Then the IA corresponding to a type-B code is generat

ed as following: 

ax,z = zax,l (mod k+l) /x=1,2, •• ,n-k & z=1,2, •• ,m+l ( 7. 8) 

I 
With the above definition, the construction and the 

properties of the IA come under the 'jurisdiction' of the 

theory of congruences*, and in general of number theory. 

Note that a special symbol (:) was introduced; it was chosen 

by Gauss to suggest analogy with the equals sign (=). 

Furthermore, the problem of the construction of the IA 

has been reduced to that of selecting its 1st column, so 

that the corresponding type-B code is self-orthogonal. 

* See Appendix 7.2 for a brief introduction to congruences. 
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'1.2.1. Butdct,joo on the yalue of m for Type-B Qodes 

Theorem 7. 3: Let as,l /x=l, 2, •• , n-k be the elements of 

the 1st column of the initial array of an (n,k,m) type-B 

code (obviously, lSa 
1
Sk, /x=1,2, ••• ,n-k). Then, if row xis z, 

not to contain a zero, its length should not exceed 
- ----

(k+l)/(k+l,a"·l)-1,~-a~(j consequently m is restricted by:' 

m S n-k { } ~!~ (k+l )/(k+l ,az,l) - 2 (7.9) 

Proof: See Appendix 7.5 (§ A7.5.1., p. 448) 

I 
Note that, according to (7.9), the maximum value of m is 

k-1. This is achieved if all elements of the first column 

are relatively prime to k+l. 

Consider also the other extreme, namely the minimum of 

the maximum value of m, given by the following theorem. 

Theorem 7.4: For the initial array of an (n,k,m) type-B 

code to exist, it is necessary that the maximum value of m, 

mll&l<, satisfies 

mJIU ~ p-2 (7.10) 

where p is the smallest prime factor of k+l. For a 

(2k,k,m) type-B code to be self-orthogonal, it is necessary 

that miiU = p-2. 

Proof: See Appendix 7.5 (§ A7.5.2., p. 449). 

I 

7.'2.2. OrtbogooaJ it.~ QAAgjj;.iOD§ for Tvoe-8 Codes 

Lemma 7.1: Consider an (n,k,m) initial array with ele-

ments a , where x=1,2, •• ,n-k & z=1,2, •• ,m+l. Then, for any z,z 
a_ and for any c, nonnegative: .,z 

a - a = ea (mod k+ 1 ) z,z+c x,z x,l (7.11) 

Proof: See Appendix 7.6 (§ A7.6.1., p, 450}. 

I 
Consider again Theorem 7.2; in effect, it gives a neces-
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sary & sufficient condition for an (n,k,m) type-B code DQi 

to be self-orthogonal: The code is not self-orthogonal if, 

and only if, there is at least one pair of elements a = r,u 
a and at least one integer c, such that ar u c = av , v,w , - ,w-e 

where O<c<MIN{u,w}. The next theorem re-defines the orthogo-

nality conditions, set by Theorem 7.2, exploiting the IA 

generation rule introduced by Definition 7.2. 

Theorem 7. 5: Consider an (n,k,m) type-B code and its 

initial array with elements a , where x=1,2, •• ,n-k & x,z 
z=1,2, •• ,mtl and m satisfying condition (7.9), The code is 

not self-orthogonal if, and only if, there are two equal 

elements in two rows, say elements ar,u = av,w' where 

l<u,w~m+l, and at least one positive integer c, less than u 

& w, such that: 

c ( a 1 - a 1 ) = 0 ( mod k+ 1 ) r, v, (7.12) 

Proof: See Appendix 7.6 (§ A7.6.2., p. 450). 

I 
The corollary to the above theorem will be its logical 

negation: 

Corollary: Consider an (n,k,m) type-B code and its ini-

tial array with elements a , where x=1,2, •• ,n-k & x,z 
z=1,2, •• ,m+l and m satisfying condition (7.9). The code is 

self-orthogonal if, and only if, for any two rows, say r & 
v, and for all elements a = r,u a of these two rows that are v,w 
equal, where l<u,w~m+l, and for all positive integers c, 

less than u or w: 

c(ar,1 - av, 1 ) ~ 0 (mod k+l) 

ar, 1 ~ av, 1 (mod (k+l)/(k+l,c)) 

(7.13a) 

(7.13b) 

I 
The 2nd condition follows from the 1st & Theorem A7.2.4. 

A piaeussion on tht ouiqn Ap:prooc:b 

The above corollary, although useful and important, lacks 

in clarity and presentation due to the number of conditions 

which accompany relation (7.13). An attempt to simplify this 
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will follow the examples below: 

Ex amp 1 e 7 • 1 : Consider an (n,k,m) type-B code and its 

IA. Let k+1=8 and consider two rows with elements a 1,1=1 and 

a 2,1=3. Then, from ( 7. 9), both rows may have length m+l = k = 

7: 

1 .2 3 4 5 6 7 
3 6 1 4 7 2 5 

The columns with common elements (apart from the 1st one) 

are: 2 & 6 (element 2, or 6), 4 & 4 (element 4) and 5 & 7 

(element 5, or 7), Then: For element 2 (or 6), u=2 & w=5, 

hence c=l. For element 4, u=w=4, hence c=1,2,3. For element 

5 (or 7), u=5 & w=7, hence c = 1,2,3,4. According to Lemma 

7.2, the first-column elements (1 & 3) must be incongruent 

(mod (k+l)/(k+l,c)) for c=1,2,3,4, i.e. incongruent modulo 

8/(8,1)=8, 8/(8,2)=4, 8/(8,3)=8 and 8/(8,4)=2, i.e. incon

gruent modulo 8,4 and 2. They are incongruent modulo 4 and 

8, but not modulo 2.* 

Corresponding to the above IA the following syndrome 

equations may be obtained [see eqn (7.4)]: 

s(1) = eCl) + eC21 + eC31 + ec•> + eC5) + eC6) + e<7l + e<B> (A) 
h h h-1 h-2 h-3 h-4 h-5 h-6 h 

s<2> = e<3> + e<61 + e<ll + e<•> + e<7l + e<Z> + e<51 + e(9) (B) 
h h h-1 h-Z h-3 b-4 h-5 b-6 h 

The fact that the above IA does not generate a self-or

thogonal code may be seen from the two syndromes checking on 

bit e 15 > [or e< 7> ]• they both check on e 11> as well• 0 0 , 4 ' • 

s!l) = e11) + e~•> + e~3) + e!2l + ell) + e!B) 

s<2> = etll) + e<2> + e<7> + e<•> + eit) + e<&> + e<31 + e<•> 
6 0 1 2 3 • 5 6 6 

What really matters in the two equations above is that, 

apart from the first column, the sequences of the numbers in 

brackets are not distinct. The first column contains the bit 

that is checked (5). The two syndromes above are not orthog

onal because they have one more common element (1 in the 5th 

column). Hence, orthogonality can be checked by looking at 

the leftwise sequences: 
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5 4 3 2 1 
5 2 7 4 1 6 3 

I 
It is clear from eqna (A) &. (B), above, that c ranges 

from 1 to a maximum value e-1, where e is the first element 

of the 'rightmost' pair of common elements in the two eqns. 

In the above example this 'pair' is element 5 in columns 5 &. 
7 (or, the same, element 7 in columns 7 &. 5). Hence, C=5 in 

the above example and c ranges from 1 to 4. As a consequence 

(k+1)/(k+1,c) takes on the values 8, 4, 8 &. 2. The last val

ue is the one that causes the 'damage', because one can only 

have two numbers that are incongruent modulo 2. 

Definition 7.3: 

initial array, with 

.,m+l. The leftwise 

Consider an (n,k,m) type-B code and its 

elements a /x=l, 2, ••• , n-k &. z=1, 2, •• x.z 
sequences of error bit e~1 l /lSiSk &. h~O 

are rows of elements of the IA, of lengths varying between 1 

and m+l. In particular, for every entry of the IA which is 

equal to i there is a leftwise sequence of elements, which 

is the sequence of all IA elements to the left of i. In oth

er words, for every a =i /lSvSn-k &. lSuSm+l, there is a v,u 
leftwise sequence i = a a 1 a z v,u v,u- v,u .. • • • 

I 
Example 7. 2: Consider an (n,k,m) type-B code and its 

initial array. Let k+1=8, a 1 •1=1 and a 2 , 1=7: 

1 2 3 4 5 6 7 

7 6 5 4 3 2 1 

The columns with common elements (apart from the 1st one) 

are: 2 &. 6 {element 2 or 6), 3 &. 5 {element 3 or 5) and 4 &. 
4 {element 4). Then, the 'rightmost' pair is 4 &. 4 and the 

first of the pair is 4, hence C=4 and c ranges from 1 to 3, 

requiring thus that the first-column elements are incongru

ent modulo 8, 4 &. 8. Since 7 = 3 {mod 4), the above IA 

should generate a self-ortogonal code. This may be checked 

by examining all leftwise sequences: 

1 2 1 

1 2 3 4 5 6 7 2 3 4 5 6 7 

3 2 1 
3 4 5 6 7 

4 3 2 1 

4 5 6 7 
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5 4 3 2 1 

5 6 7 

6 5 4 3 2 1 

6 7 

7 6 5 4 3 2 1 

7 
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Since they are all distinct, the syndromes that check on 

every bit are orthogonal on that bit, hence the code is 

self-orthogonal. Incidentally, n-k=2, k+1=8 & m+1=7, hence 

the resulting systematic convolutional code is a (9,7,6) 

one. Furthermore, there are J=2 syndromes checking on each 

message bit, so the code may correct up to one error within 

one constraint-length [nA.::. n(m+l) = 9 x 7 = 63]. 

I 
The corollary of Theorem 7.5 places restrictions on the 

elements of the 1st column of the IA. Consider any two rows 

r & v and assume that they contain at least one common ele

ment in columns other than the first one. Let ~ denote the 

1st column of the rightmost pair of columns which contain 

the common elements. Then the first elements of the two 

rows, a 1 & a 1 , must be incongruent module ( k+1) I ( k+1, c) r, v, 

for c=1,2, •• ,~-1. If the two rows contain no common element, 

then it is enough for a 1 & a 1 to be incongruent (mod k+1); r, v. 
in any case if they are not, the two rows will be identical. 

The process followed so far leads to the proof of the 

existence of the 'cyclic' CSOCa. Nevertheless, the approach 

is such that the results are general; stated otherwise, they 

are meant to include McQuilton's work, hence the introduc

tion of two broad catagories of codes, namely type-A & type

B (see Definitions 7.1 & 7.2). So far, two 'arbitrary' in

terventions were made in the process of determining the nec

essary and sufficient conditions so that a systematic convo

lutional code is self-orthogonal. The 1st restriction was to 

use exactly one bit from the current and each of the past m 

message error blocks in the summation that determines the 

current block (see Definition 7.1). The 2nd restriction is 

the way the IA elements are generated from the elements of 

the 1st column (see Definition 7.2). It is the author's op

pinion that the main reason for the introduction of these 

two restrictions is the simplification of the calculations. 

They definitely limit the range of the search, but they also 
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bring the solution within the sphere of the feasible:' 

7."2.4. Some. propert.ies of Iva-1 Codf!A 

The following three theorems present some useful interme

diate results on type-B codes. Specifically, some progress 

is made towards simplifying the conditions for the existence 

of type-B self-orthogonal codes. 

Theorem 7.6: Let a /x=1,2, •• ,n-k &. z=1,2, •• ,m+1 be x,z 
the elements of the initial array of an (n,k,m) type-B code, 

with m satisfying reln (7.9). Then, the elements of any row 

of the IA are distinct, while the elements, say, ar,u and av,u 

of column u (1~u~m+l) are equal if, and only if, the corre-

sponding elements of the first column, 

gruent modulo (k+1)/(k+1,u): 

a 1 &. a 1 , are con-r, v, 

a =a <-> r,u v.u ar,1 E av,1 (mod (k+l )/(k+1 ,u)) ( 7.14) 

Proof: See Appendix 7.7 (§ A7.7.1., p. 451). 

I 
Theorem 7.7: Let a /x=1,2, .. ,n-k &. z=1,2, .. ,m+1 be x,z 

the elements of the initial array of an (n,k,m) type-B code. 

If p is the smallest prime factor of k+1 and mSp-2 then a 

necessary and sufficient condition for the code to be self

orthogonal is that the elements of the first column are dis

tinct. 

Proof: See Appendix 7.7 (§ A7.7.2., p. 452). 

I 
Theorem 7.8: Consider an (n,k,m) type-B code 

p-2, where p is the smallest prime factor of k+l. 

with m ~ 

The fol-

!owing are necessary conditions for the code to be self

orthogonal: 

i) The code rate, R, is not less than 0.5: R ~ 1/2. 

ii) k is even. 

iii) No column of the IA contains two equal elements. 

Proof: See Appendix 7.7 (§ A7.7,3., p, 452). 

I 
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E~am!;!le 7. 3: Consider an (n,k,m) type-B code with ko:34. 

The smallest prime factor of k+1=35 is p=5. If m:Sp-2, then 

m=1,2 or 3, Let m=3 and R ~ k/n = 1/2, hence n=2k=68. Then, 

the IA is a k X (m+1) = 34 X 4 array: 

1 2 3 4 > 18 1 19 2 
2 4 6 8 19 3 22 6 
3 6 9 12 20 5 25 10 
4 8 12 16 21 7 28 14 
5 10 15 20 22 9 31 18 
6 12 18 24 23 11 34 22 
7 14 21 28 24 13 2 26 
8 16 24 32 25 15 5 30 
9 18 27 1 26 17 8 34 

10 20 30 5 27 19 11 3 
11 22 33 9 28 21 14 7 
12 24 1 13 29 23 17 11 
13 26 4 17 30 25 20 15 
14 28 7 21 31 27 23 19 
15 30 10 25 32 29 26 23 
16 32 13 29 33 31 29 27 
17 34 16 33 34 33 32 31 

Note that each of the four columns contains the integers 

1,2, ••• ,34 exactly once, hence the IA contains each integer 

exactly 4 times, Then, there are exactly 4 syndromes check

ing on each error bit, i.e. J=4. According to Theorem 5.3, 

this (68,34,3) systematic convolutional code can correct up 

to 2 errors in a span of nA ~ n(m+1) = 68 X 4 = 272 bits. 

I 
Note, from the above example, that a higher code rate may 

be achieved if n-k is reduced. This requires the deletion of 

at least one of the rows of the initial array and will re

sult in the reduction of J, from 4 to 3. This will reduce 

the error-correcting capability, t, to lJ/2j = 1, hence one 

might, as well, reduce J to 2. This calls for the removal of 

as many rows as possible so that the remaining rows contain 

the integers 1,2, ••• ,34 at least twice. There may exist an 

analytical solution to this problem, but it seems possible 

that only computer-aided calculations may produce results. 

The last result of this paragraph is concerned with the 

the relation between the effective constraint-length, n
1

, of 

type-B codes and the corresponding leftwise sequences. 

Theorem 7.9: Let a /x=1,2, .. ,n-k & z=1,2, .. ,m+1 be 
"·" the elements of the initial array of an (n,k,m) type-B code. 

Then, the effective constraint-length, n
1

, corresponding to 
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any particular error bit e~1 l /l~i~k & h~O, equals one plus 

the number of elements in the leftwise sequences of that 

error bit. Furthermore, if the initial array elements which 

are equal to i, are a[x1 ,w1 ] ,a[x2 ,w2], ••• ,a[xJ,wJ], then the 

effective constraint-length, for that error bit, equals one 

plus the sum of all the column-numbers of the columns that 

have an entry equal to i: 

(7.15) 

Proof: See Appendix 7.7 (§ A7.7.4., p. 453). 

I 

IYPE-B 1 CQ!)ES A CLASS OF f!ATE-1/2 'CSOC. 

The following results introduce a class of systematic 

CSOCsthat have rate 1/2. 

Theorem 7.10: For every even positive integer k and 

every integer J in the closed range [2,p-1], where p is the 

smallest prime factor of k+1, there exists a ( 2k, k, J-1) 

type-B self-orthogonal code, with exactly J syndromes check

ing on each error bit. Such a code will also be called the 

(k,J) type-Bl code. 

Proof: Consider a (2k,k,m) type-B code and its IA. Let k & 
p be as defined above and l~m~p-2. The IA is a k X (m+1) 

array, and since its elements are restricted in the range 

[1,k], the first column may be formed (without loss of gen

erality) by letting a 1 = x /x=1,2, ••• ,k. Hence, by Theorem x, 
7.7, the code is self-orthogonal, By Theorem 7.8, each col-

umn contains the integers 1,2,,,,,k (in some specific order) 

exactly once. Hence, the k X (m+l) array contains each of 

1,2,.,,,k exactly m+l times, hence there are exactly J=m+1 

syndromes checking on each error bit. 

QED 

In Appendix 7.8 (§ A7.8.1., p, 454) there are some exam

ples of type-B1 codes. Example A7.8.1 refers to a k+1 = p 1p2 
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case, while Example A7.8.2 refers to a k+l=p• case. The lat

ter may be generalized by the following lemma: 

Lemma 7.2: For every odd prime p, every positive inte-

ger band every integer J in the range [2 1 p-1], there exists 

a ( 2pb-2, pb-1, J-1) type-B self-orthogonal code with exactly 

J syndromes checking on each error bit. 

Proof: This is clearly a partial case of Theorem 7.10, for 

k+1 = pb /b~1. Since p = odd prime -> p~3 -> pbl!:3 -> k 

= pb-1 = even positive integer. Also, since p is the small

est prime factor of k+1 = pb, each error bit is checked by 

exactly J syndromes, according to Theorem 7.10. 

QED 

A measure of the 'power' of the code is the ratio 

LJ/2J/nA, i.e. the maximum number of errors the code guaran

tees to correct within a certain span of bits, over that 

span of bits. For simplicity, the ratio (J/2)/nAmay be con

sidered. Since nA.:. n(m+1), for the (k,J) type-B1 code, 

this ratio is (J/2)/[n(m+l)] = J/[2(2k)J] = l/(4k), hence it 

decreases as k increases, and is independent of J. 

Nevertheless, LJ/2J should be measured against the effec

tive constraint-length n
1

, which is equal to the maximum 

number of distinct error bits that affect the decoding of 

any message error bit e~1 l /1~i~k (see Definition 5.9 & Exam

ple A7.8.3). 

Theorem 7.11: Consider the (k,J) type-Bl code. Its ef-

fective constraint-length, n11 is given by: 

n11 = l+J(J+l)/2 (7.16) 

Proof: According to Theorem 7.10, the (k,J) type-B1 code 

is a (2k,k,J-1) self-orthogonal type-B code with m = J-1 ~ 

p-2, where p is the smallest prime factor of k+l. According 

to Theorem 7.8, it is necessary that all IA columns are made 

of a distinct set of integers. Since the IA elements are 

restricted in the range [l,k] and since each column contains 

exactly k elements, then each column contains exactly one 

element equal to i, where l~i~k. 
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From the above discussion, there are exactly J entries in 

the IA which are equal to i, one in each column. Hence, the 

column numbers of the elements which are equal to i are 

1,2, ••• ,J. According to Theorem 7.9, the effective con

straint-length corresponding to error bit e~11 /1~i~k equals 

1 + (1+2+•••+J) = 1 + J(J+1)/2. 

QED 

According to Massey [18] (p. 35) "it is impossible to 

find a rate-1/2 convolutional code with J parity-checks or-

thogonal on e~1 l, 

[given by (7.16), 

for which n
1 

is smaller than this number" 

above]. Hence, the type-B1 codes have the 

minimum possible effective constraint-length, for a given J. 

