ALNDEC noi- DX 45696

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE

sommmmmmom e et s
S AGCESSION/GOPY NO. T
/
...................... 036e0e37S ______
= vOL. NO T cLass maRk
Lofex Ch?-,

o § Sl

_—

" 036000875 5

T

SOME NEW RESULTS

ON CONVOLUTIONAL CODES

by

Niko=s P. Frvdas

A Doctoral Thesasis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy of the Loughborough University of Technology

1 January 1990

C) by N.P. Frydas 1990

alasmalio -~
Loughborough University
of Technology Library

Date___ Oth_AaL
Ci-ss

AY O%o00g 7§

43 waao 2623

Pedicated

to my parents

Panos & Antigoni

Ffor all they have done Ffor me

'DoooOoDDoDOooO0OoOoooDooOOooooon,

. Contents
|
|
3 |
: ACKNOWLEDGEMENTS -+ v vrvvvrmrmreeneneeenaeeneeennnn. xi |
| ' |
it ABBREVIATIONS - - v e vmvreennmneeennunneenanannnnen xii |
| \ ‘
i NOTATION - c-cvcvvreennmeneronennenonaonseannneannnas xiii 1
SYNOPSIS - ccrevovearnossannonsasenensnansnnssneenaan xv
’ INTRODUCTION « v vt reeroroeeesnotsosasouasasasonnnans xvi
| ANTEontcTION e e
1 INTRODUCTION TO ERROR-CONTROL CODING -:----=--:-«-=--=" 1
1.1 BLOCK DIAGRAM OF ERROR-CONTROL SYSTEMS --------- 2
1.1,1, The Elements of a Digital Communications
System --------------------------------- 3
1.1.2., The Waveform Channel ::--=----c=c-r-veenn 3
1,1,3. The Digital Channel -:-+«-+ccvverrnrnnns 5
1.1.4. Discrete Channel Models ~----+*+--c---c---- 6
1.2 THE INGREDIENTS OF ERROR-~CONTROL CODING ---:<«-:--- 7
1.2.1. Redundancy -:--- e 8
1.2.2. Noise Averaging «:---:cccccrrrercnennen. 9
1.3 MAXIMUM LIKELIHOOD DECODING ------=-c-rcccvccn--- 10
1.4 NET CODING-CAIN ++ctveosensnrtornnsanssnocsasnaes i3
1.5 CONCLUSIONS -+t --cccmccercrronarttcncccsecncns 15
2 STRUCTURE OF CONVOLUTIONAL CODES ---:--sr--erccnen-- 17
2.1 COMPARISON WITH BLOCK CODES --<--c-crecreccncne: 18
2 . 2 ENCODER 19
2.3 CONSTRAINT-LENGTH ------csccveronrcencnnsonn. 20
2.4 THE CODING THEOREM --------c-ccreccnrrvtnccnnns 20
2.5 COMPARISON BETWEEN THE POLYNOMIAL AND
MATRIX APPROACH - --+c--ermvrscmnnncnsrcnenaness 21
2.6 CODE RATE - +r-s--sreescerrneranccnssosceanasnn: 21
2.7 GENERATOR SEQUENCES ----------crecceccnraannne: 23
+ 2.8 THE OUTPUT OF A BINARY CONVOLUTIONAL ENCODER -- 23
2.9 DISTANCE MEASURES FOR CONVOLUTIONAL CODES ----- 25

{ Contents

3

Page v
2.10 A MATRIX EQUATION FOR THE hTH CHANNEL BLOCK 26
2.11 A NOVEL APPROACH TO THE GENERATOR MATRIX ------ 28
2.12 GENERATOR POLYNOMIALS s+ rcrrvreeasccncnncancan. 31
2.13 GENERATOR-POLYNOMIAL MATRIX ---crcccrerracnnnns 33
2.14 NORMAL ENCODER ------+sccsrecrcarecrannescosrns= 34
2,15 CATASTROPHIC CODES ------ssccvacrccrrnnarrnncce 35
2 . 1 6 SERIAL ENCODER 35
2.17 SYSTEMATIC CONVOLUTIONAL CODES -----------esscn 35
2.17.1. Generator Matrix -«:+-<---c-s-srrscarnn 36
2.17.2. The Output of the Encoder =---+vrec----. 37
2.17.3. Generator Sequencesg -+ - = - 38
2.17.4. Generator Polynomials «-:c-crcvvrnn: 38
2.17.5. Generator-Polynomial Matrix -----<---- a9
2.17.6. Composite Generator-Polynomials -«----- 39
2.17.7. Encoder ------¢ sttt 39
2.17.8. Non-Catastrophic Codes +------<-sc--- 40
2.18 TYPE=IT ENCODER ++«s+ttsuttecanannsaasnsarsecnns 40
2.19 PARITY-CHECK POLYNOMIAL MATRIX ---------------". 44
2.20 PARITY-CHECK MATRIX -ttt 45
2 . 21 SYNDROME 46
2 . 22 CONCLUSIONS 50
DECODING OF CONVOLUTIONAL CODES - +crsrrrmoms-s-n-s 53
3.1 INTRODUCTION - +=c2cccerrcrrcncnanrencnnnnneccs 54
3.2 CONVOLUTIONAL ENCODER STATE-TRANSITION DIAGRAM 55
3.2.1. Introduction =--------- O IR IR 55
3.2.2. Sequential Machines ------ccceoro-vr--- 56
3.2.3, Structure of the Encoder State-
Transition Diagram -----+=---+--2-«--" 57
3.3 TRELLIS DIAGRAM -+« :-- e rrtccactaanany 64
3 ‘4 VITERBI DECODING 68
3.5 SEQUENTIAL DECODING --:----reern-n- R 70
3.6 SYNDROME DECODING ---+----~ R I I NI A 70
3.7 CONCLUSIONS «-c-s st tessstnttrttasssocssnsssannns 71
RROR~-TR IS SYNDROME DECODING -------------------- 74
4.1 ANALYSIS OF ERROR-TRELLIS SYNDROME DECODING 15
4,1.1. General Solution of the Syndrome
Equation -+ ----cccciteiiiaiiiiitiiany 75
4.1.2. The Case of Systematic Codes «----:::c.. 78
4,1.3, Estimation of the Channel Error Digits 79
4.1.4. Estimation of the Source Digits ------- 80
4.1.5. The Hyperchannel Error Polynomial ----- 82
4.1.6. Error-Trellis Syndrome Decoder ------:-- B2
4,2 THE CONSTRAINED REGULATOR TRELLIS OF A
SYSTEMATIC CODE -+« -+ csmmaecrccscccancsncns. 84
4,2.1., Complexity of the Constrained Regulator
Trellis 84
4,2.2, Construction of the Trellis --:--->>--- 90
4,3 DECODING ALGORITHM FOR SYSTEMATIC BINARY CODES 91
4.4 SIMPLIFICATION OF THE CONSTRAINED TRELLIS ----- 92
4.4.1. Partition of the Circuit Memory ------- 93
4,4.2, Structure of the Constrained Trellis 95
4,4.3. The Simplified Trellis ------scmeac-u.. 98

Contents Page v ‘

4.5 CHARACTERISTICS OF THE GENERAL CONSTRAINED ‘

TRELLIS - +---vreseensnroannaassanasoannnnasannn 102
4.5.1. General Partition of the Memory of a |
Normal LSC 102
4,5,2. Description of the Current State ----- 104
4,5.3. Transition from a Given State -------- 105
4.5.4., Summary of Results =------c-cccmeconen. 107
4.8 CHARACTERISTICS OF THE GENERAL SIMPLIFIED
TRELLIS “++ccvsrsccecesnaancsasncccasraaasnnsonass 108
4.6.1. Introduction ~-------"c-cerereann 108
4,6.2., Preparation -+ rccrereecanetane- 110
4.6.3. Intermediate Results -----r--c----o--n- 113
4.6.4. Conclusions -++- eesscnrmatitannn 116
4,7 CONSTRAINED & SIMPLIFIED TRELLIS FOR SPECIAL
CASES .. 121
4.7.1. Normal LSC with t=1 «----crvce-uaacnen. 122
40702. Normal LSC With t=2 """"""""" 126
4,7.3. Equal-Length Shift Registers +-::+:+«:++= 128 .
4.7.4. {(n,1,m) Normal LSCs ---+=--"rcccecccr. 130
4,8 CONCLUSIONS -+ ccrssccrcrrrcaentienccsencuncnes 132
5 THRESHOLD DECODING -:-----ccsrrteranecnannceccnannn 134
5.1 THE THRESHOLD-DECODING PROBLEM --+--r--r-0e---n 134
5.2 THE DECODING ALGORITHMS c«ccvvc vt 135
5.2.1. The Non-Binary Case :-++-rvecerreecnss 136
5.2.2. The Binary Case ------=:-tccrtecvrencn. 136
5.3 GENERAL ASPECTS OF CODES FCOR THRESHOLD DECODING 137
5.3.1. Introduction - Terminology ~--+-c=<+--" 138
5.3.2' Decoding MOdeS 139
5.3.3., Definite Decoding - Parity Squares --- 140
5.3.4, Feedback Decoding -~ Parity Triangles - 141
5.4 DISTANCE PROPERTIES OF CODES FOR THRESHOLD
DECODING 143
5.5 CONVOLUTIONAL SELF-ORTHOGONAL CODES (CSOCs) -- 144
5.5.,1., Definite Decoding of CS0OCs ------+----- 144
5.5.2., Structure of Parity Triangles
for a CSOC --------------------------- 144
5.5,3, Effective Constraint-Length of a CSOC 145
5.5.4., Error Propagation in CSOCs ++ v+ vv 145
5.5.5., Distence Properties of CSOCs -+ ---+--- 147
5.6 CONCLUSIONS -+ -scrrenceceetacrecntacancnnnen 148

6 OPTIMUM THRESHOLD FOR MAJORITY DECODING OF CSOCs -- 150

6.1 PERFORMANCE OF MAJORITY-LOGIC DECODING ------- 151

6.1.1. Introduction to the Optimum Threshold 151
6.1.2. Exact and Approximate Value of p, ~---+ 152

q:“b

6.1.3. Calculation of P(E=nle_=0) ----------- 154
6.1.4. General Expressions for P, ----------- 156
6.2 OPTIMUM THRESHOLD FOR DEFINITE DE&ODING ----- 159
6.2.1. Study of P(Z=ple_=0) ~-:--ccv-vrvren-nn. 160
6.2,2. Optimum Threshold +--r-csrcerenonnsnsnn 161 |
6.2.3. Probability of Decoding Error --+++---- 164
6.3 OPTIMUM THRESHOLD FOR FEEDBACK DECODING ------ 166
6.3.1. The pnth Generalized Mean -+:+--+:2>v-vu- 167
6.3.2. Opyimum Threshold -:--+scr v 169 |
- |

Contents Page vi

6.3.3. Bounds & Approximation for the Optimum

Threshold +-----r e 171
6.3.4., Probability of Decoding Error -------- 175
6 . 4 CONCLUSIONS 177
7 STRUCTURE OF *CYCLIC' CSOCs - =--c-verrrecnrancann, 179
7.1 AN ALTERNATIVE REPRESENTATION OF CONVOLUTIONAL
CODES .. 180
7.1.1. A Discussion on the Design Approach -- 180
7.1.2. Introduction to Type-A Codes --------- 182
7.1.3. Introduction to Decoding of Type-A
Codes e eserscrsscanasstianesansannnans 183
7.1.4. Orthogecnality Conditions for Type-A
o 184
7.2 TYPE-B CODES - THE USE OF NUMBER THEORY ---- 185
7.2.1. Restriction on the Value of m for
Type~B Codes -:--ccerrrrcerceranreennn 186
7.2.2. Orthogonality Conditions for Type-B
Codes v srerreancarscanaran-snonnsans 186
7.2,3. A Discussion on the Design Approach -- 187
7.2.4. Some Properties of Type-B Codes «----- 191

7.3 TYPE-Bl1 CODES - A CLASS OF RATE-1/2 CSOCs -- 193
7.4 OQOTHER CLASSES OF TYPE-B SELF-ORTHOGONAL CODES 197
7.4.1. Type-B Self-Orthogonal Codes with
m<p=-1 & RFL/2 -----cccrrmraann 198
7.4.2, Type-B Self-Orthogonal Codes with
p_2<m(k_1 204
7.5 (n,k,k-1) TYPE-B SELF-ORTHOGONAL CODES ~------- 207
7.6 TYPE-C CODES: CYCLICALLY-DECODABLE TYPE-B CCDES 209
7.6.1. Cyclically-~Decodable SO Type-B Codes - 211
7.6.2. Cyclically-Decodabhle Type-Bj
Codes /j3=1,2,3,4 -t reevenccnascnn-ns 213
7.6.3. Cyclic Decoding of Type-B4 Codes ----- 213
7.6.,4, Type~Ch Codes ----<---cv-trtiiianne, 216
7.7 PROPERTIES OF THE INITIAL ARRAY -------------" 221
7.8 EFFECTIVE CONSTRAINT~LENGTH ---:+-cevcrecanccnn 223
7.9 EXISTENCE THEOREMS FOR 'CYCLIC' CSQOCs -------- 2286
7.10 CONCLUSIONS ro-vcremt ettt en 227
f—
8 COMPUTER SIMULATION OF ’CYCLIC® CSOCe -----=-------- 231
8.1 COMPUTER GENERATION OF 'CYCLIC' CSOCs -------- 232
8.2 CHANNEL SIMULATION & S/W IMPLEMENTATION OF
THE DECODER - ----c et 232
8 o 3 PERFORMANCE DATA 23 5
8.3.1. Estimation of G, P & 235
8.3.2. Confidence Intervals =:--ceeveocevonns 236
8.3.3. Presentation of Results -----c-«ccees 236
8.4 CODING GAIN AND OTHER PERFORMANCE CRITERIA
UNDER FD 238
8.5 OPTIMUM THRESHOLD UNDER FEEDBACK DECODING ---- 251
8.6 ERROR PROPAGATION -+ ccsreerrnracncaavencen- 254
8.7 UNEQUAL ERROR-PROTECTION -:-ccccrsrramcnrannnn 263
8 . 8 CONCLUSIONS 266

Contents Page vii

Volume 2
APPENDICES - v cvrsevrsorennonenanssassessasnenesanas 280
Al.1 THE FUNCTIONAL BLOCK-UNITS OF A DIGITAL
COMMUNICATIONS SYSTEM --------co-crssarasnnnnn 281
Al1.2 BINARY PSK WITH COHERENT DEMODULATION ------: 285
Al.2.1, PSK Modulation =------+--s-ssrsrssvnn 285
Al.2.2. The OQutput of a PSK Coherent
Demodulator =r----scercaanrann 286
Al.2.3. Statistical Properties of n,Z ------- 287
Al.2.4. Hard-Decision Demodulation =-:------" 290
Al.2.5. Probability of Error --------:s---.- 290
Al.2.6. Bounds on, and Approximation to, P, 291
Al.3 AVERAGE ERROR-RATE FOR A SIMPLE CHANNEL WITH
MEMORY 294
Al.4 ASYMPTOTIC CODING GAIN FOR A BLOCK CODE ----- 294
AZ2.1 INTRODUCTION TO ABSTRACT ALGEBRA :r-------=--+~ 296
A2.2 INTRODUCTION TO LINEAR ALGEBRA - ---=-+=c----.n 299
A2.3 PROOF OF THE THEOREMS IN APPENDIX 2.2 ------- 304
A2.4 THE POLYNOMIAL & MATRIX APPROACHES TO
CONVOLUTIONAL~CODE THEORY ------c--recoce-ncnn 307
A2.5 DISTANCE MEASURES FOR CONVOLUTIONAL CODES - -- 309
A2.6 PROOF OF RELATION (2.24) ---ccrrrecrrrnnnnnn 311
A2.7 PROOF OF THEOREM 2.3 ---cccceertrarnennanna.. 312
A2.8 PROOF OF RELATION (2.36) -+ scrrrecccncncnnn 313
A2.9 EXAMPLES OF NORMAL-ENCODER CONSTRUCTION ----- 314
Az_lo CATASTROPHIC CODES 317 |
A2.11 COMPOSITE GENERATOR-POLYNOMIALS ----<«+:-=--~" 320 |
A2.12 PROOF OF THEQREM 2.5 ------c-crmmrrnoecnnnns 323
A2.13 COMPOSITE GENERATOR-POLYNOMIALS FOR
SYSTEMATIC CONVOLUTIONAL CODES -----<-+--ouun 323 |
A2.14 EXAMPLE OF A TYPE-II ENCODER «+++vscer v eeens 324
A2.15 PROOF OF THEOREM 2.10 ------cccrrsceenecaen 325
A2.16 PROOF OF THEOREM 2.12 cc----ccvvecraerarennn 328
A2.17 PROOF OF THEOREM 2.15 - s errorcrnrencnncnns 328
A3.1 SEQUENTIAL MACHINES & STATE TRANSITIONS ---«-- 329
A3.2 PROOF OF THEOREMS 3.1, 3.2 & 3,3 --vcececenns 333
A3.2.1. Proof of Theorem 3.1 -+ vroer-v-s 333
A3.2.2. Proof of Theorem 3.2 --<+-+verecenonn 334
A3.2.3. Proof of Theorem 3.3 =------cecenncnnn 335
A3.3 EXAMPLE OF TRELLIS DIAGRAM -+ -ccccecorcennan 335
A3.4 EXAMPLE OF VITERBI DECODING +-+---ccveerrnacn- 337
A3.5 BSEQUENTIAL DECODING ---:-cccsreccannnccccncan 339
A3.6 TABLE LOOK~UP DECODING <+ --*c¢vs--eccccecncares 341
Ad4.1 PROOF OF THE THEGRY IN SECTION 4.1 -------s--" 342
A4.1.1, Proof of Lemma 4.1 ----------c-c-cenn 342
Ad4.1.2. Proof of Theorem 4,1 --:---cv-nveoes 342
A4.1.3. Proof of Theorem 4,2 +---ev-veener-- 343
A4.1.4. Proof of Theorem 4.3 ---------c-evsen 344

A4.1.5. Proof of Lemma 4.2 -----ccvver-ve--n 345

Contents

Ad.4
A4.5
A4.6
A4.7

A4.10

Ad.11

AS.1

Ab.2
Ab5.3
Ab.4

Ab.5
Ab5.6
AS.7
A5.8

A6‘1

A6.2
A6.3
AG.4
A6.5

Page 1ix

A4.1.6, Proof of Theorem 4.4 -+ v 345
A4.1.7., Proof of Theorem 4.5 -------=------.. 347
A4.1.8. Proof of Theorem 4.6 ++«++-vcrecvenn 348
A4.1.,9, Proof of Theorem 4.7 <« crercvece-nn, 349
SET THEORY AND PARTITIONS - -rrsomccccnenns 350
PROOF OF THEOREMS 4.9 & 4,10 --------=c-vcer.. 353
A4.3.1., Proof of Theorem 4.9 -------=--=-c--n. 353
A4.3.2. Proof of Theorem 4.10 ~---+--+------.. 354
PROOF OF THEOREM 4.11 ---::cevvonnananaan. 355
EXAMPLE OF CONSTRAINED REGULATOR TRELLIS ~---- 356
EXAMPLE OF ERROR-TRELLIS SYNDROME DECODING -- 361
PROOF OF THE THEORY IN PARAGRAPH 4.4.1, +---- 363
A4,.7.1, Proof of Theorem 4.12 ------=--c-c0.. 363
A4.7.2, Proof of Theorem 4,13 ---------c0---- 364
A4.7.3, Proof of Theorem 4.14 -+ v ennn.. 385
A4.7.4. Proof of Lemma 4.10 --:----:cccuuann 366
PROOF OF THEOREM 4,15 ----c-v v v 366
THE INTERMEDIATE RESULTS OF § 4.6.3. -+-+---" 368
A4.9.1., Proof of Theorem 4.25 -+ ++ecceevn.. 368
A4.9.2. Proof of Lemma 4.13 - - -cceme-aean. 368
A4.9.3. Proof of Lemma 4.14 --+«---e-e-onn.. 369
CONSTRAINED & SIMPLIFIED STATE-TRANSITION
DIAGRAMS FOR A t=2 NORMAL LSC ------cn-eun-nn 369
PROOF OF THEOREMS 4.30 & 4.31 --cccecmcenvann 374
A4.11.,1., Proof of Theorem 4.30 ------------. 374
A4.11.2. Proof of Theorem 4.31 -----------.- 375
PROOF¥ OF THE THRESHOLD-DECODING THEOREMS ---- 378
A5.1.1. Proof of Theorem 5.1 -+ ocenen. 378
Ab.1.2, Proof of Theorem 5,2 - ceeecev.. 378
A5.1.3. Proof of Theorem 5.3 +-----sc e a79
AS5.1.4. Proof of Theorem 5.4 -+ srerrvernn. 380
DEFINITE DECCDING - PARITY SQUARES -:-:++++:+> 381
FEEDBACK DECCDING - PARITY TRIANGLES ---+---- 389
PROOF OF THE THEORY IN SECTIONY¥5.3 «+-------. 397
A5.,4.1, Preliminary Results =+------ssveresn.. 397
A5.4.2. Proof of Theorem 5.7 -2 v -oan- 398
A5.4.3, Proof of Theorem 5.8 -+ +ctersrenne 400
PROOF OF THEOREM 5.9 ++rcevvcnrreracannens. 400
PARITY-TRIANGLES & PARITY-SQUARES FOR CSOCs - 402
BLOCK EFFECTIVE CONSTRAINT-LENGTH FOR A CS0OC 405
DISTANCE PROPERTIES OF CSOCs - --cccrtescenennn 409
A5.8.1. Proof of Theorem 5.11 ---+scv s 409
A5.8.2. Proof of Theorem 5.12 -+:---- U 410
A5.8.3. Proof of Theorem 5.13 -++:ecserann 411
PROOF OF THE THEORY IN SECTICN 6.1 ------:-:. 412
A6.1.1- Proof of Lemma 6.1 """"""""" 412
A6.1.2. Proof of Theorem 6.1 -------".---nnn 412
A6.1.3. Proof of Theorem 6.2 +++---cccsecenn 413
A6.1.4. Approximation to (1-2p)¢ «-----.c---. 414
A6.1.5. Examples of the Calculation of
p(z:ule ZQ) cerreeiieeiii e 416
CAPACITY OF THE BINARY SYMMETRIC CHANNEL ---- 418
STUDY OF H(p,1)/H(psc) - - ceereanencaa.n. 421
PROOF OF RELATION (6.38c) c---c e eenan.. 426
GENERALIZED MEANS - s vt inneonn 428
A6.5.1. Proof of Theorem 6.9 ------srecvnnnn 428
A6.5,2. Proof of Theorem 6.10 -+:---- e 428

Contents

A6.6

AT.1
AT.2
AT.3
AT.4
AT.5

AT.6

AT.7

AT.8

AT.9

A7.10

A7.11

AT.12

A7.13

A7.14

A7.15

A7.16
A8.1

OPTIMUM THRESHOLD FOR FEEDBACK DECODING -----

INTRODUCTION TO ARITHMETICAL FUNCTIONS -+«----
INTRODUCTION TO CONGRUENCES - -ccceoor-nne
INTRODUCTION TO PRIMITIVE ROOTS -------------
PROOF OF THEOREM 7.2 -t ccercmteennceanannns
THE MINIMUM VALUE OF m FOR TYPE-B CODES ~-----
A7.5.1. Proof of Theorem 7.3 --+:-+-+---vee
A7.5.2. Proof of Theorem 7.4 - renr--
ORTHOGONALITY CONDITIONS FOR TYPE-B CODES
A7.6.1., Proof of Lemma 7.1 -----cececcensann
A7.6.2. Proof of Theorem 7.5 -+ - eee-
PROPERTIES OF TYPE-B CODES v rerv-cccccnnn-
A7.7.1. Proof of Theorem 7.6 +:-=---cs-env---
A7.7.2. Proof of Theorem 7.7 +-++sverererer:
A7.7.3. Proof of Theorem 7.8 -:-+--sccccnenn
A7.7.4. Proof of Theorem 7.9 +---------v-v-e
TYPE=B1 CODES -----c-c-ccreroreannttcancncrnn
A7.8.1. Examples
A7.8.2, Table of Type-Bl Codes ------------"
OTHER CLASSES OF TYPE-B SELF-ORTHOGONAL CODES
AT7.9.1. Proof of Theorem 7.13 ---------"----
A7.9.2. Proof of Theorem 7.14 --------c--+v--
A7.9.3. Proof of Theorem 7.16 ---+«--<+cvvaes
A7.9.4. Proof of Theorem 7.18 :-------cvvv--
A7.9.5. Proof of Theorem 7.19 -++ccvraccnaen
AT7.9.6., Proof of Theorem 7.20 ------>-"--==---
(n,k,k~1) TYPE-B SELF-~ORTHOGONAL CODES ~------
A7.10.1. Proof of Thecrem 7.21 -+---+:«+-+---
A7.10.2., Proof of Theorem 7.22 - csveeceen-
A7.10.3. Proof of Theorem 7.23 +++rvvceecveen
GENERAL PROPERTIES OF TYPE-C CODES -»--------"
AT.11.1. Proof of Theorem 7.24 +:=--:-=-+:cv---
A7.11.2. Proof of Relations (7.27) ---------
AT.11.3. Proof of Theorem 7.25 +--------2---
A7.11.4. Proof of Lemma 7.3 -------+--------
CYCLICALLY-DECODABLE TYPE-Bj CODES -~ cr=++--
AT.12.1. Proof of Theorem 7.27 ---=---=<-+=--"
A7.12.2. Proof of Theorem 7.31 +----ccecen-.
A7.12.3, Proof of Theorem 7.32 ~+r--r---v---
AT.12.4. Examples of Type-C§ Codesg -:---------
INTRODUCTION TO QUADRATIC RESIDUES -+ -++---
PROPERTIES OF THE INITIAL ARRAY ------------.
AT.14.1. Proof of Theorem 7.33 -+« eos-renn
A7.14.2. Proof of Theorem 7.34 -----=-»------
A7.14,3, Proof of Theorem 7.35 ++«-- e
A7.14.4., Proof of Theorem 7.36 ----r -~
EFFECTIVE CONSTRAINT-LENGTH ------2c-ccsssnnn
A7.15.1. Proof of Theorem 7.39 v v v
A7.15.2. Proof of Theorem 7.40 -++->cvcreens
PROOF OF THEOREM 7.41 -----cccemecnacaana..