For a given J, apart from n
1

, it is also important for 

the actual constraint-length, nA, to be as small as possi

ble. According to Massey [ 18] 1 a large ratio nA/n
1 

is unde

sirable. It has been calculated already that (J/2 )/nA = 

1/ ( 4k) (see discussion following Lemma 7. 2). Hence 1 for a 

given J, /J~2, the best code is the one corresponding to 

minimum k. By Theorem 7.10 1 J~p-1 1 where Pl(k+l) ---> pSk+l. 

Hence, J~p-l~k ---> k~J and the minimum value of k is J, BUT 

this is permitted only if J+l is an odd prime. The following 

theorem summarizes these findings: 

Theorem 7. 12: Let J be any integer greater than one. 

The 'best' (k,J) type-Bl code has k=p-1, where p is the 

smallest prime greater than J. 'Best' here means a code with 

minimum actual constraint-length. For the above case, 

nA = 2J(p-1) ~ 2J 2 (7.17) 

Proof: Let J>l and consider the determination of those 

values of k, for which the (k,J) type-Bl code exists. 

According to Theorem 7.10, 2~J~p-1 1 where p is the small

est prime factor of k+1, i.e. 

Since nA = n(m+l) = (2k)J (see Theorem 7.10), the mini

mum-nA code (i.e. the 'best' code) corresponds to the mini-
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mum possible value of k, for a given J. From (A) it is obvi

ous that this k is p-1 and since J~p-1, the 'best' code is 

the one with the minimum k, such that k = p-1 ~ J. Hence, 

the first prime p, greater than J is chosen for k+1. 

The actual constraint-length is nA = 2kJ = 2J ( p-1). The 

minimum possible value of p is 

ger, after J, is a prime, i.e. 

achieved when the first 

if J+1=p. Then n = 2Jz. 
A 

inte-

QED 

The table in Appendix 7.8 (§ A7.8.2., p. 456) gives the 

'best' type-B1 code, for various selected values of J, to

gether with the corresponding values of k, n
1

, nA &. nA/n1 • 

The nA of the 'best' type-B1 codes is compared with that of 

rate-1/2 CSOCs constructed by Massey [18), or Wu [45). 

From the table, one may conclude that type-B1 codes, when 

compared with codes discovered by Massey [18), or Wu [45), 

are equally good as far as the effective constraint-length 

is concerned [all codes satisfy (7.16)], but longer, as far 

as the actual constraint-length is concerned. 

Type-B1 codes become relatively shorter, as J increases 

(they are only 2.5% longer for J=100) and the trend is for 

this difference to'~isappear. 

If only the codes meeting the lower bound [see relation 

(7.17)] on nA (nA =,2JZ) are considered (they are marked with 

an *), then type-B1 codes are only slightly longer in nA 

compared with the Massey or Wu ones (the % extra nA is shown 

below for various Js): 

%: 
J: 

It is obvious that type-B1 codes are less than 8% longer, 

for J~18, than the corresponding Wu codes. This figure goes 

down to 2.8% for J~72. 

The class of type-B1 codes is obviously infinite, as far 

as the permitted values of J is concerned, although one can

not expect to think of applications of CSOCs with Js in ex

cess of, say, 100. For example, the last entry of TABLE 

A7.8,1 1 is a rate-1/2 CSOC which guarantees to correct any 

error pattern, of weight up to 4 1 500, within a span of 162 
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million bits (= 19.3 Mbytes). 

Finally, it is obvious from the table that, the ratio 

nA/n
1 

takes on values around 4 and as J increases it stabi

lizes to 4. This may be verified theoretically, from eqns 

(7.16) & (7.17): 

nA/n1 = 2{p-l )J/[J(J+l )/2+1] -> 

nA/n1 = 4J(p-l)/(J2+J+2) = 4/[J/{p-1)+1/(p-1)+2/J/(p-1)] 

According to Theorem 7.12, if J+l =prime, J = p-1: 

and /J->+<» 

For J+l<p, and J greater than about 10, 1/{p-1) + 

2/[J{p-1)] ~ 1/{p-1). For the same reason J/(p-1)+1/(p-1) ~ 

J/(p-1). Hence, nA/n
1 

~ 4{p-1)/J > 4, but as J increases, 

{p-1)/J tends to become 1 and nA/n1 --> 4. 

7.4 'OTHER CLASSeS OF TYPE-S SELE-ORTHQGONAL CQt)!;S 

Theorem 7.10 introduced a class of (2k,k,m) type-B self

orthogonal codes, where k=even, lSmSp-2 and p is the small

est prime factor of k+l, (type-Bl codes). 

The important restriction with this class of codes is not 

their rate (1/2), or that k=even, but that m<p-1. It has 

already been discussed (following Example 7.3), that the IA 

of a type-Bl code may be modified to produce a self-orthogo

nal code of higher rate (and lower J), by deleting some of 

its rows. That type-Bl codes are used as a starting point 

owes to the fact that each column of their initial arr~y 

contains each of the integers 1, 2, ••• , k exactly once (see 

Theorem 7.8). Another group of codes that offer this 'facil

ity' is the (n,k,k-1) type-B group of codes. In this case, 

each row contains each of 1,2, ••• ,k exactly once. 

It must be obvious, by now, that the relation between m & 
p is crucial for the structure of the initial array. So far, 

the case m<p-1 and RSl/2 (in practice R=l/2 - see Theorem 

7. 8) has been considered. In the next paragraph, the case 

m<p-1 and R>l/2 will be considered (this completes the gen

eral case m<p-1). In paragraph 7. 4. 2., the case p-lSm<k-1 
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will be examined. Finally, in the next section, the case 

m~k-1 will be looked-over (in practice m=k-1, because k-1 is 

the maximum value of m- see immediately after Theorem 7.3). 

7 .4. .1. Tyoe-B Self-Ortbosooal C9des wjtQ m<Q-1 A B/112 

Example 7.4: Consider the initial array for the (24,4) 

type-B1 code introduced in Example A7.8.2. In order to in

crease the rate, n-k (= number of rows) will have to de

crease. A consequence will be the reduction of J from 4 to 

3, and since even values of J are preferable the problem may 

be stated as following: "Delete as many rows as possible, so 

that there are at least two entries for each of the integers 

1, 2, ••• , 24". Obviously, the optimum solution is to delete 

exactly half of the rows, Then there will be 12 rows, of 4 

elements each, a total of 48 elements, exactly enough for 

each of 1,2, ••• ,24 to appear twice. Then, n-k = 12 and since 

k = 24, n = 24+12=36 and R ~ k/n = 24/36 = 2/3. So, the best 

solution will be a rate-2/3 code. Hence, the following 

strategy for the reduction of the IA: 

"Choose a number of rows, so that no number appears 

twice. If necessary, add a mimimum number of rows so that 

each of 1,2, ••• ,24, appears at least once. Repeat the above, 

until each of 1,2, ••• ,24 appears at least J times". 

During the first 'effort' rows 1,5,6,11,16 & 21 are cho

sen. A quick check verifies that all 24 integers are includ

ed exactly once. During the second 'effort', rows 

2,7,10,12,17 & 22 are chosen. Again ii can be verified that 

no more rows are needed: 

0 r i g i n a 1 I A 
1 2 3 4 
2 4 6 8 
3 6 9 12 
4 8 12 16 
5 10 15 20 
6 12 18 24 
7 14 21 3 
8 16 24 7 
9 18 2 11 

10 20 5 15 
11 22 8 19 
12 24 11 23 

> 13 1 14 2 
14 3 17 6 
15 5 20 10 
16 7 23 14 
17 9 1 18 
18 11 4 22 
19 13 7 1 
20 15 10 5 
21 17 13 9 
22 19 16 13 
23 21 19 17 
24 23 22 21 

M o d i f i e d I A 

1 2 3 4 
2 4 6 8 
5 10 15 20 
6 12 18 24 
7 14 21 3 

10 20 5 15 
11 22 8 19 
12 24 11 23 
16 7 23 14 
17 9 1 18 
21 17 13 9 
22 19 16 13 

The resulting code is a rate-2/3, J=2 CSOC, with n~ ~ 

n(m+1) = (24+12)(3+1) = 144. The effective constraint-length 
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/1~i~24 is equal to one plus the sum of the IA 

contain i (see Theorem 7.9). n
8

for the code is 

the maximum for all i = 1, 2, ••• , 24. This is obviously n
1 

= 

1+3+4 = 8 (for, say, i=3, or i=13, etc). 

I 
Theorem 7.13: Consider the initial array for the (k,J) 

type-B1 code. Then, for any positive integer y, less than k, 

there exists a (2k-y,k,m) type-B self-orthogonal code. The 

minimum number of syndromes, J, that check on any error bit 

is upper-bounded by (m+1){1-y/k). 

Proof: See Appendix 7.9 (§ A7.9.1., p. 458). 

I 
For any useful results to emerge, Theorem 7.13 alone is 

not sufficient. The problem area is the value of J. If rows 

are deleted at random (from the initial IA of the type-B1 

code), it is possible that J<2, which will make the code 

useless. Even if J ~ 2 the code may be inefficient, in case 

rows are deleted in such a way that some integers (from the 

set {1,2, ••• ,k}) are under-represented, The optimum solution 

would correspond to all integers being equally represented, 

which corresponds to the upper bound mentioned in the above 

theorem. For the case of Example 7.4, k=24, m+1=4 and y=12, 

Then the new code should have a value of J upper-bounded by 

(m+1)(1-y/k) = 4(1-12/24) = 2. In fact J=2, for the above 

example, hence the resulting type-B code is the best. 

What is required thus, is a method for the best possible 

way to delete rows from the IA of a type-Bl code. Specifi

cally and for a given value of J, a method is required to 

delete rows so that each integer in the set {1,2,,,.,k} ap

pears exactly J times in the remaining initial array, If 

this is impossible (and under what conditions is this so?), 

the next best solution should be obtained, 

Note from Example 7.4 that the first-column elements that 

were left after the deletion are 1,2,5,6,7,10,11,12,16,17,21 

& 22. Ignoring for the time being 5 & 10, the rest form a 

pattern: 1,2,6,7,11,12,16,17,21,22. Note also that multiples 

of 5 (i.e. integers 5,10,15 & 20) appear only along the rows 
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with first-column elements 5,10,15 & 20, while all other 

elements only along the rest of the rows. Hence there is a 

partition of the elements in two distinct groups of rows: 

Multiples of 5 (remember that 5 is the smallest prime divi

sor of k+1) appear along rows with 1st elements 5i 

/i=1,2,3,4, while all the rest along rows with 1st elements 

j /j=1,2, ••• ,24 & jj1!5i. The above may be generalized with 

the help of the following theorem: 

Theorem 7.14: Consider the initial array of the (k,J) 

type-B1 code, with elements a /x=1,2, ••• ,k & x,z z=1,2, •.. ,J. 

Let p be the smallest prime factor of k+1 and a 1 = x x, 

/x=1,2, ••• ,k. Then the following hold true: 

i) a + a = k+1 x,z k+l-x,z 

ii) For all x /1~x~k: plx <---> P I a x,z 

iii) For any b, iji!j, z & w, such that 1~b<p, 

1~iJI!j<(k+1)/p & 1~z,w~J: a jl! ~ btip,z ~-b+jp,w 

Proof: See Appendix 7.9 (§ A7.9.2., p. 459). 

(7.18) 

(7.19) 

(7.20) 

I 
Hence, 'the IA of the (k,J) type-B1 code has the following 

properties: 1. The elements along rows with 1st elements x 

and (k+1)-x add-up to k+1. 2. The elements along rows with 

1st element ip [i=1,2, ••• ,(k+1)/p-1] are all multiples of p, 

while no multiple of p appears elsewhere. 3. The elements 

along any two rows, with row-numbers that differ by a multi

ple of p and which are not multiples of p, are distinct. 

The above results may be used to delete rows from the IA 

of the (k,p-1)* type-B1 code. According to Theorem 7.10, the 

integers in the set {1,2, ••• ,k} appear exactly p-1 times 

each. By Theorem 7.14 the IA is partitioned into two sets of 

rows, according to the 1st element, x, of each row: 

Rl ~ {x /x=1,2, ••• ,k & pfx} 

R2 ~ {ip, i=1,2, ••• ,(k+l)/p-1} 

(7.21a) 

(7.2lb) 

Because Rl & R2 are disjoint and their union is {1,2, •• 

• ,k}, IRll + IR21 = k (see Biggs [36], p. 44). Then, IRll = 

* Tbe (k,p-1) type-B1 code bes the widest poosib1e IA. 
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(p-1)(k+1)/p and IR21 = (k+1)/p-1. IAI denotes the number of 

elements in set A. 

Set R1 contains the 1st-column elements that are not mul

tiples of p, while set R2 contains the multiples of p, only, 

Also, by Theorem 7.14, rows with 1st elements 1,p+1,2p+l, •. 

• ,k+2-p contain a distinct set of integers; the same applies 

to rows with first elements 2,p+2,2p+2, .. ,k+3-p, etc, p-1, 

2p-1,3p-1, ••• ,k, Each subset of rows contains (k+1)/p rows, 

while each row contains p-1 elements, hence each subset of 

rows contains (p-1) (k+l )/p distinct elements. It would be 

ideal if this number equals the number of non-multiples of'p 

in the range [1,k], i.e. the elements in set R1. In such a 

case, if J of these subsets were to be chosen, then each of 

the elements of Rl is chosen exactly J times and the code 

construction problem is reduced to the selection of rows 

whose 1st element is a multiple of p, so that each of the 

multiples of p appear also exactly J times (or, failing 

that, as close to, and not less than, J times), If this suc

ceeds, then a self-orthogonal code has been constructed with 

J syndromes checking on each error bit. 

According to the above discussion, and for the general 

(k,J') type-Bl code (1<J'<p), the subset of Rl containing 

rows with 1st elements b,p+b,2p+b, ••• ,k+1+b-p, where 1~b<p, 

contains J'(k+1)/p distinct elements that are not multiples 

of p, while there are IR11 = (p-1)(k+1)/p distinct elements 

in the IA that are not multiples of p, Since, by Theorem 

7.10, 2~J' <p, if J '=p-1, then each of the above-mentioned 

subsets of rows contains each of the numbers 1,2, ••• ,k, that 

are not multiples of p, exactly once. 

Then, to construct a self-orthogonal code with J checks 

on each error bit, one would start with the initial array of 

the (k,p-1) type-B1 code and keep only rows with 1st-column 

elements b,p+b,2p+b, ••• ,k+1+b-p, for J values of b, between 

1 and p-1, This will result in exactly J copies of each ele

ment in the new IA, but no elements that are multiples of p 

are included, as yet. Hence, the following theorem: 

Theorem 7.15: Consider k & J integers, such that 1<J<p 

and k is even and positive, where p is the smallest prime 
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factor of k+l. Then, there exists an (n,k,p-2) type-B self

orthogonal code, with at least J syndromes checking on error 

bits e?1l /i=l,2, •• ,(k+l)/p-l and exactly J syndrome bits 

checking on the rest of the error bits. 

The elements of the first column of the initial array are 

selected as following: J values of b between 1 and p-1 are 

chosen, at random. For each one of them, b,b+p,b+2p, ••. ,k+l+ 

b-p are selected as elements of the first column, a total of 

J(k+l)/p elements. Furthermore, from the set of the multi

ples of p, [a total of (k+l)/p-1 elements], a minimum number 

is selected so that the corresponding rows contain at least 

J copies of each of the multiples of p. n equals the number 

of rows of the resulting initial array plus k. 

I 
The theorem below gives bounds on n, for the (n,k,p-2) 

type-B self-orthogonal codes, introduced above. 

Theorem 7.16: Let k be a positive even integer and J an 

integer in the closed range [2,p-l], where pis the smallest 

prime factor of k+l. Then the (n,k,p-2) type-B self-orthogo

nal code has n bounded by: 

Jk/(p-l)+k S n S (J+l)(k+l)/p-l+k (7.22) 

Proof: See Appendix 7.9 (§ A7.9.3., p. 460). 

I 
Let us recap. Consider the initial array for the (k,p-1) 

type-Bl code, where k is even and p is the smallest prime 

factor of k+l. This IA is used as a starting point. A number 

of rows are to be deleted so that a higher-rate code is ob

tained (remember that the number of rows equals n-k), with 

at least J syndromes checking on each error bit. The new 

code will be an (n,k,p-2) self-orthogonal one, but for a 

given value of J, n may be unecessarily high. This will hap

pen if some error bits are checked by more than J syndromes; 

the latter is equivalent with some of the integers in the 

set {1,2, ••• ,k} appearing in the IA more than J times. 

Hence, the ideal solution is to include enough rows so that 

each integer to appear J times. Such an ideal solution may 
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be non-existent, for k & J given, and in any case it may not 

be easy to obtain. Note also that the code, to be construct

ed, has m=p-2, clearly a breach of generalization (which 

would require 2~m+l~p-1). This is done because if m<p-2, it 

would not be possible to construct an IA containing each of 

the elements of Rl, exactly J times (only at least J times). 

The best that can be done, at this stage, is to consider 

a few special cases and propose a computer-aided search for 

the general case. The special cases will be related to the 

way the rows with the multiples of p are chosen. 

Certainty and optimality can be achieved if IR21 equals 

p-1, i.e. the number of IA columns. Under such a condition, 

each row will contain all the multiples of p, exactly once. 

From (7.2lb), (k+l)/p-l=p-1 -> k+l = p2 • Then, the new IA 

should include J of these rows. On top of these, there are 

J(k+l)/p rows containing the non-multiples of p (see Theorem 

7.15). Hence, the IA will have J+J(k+1)/p = J(k+1+p)/p rows, 

so n = k+J(k+l+p)/p = p 2-1+J(p+1) = (p+1)(p-1)+J(p+1) = 
(p+1)(J+p-1). Also, the the actual constraint-length is nA.::. 

n(m+1) = (p+1)(J+p-1)(p-1) = (p2-l)(J+p-1) and the code rate 

is R.::. k/n = (p-1)(p+1)/[(p+l)(J+p-1)] = (p-1)/(J+p-1). 

Hence, the following theorem: 

Theorem 7.17: For every odd prime p, and every integer 

J, such that 2~J~p-1, there exists an (n,p2-1,p-2) type-B 

self-orthogonal code, with exactly J syndromes checking on 

each error bit and block length n = (p+1)(J+p-1). The code 

rate is R = (p-1 )/(J+p-1) and the actual constraint-length 

is nA = (p2-1) (J+p-1). Such a code will also be called the 

(p,J) type-BZ code. 

The elements of the first column of the IA are selected 

as following: J values of b between 1 and p-1 are chosen, at 

random. For each one of them, b,b+p,b+2p, ••• ,k+1+b-p are 

selected as elements of the first column, a total of 

J(k+1)/p elements. Furthermore, J multiples of pare select

ed, also at random, to serve as the remaining 1st-column 

elements. 

I 
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Another useful case is the one where the number of multi

ples of p is greater than the width of the array but not 

greater than twice that width. In such a case, two rows are 

enough if they contain a distinct set of integers. 

Theorem 7.18: For every odd prime p, and every prime q, 

such that p<q<2p (if such a q exists) and every integer J, 

such that 2;:!;J;:!;(q-1)/2, there exists an (n,pq-1,p-2) type-B 

self- orthogonal code, with at least J syndromes checking on 

each error bit and block length n = (q+2)J+pq-1. Such a code 

will be called the (p,q,J} type-B3 code. 

The elements of the first column of the initial array are 

selected as following: J values of b between 1 and p-1 are 

chosen, at random. For each one of them, b,b+p,b+2p, ••• ,pq+ 

b-p are selected as elements of the first column, a total of 

Jq elements. Furthermore, elements ip & pq-ip /i=1,2, ••• ,J 

are selected to generate the multiples of p. 

Proof: See Appendix 7.9 (§ A7.9.4., p. 461). 

I 
Example 7.5: Let p=7. Then q (if it exists) should be a 

prime such that 7<q<14. There are two choices, q=11 or q=l3. 

Let q=11. Then, k=pq-1=76, m=p-2=5 and 2;:!;J;:!;(ll-1)/2=5. Let 

J=4. Then, n=(q+2)J+pq-1=13x4+76=128, ~k/n=76/128=19/32 and 

nA 0::. n(m+1) = 128 x 6 = 768. 

I 

'1.4."2. Tvpe-8 :Self-Ort.tlogonal Codes wit.b p-2<m<:ts-1 

As mentioned earlier, the relation between m and the di

visors of k+1 is an important factor influencing the con

struction of the initial array of a type-B self-orthogonal 

code. Let d 1 & d 2 be divisors of k+1 such that 

p;:!;d1;:!;m+1<d2<k+1, where p is the smallest prime factor of 

k+1. For example, if k+1 = 52 x 7 = 175, then p=5 and the 

divisors of k+1 (which are <k+1 & ~p) are 5, 7, 25 & 35. If 

d 1=7, then d 2=25 and m+1 may be between 7 and 24. 

It has been shown that the problem of constructing a 

self-orthogonal code has been reduced to the one of select-
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ing a subset of { 1, 2, ••• , k} to serve as the 1st column of 

the IA. This subset must be such that: 1. m is S p-2 (or, 

the same, Theorem 7.3 is satisfied). 2. The code is self

orhogonal (or, the same, the corollary of Theorem 7.5 is 

satisfied). 3. J is ~2 (or, the same, the IA contains at 

least 2 copies from each integer in the set {1,2, ••• ,k}). 

The theorem below deals with the first two specifica

tions: 

Theorem 7.19: Consider an (n,k~m) type-B code* and its 

initial array with first-column elements x, where lSxSk. Let 

d 1 & d 2 be two consecutive divisors of k+l, such that 

pSd 1Sm+l<d2<k+l, where p is the smallest prime factor of 

k+l. Then if a row is not to contain a zero, its first ele

ment, x, must not be a multiple of any divisor of k+l great

er than ( k+l) /d2 • Furthermore, J
1

, the number of syndromes 

checking on error bit e~1 > /lSiSk, equals the number of pairs 

(x,z) which satisfy the congruence xz = i (mod k+l). z is 

restricted to be in the range [l,m+l] while x must not be a 

multiple of any divisor of k+l greater than (k+l )/d2 and 

must be in the range [l,k]. 

Proof: See Appendix 7.9 (§ A7.9.5., p. 463). 

I 
Consider now the congruence xz = i (mod k+l). This will 

be solved for x, for each value of z=1,2, ... ,d2-1, and the 

result will be tested to determine if it is a mult1ple of a 

divisor of k+l, greater than (k+l)/d2 • The range of values 

of z will be partitioned by three subsets, This arises from 

the observation that either (z,k+l) = 1, or d ~ (z,k+l)>l 

and if the latter condition is valid, either dli, or d(i.'** 

According to Theorem A7.2.7, if (z,k+l) = 1, then congru

ence zx = i (mod k+l) has a unique (module k+l) solution 

given by x = iz•<~<+l)·l (mod k+l). The solution will not be 

acceptable if (x,k+l) > (k+l)/d2 • 

According to Theorem A7.2.5, if (z,k+l) ~ d > 1 and dli, 

then congruence zx = i (mod k+l) has exactly d solutions, 

given by t + j(k+l)/d /j=O,l,,,,,d-1; t is the solution of 

congruence (z/d)x = i/d (mod (k+l)/d). A solution, x, will 

* If it exists. 

~-~* ~;-~)- d~~o~~-j!!~i~e~~es~-~~~-d1~i~~~i! -a .-b:~ 



Section 7.4 Page 206 

not be acceptable if (x,k+1) > (k+1)/d2 • 

According to Theorem A7.2.5, if (z,k+1) ~ d > 1 and d(i, 
'**I then congruence zx = i (mod k+1) has no solutions. ' 

The following theorem is based on the above idea. 

Theorem 7.20: Consider an (n,k,m) type-B code* and let 

d 1 & d 2 be two consecutive divisors of k+1, such that 

p:Sd1:Sm+1<d2<k+1, where p is the smallest prime factor of 

k+1. Let an initial array (IA) element i (ie[1,k]) and let 

the greatest common divisor (gcd) between i & k+1 be e 

[(i,k+1) ~ e]. Then IA column z (ze[1,m+1]) contains up to d 

copies of element i, if i is divided by d, and non~ other

wise; d is the gcd between z & k+1 [d ~ (z,k+1)]. 

Specifically, a column z which is relatively prime to k+1 

[(z,k+1) ~ d = 1], contains exactly one copy from each ele

ment i (where ie[1,k]) which is such that e ~ (i,k+1) :S 

(k+1)/d2 and no elements i for which (i,k+l) ~ e > (k+l)/d2 • 

A column z not relatively prime to k+1 [(z,k+1) ~ d > 1], 

contains only elements i that are both multiples of d and 

such that e/d :S (k+1)/d2 • There may be up to d copies of 

each multiple of d, along column z, depending on the number 

of js (O:Sj:Sd-1) which satisfy inequality (7.23a). 

gcd(Q+j(k+1)/d,k+1} :S (k+1)~d2 (7.23a) 

where, Q = (i/d){z/d)1 1<k+llfdl·l (mod (k+1)/d) (7.23b) 

Proof: See Appendix 7.9 (§ A7.9.6., p. 464). 

I 
The last theorem is a contribution towards the determina

tion of J (i.e. the minimum of J 1 /i=1,2, ••• ,k, where J 1 is 

the number of syndromes checking on the ith error bit). It 

is possible to obtain an expression for J, for at least some 

partial cases (like, for example, k+1=pq, or k+1=pqr, or 

k+1=p•, etc, where p, q & r are primes). Such an exercise 

though, is judged to be not worth exploring. This is so be

cause most of the type-B codes with p-2<m<k-1, are not 

self-orthogonal. The determination of which are and which 

are not self-orthogonal codes requires a (relatively simple) 

* If it ezists. 

:!_~(&~b) denote8:_thE! greatest cO-n divi~_or of_a~-b~l 
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computer-aided investigation, which can easily determine J. 

For example, a simple Basic programme required about a 

minute of processing time in an Amstrad CPC6128 to conclude 

that the (344,174,5) type-B code 

one. Similarly, it was 

(n2 ,174,33) and (n3 ,274,9), 

found 

is a J=5 self-orthogonal 

that the (n
1
,174,23), 

are not self-orthogonal codes. 

7.5 (rt,Js.k-1l TYfE"-8 SiLE-ORTHQGQNAL CQDI:S 

The aim of this section is to investigate under what con

ditions an (n,k,k-1) type-B code is a self-orthogonal- o11e~, 

The intention is to modify, for the (simpler) case of m+1=k, 

the results presented in Section 7.2. 

The next theorem is an application of Lemma 7.2, for the 

case where m = k-1. 

Theorem 7.21: Consider an (n,k,m) type-B code and its 

initial array (IA), with elements a , where x=1,2, ... ,n-k z,z 
and z=1,2, ••• ,m+1, and with k =even. 

A necessary and sufficient condition for the IA to have 

m+1 = k columns [or, the same, for an (n,k,k-1) type-B code 

to exist], is: 

* { az, 1 ,k+1} = 1 for all x=1,2, ••• ,n-k (7.24) 

Furthermore, 

the elements of 

the (n,k,k-1) code is self-orthogonal iff 

the first column of the IA are incongruent 

to each other modulo any non-trivial divisor of k+1: 

For all x,y e [1,n-k] /x~y, 

a ji! a (mod d) x,l y,l for all dl(k+1) /1<dSk+l (7.25) 

Proof: See Appendix 7.10 (§ A7.10.1., P• 466). 

I 
The theorem above is very useful in generating results 

and, in particular, in generating methods for the systematic 

construction of self-orthogonal type-B codes. It is valid 

though only for even values of k. The next theorem d·eals 

with all odd-k cases • 

. ~ - -- - -- - - -* (a,b) denotes_the_greatest common divisor ~f-a &: b.j 
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Theorem 7.22: For every odd integer k /k>1, there ex-

ists a (k+2,k,k-1) type-B self-orthogonal code with two syn

dromes checking on each error bit (J=2). Such a code will 

also be called the k type-B4 code (k =odd & >1). 

The following hold true for a k type-B4 code: 

i) There are exactly ~(k+1) distinct initial arrays 

(IAs) corresponding to the above code. 

ii) The two elements of the first column of the IAs 

are x & k+1-x, where x is any positive integer re

latively prime to, and not exceeding, k+1. 

iii) 

iv) 

Proof: 

If z ~ (k+1)/2, a 1 = a 2 = z. ,z .z 

For k = odd, there are no other self-orthogonal 

type-B codes, apart from the type-B4 ones. 

See Appendix 7.10 (§ A7.10.2,, p. 468). 

I 
Theorem 7.22 proved the existence of a class of single

error correcting (J=2), high-rate [R = k/(k+2)] self-orthog

onal codes with nA = k(k+2), for every odd integer k > 1. 

The next theorem deals with even values of k. 

Theorem 7.23: For every even positive integer k and 

every integer n in the range [k+1,k+p-1], where pis the 

smallest prime factor of k+1, there exists an (n,k,k-1) 

type-B self-orthogonal code with J = n-k syndromes checking 

on each error bit. Such a code will also be called the (n,k) 

type-B5 code. The (n,k) type-B5 code is the only (n,k,k-1) 

type-B code that is _self-orthogonal. Furthermore, the set of 

first-column elements {ax,l /x=1, 2, ••• , n-k} is any subset of 

the set B(p), defined for any (p,k+1) = 1, by: 

B(p) ~ {bj /j=1,2, ... ,p-1, bj = pj (mod k+1), 1~bj~k} (7.26) 

Proof: See Appendix 7.10 (§ A7.10.3., p. 476). 

I 
Note that Theorem 7.23 proves that, if k+1 = odd and 

ne[k+1,k+p-1] (p is the smallest prime factor of k+1), the 

(n,k) type-B5 code is the only (n,k,k-1) type-B self-orthog

onal code. Although the theorem provides ways for the con

struction of the IA, it does not specify if the proposal 
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generates all the appropriate !As, It may be proved that p 

in (7.26) may be replaced by pj, i.e. a separate value of p 

for each bj I j=1, 2,,,, ,p-1. Of course pj will be restricted 

to be relatively prime to k+1 and possibly it will be re

stricted otherwise, as well. The author believes, though, 

that this generalization will not generate more valid !As 

because of duplications. Of course this is something to be 

proved but, because of the insignificance of the potential 

results, the effort on type-B codes will terminate with the 

following example, 

Example 7.6: 
7.23 there exist 

Let k+1 = 5 X 7 = 35. According to Theorem 

(n,34) self-orthogonal (SO) codes with n e 

[35,38] & J = n-k (corresponding to 1SJS4), Let J=4, hence n 

= k+4 = 38. Then, R = 34/38 = 17/19. 

p may assume any value, provided that (p,35) = 1. From 

(7.26): B(1) = {1,2,3,4}, B(2) = {2,4,6,8}, B(16) = {16,32, 

13,29}, etc. The elements of the Bs are supposed to be in

congruent modulo any non-trivial divisor, d, of 35. Reduced 

(mod 5), the elements of B(16) are 1,2,3,4, while those of 

B(2) are 2,4,1,3. Reduced (mod 7) the elements of B(16), or 

B(2) are 2,4,6,1. Therefore, B(1), or B(2), or B(16), or 

etc, can indeed provide the 1st column of the IA. 

I 

1. 6 ' IWiHl CQQiS: CY<lLICALLY-DECOOABL!i TYP!i-B CQt)ES 

A third (and final) 'arbitrary' restriction will be im

posed on the codes. The previous 'arbitrary' restrictions 

were the one imposed on systematic convolutional codes by 

Definition 7.1 (type-A codes) and the one imposed on type-A 

codes by Definition 7.2 (type-B codes). 

Threshold decodable codes are especially suitable for 

hardware implementation of their encoder & decoder. A linear 

encoder is made of shift-register ( SR) stages and X-OR 

gates. The corresponding decoder (see Fig. 5.1) is made of a 

demultiplexer, a replica of the encoder, X-OR gates, majori

ty gates (MGs) and the syndrome register (SYRE) (Fig, 7.1). 
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The MGs are the most expensive part of the decoder, hence 

it is reasonable for one to try and minimize their number. 

Hence, a reduced number of MGs is required, hopefully one, 

perhaps more, but definitely less than k. This is expected 

to be achieved by sharing the MGs and exploiting some 

property of the code. For example, after the decoding of 

e~11 , an appropriate shift of the contents of the SYRE could 

bring the syndromes, checking on another bit, at the input 

of the gates used by e~1 l, and so on. 

s (1) (1) 

h+• 8 h+a·1 

sU> (2) 
h+• 8 h+a-l 

s(3l (3) 
h+• 9 h+a-1 

• • • • • • • • 
s(x) (X) 

h+• sh+a-1 

• • • • . . . . 
s (n-k) 

h+a 
s(n-t) 

h+a-1 

Syndrome Register ( SYRE) 

(1) 
8 h+a·2 

(2) 8 h+a·2 

(3) 
8 h+a-2 

• • • • 
(X) 

5 h+a-2 

• • • • 
s(n-k) 

h+a-2 

sUI 
• • • • •• h+a-z 

s(2) 
• • • • •• h+a-z 

s(3l 
• • • • •• h+a·z 

• • • 

• • • 

• • • 

... 

• • • • 

~ +--==+-• • • • 

• • • 

••• 

••• 

• •• 

sUI 
h 

s(2l 
h 

s(3l 
h 

. . . . 

m • • • • I s~n-k) I 
Figure 7. 1: The contents of the SYRE at the time-unit of the 

estimation of eh. 

The type of shift envisaged is a vertical or horizontal 

one, by one position. This assumes that the extra hardware 

required to shift the contents of the SYRE, either vertical

ly or horizontally or both, will not exceed the savings ob

tained by the reduction of the number of the MGa. 

Definition 7.4: A code is cyclically decodable if there 

exist at least two error bits, e~al &. e~11 l /1!5a.,l3!5k &. a.Jil3, 

such that the syndromes checking on e~•> can be brought into 

the positions (co-ordinates) of the syndromes checking on 

e~4 >, by a one-step uniform cyclic-shift of the syndrome

register ( SYRE). A one-step uniform shift is the one where 

all the contents of the SYRE are shifted simultaneously by 

one position either to the right, or to the left, or up-
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wards, or downwards. A shift is cyclic if the contents of 

the last stage are fed back into the first stage, and vice

versa, according to the direction of the shift. 

I 

7.6.1. Cyeliyallv-Qee9dable so Iype-8 Qodes 

The first theorem excludes the possibility of a horizon

tally-shifted SYRE: 

Theorem 7.24: There are no horizontal-shift cyclically 

decodable type-B self-orthogonal codes. 

Proof: See Appendix 7.11 (§ A7.11.1., p. 478). 

I 
Consider now the necessary conditions for the existence 

of vertical-shift SO type-B codes. In Appendix 7. 11 ( § 

A7.11.2., p. 479), it was proved that these conditions are: 

z( 1 )ax(l),l 5 z( 2 )ax(Z),l = • • • = z(J )ax(J),l (mod k+l) 

z(l)ax(l).tl,l 5 z(2)ax(Z).tl,l :; .. : z(J)ax(J).tl,l (mod k+l) 

(7.27a) 

(7.27b) 

h (><(j)} / ·-1 2 J th d h k" (a) w ere sh+z(J)-l J- , , •• , are e syn romes c ec 1ng on eh . 

( 7. 27) are 2J-2 simultaneous congruences in J unknowns. A 

solution (if it exists) depends on the relation among the 

ax(j), 1s, z( j )s and k+l, and has to satisfy the corollary of 

Theorem 7.5, as well. 

Since results do not seem to be easily obtainable, from 

(7.27), a more strict specification will be introduced: 

Definition 7.5: An (n,k,m) type-B code will be said to 

be an (n,k,m) type-C code, if all its error bits are cycli

cally decodable*. 

I 
Before an attempt is made to quantify Definition 7.5, in 

terms of some relation among the elements of the 1st column 

of the IA, some properties of the SYRE will be proved. 

Theorem 7.25: The 

for the existence of an 

following are 

(n,k,m) type-C 

necessary conditions 

code: 

* Only vertical shift will be considered • see Theore. 7.24. 
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i) No row, or column, of the syndrome register con-

tains more than one syndrome checking on the same error bit. 

ii) The initial array is organized into k/(n-k) groups 

of columns, called cosets. By necessity, n-k must divide k. 

Each column of a coset is a cyclic shift of another column 

of that coset. The first column ( = the one with the small

est column number) of a coset is called the coset leader. 

The first coset is the one with the 1st column as coset 

leader. If coset i contains J 1 columns, then: 

1</(n-1<) 
~J1 = m+l (7.28a) 
1•1 

/i=1,2, ••• ,k/(n-k) (7.28b) 

iii) If a is the first element of the first column of 

the IA, there must exist a column ~ of the first coset, such 

that the elements of the first coset of the IA are congruent 

(mod k+l) to a,l3a,l32 a,.,, ,13n-k-la. Also: 

131 ~ 1 (mod k+l) /i=1,2, ••• ,n-k-1 (7.29a) 

(7.29b) 

Proof: See Appendix 7.11 (§ A7.11.3., p. 479). 

I 
The following lemma (proved in§ A7.11.4., p. 483), is an 

elaboration on the last statement of the last theorem. 

Lemma 7.3: Consider an (n,k,m) type-C code and let a 

denote the top element of the first column of its initial 

array (IA) and ~ (l<~~m+l) be one of the lst-coset columns. 

Then, the following are necessary conditions for the exist

ence of such a code:' * 1 

1. If s~( ~n-t-1, k+l): a= i[(k+l)/s] /i=1,2, •• ,s-1 (7.30a) 

2. If ~(a,k+l): ~n-1< 5 l+i[ (k+l )/r] /i=O,l, •• ,r-1 (7.30b) 

3. If (~.k+l)>l: n-k ~ (k+l)/(k+l,l3) - 1 (7.30c) 

4. If (~,k+l)=l: n-k ~ ~(k+l) (7.30d) 

5. If (a,k+l )=1: Ord.,.1 ( J3) = n-k /(~,k+l) = 1 (7.30e) 

! (a,~) denotes_ th!_~:.!atest~~~n-ci1v1sor_~f a &~b~-J 
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n-k I 4>(k+l) 

/j=1,2, ••• ,n-k 

7.6.2. 
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(7.30f) 

(7.30g) 

I 

In this paragraph the possibility of decoding cyclically 

a type-Bj self-orthogonal (SO) code will be discussed. 

Consider a type-Bl code. By Theorem 7.10, this is a 

(2k,k,J-1) code, hence its IA has only one coset. Its 

first-column elements are the integers 1, 2, ••• , k, Then, 

since by (7.30g) (i,k+l) = 1 /i=1,2, ••• ,k, k+l must be a 

prime, p. As a consequence (~,k+l)=(a,k+l)=l, hence ~ must 

have order n-k = k = p-1 (mod p). Since 4>(p) = p-1 (see The

orem A7.1.15), ~must be a primitive root (mod p} (whose 

existence is guaranteed by Theorem A7.3.3). Then, by Theorem 

7.25, the 1st-column elements are a,~a, .. ,,~I>-2a. Finally, 

since there is only one coset, all the other columns will be 

cyclic shifts of the first one, hence, (see Definition 7.5) 

the code can be decoded cyclically. 

Theorem 7. 26: For every prime p and any Je [ 2, p-11, 

there exists a (p-l,J) type-Bl, code* which is also a type-C 

code. The 1st column of its initial array is a,ga,g 2a, •• 

• ,gP-2a, where g is a primitive root (mod p} and ae[l,p-1]. 