COMPUTER GENERATION OF ’CYCLIC’ CSOCs -+ ----
A8.1.1. Greatest Common Divisor ----:-:----"
A8!1020 Sum Modulo m -+ +-* sttt cnnces
A8.1,3., Product Modulom =---------r--¢----0.
A8.1.4. Power Modulo m -----cs--arvvaveerannss
A8.1.5. Prime Decomposition =---------+c«cc-un
A8.1.6. Primitive Root Modulom -+-----<c<----

Contents

A8.,2

A8.,5
A8.6

A8,7

A8.8

A8.9

A8.10
A8.11
A8.12

A8.1.7. Order J Modulo any Divisor d>1 of m
A8.1.8. Encoding and Syndrome Arrays +-:-+---
A8.1.9, Effective Constraint-Length ----:-:--:
FORTRAN PROGRAMMES FOR APPENDIX 8.1 «--+r+: -~
A8.2.1. Greatest Common Divisor -+ c-cr----
A8.2.2, Sum Modulom ++-+==*>"+- O A R
A8.2.3. Product Modulo m -+ rr e
A8,2.4., Power Modulo m - s reeercencnnn
A8.2.5. Prime Decomposition ~----+r e
A8.2.6, Primitive Root Modulom ---++-r--~r--
A8.2.7. Order J Module any Divisor d>1 of m
A8.2.8. Encoding and Syndrome Arrays +:°-----
AB8.2,9. Effective Constraint~Length --+------
CHANNEL AND DECODER SIMULATION ----:-s=svs-"
SIMULATION PROGRAMMES - :-:sc-ccccacvaccnsnens
A8.4.1. Software Implementation of the
Decoder
AB8.4.2., A Complete Simulation Programme for
Long Codes ++ ¢ "+ "sacrtantnecrsscenn
SUBROUTINES USED BY THE MAIN PROGRAMME ------
FORTRAN PROGRAMMES FOR APPENDIX 8.5 ---c-----
A8.6.,1. Channe)] Capacity, Channel Error-Rate
& Probability of Decoding Error under
DD
A8.6.2. Probability of First Decoding Error
under FD
SELECTION OF CODES WITH GIVEN PARAMETERS
A8.7.1. Codes with Given Information Block-
Length, k ------rrcsccrercancnne--
A8.7.2. Codes with Given Rate, c/(c+l) =-----
A8.7.3. Codes with Given Number of Orthogonal
Checks, J ~-recrrececannoncneanann.
FORTRAN PROGRAMMES ¥FOR APPENDIX 8,7 ---------
A8.8.1. Codes with Given Information Block-

Length ’ k
A8.8.2. Codes with Given Rate, c¢/(c+1) -----
A8.8.3. Codes with Given Number of Orthogonal
Checks, J -+crrseeeneorrenaarernns

CONFIDENCE INTERVALS ------c-c--erneccnencens
GRAPHS OF EER & NET CODING-GAIN vs I’ ««ccce--
ERROR PROPAGATION « -+ e et cnnnannnns
UNEQUAL ERROR-PROTECTION - - cccccseccncennas

REFERENCES - - st et ettt titttisrenscensnnsrnns

Page X

515

543

559

561
564

564
564

565
566

566
567

568
569
571
578
584

'DopDoDo00o0oOoO00DOoOoOoOoo00Ooo0oono,

‘Acknowledgements w

I should like to thank Dr Mike E. Woodward, my supervi-
sor, for his valuable contribution to the thesis, for the
time he spent discussing the various problems, for his pa-
tience and especially for his friendly approach.

My sincere thanks to Professor G.W.R. Griffiths, my Di-
rector of Research, for his generous assistance.

I should also like to express my gratitude to the late
Professor A.C. Clark for his very valuable advice during a
difficult period.

Julalulafulslulafalofafalulafalalufufalululsp

Abbreviations

APP
AWGN
BSC
CC
CEG
CS0C
c/w
DD
DIG
DMC
EA
egn
FD
FEG
FF
Fig.
gcd
IA
iff
ING
I/P
LHS
LSB
LSC
MEG
MIG
MLD
MSB
MUX
o/P
PCM
PSK
REG
reln
RHS
SA
SNR
S0
SR
SYRE
X~-OR
wrt

{1 ¥ I | O {1 T ({20 T N O | Y I O 1 (A 1 S O I (| O O O 1 O O T S I Y R [N I I 1}

a posteriori probability (see p. 136)
additive white Gaussian noise (see p. 287)
binary symmetric channel (see p. 6)
convolutional code (see p. 18)
central group (see p. 58)
convolutional self-orthogonal code (see p. 138)
codeword

definite decoding (see p. 139)
discarded input group (see p. 87)
discrete memoryless channel (see p. 5)
encoding array (see p. 220)

eguation

feedback decoding (see p. 139)
front-end group (see p. 58)
feed-forward (see p. 317)

Figure

greatest common divisor (see p. 435)
initial array (see p. 183)

if, and only if

input group (see p. 87)

input

left-hand side

least significant bit

linear sequential circuit

memory group (see p. 58)

memory input group (see p. 87)
maximum likelihood decoding (see p. 10)
most significant bit

multiplexing (see p. 283)

output

pulse code modulation

phase-shift keying

rear-end group (see p. 58)

relation

right-hand side

syndrome array (see p. 517)
signal-to-noise ratio

self orthogonal (see p. 138)

shift register

syndrome register (see p. 210)
exclusive-or

with respect teo

Notation

P
¥
U e ~1nuan

UHQQ® R

min

M hthth ® O M o
o~ — 5] —
' In ~
I L T T O e [O T2 T O { I LI L IO 1 O A ™o O I LI LBl I T e

| el i

3

[¥s

L

* A

—
o

-]

CC-Hct-HO TV UMWIODT I NMIXTH XGOS

L3

[LI LN { A [S (LI VU | IO T [{1 | O T IO { I 1

0 oeest 1)
B dg o nngEngERNENnngwgnnnttnmwnn Paonnu

e’

-3

number of states (Chapter 4) (see p. 89)

composite parity-check (Chapter 6) (see p. 135)

IA generating element (Chapters 7 & 8) (see p. 218)
autocovariance function (see p. 257)

'n!'/[k!'(n-k)!] = binomial coefficient

gignal-to-noise ratio per information-bit

delay operator

minimum distance of a code

energy per received bit (see p. 4) |
expected value of ?

channel~error sequence (see p. 46) |
complementary error function -{see p. 291)

coherent demodulator 0O/P {Chapter 1) (see p. 286) ‘
number of zero-length SRs (Chapters 3 & 4) (see p. 57) ‘
memory-density function (Chapter 4) (see p. 102)
memory~distribution function (Chapter 4) (see p. 114) ‘
Euler totient (Chapters 7 & 8) (=see p. 436) ‘
net coding-gain (see p. 13)

generator matrix (see p. 30) ‘
Galois field q (see p. 297)

parity-check matrix (see p. 45) |
identity matrix

nunber of orthogonal check-sums

total circuit memory (see p. 55)

memory order (see p. 19)

length of the ith SR of a normal LSC (see p. 33)
single-sided noise power spectral density

actual constraint-length (see p. 20)

effective constraint-length (see p. 145)

number of input blocks (Chapter 4) (see p. 89)

probability of bit decoding error

probability of channel error |
received sequence (see p. 46)

autocorrelation function (see p. 257) \
syndrome segquence (see p. 47) |
syndrome threshold (see p. 151) ‘
error-correcting capability (see p. 85)

optimum threshold (see p. 151)

message (or information) sequence (see p. 25)

channel sequence (see p. 25)

Notation

—
»
| - .
muwHnnitnmw

Hamming weight of ?

EEEE (see p. 89)

theta function (see p. 218)

greatest integer =2x

smallest integer 2x

congruence symbol (see p. 441)

equal by definition

partitioned by sets A & B (see p. 352)

A is a subset of B
A is a proper subset of B

Page xiv

greatest common divisor of a & b {see p. 435)

(x/y)/z = x/(yz)

!
i

||

T CE T A S T L S B T L e TR L L0 R T e T S B RO
.

L T N N R Ty T LTSy T T R TR E Nt Rt Arr T LN S LT LR Ty S LTy LA AT AN N R AT e LT TT TN L L LT AL ER LA A L A LA S S T YT Y TS TY LI P L PR TIY AT]
... AN e T S T T T T T LTI O e SRR T

P [R
L J
meee oo e femes o ban b p k1 o n pS?S"’ w
'''''''''''''''''''''''''''''''''''' Mrreefvieron e W A A nren, T T T N L R A R e T P R PP T P L A
Ecnd, el

Ar g gt d A A A SR e e ey e p ey aper P el

b oy

R P N R R A N A N A

The thesis investigates various aspects of convolutional code (CC)
theory, design and decoding.

A relatively nove! approach to CC theory has been developed. It is
based on the concept of convolution and the properties of the encoder
{a linear sequential circuit). Some new concepts & results were obtalned.

The complexity of the trellis diagram of a 'normal’ CC encoder is re-
lated to code parameters. The associated 'constrained trellis' is obtained
by deleting states & transitions, according to a certain criterion, while
its complexity is linked to code parameters. Finally, the ’simplified trel—
lis evolves from the constrained one by permiting transitions of length
more than one time unit. The existence, number and state of origin of
these long transitions Is again related to code parameters, both for the
general and for special cases; a decoding algorithm using the ’simpli-
fied trellis’ Is finally developed.

The algorithm for the majority-logic decoding of systematic CCs Is
optimized via the introduction of a syndrome threshold which depends
on the channel probability of error, as well as on code parameters. Ana-
Iytical expressions for the optimum threshold have been developed.

A systematic search for the generation of systematic self-orthogonal
CCs, with given properties, resulted in some new classes of such codes.

A family of codes, discovered by D McQuilton, is examined both theo-
retically & experimentally. Some new results concerning the codes’ struc-
ture, have been obtained. A great number of these codes were tested on
a computer-simulated binary symmetric channel. Graphs of the net cod-
Ing-gain vs SNR per Information-bit have been produced. From the re-
sults, conclusions were obtalned about the codes’ error-propagation per-
formance, the assoclated power-loss and the correlation of the decoding
errors. The codes were also tested with the optimum threshold to deter-
mine the power gains obtained. Finally, some resuits on the codes’ un-
equal error-protection properties were related to their parameters.

lDoDooooooDOoOooooopoooooon =

The thesis consists of eight chapters. Original material
appears throughout the thesis, but especially in Chapters
4,6,7 & 8. A set of appendices, attached to each chapter,
contains background material and proofs of theorems & exam-
pPles that are either long or do not directly contribute to
the understanding of the subject. The appendices have, also,
been used to keep the size of the main body of the thesis to
within the 250-page limit*

Chapter 1 {"Introduction to Error-Control Coding") devel-
ops the model of an error-control coding system, starting
from a typical digital communications system. It, also, dis-
cusses the various binary channel models, the characteris-
tiecs of error-control codes and the concepts of maximum
likelihood decoding & net coding-gain. A binary PSK coherent
demodulator, receiving over the additive white Gaussian
noise channel, will be used as the 'test-bed’ of error~cor-
recting codes. Its error performance is analysed in the ap-
pendix.

Chapter 1 aims to act as an interface between the ’real’
communications system and the ’world’ of error-control

codes,

Chapter 2 ("Structure of Convolutional Codes”) introduces
the relevant terminology and builds the theory of the codes,
starting from the concept of convelution between the input
to, and the impulse response of, the encoder. Topics dis-
cussed include generator sequences, generator matrix, gener-
ator polynomials, composite generator polynomials, catas-
trophic codes, distance measures, systematic codes, parity-

check matrix & syndrome. Both approaches ("matrix" & "poly-

¥ Although this limit was exceeded, by 10.8%.

Introduction '+ Page xvii'

nomial”) to the theory of convolutional codes (CCs) are cov-
ered,

The original material in this chapter concentrates on the
characteristics of the normal & the type-II encoders and on
the code matrices. With respect to the latter, a matrix
equation is developed which relates an arbitrary, but fi-
nite, portion of the encoder’s output to the corresponding
input, via a finite-dimensioned ’system’ matrix. The latter
is shown to be a generalization of the generator matrix.
Similar results have been obtained for the parity-check ma-
trix.

The aim of this chapter is to build the necessary CC in-
frastructure for the development of the rest of the thesis.

Chapter 3 ("Decoding of Convolutional Codes") classifies
and explains the various decoding techniques, but concen-
trates on one aspect of one of them, namely the state-tran-
sition diagram of a normal convolutional encoder {(a struc-
ture used in trellis decoding). This diagram is analysed and
results are obtained which link its complexity to the encod-
er parameters. A very powerful tool, used to that end, is
the partition of the encoder memory in groups, which play a
specific role during a state transition.

The aim of Chapter 3 is both to complete the general in-
troduction of CCs and to build an infrastructure for the

next chapter.

Chapter 4 ("Error-Trellis Syndrome Decoding") retraces
the decoding technique of the title (in the first two sec-
tions) and develops the algebra of the generalized trellis
(in the remaining five sections). Reed & Truong [24]) intro-
duced the idea of a state diagram with a Hamming-weight con-
straint, t, on the input and contents of the encoder. The
first section develops the general solution of the syndrome
eqn {8 = f(e)], while the third section introduces the de~
coding algorithm; the material generalizes, adds to and cor-
rects the work by Reed & Truong. The rest of the sections
(especially Sections 4.4-7) contain original work which con-

centrates on three issues: 1. The constrained trellis is

analysed and results linking its structure to the circuit’s

Introduction 'Page x1ix'

parameters are obtained. 2. The simplified trellis, obtained
from the constrained-one by removing all single-input tran-
sitions, contains transitions of length greater than one
time-unit. Their length, number and existence conditions are
related to the circuit’s parameters., 3. The simplified trel-
lis is used to improve the decoding algorithm.

The aim of Chapter 4 is the development of the algebra
linking the parameters of a ’'normal’ linear sequential cir-

cuit to the complexity of its generalized trellis.

Chapter 5 ("Threshold Decoding”) introduces the threshold
decoding algorithms (developed by Massey [18]), defines the
relevant concepts and discusses the properties of codes
suitable for threshold decoding. Some original work is in-

“cluded in the discussion of the structure of the code sys-
tem~-matrix, both for definite and for feedback decoding. The
chapter concludes with some results on convolutional self-
orthogonal codes (CSOCs), including a new term, called block
effective constraint-length.

This chapter forms the backbone of the rest of the the-
gis, which concentrates on the design and performance of
CS0Cs.

Chapter 6 ("Optimum Threshold for Majority Decoding of
CSOCs") represents original work, which concentrates on the
improvement of Massey's majority-decoding algorithm. In par-
ticular, the threshold used in majority decoding was set at
T = [J/21 (where J is the minimum number of syndromes check-
ing on any error bit). That setting guarantees correct de-

coding if no more than [J/2] errors have occured among the

error bits checked by the J syndromes. It is obvious,
though, that as the channel error rate increases, correct
decoding becomes less and less frequent.
- An expression between the probability, PB;, of a bit de-
coding-error and the syndrome setting, T, is developed and
the value of T which minimizes B, is obtained. The case of
constant-size syndromes (usually the case of definite decod-
ing) results in a closed-form expression for the optimum

threshold. The case of feedback decoding results in a recur-

rent equation and in a set of approximate closed-form ex-

—

Introduction Page ;jxw

pressions, as well as in upper & lower bounds.
The aim of Chapter 6 is the determination of that syn-
drome threshold which, for majority decoding, minimizes the

probability of a decoding error.

Chapter 7 ("Structure of ’'Cyclic’ CSOCes") introduces &
generalizes the above class of codes (discovered by McQuil-
ton [42]), studies their properties and elaborates on the
code-design technique. In particular, the problem of system-
atically constructing systematic CSOCs is tackled via the
discovery of the necessary and sufficient conditions so that
a general systematic CC is self-orthogonal (SC). A general
solution is developed until either a class of SO codes is
obtained, or a simplification becomes necesszary. In this
way, new classes of codes are discovered (which include
McQuilton’s codes), while the way for the discovery of other
classes of codes has been left open. The basic difference
between McQuilton’s approach and that of the author is that
the latter concentrates on the equivalent conditions for the
existence of CSOCs with certain properties. 0Of necessity,
the results obtained include McQuilton's work, as well as a
definite opinion about the existence, or not, of other
codes.

The last three sections contain some new results on the
properties of McQuilton’s codes.

Chapter 7 aims to analyse the structure, and investigate
the relatives, of the class of ’cyclic’ CS0OCs, whose per-

formance will be studied in the next chapter.

Chapter 8 ("Computer Simulation of ’'Cyclic’ CSOCs")
presents & analyses the simulation results. The main comput-
er-simulation programme used requires a minimal set of input

"net

data in order to generate a number of points of the
coding-gain" wvs "signal-to-noise power-ratio per informa-

tion-bit" graph., As a result, the main programme requires

the support of about twenty general-purpose subroutines
{built and tested by the author) whose flow-charts, back-
ground theory and FORTRAN listings are given in appendices.
Also, the very long actual constraint-length (% 1.7 Mbytes)
of some of the codes required a special software implementa-

Introduction Page xx

tion technique (for the decoder) that made use of bit-
manipulation commands.

For the class of CSOCs, experimental (simulation) results
were obtained on the net coding-gain of the codes, their
performance using the optimum threshold, their ’'behaviour’
under error propagation and on their unequal error-
protection properties.

The aim of Chapter 8 is to describe the computer-simula-
tion techniques used and to explain the results of the simu-

lation, using the previocusly developed theory.

A formal mathematical structure i= used to develop this
thesis, following the general-to-particular approach. Five
main areas have been researched: 1. The algebra of the gen-
eralized trellis. 2. The optimum threshold for majority de-
coding. 3. Construction of systematic convelutional self-
orthogonal codes. 4. Simulation of the class of ‘’cyeclic’
CS0Cs (discovered by McQuilton [42]). 5. Simulation tech-
niques, development of a library of number-theoretic subrou-
tines and computer-selection/generation of ’cyclic' CSOCs.

All results are proved mathematically, except for a small
number of general and well-known theorems (for which a ref-
erence is given). Examples are used to verify the ’predic-
tions’ of the theory, while the simulation results contrib-
ute to a deeper understanding of the ’'behaviour'® of the

codes,

The aim of the thesis is to extend our knowledge about,

and deepen our understanding of convolutional codes.

The thesis is organized into two volumes. Volume I con-
tains the main body (Chapters 1-8 and Conclusions), while

Volume 2 contains the Appendices and the References.

-

Nikos P. Frydas

Leicester, 1 January 1990

VOLUME 1

e W T TR VETL YT WCTWR M TR TURACRST TRy A\S.‘wwpﬂm W e L g - eT
-~ v amee e =R aE e oo -~ o B - v ez e W w - - "
e e oy, ™ e B F L F . =TT - =z - ~ =g
R S IO S Qe = - =la &2 = A Tem - B .

1

L T T T L T L T TR T R R A
S ZT L L S i e
il ANECOAUCETON B0
s P L YT DA T AT efraatihan U TN AT
- v R L R T I TR B r e e A wR e e irs o -

1 el PRI a b by XL AEULRIANL BRI aLELabi ks ey R N T RPN A PTVR SN TI LT LR
ptdnaddafhd WlE AN AN e e WA TR e TR A N e AN SRR L D

- R aaedur s 4 deon I woor e L I TE N A R f11 nrf s et it

L T . A . m “ A
e refia &Y T, o et s A Y LR ST TR Shaehh S ot

tress WG e N TTTY o T et ey ITER T RIT Y SLPL L 1ol de e +h
s s Error-~Con tro 7 d g,
st s s '

PETI R CaPa m ENA G SIERIRRIAGIeIs teade LR
ol A T IR A T TR T L O TI o] YT R

Chapter 1 will act as an introduction to the thesis. The
functional block diagram of a typical digital communications
system will serve as the starting point. This diagram will

be reduced to one including only what the error-control en-

coder & decoder 'see’ as their channel, source and destina-
tion. Based on this abstraction, channel models will be in-
troduced, the general concept of error-control coding will
be briefly discussed and some performance criteria will be

considered.

In 1948, Claude Shannon proved that if the information
signal is appropriately encoded, the rate of errors injected
by a noisy channel can be reduced to any desired level with-
out sacrificing the rate of information transmission or
storage. What Shannon did not tell us though is how this
objective will be achieved. The theory of error-control cod-
ing is concerned with this problem and has gone a long way,
since 1948. Error-control coding forms today a ’stand-alone’
branch of communications and is supported by a long list of
error-control textbooks and journals (see, for example, the

reference list, pp. 586-90).

Section 1.1 Page 2
1.1 BLOCK DIAGRAM OF ERROR-CONTROL SYSTEMS

In this section, a model of an error-control coding sys-
tem will be gradually developed. The ’effort®’ starts with a

complete’ functional block diagram of a digital communica-

FROM
BIT STREAM OTHER
/ ————~._ SOURCES
SOURCE SOURCE CHANNEL
SOURCE ENCRYPT MUX
fowmMar] NENCODE ENCODE

MULTIPLE
XMT MCGOULATE
ACCESS :
m cuanneL| WAVEFomM SYNC

™
MULTIPLE

RCV _I
ACCESS DEMUDULATE

SOURCE
DECODE

A

CHANNEL
DECRYPT DEMUX
DECODE

.

OTHER
SOURCES

BIT STREAM

Figure 1.1: Functional block diagram of a typical digital commu-
nications system (after Sklar [1]).

tions system (see Fig. 1.1). This is reduced to a diagram
with the minimum number of units necessary, to study error-

control coding.

Section 1.1 Page 3

]

1.1.1. The Elements of a Diqital Communications System

From a functional point of view, a digital communications

system may be divided in a number of blocks, which have to
be linked in a certain order (see Fig. 1.1).

Note that the transmission and the storage systems have
essentially the same structure. From such a point of view
they differ in that the one transmits information from here
to there, while the other from now to then. Note also that
all blocks appear in pairs (processor-deprocessor) except
for synchronization {SYNC) and the channel.

The formatting units act as an interface between the com-
munications system and the outside world. The channel links
the transmitting with the receiving site. The modulator and
the demodulator form the interface between the bit-stream
and the waveform parts of the system. For a brief descrip-

tion of each block, see Appendix 1.1 (p. 281).

DIGITAL CHANNEL

. 1

;

CHANNEL :

SOURCS MODULATOR | !
ENCODER

I

WAVEFORM

DISTURBANCE ' CHANNEL !

|

|

]

i

i

i

|

CHANNEL i

DEMODULATOR| |

DECODER I

|

|

— - |

Figure 1,2: Simplified block diagram of an error-control coding

system.

1.1.2. The Waveform Channel

The waveform channel consists of al; the hardware and

Section 1.1 Page 4

physical media hetween the modulator output (0/P) and the
demodulator input (I/P) (see Fig. 1.2). If one compares the
waveform at the channel 1/P, with the waveform out of the
channel, one will find out that the latter is a scaled rep-
lica of the former to which some disturbance has been super-
imposed. This disturbance may be due to any combination of
additive random noise, man-made interference, distortion,
signal fading (time-~varying attenuation), or even intention-

al jamming.

The most widely considered type of disturbance is the so-
called additive white Gaussian noise (AWGN). If the modula-
tor O/P is denoted by s{t), the AWGN by n(t) and the demodu-
lator I/P by r(t), then:

r(t) = s(t) + n(t) (1.1)

In the presence of AWGN, ' a good modulation method is
binary PSK (BPSK), with coherent demodulation [2]. In this

case the modulator transmits one of the two waveforms:

H

so(t) = {(2E/T)sin(2nf t+n/2) OSt<T (1.2a)

s,(t) {(2E/T)sin(2nf _t-n/2) 0stsT (1.2b)

The modulator transmits s (t) & sl(t) in the p}ace of
binary 1 and 0, at a rate of 1/T. fois a multiple of 1/T
and E is the energy of each signal element (see Appendix
1.2, § A1.2.1., p. 285). An optimum demodulator 'may | - in-
clude a correlation detector followed by a sampling switch
[2] {see Fig. Al.2.1, p. 286). The O/P of the sampling unit
is a real number (see § A1.2.2., p. 286):

f = [r(t(2B/D)sin(2nt ten/2)de = tBen, (1.3

n, is a zero-mean Gaussiaﬂ random variable with variance
o = Efi/2, where fi/2 is the double-sided noise power spec-
tral density. § = E+n_ if s, (t) is transmitted and -E+n_ if
s,{(t) is transmitted. ’

If f is processed as an analogue number then the demodu-
lator operates in analogue fashion. A more common approach
is for f to be guantized by a q-bit quantizer to produce,
thus, one of 2%9=Q different O/P symbols.

Section 1.1 Page 5

If hard-decision demodulation is used (Q=2), then the
bit-error probability, P, is given by {see Appendix 1.2, §
Al.2.5., p. 280):

P, = derfc{J(E/f)] (1.4)

where erfc(x) is the complementary error-function. Bounds
on, and an approximation to Pe, are obtained in Appendix 1.2
(§ A10206-, pn 291):

[1-1/(2r)1ef/[2/(xT)] < P, < eT/[2{(nr)] (1.5a)
(mmm> =1/(2T) < 2e"{(xl)P -1 < O (1.5b)
P, = e T/[2{(nT')] as I —> +o {(1.5c)
where, ' &« E/fA {(1.54d)
1.1.3. Dj 1.Chann

Consider the block diagram of Fig. 1.2. Necte that from
the point of view of the channel-encoder and channel-
decoder, the channel between them, called the digital chan-~
nel, is the most important. This channel is composed of the
modulator, the waveform channel and the demodulator. If the
modulator uses M different waveforms (i.e. if it replaces k
given I/P bits by a specific waveform, where 2%zM) and the
demodulator uses a g-bit quantizer to represent the corre-
lated & sampled outputs f, then the channel is characterized
by a set of M I/P symbols and a set of Q(=2%9 0O/P symbols;
it is then called an M-ary in, Q-ary out, digital (or dis-
crete) channel,

Furthermore, if each channel output depends only on the
corresponding channe)l input symbol, and not on any previous
transmissions, the channel is said to have no memory and is
called a discrete memoryless channel (DMC). Such a channel
is completely defined by the set of conditional probabili-~
ties P(rj|si) /i=1,2,...,M & j=1,2,...,Q, where P(rJ|si) de-

notes the probability that r,Z will be received, given that

3

s, was transmitted.