No other type-Bl code, is also a type-C code. 

I 
The next theorem excludes all type-B2, B3 & B4 codes. 

Theorem 7.27: There is no type-B2, B3 or B4 code, which 

is also a type-C code. 

Proof: See Appendix 7.12 (§ A7.12.1., p. 484). 

I 

7.6.3. OXclix Qecodins of IY:pe-8+ Codes 

Consider the decoding of the k type-B4 code. By Theorem 

7.22, this is a J=2 (k+2,k,k-1) code. Hence its SYRE has 

* See Theor .. 7.10. 
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dimensions (n-k) x (m+1) = 2 X k (see Fig. 7.1). From The

orem 7.1, syndrome bits s~~I /~=1,2, •• ,k, check on error bits 

e~a!l,•ll /~=1 ,2, •. , ,k, respectively. Since a 2 ,., = al,lt+l·v /a=1, 

2, ... ,k, [by (A7.10.2)], it follows that syndrome bits s~~I 

/a=1,2, ... ,k check on error bits e~a[l,lt+l-v]} /a=1,2, ... ,k, 

respectively. 

The two syndrome bits, checking on a particular error 

bit, are located along the two rows of the SYRE. According 

to the above s(l) & , 1:-l s~~I check on the same error bit, if ~ = 

= k+1-a. Hence, 

s~~I & s~~~ check on e~a(I,•Jl /~=1, 2,,,, k, respectively (7.31) 

There are two basic ways to decode, the serial & the par

allel. Strictly speaking, parallel decoding requires k MGs, 

From (7.31), for parallel decoding, the ith (1SiSk) MG (used 

for the decoding of e~a(l, 1 ll) is connected to stages ( 1, i) & 

(2,k+1-i) of the SYRE (see Fig. 7,2), 

ID----0-··· ···~··· ···-EIHEJ 

e{a(l,i]} e{a(l,lttl-1]} 
0 0 

Figure 7. 2: Parallel decoding of the k type-B4 code, 

The idea behind type-C codes is to use fewer MGs, by per

forming non-parallel decoding, This can be achieved ~Y ex

ploiting some kind of cyclic structure in the IA. 

Consider the ith & (k+1-i)th MGsof Fig. 7.2. If the lat-

ter MG is dropped, after the decoding of e~a(l, 1 ll, 

shift (2,i) to (1,i) and (1,k+1-i) to (2,k+1-i) 

one may 

to decode 

e~a(l,lt+l·1 ll, For i=1, 2,,,,, ( k-1) /2, all error bits are decod

ed, except for e~a(l,(lt+ll/Z]}, This bit needs its own MG, which 
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will be used only once, before the vertical shift. Hence: 

Theorem 7.28: A k type-B4 code can be decoded using 

(k+1)/2 majority gates (MGs). MG i [1SiS(k-1)/2] is connect

ed to stages (1,i) & (2,k+1-i) of the syndrome register 

(SYRE). Error bits e~a[l,i)} /i=1,2, ... ,(k-1)/2 are decoded in 

parallel from MG i /i=1,2, ••• ,(k-1)/2, respectively. Error 

bits e~a[l,t+l-i)} /i=1,2, ... ,(k-1)/2 are decoded in parallel 

from MG i /i=1,2, ••• ,(k-1)/2, respectively, after a vertical 

cyclic shift of the SYRE. Error bit e~a(l,(t+l)/2 )} is decoded 

from MG (k+1)/2, with the first, or the second group. This 

gate is connected to the [(k+1)/2]th stage of each of the 

two shift registers of the SYRE. 

1:=5 <-iuediately 

Error bits e{a[l,<)} decoded: 
<-immediately 0 

<-after a downward cyclic shift 

Ei gure 7. 3: Vertically-cyclic decoding of the 9 type-B4 code. 

I 

Finally, the k type-B4 code can be decoded serially using 

only one MG, with inputs from stages (1,1) & (2,k). These 

stages decode e~a[l,l)} (see Fig. 7, 3), but if the 1st SR is 

shifted leftward and the 2nd rightward, both by one posi

tion, then the MG will decode e~•(l, 2)} (see Fig. 7. 3), etc, 

while at the ( k-1 )th shift the gate will decode e~a(l,t]J. 

Theorem 7.29: A k type-B4 code can be decoded serially 

using only one majority gate, which is connected to stages 

(1,1) & (2,k) of the syndrome register (SYRE). After the 
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decoding of the first bit, the top row of the SYRE is shift

ed cyclically leftward and the 2nd row cyclically rightward, 

both by one position, for the decoding of the 2nd bit. A 

complete cyclic shift decodes all bits. 

9 

9 

• e!a[l,i]} 
0 

Figure 7.4: Horizontally-cyclic decoding of the 9 type-B4 code. 

I 

Note that the decoder of Fig. 7.4 is cyclic, but was not 

predicted by the work, so far, on type-C codes. This is so, 

because only uniform shifts were considered*. The decoder of 

the last figure does not use uniform shifts, because the two 

rows are shifted at opposite directions. 

7.6.4. Type-cs Codes 

Let us consider now the possibility of cyclically 

decodable type-B5 codes. 

Theorem 7.30: For every odd integer k+1, there exists a 

(k+J,k,k-1) type-B self-orthogonal code [equivalently, a 

(k+J,k) type-B5 code], which is also a type-C code if, and 

only if, there exists an integer a e [1,k], such that a,aa, 

aa• , ••• , ai3J·l are incongruent to each other modulo any non

trivial divisor, d, of k+1 and relatively prime to k+1. Such 

a code, if it exists, will be called the (k,J) type-C5 code. 

No other type-B5 code can also be a type-C code. 

Proof: Assume that there exists ae[1,k] such that a,aa,aa• 
, ••• , aaJ·l are incongruent to each other modulo any non

trivial divisor, d, of k+1 and relatively prime to k+1. 

Then, by Theorem 7.21, there exists a (k+J,k,k-1) type-B 

self-orthogonal code [which, by Theorem 7.23, is the (k+J,k) 

* See Definition 7,4, 
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type-B5 code]. Furthermore, let the elements of the 1st col

umn of its IA be Cl, e1l3, e1l3 2 , ••• , Cl13J·1 , 

Let us examine now if this code is also a type-C code. 

Let two columns x & y that have a common element in rows z & 
w, respectively. By the IA generation method* and the 

first-column elements, ai, 1 = Cll3i (mod k+l): 

a =a -> z.z w,y xa 1 = ya 1 (mod k+l) 
z. "• 

-> 

XCli3z = YCll3w (mod k+ 1 ) -> (multiplying by 13): 

XClt:~•• 1 = yCll3w+1 (mod k+ 1 ) , XCll3z+Z • yCll3w+Z (mod k+ 1 ) , etc -> 

Hence if two columns have two equal elements then the one 

is a cyclic shift of the other, Since each row has k dis

tinct elements (see Theorem 7.6), then there are exactly J 

columns with one common element, hence a cyclic shift of 

each other. Since there are k columns and Jlk, then there 

are k/J such cosets. According to the discussion so far, on 

the relation between the SYRE and the IA, this code satis

fies Definition 7.5, i.e. it is cycl1cally decodable. 

Conversely, assume that for every odd integer k+l, there 

exists a (k+J,k,k-1) type-B code, which is also a type-C 

code. This will have an IA with J rows and k columns. By 

Theorem 7.25 the only type-B codes that can also be type-C 

codes must have Cl, Cll3, Cll32 , ••• , Cll3J"1 as the first-column ele

ments of the IA. Then, by Theorem 7.21, these J integers are 

relatively prime to k+l and incongruent to each other (mod 

k+l). 

QED 

It is necessary to elaborate on the above equivalent con

ditions and to obtain a solution, which will also verify the 

existence of the type-C5 codes. 

Since it is desirable to obtain ~ type-C5 codes, the 

equivalent conditions on J must also be deduced. The follow

ing number-theoretic function will assist in obtaining the 

range of J. The author is not aware of any reference on it, 

* See Definition 7.2 (p. 185). 
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in number theory, hence it can be claimed that it is a new 

and, possibly, widely useful function. 

Definition 7.6: Given any integer m, with prime factors 

p 1 ,p2 ,.,. oPr• the theta function is denoted by 6(m) and is 

defined to be: 

(7.32) 

I 
Theorem 7.31: For every odd integer k+1, and every in

teger J~2 such, and only such, that J I 6(k+1), there exists 

a (k,J) type-C5 code if, and only if, there exists ~e[1,k] 

/(~ 1 k+1)=1, such that Ordd(~) = J, for every non-trivial 

divisor d, of k+1. The first-column elements of the initial 

array are then a,a~,a~2 , ... ,a~J-1 , where ae[1,k] /(a,k+1)=1. 

It will be said that a & ~ generate* the (k,J) type-C5 code. 

Proof: See Appendix 7.12 (§ A7.12.2., p. 486). 

I 
Hence, the existence of this class of codes depends on 

the existence of~. Thankfully (!) there is at least one 

solution, for ~: 

Theorem 7.32: For every odd integer k+l and every inte

ger J~2, such that J 1 6(k+1), there exists ~. such that 

Ordd(~) = J for every non-trivial divisor d, of k+1. This ~ 

is given by: 

r 
~ E ~gf(i)/J [ ( k+ 1) /p~(i)] f(i) (mod k+1) (7.33a) 

i=1 

where: /i=1,2, ••. ,r (7.33b) 

/a(i)~1, i=1,2, ... ,r (7.33c) 

and, for i=1,2, ••• ,r: 

gi .::0 primitive root (mod pi): g~C1 ;! 1 (mod p:) (7.33d) 

Proof: See Appendix 7.12 (§ A7.12.3., p. 488). 

I 

* If there is such a a. 
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Hence, the last theorem guarantees the existence of 

type-C5 codes for any k=even and any J I 8(k+1), This is the 

class of codes discovered by McQuilton and named 'cyclic 1 

CSOCs. The following lemma elaborates on the above theorem, 

for the three most common cases. 

Lemma 7. 4: For every odd integer k+ 1, there exists a 

(k,J) type-C5 code generated by: 

i) 

ii) 

iii) 

If k+1 = p, then l3 5 g<P-1lfJ (mod p) 

& Jlp-1, where: g ~ prim.root (mod p). 

If k+1 = p•, then l3 5 g11J (mod pa) 

and J I p-1, where: gp-1 ji! 1 (mod p2 ), 

g ~ prim. root (mod p) & f ~ p•-1 (p-1). 

& 

where: g
1 
~primitive root (mod p

1
). 

(7.34a) 

(7.34b) 

(7.34c)-

I 
In Appendix 7,12 (§ A7.12.4., p. 491), there are some 

examples of type-C5 codes. In particular, the !As of the 

(22,11), the (24,4) & the (64,4) type-C5 codes are given, 

and the calculation of their l3 is illustrated. These codes 

are (33,22,21) (rate-2/3), (28,24,23) {rate-6/7) & 

(68,64,63) (rate-16/17) type-B self-orthogonal codes, re

spectively. Also, the (18,6) type-C5 code is considered (see 

Example A7.12.4., p. 493), together with the connections 

from the syndrome register to the three majority gates. The 

arrangement is such that the 18 bits are decoded in six 

steps, but in an 'arbitrary' order, as can be seen below: 

From MtU: :;<8) -Ul 1ua) i(Ul :;<m w(,\) 

• e• • • • e• 
From W2~ :;u~n . :;Ut2 :;un -n2 ilU :;tu • • ~ e• • • 
From MG3: w(U) w(8) :;un w(J) :;tJA~l w(4) e• e• • e~ • e~ 

It is 'natural' to require that the error bits are pro-

duced in 'order'. The 'order' should be such that the output 

serial bit-stream is ~ (1) ub , ~(2) 

ub ' • • • ' 
~(k) 
ub • Hence it would make 
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sense if, in the above example, MG1, MG2 & MG3 were to pro

duce e~11 ' e~2 l & e~3 l' respectively' at the first time-unit' 

e~4 >, e~5 ) & e~6 >, respectively, at the second time-unit, etc. 

This may be achieved if the message bits are suitably trans

posed, prior to entering the encoder, so that they appear in 

their 'natural' order at the output of the decoder. For the 

case of the above code, the transposition (or mapping) 

should be: 

8 --> 1 16 --> 2 13 --> 3 
7 --> 4 14 --> 5 9 --> 6 

18 --> 7 17 --> 8 15 --> 9 
11 --> 10 3 --> 11 6 --> 12 
12 --> 13 5 --> 14 10 --> 15 

1 --> 16 2 --> 17 4 --> 18 

Note that this corresponds to adopting the same mapping 

for the 1st, 2nd & 4th columns of the !A (the three coset 

leaders) & hence for the rest of the !A. It is necessary, 

therefore, to use a different array for encoding: 

Definition 7.7: Let k+1 be any odd integer, and J~2 any 

integer such that J I 6(k+1). Consider the initial array 

(IA) corresponding to the (k,J) type-C5 code and let columns 

c 1 =1, c 2 , ••• , ck/J be the coset leaders. Then, the encoding 

array (EA), corresponding to the given !A, is a J x k array 

of integers b(x,y) /1~b(x,y)~k, 1~x~J & Hy~k, defined by 

the following mapping: 

b(x,cz) ~ z+(x-l)k/J /x=1,2, •• ,J & z=1,2, •• ,k/J (7.35) 

The rest of the elements of the EA follow the above

defined mapping, so that the cyclic structure of the !A is 

passed into the EA. 

I 
Note that McQuilton [42] used a different mapping for the 

EA: b(x,cz) ~ x+(z-1)J. It seems though that this mapping 

results in a more unfavourable demand on the decoder. Since 

there is some kind of parallel decoding (in the case of Ex

ample A7.12.4, three bits are decoded at each time-unit), 

there must be a kind of parallel-to-serial conversion in

volved. One would like to keep the cost of the convertor 

d If MG1 t t -(1) -(2) -(6) t d b own. ou pus e
0 

, e 0 , ••• , e 0 , as sugges e y 
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McQuilton, then the output of MG2 must be delayed by six 

time-units, while the output of MG3, by 12 time-units. 

Hence, there is a need for a store of 6+12=18 bits. On the 

other hand, if mapping (7.35) is used, the store needed is 1 

for MG2 and 2 for MG3. * 
In general, a (k,J) type-C5 code uses k/J MGs, each of 

which decodes J bits. With McQuilton's mapping MG2 needs a 

delay of J, MG3 a delay of 2J, etc, hence the total delay is 

(1+2+•••+k/J-1)J stages. With mapping (7.35) the correspond

ing figure is (1+2+•••+k/J-1) stages, i.e. J times less. 

Pf!QPERIIE$ OF JljE INITIAL ARRAY 

The following theorems present some of the properties of 

the IA of type-C5 codes: 

Theorem 7.33: For any (k,J) type-C5 code, generated by 

a & ~ [given by (7.33a)], with J = even: 

(7.36) 

Proof: See Appendix 7.14 (§ A7.14.1., p. 497). 

I 
Theorem 7.34: 

a=1 & ~ [given by 

For any (k,J) type-C5 code, generated by 

(7.33a)], if a /x=1,2, ••• ,J & z=1,2, ... x,z 
,k are the elements of its initial array: 

a = z J,z /z=1,2, ... ,k (7.37a) 

For J = even: aJ/Z,z = k+1-z /z=1,2, ... ,k (7.37b) 

ax,z + ax+J/2 ,z = k+ 1 /x=l,2, .. ,J/2 & z=1,2, .. ,k (7.37c) 

J 

"t"a = (k+1)J/2 
~ x,z /z=1,2, ... ,k (7.37d) 
x•l 

Proof: See Appendix 7.14 (§ A7.14.2,, p. 498). 

I 
Theorem 7.35: For any (k,J) type-C5 code, generated by 

a=1 & ~ [given by (7.33a)], if a /x=1,2, ••• ,J & z=1,2, ••• x,z 

* It all depends on the decoder confiauration. 
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,k are the elements of its initial array: 

J 

~ax,z = 0 (mod k+l) /z=1,2, ... ,k (7.38a) 
:r:=l 

a + a = k+l x,z x,t+l-z /x=1,2, ••• ,J & z=1,2, ••• ,k (7.38b) 

J J 

~az,z + ~ax,lt+l-z = J ( k+l) /z=1,2, ••• ,k (7.38c} 
:r:•l x=l 

Proof: See Appendix 7.14 (§ A7.14.3., p. 499). 

I 
The examples, below, will help clarify the above results: 

Example 7.7: Consider the (22,11) type-C5 code of 

Example A7.12.1 {p. 491). For this code, k+1=23 & J=ll=odd. 

Note that a 11 ,z= z /z=1,2, ... ,22 [as predicted by (7.37a)], 

Consider C(z), the sum of the elements of column z: 

C(l) = 2+4+8+16+9+18+13+3+6+12+1 = 92 = 4 X 23 

C(5} = 10+20+17+11+22+21+19+15+7+14+5 = 161 = 7 X 23 

All the other columns will sum to one of the above two 

results, because there are two cosets, and 1 & 5 are their 

coset leaders. For instance, C(3)+C(23-3} = C(3)+C(20) = 

(4+7) X 23 = 11 X 23 = J X (k+l) [as predicted by (7.38c)], 

I 
Example 7.8: Consider the (24,4) type-C5 code of Exam-

ple A7.12.2 (p, 492). For this code, k+1=25 & J=4. Note that 

a 1 +a3 = a 2 +a. = 25 = k+l /z=1,2, ... ,24 [(7.37c)), It is ,z ,z ,z ~.z 

also easy to verify all results of Theorems 7.33 & 7.34. For 

instance, C(l) = C(2) =•••= C(24) =50= 25 x 2 = (k+l}J/2. 

I 
The next theorem relates the elements of the IA with 

quadratic residues*, for J=odd codes. 

Theorem 7.36: Consider any (k,J) type-C5 code, with 

J=odd, generated by a=l & ~ [given by (7.33a)), For every 

prime factor, p
1

, of k+l, a column of the initial array con

tains either multiples of p 1 , or quadratic residues, or 

* See Appendix 7.13 (p. 495) 1 for an introduction to quadratic reaidues. 
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quadratic nonresidues (mod pi). The first column contains 

always J distinct quadratic residues, module any pi. 

Proof: See Appendix 7.14 (§ A7.14.4., p. 500). 

I 
In Example A7.14.1 (§ A7.14.4., p. 502), the (340,5) type

C5 code illustrates the validity of the above results. 

'EfFECTIVE eotiSTBAINT-WGTW' 

The results of the previous section will be used now for 

the determination of the n
1 

of the type-C5 codes. 

Theorem 7.37: If a /x=1 1 2 1 ... ,J & z=1,2, ... ,k denote x,z 
the elements of the initial array (IA) of the (k,J) type-C5 

code 1 then the effective constraint-length, n1 ( i), corre

sponding to the feedback decoding of e~1 l, is given by: 

J 

n1 (i) = 1 + ~aj,z= 1 + (k+l)q(z) 
j=l 

(7.39) 

where IA element a 1 is mapped into encoding array (EA) •• 
element i, via mapping (7.35) (p. 220) and q(z) = integer, 

defined by (7.39). 

Proof: According to Theorem 7.9, if 

••• (A) 

then, (B) 

Note that a refers to the IA, while the codes are encoded 

using the EA. Let then a---> i, via mapping (7.35), In (B), 

zj /j=l 1 2 1 ... ,J are the column numbers of the columns that 

contain a. Then, all these columns belong to the same coset 

(see Theorem 7.25). Furthermore, from (7,37a) 1 a[J,zj] = zj, 

j=1,2, ••• ,J, hence the column numbers are also elements of 

the columns and hence of the coset. Since they are distinct, 

they are also the elements of the coset. Then, the sum of 

the column numbers equals the sum of the elements of any of 

these columns. Let z ~ z1 and use the fact that a ---> i, in 
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(B): n1 ( i) = 1 + a
1 

+ a
2 

+ • • • + aJ • ,z ,z .z 
Finally, from (7.38a), the sum of the elements of a col-

umn is a multiple [say, q(z)] of k+1. 

QED 

Theorem 7.38: For any (k,J) type-C5 code, for J = even: 

For all i=1,2, ••• ,k: n ( i) = n = 1 + ( k+ 1 ) J I 2 E I (7.40) 

Proof: The result follows from Theorem 7.37 & eqn (7.37d). 

I 
The above result was deduced, independently by the au

thor, 6 months before its publication by McQuilton ([47])*. 

A closed-form expression for n
1

, for J = odd, is impossi

ble, for at least some cases, except for J = 3. The follow

ing theorem introduces upper & lower bounds. 

Theorem 7.39: For any (k,J) type-C5 code, with J = odd: 

n1 = 1 + (k+1)M~X{q(z)} = 1 + (k+1)[J - M~N{q(z)}] 

1 + (k+1 )(J+1 )/2 ~ n
1 
~ 1 + (k+l) (J-1) 

In particular, for J = 3: n = 1 + 2(k+1) E 

Proof: See Appendix 7.15 (§ A7.15.1., p. 504). 

(7.41) 

(7.42) 

(7.43) 

I 
Note that these bounds are as tight as such a bound can 

be without taking into account the particular properties of 

k & J. To illustrate this, consider the following examples: 

Example 7.9: Let k+1 = 67 (= prime). Since 9(67) = 66, 

J = 2,3,6,11,22,33,66. Let J = 11. From TABLE A7.3.1, g=2 is 

a primitive root (mod 67), and from Lemma 7.4, ~ 5 266/ 11 5 26 

5 64 (mod 67). The q(z)s for the coset leaders (there are 

66/11 = 6 cosets) are: q(1) = q(6) = q(7) = 5 and q(2) = 
q ( 3 ) = q ( 4 ) = 6 • Then MAX { q ( z ) } = 6 , and from ( 7 • 41 ) : n

1 
= 1 

+ 67 x 6 = 403. The bounds are 1 + 67 x 6 ~ n1 ~ 1 + 67 x 10 

-> 403 S n1 ~ 671. Hence, it meets the lower bound. 

I 

* At tbat tille the result did not .,. .. to be worthy of a publication. 
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Example 7.10: Let k+l = 71 (=prime). Since 9(71) = 70, 

J = 2,5,7,10,14,35,70. Let J = 5. From TABLE A7.3.1, g=7 is 

a primitive root (mod 71), and from Lemma 7. 4, ]:1 5 770/ 5 5 714 

= 54 (mod 71). The q ( z )s for the coset leaders (there are 

70/5 = 14 cosets) are: q(3) = 1, q(l) = q(2) = q(6) = q(7) = 

q(9) = q(18) = 2, q(ll) = q(13) = q(14) = q(21) = q(22) = 

q(27) = 3 and q(42) = 4. Then MAX{q(z)} = 4, & from (7.41): 

n1 = 1 + 71 X 4 = 2 8 5, Also, 1 + 71 X 3 S n 1 S 1 + 71 X 4 

---> 214 S n
1 

S 285. Hence, it meets the upper bound. 

I 
Note that, since q(z) + q(k+l-z) = J /z=1,2, •.• ,k [see 

(A7.15.1)], if for some column w, q(w)=1 then q(k+1-w)=J-1, 

which is the upper bound of q(z) [see (A7.15.2)], hence n
1 

= 

1 + (k+l)(J-1). This was the case with the last example, 

where q ( 3 ) = 1. 

The following theorem is the last result that could be 

obtained on n
1

, for J = odd. 

Theorem 7.40: Consider the (p-1,(p-1)/2) type-C5 code, 

where pis any odd prime. If p 5 3 (mod 4), the code effec

tive constraint-length, n
1

, equals one plus the sum of the 

quadratic nonresidues (mod p)*. A closed-form expression for 

n
1 

· is equivalent to solving one of number theory's unsolved 

problems. 

Proof: See Appendix 7.15 (§ A7.15.2., p. 505). 

I 
Of course, research may reveal more results, but it seems 

that the above theorem is a deterrent. This is so because 

(by Theorem 7,36) the sum of the elements of each column of 

the IA, is the sum of some quadratic residues, or nonresi

dues, or some multiples of a prime factor of k+l. Thus, the 

problem is made even more difficult, than above, for R>2/3. 

* Por (p-1)/Z • even, Dz • 1+p(p-1)/4 - see Theor .. 7.38, 
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1, 9 -EXISTENCE THEOREMS FOR •cyCLIC• CS0C. 

One important characteristic of the above class of codes 

is the infinite number of its membership. It would be use

ful, therefore, if a method is given for the construction of 

a code with one given parameter (J, R, n, k). The next theo

rem will facilitate the choice of the other code parameters. 

Theorem 7.41: For any (k,J) type-C5 

R = 
code, if c ~ k/J: 

* 
** 

Proof: 

c/(c+1) 

n = (c+1)J 

nA = c(c+1 )J~ 

l+(cJ+l) fJ/21 ~ n
1 

~ 1+(cJ+1) (J-1) 

1/(1-R) = c+1 ~ nA/nE ~ 2(c+1) = 2/(1-R) 

For J = even, (J/2)/n
1 

~ 1/(cJ) = 1/k 

See Appendix 7.16 (p. 508). 

(7.44a) 

(7.44b) 

(7.44c) 

(7.44d) 

(7.44e) 

(7.44f) 

I 
Consider any odd integer k+ 1, and let p 1 <p2 < • • • <pr be its 

prime factors. According to Theorem 7.31, J must divide all 

pi-1 /i=1, 2, ••• , r. Hence, there must exist integers qi such 

that pi= Jqi + 1 /i=1,2, ••• ,r. So, if J is given, the prime 

factors of k+1 must be of the form Jqi+1 /qi=1,2,3, ••• 

Since pi= Jqi+1 = odd, then Jqi = even, and if J = odd, then 

by necessity qi = even. There are no restrictions on the 

exponent of each pi (in the prime factorization of k+1). 

Finally, if J = 2, because 2IO(k+1), for all k+1=odd, there 

is always a (k,2) type-C5 code. Hence: 

Theorem 7.42: For every k+1 = odd, there exists a (k,2) 

type-C5 code. Its parameters are R = c/ ( c+ 1) , nA = 4c ( c+ 1) & 

n
1 

= 2(c+1), where c ~ k/2. Given J>2, a (k,J) type-C5 code 

is obtained by finding primes of the form p = qJ+1 /q=inte

ger & q=even if J=odd. Then any of the above primes can be a 

prime factor of k+1, each raised to any integer power. 

I 
Example 7.11: Let J = 6. Then p=6q+1 /q=integer. From 

the set {7,13,19,25,31,37,43, ••• }, all but 25 are primes. 

Let us select 7 & 19. Then k+1 = 7a X 19b, for any positive 

* If J = even, the effective constraint-length always •eets the lower bound. ** If J • even, the ratio always •eets the upper bound - bounds are approximate. 
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integers a & b. Obviously, J = 6 I 6(k+1) = (6,18) = 6. 

Let J = 7. Then p=7q+1 /q=even. From {15 1 29,43 1 57,71, .. } 1 

all but 15 & 57 are primes. If 29 & 71 are selected, k+1 = 

29•x 71b, for any positive integers a & b. Note that J = 7 

1 e(k+1l = (28,7oJ = 14. 

I 
The case of given k is covered by Theorem 7.31 (p. 218), 

which introduced this class of codes. The case of given rate 

is equivalent to the case of given k/J [see (7.44a)], but a 

useful construction-method is very difficult (if not impos

sible) to obtain. The same applies to the case of given 

code-length, n. These last two cases will be covered in the 

next chapter, by computer-search programmes. 

CQNCLUSIQNS 

McQuilton [42] discovered a class of (n,k,k-1) systematic 

self-orthogonal (SO) codes which can be decoded cyclically 

using k/(n-k) majority gates. His work, which concentrated 

on the proof of their existence, was studied and it was con

cluded that the class of codes he discovered is based on 

three 'ideas': Each syndrome bit checks on exactly one error 

bit from each block; the error-bit numbers of each block are 

related via a congruence (mod k+1); and the codes are cycli

cally decodable. 

In this chapter, the widest possible approach was fol

lowed. The aim was to illustrate the process of systemati

cally designing SO codes, by obtaining the necessary & suf

ficient conditions so that a general (n,k,m) systematic con

volutional code is SO. Since a general solution is not fea

sible, a minimum number of restrictions were to be imposed, 

in stages, and only when confronted with a seemingly unsolv

able problem. 

The effort started with an 'alternative' representation 

of the codes, via the so-called initial array (IA). This is 

an (n-k) X (m+1) array of cells with integers in the range 

[1 1 k], which represent the error bits checked by each syn-
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drome bit. Cell (j,i) contains the numbers of the error 

bits, from checked by S
(j) 
h • Then, the problem is 

reduced to determining these integers, so that the code is 

SO. Because the IA was very complicated, the 'population' of 

each cell was restricted to one. These codes (with each syn

drome bit checking exactly one error bit from each block) 

were named type-A codes and the necessary & sufficient con

ditions for self-orthogonality were deduced (Theorem 7.2). 

Other possible restrictions on the cell population, are up 

to one element/cell, two elements/cell, etc. 

A restriction placed on the type-A codes, generates the 

type-B codes. Specifically, if the jith element of the IA is 

aJ,i' then, aJ,i = iaJ,l (mod k+1). In this way, the problem is 

reduced to that of obtaining the 1st column of the IA. Theo

rem 7.3 proved that for an (n,k,m) type-B code, it is neces-

* sary that m~(k+1)/(k+1,aJ,l)-2, for j=1,2, ••• ,n-k. Finally, 

the corollary of Theorem 7.5 gave the necessary and suffi

cient conditions, on the 1st column of the IA, so that the 

code is SO. Thereafter, some new classes of SO codes were 

discovered. 

Type-Bl codes are (2k,k,J-1) type-B SO codes with exactly 

J syndromes checking on each error bit. These codes exist 

for any even k and any Je[2,p-1], where p is the smallest 

prime factor of k+1. Theorem 7.11 proved that they also meet 

the lower bound on the effective constraint-length. 

Other classes of codes with m<p-1, but of rate >1/2, were 

obtained by deleting rows from the IA of type-B1 codes (see 

Theorem 7.15). Unfortunately, the conditions were too gener

al for a clear picture, about the 'quality' of these codes, 

to emerge, For this reason, some special cases were consid

ered. Type-B2 codes are (p2-1+J(p+1),p2-1,p-2) type-B SO 

codes, with exactly J syndromes checking on each error bit, 

where p is any odd prime and Je[2,p-1] (see Theorem 7.17), 

Type-B3 codes are (pq-1+J(q+2),pq-1,p-2) type-B SO codes 

with at least J syndromes checking on each error bit, where 

p & q are any odd primes, with p<q<2p and 2~J~(q-1)/2 (see 

Theorem 7.18), Instructions for the construction of the IA, 

for each of these three classes, are also provided. Theorems 

7.19 & 7.20 make some progress towards obtaining SO type-B 
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codes, with m~p-1, but no concrete general results were ob

tained. Nevertheless, some SO codes were discovered, with 

the assistance of a simple computer programme. 

The last effort on type-B codes was for m=k-1, and re

sulted in two more classes of codes. T;ype-B4 codes are 

(k+2,k,k-1) type-B SO codes with exactly two syndromes 

checking on each error bit, where k is any odd integer (see 

Theorem 7.22). T;ype-B5 codes are (n,k,k-1) type-B SO codes, 

with exactly J=n-k syndromes checking on each error bit, 

where k is any even integer and ne[k+l,k+p-1] (pis the 

smallest prime factor of k+l) (see Theorem 7.23). 

T;ype-C codes were defined to be any type-B codes which 

are cyclically decodable (see Definition 7.5). Necessary 

conditions on the code parameters and the elements of the 

first column of the IA were derived. These codes are gener

ated by two integers, a & ~. which are relatively prime to 

k+l and less than k+l; (~ has to satisfy some other condi

tions, as well - see Theorem 7.25). These results were used 

to test the various classes of type-B codes, for 'cyclic 

decodability'. The only type-Bl codes which satisfied the 

type-C requirements are those with k+l=prime (see Theorem 

7.26). It was proved also that type-B2, B3 & B4 codes cannot 

be type-C codes (see Theorem 7.27). It was shown, though, 

that there were alternative techniques for cyclically decod

ing the type-B4 codes (see Figs 7.2, 7.3 & 7.4). 

T;ype-C5 codes are (k,J) type-B5 codes, which are cycli

cally decodable, using k/J majority gates, where k is any 

odd integer and J 1 e<k+lJ. e(k+lJ is a number-theoretic 

function, introduced by the author (see Definition 7.6), 

Hence, there are type-B5 codes which are not type-C [those 

with J S e(k+l), but J f e(k+l)]. Theorem 7.32 provides 

instructions for the construction of the IA. 

McQuilton's codes are the type-B4 codes and the type-C5 

codes (with n=l). 

Finally, it was illustrated that the IA has to be mapped 

to the encoding arra;y (EA), so that the bits are decoded in 

their natural order (see Definition 7.7). This was proposed 

by McQuilton, but it was shown that his mapping would result 

in an unfavourable demand on the memory of the parallel-to-
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serial converter of the decoder. Another mapping was pro

posed instead, which requires J times less storage. 

A number of properties of the IA of type-C5 codes (with 

a=1), some of them new, were also proved. So, the sum of the 

elements of any column is a multiple of k+1, while the sum 

of the elements of any two columns z & k+l-z is J(k+1). The 

most important conclusion, though, is that the IA is much 

more 'predictable', for J = even, than it is for J = odd. 

So, for J = even only, it was proved that the sum of the 

elements of any column is (k+1)J/2. On the other hand, for J 

= odd, the last result is not valid. Finally, Theorem 7.36 

linked the IA with quadratic residues. So, the elements of 

the first column of the IA are quadratic residues modulo any 

prime factor, p, of k+1. The elements of the rest of the 

columns have the same quadratic character*, ( z 1 p), as the 

column number z, hence they are either multiples of p, or 

quadratic residues, or nonresidues (mod p), for any p I k+1. 

The above results were used to obtain expressions for the 

effective constraint-length of the type-C5 codes. For the 

reasons mentioned above, this was possible for the J = even 

codes [nz = 1+(k+1 )J/2], but impossible for the J = odd 

codes, exactly because the sum of the elements of a column 

of the IA is not known. Of course, one is entitled to ask if 

this is not known to the author, or if in general it is a 

result impossible to obtain. Again, there is no proof either 

for, or against, but for a special case. It was proved that 

for rate 2/3 type-C5 codes, with k+1 = p = prime & J = odd, 

nz-1 equals the sum of quadratic nonresidues (mod p). This 

implies that any closed-form expression for nz-1, would also 

solve an unsolved number-theoretic problem. It seems also 

that for the rest of the J = odd cases, the problem will be 

even more difficult to tackle, For the J = odd cases, bounds 

on nzwere obtained, which were as tight as they can be. The 

lower bound coincides with the nE for the J = even codes, 

hence the latter are at least as good as the J = odd codes, 

Concerning the quality of J=even codes, nA/nz = 2/(1-R), 

while (J/2)/nz = 1/k. So, the rate-1/2 codes are the 'best' 

(with nA/nz = 4), while shorter codes have a better relative 

error-correcting capability (= 1/k) (see Theorem 7.41). 

* The quadratic character is defined in Appendil< 7 .13. 
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Chapter 8 concludes this thesis with the results of the 

computer simulation of the type-C5 codes. 

Because a great number of codes was to be simulated, it 

was decided that a separate computer programme for each one 

of them would have been an exercise prone to errors, as well 

as a tedious one. Hence, a separate library of routines was 

built which, given the code parameters k & J, generated and 

stored in arrays all the data necessary for the encoding and 

decoding of the code (See Appendix 8.1), As a consequence, 

the simulation programmes were designed for the general 

(k,J) type-C5 code (see Section 8.2). Also, a number of sub

routines had to be designed for the monitoring, processing 

and presentation of the results of simulation, Section 8.3 

discusses the choice of performance data and their statisti

cal confidence. Section 8,4 presents & discusses the code

performance data (net coding-gain & error-extension ratio) 

under feedback-decoding and with the use of the nominal syn

drome threshold. The gains obtained from the use of the op

timum threshold are discussed in Section 8.5. The error

propagation effect is analysed in Section 8.6, while the 

last section looks at the unequal error-protection perform

ance of the codes, 
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8.1 COMPUTER GENERATION OF 'CYCLIC' CSQCa 

The decoding of a (k,J) type-C5 code is done via the en

coding array (EA) and the syndrome array (SA), both of which 

are generated by the initial array (IA). The latter is gen

erated by a & ~. of which a is taken to be 1, while ~ is 

calculated from eqn (7.33a), This requires, the prime decom

position of k+1, the primitive roots of the prime factors of 

k+1 and the ability to raise an integer to an exponent and 

then obtain the least positive residue modulo some integer 

m, without overflow. The last requirement also implies the 

ability to form the product of two integers and reduce them 

(mod m) and this, in turn, to form the sum of two integers 

and reduce them (mod m), without overflow. Also, a routine 

for the calculation of the greatest common divisor between 

two integers is required, in order to calculate 6(k+1). 

Once the above-outlined number-theoretic library is de

veloped, the generation of the IA, EA & SA becomes a 

straightforward task. The basic flow-charts of the number

theoretic routines are given in Appendix 8.1, while the as

sociated FORTRAN programmes in Appendix 8.2. 

The routine which returns the least positive residue of 

a8 (mod m), without overflow, is the most useful of the li

brary, It was designed to operate efficiently over all inte

gers a,~,m e [1,MAXIN]*, From the rest, the one returning 

the smallest primitive root (mod m), for me[1,MAXIN], is the 

most sophisticated. 

8.2 CHANNEL SIMULATION & S/W IMPLEMENTATION OE THE DECODER 

The codes will be tested over the AWGN channel, with a 

binary PSK modulator and coherent demodulation with hard 

decisions. This model is briefly discussed in § 1.1.2. ** 

The objective of the simulation is the counting of bit 

decoding-errors, at various signal-to-noise power ratios, r. 
According to statement (A1.2.13) an error occurs, if "s0 (t) 

is transmitted and ne< -E, or s 1 (t) is transmitted and ne 2: 

+E". E is the received energy per bit and ne is a zero-mean 

* MAXIN denotes the .azimua integer of the co.puter. ** See, also. Appendix 1.2 (p. 285), 
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Gaussian random variable with variance a 2 = Efi/2, where fi/2 

is the double-sided noise power spectral density. From 

(A1.2.14), the probability of error, P
8

, is P(ne>E). For the 

purpose of collecting results about errors, it seems obvious 

then that generality is not lost if only s
1 

( t) is cons id-

* ered. Then an error occurs only if ne > E. 