Section 1.1 Page 6

1.1.4. isc annel Models

The most common channel model used to test various coding
schemes is a DMC with binary modulation {(M=2)}, symmetric
noise~amplitude distribution and two-level quantizer (Q=2 -
hard-decision demodulation). This is called the binary sym-
metric channel (BSC) and it can be realized with a BPSK mod-
ulator, an AWGN waveform channel and a coherent hard-deci-

sion demodulator.

u CHANNEL Vv
SOURCF

ENCODER

e

ERRORS
CHANNEL
DECODER r = vte
(a)

(b)

Figure 1.3: a) Channel coding over the BSC; b) transition dia-
gram of the BSC.

Since the noise-amplitude distribution is symmetrical,
P(r,|s,) = P(r2|sl). Since also, P(r2|sl)+P(rz|s2)=1 and
P(r1|sl)+P(r1|sz)=1, there is only one independent parameter
in this channel model. If one lets P°=P(r1|sz), then the BSC

Section 1.1 Page 7

transition-diagram will be as in Fig. 1.3b. The bit error-

|
rate (bit-error probability) is Pe[given by eqn (1.4)]. ;

The BSC is a good test-channel for coding schemes operat-
ing over optical_ﬁbregﬂ satellite channels and space chan-
nels. Terrestrial 1links though, produce discrete channels
with memory. A simple two-input, two-output, channel with
memory would have two states; a ’good’ state where the bit
error-rate, p,, will be very small and a ‘bad’ state where
the bit error-rate, pP,, will be high (pz»pl). The channel
remains in the ’good’ state for most of the time, but on
occasion it shifts into the ’'bad' state, where it remains
for a brief period of time. If qldenotes the probability of
a shift from the ’good’ to the ’'bad’ state, and q, the prob-
ability of a shift from the ’bad' to the ’'good’ state, then
q,4q,. The state-transition diagram of such a channel is
shown in Fig. 1.4. See Appendix 1.3 (p. 294), for the calcu-

lation of the average error-rate of such a channel.

N 9 s
GOOD) (BAD .
1'q1 q. 1'qz
1-p,
0 1 0 1 ‘
P, P,

|
0 1 0 1 1
l-pl |
|
Figure 1.4: State transition-diagram of a binary channel with ‘
memory.
|
1
+2 THE INGREDRIENTS OF ERROR-CONTROL CODING }
|
|

Error-control codes are based on diverse mathematical

t] _Althauéh_ a direct-detection (:;an-;:oherentidal;tical system acts as ;_:z-:c_'l—ﬂ"f;;;-f

Section 1.2 Page 8

disciplines. Nevertheless, they have two common ingredients:

Redundancy and noise averaging.

1.2.1. Redundancy

Error-control coding, like most signal-processing tech-
niques, operates on blocks rather than on individual bits.
The channel encoder ’'breaks' the source bit-stream, u, in
blocks of k and replaces this with a block of n bits, to

form the channel bit-stream, v.

Like in all coding schemes, the mapping should be one-
to-one, so that the process is reversible; hence, n2zk. Be-
cause of the action of the error sequence, e (see Fig.
1.3a), the transmitted block of n bits is altered so that
any n-bit pattern is possible to be received by the decoder.
The latter is asked to decide, if the received n-tuple is a
legitimate message, or not. Clearly, the only way this can
be accomplished is by not permitting all possible received
messages to be valid ones. So, 2" 2F <=m==m> n>k, hence redun-
dancy is a necessary ingredient of error-contrecl schemes.

So, for an (n,k) code, only k out of every n channel bits
are message bits. The ratio R = k/n is called the code rate.
If the rate of reception of message bits is 1/T bps, then
the transmission bandwidth, W, is W = ¢/T, where c is & con-
stant that mainly depends on the unit-pulse used. Since the
encoder has to transmit ap_(n/k)(l/T) = 1/(RT) bps, the

iof 1/R; this factor

channel bandwidth increases’ * by a factor

is called the bandwidth expansion ratio.

Consider now the redundancy ingredient in more detail.
Assume that one wishes to correct all patterns of t or fewer
errors in a block of n bits. This means that even with t
errors, an n-tuple should still be identifiable with no oth-
er block apart from the original. Hence, all n-tuples should
differ in at least 2t+l positions. In this way, an n-tuple
with t errors will differ from any other n-tuple in at least
t+1 positions, but it will differ from the original in only
t positions, so correct decoding can be accomplished.

Hence, if all pairs of codewords (valid channel n-tuples)

differ in at least d‘m=2t+1 positions, the code can correct

1* This is usually the case; an exception is multilevel/phase modulation combined withl
a state-oriented trellls coding scheme. }

Section 1.2 Page 9

all patterns of t or fewer errors, in a block of n received
bits. t is the error-correcting capability of the code. The
number of positions any two sequencescﬁﬂbrin,:is called the

Hamming distance between them. d mentioned above, is

win’
known as the minimum distance of the code and is defined to

be the minimum Hamming distance between any two codewords.

At this stage, one is able to relate the amount of redun-
dancy in a code to its error-correcting capability, t. Since
there are C{n,i) = nVTanrk)ﬂﬂ’ n-tuples with i errors, the
decoder is asked to be able to recognize, in a unique way,
and in any of the 2¥ possible legitimate messages, any of
the 1+C{n,1)+C{n,2)++++4+C{n,t) error patterns, in that mes-
§age; hence, for a t-error correcting code, there exist
[14C(n,1)+C(n,2)+++++C(n,t)]2F error conditions. The decoder
is asked to relate, in a unique way, any of these error con-

ditions to a specific n-tuple. Hence,

[1+ (B) + (3) + ++v + (B)]er s 20 <=
Qo> 1 4 (111) + (12’) $oeee 4 (’g) < 2% (1.8)

1.2.2. Noise Averaging

It has been mentioned already that the channel bit-stream
is ’enriched' with n-k redundant bits. These bits depend on
a sequence of k message bits. The question that arises natu-
rally is, if it is an advantage to use a large value of n.

Assume that an error-control coding scheme is able to
correct all error patterns with Bn or less errors, where
0<fsl., If a BSC with probability of error p is used, then
the probability that & block of n bits contains i errors is
pi(1-p)™ic(n,i). The coding scheme will fail, if Bn+l or
more errors occur. So, the probability of decoder failure is

P(E) = Dp'(1-p)™iC(n,i) (1.7)
i=nf+¢l

Consider, for example, an error~control scheme which can
correct up to 5% of the block bits (B=0.05), when the BSC
error-probability is p=10*. The probability of a decoder

Section 1.2 Page 10

error, for block-lengths of 20, 40 & 100, is [eqn (1.7)1}:

For $=0.05 & n=20: P(E) = 1.9x10™
For B=0.05 & n=40: P(E) = 9.6x10"%
For B=0.05 & n=100: P(E) = 1.1x10"?

From the example above it is seen that, if a codaing
scheme can correct up to 5% of the bits of a block of n,
then, on average, if n=20 one block in 5,327 will be errone-
ously decoded, if n=40 one block in 104,000 will he errcne-
ously decoded and if n=100 one block in 909,000,000 will be
erroneously decoded. Eqn (1.7) & the above example show that
the performance improvement obtained through noise-averaging
increases with the block length. Hence, longer codes are

expected to be more 'efficient’ than shorter codes.

1.3 MAX K DIN

Consider the block diagram of Fig. 1.3a. The decoder’s
task is to produce an estimate, Ui, of the message sequence,
U, based on the received sequence r. Since there is a
one-to-one correspondence between the message sequence, U,
and the channel sequence (or codeword), v, the decoder’s
task is, in effect, to produce an estimate, ¥V, of the
transmitted codeword, v. A decoding error occurs iff v was
transmitted and V¢ #Zv. Then, the probability of a decoding
error, given that r was received, is P(V#vlr), while the

average probability of a decoding error, P(E), is,

P(E) = 2 P(¥#v|r)P(r) (1.8)

A decoding rule (i.e. a decoding strategy) which mini-
mizes P(E) is called maximum likelihood decoding (MLD).
Since r is fixed, minimizing P(E) is equivalent to minimiz-
ing P(V#v[r), for all r, and this is equivalent to maxi-
mizing P(V=v|r). Hence, for a given r, P(E) is minimized if

¥V is chosen to be that codeword, v, which maximizes P(v[r).

By definition of the conditional probability,

Section 1.3 Page 11

P(A|B) = P(A,B)/P(B) memm>
—_—> P(A,B) = P(A|B)P(B) = P(B|A)P(A) (1.9)

Using egn (1.9), P{v|r) = P(r|v)P(v)/P(r). If all code-
words are equally likely, then P(v) is constant, hence the
MLD rule is equivalent to choosing that codeword, v, which
maximizes P(r|v), for a given r. For a DMC, errors occur

independently from each other, hence

P(riv) = | [Ptrylvp)
i

Since logx is a monotonously increasing function of x, a

more useful expression is

logP(r|v) = logP(r, |v,) (1.10)
1

where i ranges over all bit positions in a block.

Finally, the MLD rule has becomne:

Theorem 1.1: Maximum likelihood decoding, for the DMC,

if all codewords are egqually-likely, is equivalent to choos~
ing ¢V as this codeword, Vv, which maximizes the sum in

(1.10), where r is the received sequence.

Consider now the application of the MLD rule to the case

i=vi'

Then, if r and v differ in d=d(r,v) positions [where d(r,v)

of a BSC. Let p(r1|vi)=p if ri#vi and p{r1|vi)=1-p if r

is the Hamming distance between r & v] d of the P(r1|V1)5 of
the sum in (1.10) will be p and the rest n-d will be equal

to 1-p. Hence,
logP(r|v) = d(r,v)logp + [n~-d{(r,v}]log(1l-p) —
===> logP(r|v) = d{r,v)leglp/(1-p)] + nlog(i-p) (1.11)

Since nlog(l-p) is a constant and because, for p<0.5,
p/(1-p) is less than 1, then logip/{(1-p)] is negative.
Hence, the MLD rule for the BSC becomes:

Section 1.3 Page 12

Theorem 1.2: Maximum likelihood decoding, for the BSC,

if all codewords are equally-likely, is equivalent to choos-
ing ¥ as this codeword, v, which minimizes the Hamming dis-

tance d(r,v}), where r is the received sequence.

At this stage it is useful to refer to the noisy channel

coding theorem, as stated in Lin & Costello [2], p. 10:

Theorem 1.3: Every channel has a capacity C and for any
rate R<C, there exist codes of rate R which, with maximum
likelihood decoding, have an arbitrarily low decoding error
probability P(E). In particular, for any R<C, there exist
(n,k) block codes, of length n and with k information bits
per block, such that

P(E) < 2~DPE(R) (1.12)

and there exist (n,k,m) convoluticnal codes, of memory

order m, such that
P(E) < 2-n{m+1}Ec(R) (1.13)

where Eb(R} & Ec{R) are positive functions of R for R<C

and are completely specified by the channel characteristics.

Note that the above bounds hold true for the average er-
ror probability of the ensemble of all codes. Hence, since
some codes are bound to be better than the average code,
Theorem 1.3 guarantees the existence of codes meeting these
bounds. Furthermore, one can see from these bounds that the
way to achieve very low probabilities of decoder failure is
via the use of very long codes. But since a maximum likeli-
hood decoder has to examine all possibilities before it
makes a decision and since, for an (n,k,m) convolutional
code, there are approximately 2X¥®™1) computations per block
of k information bits, it becomes obvious that the way to
achieve what Shannon predicted (i.e. arbitrarily low proba-
bilities of decoder error) is by no means easy. If the seri-
al channel bit-rate is C bps, then the decoder examines C/n
blocks/sec or, otherwise, it has n/C sec to make 2™ cop-

parisons. Consequently, the decoder can spend no more than T

Section 1.3 Page 13

= n2 k@) /0 gec per comparison., So, in effect, the computa-
tion load increases exponentially with the product km. Using
inequality (1.13) it becomes obvious then that the achieva-
ble performance of error-control coding schemes is limited
by practical considerations:

P(E) < (CT/n)Ec(R)/R (1.14)

So, if MLD is to be used, the obtainable performance
strongly depends on data rate C and the processing speed of

the available hardware (included in T).

One further problem arises from the fact that the noisy-
channel theorem does not show the way to achieve the above
mentioned performance, even if the practical considerations

were not a problem.

Coding theory came to tackle both problems. There are
techniques to design codes of given performance and there
are deccding methods, other than MLD, that are sub-optimum
but whose computational load does not increase exponentially
with the code length.

1,4 NET CORING-GAIN

Consider the relation between the probability of a bit
error and the signal-to-nocise ratio (SNR) I' = E/fi, where E
is the energy per bit and #i/2 is the double-sided noise pow-
er spectral density. For uncoded BPSK transmission over the
AWGN channel and coherent demodulation with hard decisions,
this is relation (i1.4). One would be interested to examine
the E/fi ratio required (by the uncoded system) to achieve
the same error-rate performance with a coded system of
code-rate R, A ’fair’ comparison should take into account
the fact that the coded system uses more bits/sec to commu-
nicate the same information and hence it needs more power in
order to maintain the same SNR in the channel. A ’fair’ com-
parison should use the same SNR per message (or information)

bit. This means that the coded system operates with a re-

duced (by a factor of R) energy/bit ratio.

Sectfion 1.4 Page 14

Consequently, in order to assess the gains obtained from
a particular channel-coding scheme, one would have to plot
the probability of bit-error versus the SNR per
information-bit, which is obviously the SNR/bit divided by
R, (R=1 for the uncoded system), for each of the two cases
(under, of course, the same conditions - modulation, demodu-
lation, waveform channel). Then, for a given bit error-rate,
the dB-difference between the two required SNRs, called the
net coding-gain, would be a fair 'estimate’ of the benefits
of channel coding. A complete comparison, though, should
take into account the delay imposed by the encoder & decod-

er, as well as their cost.

Coming back to the net coding-gain, G, let I' denote, from
now on, the SNR per information-bit. Then 'R is the SNR per

bit and the decoder 'sees’ a channel error-rate [see (1.4)]
P, = terfc[J(TR)] (1.15)

In response to this P,, the decoder ’generates’ P,, the
probability of decoding a bit in error. Let I'’ be the SNR
required by the uncoded system so that the latter achieves

the same error-rate performance. Then,
P, = terfc(4I") (1.16)

Let erfc ! be the inverse of erfc, i.e.

erfclerfc(x)] = x {1.17)
Then, T’ = [erfc(2P,)]? (1.18)
and net coding-gain = G = 10log(r*/r') 4B (1.19)

Asymptotic coding gain is often used as a figure of merit
for a particular coding scheme. This is the limit value of
G, as SNR tends to infinity. See Appendix 1.4 (p. 294) for a
discussion on the asymptotic coding gain of a block code. In
there, it is shown that G = 10log[R(t+1)] dB. So, for a
rate-3/4 single-error correcting code, G‘=1.8 dB, for an

R=3/4 double-error correcting code, Ga=3.5 dB, etc.

Sectijon 1.5 Page 15
1.5 CONCLUSIONS

In this introductory chapter, the model of a real digital
communications system was considered as the starting point
of the thesis. This model is based on the functional block
diagram of the system (see Fig. 1.1). The remarkable feature
of this diagram is its symmetry. Specifically, for every
processing block-unit at the transmiting site, there is a
de-processing one at the receiving site (with the exception
of the channel and of SYNC). Of particular importance is the
order according to which the various block units are linked,
and the fact that this order is reversed at the other site.

The block diagram of Fig. 1.1 was easily (and quickly)
reduced to that of Fig. 1.3a, made only of the channel en-
coder and decoder and their source, destination & channel.
The last three units are logical, in that they do not exist
physically but they simulate the corresponding portions of
the system of Fig. 1.1. For example, the channel encoder
'sees’ as its source the encryption unit (if there is one)
and all that lies before it.

Of particular importance, for the study of error-control
coding, is the encoder-~to-decoder channel. This was assumed
to be a ’black box' which reproduces at its 0/P the bit-
stream at its I/P. The two bit-streams are identical, except
that some of the O/P bits have been inverted, at random. Two
such binary channel-models were mentioned, the BSC and one
with memory. Their only difference is the correlation among
the errors they inject. The BSC corrupts bits independently
from previous corruptions, while the other channel produces

bursts of errors.

Having defined a channel model, over which an error-
control scheme may be tested, the next two {(obvious) prob-
lems are concerned with encoding and decoding.

In Section 1.2 it was reasoned that, if a code is to cor-
rect it needs to process bits in blocks (of k) and ’enrich’
each block with n-k parity-checks (redundancy). More
parity-checks are expected to result in a greater error-cor-

recting capability, t, but they will definitely increase the

overhead (a penalty). Furthermore, it was found that ’long-

Section 1.5 Page 16

' codes are expected to be better codes {(noise averaging).

er
This is, in effect, a collective security of the transmitted
bits, where the greater their number the better their de-
fense against errors.

As far as decoding is concerned, it was concluded that
the optimum method, called maximum likelihood decoding (MLD
- see Section 1.3), requires 2¥ calculations per received
block, in order to determine the nearest codeword. Shannon’s
second theorem guarantees the existence of codes which can
make the probability of error arbitrarily low {under certain
conditions). The problem is to find these codes and propose
a feasible decoding method. It is not surprising that, usu-
ally, one has to start from the end because the decoder is
very complex. Code length is limited by the technology of
the day, and then by cost (MLD complexity increases as 2F),
A sub-optimum method would sacrifice some error-correcting
power to allow the use of longer codes, or faster bit-rates.
In designing a code, the obvious trade-off is between code

rate, R, and error-correcting capability, t.

Finally, the performance (of an error-control system) is
measured by the relative frequency of decoded-bit failures
(Pd), for a given BSC bit error-rate P,. Since, though, a
coded system uses more bits/sec than the uncoded one, a
'fair’ comparison should take this into account. The net
coding-gain {(see Section 1.4), G, measures the net gain in
signal power per information-bit, achieved by the introduc-
tion of coding. This means though that the test-bed used
should include the modulator & demodulator, as well as their
(waveform) channel. The most widely used (and easy to simu-
late) waveform channel is the AWGN one (see § 1.1.2.). The
best choice for the modulator-demodulator pair is then, BPSK
with coherent demodulation. Note that the set of such a mod-
ulator, channel and demodulator is equivalent to the BSC, if

the demodulator uses hard decisions (i.e. a one-bit quantiz-

er).

- - = & 1 e . " Sl o T AW S W W TSN Y ¥R - -
35 - Fr e tAe s oMLALL We WM WAL o T T ~ v T R T

P iy . - Y i T 5 N - LTS e T - S

T P, P - - Y T e P I T PR

CHAPTEHR 2

» Boaate ¢ oraasaae wr ot e
i st e Y TRREROIERRIIELE L e AT G e e e SRELPY P

- - P e -t e - A ey g . P

e Structure O'F R

I T U TRT R A

................................ T

BN A eraea 44 des ¢ ow t ar
T L I T Y o e T Nt DT, A R A

L

LA R T S R R Ry)

P S - L

' Lo
se Aorocafnete
LTI Fle vy Yo s LRI T A I e T O STy o TF e By o P L - EL A TR

I
P R L L L I L X L L L I N N L RN TR L e R I Y AN Y Uy R r R T X R XA LA R o

AR onvolutronalmCﬁaes S

- PR e R e] .-

Chapter 2 has been designed to serve as a formal intro-
duction to the general theory of convolutional codes. Choice
of material and emphasis have been determined by the needs
of the thesis and of mathematical formalism. As a conse-
quence, otherwise important aspects of the theory have not
been given much attention. On the other hand, a few topics
that contain some original material have been treated rather
extensively.

It is the author’s opinion that proofs are an integral
part of the process of learning but that they do not always
offer 'good value for money'; so, the proofs that add rela-
tively little to the understanding of the subject are given
in appendices.

An effort has been made to document the results properly.
To achieve this, some basic theorems are treated as axioms
and the rest of the thesis is built on them, by use of math-
ematical logic.

Various authors present convolutional codes in wvarious
ways and use different notation. The author of this thesis
finds the approach of Lin & Costello [2] more suitable.

Chapter 2 is made of twenty-one sections; it covers a
comparison between the matrix and the polynomial approaches

to convelutional-code theory, constraint-length, code rate,

distance measures, generator sequences, generator matrix,

Chapter 2 Page 18

generator polynomials, encoder-output equations, generator-
polynomial matrix, composite generator polynomials, catas-
trophic codes, systematic codes, parity-check matrix, syn-
dromes, normal encoder and type-~II encoder.

The decoding techniques for convolutional codes are dis-
cussed in the next chapter.

Throughout this thesis, and unless otherwise stated, only

non-catastrophic codes (see Section 2.14) will be consid-

ered.

2.1 COMPARISON WITH BLOCK CODES

Consider an (n,k) block code. The n channel digits of any
block are calculated on the basis of the k message digits of
this block only.

An (n,k,m) convolutional code can be viewed as a general-
ization of block codes: The n channel digits of block h are
calculated on the basis of the k message digits of blocks
h,h-1,...,h-m {or stated otherwise, the n channel digits of
the current block depend on the current and the previous m
blocks). Note that each channel block depends on m+l other
blocks and, from this point of wview, linear block codes are
convolutional codes with m=0.

Note also that the n channel digits do not form a code-
word of their own but they constitute a frame within the
codeword. In fact, the codeword is nL digits long, where kL
is the length of the message sequence, To state it other-
wise, the codeword lasts for as long as the encoder is in
operation.

Hence, for a kL-digit message, a block encoder will
transmit L codewords, while a convolutional encoder only
one. Finally, while in a block code the codeword has the
length of a single channel block (i.e. n), in a convolution-

al code the codeword is nl, digits long.

Section 2.2 Page 19

2,2 ENCODER

A (ﬁnearfkr(n,k,m) convelutional encoder can be implement-
ed with a k-input, n-output, linear sequential circuit (LSC)
with input memory m [2] (see Fig. 2.1).

@ 6]

O————-l . TS,
Linear
u / o) RIS v
= deMUX : Sequential : ° by

RO) Circuit | @

:

Figure 2.1: A general linear convolutional encoder with its se-
rial-to-parallel and parallel-to-serial interfaces,

Such an encoder can be realized with k shift registers of
various lengths and with up to n exclusive-or {X-OR) gates,
as shown in Fig. 2.2. Note that the length of each shift

register (SR) varies between 0 and m. In fact:

Definition 2.1: The length of the longest shift regis-

ter of an encoder, for an {n,k,m) convelutional code, is m:

for this reason, m is called the memory order.

®

® 1 !

@ i

}

I
1
|
1

@

}

©
® l —Lﬁ :
! 1 j—.—. [P R— Y (n)

Figqure 2.2: General diagram of a (parallel-in, parallel-out)

I
T
.
[

}

}

'normal’ convolutional encoder.

|o% Strictlf speaking,“CCs‘are_linear by definition sinée”-they are a class of linear tree
codes; unless otherwise stated, only linear codes will be considered.

Section 2.2 Page 20

An encoder for an (n,k,m} convolutional code is called
normal iff it is realized with k SRs of various lengths and
n X-OR gates (see Definition 2.9 for a complete

description).

2.8 - T-LENGT

It is obvious, from Figures 2.1 & 2.2, that each channel

block depends on m+l source blocks.

Definition 2,2: The quantity N=m+1 is called block con-
straint-length.

Inspection of the encoder of Fig. 2.2, reveals that a
certain source digit may stay in the encoder for up to m
time-units (in fact there is at least one shift register in
which this occurs, according to Definition 2.1); during each
time-unit, it affects up to n channel digits. Therefore, a
certain message digit may affect up to (m+l)n channel digits
(this includes the current block).

Definition 2.3: The actual constraint-length, n of a

A’
convolutional code is defined as

Note that n, participates explicitly in the "noisy-chan-

nel coding theorem”, as may be seen in the next section.

2.4, IHE CODING THEOREM L0 ’

Theorem 2.1: The noisy-channel coding theorem, for con-

volutional codes:

For any R<(C, there exists an {(n,k,m) convolutional code

such that, with maximum likelihood decoding,

Section 2.4 Page 21

log,P(E) £ -nE (R) {(2.2)

where: R = k/n = code rate
C
P(E} = probability of decoding-error

channel capacity

n, = actual constraint-length
Ec(R) = positive function of R (if R<C), completely

determined by the channel characteristics

The bound (2.2) implies that for a fixed code-rate, R,
arbitrarily small error probabilities can be achieved, by
increasing the memory order m, or in general by increasing
the actual constraint-length n,, while keeping the ratio k/n
constant.

2.8 COMPARISON BETWEEN THE POLYNOMIAL AND MATRIX APPROACH

Many quantities will be introduced in the remainder of
this chapter; they include the I/P and the O/P of the encod-
er, of the channel and of other block units of the communi-
cations system. These quantities, and the relationships
among them, can be expressed using either the matrix ap-
proach or the polynomial apprcach to convolutional codes.

The formal introduction of both appoaches is necessary,
because both are useful and both are used by various au-
thors. On the other hand, complexity and confusion increases
by a significant amount. Appendix 2.4 (p. 307) explains the
basic difference between these two approaches and hence
{partly) alleviates this problenmn.

2,8 CODE RATE ’)

It is clear from Fig. 2.1 that a convolutional encoder
generates n channel digits for every k message digits.
Therefore:

Code rate = R = k/n {2.3)

Nevertheless, the effective code-rate is somewhat smaller

Section 2.6 Page 22 |

sage length L becomes sufficiently large.

To understand this, consider the general convolutional
encoder {(see Fig. 2.2). At the time the 1lst block of k mes-
sage digits is applied at the input ports the encoder memory
should be clear from any past digits; otherwise, the channel
digits will depend not only on the source digits but also on
a collection of unknown digits, hence the decoder would be
unable to uniquely decode, even if there are no channel er-
rors. These unknown digits, would reside in the encoder
memory since the times of the previous message.

Consequently, each message should be followed by an en-
coder-resetting sequence of ’'zeros’. Since the longest SR
has length m (see Definition 2.1) this resetting sequence

should be made of m blocks of zeros.‘*

Note 2.1: A message seguence must be terminated with mk
'zeros’ in order to clear the encoder memory (for the next

message sequence) [2].

Consider a message sequence of kL digits. According to

the conclusion above, kL+km digits must be shifted in the

enoder and consequently nl+nm channel digits must be trans-
mitted. So:

Note 2.2: The encoding of a kL-digit message results in
n{L+m) channel digits and this means that

Effective code-rate = R, = kL/{(nL+nm) (2.4)

From eqns (2.3) & (2.4), one can obtain:

R, = R/(14m/L) (2.5)

Note [from eqn (2.5)] that the code rate R is reduced by
a factor 1/(14m/L)<1 and that
As L—>+o, R, —>R (2.6)

Definition 2.4: The !'relative, decrease in code rate is

called fractional rate loss {2] and equals:

| ¥ aAlternatively, the tail of nm zercs terminates = codeword.]

\
\
than R and their difference becomes negligible, if the mes-
|
|
|
\
|
|
|
|
|
|
\
\
|
|
|
|
|
|
|
\
|
|
|
|
|

Section 2.6 Page 23

(R-R_,,)/R = 1 - L/(L+m) = 1/(1+L/m) (2.7)

For example, in order to keep the fractional rate loss
below 1%, the message must be at least 99m blocks long.

2.7 GENERATOR SEQUENCES

For the rest of this chapter, and unless otherwise stat-
ed, only binary codes will be considered; so instead of
"digit" the term "bit" will be used, if .appropriate (note
that BIT = BInary digiT). '

Let the response of the encoder’s jth output (see Fig.
2,1}, to the binary impulse (1000---) applied at input i
(1<isk), be represented by the row vector g;” (1£j<n).

Since the encoder has an m time-unit memory and no feed-
back loops, the impulse response can last for at most m+l

time-units.

Definition 2.5: The kn N-tuples g;“ (12igk & 1<j<n)

1) & 1) (i) ,,, (1)
oft & (g} ! gy (2.8)
are called generator seguences and they specify the code
completely.
|
2,8 ARY ¥

For the whole of Chapter 2, the terms addition and sum,
as well as related symbols, will stand, indiscriminately,
both for ordinary addition and for scalar or vector addition
over GF(2). Explanations wil be provided only when confusion
might arise.

It is well known* that the convolution between the input
and the impulse response of a linear time~invariant (LTI)
system, equals the output of the system. The convolutional
encoder is made of delay elements and X-OR gates (see Fig.

2.2), hence it is an LTI system.

¥ see for example Rabiner & Cold {11], pp. 12-4.

Section 2.8 Page 24

Let the semi-infinite vector,
u® & (ol u® u® .o /1sisk (2.9)

represent the input (or message, or information) sequence
at port i of the encoder. From eqn (2.8), the code generator

sequence g'i)= (g‘“ “i--- ‘in is the impulse response cor-

J
responding to I/P i and O/P j. Hence:

Note 2.3: u(”*gs“ is the response of the encoder at its
jth output port {1£j5n), when the ith input port (1=5igk) is
excited by u'® and all other ports are held to zero (i.e.
they receive the all-zero sequence)}. The symbol ’'*’ denotes

convelution.

Consider the case where all k I/P ports are excited by
the general binary sequences u‘l) /i=1,2,...,k. Since the
system is linear, the jth encoder O0/P will be the sum of all

responses u‘“*g;“.
Specifically, if the semi-infinite vector,
v & (v () vl) /1jsn (2.10)

represents the output (or channel) sequence at port j, then

k
vid = S ullxgit) , for all j=1,2,...,n (2.11)
i=1

According to the definition of convolution®, u‘”*g;“ is a

semi-infinite row vector with elements

(u‘“*ggi’)h = Zu“’g‘“ /h=0,1,2,... (2.12)
z

Since g?;= 0, for z<0 or z>m [see reln (2.8)], z should
vary from 0 to m. Since also uin = 0, for z<0 [see relation
{(2.9)], h should be kept h>z. Then eqn (2.12) will give:

e
(uxg{), = Fullell) /b=0,1,2,... (2.13)

where & = MIN{h,m}.

¥ See for example Rabiner & Gold [11], pp. 12-4.

Section 2.8 Page 25

Combining equations (2.11) & (2.13) and interchanging the

order of summation:

Theorem 2,2: The jth bit of the hth channel block is
given by,
S k
vid = 3] uilegl) /h20 & j=1,2,...,n (2.14)
z=0 i=1

where © = MIN{h,m}, u{!> is the ith bit of the zth source
source block & gﬁ; is the zth bit of the ijth code generator

sequence,

The serial input and output sequences are represented by

the semi-infinite row vectors u and v, respectively:

u = [uo,ul,...,uh,...] /u, & (u"]” uf? ... u,‘f’) (2.15)
VE [VgVpsee e] /v s (V@ e v) T (2016)

Careful inspection of eqn (2.14) reveals the following:

Note 2.4: Source blocks u u uhd‘participate in

h’ h-l,...’
the formation of vﬁ“, unless h€m in which case all the past

source blocks participate.

Note 2.5: A particular source bit, say, u?’ takes part
in the calculation of a particular channel bit, say, v{¥ if,

and only if, g{i) = 1.

2.9 DRISTANCE MEASURES FOR CONVOLUTIONAL CODES

The material on distance measures is given in Appendix
2.5 {p. 309) because, alhough it is an important part of

convolutional-code theory, it is not directly useful to this

thesis,

Section 2.10 Page 26

2,10 A T T K

The objective of this section is to derive a matrix eqn
for the hth output block V.. The derivation is important for
three reasons: Firstly, this matrix eqn does not seem to
appear in the literature [although, of course, the result is
certainly well-known and appears in other forms like in egn
{2.14) and in polynomial expressions]. Secondly, the genera-
tor matrix of the code (see Section 2.11) can be easily de-
duced from the above-mentioned matrix equation. Thirdly, it
assists the reader to improve his/her understanding of the

structure of convolutional codes.

Consider reln (2.14), which gives the jth bit of the hth
channel block. Note that the inner summation in (2.14) can

be replaced by the dot product of two vectors:
For h-z20, z20 & 1<j<n: }gu;Pg‘“ P P (2.17a)

where: = (g e - gt (2.17D)
Note that u . is defined by eaqn (2.15). Upon combining
(2.17a) with (2.14):

L)
If 8 & MIN{h,m}: v{¥= 3l u_g, /h20 & 15j<n (2.18)
z=0

Expanding the summation in the above equation,

1y _ "o ——
Voo T YnaOie t Yhpn9iea?t U8,
v =u g +u_ g + +e0 4+ ug
h h-a¥2,m h-m+1¥2,m-1 h¥2,0
LI R I R I I I SR I R I B S I I I I I A] _> (2.19)
vi® = u g _+u g + +¢¢ + ug
h h-a*n,n h-m+1¥n,m-1 h¥n,0

It is understood that, in (2.19), h=0,1,2,... and u =0

for x<0. The system of equations in (2.19) can be written in

matrix form:

Section 2.10 Page 27

gl,m gz,m tre g

n,m

v = -1 92,01 ° " Gppa

h [uh-n’uh-ml""’uh] (2.20)

LI T I I A I I T Y R N Y

4 8 0 & 8 K S S PR

9.0 90 " o

where h=0,1,2,.,. and u = 0 if x<0,.

The matrix equation above can be written in a simpler
form, if the following notation is adopted:

For z=0,1,...,m: (izi‘»[gl'z,t,:;z’z,...,gn’z (2.21)

Combining eqns (2.20) & (2.21):

= -1
v, = [uh__,uh_ml,...,uh] {2.22)

QD -- -G')EG)

where h=0,1,2,... and u =0 if x<0.

Note 2.6: Matrix equation (2.22) relates the hth chan-
nel block with the current and the past m message (source)
blocks, through a (kN) X n system matrix (made of the coef-
ficients of the encoder’s impulse responses).

Examining eqn (2.,21), one can easily deduce {using egn
(2.17b)] that

g;n ggz cer gD

' Z » N2z
g(2) 8(2) ees (2}
For all z=0,1,..,m: G, = Lz 72,2 B,z (2.23)

(k) (x) _.. (k)
gl.z‘ B2,z gn

Finally, using a theorem on the multiplication of parti-

Section 2.10 Page 238

tioned matrices (see Appendix 2.6, p. 311), matrix equation

(2.22) can be written in a more compact form:
9
For h20 & 6 & MIN{h,m}: v, = 24,6 (2.24)
z2=0

It is the opinion of the author that matrix equations
{(2.22) & (2.24) are more useful for the representation of
the encoder O/P, than any other expression found in any of
the textbooks (Lin & Costello [2], Blahut [10], Lin [12],
Clark & Cain [13], Wiggert [14], Peterson & Weldon [15],
Lucky et al [16], Heller [17] & Massey [18],[19]) or papers
{Forney [201,[21]) known to the author and discussing the

matrix {or polynomial) theory of convolutional codes.

2:11 APP I RA

The objective of this section is to develop a matrix
equation for an arbitrary and finite portion
(v, Vv

1ss+4¥,.. .} of the channel sequence v, where h & x are

+ +
nonn;g;tive E;tegers. This will be related to the corre-
sponding message sequence through a system matrix, denoted
by [G]:. What is called generator matrix in the literature,
will be readily obtained from [G]}, if h=0 and x—>+®. For a

proof of the following theorem see Appendix 2.7 (p. 312):

Theorem 2.3: Consider an (n,k,m} convolutional code.
Let v, denote the hth channel n~-tuple and u the hth source
k-tuple. For h20, x20 and 6 & MIN{h,m}:

1t [Y]: = [Va Voo o0 Vi) (2.25a)
[ulz < [uh'a’u-9+1’."’uh+x: (2-25b)
Gy Gpy **° Gy
G G s e G
and [G]: & B-1 8 B+x-1 (2.25¢)
G_x G"lil “v e GO

Section 2.11 Paga 29

then [v]: = [u]i[e]: (2.26)

where G, is specified by egn (2.23) and it is understood
that Gi= 0 for iéf{O,m].

matrix of n-tuples,

matrix of k-tuples and [61: is an
(x+1+406) X {x+1) matrix of k X n submatrices.

In egqn (2.286), [v]i is a

1 x (x+1)
[ul? is a 1 x (x+1+6)

The following results are special cases of eqn (2.26):

Lemma 2.1: For hzm and x20:

G o --0

G-_1 G- ++ 0
[uh-l’ Upeper? ** ’umx]

* & 8 8 0 0 & 8 0 2

[vh,vhﬂ,..,vhu] = (2.27)

[B B N R B]

0 0 -- G

Proof: It follows from eqns {2.25) & (2.25), noting that o
= MIN{m,h} = m and G, = 0 for ig¢[0,m].

Lemma 2.2: For all h2m & h’2m and x20:

g = |Gg|™ (2.28)
[e]i = [e]:

Proof: It follows from inspection of eqn (2.27).

Lemma 2.3: If Gi=0 for i<0, for x20 & h20 /x+h<m:

Gh Gh+1 e thx
[V]h = [upsttyseeeruy,] Gy G Ghyny

LI IR IR B BN B BN

{(2.29)

G G "o GO

-x -x+1

Proof:

It follows from (2.25) & (2.26), noting that x+h<m
and 6 & MIN{h,m} = h.

Section 2.11 Page 30

Lemma 2.4: For all x20:

GD G1 cee 3

b 4

0 GO " Gx-l
[VO,VI,...,Vx] = [uo,ul,...,ux] LI I N R R) (2-30)

4] 0 o GD

where Gi=0 if i<0 or i>m.

Procef: It follows from (2.25) & (2.26), if h=0 (in which
case 0 = MIN{O,m} = 0).

Definition 2.6: The generator matrix, G, is defined by:
6 & LIM [6]) (2.31)

I—He
B

Using the definitions of G and [G]:, one can obtain the
following well-known form of the generator matrix {(the ele-

ments outside the boxes are all zeros).

(2.32)

GO GI' .Gz Gn-l Gu-‘
- 4 ™ -
Gg |Gy |*** [Ge2| Bz [B
G% qﬁSJQki (381 GL"
PR K T oD
RATS I AEFTITE L
G, |6, 16, |G 3
6, Gi sz"”,; Tl
G - IG " " e
PR Fe il (
s G, .
Gy it
P
G, .
Gb”
Theorem 2.4: v = uG (2.33)

Section 2.11 Page 31

Proof: It follows from (2.30), if x is left to —> +o and
if the definitions of G (2.6) and v & U [egns (2.15) &
(2.16), respectively] are employed.

Matrix equation (2.30) appears alsoc in Lin & Costello [2]
(Sec. 10.3), in the discussion on minimum distance. But egn
(2.30) is a special case of Theorem 2.3; it represents orig-
inal work and, to the best of the author’s knowledge, it
deoes not appear in any publication. On the other hand, Theo-
rem 2.3 is not a new result; it is simply another way to
look at the same thing. But the theorem certainly improves
the presentation of convolutional codes because it is more
general (it includes v=uG) and at the same time more specif-
ic (it offers controls that permit zooming’ onto spe-
cific portions of the encoder’s output sequence). Finally,
note that this result {(as well as preceding ones) follows
analytically from the concept of the impulse response of a

linear time-invariant ciruit (see Section 2.8).

2,12 POLYNOMIA

The objective of this section is to introduce the reader
to the polynomial approach to convolutional codes.

Let the coefficients of polynomials in D represent the
various binary sequences. In accordance with the notation

previously introduced,
For i=1,2,...,k, the ith message polynomial is defined by

udd(p)y = ué“ + ui“D + u;“D2 4+ sen {(2.34)

For j=1,2,...,n, the jth channel polynomial is defined by

V(D) & v+ v 4 viID2 4+ ... (2.35)

The, indeterminate D can be interpreted as a delay opera-
tor, the power of D denoting the number of time-units a bit
is delayed with respect to the initial bit, in the sequence
[2]. It can be shown (see Appendix 2.8, p. 313} that,

Section 2.12 Page 32

k
viii(p) = 3} u®(D)g{(D) /12j<n (2.36)

i=1
gi’(p) = i+ g{p + .ov + gD" /1gjsn & 128k (2.37)
Definition 2.7: The kn polynomials ggi’(n). defined in
(2.37), are called the generator polynomials of the corre-

sponding code and they completely specify the code.

A comparison between the generator sequences {eqn (2.8)]

and the generator polynomials [eqn (2.37)] reveals that:

Note 2.7: The coefficients of the generator polynomial
g;“(D}, form the generator sequence g;”, for i=1,2,...,k &
J.=1’2,.'.’n.

Toother gates
R B N

® 0]) vors ®)
@ Bi1 Bj2 8i3 EiM -1 EiM.

| . vO(D)

Fromother SR’s

Figqure 2.3: The ith SR with connections to the jth gate (1<i<k &
15j%n).

The generator polynomials can be easily deduced from the
inspection of the circuit diagram of the normal encoder'.
According to Note 2.5, in order tc determine ggf; /2=0,1,...
ym, one should examine the connections from the ith SR to

* See Note 2.9.

Section 2.12 Page 33

the jth gate (see Fig. 2.3).

Note 2.8: For a normal encoder realization, gﬁ; /0<z<m
is 1 iff there is a connection from the O/P of the zth stage
of the ith SR (1<£i<k), to the jth X-OR gate (1£j<n). It is
understood that the 0/P of the zeroth stage is the I/P of
the SR.

|
It can be easily deduced that,
Length of the ith SR = M, = MAX {degg(“(D)} (2.38)
194 J
and Memory order = m = MAX {M;,M,,...,M] (2.39)
2.13 RATOR- A TRIX
Expanding the system of egqns (2.36):
(2.40)
vID(D) = u™(D)g{™(D)+u®(D)gP (D) +++++u® (D) g (D) — |
vi®(D) = u(D)giM(D)+uP(D)g{P (D) +++ + +u™ (D) g{¥ (D) X
v (D) = u(D)g{(D)+u®(D)g(P (D)4 -+ +u™ (D) g (D) —
System (2.40) can be written in matrix form:
V(D) = U(D)G(D) (2.41a)
where: u(p) = [u“’(n).um(n),...,u(k)(n)' (2.41b)
V(D) & [v(”(n),vm(n),...,v‘n’(n)' (2.41c)
(1) (1) cee QD)
g, ’(D) g,’(D) g.”’(D)
(2) D (2) D e (2) D
a(p) = g,”’(D) g9;’(D) g,“’(D) (2.41d)
(k) (k) . s (k}
g (p) 9 (D) g™ (D)

Section 2.13 Page 34

Definition 2.8: The k X n matrix G{D) of generator

polynomials with ith-row, jth-column, entry g;“(n), is cal-

led the generator-polynomial matrix*.

2.12 NORMAL ENCODER

The generator-polynomial matrix G(D) offers a very com-
pact description of the code and alsoc an easy way to deduce

the normal encoder, which is defined below.

Definition 2.9: Let G{D) be a kK X n matrix of polynomi-
als in D. Then, the normal encoder corresponding to G(D) is
made of k shift registers and n X-OR gates. The I/P of the
ith SR is the ith (1%£i<k) I/P port, while the O0/P of the jth
gate is the jth (1£j%n) O/P port. The length of the ith S8R
is the maximum exponent of D, along the ith row of G(D) [as
defined by eqn (2.38)].

The following supplementary results are easily obtained:

Note 2.9: With respect to the normal encoder, corre-
sponding to the k X n generator-polynomial matrix G(D):

The number of inputs to the jth gate (1£j$n) equals the
number of non-zero polynomial terms along the jth column.

The connections to the jth gate are determined by the jth
co{umn of G(D) (1<j<n). Specifically, g?’(D) determines the
contributions from the ith SR to the jth gate. In particu-
lar, a connection from the O/P of the hth stage (0fhs<m) of
the ith SR (1<£i<k) to the jth gate (1<jsn) exists iff the

coefficient of D", in g'¥’(D), is non-zero.
J

Note that the type of encoder which was called normal,
aboeve, has been given other names by wvarious authors. For
example, Lin & Costello (see [2], p. 305) use the name
straightforward, while Forney (see [20] & [21]) uses the

terms obvious and controller canonical form {(the latter term

* Lin & Costello [2) call it, transfer function matrix.

Section 2.14 Page 35

is used in system theory). Note also that there exists
another type of standardized encoder which was introduced by
Massey [18], in 1963. This encoder will be introduced after
the discussion about systematic codes (see Section 2.18).
Appendix 2.9 (p. 314) illustrates the construction of 3

normal encoders, given their generator-polynomial matrices.

2,15 TROP

There are several convolutional codes for which a message
sequence of infinite Hamming weight might produce a channel
sequence of finite Hamming weight; if the latter is corrupt-
ed by a few channel errors it can be transformed into anoth-
er codeword corresponding to a message sequence of finite
Hamming weight. In such a case, the original and the decoded
message sequences will differ in an infinite number of
places. Such codes are called catastrophic, and are briefly

discussed in Appendix 2.10 {(p. 317).

2,16 SERIAL ENCODER

Expressions for serial bit-streams in to, and out of, the
encoder are obviously useful and constitute a part of the
theory of convolutional codes. Nevertheless, the parallel-
in, parallel-cut, approach is much more useful in describing
their structure. In any case, the serial bit-stream expres-
sions are not useful for the development of this thesis. For
this reason, the relevant theory {(of composite generator-
polynomials) is given in Appendix 2.11 (p. 320).

2,17 SYSTEMATIC CONVOLUTIONAL CODES

Definition 2.10: An (n,k,m) convolutional code is

called systematic iff the first k output polynomials v??(D),
vi3(p),...,v® (D) equal the k input polynomials u‘l’(D),
u®(p),...,u® (D).

Section 2.17 Page 36

For i=1,2,...,k: viiy(p) = u¥(p) (2.42)

The objective of this section is to restate the main re-

sults, so far, simplified for systematic codes.

2.17.1. Generator Matrix

Its basic building block is the k X n matrix Gz/z=0,1,..
.yMm, whose ijth element {1<i<k & 1<j<n) is gﬁ;[see equations
(2.21) & (2.23)].

It can be proved that:

Theorem 2.5: For systematic convolutional codes,

[1,P,] /z=0
G, —> (2.43)
e [O,Pz] /12z<m

where I is the k x k identity matrix ,
0 is the k X k all-zero matrix
& Pz/z=0,1,...,m, is the k X {n-k) submatrix of Gz,
made of columns k+1,k+2,...,n.

Proof: See Appendix 2.12, p. 323.

Theorem 2.6: If I is the k x k identity matrix, 0 is
the k x k all-zero matrix and P, is the k¥ X (n-k) system

matrix (z20), given below,

(1) 1) e e s 1)
gk+1,z gluz,z gn z

(2) (2) . s (2)
For all 2z=0,1,..,m: P = Exot,z Brez,z En.z (2.44)

. L] . * * - L] . .

L . L] L * . LI L

(K) (k) ... o(K)
Byil,z Bs2,2 g,z

then the generator matrix G has the form:

Section 2.17 Page 37

(2.45)

1 P, O P1 OP,--- OP _, 0P,
1P, 0Pt 0P 0P, 0P,
b ¢ P0 0 PI 4 Pz
I P9 o P
G = IP, -0 P,
? ?*1 * 8 »
0P,
I P,
Proof: The form of G follows from Theorem 2.5 and eqn
{2.32), while the form of P, from eqn (2.23).
i
2.17.2, The Qutput of the Encoder
Lemma 2.5: For an (n,k,m) systematic convolutional
code,
]
ViR & [y D e g = Sg P /h20 (2.46)

where & & MIN{h,m}.

Proof: It follows from eqn (C) of Appendix 2.12 (p. 323).

Lemma 2.6: For an {(n,k,m) systematic convolutional
code,
v = u{? /i=1,2,...,k (2.47a)
8 k
visd = 3 Dluillel o /§=1,2,...,n-k (2.47b)
z=0 =1

where h20 and 6 & MIN{h,m}.

Proof: It follows from the definition of systematic codes
and eqns {(2.45) & (2.46).

Section 2.17 Page 38

2.17.3. Generator Sequences

The generator sequences gf‘“ /i=1,2,...,k & j=1,2,...,n
(see eqn (2.8)] are made of the elements of the k X n ma-
trices G, /2z=0,1,...,m [see eqn (2.23)]. Indeed the ijth
element of G, [ggf;] is the (z+1)th element of g;“.

" " Theorem 2.5 states that, .for systematic conQSIﬁEignaH
codes, all the elements in.the first k.columns of Gz‘/z=0,1,i
.+ym are zero, apart from the diagonal, g{!), 2520y e 00y B8, of

G,. It follows “then-that-the generator’sequences g;i’. /i=1;2, ‘r

+«1k, are zero , except.from* gi”,‘ g;z’, vaey g;k’, which are im-

t

pulsive. ‘The. following theorem has been proved:

e ——

Theorem 2.7: For an (n,%X,m) systematic convolutional

code, the generator sequences, g;” /i=1,2,...,k, have the

form below:

0 if j#i & 1<£j<k
ggi) b (1 0 Q - 0) if i=j & 12j<k ——> (2.48)

| S— (1) 1) ,,, g(i) i ;
(33,0 g4,1 g“ﬂ) if k<j%n

Using the above result and Definition 2.5, one can easily

prove the following:

Lemma 2.7: A systematic convolutional code is complete-
ly specified by its k{n~k) generator sequences g;ﬂ,g;f;, ‘e ,g;”

/i=1’2’oo¢’ka

2.17.4. Generator Polynomials

Lemma 2.8: For an (n,k,m) systematic convoluticnal
code, the generator polynomials ggn(D) /i=1,2,...,k, have
the following form [&(z) = 0 if z#0 and &(0) = 1]:

_— 53(i-j) if 1<jsk

g{) (D) = —> (2.49)

L]
b 3%iD® if k<j%n
z=0

Section 2.17 Page 39

Proof: It follows from Note 2.7 & Theorem 2.7.

2.17v5' or—-ro O#ﬁ Ma f‘.X

Using Definition 2.8, of the generator-polynomial matrix
[see also reln {(2.41d)] and Lemma 2.8, the following is

easily proved:
Lemma 2.9: For an (n,k,m) systematic convolutional
code, the generator-polynomial matrix has the form
G(D) = [I,P(D)] (2.50)

where I is the k X k identity matrix and P{(D) is the

k X (n-k) polynomial matrix

a(p} gi)(D) .-+ g'’(D)

g3(D) gD} .-+ gl¥(D)

LR R N Y R N B R N I I I I I I I A)

P(D) = (2.51)

L N N B N B L B D D B I IR I

g*2(p) g{*}(D) .-+ 9f®(D)

2.17.6. mposite Ganerator-Po mials

See Appendix 2.13 (p. 323).

2,17.7. Enceoder

Since the generator polynomial matrix, for the first k
outputs, is the k X k identity matrix [see egn (2.58)] the
first k O/Ps are identical with the k I/Ps (see Fig. 2.4).

Note 2,10: A normal encoder for an (n,k,m) systematic
convolutional code is implemented with a k-input, (n-k)-
output, LSC containing at most n-k X-OR gates, and k shift

registers of lengths varying between 0 and m stages.

Section 2.17 Page 40

o 0] ' 1 (n o
o @ *) 0
o (k) Y ® o
»] (k+1)
LSC with k+2)
——————0
Transfer .
Function .
P D) (n)
R - o

Figure 2.4: Systematic convolutional encoder.