Let binary 0 correspond to s
1
(t). Then, the hard-decision 

output is 0 if ne<E (no error) and 1 if ne>E (error). The 

decoder is expected to invert all 1s and produce an all-zero 

output, Hence, the number of decoding errors is the number 

of 1s, at the decoder output. Furthermore, it is assumed 

that E = 0.5, Then, a 2 = fi/4, so ne is a zero-mean Gaussian 

random variable with standard deviation a = {fi/2. A sample 

from such a variable is returned by calling the appropriate 

random-number generator [ne= G05DDF(O,a) - a NAG Library 

** routine] (see Fig, A8.3.1, p. 535), 

The decoder is implemented using the majority-logic cir

cuit of Fig. 5.1, as a model. It~ operation requires the use 

of the following arrays: a) IRA (k X k), for the last con

straint-length of received message-bits; b) JRA (1 x J), for 

the current block of received parity-bits; c) ISR (k X J), 
for the last constraint-length of syndrome-hits; d) JAR 

(J X k), for the encoding array & e) KAR (J x k), for the 

syndrome array. The last two arrays are returned by a call 

to subroutine CODAR2 (see Fig. AB .1. 8, p. 518), After the 

initializations the decoder shifts IRA & ISR, to make space 

for the current blocks, stores the data, counts the channel 

errors so far, calculates the syndromes, collects the syn

dromes checking on each error bit, estimates the error bits, 

counts the decoding errors so far and resets the syndrome 

register, as appropriate. The above is repeated for the 

specified number of blocks to be decoded and subsequently 

for each of the channel error-rates to be considered. ** 
The above-mentioned straightforward approach to decoder 

implementation is inefficient, because it uses one 

computer-word to store one bit. As a result, attempts to 

simulate long codes (k2160) hit the computer-memory limit. 

An alternative implementation uses bit-manipulation commands 

* The error probability reaains as above. ** Sea Appendix 8.3 (p, 533). for a discussion, 
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to store b bits of data in one word (b=60, for the CDC-7600 

mainframe, used). The above-mentioned approach re qui res a 

very sophisticated programme because the decoder, for the 

general (k,J) type-C5 code, has to be assembled using a 

minimum number of 1 X b subarrays. Complications arise be

cause of word-boundary conditions, during the shift (vert~

cal or horizontal) of the arrays, or the writing-in, or 

reading-from, selected bit-positions. The resulting pro

grammes* allowed the simulation of longer codes (by a factor 

of {b) and improved the processing time by a factor of 2-3. 

Examples A8.3.1 & A8.3.2 (pp. 536-41) illustrate the above 

technique, as well as the support required, for such a de

coder to operate efficiently. § A8.4.2. (p. 543), lists the 

corresponding (complete) FORTRAN programme. 

The above-mentioned programmes return the net coding

gain, the probability of decoding error, etc. Variations of 

this programme were 'enriched' with a choice between feed

back & definite decoding, as well as transmitter feedback 

(or 'genie' decoding). In addition, the autocorrelation 

function of the decoder output error-sequence, as well as 

the error performance of each coset, were also available. 

The main programme makes use of a number of subroutines 

for the processing & presentation of results. This includes, 

the calculation of the net coding-gain, the ~nversion of eqn 

P
8 

= ierfc({r), the calculation of the BSC capacity, the 

calculation of the theoretical probability of decoding er

ror, the ordering of data in descending order, the determi

nation of the C(N,t) combinations of N things taken t at a 

time, etc. Their flow-charts are explained in Appendix 8.5. 

In order to facilitate the choice of suitable type-C5 

codes, three subroutines were designed that select a code 

that best matches given code parameters (like k, J & rate). 

For example, given positive integers c & k, subroutine IORD4 

(see § A8.7.2, p. 564) returns the type-C5 code with rate 

c/(c+1) and information-block length as close to k as possi

ble. Appendix 8.7 presents & discusses these routines. 

* The new decoder i•ple•entations were tested against the older ones, for correctness. 
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8.3 PERFQRMANCE DATA 

The test to which a given code is subjected is the deliv

ery at the decoder I/P of blocks of corrupted data. The de

coder is expected to correct them, but it does not always do 

so. The three fundamental parameters obtained are, the total 

number, Nb, of bits considered (sample-size), the total num

ber of channel errors, Nee, and the total number of decoder 

errors, Nde. For a given Nb, the decoder is subjected to Nee 

errors and its performance is assesed by counting the number 

of failures, Nde. As is the case, though, with all perform

ance-data graphs & tables, a degree of normalization is re

quired. The usual way, for error-correcting codes, is a 

graph of the probability of decoding error (in log-scale!, 

Pd, versus lOlogr, where r is the energy per information-bit 

over n*. The simulation curves are compared with the corre

sponding theoretical curve, for uncoded transmission. 

It has been mentioned already (see Section 1.4), that the 

net coding-gain, G, is the most 'fair' measure of the effec

tiveness of a code. G may be obtained from the above-men

tioned graph by measuring the dB difference between the cod

ed & uncoded cases, for a given error rate. This error rate 

is the Pd of the coded system and the probability of channel 

error, P&, of the uncoded system. Furthermore, P
8 

corre

sponds to a specific r. Hence, an alternative representation 

is G vs r 1 or G vs P&. 

8.3.1. Estjmatjon of G. P
8 

.Lfo 

What one gets from a simulation programme, such as the 

one described above, are some data from a sample (of size 

Nb), the sample taken from a hypothetical population (i.e. 

one which can be conceived, without being able to attain in 

practice). Such a population is taken to have infinite size. 

The 'population' mentioned, is the set of all bits at the 

decoder input. Due to the adoption of an all-zero transmis

sion, the population average is also the probability of 

channel error, P
8

• A second population is the set of all 

bits at the decoder 0/P**. Similarly, its average is Pd. 

* This is the one-sided noise power spectral density. ** Strictly speaking, the 2nd population is obtained froa the 1st one & the decoder. 
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To estimate the population statistics, the sample ones 

will be used. The sample mean is known to be the best esti

mate of the population mean. Hence: 

~ 

Pe = Nce/Nb (8.1a) 

~ 

Pd = Nde/Nb (8.1bl 

The corresponding best estimate of G is now required. 

From eqns (1.19) & (1.18), G = 10log(f'/r), where r• is the 

•r quantity' for uncoded transmission with error rate Pd, 

i.e. r• ~ [erfc"1(2Pd)]Z, Since the best estimate of Pd is 

Pd, then.<intuitivelyJ the-best.-e:s~timat.e of r• !s: 

r I = [ erfc"1 ( 2P d) ] 2 ( 8. 2) 

r is the energy per information-bit over fi, for the coded 

case. From eqn (1.15): 

(8.3) 

8.3.2. Confidence Intervals 

Since it is attempted to estimate the population mean 

from the sample mean, one has to declare one's confidence on 

the accuracy of the experiment. The sample mean is a random 

variable. It can be proved (see Erricker [49], p. 196) that 

if the sample size is sufficiently large (~30) then the sam

ple means are normally distributed random variables. Then, 

it may be proved* that if Px is the sample mean, the proba

bility that Px lies in the interval below, is 99%. 

(8.4) 

8.3.3. Presentation pf Results 

From the preceding discussion, it is obvious that confi

dence intervals are introduced not only for Pd, but also for 

P
8

• The random number generator may be assumed to be the 

hypothetical population generator. A sample (of size Nb) is 

taken from its 0/P. In response to this, a decoder 0/P bit 

stream is generated, from which Pd is estimated. The decoder 

responds in a deterministic way, given the sample of the 

input bit stream. Hence, the only uncertainty lies with the 

* See Appendix 8.9 (p, 569), 
** 2.58 is replaced by 1.96 for 95% confidence, by 1.645 for 90% and by 0,6745 for SO%, 
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relation between the sample and the I/P bit stream, i.e. 
~ 

between P
0 

and P
0

• This though generates an uncertainty be-
~ ~ ~ 

tween Pd & Pd and an uncertainty between G & G, as well as r 

& r. Hence, the confidence intervals should be two

dimensional. One may test the code against the given 

random-number generator settings, in order to avo1d the 

two-dimensional confidence intervals. But, as will be seen 

later on, the uncertainty on the channel actual error-rate 

is insignificant. 

From Fig. A8.3.1, ne= G05DDF(O,a), hence, the channel is 

chosen via a. The uncertainty between a & o generates the 
~ 

uncertainty between P
0 

and P
0

• Since a 2 = Eii/2 [see equation 

(A1.2.11)] and since E = 0.5 (see Section 8.2), then a 2 = 

ii/4. Since E = energy/bit ---> E/R = energy/information 

bit ---> r = (E/R)/ii = (0.5/R)/(4a2 ): 

~ 

r = 1/(8o2 R) ( 8. 5) 

~ 

The confidence intervals on r are obtained, though, from 
~ 

those on P
0

, via eqn (8.3). 

~ 

Consider now G. From (1.19) and the discussion so far: 

~ ~ 

G = 10log(r'/r) (8.6) 
~ 

[erfc-1 (2Pd)]2 where r• = ( 8. 2) 

~ 

[erfc-1 (2P
0

) ] 2 /R and r = ( 8. 3) 

The major uncertainty in (8.6} is about Pd. To obtain 
~ 

therefore the confidence limits on G, one has to substitute 

those for Pd in (8.2) and then in (8.6), From (8.4}, 

. ~ ~ 

Pd ± 2. 58{[Pd( 1-Pd)/Nb] ( 8 • 7 ) 

~ 

are the confidence limits on Pd. Hence, Pd is obtained 

from Nde/Nb, substituted in (8.7) and these three values are 
~ 

used in (8.2) to obtain three values for r•, and finally in 
~ 

(8.6) to obtain three values of G (average & 99% confidence 

limits). 
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8.4 , COPING GAIN AND OTHER PERFORMANCE CRITERIA UNDER FD 

A number of type-C5 codes were simulated over the binary 

symmetric channel (BSC) using feedback decoding. The simula

tion programme produced figures for the net coding-gain, G, 

based on the obtained probability of decoding error, Pd. G 

is plotted against r, the signal-to-noise ratio per informa

tion-bit. The minimum r used was such that the BSC capacity 
--- ---1 

was not'exceeded.*, 

Consider now the reliability of the experimental data. 

From relation (8.7), the 99% confidence interval on the es

timated P is P{1 ± 2.58{[P(1-P)/N]/P}. If d is the number of 

errors and N is the sample-size, then P = d/N and the rela

tive width of the interval is 2.58{[P(1-P)/(NPz )] = 

2.58{[(1-d/N)/d] = 2.58{(1/d-1/N). If this is to be small, 

say less than 0.1, then 2.58{(1/d-1/N) < 0.1, or 1/d-1/N < 
1.5xlo-3 , or d > (1.5x10-3 + 1/N)-1 • If at least 10,000 blocks 

are considered and the smallest information-block length 

tested is k=12, then 1/N is at most 1/120,000 = 8.3x10-6 • 

Then, d > (1.5x10- 3 )- 1 "' 660. So, N must be such that at 

least 660 decoding errors occur (if the relative width of 

the confidence interval is to be less than 0.1), On the oth

er hand, the computer processing-time limitations were such 

that N could not exceed 10 7 • For example, to obtain one 

point of the Pd versus r graph for the (1320,6) type-C5 

code, 740 secs of processing time were required** for a 

10,000-block simulation (13,260,000 error bits were inject

ed). With such a limit on N, the minimum decoding-error 

probability which could, confidently, be estimated was of 

the order of 660/10 7 "' 7x10-5 , i.e. not small enough, For the 

code performance to be evaluated at useful channel error

rates, small values of d had to be accepted. From above, the 

relative width of the 99% confidence interval is "' 2.58/{d. 

This is 1, for d = 2.582 
"' 7, which means that the corre-

~ 

spending 99% confidence interval ranges from 0 to 2Pd' 
~ 

Pd is used 

values of r 
to estimate G, the net coding-gain. For high 

~ 

(i.e. for small Pd), d may be small enough so 
~ 

that the confidence interval of Pd to start from Pd = 0, to 

which the asymptotic coding-gain, Ga, corresponds (see Sec-

* See Appendix 6.2 (p, 418) & relation (8,3), ** On a CDC-7600 •ainframe. 
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tion 1.4). Once though d reaches 20, the relative confidence 
~ 

interval of Pd is about 1±0.5. The corresponding range for G 

is not wide any more because of the non-critical dependence 

of G on Pd, for high rs, since G tends asymptotically to Ga, 

as r -> +<D. 

The uncertainty on P
8 

is smaller than that on Pd, because 

Pd < P
8 

for at least those values of P
8 

which 'lack' confi

dence. The lowest channel error rate used, must be high 

enough to produce at least one decoding error. Since the 

code performance is very good at very low values of P81 the 

number of channel errors injected must be at least two or

ders of magn1tude greater than the number of decoding er

rors. Furthermore, care was taken to increase the number of 

blocks transmitted, if the expected number of channel errors 

was less than, say, 350. In the extreme case where this was 
~ 

true, the relative width of the confidence interval on P
8 

is 

2.58/{350 = 0.14. Therefore, the uncertainty on P
8

, and 

hence on r, may be ignored exactly because the experiments 

were designed so that this uncertainty is insignificant. 

G vs r graphs of type-C5 codes of rates between 1/2 & 
39/40 are presented below and in appendices. The range of r 
is between 3 & 8 dB, while the net coding-gains obtained 

were between -2 & 3 dB. Figs 8.3-5 (see also Figs A8.10.3-5, 

in Appendix 8.10, pp. 572-4) contain G=J(r) graphs of codes 

of the same rate. 
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Figure 8.1: EER vs r for codes of rate 14/15. * 
* EER = error extension-rat1o. 

r = signal-to-noise power-ratio per inforaation-blt. 
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Figure 8.2: EER vs r for codes with large J. * 

As a first conclusion, as r decreases towards its value 

corresponding to the channel capacity (3-4 dB), G tends 

asymptotically to a negative value of a few dBs. It 1s an

ticipated that the syndrome-feedback mechanism prevents the 

further deterioration of G. This is expected to be so be

cause, at low rs too many channel errors cause even more 

decoding errors which are then fed back to the syndrome reg

ister and cancel, by accident, some of the incoming channel 

errors. This will be verified at a later section, when the 

error-propagation effect is studied. Figs 8.1 & 8. 2 (and 

A8.10.1-2, p. 571), show that the error-extension ratio, EER 

( ~ Pd/Pe), stabilizes around 1.5-2.5 and even decreases for 
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codes with high Js (~8) (with every decoding error, J errors 

are injected into the syndrome register). 

A second conclusion, that can easily be drawn, is that 

for codes of the same rate the a=f(r) characteristic has a 

higher slope for 'longer' codes. This reveals that these 

codes achieve a higher net coding-gain at high rs but per

form worse for low r.. The slope-difference increases with 

the 'length'-difference, What is not known, at this stage, 

is which of J or k is responsible for the higher slope of 

the 'longer' codes? This can be deduced, though, from con

stant-J and/or constant-k graphs. 

The asymptotic coding gain a., for codes with rate R and 

J orthogonal check-sums is R(LJ/2J+1), Hence, for two codes 

of the same rate, with J & J+8 orthogonal check-sums, re

spectively, the a=f(r) characteristic is expected to be 

10log[(L(J+o)/2J+1)/(LJ/2J+1)] dB higher, at high r., for 

the 'longer' code. For codes with the same error-correcting 

capability LJ/2J, (J=even & 6=1), the two characteristics 

are expected to start from the same point (at high fs), but 

the J+l code is expected to do better for moderate values of 

r, because of the extra check-sum. For low rs the difference 

is expected to disappear, or at least be reduced, because 

the J+1 code corrupts its syndrome register with one extra 

error, with every erroneous decoding, From Fig. 8.4 (top) it 

may be seen that the J=7 code has an advantage of about 1 dB 

at moderate values of r; this advantage is reduced to about 

0,5 dB at low fs (the two codes have rate 6/7, hence they 

are expected to have a. = 5. 4 dB) • 

On the other hand, for J=odd, two codes with the same 

rate but with J & J+1 orthogonal check-sums have different 

error-correcting capabilities [ (J-1 )/2 & (J+1 )/2, respec

tively], hence they are expected to start from different 

points, at high rs. For J=3, the codes have a.s that differ 

by 1.8 dB. From Fig 8.5, the (88,4) code has an advantage of 

about 0.8 dB, over the (66,3) code, for r = 8 dB. 

In order to explain some of the observations, it is nec

essary to compare codes with the same J (see Figs 8.6 & 8.7, 

as well as FigsA8.10.6-8, pp. 574-6). 
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A third conclusion is that the value of J seems to be 

responsible for the slope of the graph. Codes with the same 

J have the same slope, while the characteristic of longer 

codes is displaced towards higher values of r. To state it 

differently 1 a longer code achieves the same G for higher 

values of r. For example, for the (40,5) & (70,5) codes, the 

latter requires an extra 0.5 dB in r to achieve the same G 

of 2 dB. The (16,4) 1 (64,4) & (144,4) codes, achieve a net

coding gain of 1 dB at r = 6, 7 & 8 dB, respectively. 

Figs 8.8 & 8.9 contain graphs of codes with the same k 

(see also Figs A8.10.9 & A8.10,10), It is obvious, from 

these graphs, that codes with larger J have a steeper slope 

* r = signal-to-noise power-ratio per information-bit. 
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for moderate to high values of r, but end with a worse value 

of G for low r •. For example, the (12,4) code is better than 

the (12,3) for r > 5 dB. At r = 6.5 dB it offers one extra 

dB (their Ga is 3.5 & 2.0 dB, respectively). The (42,7) code 

is better than the (42,3) for r > 5 dB. At r = 6.5 dB it 

offers 2.5 extra dBs (their Ga is 5.4 & 2.7 dB, respective

ly). The (60,6) code is better than the (60,4) code for r > 

5.5 dB, offering 0.8 extra dB at r = 7 dB. The (88,11) code 

is better than the (88,4) code for r > 5.5 dB, offering 2.9 

extra dBs at r = 7 dB. 
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Figs 8.10 contain Pd vs P
8 

graphs for J=4 codes & k=28 

codes, respectively. The constant-J graphs have approximate

ly the same slope, and are displaced along the r-axis. The 

constant-k graphs have different slopes. Hence, the earlier 

findings about the relation between J and the rate at which 

the code-performance deteriorates, as channel conditions 

worsen, were not the result of the normalization of signal

to-noise ratio to the code rate, but the working of the syn

drome-feedback mechanism. 

A (fourth) conclusion can be reached about the displace

ment of the constant-J graphs towards smaller P
8
s (greater 

fs). As k increases, this must be (at least partly) due to 

the worsening relative error-correcting capability tr ..;. 

LJ/2J/[(k+J)k]. For J=4, the code guarantees to correct any 

two errors within one constraint-length, nA = k( k+4). * For 

Pe = p, the probability of three errors in N ..;. nA bits is 

p 3 (1-p)N-3c(N,3) "' (p3/6)[N!/(N-3)!] "' (p3/6)N3 ; hence this 

probability increases as the cube of the actual constraint

length. Fig. 8.11 contains the graph of Pd vs QE ..;. Pe/tr for 

J=4 codes; the longer codes perform better at the same QE. 

This reversal of roles is due to the better noise-averaging 

performance of longer codes (see§ 1.2.2., p. 9). 

From the groups of graphs, considered so far, one may 

conclude that as J increases so does the slope of the G=flrl 
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Figure 8.11: Pd vs QE, for J=4 codes. 

* In fact, within one effective constraint·length, which equals 1+2(k+l), 
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graph. For constant-R codes, Ga [o: R(J+2)/2] increases with 

J, For constant-J codes, G
8

,increases with R (hence with k). 

For constant-k codes, G
8 

increases with J. Hence, high-J 

codes are expected to offer high coding-gains at large 

values of r. As r decreases, though, Pd increases and the 

syndrome-register feedback mechanism starts injecting errors 

at a rate which is proportional to J, Hence, for a given 

high value of r, the G of high-J codes is greater, but as r 
decreases it deteriorates faster. 

A fifth conclusion concerns the range of values of r, for 

which a code is useful, i.e. that value f
0

, of r, for which 

G = 0. Fig. 8.12 contains graphs of f
0 

vs k, for J = 3-7. 

For a given J, longer codes are useful at higher values of 

r. For a given k, the higher-J codes are useful over a wider 

range of r •. 