2.17.8. Non-Catastrophic Codes

Theorem 2.8: Every systematic convolutional code is

non-catastrophic.

Proof: From eqn (2.50), the first k X k submatrix of the
generator-polynomial matrix, G(D), is the identity matrix I,
whose determinant is, of course, equal to 1. Then QI(D), of
Theorem A2.10.2, is 1 and so gcd[l,fbi(D) /2%2isC(n,k)} = 1 =
D?. Then, the systematic convolutional encoder has an FF
inverse and hence the code is non-catastrophic (see Theorems
A2.,10.1 & A2.10.2, pp. 317-8).
QED

2,18 °~ JYPE-II ENCODER

Consider the normal encoder of Fig. A2.9.3 (p. 316). It
has 4 SR stages (hence its state-~-transition diagram has 16
states) but, it may be illustrated that the correspoending
code can be realized via a 2-SR stage encoder. It will be-
come clear, in the next chapter, that a reduction of the
number of SR stages is highly desirable since the complexity
of the Viterbi (and other decoding algorithms) strongly de-

Section 2,18 Page 41

pends on this number.

In most of the cases, the normal encoder uses the minimum
number of SR stages. In some cases another type of encoder
offers reduced complexity. For example, with systematic
rate-(n-1)/n codes, Massey'’s ([18], p. 23) type-II encoder
uses one SR of length m, instead of n-1 SRs of lengths be-
tween 0 & m. In what follows, the above observations will be
systematized. Note though that the results will concern the
general (non-systematic) case. Although the encoder to be
introduced below is not minimal (i.e. using the minimum num-
ber of SR stages) unless at least the code is systematic and
n-k < k. Nevertheless, it was felt that a specialization
for the systematic case only would introduce an unecessary

restriction.

Definition 2.11: Let G(D) be a k X n matrix of polyno-

mials in D. Then, the type-II encoder corresponding to G{(D)
is made of n shift registers (SRs) and a number of X-OR
gates interspersed among the stages of the SRs. The jth SR
ends in an X-OR gate whose O/P is the jth O/P port (1£j%n).
The length (number of stages), Mﬁ’ of the jth SR is the

maximum exponent of D, along the jth column of G(D):

j = - (1) .
Length of the jth SR M, MAX [deggd (D)} (2.52)
B

A comparison between the normal and the type-II encoders
reveals that while the former’s SRs are defined by the rows
of G(D), the latter’s SRs are defined by its columns. In
both cases, the n 0/P ports are the O0/Ps of n X-OR gates.
Finally, in the normal encoder the connections are from the
various stages of the SRs to the n X-OR gates, while in the
type-I1 encoder from the k I/P ports to the stages of the
SRs, via the X~OR gates (see Fig. 2.5, below).

The feollowing supplementary results are easily obtained:

Note 2.11: With respect to the type-1I encoder, corre-

sponding to the k X n polynomial-generator matrix G{(D):

The maximum number of gates along the jth SR is M3+ 1
{see Fig. 2.5). The jth column (1<j%n) of G(D) describes the

Section 2.18 Page 42

connections to the jth SR, while the ith row (15i<k) de-
scribes the connections from u*’(D).

The number of inputs to the hth gate of the jth SR (12j2n
L OshSMs) is equal to the number of non-zero coefficients of
D" along the jth column of G{(D) (note that the gates are
counted from right to left - see Fig. 2.5). Note finally
that, gates number 0,1,...,)%-1 have one more I/P, from the
previous stage of the SR. Obviously, gates with one I/P do
not exist.

A connection from the ith I/P port u‘*)(D) (12isk) to the
hth gate of the jth SR (1£j¢n / OShSHs) exists iff the coef-

ficient of D" in gJ”’(D) is non-zero.

u’(D)

D)

l.l(k)(D)

—& v D)

0

~€£— v o)

0

. =
De— ~e—
&

Pe—
t
e

X

-é_. VD)

0

-
-
%9_
e
. -
x

Figure 2.5: General diagram of a type-II convolutional encoder.

Note that the type-II enceder has n-k more SRs than the

normal one. The number of O/P gates is the same (i.e. n),

while the type-I1 encoder has a great number of extra gates

Section 2,18 Page 43

dispersed among the stages of the SRs. Although a proof is
required, in order to be certain, it is safe to state that
for a non-systematie code it is unlikely that the type-I1
encoder is minimal (i.e. with the minimum number of SR
stages). That is not the case, though, with systematic

codes, and especially when n-k < k, or the same, R > 1/2.

Note 2.12: A type-II encoder, for an (n,k,m) systematic
convolutional code, can be implemented with a Lk-input,
{n-k)=-output, linear sequential circuit, containing n-k SRs

and a number of X-OR gates.

In Appendix 2.14 (p. 324) the type-11 encoder, corre-
sponding to the code of Example A2.9.3 {(p. 316), is de-
veloped. Consider the savings obtained through the adoption
of the type-II encoder. The normal encoder has 2% = 16
states, while the type-II encoder has only 22 = 4 states
{for a formal treatment of the encoder state-diagram, see
Section 3.2, pp. 55-64).

One question remains to be answered, before the conclu-
sion of the current section. Given the code polynomial-gen-
erator matrix G(D), which of the two types of encoder should
be used?

Before attempting to answer the question above, one has
to decide whiéh (if any) is more important, the gates or the
SR stages? It is rather obvious that the total number of SR
stages is a 'fair’ measure of the complexity of an encoder.
In any case, the complexity of the trellis increases expo-
nentially with the total number of encoder SR-stages.

The complexity measure is therefore Mfﬂ5+---+Mk for the
normal encoder [see (2.38)], and Jﬁ4§+---+qifor the type-II

encoder [see {2.52)]. Hence, the following theorem:

Theorem 2.9: Let G(D) = [ggﬂ(n)] /i=1,2,...,k & j=1,2,
«.+vyn be a generator-polynomial matrix. Then cocrresponding

to G(D), the type-II encoder is less complex than the normal

one if, and only if,

Section 2.18 Page 44

n k
MAX {degg'? (D MAX ldegg!)(D 2.53
Z {deggi® (D)} ¢ 122 MA) {degs{ (D)} (2.53)
0
2,19 A - X
Definition 2.12: The parity-check polynomial matrix

associated with the k X n generator-polynomial matrix G(D},
is any full-rank (n-k) X n matrix H{D) of polynomials with
elements in GF(p“)*, satisfying ([24]):

G(D)HT(D) = © (2.54)
B
Theorem 2.10: Let G(D) = [Ik,P{D}] be the generator-

polynomial matrix of an (n,k,m) systematic convolutional
code. The parity-check polynomial matrix H(D), associated
with G(D), has the general form:

H(D) = X(D)[-P"(D),T,] (2.55)

where X{D) is any nonsingular (n-k) X (n-k) matrix of

polynomials over GF(p*).

Proof: See Appendix 2.15 (p. 325).
i
Note 2.13: The parity-check polynomial matrix is not

unique, as is obvious from the previous theorem,

Lemma_2.10: A parity-check polynomial matrix, asscciat-
ed with G(D) = [Ik,P(D)], over GF(2), has the form:

H(D) = [PT(D),I,,] (2.56)

Proof: It follows from Theorem 2.10, if X(D) = S S (I is
nonsingular) and noting that -P{D) = P(D) over GF{2).

* p% - power of a prime.

Section 2.20 Page 45

2.20 PARITY-CHECK MATRIX

The definition given below is a modification of the defi-

nition proposed by Blahut [10], for the parity-check matrix.

Definition 2.13: Let G be the generator matrix for an

(n,k,m) convolutional code. A parity-check matrix is any

matrix H determined as following:

H 2 LIN [H]z (2.57)

where [H]z is a (z+l1l) X (z+l1) matrix of the submatrices
hiJ /0€igz & Qs5jsz. hid are (n-k) X n matrices with elements

in GF(p®) and [H], satisfies the following condition:
[e]:[n]i=0 /z=0,1,2,... (2.58)

where [G]gis defined by eqn (2.25c).

Theorem 2.11: A parity-check matrix H, for an (n,k,m)

systematic convolutional code, has the following form*:

T -

0 -+ PL -I - (2.59)

where Pi/i=0,1,...,m are k x (n-k) submatrices defined
by eqn (2.44), I is the (n-k) x (n-k) identity matrix & 0 is
the {(n-k) x {n-k) all-zero matrix; the elements of all subma-

trices belong to GF(p").

1 * Non-binary codes, are now considered.'

Section 2.20 Page 46

Proof: It can be easily verified that GH' = 0; G is given
by eqn (2.45).

Theorem 2.12: Let G be the generator matrix for an

(n,k,m) systematic convolutional code. A parity-check matrix

associated with G has the following form:

& Lo [K],
where [H]o [o’ mt] {2.60a)
[H1,, o©
[H], = 221 (2.60b)
R, [H]0
R, = —[PT o,pP! ,0, ...,PI,O] (2.60c)
Gy = [1,,P,]
and G = [0, P] /1sism —p—> (2.60d)
P, = 0 Ji>m

Proof: See Appendix 2.16 {(p. 326).

2,21 SYNDROME ’ T

Let u and v denote the semi-infinite source and channel
sequences, respectively [see eqns (2.15) & (2.16)]. Consider

the following semi-infinite sequences {(see also Fig. 1.3a):

Received sequence: r - [ro,rl,rz,...] (2.61a)

where r, = (r{” riz) see ri“)) (2.61b)
Channel~error sequence: Q [eo,el,ez,...] {2.62a)
where e, = (ei” e{?? ... e{“’) (2.62b)

Estimated information seguence: {1 & [ﬁo,ﬁl,ﬁz,...] (2.63)

Section 2.21 Page 47

Note that if the transmitted sequence v is corrupted by

additive noise, only,

r=v+e (2.64)
Definition 2.14: The syndrome sequence
g = [30'31'52""] /si-"- (si” siz’ R s{“‘k’) {2.65a)
is defined by: s & rH' (2.65b)
Theorem 2.13: If e is the error sequence, in a channel
with additive noise, then:
s = eH' (2.66)

Proof: From Theorem 2.4, vV = UG ==> vH' = (uG)H" = u(GH")
{using Definition 2,13] m=m> v = 0 (2.67)
If the channel suffers from additive noise: s = rH' =
= (vte)H' [by (2.64) & (2.65)} w=m=m=> s = VH' + eH’

{and using (2.67)] ===> s = eH'

QED

The above results can also be given in polynomial nota-

tion. Let:
Received polynomial:
R(D) & [r“’(D),rm(D),...,r‘“’(D)] (2.68a)
where ri(p) & ¢ + rp + VD2 4... (2.68b)

Channel-error polynomial:

E(D) & [e‘”(D),e‘z’(D),...,e‘“’(D)] (2.69a)
where e(p) & e?’ + e?JD + eé“Dz +o0e (2.69b)
V(D) & U(D) are defined by {(2.41).

If the noise in the channel is additive, then

R(D) = V(D) + E(D) (2.70)

Following Definition 2.14, one may write:

Section 2.21 Page 48

S(D) = R(D)H'(D) (2.71)

Note that R(D) is a 1 X n vector and H(D) is an {n-k) X n

matrix, so S(D) is a 1 X (n-k) vector of polynomials:

Syndrome polynomial:

S(D) = [s(“(n),sm(n),...,s‘"’(D)] (2.72a)
where s(D) & s{! + s{VD + s{D2 +... (2.72b)
Theorem 2.14; In a channel with additive noise,

S(D) = E(D)H(D) (2.73)
Proof: Similar to Theorem 2.13.
|

Lemma 2.11: Let H{(D) = [-P(D),Imk] be the parity-check
polynomial matrix of an (n,k,m) systematic convolutional

code. Then:

S(D) = RP(D)-R*(D)P(D) = EP(D)-E®(D)P(D) (2.74a)

where: R®(D) & [r(“(D),rm(D),...,r“"(D): (2.74b)

RP(D) & :r““”(D),r(‘"z’(D),...,r‘“’(D): (2.74c)

E*(D) & [e‘”(D),em(D),...,e“"(D): (2.74d)

and EP(D) = :e“‘*“(D),e“"z’{D),...,e“"(D): (2.74e)

Proof: The result, above, follows easily from eans (2.70)
& (2.71).

i

Consider the product, [ru)(D),r‘“(D),...,r“’(D)]P(D).

Using the partition of P{D) into the polynomials g;ﬁ(D)
(i=1’2’|uo’k & j=1,2,o-n,n-k) [See eqn (2-51)]’ one easily
arrives at the following:

Lemma 2.12: For an (n,k,m) systematic convolutional

code, the jth /j=1,2,...,n-k syndrome polynomial is given
by:

Section 2.21

g

std

Page 49

k

(D) = r®*3(p) - 3r¥(D)gf})(D) (2.75a)
i=1
k

(D} = e™I(D) - 3leV(D)g{i)(D) (2.75b)
i=1

|

It would be useful to obtain the result of Lemma 2.12 in

non-polynomial form. This can be achieved by replacing the

pvolynomials in D,

sums of terms:

in relation (2.75), with the corresponding

x(D) = inDi
1=0

47
‘\
0 ~, (1)
— N
@ i "l @
Do } ENCODER :
R :
® | ®
¥ Syndrome Register
@) ((&+2) |&+D) Sprms 8 im2 s,
k+1) 3 M _
il ~H
) |
P 1
' h
| i
&+2) || V. i® ‘
B "UTT >
b L
b !
L |
. i
L] b
¥ I
® | \ BB -
’j “¢LF — —_
A 8,47

Figure 2.6: The syndrome portion of a decoder for an (n,k,m)

binary systematic conveolutional code.

Section 2.21 Page 50

Theorem 2.15: For an (n,k,m) systematic convolutional
code, the jth syndrome digit of the hth received block is

given by:

8 x

s}‘l“ = r")k’“ - 2 Ergf;gg;'z /1%j<n-k & h20 (2.76a)
z=0 j=1
e k

- k 1, :

sp?? = efMD - 37 Slefllg(l) . /12i%n-k & h20 (2.76b)

z=0 i=1

where 8 &= MIN{h,m}.

Proof: See Appendix 2.17 (p. 328).

If one compares eqn {(2.47) with eqn (2.76), one readily
concludes that the syndrome bits can be calculated by re-
encoding the received message bits and adding the last n-k
bits of the re-encoded received block, to the n-k received

varity-check bits, as shown in Fig. 2.6.

2,22 CONCLUSIONS

This chapter contains the theory of convolutional codes
(CCs). In Section 2.1, an (n,k,m) CC was defined as an er-
ror-correcting code whose current channel block depends on
the current and the past m message blocks. In other words, a
CC is a generalized block code. Furthermore, it was argued
that an encoder, for a CC, may be implemented with a k-in,
n-out, linear sequential circuit (LSC), made of up to k
shift registers and up to n X-OR gates (Section 2.2). Such
an LSC is completely described by a set of kn {(m+l)-tuples,
called the generator sequences (Sec. 2.7), which are the

impulse responses of the circuit.

The next logical step was to relate the O/P with the I/P,
via the set of generator sequences. To this end, the concept

of conveolution was used Jjustifying, thus, the name of the

codes. In particular, the C/P of the encoder’s jth port

Section 2,22 Page 51

equals the sum of the I/P sequences, each convoluted with

the corresponding generator sequence [see eqn {(2.11)}].

CC literature uses either the matrix, or the polynomial,
(or both) approach{es) to the code-theory. Appendix 2.4 il-
lustrates (in an original way) the difference between these
two techniques so that the reader may grasp the reason of
their existence and their advantages. In the matrix ap-
proach, the digits are grouped per block time-unit, while in
the polynomial approach are grouped per port. Thus, the for-
mer technique uses semi~infinite dimensioned matrices of
submatrices, while the latter uses finite matrices of poly-
nomials in D¥ of infinite degree. Note that this awkward
'infinite’ arises because a CC encoder (unlike a block one)
generates only one codeword {(see Sec. 2.6) of infinite

length, when it operates continuously.

Another piece of original work was developed in Sec.
2.11., Egn (2.26) relates an arbitrary, but finite, portion
of the encoder O/P (made of blocks h to h+z) to the corre-
sponding part of the input sequence (made of blocks h-
min{h,m} to h+z)} and a finite-dimensioned ’generator matrix’
[G]". A number of special cases are also examined and, fi-
nally, the generator matrix G is defined to be the limit of
[G]:, as z —> +o, The importance of [G]: lies in its fle-
xibility. It is a generalization of previous work, but it
‘also permits a simple treatment of special cases.

The corresponding polynomial expressions are easily
translated from the matrix ones. Furthermore, the
generator-polynomial matrix, G(D) (also called transfer-
function matrix - with good reason), is linked to what was
called normal encoder (Sec. 2.14). Usually, the normal is
also the minimal encoder {’exponentially? important for
trellis decoding). Occasionally, though, the type-II encoder
is the minimal one, especially if high powers of D concen-
trate along relatively few columns of G({D) (Sec. 2.18).

The results of Sections 2.1-2.16 are simplified for the
case of systematic codes (Sec. 2.17). The most important
result is the form of the polynomial-generator matrix, G(D)
= [I,,P(D)].

¥ pis the delay operator.

Section 2.22 Page 52

The parity-check polynomial matrix {Sec. 2.19) is defined
by G(D)H'(D) = 0. It is not unique and, for systematic
codes, it has the form H(D) = X(D)[-ﬁWD),Imk], where X(D)

is any nonsingular matrix.

The parity-check matrix {(Sec. 2.20), H, is defined as the
limit of [H],, as z —> +®, where [G]J{H])I = 0 /2z20. This
constitutes an effort to avoid again infinite-dimensioned
matrices. Theorem 2.12 shows that [Fﬂz may be defined by a
recursive matrix equation. Both the idea of [H]zand the

theorem, are original work.

Finally, Sec. 2.21 defines the syndrome as the product of
the received sequence with the transpose of the parity-check
matrix. It is proved that, if noise is additive, the syn-
drome digits are linear combinations of the channel-error
digits only. This is central to the theory of CC for thresh-
old decoding (see Chapters 5, 6 & 7). It is alsoc shown
that, for binary systematic cocdes, the syndrome is formed by
adding .to the received parity-bits, the parity-bits corre-

sponding to the received message-bits (see Fig. 2.8},

3

FEORANEAUERIREII TS Ly AEE e S ey ad b TN TN T TN
Al T PN ””.” S ”I” AL WETERURELE N VEREVN AN A 0 A WEed ll. , d

ket W B T,
T T T I T Y R Y e N 1 3

R I T TV S B2 s oy s PTT I SR TR I TR IR T AR T RS R IR Ih]
Ay SRS S A8 O 038 t)f?(:()(f wwc)fawmwwnmmmmwwmwwmw
[e gt Foro a5V A z L T (T T L
'l I' Il’l. lI’Q.lllxlllli'l’l!l'lIl.l I'lllll TR TR T

Borar o nanr e ooy

PORRATERSLEAN G AR L TRELE LEEIESE FARS L Retk A2 b

LI LB L B S B T) LRI X o | 4
L I | o J “r e L E e I T T B e B A T TR P) L for

lll ll|ltll l"llalltll L R AR I"l””l .r.l,!” .'!' 'r””“” “'l'l’l‘l’l’l.l. ‘l..l.ll .!.'l'l,l.lll'l'l "I.I'II.II ll I")‘I'l”l.'l l'l'.'l'r"'l‘l I'.Il.'l.l.llll .l.|.l.l'l.l .'I‘lll l.l e 'l
S %ooer £ e o et e fare v 1 ol et SRl A el e e EE R EA R
N A N e R A T g A R e A 0N g T T B g e R T (AR
o Vo lutional

e S 0 e eer 1 "o LLL I X) (] o
LA I r AR R L T L T T TP U R T] 7 !

Chapter 3 has been designed to serve as a brief presenta-
tion of decoding techniques for convolutional codes.

Choice of material and emphasis are again determined by
the orientation of the thesis towards syndrome decoding and
perhaps by the subjective opinion of the author.

Since the material in this chapter mainly helps to bridge
the gap between convolutional code structure and syndrome

decoding, the presentation has a tutorial flawvour.

DECODING OF CONVOLUTIONAL CODES

SYNDROME

Table
Look-up

APP Majority

Figure 3.1: Classification of decoding techniques for convolu-

tional codes.

Chapter 3 Pagae 54

Figure 3.1 illustrates the relation among the various
decoding techniques for convolutional codes. Chapter 3 con-
tains six sections: Introduction, convolutional encoder
state-transition diagram, trellis diagram, Viterbi decoeoding,
sequential decoding & syndrome Qdecoding. Of these, greater
attention is paid to the structure of the transition and
trellis diagrams. In spite' of the tutorial flavour of this
chapter, some new (or at least originally presented) results
were obtained during the consideration of the convolutional

encoder transition and trellis diagrams.

3,1 INTRODUGTION .

Convolutional decoding techniques have been studied for
many years. About three‘years after the introduction of con-
volutional codes {(CCs) (by P. Elias, in 1954), Wozencraft
devised sequential decoding; this is, in effect, a trial and
error search-~decoding technique, of variable duration, which
offers very good performance, but at that time it would have
required a very costly implementation. To overcome this dis-
advantage of sequential decoding, researchers devised other
techniques grouped under the name syndrome decoding. Gener-
ally, a set of syndrome equations is obtained which is then
used to provide an estimate of each channel error-digit
{each syndrome digit equals a specific linear combination of
channel error-digits - see Theorem 2.15, p. 50). Syndrome
decoding are suboptimum, easily implementable, techniques;
they are also deterministic since each block is decoded
within a computational cycle,

A Viterbi decoder is, in effect, a maximum likelihood
decoder for convolutional codes that adopts a clever optimi-
zation strategy which minimizes the number of computations
and/or memory cells required. It was introduced in 1967 by
Andrew Viterbi and has since become one of the most widely-
used decoding techniques.

The above mentioned techniques will be introduced brief-

ly, in this chapter. Some of these will be studied further,

Section 3.1 Page 55

in subsequent chapters. Firstly, though, the encecder transi-
tion & trellis diagrams will be extensively discussed in
Sections 3.1 & 3.2; some new results concerning the struc-~

ture of these two diagrams are included in these sections.

The reader will notice that the material that follows
discusses only the normal* encoder (and not the type-11I
one). This is so because for most codes the normal is also
the minimal encoder and because most results are valid for
both implementations (if not, rall.-that is usually needed! is a

simple modification).

As Forney [25] wrote, convelutional codes may be easier
to decode but they are harder to analyse, compared to block
codes. The reason seems teo be their complex structure. This
forced many researchers to propose various approaches to the
problem of convolutional code analysis. One of them is the

finite-state machine approach.

3.2.1. Intredugtion

Consider a binary (n,k,m) convolutional code and the nor-
mal encoder® realization. Let M, = length of the ith shift
register (15igk). Obviously, 0<M ,<m, for i=1,2,...,k and:

Total Encoder Memory = M = IEML (3.1)

The state of the encoder is determined by the contents of
its memory, which in turn is a selection of its pest m in-
puts (an input is a k-tuple). Using standard notation, the
contents of the encoder memory (and hence the state of the

encoder), at time-unit h, is

(3.2)
S [ul® vee g@u® cos g ces g@u2) ces P cuy By
S(h) = [“ R LN Uh-ny Up-2Yp-1 Uh-ig Yp_2Yp-1

where, u}‘llr”lexa.sts if, and only if, M, 2 1 /1%i<k.

¥ See Definition 2.9 & Note 2.9, p. 34.

Section 3.2 Page 56

It is usually written, S(h) = SJ, where Sj is the symbdi
identifying the particular state. Normally, j is the decimal
equivalent of the M-tuple in (3.2).

If q is the number of code symbols (usually, q=2):

Total number of states = qgf (3.3)

Example 3.1: Consider the encoder of Example A2.9.1 (p.

314). It is a normal encoder for a (3,2,1) code. It is made
of 2 shift registers of length 1 (PH=M2=1). Hence its total
memory is M=2 and it has 22=z4 states. If S(h) = [BA}, then:

s, = [00], s, = [01], S, = [10] & S, = [11].

Example 3.2: Consider the encoder of Example A2.9.2 (p.

315). It is a normal encoder for a (4,3,2) code. It is made
of 3 shift registers with ‘lengths M1=0, M,=1 & M,=2. Hence,
its total memory is M=0+1+42=3 and it has 23=8 states. If
S(h) = [CBA], then: S, = [000], S, = [001], S, = [010}, S, =

0 1 2 3
foirl, s, = [100], S, = [101], S, = [110] & s, = [111}.

4] 6

A state-change takes place iff at least one of the memory
cells of the encoder changes content [as is evident from
reln (3.2)]. Under normal operation this happens only when a
new input is applied at the encoder; this causes the con-
tents of each SR to be clocked one position towards the 0/P,
to make space for the new I/P. So, the current state of a
convolutional encoder (and any general LSC) can be deter-
mined by its previous state and the current input.

Assume that the encoder is currently at state: S(h):Sc,
where 0<c<q”-1. An interstate transition is caused when the
current input u, is clocked into the encoder. Consequently,
given the current state, the next one depends entirely on
the current input; it follows then, that to each transition

there corresponds a unique group* of input blecks.

3.2.2. Pequential Machines

The discussion above indicates that a convolutional en-

¥ Usually a Bingle-element group.

Section 3.2 Page 57

coder should be treated as a sequential finite-state ma-
chine; furthermore, the analysis of the encoder should be
assisted by the results that have been obtained in the field
of Sequential Machines and Automata Theory.

Appendix 3.1 (p. 329), contains some definitions and

examples on state-transition diagrams.

3.2.3.

The following results relate the code parameters with a
few state-transition diagram details, like number of states,
number of transitions per state, multiplicity of transitions
(multiple-edge transitions), etc. The analysis that follows
considers only the normal encoder. The difference between
the normal and the type-I1 encoders lies in the fact that
the latter’s SRs are interspersed with gates; in this way,
the memory contents are not just shifted but also altered,
with each block time-unit. Nevertheless, the analysis that
follows needs a few minor (hopefully and most probably)
modifications in order to be able to describe the behaviour

of any general LSC.

Theorem 3.1: Consider an (n,k,m) normal®* encoder with

generator-polynomial matrix G(D). Let f[G{D)] denote the
number of rows of G(D) that contain only 1s and 0e. Then,
the number of encoder SRs of length M, > 0 is k - f[G(D)].

Proof: See Appendix 3.2 (8§ A3.2.1., p. 333).

From above:
FIG(D)] = f = Number of zero-length shift registers {3.4)

For instance, in Example A2.9.1 (p. 314), f = 0, while in
Example A2.9.2 (p. 315), f = 1 [the 1st row of G(D) contains
only ’ones’].

The following definition will help to prove & discuss the
basic results of the current and the next chapter. The con-
cepts that will be introduced have a dual meaning; they can

either be taken to mean parts of the physical or the logical

* See Definition 2.9 & Note 2.9.

Section 3.2 Page 58

memory of an encoder {and in general of any LSC); or sets of
variables., The general term group will be used throughout
and it will stand either for a set of specific and fully
identifiable physical or logical SR-stages, or for a set of
specific variables that represent digits from the message
sequence U {(which digits. reside in the above-mentioned
memory parts). The two concepts meet because an SR-stage can
be identified by uf!] where, i is the SR number (1gisk), j is
the stage-number within the ith SR (ISjSMi) and h is the

reference time-unit.

Definition 3.1: Consider the memory of an encoder; let

the term memory group (MEG) denote the set of its physical
or logical SR-stages. The following subsets of MEG are in-
troduced: The front-end group (FEG) contains the 1st stage
of each SR; the rear-end group (REG) contains the last stage
of each SR; the central group (CEG) contains the stages that
do not belong to either the FEG or the REG (see Fig. 3.2).
The above-mentioned terms are defined analytically below:
note that this time they are given as functions of h, the

reference time-unit:

MEG(h) & {ufl) / i=1,2,...,k: H,21 & 3=1,2,...,M, | (3.5a)
FEG(h) & {uff) / i=1,2,...,k: M, 21} (3.5b)
REG(h) = {u,gfgi/ i=1,2,.00,k: M, 21} (3.5¢c)
CEG(h) 2 {ul} / i=1,2,..,k: ¥,23 & j=2,3,..,M4,-1} (3.54)

Notation: The ’'groups’, defined above, will be denoted
without the reference time if they are taken to mean memory
parts, while inclusion of the time variable will dencte sets

of variables.,

The various groups, defined above, are sets of SR-stages.
The terms to be introduced below are ordered sequences of a
finite numberrvsay, x, of components. These x-tuples repre-

sent the state of the various groups defined above, at a

given time-unit. For example, the state of MEG is simply

Section 3.2 Page 59

Input Encoder contents
block
(1) o g U 1) e (1) ~ e 43 ’
uh Ko uh-z uh-ll1+1 LN Mi.ww.w I]'St SR
ETTRTT AN AR U R Z‘ W h W g A
2 5 ¥ 4 (2) cee 2) L —
uh AT AN uh-z uh..HZQ,I ww\\uhuuzmx-.ﬁq. 2nd SR
v R s it
RN N RN e n
. e s 88 e e [) “M-i-.v':i"w“? LI]
bl N Ty Rl
(k) : (k) . (k) Ky -
uh —edl uh-z soe uh-ﬂkfl e uw - —‘| kth SR
]] 1
| | . I
| Eront-anid | Weirsend: |
| . BTRUP, ... Central group e EOUE
v tree) (CEG) - (reay |

Figure 3.2: The various groups of digits that influence the
state of the encoder (note that the ith SR exists
iff M0 / 18i%K),

8(h)=S,, where jel[0,q") [see eqn (3.2)]. Similarly, and us-
ing standard notation, the state of the FEG, CEG & REG at
time-unit h, is denoted by F(h), C{h) & R(h), respectively:

If S(h) = S, then: F(h}) & [u---uBu] = F, (3.6a)

where, ufl) is included iff M, 2 1 /i=1,2,...,k.

= . - (), ..y 01 =
1f S(h) = S, then: R(h) [uh-ﬂt wiun] = Ry (3.6D)
where, ugf;l is included iff M, 2 1 /i=1,2,...,k.
If S(h) = SJ, then C(h) = C,, where:
{(3.6c)

e (k) o k), (k) ,, ,,(2) e 11{2),(2) ., (1) . (1),,(1)
C(h) & [“h-nku *° Up3Up-2 Uh-mye1 Up-3Uh-2 Yh-nper ©7 UneaUne2

and, u!) /o e(1,M,) is included iff M, 2 3 /i=1,2,...,k.
h-ai i i i

Note for instance that in the encoder of Fig. A2.9.1 (p.
314), FEG = {A,B} = REG and CEG = g. For the encoder of Fig.
A2,9.2 (po 315), FEG = {A,B}’ REG = {A’C} and CEG = g. For

the encoder of Fig. A2.9.3 (p. 316), FEG = {A,C}, REG =

Section 3.2 Page 60

{B,D} and CEG = g.

Theorem 3.2: Consider a g-ary (n,k,m) normal encoder™

with generator-polynomial matrix G(D). With repect to its
state~-transition diagram, the number of transitions leaving
a state equals the number of transitions entering that state
and- both are equal to qb‘. Furthermore, each transition has

qf labels, i.e. it represents qf input (and output) block(s).

Proof: See Appendix 3.2 (§ A3.2.2., p. 334).

Consider the encoders of Figs A2.9.1 {p. 314) & A2.9.2
{p. 315). Both are binary, hence g=2. The 1st has f = 0 & k
= 2, hence according to Theorem 3.2, in its transition dia-

k-f = 220 = 4 transitions should leave each state. This

gram q
can be verified from Fig. A3.1.1 (p. 331). The 2nd encoder
has f = 1 & k = 3, hence 2! = 4 transitions leave each

state (see Fig. A3.1.2, p. 332).

There is a disagreement in the literature about the rep-
resentation of convolutional encoders. Some autheors adopt
the Mealey representation, some others the Moore one. Fur-
thermore, there seem to be variations of the Mealey model.
Specifically, some authors, although they adopt the Mealey
model, they do not use the minimal-memory approach; they
seem to reject the notion of SRs of length 0 {i.e. they set
M1=MAX{1,M1}]. In such a case, the modified encoder will
contain f SRs of length 1, whose O/P is not used (see for
example, Fig. 4.2 in [26]), while total memory will be in-
creased by §f, hence total number of states will be increased
q’-fold. In such a case, each transition will represent a
single I/P (& O/P) block (single-edge transitions).

Another group of authors employ the Moore model. Specifai-
cally, they add an extra stage at the begining of each SR
(i.e. they set M, = 1+M1), so that the O/P gates are fed
only from the encoder memory (see for example, Figures 6.1 &
6.6 in Clark & Cain [13] and Figures 5.3.1, 5.3.2, 5.3.3 &
5.3.10 in Proakis [27]). Nevertheless, when it comes to the

transition diagram these authors use the minimum-memory en-

X a q-ary encoder is made of g-ary SR-stages and GF(q) gates. See also, bDefinition 2.9.

Section 3.2 Page 61

coder realization; for instance, Proakis [27], uses a 4-
state transition diagram for an encoder with total memory 4.

In this thesis, the Mealey-model minimum-memory approach
has been adopted. It is the approach suggested by a great
number of authors {(see for example, Section II in Forney
[20], Figure 1 in Forney [21], Figure 12.9_in Blahut [10],
rp. 288-305 in Lin & Costello [2], etc). Its disadvantage is
the introduction of the variable f (the number of SRs of
length 0), while the definite advantage is the adoption of
the minimum~memory encoder. Note that in both the Mealey
models, mentioned above, the product "{(number of transi-
tions from any specific state) X (number of I/P blocks that

cause this transition)" is qF.

Some more results, on the structure of the encoder

state-transition diagram, will be presented:

Theorem 3.3: Consider the state-transition diagram of a
g~ary (n,k,m) normal encoder*, with generator-polynomial
matrix G(D). Each of the ¢¥f transitions that enter any spe-
cific state is generated by the same group of qf I/P k-
tuples.

Proof: See Appendix 3.2 (§ A3.2.3., p. 335).

Consider the transition diagram of Fig. A3.1.1 {(p. 331).
Only one I/P block causes a transition into a specific state
(00 leads to S,, 10 leads into S,» etc); note that f = 0,
for this code, and so qf = 1,

In the transition diagram of Fig. A3.1.2 (p. 332), f =1
& k = 3. The 4 transitions that enter any specific state are
caused by the same group of qf = 2t = 2, I/P 3-tuples. For
example, the two I/P blocks that lead into state 5., are 010
& 110; to state it otherwsise, each of the 4 transitions
that lead into Sshas a double-edge label with I/P part x10,

where x=0,1.

According to the above theorem, the number of ways one
may arrive into any particular state is (q¥f) x (qf) = .

So, one may arrive at Ss(of Fig. A3.1.2, p. 332), from S,

¥ A g-ary encoder is made of q-ary SE-stages and GF(q) gatea, See also, Definjition 2,9.

Section 3.2 Page 62

with I/Ps 010 & 110, from S, with I/Ps 010 & 110, from S,
with I/Ps 010 & 110 and from S, with I/Ps 010 & 110.

Theorem 3.4: Consider the state-transition diagram of a

q-ary {n,k,m) normal encoder*. A state S may undergo a one
time-unit transition to itself (a self-loop in the transi-
tion diagram) if, and only if, the M digits that constitute

state S satisfy the following restriction:

S(h) = S(h+1) < —

ul) = ¢, /all je[O,M,] & all ie[1,k] : M, 21 (3.7)
where Cy» is a constant [an element of GF{q)].
Proof: Let zs represent the encoder contents before the

transition and ws after the transition. Consider two neigh-

bouring digits, u{l) & u{l) (0<a<a+12<M,), in the ith SR. After

any kind of transition, and for all ie[1,k] /Mizl,

w](‘f:-l = zf‘f:, for all ae(0,M, -1] (A)
i) Let S{(h) = S(h+1) = S, Then,
w:lf:_l = z:‘ft’l_l for all ae({0,M -1] (B)

From relations (A) & (B),

i)y o i
ZI(,_,), = zl(,_:_l for all o.E[O,Mi-ll ——

— oz z M) oL .2 W) 2 U)o eonstant = ¢

h h-1 h-14 +1 heM, iv Say.

ii) Let condition (3.7) hold true. Consider a state
transition. From (3.7), provided <that 05a<a+15M1 >
OSa.(Mi:

1) = (D) -
Zyoa = Zpogy Tor all ae{0,M -1]
and combining with (A):

wit = 2{l) for all ae[0,M,-1]

— wi) = z() for all ael1,M,] (and all ie[1,k])

Hence, the two states are identical.
QED

In non-mathematical language, the above theorem states

¥ A g-ary encoder iz made of g-ary SR-stages and GF(q) gates. See also, Definition 2.9.

Section 3.2 Page 63

that a specific state S_has a self-loop if, and only if,
the digits that constitute this state [see eqn {3.2)], when
organized in the encoder memory, are such that all stages of
any specific SR contain the same digit. PFurthermore, if S,
has a seilf-loop, then it will occur if, and only if, the
digits of the current input block are identical with the
contents of the SR they will reside in {excluding any digits
that will not reside in an SR, because they correspond to a
port whose SR does not exist).

An encoder with SRs of length 1 (like that of Fig,.
A2.9.1, p. 314), has a state diagram where all states have a
self-loop.

For the encoder of Fig. A2.9.2 {(p. 315), with one SR of
length 1 (stage A) and one SR of length 2 (stages B & C),
the states with self-loops have the format [xxy], where x &
y are binary variables (note that the state is [CBA]l). Hence
there are four states with self-loop, corresponding to the
four pairs x,y (000,001,110,111, i.e. S S S; & 8;), as
can be verified by Fig. A3.1.2 (p. 332).

0) 1!

Theorem 3.5: Consider the state-transition diagram of a
q-ary (n,k,m) normal encoder*, with generator-polynomial
matrix G(D). The I/P k-tuples that mark the self-loops of
the transition diagram are identical with the front-end
group (FEG) of the encoder in the corresponding k-f posi-
tions. Hence, the format of the I/P k-tuple u, =

h
[u;”,u;”,...,usnl that marks a self-loop is given by the re-

lation,
e arbitrary if ie[1,k] : M, = 0 —

uf!) e —> (3.8)
— u) if ie[1,k} : M, 21 —

Proof: Let us represent the encoder contents before a

transition and ws after a transition. Assume that state S8

goes through a self-loop. Then, for all ie[l,k] /M 2 1,
(i) - i
ugl) = wil) (A)

Also, since during a transition, I/P block —> FEG:

¥ A g-ary encoder is made of g-ary SR-stages and GF(q) gates. See also, Definition 2.9.

Section 3.2 Page 64

(1) = (1}
Whe1 T Up (B)

From egns (A) & (B), it follows that

(i) - (1) 3 o
u’ = u’ for all ie[1,k] : M, 2 1.

QED

For example, for the encoder of Fig. A2.%.2 (p. 315)
(state diagram in Fig. A3.1.2, p. 332), the I/P block that
marks a self-loop must have the format U, = {xAB), where x
is a binary wvariable and A & B are the current contents of
the correspronding stages. So, for state Slthe I/P bleck is
(x10).

Theorem 3,.6: Consider the state-transition diagram of a
g-ary (n,k,m) normal encoder*, with generator-polynomial

matrix G(D). The number of states with self-locop is g7,

Proof: State S; is a state with self-loop. In how many
ways can one change it and still preserve the self-loop
property? From Theorem 3.4, one concludes that this property

is preserved iff

ufl) = ¢

=, /all je[O,M] & all ie[1,k] : M1

i

Then, since the number of states satisfying the above
condition is equal to the number of different combinations

of the k-f constants c¢,, the theorem is proved.

1!
QED

The trellis diagram is obtained from the transition dia-
gram, if the latter is expanded in time so that there is a
separate transition diagram for each time-unit. Obwviously,
all the theorems proved for the state-transition diagram can

be used for the trellis, as well.

¥:% IBELLIC DIAGRAM . -

Consider a q-ary (n,k,m}) normal convolutional encoder”’
and a message of L blocks. The encoder goes through a spe-

cific sequence of states, in response to the kL-digit input

* A g-ary encoder is made of g-ary SR-stages and GF(q) gates. See also, Definition 2.9.

Section 3.3 Page 65

message. The task of the decoder is to reconstruct this time
sequence of state transitions, based on the information pro-
vided by the received sequence r. The decoder will, in fact,
consider a number of possible time sequences of state tran-
sitions and choose the most ’promising’ candidate. To depict
these time sequences of state transitions one would need a
time sequence of transition diagrams, i.e. one would need a
trellis diagram.

It has already been mentioned (see Note 2.1) that a mes-
sage sequence must always be terminated with mk zeros, in
order to clear the encoder memory. Hence, the first message
block finds the encoder in state 541 while the 2nd message
block finds the encoder in one of the states that can be
reached from S;,, in one time-unit, and so on. Since the mes-
sage is terminated with m 0s, L+m blocks are considered,
while a time sequence of L+m+l transition diagrams is re-
quired, or the same, a trellis of length L+m+l. Obviously,
at time-unit L+m+l, the encoder returns to state Sn'

According to the discussion above, the following con-

struction is proposed:

Note 3.1: Consider a g-ary (n,k,m) normal convolutional
encoder® and a message of L blocks. A trellis for this en-
coder is made of an array of points interconnected in the

following way:

i) The points are arranged con a rectangular grid in a
maximum of,
L+m+1 columns, labelled 0,1,...,L+m from left to
right and
q'" rows labelled 0,1,...,q9"-1 from top to bottom
{L=message length, in blocks).

ii) The points of column j represent the possible en-
coder states at time~unit j (0%jS$L+m), while the points of
row i represent state Si(OSiqu-l) through time. During the
discussion of the trellis diagram the terms state and point

will be interchangeable,

iii) Column 0 contains only one state, S.; column 1

o!

* A g-ary encoder is made of q-ary SR-stages and GF(q) gatea, See also, Definition 2.9,

Section 3.3 Page 66

contains those states that can be reached from Sy in one

time-unit, and so on. Column L+m contains only state So’

iv) The trellis diagram contains exactly q" states in
columns m,m+1,...,L. This part is called the central portion
of the trellis.

v) Only states belonging to neighbouring columns are
interconnected. In particular, from any state S‘of any spe-
cific time-unit i (0%i<L+m) originate interconnections to
specific states of time-unit i+l:; these interconnections
correspond to all the transitions leaving Sx.

According to Note 3.1 the trellis diagram grows from left
to right until it reaches the maximum number of rows {(q"),
at time=-unit m. This is so because at any time-unit i<m part
of the encoder memory is still reset to zero (in fact, the
last m-i stages of any SR). The central portion of the trel-
lis will be reached when the whole of the encoder’s memory
has been ’upset’ by the incoming source blocks. An I/P block
needs m time-units to cover the length of the longest SR
hence part (iv) of Note 3.1, above. Aprendix 3.3 (p. 335),
gives an example of a simple state-transition diagram with

the associated trellis diagram.

The results developed for the normal encoder state-tran-
sition diagram will now be applied to the trellis diagram.
Lemmas 3.1 & 3.2 below, follow easily from Theorems 3.2 &
3.3, respectively.

Lemma 3.1: Consider a q-ary (n,k,m) normal encoder*,
with generator-polynomial matrix G(D). Within the central
portion of the encoder trellis-diagram, the number of tran-
sitions leaving a state equals the number of transitions
entering that state and both are equal to ¢¥f, Furthermore,

each transition represents qf input (and output) block(s).

Note that the result of Lemma 3.1 is valid only within
the central portion of the trellis, and not at the limits

¥ A g-ary encoder ix= made of q-ary SR-stages and GY(q) gates. See also, Definition 2.9.

Section 3.3 Page 67

(i.e. at time-units m & L). This is so because at time-unit
m-1 some states have not been reached, hence the group of
transitions from time-unit m-1 to time-unit m is pot from
all possible states to all possible states; this means that,
in general, the number of transitions entering a state at
time~unit m, are less than the number of transitions leaving

it., The situation at time-unit L is symmetrically similar.

Lemma 3.2: Consider a q-ary (n,k,m) normal encoder*,
with generator-polynomial matrix G(D). Within the central
portion of the encoder trellis-diagram, all the q*f transi-
tions that enter any specific state are caused by a specific
group of qf source blocks (k-tuples).

Any trellis diagram contains some ‘horizontal’ lines that
extend along particular rows; this happens at least with
states S, and Spu ,. These horizontal lines are transitions
of a state to itself. Their occurence is defined by the fol-

lowing lemma, which is based on Theorems 3.4, 3.5 & 3.6.

Lemma 3.3: Consider a g-ary (n,k,m) normal encoder*,
with generator-polynomial matrix G{(D). In the central por-
tion of its trellis-diagram there exist q*f horizontal lines
(i.e. transitions of a state to itself). These lines corre-
spond to states that satisfy the following condition:

ult) = ¢

@ =c, /all jel0,M,] & =all iel1,k] : M221 (3.9)

i

where ¢, is a constant and uf!] is the content of the jth

stage of the ith SR [see Fig. {(3.2)].

Also, the I/P k-tuples that mark the horizontal lines of
the trellis diagram are identical with the front-end group
(FEG) of the encoder in the corresponding k-f positions. The

format of the I/P k-tuple, u, = [u,('“,ul(‘z),...,ul“"’], that marks

a horizontal line is given by the relation,

= arbitrary if ie[1,k]) : M, 0 —
u:li) —— —> (3.10)

— u{l) if ie[1,k] : M, 2 1 —

¥ a q-ary encoder is made of g-ary SR-stages and GF(q) gates. See also, Definition 2.9.

Section 3.3 Page 68

where uéﬂ is the digit in the jth stage of the ith SR.

3,4 ° VITERBI DECODING o o

In 1967, Viterbi [28] introduced a decoding algorithm
which he called "A Probabilistic Nonsequential Decoding Al-
gorithm” but which is since known by his name. Two years
later, Omura suggested that "the Viterbi Algorithm can be
thought of as a forward dynamic programming solution to a
generalized regulator control problem" [29] or, as Lin &
Costello put it, "-++to the problem of finding the shortest
path through a weighted graph" [2]. In 1974, Forney [25]
wrote: "Convolutional codes are characterized by a trellis
structure. Maximum likelihood decoding is characterized as
the finding of the shortest path through the code trellis,
an efficient solution for which, is the Viterbi Algorithm".

The encoder’s sequence of states, during the encoding of
a kL-digit long information sequence, is represented by a
path in the trellis. The decoder attempts to retrace this
path, using the received sequence r. This sequence is proc-
essed in blocks, but final decisions are delayed until the

end of the sequence.

Definition 3.2: A path in the trellis is a time se-

quence of states that is represented by a sequence of mes-
sage or channel digits. Note that in case f>0* a sequence of
two states corresponds to quaths, hence a path cannot be
uniquely represented by the time sequence of states alone
{see Theorem 3.2). A path that starts at time-unit j and
ends at time-unit i, is said to have length i-j. A single

path is any path of length 1.

Definition 3.3: Consider a path characterized by the

sequence of channel digits v, and let rjbe the correspond-

b
ing sequence of received digits. Then, the log-likelihood

function logP(rjlvj) {where P(rjlvj) is the conditional prob-

¥ see Theorem 3.1, for a definition of {,

Section 3.4 Page 69

ability that r ; was transmitted],

is called the metric of the path. The metric of a single

is received, given that v

path is called the branch metric.

Theorem 3.7: Consider the Viterbi algorithm:

Step_1: At time-unit j=m the decoder examines all paths
that lead to each of the 2Y states. Each path corresponds to
a particular channel sequence Vv which is compared with the
received sequence r; a metric is computed for each path.

The metrics of all paths entering each state are compared
and the path with the largest metric (the survivor) is
stored, together with its metric. This is repeated for all
states.,

Step 2: Increase j by 1., For each state and for each
single path entering this state, compare the received block
rjwith the channel block vdthat corresponds to this par-
ticular path; deduce the branch metric logP(rJ|v3).

Add this branch metric to the metric of the connecting
survivor at the preceding time-unit. For each state, store
the path with the largest metric (survivor), together with
its metric.

Step 3: If j<L+m go to step 2; otherwise stop.

If transmission is over the discrete memoryless channel,
the final survivor has the largest metric, i.e. it is the

maximum likelihood path.

Proof: See Lin & Costello [2], p. 318.

Note 3.2: If transmission is over the binary symmetric
channel (2-input -~ 2-output DMC), then the branch metric is
the Hamming distance d(rj.vj) and the algorithm must find
the path through the trellis with the smallest metric.

See Appendix 3.4 (p. 337), for twe examples on Viterbi

decoding.

Section 3.5 Page 70
3,5 SEQUENTIAl DECODING -))

For a brief description, see Appendix 3.5 (p. 339).

3,6 SYNDROME DECODING

The general outline of a syndrome decoder, for a system-
atic binary convolutional code is shown in Fig. 3.3.

Correction takes place in the right-hand side of the de-
coder by the mod-2 addition of the received sequence of mes-
sage bits and the decoder’s estimation of the corresponding
channel error sequence.

The estimates of the error bits are obtained from the
decision device {the 'brain’ of the decoder) on information
supplied by the syndrome register.

Syndrome generation for a systematic code requires a rep-

Received parity-check bits n-k bits For feedback decoding
2

7]

Ibits 27| - 1

SYNDROME
deMUX ENCODER

—-=>k bits

DECISION

bits Received message bits

Estimated error bits
V) :
U Estimated

message bits

:

DELAY

Figure 3.3: Block diagram of a syndrome decoder for binary sys-
tematic convolutional codes.

lica of the encoder and an X-OR gate. It has been shown in

Section 3.6 Page 71

Chapter 2 (see Theorem 2.14, p. 48) that the syndrome bits
are linear combinations of the channel-error bits only (if
channel noise is additive).

So far, the decoder is assumed to operate in the so-
called definite decoding (DD) mode, It is possible though,
to subtract every estimated error bit from the syndrome, via
a feedback loop (see Fig. 3.3). In this mode, the so-called
feedback decoding (FD) mode, the number of channel error

bits that affect a syndrome bit is reduced.

The basic task of the decision device is:
Given the syndrome sequence &8, find the channel error
f(e), the task of

sequence €; since (by Theorem 2.14) s
the decision device is specified tc be:

Calculate e = f1(s), where f*! is such that the probabil-
ity of a decoding error is minimized, under the given con-

straints of hardware complexity.

There are three basic syndrome decoding techniques for
convolutional codes: 1. Table look-up decoding (see Appendix
3.6, p. 341), 2. Error-trellis syndrome decoding (see Chap-
ter 4) & 3. Threshold decoding {(see Chapter 5). They only

differ in their respective decision devices.

3,7 CONCLUSIONS

The decoding techniques for convolutional codes were
classified (see Fig. 3.1) and briefly described. They come
under three main categories namely, Viterbi, sequential and

syndrome decoding.

Syndrome decoding {(Sec. 3.6), is distinguished in table
look-up and threshold decoding, while the latter is further
dividedink:hajority and APP decoding. Because all these
techniqﬁég_are very simple to implement, they permit a cheap
hardware realization and hence very high bit-rates. On the
other hand, they are suboptimum because they make irreversi-
ble decisions for each block, based on one constraint-length

of received digits.

Section 3.7 Page 72

Sequential decoding (Appendix 3.5) is a nearly optimum
adaptive technique, which is fast when the channel is quiet
but slow otherwise. Apart from its complexity, it suffers
from randomly varying processing-time per block. On the oth-
er hand, it offers relatively high coding gains* (2-3 dB
more than syndrome decoding), at bit rates of 1-20 Mbps
(threshold decoders can offer their coding gain at higher
bit rates, though - see Clark & Cain [13], pp. 342-4).

The maximum likelihood decoding technique, for convolu-
tional codes, is the Viterbi algorithm {(Sec. 3.4). This is a
very clever method (widely used today), which returns high
coding gains, at moderate to high bit rates (ibid.), depend-
ing on the channel and the modulation method employed. The
algorithm is based on the encoder state-transition diagram.