Long codes were expensive to simulate. Some results were 

obtained for eight such codes (see Fig. 8.13). As expected, 

they are weak even-at normally high values of r. This is so 

because their relative error-correcting capability is very 

low. For the (996,12), tr = 6/[996x(996+12)] " 6x10-6
, i.e. 

it guarantees to correct the equivalent of one error in 

167,328 consecutive bits. In effect, what matters is the 

effective constraint-length which (for J=even, by Theorem 

7.38) is nE= 1 + (k+1)J/2 = 5,983, hence the code guaran-
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Figure 8.13: * Net coding-gain vs r, for long codes, 

tees to correct any 6 errors in 5,983 selected bits. For the 

channel error rate used (Pe = p = 8.9x10"4
) the probability 

of 7 errors is = p 7 (1-p} 5976C(5983,7) = p 7 (1-p} 5976 x 5.43xl022 

= 0.117, the probability of 8 errors is 0.117p(5983-7)/(1-p) 

/8 = 0.078, etc. Hence, even at high rs the guaranteed er

ror-correcting capability of the code is frequently exceed

ed. On the other hand, the asymptot1c coding-gain for these 

very high-rate codes is virtually LJ/2J+l (because R ~ 1), 

hence they are expected to offer high coding-gains at very 

high rs [Ga = 8.4 dB, for the (996,12) code], 

8.5 OPTIMUM IHBESHOLP YNPER FEEQBACK PECODING 

A number of type-C5 codes were simulated, with a thresh

old different than the nominal one (fJ/21), for various 

channel error rates (P ). For this, and other applications, e , 

Pe was normalized to 

bility, tr.::O LJ/2J/nA: 

net coding-gain, G, 

r J /21 +dT are shown in 

the guaranteed error-correcting capa

QE ,;. P /t • The -graph_s_ -obtained I of the e r __ _ _ _ __ 1 

vs QE, for various thresholds T = 

Figs 8.14 & 8.15, 

Consider the (36,4) code [Fig, 8.14 (top)], Its nominal 

threshold is 2 and this is expected.to be the optimum for Pe 

< 1/(CTn)" [see (6.60)], For this code, 13=31 and the 1st

column elements of the IA are 31,36 1 6 & 1 1 while the 2nd-

* r ~ signal-to-noise power-ratio per information-bit. 
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column elements are 25,35,12 & 2. Then, for the 1st coset 

(CTn) 2 = (31x36+31x6+31x1+36x6+36x1+6x1)/6 = 265.2, while for 

the 2nd coset ( c )2 Tn = 289.8. So, for the decoding of the 

1st coset T = 3' for p > 1/265.2, or QE > 2. 7' while for e 

the 2nd coset T = 3, for QE > 2.5, etc. These predictions 

are verified from the graph of Fig, 8.14, where T=3 becomes 

better than T=2 from about QE=2.5, Note also that when the 

nominal threshold:ceases to be useful (G=OdB), the T=3 one 

offers G = 0.3 dB, while when the latter seizes to be use

ful, the nominal one has deteriorated to G = -0.9 dB. 
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Figure 8. 15: Net coding-gain vs QE, for the ( 30,10) code under 

FD & thresholds T = T + dT, where dT = 0,1 (mid
n -

dle), & dT = 2,3,4 (bottom). * 
* QE = (channel error-rate) 1 (error-correcting capability/actual constraint-length). 
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For the (90,6) code, the T=4 threshold offers 0.9 dB ex

tra when the T=3 threshold results in G = 0 dB. When the 

former returns G = 0 dB, the latter has reached G = -1 dB. 

For the (156,4) code, the T=3 threshold offers 0.8 dB 

extra, when the T=2 threshold results in G = 0 dB. When the 

former returns G = 0 dB, the latter has reached G = -0.8 dB. 

For this code, ~ = 129, and the 1st column of the IA is 

129,156,28 & 1, giving (CT
0

) 2 = 4736.17. Hence, the optimum 

threshold for the 1st coset is 3, for QE ~ 2.64. 

Fig. 8.15 shows that further increase of the threshold, 

beyond fJ/21+1, does improve the code performance but that 

it is likely that this will happen at channel error-rates at 

which the code is useless, anyway. Note that the G vs QE 

graph for the (30,10) code with T = 9, is virtually flat and 

tends to -1.25 dB. This is expected since the probability of 

decoding error remains ~ P e with the optimum threshold, 

hence, as P
8 

increases, Pd -> P
8 

and G -> 10logR*. Hence, 

with the optimum threshold, G ~ 10log(3/4) = -1.25 dB. 

8.6 ERRQR PROPAGATION 

Error propagation is studied by obtaining various results 

both for 'normal' feedback-decoding (FD or DE f/b) and for 
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Figure 8.16: Decoder-output error-sequence of the (60,6) code, 

at QE = 5, with b = 60. 

* See equations (8.2), (8.3) • (8.6) 
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138 140 

Figure 8.17: Decoding errors, due to incorrect syndrome-reset

ting, for the (60,6) code, with QE = 5 & b = 60. 

what has been called 'genie decoding•,* Under this mode, 

which does not exist in the real world, the syndrome regis

ter is reset using transmitter feedback (TX f/b), i.e. the 

true value of each error bit, instead of the decoder's esti

mate of it. For some applications, the decoder output 

error-sequence is considered. This is the sequence of num

bers representing the number of decoding errors per b ( k

bit) blocks (b=1,2,3, ••• ), 

Fig. 8.16 shows the number of decoding errors, per con

straint-length, for the (60,6) code both under TX & DE f/b, 

while Fig. 8.17 displays the difference between the two 
' 

time-sequences, i.e. the decoding errors due to error propa

gation.** The various 'peaks' in the TX f/b sequence are due 

to corresponding peaks in the channel error-sequence. The 

resulting decoding-errors are fed back in the syndrome reg

ister and cause even more decoding errors, when the DE f/b 

mode is employed. Notice, for instance, that at time-unit 

107 ( 107th constraint-length) 1 an undisclosed number of 

channel errors cause 5 decoding errors, under TX f/b, but 21 

under DE f /b, although both modes produced 1 error during 

the previous time-unit. Although, (and obviously due to 

channel conditions) under TX f/b, 5 decoding errors occur 

during the next time-unit, (incorrect) decoder f /b adds 

another 19 decoding errors. During the next 4 time-units, 

* Seep. 157, 
** See also Pig, AS.ll.l (p, 578). 



Figure 8. 18: Normalized autocorrelation function of the decoder

output error-sequence, with b = 1, for the (12,3) 

(top & middle) and the (12,4) (bottom), code. 
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the channel 'calms down' and TX f/b produces 1,0,1 & 0 er

rors, but DE f/b produces 20,12,8 & 3 errors, respectively. 

At this channel-error rate (r = 5.9 dB), a few decoder fail

ures ( 1-5 per constraint-length) generate many times more 

decoding errors, which need a considerable amount of time 

(3-8 constraint-lengths) to clear-off the decoder. * 
Another way to study the error-propagation effect is via 

the autocorrelation function, R( 't"), of the decoder-output 

error-sequence. If D(i) denotes the number of decoding er

rors in the ith b-block part of the sequence, then R(-r) ~ 

E[D(i)D(i+-r)], If there is no correlation between D(i) & 
D(i+-r), then R(-r) = E[D(i)J2 = E[D] 2 ,** where E[D] is the 

expected number of decoding errors per b blocks. It is ex

pected that R(-r) --> E[D] 2 , as T -->+m, On the other hand, 

R(O) = E[D2 ], Frequently, it is suitable to study the nor

malized version of R(-r), Rn(T) ~ R(-r)/E[D2 ], and since 

Rn(O) = 1, the -r=O value is omitted. Rn(-r) is expected to 

decrease as T increases, until it reaches a minimum of 

E[D] 2 /E[D2
], for some value of 't" corresponding to, roughly, 

one constraint-length. Rn( 't") is expected to be steeper at 

lower channel error-rates, reaching thus its minimum value 

faster than at higher channel error-rates, 

Fig. 8.18 (top) shows Rn(T) /-r=1-39, for the (12,3) code, 

for two channel error-sequences at QE=O. 6. Note that both 

sequences produce a similar 'picture', even though at such a 

low QE the number of decoding errors is low. As expected, 

Rn(T) decreases towards a minimum (of about 0.005), which is 

reached for 't" ~ 13. There is no correlation among decoding 

errors that occur more than one constraint-length apart 

(b=1), This is the case at higher QEs, as well [see Fig, 

8.18 (middle)]; note that as QE increases, Rn(T) stabilizes 

at higher values, as expected [see Fig, A8.11.2 (p, 579)], 

Fig. 8.18 (bottom) shows that the correlation length for 

the (12,4) code at QE=0.5 is ~ 8, while at QE=1.0 it is ~ 

17. The two characteristics crossover because they have been 

normalized to different quantities. 

It can be instructive to consider the autocovariance 

* Both sequences were obtained using the sa.e channel-noise aa.ples. ** D is assumed to be a stationary randoa process. 
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function, C(•) ~ R(•)-E[D] 2 , or Cn(•) ~ C(•)/C(O) [note that 

C(O) = R(O)-E[D] 2 = E[D2 J-E[D] 2 = a~]. This is expected to 

be flat and low at low QEs, but impulsive at higher QEs. 

Consider, at first, the autocovariance function lfn) of 

the (28,4) code with TX f/b [Fig. 8.19 (middle)]. Since C(•l 

= E[D(i)D(i+•)]- E[D(i))E[D(i+L)) = E[D(i}D(i+•)J- E[D]Z, 

the more positive the C(•) is, the greater the correlation 

between the decoding errors in blocks i & i+•. Although 

there is no feedback of the current decoding-errors to the 

next ones, the graphs show a correlation which increases 

with the channel error-rate. This is not a paradox, but the 

result of the random fluctuations of the rate of channel 

errors. When the decoder receives many* errors, over a con

straint-length, these errors affect the decoding of the cur

rent and the subsequent 27 blocks, because they res1de in 

the syndrome register. Of course, with every block decoded, 

and due to perfect syndrome-resetting (TX f/b), the decoder 

is gradually unloaded of them. Hence, C(•) is expected to 

decrease 'smoothly', as • increases, and become~ 0 for • ~ 

28. For a given T, C(•} is expected to increase w1th QE. 

This reasoning is verified by the results. The graphs for DE 

f/b are expected to be similar [see Fig. 8.19 (top)). 

A graph of the difference betwe~n the DE-f/b C(•) & the 

TX-f/b C(•}, would be a good measure of the correlation of 

decoding errors due to incorrect syndrome-resetting [see 

Fig. 8.19 (bottom}]. For QE=1, there is no visible correla

tion, but for QE = 2 & 3 there is a strong one, especially 

for • ~ 14 (!of the decoder's memory). For QE=5, the corre-

lation, due to error propagation, 

for • = 14, most probably because 

reaches a sharp maximum 

this is where the 'aver-

age' decoding-error is fed back (the centre of the decoder's 

memory}. See also Fig. A8.11.3 (top), p. 580. 

Fig. 8.20 shows R(•} with DE f/b, normalized to R(•} with 

TX f/b. This time, the lower-QE graphs are more 'swollen' 

than the higher-QE ones. This reversal is not due to corre

lations at low channel error-rates, but due to the average 

number of errors. Note that, since 

then: 

* More than the average, 
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Figure 8.20: Autocorrelation fn with DE f/b, normalized to the 

TX-f/b autocorrelation fn, for the (28,4) code. 

Then, as QE increases, E[D
0

] & E[D
7

] become strong, 

enough to 'cover' the variations of C(~) with ~. hence the 

ratio tends to (E[D
0
]/E[D

7
] ) 2 with QE increasing, as has 

been verified by the simulation results. 

Figs AS .11. 3 (middle & top) show the normalized autocor

relation fn for the (60,6) code, with DE & TX f/b. 

Another way to conclude about the effects of error propa

gation is via graphs of the difference between the net cod

ing-gains of DE & TX f/b. Figs 8.21 & 8.22* verify earlier 

conclusions about the effect of the decoding f/b mechanism. 

Notice that at high rs, there is virtually no loss due to 

incorrect syndrome-resetting. While the TX-f/b characteris

tic decreases almost linearly with r, the DE-f/b one de

creases fast, initially (due to the extra errors fed back in 

the syndrome register), but then 'flatens out' because the 

decoding errors stop increasing the number of errors the 

decoder has to cope with, and start cancelling them. 

The amount of signal power-loss and the r at which this 

occurs, depend on the code, but it seems to be between 1 & 2 

dBs, at fsbetween 4.5 & 7 dB [see also Fig. A8.11.6 (top)]. 

Similar information may be obtained from graphs of the % 

increase in decoding errors due to DE f/b, relative to TX 

* See also Figures A8,11,4·5 (pp. 581-2), 
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Figure 8.21: Net coding-gain vs r, with DE & TX f/b, for the 

(28,4) code (top), the (36,6) code (middle) & the 

(60,6) code (bottom). * 

* r = signal-to-noise power·ratio per information-bit. 
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f/b (see Figs 8.23 & A8.11.6). At worst, Pd increases be

tween 150% & 300%. This occurs at channel error-rates be

tween 10"3 & 10"2 , It is evident that the worst loss in

creases with J (" 150% for J=3, "' 170-200% for J=4 & 5, "' 

300% for J=7) and also that it occurs at higher channel er

ror-rates, for shorter codes. Most probably, this is due to 

the ratio J/k, the rate at which J errors (due to decoder 

failure) are injected into a syndrome register of k blocks. 

8.7 UNEQUAL ERRQR-PROTECTIQN 

The probability of decoding error, P d (see Chapter 6), 

depends on the sizes of the set of syndromes checking on 

each error-bit. Since this set is special for each bit to be 

decoded, then Pd is expected to be different for each one of 

them. For type-C5 codes, the 'sizes' are the elements of the 

corresponding columns of the IA, hence identical for the J 

bits of a coset. 

* Fig. 8.24 (top), shows the number of decoding errors per 

coset, for the (40,5) code, with TX f/b. Notice the close 

agreement between the simulation & the theoretical 

results**, FigsA8.12.1 (top & bottom) (p, 584) show the 

results for QE = 1 & 10. 

From reln (6,61) (p. 177) it seems that, for a given er-

* 10,000 blocks were considered, at QE=4.99. ** Equation (6.38b) was used for the theoretical calculations. 
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' For the (40,5) code: No of decod. errors (QE=5 - TX 

f/b- top); %deviation from the average (TX f/b -

mid.); No of decod. errors (DE f/b- QE=lO- bot.). 
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ror bit, P4 increases with CTn' the Tnth generalized mean of 

the syndrome sizes of the corresponding cos et, where T n is 

the nominal threshold ( rJ/21). To simplify this, and since 

the generalized means are very close to each other, the geo

metric mean CJ is considered. Fig. 8.24 (middle) shows the % 

deviation from the average, of the P4 of each coset, with TX 

f/b, at QE = 5· & 10. Also plotted is the geometric mean of 

the syndrome sizes. Notice that the latter follows very 

reliably the coset P4-distribution. Note also that the % 

deviation, for the two different channel error-rates, is 

virtually the same. 

Consider now the number of decoding errors, per coset, 

with DE f/b, from two different sequence of noise samples* 

[Fig. 8.24 (bottom)]. The consistency indicates that the 

performance of each coset is not the result of statistical 

fluctuations. 

Fig. 8.25 (top) indicates that with DE f/b, the various 

cosets have approximately the same behaviour, at various 

channel error-rates. Fig. 8.25 (middle) shows that the syn

drome f/b mechanism moderates the non-uniformity of the eo

set Pd-distribution. Nevertheless, the geometric mean still 

indicates the cosets that can offer better error-protection 

[Fig. 8.25 (bottom)]. See also Fig. A8.12.2 (top). 

For comparison, the number of decoding errors per coset, 

under definite decoding, has been plotted in Fig. AS .12. 2 

(bottom). As expected, the distribution is 'flat'. 

a,s CQNCLUSIQNS 

A great number of the codes discovered by McQuilton [42] 

were tested over a computer-simulated BSC. The FORTRAN pro

grammes used, required a minimal input for each run, which 

could, reliably, produce a number of points for the G = j(r) 

graph**, of any type-C5 code. Approximately twenty versions 

of the main programme were used to generate a variety of 

performance results. The input data required, consisted of 

the code parameters k & J, the minimum number of blocks 

* 10.000 blocks each. at Q! = 10. ** G s net codin&-Bain; r : Slgnal-to-noise power-ratio per inforaation-bit. 
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(NDMB) to be decoded, the minimum number of channel errors 

for each point* and the channel error-rates the code was to 

be tested on. The basic returns from the programme were the 

number of channel & decoding errors. These were processed to 

produce results like G, Pd, Pe, r, EER, etc. Variations of 

the main programme could implement feedback & definite de

coding, as well as 'genie' decoding. Other programmes could 

produce results for each coset, calculate autocorrelation 

functions, etc. 

Because the type-C5 codes have a large constraint-length 

[k(k+J)], attempts to simulate k2:160-codes hit the 

computer-memory limit [the decoder memory is k 2 +J+kJ, to 

which the encoding & syndrome arrays have to be added). In 

order to test long codes, a special decoder-implementation 

was used which stored b bits of data in one word (b is the 

computer's word-length). The problem to be solved was not an 

easy one, because the decoder memory, IRA, of general dimen

sions k x k, had to be composed of a minimal number of sub

arrays of dimensions 1 x b, and horizontal & vertical cy

clic-shifts of the contents of IRA to be possible, as well 

as writing in, and read1ng of, selected bit-positions. This 

decoder allowed the simulation of codes with a k longer by a 

factor of ~ {b and decreased the processing time by a factor 

of 2 to 3 (because the bit operations are faster). 

For the general decoder to operate, the encoding & syn

drome arrays have to be supplied, given k & J. This required 

the support of a number-theoretic library of subroutines 

[including prime decomposition, primitive roots & the calcu

lation of elements of order J mod (k+l)]. These subroutines 

had to operate safely** over the entire range of the comput

er's positive integers. Furthermore, the presentation of the 

various results required the support of another library of 

subroutines which could, calculate the net coding-gain, in

vert eqn Pe = ierfc({r), calculate theoretical results (for 

comparison), etc. 

If the simulation results were to be useful & reliable, 

the quality of the programmes & the confidence on their in

tegrity should be unlimited. To this end, all routines were 

tested under extreme conditions and optimized (both for 

* NDMB was increased, if necessary. ** Without overflow. 
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processing-time & memory-requirement). The main programmes 

were built in stages, each of which was exhaustively tested; 

whenever possible, tasks were diverted to subroutines. Sim

ple programmes were built first, and tested manually for 

accuracy; they were subsequently used as the measure of the 

integrity of a more sophisticated programme. Extra features 

were added only when the older & the new versions, produced 

identical results. 

All data to be generated by the programmes, stemmed from 

the observed numbers of channel & decoder errors. The confi

dence on these data depends on their number. The G=J(r) 

graph suffers from an uncertainty on both r & G. The uncer

tainty on G originates from both P
9 

& Pd. With d errors, the 

relative width of the 99% confidence-interval is ~ 2.58/{d, 

for a large-enough sample-size (which was the case) • Care 

was taken to generate at least 300-400 channel errors, so 
f 

that the uncertainty on P
9 

(& f) to be insignificant. For 

the 'difficult' case of high fs, Pd is 1-2 orders of magni

tude less than P
9

, while the computer processing-time limi

tations did not permit runs of more than 107 bits. Inev1ta

bly, the high-r results suffer from uncertainty, on Pd. 