A very important aspect of Viterbi decoding is the struc-
ture of the trellis {or the state-transition) diagram. This
is so because the decoder has to store g paths, each Lk
digit long, with L increasing by 1 with every new received
block. Furthermore, at each block time~unit, and for each of
the q" paths, the decoder has to calculate qFf metrics,
choose the best and store it. Hence, at each block-time-
unit, q"* calculations have to be performed. Thus, the com-
Plexity of this technique increases exponentially with M & k

(M is, usually, more important).

Section 3.2, contains a number of theorems on the com-
plexity of the state-transition diagram (and hence on the
complexity of trellis decoding). These results predict the
structure of the state-transition diagram, given the code
generator-polynomial matrix, G(D) {(assuming that a normal
encoder is used - a reasonable assumption, since this is,
usually, the minimal encoder). So, it is shown that the num-~
ber of transitions into a state (or out of it) is q¥?, while
each transition has qf labels. f = f[G(D)] is defined in

Theorem 3.1. Furthermore, it is shown that all transitions

entering a state are caused by the same group of q‘input k-

tuples. In Theorems 3.4 - 3.8, the self-loops are studied. A
necessary & sufficient condition is developed, for the ex-
istence and generation of such a loop and it is shown that a

* See Section 1.4.

Section 3.7 Page 73

state-transition diagram has qff such loops.

The originality of the work in that section lies in the
generalization and systematization of some previously known
observations about the state-transition diagram, as well as
in some of the results themselves.

A final piece of original work is in Paragraph 3.2.3.,
where the (normal) encoder memory is divided into three sec-
tions, the one immediately affected by the current input-
block (FEG), the one that looses its contents with each
transition (REG) and the rest of the memory (CEG) which lies

in between {see Fig. 3.2).

The work in Section 3.2 is also very useful to Chapter 4.

This chapter examines in detail the, so~called, con-
strained trellis, proposed by Reed & Truong [24] (their work
was on error-trellis syndrome decoding). The material is
divided into seven sections, of which the first and the
third report on the background results, while the rest in-
vestigate the structure of the constrained trellis. An ef-
fort to relate a given circuit to the complexity of its con-
strained trellis has produced some original results and
ideas. A constrained trellis is one in which the Hamming
weight* of the current input block, together with the cur-
rent state, is not allowed to exceed a certain threshold;
this is, clearly, a ’'generalized trellis® with a reduced

number of states and transitions per state.

Section 4.1 aims to convince the reader about the exist-
ence of error-trellis syndrome decoding. Section 4.2, intro-
duces the restriction which generates the constrained trel-
lis and presents some fundamental relations about its com-
plexity. Section 4.3, introduces the decoding algorithm.
Section 4.4, develops the idea of the 'simplified’ trellis.
The latter arises from the existence, in a constrained trel-
lis, of states with only one path allowed in (or out of)
them. In Section 4.5, a number of theorems are proved which
relate the complexity of a constrained trellis with the as-
sociated circuit. Section 4.6, concentrates on the transi-
tions of the simplified trellis and relates them to the as-
sociated circuit. Note that the simplified trellis contains

transitions lasting for more than one time-unit. Finally,

¥ A binary code is assumed.

Chapter 4 Page 75

Section 4.7 discusses special cases.

4.1 E o § Y

The first objective of this section is to obtain the gen-
eral solution of the syndrome equation. This result will
then be modified for the case of systematic codes. Equations
for the best estimate of the source sequence will also be
derived and finally the block diagram of an appropriate de-
coder will be proposed.

The work in this section is based on Reed & Truong [24],
but because of its importance for the rest of this chapter
(which is mainly original work), it is repeated here. The
proofs, though, of the algebraic material are given in ap-

pendices.

4.1.1. Genera utio f { Syndrome uation

If the channel suffers from additive noise only, the task
of the decoder is reduced to estimating the channel error-
rolynomial E(D). This is so because G(D) = R(D)-E(D) [see
eqn (2.70), p. 47] and G(D) = G(D)G’(D), where G’(D) is
the right-inverse of G(D) (the code is assumed to be non-
catastrophic - see Note A2.,10.1, p. 319).

On the basis of the received polynomial R{D), the decoder
calculates the syndrome polynomial S(D) = R{D)}H'(D) [see eqn
{(2.71)] and on the basis of S(D) it provides its best esti-
mate of E{(D). This latter calculation is based on the so-
called syndrome eqn S(D) = E(D)H'(D) [see eqn (2.73)], which
represents & linear system of n-k equations in n unknowns
[the polynomials e‘¥(D),e®(D),...,e™(D)]. It is obvious
that this system of equations accepts many scolutions, of
which only one is wvalid [i.e. coincides with the channel-
error polynomial E(D)]. The encoder has not enough informa-
tion to make the correct choice each time, but it has a way
to minimize its losses, This minimization procedure uses the

general solution of the syndrome equation (the two of them

constitute the 'heart’ of this decoding technique).

Section 4.1 Page 76

Lemma_ 4.1: The polynomial-generator matrix of a non-
catastrophic convolutional code can take the following form

{usually called Smith normal form):
G(D) = A(D)[1,,0]B(D) (4.1)

where 0 is the k x (n-k) zero matrix,
A(D) is a k X k nonsingular matrix,

and B(D) is an n X n nonsingular matrix.

Proof: See Appendix 4.1 (§ A4.1.1., p. 342),

Note 4.1: Let the following partition of B(D) & B!(D):

X, (D)
B(D) = & BYD) = [Y,(D),Y,(D)] (4.2)
X, (D)

where Xl(D}, Xz(D), YI(D) & YZ(D) are k X n, (n-k) x n,

n X k & n Xx (n~k) matrices, respectively.

The Smith normal form and the two partitions introduced
above, are key steps towards the inversion of the syndrome
equation. One important result based on them is the follow-

ing theorem:

Theorem 4.1: Let H(D) be the parity-check generator

matrix of a non-catastrophic convelutional code. Then,

H(D) = YI(D) (4.3)
where Yz(D) is defined by partition (4.2), above.

Proof: See Appendix 4.1 (§ A4.1.2., p. 342).

The above result is important in its own right, because
it links G(D) with H(D); in this discussion it constitutes
the basis for the following theorem, which is in fact the

main result:

Section 4.1 Page 77

Theorem 4.2: For a non-catastrophic convolutional code,

the general solution of the syndrome equation is
E(D) = T(D)X, (D) + S(D)X,(D) (4.4)

where T(D) is an 1 X k matrix of polynomials which will
be considered to be arbitrary and XIU)), XZU)) are defined
by partitions (4.1) & (4.2).

Proof: See Appendix 4.1 (§ A4.1.3., p. 343).

Two more variations of the above result will be intro-
duced. The first expresses E(D) in terms of G(D), H(D) &
S(D), while the second avoids the use of S(D).

Theorem 4.3: For a non-catastrophic convolutional code,

the general solution of the syndrome equation can take the
form
E(D) = Z(D)G(D) + S(D)H'T(D) (4.5)

where, H’(D)} is the right-inverse of H(D) and Z(D) is a
1 X k matrix, which will be taken to be arbitrary.

Proof: See Appendix 4.1 (§ A4.1.4., p. 344).

In the paper by Reed & Truong [24], X;(D) is (mistakenly)
referred to as the "left inverse of the parity-check matrix"
ftwice, in p. 78, between eqns {18) & (24)]. Since H(D) is
an (n-k)} x n matrix of rank n-k, it can only have a right-

inverse (see Theorem A2.2.11).

Lemma 4.2: For a non-catastrophic convolutional code,
the general solution of the syndrome equation can take the
form

E(D) = Z{D)G(D) + R(D)Q(D) (4.6)

where, Q(D) = Y,(D)X,(D}), defined by partitions (4.1} &
(4.2) and Z(D) is a 1 x k matrix (taken to be arbitrary).

Proof: See Appendix 4.1 (8§ A4.1.5., p. 345).

Section 4.1 Page 78

4,1.2. he Case of Systema ode

Application of the above results, for the case of system-
atic codes is straightforward, but first it is necessary to

elaborate on partition (4.2).

Theorem 4.4:; For a systematic convolutional code, B(D)

& B1(D) have the following general form

-1 -1
AL(D) A"Y(D)P(D)] (4.72)

B(D) = ["
c(D) F(D) + C(D)P(D)

(4.7b)

B-I(D) _ A(D) + P(D)F(D)}C(D)A(D) -P(D)F(D)
" | -Fcma) £(D)

where A(D) & B(D) are part of the Smith normal form of
the polynomial-generator matrix G(D) = [Ik,P(D)], defined by
eqn {4.1), F(D) is an (n-k) X (n-k) nonsingular matrix and
C{D) is an (n-k) x k matrix.

Proof: See Appendix 4.1 (§ A4.1.6., p. 345).

Note that (4.7) is the most general form of B(D) &
B"1(D), more general than those used by Reed & Truong [24].
In these expressions, A{(D) & F(D) may be any nonsingular
k x k & (n-k) x (n~-k) matrices, respectively and C(D) can be
any {(n-k) X k matrix. If A(D) = I F(D) = I _, and c(D) = 0,

the following lemma is proved:

k’

Lemma_4.3: For a systematic convolutional code, B(D) &
B"1(D) may take the following form:

~

.| Lk PO e L | I -P(D)
B(D) = [0 1] and B~*(D) = [0 I] (4.8)

where [I_,P(D)] = G(D) is the polynomial-generator matrix
of the code.

Section 4.1 Page 79

Theorem 4.5: For a systematic convolutional code the

general solution of the syndrome equation is
E(D) = [Z(D),Z(D)P(D)+S(D)F'1(D)] (4.9a)

where [Ik,P(D)} = G(D), F(D) is an (n-k)} X (n-k)} nonsin-
gular (arbitrary) matrix and Z(D) is a 1 x k (arbitrary)

matrix. Since, usually, F(D)} = I .

E(D) = [Z(D),Z(D)P(D)+S{D}] (4.9b)

Proof: See Appendix 4.1 (§ A4.1.7., p. 347).

4.1.3. ti jion_ of the Channe Jo)

So far, the main results concern the invertion of the
syndrome eqn. In the solutions obtained, an arbitrary quan-
tity is present; this quantity is chosen by the decoder so
that the probability of a decoding error is minimized. For a
binary code, this is equivalent lo einimizing the Hamming
weight of the channel-error sequence e, or the same, ke
minimizing the Hamming weight of the coefficients of E{(D).
This is the application of maximum likelihood decoding for a
BSC (see Theorem 1.2, p. 12).

Note 4.2: For a binary code, the arbitrary quantity in
the general solution of the syndrome equation is chosen so
that the Hamming weight of the channel~error sequence is
minimized. The Hamming weight of, say, X(D) is denoted by
wlX{(D)] and is equal to the number of non-zero terms of the
rolynomial. The best estimate of, say, X{(D) is denoted by
i(D). It is understood that X{D) denotes the objective val-
ue of whatever X(D) represents, while i(D) represents a

'subjective’ evaluation of X(D).

From Note 4.2 and the solution of the syndrome equations,

the lemmas below follow easily:

Lemma 4.4: For a2 non-catastrophic convolutional code,

Section 4.1 Page 80

E(D) = Z(D)G(D)+S(D)H'T(D) (4.10)

where, for a binary code, E(D) is chosen so that
w[Z(D)G(D)+5(D)H'T(D)] is minimized.

[
Lemma 4.5: For a systematic convolutional code,
E(D) = [E(D),E(D)P(n)+3(n)] (4.11)

where, for a binary code, i(D) is chosen so that
w[Z(D),Z(D)P(D)+S(DP)] is minimized.

|
4.1.4, Estimation of the Source Digits

The analysis of the examined decoding technique will be
finalized with the derivation of an expression for U(D),

the decoder’s best estimate of the source message U(D).

Theorem 4.6: For a non~catastrophic convelutional code,

U(D) = R(D)G’(D) - Z(D) (4.12)

where G’(D) is the right-inverse of G(D) and Z(D) is an

arbitrary 1 x k matrix of polynomials.

Proof: See Appendix 4.1 (§ A4.1.8., p. 348).

Theorem 4.7: For a systematic convolutional code,

U(D) = R™ (D) - Z(D) (4.13)

where Z(D) is an arbitrary 1 X k matrix.

Proof: See Appendix 4.1 (§ A4.1.9., p. 349).

Note that egn (4.13) was derived using the general form
of B(D) & B!(D) (see Theorem 4.4), instead of the simpli-
fied form used by Reed & Truong [24] (see Lemma 4.3). Never-
theless, the two results are identical.

It would be useful to mention two results obtained in
Appendix 4,1, during the proof of the last two theorems.

Since G{D) is a k x n matrix of rank k (by Lemma A2.10.1,

Section 4.1 Page 81

p. 319), it has a right-inverse (by Theorem A2.2.11, p.
303), denoted by G’(D). From eqgns {A4.1.8) & (A4.1.9):

For a general non-catastrophic convolutional code:
-1 I, -1
G’(D) = B™*(D) o A (D) (4.14)

For a systematic convolutional code:

.« _ | 1.+ P(DIF(D)C(D)
G’ (D) = [_F(D)C(D)] (4.15)

where A(D) & B{(D) are defined by Lemma 4.1, and C(D) &

F(D) have been introduced in Theorem 4.4.

|

i

]

|

I {CHANNEL IGITAL CHANNEL
SOURCE : J P + SINK

I

I

I

1

ENCODER CHANNEL DECODER| !
!

NOISE

SOURCE DIGITAL HYPERCHANNEL SINK

(b)

Figure 4.1: The communications system as seen by the channel

codec {(a) and by the user (b).

Section 4,1 Page B2

4.1.5. =) erchannel Error Po i

Note that for a noiseless channel, G(D) = R(D)G'(D) =
U(D), for general non-catastrophic codes, while for system-
atic codes, U(D) = R®™ (D) = U(D).

Comparing with the results of Theorems 4.6 & 4.7 above,
one readily concludes that the arbitrary quantity Z(D) plays
the role of a ’correcting factor’ (as Reed & Truong have put
it). In effect, this arbitrary quantity represents noise
referred to the information source or, to put it otherwise,
it represents the noise digits of the {(hyper)channel between
the source 0/P and the sink I/P (see Fig. 4.1). For this
reason, the term hyperchannel error polynomial is proposed
for Z(D).

4.1.6. Error=Trellis Svyndrome Decoder

From the analysis, so far, one concludes that for a gen-

eral non-catastrophic convolutional code,
U(D) = R(D)G’(D) - Z(D) =—
E(D) = Z(D)G(D) + S(D)H'T(D) —

—> (4.18)
where, for a binary code,

w[E(D)] = MIN{w[2(D)G(D) + ST (D)]} —

The set of relations {(4.16) can be translated into the
block diagram of Fig. 4.2,

The analysis for a systematic_conveolutional code gave the
following results:

U(D) = R®(D) - 2(D) —
E(D) = [E(n),i(nw(n) + 8(0)] —

where, for a binary code,

w[E(D)] = bg(In}\I{w[Z(D),Z(D)P(D) + 8]} —

The set of relns (4.17) suggest the decoder of Fig. 4.3.

Section 4.1 Page 83
Sradrome
B(D) Generator g (D) Facoder
H'(D) — HID) G(D)
ED)
e | S, COUNTER
w{ED)]
» HYPERCHANNEL ~
- Timing z (D)
SUFFER ERROR ESTIMATOR

Figure 4.2: Block diagram of the error-trellis syndrome decoder

for a binary non-catastrophic convolutional code.

RD) A'(D)
— deMUX
n)
A'D) PO)
JoutpuT
BUFFER

8 D)

Timing

v

ERROR ESTIMATOR

P (D)
MUX 4'_1
l ED)
COUNTER
W ED))]
HYPERCHANNEL

ZD)

)
2

Fiqure 4.3: Block diagram of the error-trellis syndrome decoder

for a binary systematic convolutional code.

The solid line in these block diagrams represents multib-

it buses. The counter counts the number of ones (i.e. it

Section 4.1 Page 84

evaluates the Hamming weight). The decoder’s ’brain’ is the
hyperchannel error estimator (HEE):; the name follows after
egns (4.12) & (4.13). The task of the HEE is best described
in Section 4.3. The output buffer is used to delay the cur-
rent input block until the HEE is satisfied that the coeffi-
cients of the hyperchannel error-polynomial are such that

the estimate of the channel error-sequence has the minimum

possible Hamming weight.

4.2 TRA TOR_T YSTEM oD

It has been shown that for a binary* systematic convolu-
tional code, E(D) = [Z(D),Z(D)P(D)] + [0,8(D)]. The de-
coding rule is to choose [E(D),E(D)P(D)], so that the Ham-
ming weight of E(D) is minimized. This rule can be stated
otherwise: Choose E(D}, so that the Hamming distance be-
tween [E(D),E(D)P(D)] & [0,5(D)] is minimized. The reader
should recall that in Viterbi decoding, the rule is: Choose
G(D) so that the Hamming distance between [a(D),G(D)P(D)]
& [R®(D),R'™(D)] is minimum. It is obvious then that the
technique under discussion leads naturally to some sort of
trellis decoding.

Indeed, the part of the decoder that is a replica of the
encoder and takes as input the arbitrary quantity E(D), to
produce [E(D),a(D)], where,

Q(D) = Z{D)P(D) (4.18)

has been named the regulator circuit, by Reed & Truong
[24] and hes a trellis diagram. The advantage of this tech-
nique, over Viterbi decoding, is that the trellis diagram,
here, is considerably simpler. In particular, the number of
states is reduced and alsc the number of branches that leave
a particular state is, in general, reduced. This is achieved
by exploiting the existence of the bounded error-correcting

capability of the code.

4,2.1. Complexity of the Constrained Regulator Irellis

In this paragraph, the constrained trellis of the regula-

¥ Unless otherwise stated, only binary codes will be considered.

Section 4.2 Page 85

tor circuit will be introduced. The analysis that follows is

based on the restriction introduced by Note 4.3 (below).

Definition 4.1: The error-correcting capability of a

convolutional code is denoted by t and is defined to be the
maximum number of errors the code guarantees to correct, in

any actual constraint-length, nAﬁ {m+1)n.

If the need to relax the maximum likelihood search is
accepted, then the reduced range of search should include
{for best performance) the most critical elements. Since the
code guarantees to correct t or less errors in m+l blocks,

the following restriction may be introduced.

Note 4.3: In error—grellis syndrome decoding, the error
sequences examined must have a weight of t or less, over a
length of m+1 blocks:

mn
Zv[eni] s t 7 for all h20 (4.19)
i=0

where ehis the hth channel-error block [defined by eqn
(2.62b)1.

In Lemma 4.5, the general solution of the syndrome equa-

tion was given in polynomial form. Using eqn (4.18),

E(D) = [i(n),é(n)] + [0,8(m)] (4.20)

Definition 4.2: Given the generator-polynomial matrix

G{D) = [Ik,P(D)] of an (n,k,m) systematie convolutional
code, the regulator circuit of the error-trellis syndrome
decoder is understood to be the k-input, (n-~k)-output, lin-
ear sequential circuit (LSC) with transfer-function matrix
P(D). Furthermore, any LSC, structured like the ’normal en-
coder’ (see Definition 2.9, p. 34), will be called a normal

LSC. The regulator circuit is 'then a normal LSC.'

It is obvious from the definition above, that the regula-

Section 4.2 Page 86

tor circuit is a replica of the encoder; hence they have the
same total memory M [see egn (3.1)] and the same transition

diagram if no constraints are imposed [see egqn (3.2)].

It is easy to show that the matrix version of (4.20) is,
8, = [2,8,] + [0s,] (4.21)

where shis the current syndrome block,
z, is the current O0/P block of the HEE and

qhis the current 0/P block of the regulator circuit.

Note that z, is the hth hyperchannel error block, i.e. 1t
represents the block of k channel error bits that have cor-
rupted the corresponding block of k message bits u .

From Note 4.3 and egn (4.21), one concludes that the

weight of 2, over m+l1 blocks, should not exceed t.

Theorem 4.8: In error-trellis syndrome decoding, the

Hamming weight of m+l consecutive hyperchannel error blocks,
Z,, must not exceed the error-correcting capability, t, of
the code:

|]
Zw[z,;] s t /for all n20 (4.22)
i=0

Proof: From eqn (4.21):

w[eh] = w[zh,qh+sh] = w[zh] + w[qh+sh]

Substituting the above equation in (4.19):

n []
Zw[zhd] s t- Ew[qh+i+sh+i] st
i=0 i=0

QED

The following is based on Definition 3.1 which deals with
various parts of the (logical or physical) memory of an LSC.
Since the next state contains part of the current input, it
is necessary to introduce terms that describe various parts

of the I/P block; furthermore, these terms should be compat-

ible with those introduced by egns (3.5) (see p. 58).

Section 4.2 Page 87

Definition 4.3: Consider the I/P block u, and assume
that prior to its clocking in the memory it resides in a
separate memory which will be called the input group (ING);
logically, ING should be visualized as a set of k shift reg-
isters {SRs) of length one, each. The following two subsets
of ING are introduced: The memory input group (MIG) contains
all the (logical or physical) SR-stages of ING that are con-
nected with SRs of length one or more. The discarded input
group (DIG) contains all the SR-stages of the ING that are
not included in the MIG. Note that the ING contains k ele-
ments, the MIG contains k~f elements, while the DIG contains
J elements:

ING & {u? / i=1,2,...,k] (4.23a)
MIG & [uf® / i=1,2,...,k: M2 1] (4.23b)
DIG & {uf" / i=1,2,...,k: M= 0] (4.23c)

The various groups defined above are sets of logical or
physical SR-stages. Notation ING(h), MIG(h) & DIG(h) will be
used to denote the set of bits that reside in ING, MIG &
DIG, respectively, at time-unit h.

To complete the picture, the ordered sequences of the
contents of the above sets of SR-stages will also be intro-
duced. Clearly, the state of the ING, at time-unit h, is
simply u. In a fashion similar to the one used by eans
(3.6), the states of the MIG and the DIG, at time-unit h,
are denoted by M(h) and D(h), respectively.

The results below will help develop some very useful re-
sults. They can be considered as an interface between the
algebra of the various groups (FEG,MEG,ING, etc) and the

algebra of the weight of their state, at some time-unit.

_Theorem 4.9: Let the partition B = <A,,A,,...,A >, where

B C MEG =l:’f.md'Ai /i=1l,2,...,a is a set of logical or physical

‘Sﬁ-stages from the MEG; let also B(h) & A!(h) denote the

state of B & A, respectively, at time-unit h. Then:

w[B(h)] = éw[Ai(h)] " /for all h20 (4.24)
i=1

| ¥ ACB denotes "A is a subset of B".

Section 4.2 , Page 88

Proof: See Appendix 4.3 (§ A4.3.1., p. 353).

Lemma 4.6: Let A & B be any two subsets of the MEG.
Then:
If AC B — w[A(h)] < w[B(h)] (4.25)

Proof: Let A,B be any two subsets of the MEG. If A C B,
i.e, A is a proper subset of B, then from Theorem A4.2.1, B
= <A,B-A> and from Theorem 4.9, for all time-units h:

w[B(h)] = w[A(h)] + w[(B-A)(h)] < w[A(h)]
since the Hamming weight is a non-negative integer.

QED

Theorem 4.10: If the Hamming weight of the current
state S{h) of the regulator circuit is w (02ws<t), the weight

of the current input z, must be t-w, or less:
w[z,] + w[S(h)] = t for all h20 (4.26)

Proof: See Appendix 4.3 (§ A4.3.2., p. 354).

Ltemma 4,7: The Hamming weight of any state of the regu-
lator circuit does not exceed t:

w[S(h)] <t for all h20 (4.27)
Proof: From Theorem 4.10: W[S(h)] <t - w[zh] <t /h20.

QED

Lemma 4.8: The Hamming weight of any I/P block to the
regulator circuit must not exceed t:

w[z,] =t for all h20 (4.28)
Proof: From Theorem 4.10: w[zh] <t - w[S(h)] <t /h20.

QED

The results that follow will link the complexity of the
constrained trellis to the asscciated circuit parameters. To

facilitate discussion, suitable notation will be introduced.

Section 4.2 Page 89

Note 4.4: Consider the following notation with respect

to the central portion of the constrained regulator trellis:

E(i) = Number of different allowable states of weight i.
o(i,w) = Number of different allowable input blocks of
weight i, when current state has weight w.

Number of different allowable states that can be

reached within one time-unit, from a given state

>

¥(i,w)

of weight w, via an I/P block of weight i.
ZE = Total number of different allowable states.
Zo(w) = Total number of different allowable input blocks,
when current state has weight w.
Total number of different allowable states that

can be reached within one time-unit, from a gi-

i

T¥(w)

ven state of weight w.

Expressions for £, ©¢ & ¥ can be easily developed:

Theorem 4.11: Consider an (n,k,m) regulator circuit
with transfer-function matrix P(D). Let t be the error-cor-
recting capability of the associated code and M the total
circuit memory. Then, with respect to the central portion of

its constrained trellis:

8(1) = (¥} /osist (4.29a)

o(i,w) = (¥) /osist-w & oswst (4.29b)

¥(i,w) = (¥7f) josist-w & oswst (4.29¢)

] vheré f = fIP(D)] (see Theorem 3.1, p. 57) and (ﬂ) =
n!/[k!(n-k)!}- = the binomial coefficient.

Proof: See Appendix 4.4 (p. 355).

Lemma 4.9: Consider an (n,k,m) regulator circuit with
transfer-function matrix P(D), Let t be the error-correcting
capability of the associated code and M the total circuit
memory. Then, with respect to the central portion of its

constrained trellis:

Section 4.2 Page 90

t
28 = n{Y) (4.30a)
i=0
t-w
ze(w) = X(¥) /0swst (4.30b)
1=0
t-w
z¥(w) = R(*f) /oswst (4.30c)
i=0

where f = f[P(D)] (see Theorem 3.1, p. 57) and (ﬁ) =
n!/k!/{n-k)! & C(n,k) = the binomial coefficient. Note that
C{(n,k) = 0, for n < k.