From the graphs produced it was concluded that the G=J(r) 

relation would have been an almost linear one, had it not 

been for the effect of incorrect syndrome-resetting, due to 

decoding errors. As r decreases, this mechanism initially 

accelerates the power loss, but it subsequently puts a brake 

on it and eventually stops it, because of the overwhelming 

(and accidental) error-cancellation in the syndrome regis

ter*. The worst power-loss is of the order of 1-2 dB, which 

occurs at fs between 5-7 dB (depending on the code) • The 

corresponding increase in decoding errors increases with J 

and is of the order of 150-300% (for the codes tested). The 

worst error-propagation occurs at a channel error-rate, P
9

, 

which is lower for longer codes; in general, this P
9 

seems 

to decrease with J/k, the rate at which the decoder output 

adds errors to the syndrome register. 

The slope of the G=J(r) characteristic increases with J. 

A large J, is the main contributor to a high asymptotic net 

* Due to the feedback of erroneous decoding~decisions. 
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coding-gain, while at low rs it floods the syndrome register 

with many errors, hence it contributes to a lower G. The 

importance of J is such that (at moderate to high fs), if 

increased by 1, G may increase by 0.5-1 dB. 

The effect of an increase in k is the weakening of the 

code relative error-correcting capability [ LJ/2J errors in 

k(k+J) bits], but also a better noise-averaging capability. 

Hence, for a given k high-J codes are useful over a wider 

range of rs, while for a given J long codes are useful at 

higher r •. 
The best Gs (2-3 dB) were returned from high-J ('?.7) 

codes, at r > 6 dB. 

The correlation among decoding errors is partly due to 

the random channel-fluctuations which are stored in the de

coder memory; nevertheless, at moderate-to-low rs correla

tions are mainly due to error propagation. In such a case, a 

decoder failure at time '• greatly affects the decoding at 

times •+1, •+2, ••• , •+!k; on occasion the (•+lklth block is 

affected more than the rest. From the results displayed, it 

seems that the autocovariance function of the decoder output 

error sequence (w1th 1-3 blocks per time-unit) is the best 

indicator of correlations; the error propagation can be 

studied by the autocovariance difference between the DE-f/b 

& the TX-f/b modes. 

The codes offer unequal error-protection to each coset. A 

reliable indicator of the protection per coset is the geo

metric mean of the associated syndrome sizes. Deviations 

from the average Pd, were up to ±20%, for the (40 1 5) code. 

Incorrect decoder-feedback tends to neutralize these devia

tions, but this is expected to occur at moderate-to-low rs. 
Some of the codes were tested, under FD and with a syn-

drome threshold, T, different than Tn, the nominal one 

r J /21 ) • As predicted in Chapter 6 (see § 6. 3. 4. I p. 

( T ,::. 
n 

175), 

performance was improved with an increase of T by 1, when 
n 

the channel error-rate exceeded 1/(CTn) 2 * When, with the 

nominal threshold, G fell to 0 dB, the use of a T +1 thresh-
n 

old increased G up to 1 dB. Furthermore, the use of the op-

timum threshold increased the range of rs over which the 

code is useful and kept G above 10logR dB, 

* c~ is the pth generalized •ean of the syndrome sizes. 
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Codes & decoding techniques are tested over a binary-in, 

binary-out, channel model with, or without, memory. The Bsc* 

is the most suitable one because of its simplicity & wide

spread use; it is also argued that it is (usually) more 

'demanding' than a bursty channel, so that any performance 

data obtained over the latter are expected to paint a more 

optimistic picture. A BSC can be realized with a binary PSK 

modulator with hard-decision coherent demodulation and 

transmission over the additive white Gaussian-noise channel. 

If E is the energy per information bit at the demodulator 

input and fi/2 is the double-sided noise power spectral-den

sity, then the probability of a bit in error at the demodu

lator output is Pe = lerfc[.{(Rr)], where r ~ E/ii. The per

formance of a coding scheme is usually assessed via the de

coding-error probability (Pd) vs P
8 

relation, or via the Pd 

vs r one; an uncoded system operating at an increased sig

nal-to-noise power ratio, r, is used for reference. The ex

tra signal-power, G, required by the uncoded system so that 

it matches the error performance of the coded one, is called 

the net coding-gain of the coded system; the G=f(r) relation 

is one of the best measures of its performance. 

The current channel block of an (n,k,m) convolutional 

code (CC) depends on the current and the past m information 

blocks.** The minimal encoder for a linear (n,k,m) CC is, 

usually, the normal encoder, a k-in, n-out, linear-sequen

tial circuit (LSC) made of k shift registers (SRs) of 

lengths between 0 & m and up to n X-OR gates. The code is 

completely described by the kn transfer functions of the 

encoder, called the generator polynomials. If the high-

* Binary sv--etric channel - a •a.oryless channel. ** A block code is a cc with •=0. 
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degree polynomials correspond to one or two of the encoder's 

outputs, the type-II encoder may be the minimal one. 

Although_ the CC generates a single codeword, a relation

ship (developed by the author) is possible, between channel 

blocks h to h+z, and information blocks h-m to h+z, via a 

finite-dimensioned 'generator' matrix [G]= (where h~m and 

z~O). It was then proved that the CC generator matrix, G, 

may be defined as the limit of [G]=, as z --> +m, 

CCs may be described either via the matrix approach, or 

via the polynomial approach. The former, groups the bits of 

a block into a vector and results in infinite-dimensioned 

matrices. The latter, groups the bits of a port into a poly

nomial, making use of the concept of transfer functions and 

of finite-dimensioned matrices. 

The parity-check matrix, H, was proved (by the author) to 

be equal to the limit of [H]z, as z tends to +m, where 

[G]=[HJ! = 0 /z~O. H is used to define the syndrome, s ~ rHT, 

For an additive channel, s = eHT, which means that the syn

dromes are linear combinations of the current and the past m 

error blocks. 

The CC maximum-likelihood decoding technique is based on 

the encoder's trellis-diagram, which is its state-transition 

diagram expanded in time. This technique suffers from proc

essing-time limitations, arising from the complexity of the 

trellis. The decoder, for each received block, and for each 

of the states of the trellis, has to calculate 2t metrics, 

choose the best and store it, together with the sequence of 

information bits leading to this state, at that time-unit. 

Since, for an encoder of total memory M, there are 2M 

states, hardware limitations do not permit the employment of 

long codes (2M2t calculations per block time-unit & storing 

of 2M information sequences). A quantitative relation be

tween trellis-complexity and code-parameters, may assist in 

the design/choice of more suitable codes. 

The memory of a normal encoder (and of any similar LSC) 

may be partitioned into three groups: The FEG (which will 

store the next I/P block), the REG (which looses its con

tents with each transition) and the CEG (the rest). This 
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approach helped to develop relations between trellis

complexity and code-parameters. For instance, if f denotes 

the number of rows of G( D)* with 1s &. Os only, the number of 

transitions into (or out of) a state is 2~1, while each 

transition corresponds to 21 different input-blocks. There 

are 2t-1 self-loops, whose existence-conditions are given by 

Theorem 3.5 (p. 63). 

In an effort to use longer codes and trellis decoding, 

the idea of a constrained trellis** arises. This is obtained 

from the ordinary one, by imposing a limit, t, on the sum of 

the Hamming weights of the current state &. input. 

Using the memory partition of a normal LSC and the encod

er parameters, Theorem 4.21 (p. 107) provides expressions 

about the number of states of a given weight, the number of 

transitions from a given state to a state of a given weight, 

etc, as well as existence conditions. 

The simplified trellis is obtained, from the constrained 

one, by removing all states with a single transition, intro

ducing thus long transitions. Theorems 4.26 &. 4.27 used a 

refinement of the memory-partition technique, mentioned 

above, to produce expressions about the number of states of 

a given weight w, from which a transition of a given length 

~ may start, as well as the number of these transitions. 

These results are expressed in terms of k, M, t, ~. w & the 

memory-distribution function F, where F(i) is the number of 

encoder SRs of length ~ i. 

For the special case of t=1, the simplified trellis has 

only one state, S0 , and transitions of length 1, 1+M1 , 

1+M2 , ••• , 1+Mk, where Mi is the length of the ith SR (1~i~k). 

Similar results were obtained for the special cases of 

t=2, LSC with equal-length SRs & a 1-SR LSC (see Sec. 4.7). 

A decoding technique, based on the constrained trellis, 

has been proposed by Reed&. Truong [24]. The encoder trellis 

cannot be constrained because all possible channel-se

quences, v, are equally probable. This is not the case with 

e, though, whose frequency of appearance decreases exponen

tially with its Hamming weight. The syndrome eqn was solved, 

e = [z,zP+s] and z (the error on the message bits) had to be 

* The t x n aatrix of polyna.ial generators. 
** The idea is due to Reed • Truong [24). 

-~ 
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chosen so that e was minimized. To this end, the trellis 

corresponding to P was constrained and driven by s, using 

the Viterbi algorithm. The simplified trellis* has a reduced 

complexity and hence the potential to simplify decoding. 

Majority-logic is a, syndrome-decoding, technique ap

plicable to systematic CCs with a special structure. Accord

ing to the decoding rule, if J syndromes are orthogonal on 

an error bit, then this is est1mated to be 1, only if more 

than T = rJ/21 syndromes are 1. If all syndromes checking on 

an error bit are orthogonal on it, the code is self-orthogo

nal, and then J = dain -1. 

It was proved by Massey [ 18] that T = rJ/21 guarantees 

correct decoding, provided that no more than LJ/2J errors 

have occured among the nE** error bits checked by the J syn

dromes. It has been argued by the author (see Chapter 6), 

that as P
8 

increases, the requirement of no more than 

LJ/2J errors becomes hard to satisfy. If the probability of 

decoding error, P d, is used as the performance criterion, 

then the value of T that minimizes Pd, increases with P
8

, 

from a minimum of rJ/21 to a maximum of J. For syndromes of 

size c (usually, the case of DD), it was proved that T = 
--- - - 0 

~ llJ+tln[P8/(~-P8 ) 1/ln[P/'(l_-P) ]J ! is the optimum threshold, 

where P = i[l-(1-2P
8
)c], It was proved, also, that T

0 
= 

rJ/21, for P
8 

< 1/c2 • 

The case of J syndromes of various sizes, c
1

, results in 

'cumbersome' expressions with multiple summations of 

products of probabilities, It was argued, though, that there 

must be an 'average' syndrome-size, which could play the 

role of c. To this end, the concept of the pth generalized 

mean, X
11

, of the quantities x
1

, x
2

, ••• ,xJ was defined (by the 

author), as the pth root of the arithmetic mean of all the 

distinct products of x~, taken p at a time [C(J,p) such 

products]. It was proved that X1 is the arithmetic mean & XJ 

the geometric mean. It was also found that X1 >X2 > • • • >XJ. If 

A
11 

is the pth generalized mean of K1 0::. P
1
/(1-P1 ), where P

1 
= 

i[1-(1-2P
8

)ci] (i=1,2, ••• ,J), then the analysis resulted in 

T0 = lln[P8 /(1-P8 )+JlnAJ-To]/ln(AJ-ToA,.o)J, an eqn that can be 

solved fast, by trial and error, if the bounds and approxi

mations on T
0 

are used (see § 6,3.3,, p. 171). The bounds 

* Proposed by the author. ** Effective constraint-length. 
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obtained (upper & lower) differ by 0, 1 or 2 (in all cases 

considered). T "' 'LlJ+Un[P /( 1-P ·J']/lnA J :: is expected to 
o _ _ e e Tn ' , 

be accurate for most cases of practical interest (Tn ~ 

rJ/21). It was shown that T
0 

becomes Tn+1, at P
0

"' 1/(CTn) 2 , 

where C
11 

is the pth generalized mean of the syndrome sizes 

(hence it represents the average syndrome-size). 

McQuilton [42] discovered a class of cyclically-decodable 

convolutional self-orthogonal codes (CCSOCa). A study of his 

approach concluded that his results were the partial solu

tion to the problem of, constructing self-orthogonal (SO) 

CCs under three 'arbitrary' constraints. It was thereafter 

concluded that an alternative approach to the problem, of 

systematically constructing (n,k,m) systematic SO CCs, may 

be via an (n-k) x (m+1) array of cells of integers in the 

range [1,k] [called the initial array (IA)]. The jith cell 

gives the numbers of the error-bits, from (e•)h-i+l' checked 

by s~J>, Necessary and sufficient conditions can then be de

veloped on these numbers, so that the code is SO. Restric

tions are imposed, if a practical solution seems unfeasible. 

To this end, the population of each cell was restricted to 

one* and necessary & sufficient conditions on the elements 

of the IA were developed (Theorem 7.5). Subsequently, con

gruence a 1 ,J = ja1 , 1 (mod k+1 )* was used to reduce the problem 

to that of determining n-k integers (a1 , 1 /i=1,2, ... ,n-k) so 

that the code is SO (type-B codes). 

The insistence on discovering the necessary & sufficient 

conditions, for a systematic CC to be SO, may make the prob

lem more difficult, but it has the potential to discover all 

such classes of codes. For this reason, the introduction of 

the restrictions was delayed as much as possible, so that 

general results can be developed. Some new classes of sys

tematic SO CCa were discovered. 

T;ype-Bl are (2k,k,J-1) codes (k=even & J<p).** Type-B2 

are (p2 -1+J(p+1),p2 -l,p-2) codes (p=odd prime & J<p).** 

T;ype-B3 are (pq-1+J(q+2),pq-1,p-2) codes (p,q are odd primes 

with p<q<2p and J<q/2).** Type-B5 are (k+J,k,k-1) codes 

(k=even & J<p).** Type-B4 are (k+2,k,k-1) codes with 2 syn

dromes checking on each error bit (k=odd). Some other type-B 

* One of the three properties of the CCSOCs. ** J ayndrOIHs check on each error bit - p is the saa.llest prt.e factor of k+l. 
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SO codes were discovered via a simple computer-search. 

Type-C codes were defined to be any type-B codes whose 

error bits are cyclically decodable*. Necessary conditions 

for the existence of type-C codes restricted the freedom of 

choice on both the code parameters and the IA elements. Only 

type-Bl (with k+l=prime) & type-B5 [with J a divisor of 

6( k+l) 1 Where 6 ( k+l) iS a number-theoretiC function intro

duced by the author] can be of type-C. Type-B4 codes can 

also be decoded in some cyclic manner. Finally, the IA has 

to be mapped into another array so that bits are decoded in 

their 'natural' order. More than one ways can be proposed, 

the final choice being dependent on the particular decoder

implementation adopted. Type-C5 codes can be decoded with 

k/J majority gates, while type-B4 with just one (other im

plementations are possible). The CCSOCs discovered by 

McQuilton, are the type-C5 & the type-B4 codes. 

It was proved that the only necessary & sufficient condi

tion for the existence of type-C5 codes is the existence of 

an element 1.'1 ( = a 1 , 1 ) 1 which has order J modulo any non-

trivial divisor of k+l. A formula for the calculation of 1.'1 

has been obtained. The IA of type-C codes has a rich mathe

matical structure which is less 'predictable' if J=odd. It 

was proved that for J=odd codes the 1st column of the IA is 

made of quadratic residues modulo any prime factor, p, of 

k+l 1 while the quadratic character of the elements of the 

zth column is (zip). For J=even, the effective constraint

length is na=l+(k+l)J/2. For J=odd though, it was proved 

that (n
11
-1)/(k+l) e [(J+l)/2,J-1], hence the J=even codes 

are at least as good as the J=odd codes. For the special 

case of rate-2/3 codes, with k+l=prime, nz-1 equals the sum 

of quadratic non-residues (mod p)**, It is anticipated that 

nE does not have a closed-form expression, for J=odd. 

A large number of type-C5 codes were tested over a com

puter-simulated BSC. The best net coding-gains (2-3 dB) were 

returned by high-J (~7) codes, while the worst error

extension ratio did not exceed 2.5. The slope of the G=f(r) 

characteristic increases with J (because of an increased 

asymptotic G), while an increase ink displaces the charac

teristic towards higher values of r (due to the weakening 

* One of the three properties of the CCSOCs. ** A closed-tom ezpression for this su., remains an unsolved .. theutical proble.. 
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relative error-correcting capability, LJ/2J/[k(k+J)]), 

Incorrect syndrome-resetting resulted in a worst power

loss of 1-2 dB (at rabetween 5-7 dB). The G=f(r) character

istic would have been an almost linear one, without error 

propagation. This effect accelerates the power loss at high 

rs, but does the opposite for moderate values of r and even

tually stops it. Interesting results about error propagation 

can be obtained from the autocovariance function, C(,;), of 

the decoder-output error-sequence (the number of decoding 

errors per b blocks) with a small value of b (1-3). The 

C(,;)-difference between (normal) feedback (f/b) decoding and 

decoding with perfect f/b ('genie' decoding) seems to be a 

very sensitive indicator of the 'character' of this effect, 

at various channel error-rates. 

The codes offer unequal error-protection per coset. A 

reliable indicator of the error-performance of each coset is 

the geometric mean of the syndrome-sizes associated with it. 

Error propagation, though, tends to neutralize this effect. 

The use of the optimum threshold improved the code per

formance by 0.5-1 dBa, when G fell to 0 dB with the nominal 

threshold. It also extended the range of rs over which the 

code is useful ( G>O). As predicted, the nominal threshold 

had to increase by 1 , when P 
8 

exceeded 1 I ( C
10

) 2 • 

The decision to design and build simulation programmes 

for the general type-C5 code was a correct one, both because 

it saved time, but also because it prevented any uncertainty 

about the correctness of the simulation results. The use of 

one computer word to store b bits of data, not only reduced 

(by a factor of b) the total storage required, but also im

proved the processing time by a factor of 2-3, The main 

problem there was the design of support routines which could 

efficiently permit the synthesis of a k X k array (the main 

decoder-memory), using a minimum number of small 1 X b sub

arrays; this had to be done in such a way that cyclic shifts 

(vertical or horizontal) and writing in, or reading from, 

selected bit-positions was possible. The software implemen

tation of the decoder required the use of a number-theoretic 

library, whose most powerful routine was the one which could 
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(efficiently) calculate ab (mod m), without overflow, howev

er large a, b & m may be. Finally, it is worth mentioning 

that type-C5 codes constitute a very large family; to facil

itate a search, subroutines were developed which return the 

type-C5 code best matching the code parameters k & J, in a 

specified priority (k, J or R). 

Further work is required on the results of Chapters 4, 6 

& 7. The decoding algorithm, using a simplified trellis, 

must be improved & generalized*, The algebra linking the 

trellis complexity with the code parameters, must be used in 

an effort to select, and attempt to design, codes which are 

more suitable for trellis decoding, Simulation results are 

required in order to determine the performance degradation 

of various codes, as a function of the weight-constraint, t, 

of the trellis. Also, the 'complexity-gain' of the con

strained trelis can be determined by simulating codes of 

different capabilities, but adjusting t so that they end-up 

with the same decoding complexity. 

Simulation results for other classes of codes, using the 

optimum threshold, would be very useful in an effort to de

termine gain-returns against code-parameters (length, rate, 

J, etc). It is expected that large-J codes may have to in

crease their threshold by 1, more than· once, as r deterio

rates. In addition, a threshold-adjusting mechanism is re

quired for channels with memory (for instance, the number of 

estimated-errors per constraint-length); simulation-results 

could prove the optimum threshold to be a more valuable 

proposition for bursty channels. A problem-area, though, is 

the synchronization between threshold adjustments and chan

nel 'relapses'. It is possible that the code parameters, 

especially its length, are critical in this respect. 

New code designs can be pursued from the general results 

of Chapter 7. For example, the consideration of an IA with 

two numbers per cell and a cyclic-decodability property, or 

the computer-aided 'shortening' of type-C5 codes, could pro

duce some useful results. The performance of the new codes 

discovered (type-Bl-5) should, also, be assessed. 

* Beyond t•l - aee Note 4.8 • 1..-ple 4.4 (pp. 123-6). 



\ -

• 