Proof: The results are the cummulative quantities of Theo-
rem 4.11.,

According to the discussion above, the state-transition
diagram of the regulator circuit is made of a total of Z&
states of weights ranging from 0 to t [there are exactly
£(1i) states of weight i}. From each state of weight w origi-
nate 9(i,w) transitions of weight i, where i is restricted
between 0 and t-w. Some transitions may be multiple-edge
ones {see Note A3.1.1, p. 330).

Each transition needs to be marked by the input block
(Zh) that caused that transition. To facilitate decoding,
each transition is marked by zh/qh, i.e, it includes the
corresponding O/P block qQ,. Note that, in reality, the cir-
cuit 0O/P is [zh,qh], since the circuit’s transfer-function,
P{(D), is part of G(D) = [Ik,P(D)]; but since the regulator
circuit for systematic-code cases is only examined, qhis
taken to be its O/P (see, also, Definition 4.2). The discus-

sion above leads easily to the following note.

4.2.2, Construction of the Trallis
Note 4.5: The constrained regulator trellis is con-

structed exactly like the (unconstrained) encoder trellis
{see Note 3.1, p. 65), except that only states of weight t
or less are considered. The states are arranged in groups
according to weight, with the all-zero state on top, below

the weight-one group, etc. From a given state of weight w,

Section 4,2 Page %1

only transitions that are caused by an I/P block of weight

t-w, or less, are considered.

For an example see Appendix 4.5 (p. 356).

At this stage, one is able to assess the importance of
the proposed decoding technique. Although it introduces some
degradation, it compensates by allowing the use of longer,
and hence more powerful, codes.

For example, according to Lin & Costello ({2}, p. 337),
the practical 1limit for the Viterbi algorithm is codes with
a total encoder memory of M=8 (1983), i.e. with a total of
28 = 256 trellis states., For error-trellis syndrome decod-
ing, the number of states considered is 1 + M +.+++ C(M,t)
(see Lemma 4.9). For a t=2 code, the constrained trellis has
1#M(M+1)/2 states, while the unconstrained one has 2"; a
Viterbi decoder for an M=8 code needs to consider a 256-
state trellis, while an error-trellis decoder only about
(1/6)th of that (37-state trellis). From another point of
view, if the maximum number of states is not to exceed 256,
a t=2 code with an encoder of total memory M=22 can be used

in combination with error-trellis syndrome decoding.

4.3 O A M_F YSTEMAT. ARY CO

Given the trellis diagram of the regulator circuit ({de-
fined above), the Viterbi algorithm {(introduced in Section
3.4), the general solution of the syndrome equation {(ob-
tained in Section 4.1) and the decoding equation (Theorem
4.?) the procedure for error-trellis syndrome decoding fol-

lows easily:

Note 4.6: To decode:
Step 1: Let time-unit be h=0.
Step 2: Calculate the current syndrome block S,

Step 3: For each branch, with label zh/qh, form the sum
q, + s, and append the label with the number W = w[z,] +

w[qh-i»sh] .

Section 4.3 Page 92

Step 4: For each state, at time-unit h+1l: From all
paths entering that state, keep the one with the smallest
metric M, , and store the path & the metric (M., = M, + W).

Step 5: If there are more blocks to be decoded, in-
crease h by 1 and go to step 3; otherwise proceed.

Step 6: From the survivor path, deduce the hyperchannel
error sequence 2z = [2Z,,%,%,,...] and subtract it from rim)

to obtain U.

For an example, see Appendix 4.6 (p. 361).

4.4 MP CAT OF THE CONSTRAINED TR

The purpose of this section is to investigate the gains
obtained from a simplified trellis., Savings will be possible
if one can exploit the redundancy of the diagram. In partic-
ular, the reader may have already noticed that some states
have only one I/P (and one O/P) transition. The lack of
choice, when the circuit is at such a state, suggests their
elimination. If such a simplification is not accompanied by
an increase in complexity {(which may be a by-product of this
modification), then net gains will have been obtained. These
gains mean that for a given code, the memory requirement 1s
reduced, cr that for a given memory~constraint more powerful
codes may be implemented.

The proposed simplifications may be very useful, because
a reduction in the decoder memory-requirement makes the use
of larger-distance codes possible. In order to assess the
memory savings, quantitative results should be produced.

The idea of the constrained state-transition diagram be-
longs, of course, to Reed & Truong [24]. In the];emg}nderrof
this chapter, the structure of the constrained trellis, and
of its simplified version, will be studied. The direct ap-
Plication of such an effort is on error-trellis syndrome
decoding, but the results that follow are more general. They
apply to any normal LSC (see Definition 4.2), while the con-
straint on the Hamming weight of the error sequences exam-

ined, need not be the associated-code error-correcting capa-

Section 4.4 Page 93

bility, t. For this reason the terms, constrained trellis
{instead of constrained regulator trellis), normal LSC (in-
stead of regulator circuit) and weight~constraint t (instead
'of error~-correcting capability t), will be used,

In fact, it will be interesting to attempt error-trellis
syndrome decoding with a weight-constraint different than

the error-correcting capability of the code.

4.4,.1, r jon of ircuj r

Thecorem 4.12: Consider a normal LSC and let MEG repre-~

sent the set of the contents of its memory.* Consider also
the parts of the memory REG, CEG & FEG. ¥ The following rela-

tions hold true:

FEG U CEG U REG = MEG (4.31a)
FEG N CEG = CEG N REG = ¢ (4.31b)
FEG N REG = {wh) /i=1,2,...,k: M= 1] (4.31c)

Proof: See Appendix 4.7 (§ A4.7.1., p. 363).

Theorem 4.13: Consider a normal LSC and let MEG repre-

sent the set of the contents of its nemory.* Consider also
the parts of the memory REG, CEG & FEG.* MEG can be parti-

tioned in many ways, including the following:

Partition I: MEG = (FEG,CEG,REG’) (4.32)
where REG’ & REG - FEG
Partition II: MEG = <FEG’,CEG,REG> {4.33)

where FEG’ & FEG - REG

Proof: See Appendix 4.7 (§ A4.7.2., p. 364).

The following very useful results, partition the contents
of the memory of a normal LSC, in terms of its contents one
time-unit before. But first an example to illustrate the

concepts introduced, so far.

¥ See Definition 3.1 (p. 58).

Section 4.4 Page 94

Example 4.1: Consider a normal LSC with SRs of various

lengths, say 0,1,2,3,4 & 5 (see Fig. 4.4). The various sets,

defined above, will be as following:

TABLE 4.1

At time-unit h
| At time—unit h+l

FEG(h) = {A,B,D,G,K
{ TR } FEG{(h+1) = {xz,xa,xq,xs,xs}
FEG’(h) = {B,D,6,K})
FEG’ (h+1) = {xs,x4,x5,x6}
CEG(h) = {E,H,I,L,M,N}
CEG(h+1) = {D,G,H,K,L,M}
REG(h)} = [A,C,F,J,0
(a:0:F.3,0) REG(h+1) = {x,,B,E,I,N}
REG'(h) = [c,F,J3,0
(h) { rhaT } REG’ (h+1) = {B,E,I,N}
ING(h) = {xl,xz,xs,xq,xs,xs]
MIG(h) = {xz,xs,x4,xs,xs}
DIG(h) = {xl}
-+ .—-»DIG(h)
' ll .
H xz A o
N B C >
x‘ D E F >
X G H I - 3 -
Cx— K —{ L M N ——— 0 [— .
. { - : : u.
| .] L . . o :‘
! ¢ v ¢
MIG(h) FEG(b) CEG(h) REG(h)
Figure 4.4: The memory partitions of an arbitrary normal LSC.

Section 4.4 Page 95

From the point of view of this discussion, this is the
most complete circuit because all limit situations are con-

sidered {all SRs of length 5 or more behave alike).

Theorem 4,14: Consider a normal LSC and let MEG{h+1)
represent the set of the contents of its memory at time-unit
h+l. Then, the following hold true:

MEG(h+1) = (MIG(h),FEG’(h),CEG(h)) (4.34)
FEG’ = {uft] /i=1,2,...,k: 4,2 2} (4.35)

MIG(h) U FEG’(h) U CEG(h) me=

— [{ul) /iel1,k], jelo,M) & M2 1) (4.36)

where MIG is defined by egn (4.23b), CEG by eqn (3.5d4)
and FEG' by eqn (4.33).

Proof: See Appendix 4.7 (§ A4.7.3., p. 365).

Lemma 4.10: Consider a normal LSC and let MEG(h+1l) rep-
resent the set of the contents of its memory at time-unit
h+l. Then, the following partition helds true:

MEG(h+1) U DIG(h) = {ING(h),FEG’{(h),CEG(h)) (4.37)

where DIG & ING are defined by eqns (4.23), CEG by eqn
(3.5d) and FEG’ by eqn {(4.33).

Proof: See Appendix 4.7 (§ A4.7.4., p. 366).

4.4.2. gtructure of the Constrained Irellis

It is evident from the above that during a transition,
the I/P block feeds the FEG, the FEG feeds the CEG (and the
REG in SRs of length 2}, the CEG retains most of its ele-
ments with the rest feeding the REG, while all the elements
of the REG are discarded. So, the only digits of S(h) that
do not participate in the formation of S§(h+1) are those of
the REG(h). To arrive at a specific state S{h+l) = Syone

has to start from a state S(h) = Sx* with a specific and

* Assuming that transition sx -_) E‘oy is possible,

Section 4.4 Page 96

unique FEG’(h) & CEG(h) and to use a specific I/P block
ING(h). Nevertheless, one is at liberty with respect to the
elements of the REG, hence the various states from which
S(h+l) can be reached are generated by letting REG(h) go
through all permissible combinations of bits. The theorem

that follows makes use of the discussion, above.

Theorem 4.15: Within the central portion of the con-
strained trellis, the number of transitions entering a state

equals the number of transitions leaving that state,

Proof: Although this result is original, it is rather
expected’, since it holds true for the special case of the
unconstrained trellis (see Lemma 3.1, p. 66), For this rea-
son, and because its proof is a ’lengthy’ one, it is given
in Appendix 4.8 (p. 366).

A useful expression obtained during the course of the

proof of the theorem, above, is:
w[R(h)] <t - w[S(h+1)] - w[D(h)] <t - w[S(h+1)] (4.38)

Note that the different I1I/P blocks z, that cause a tran-
sition into a specific (next) state S(h+l) = S s of weight
i, can only differ in DIG(h); this is so because the ele-
ments of DIG(h) will not reside in the circuit memory, while
all the elements of MIG(h) will do so. Hence MIG(h) has to
be fixed because it will be part of S{h+1l), which has a spe-
cific composition.

The following theorem gives the number of different Zs

that may lead to a specific state of weight ii.

Theorem 4,16: Within the central portion of the con-
strained trellis, the number of input blocks z, that cause a
transition to a specific state S(h+l) = S,» is C(f,0) +
C(fs1) #+<+++ C{(fya), where a = t - w[S(h)] - w[M(h)} = t -
w[S(h+1)] - w[R(h)].

Proof: From the above discussion, the number of I/P blocks
z, differ only in their DIG part (i.e. the group of I/P bits

Section 4.4 Page 97

that will not reside in the circuit memory). The size of
this group is f (f20). Hence there are C(f,i) different
DIG(h)s of weight i, where i may vary between 0 and the max-
imum permissible weight of D{(h), the state of DIG(h).

From reln (4.38),
w[D(h)] St - w[S(h+1)] - w[R(h)] (a)
From Theorem 4.14,

MEG(h+1) (MIG(h),FEG’(h),CEG(h)) —
MEG(h+1) MIG(h) U FEG’{h) U CEG(h)} ———
MEG(h+1) U REG(h) = MIG(h) U FEG’(h) U CEG(h) U REG(h)

— MEG(h+1) U REG{h) = MIG(h) U MEG(h) (4.39)

Since REG(h) is mutually exclusive with FEG’(h) [see
(4.33)] and with CEG(h) (see Definition 3.1) and with
MIG(h), it will also be mutually exclusive with MEG(h+1)
(which is partitioned by these three sets). Also, MIG(h) &

MEG(h) are obviously mutually exclusive.
(MEG(h+1),REG(h)}) = (MIG(h),MEG(h)) (4.40)
Applying Theorem 4.9 to reln (4.40),
w[S(h+1)] + w[R(h)] = w[M(h)] + W[S(h)] (4.41)
From relns (A} & (4.41),
w[D(h)] <t - w[S(h+1]] - w[R(h)] =t - w[s(h)] - w[M(h)] 2a

Note that if a > f, then when i (which ranges between 0 &
f) exceeds f, C(f,i)=0.
QED

Lemma 4.11: Consider a normal LSC with weight-con-

straint t and total memory M. Within the central portion of
its constrained trellis there are exactly C(M,t) states that
have a single I/P (and 0O/P) transition; these states have
weight t, while the transition from any of these states is

caused by zh=0.

Proof: According to Theorem 4.10 the sum of the Hamming
weights of the current 1I/P, z,, and the current state, S(h),

cannct exceed t. Hence, if w[S(h)] =t — w[zh] = 0

Section 4.4 Page 98

—— z = 0. So when the circuit memory contains t ’ones’
only one I/P block is allowed, hence there is only one tran-
sition to and from a state of weight t and there are C(M,t)
such states.

QED

Note that this situation, where a state has only one I/P
(and O/P) branch, is unigue. It is the result of the re-
striction introduced by Note 4.3.

Usually, a node exists where there is choice. In the case
discussed above there is only one path in and one path out
of the node, hence there is no decision to be made. This
type of nodes can be eliminated. Inevitably, such a ’'simpli-
fied’ trellis diagram will include interstate transitions of
length greater than one. The reader should recall® that in
an encoder trellis, all node-to-node transitions have length

one.

4.4.3. The Simplified Trellis

The results in this paragraph are applications of the
constrained-trellis results of the previous sections. They
are largely based on the observation that some states have

only one incoming and one outgoing path.

Definition 4.4: In the constrained-trellis, unlike in

the ordinary one, the states are arranged according to
weight, A region of weight w is the set of all states of
weight w (0<ws<t).

Note that the regions are arranged starting from the w=0
one on top and ending with the w=t one in the bottom. Inside
a2 region the states may be arranged in any way, suitable to
the application at hand; one possibility is the way used in
the ordinary trellis.

In Lemma 4.11, above, it was mentioned that when the cir-
cuit is at a state of weight t, only the all-zero I/P block
z,=0 is permitted. Hence, once the normal LSC finds itself
in the w=t region, it will be driven by an all-zero bit-

* See Definition 3.2 (p. 68).

Section 4.4 Page 99

stream until it exits from this region. Toc put it otherwise,
the circuit will be in its so-called autonomous state for as
long as its memory contains t 'ones’.

The duration of the stay of the normal LSC in the autono-
mous state may vary between one time-unit and a maximum of m
time-units. More precise information cannot be obtained for
the general case because it depends on the way t 'ones’ can
be arranged in a set of k-f SRs of lengths varying between 1
& m. Nevertheless, some results for special cases will be

developed.

The simplified trellis, discussed above, is easily con-
structed from the ordinary one by removing the weight-t

states and medifying the diagram as necessary:

Note 4.7: Given the constrained-trellis of a normal
LSC, with total memory M and weight-constraint t, the corre-
sponding simplified trellis is obtained from the original

constrained-one as following:

Step 1: All nodes corresponding to states of weight t
[there are exactly C(M,t) such states] are removed from the
diagram.

Step 2: Step No 1, above, generates state-to-state
transitions of length greater than one. These ’'long’ transi-
tions are made by concatenating all single paths that come
into contact after removing the weight-t nodes.

Step 3: The label of a ’long’ transition is the concat-
enation of the corresponding single-path labels.

Step 4: Any transitions that start from, and end +to,
the same state are replaced by the correponding multiple-

edge transition.

Exampie 4.2: Consider the constrained-trellis diagram
of Fig. A4.5.3 (p. 3580). Note that all states, apart from
Sgs
tioned modifications are adopted, only 5, will remain. From
Fig. A4.5.3, one can deduce that the simplified trellis will

have only three transitions, all from S5, to S,. One will

have one I/P and one O/P transition. If the above men-

Section 4.4 Page 100

have length 1 and label "0/0", the other will have length 2
and label "20/11" (which is the concatenation of "2/1" &
"0/1"); finally, the third label will be a double-edge one,
of length 3: labels "3/1", "0/1" & "0/1" collapse to
"300/111" and labels "1/1", "0/0" & "0/1" collapse to
"100/101". Fig. 4.5, shows the new diagram, the simplified
trellis.

Time Unit

0 1 2 3 4 5 6 7 8 9

20/11 20/11 20/11 20/11 20/11 20/11 20/11

9999,

300/111 300/111 300/111 300/111 300/111 300/1f1 300/111
100/101 100/101 100/101 100/101 100/1¢1 100/101 100/101

0/0

Figure 4,5: Simplified trellis diagram corresponding to the con-
strained trellis of Fig. A4.5.3 (p. 360)}.

Note that within the central portion of the simplified
trellis, there are three transitions entering each state and

three transitions leaving it.

The simplified and the constrained trellis diagrams dif-
fer in that the weight-t region of the former has been re-
moved according to Note 4.7. This modification has generated
transitions of length greater than one. Hence, any such
transition is associated with states of weight t. In fact,
the instructions for the construction of the simplified
trellis, from the constrained trellis (see Note 4.7), lead

easily to the following theorem:

Section 4.4 Page 101

Theorem_ 4.17: Consider a simplified trellis® and any

particular transition of length B > 1. In the corresponding
constrained-trellis® this long transition will correspond to
a sequence of transitions, of which the 1lst enters the
weight-t region, the last leaves the region and the rest are

transitions between states of the region.

Although Theorem 4.17, above, is neither difficult to
prove (since it is based on the construction notes for the
simplified trellis), nor very useful by itself, it forms the

backbone for a number of interesting results.

Theorem 4.18: The longest transition in the simplified

trellis® of an (n,k,m) normal LSC cannot exceed m+l time-
units. This maximum can be achieved only if the circuit con-
tains at least t SRs of length m (where t is the circuit’s

weight-constraint).

Proof: According to Theorem 4.17, any transition of length
B > 1 is associated with a sequence of 8 single-path transi-
tions in the corresponding constrained trellis. Furthermore,
the 1st of the transitions brings the circuit in the
weight-t region and the Bth takes it out of the region. This
means that the last ’‘ones’ are injected in the circuit memo-
ry during the 1st single-path transition.

Since the circuit memory contains the maximum pernmissible
number of ’ones’ (i.e. t - see Theorem 4.10), during the
remaining B-1 time-units no other 'ones’ are injected, i.e.
the circuit will be in its autonomous state. The 'long'

transition terminates when the circuit memory leaves the

region, i.e. when at least one ’'one’ leaves the memory.
Hence, the length cof the longest possible transition will
correspond to the maximum possible number of time-units the
circuit can keep t 'ones’ while in its autonomous state.
According to Definition 4.2, the normal LSC and the en-
coder have the same transfer-function matrix P(D) (which for
the encoder is called generator-polynomial matrix). Hence,
the encoder-synthesis instructions, given in Note 2.9, hold

true for the normal LSC, as well. According to Note 2.9,

¥ The central portion of the trellis is, only, considered.

Section 4.4 Page 102

there is at least one SR of length m. Any particular ’one’

can remain in this SR for at most m time-units, i.e. it
needs m+l units to clear off this register. The maximum num-

ber of time-units t ’'ones’ can reside in the circuit is de~

termined by the ’one’ which at time-unit 1 is closest to the
end of its own SR. So, at time-unit 1, the t ’ones’ should
reside as far left as possible, in an as long as possible
SR. In other words, right after the 1lst single-path transi-
tion each of the t ’ones’ should be at the first stage of an
SR of length m.

Clearly, the circuit should contain at least t SRs of
length m; also these t 'ones' need m+l time-units to clear
of the circuit memory.

QED

4,5 ARACT F NER IR 1R

In the last four sections numerous aspects of the con-
strained and simplified trellises were discussed and a num-
ber of examples were given. The accumulated experience can
then assist in a deeper and more abstract elaboration of the

structure of the constrained state-transition diagram.

4.5.1. General Partition of the Memory of a Normal LSC

The memory partition in FEG’, CEG & REG (or FEG,CEG &
REG’), firstly introduced by Definition 3.1, was very suc-
cessful in explaining the mechanics of the state diagram. In
this paragraph this idea is reformulated in an abstract way
and is also extended with the introduction of a few more

rarameters, like the memory-density function.

Definition 4.5: For a normal LSC , the memory-density

function f(i) denotes the number of shift registers of
length i /iz0.

Theorem 4.19: Consider an (n,k,m) normal LSC, with to-

tal memory M. Then the following results hold true:

Section 4.5 Page 103

i) f(0) = 1 (4.42a)
ii) f(i) = 0 for i¢{0,m] {(4.42b)
iii) fim) 2 1 (4.42c)
iv) Rf) =k (4.424)
1=0
v) Zif(i) =M {4.42¢)
i=1
Proof: The results follow easily from Definition 4.5.

Consider, at first, the partition of the circuit memory
and of the current I/P block, shown in Fig. 4.6. Note that
the circuit-memory Partition II (see Theorem 4.13), and the
input-block partition into MIG & DIG [defined by eqgns
(4.23)]), have been adopted.

INPUT CIRCUIT MEMORY
LA EAADAD
EAAD T o i
——t——>| FEG M2ks2 2111 *s
MIG REG b
& >
LI
A2
1'5 >
\
vt/ f
DIG i >

Figure 4.6: Partition of input block and circuit memory, of a

normal LSC.

Referring to Fig. 4.6, the reader should note the follow-
ing: Each box represents a parallel-in parallel-out memory
block; all blocks impose a one time-unit delay, with the

exception of CEG whose delay per bit wvaries between one and

m-2 time-units; the size of each transition line is denoted
by their label, while the number displayed in the CEG de-

Section 4.5 Page 104

notes its memory size,

According to the above notes, the memory size of the oth-
er blocks is: k-f for the MIG, f for the DIG, k-f-f(1) for
the FEG' and k-f for the REG. The transition lines represent
a one time-unit parallel transition of the marked number of
bits. Finally, the transitions in the RHS of the diagram
represent bits that are discarded, i.e. bits that leave the

memory.

The idea of the partition illustrated in Fig. 4.6, has a
general application in life: For each process, the next
state depends on the current action (I/P) and the current
state, A part of the current action (DIG) does not partici-
pate in the shaping of the next state. Part of the current
state (REG) will not influence the next state, while part of
the next state (FEG) will be entirely due to the current

action.

4.,5,2, e iptio u State

The current paragraph will discuss the current state, and
specifically its partition and enumeratation.
According to the adopted partitions:

MEG(h) = (FEG’(h),CEG(h),REG(h)) —
—> (4.43)
ING(h) = {(MIG(h),DIG(h)) —

Let ¢ be the weight of the current state. Then:
0 s w[S(h)] ¢ <t (4.44)

Let t denote the weight of R{(h). Obviously 0 £ t £ ¢ £ t,
but since REG has k-f positions, v has to satisfy 0 € t =
MIN{k-f,¢}; since also the rest ¢-t ’ones’ have to reside in

the rest of the memory ¢-t £ M-k+f — t 2 g+k~M~-f.
Hence: MAX{O,q+k-M-f} < w[R(h)] = T < MIN{k-f.Q} (4.45)

If Tt satisfies (4.45) then there are C(k-f,t) ways to
prlace the v 'ones’ in the REG, and for each of these there

are C(M-k+f,¢-t) ways to place the rest of the ’ones’ in the

rest of the memory.

Section 4.5 Page 105

So the total number of states of weight ¢, with T 'ones’
in the REG, is
C(k-§,t)C(M-k+f,g-T) = (k;f)(M;E;f (4.46)

Note that it is not necessary to restrict T with (4.45).
One can adopt a more relaxed range for tv, i.e. 0 £ v £ ¢ and
use the fact that C(a,b)=0 if a<b,

4.5.3. Iransition from a Gjven State

During the next transition the contents of the REG will
be discarded, hence the next state’s weight will be reduced
by w[R(h)], but on the other hand it will be increased by
w[iM(h)], i.e. by the number of ’ones’ in the part of the I/P

block that will reside in the circuit memory.

Hence, w[S(h+1)] = W[S(h}] - W[R(h)] + w[M(h)] (4.47)

Theorem 4.20: Consider the central portion of the con-
strained trellis of an (n,k,m) normal LSC, with weight-
constraint t. If the current state, S{(h}), is given, the
weight of the next state, S(h+l), satisfies the inequality

¢ - T w[S(h+1)] < MIN{t-t,k—f+q-t} (4.48)
where: ¢ = w[S(h)] & T =& W[R(h)]

Proof: For a given current state S(h), ¢ & T are fixed;
hence, the weight, fi, of the next state depends on p =
w[M(h}], according to egn (4.47): MAX{fA} = ¢ - T + MAX{n} &
MIN{fi} = ¢ -~ T + MIN{n}.

Obviously MIN{u} = 0, hence: MIN{fi} = ¢ - T.

There are two restrictions on p. Obviously, it should not
exceed the capacity of the MIG (i.e. nm £ k - f) and it
should not violate the fundamental restriction of Theorem
4,10, j.e. ¢ + 1 +pnp<t Kme=> ps<t-g¢-73, where I =
w[D(h)]. Since the DIG does not participate in the formation
of the next state, restrictions on its weight, 1, are rather
relaxed, hence its value can be arbitrary, within limits. In
the case examined 1 will be given the value that allows a
greater freedom for p, which is equivalent with the ability

toe reach a maximum number of states from the current given

Section 4.5 Page 106

state:
n < MAX{t-q-i} =t -g¢g - MIN{i} =t - ¢

Hence: MAX{ﬁ] =g -1 + MIN{t-q,k-f} = MIN{t-t,k-f+q—t}
QED

Note that a restriction on n was considered during the
discussion of the proof of Theorem 4.20:

0<nps< MIN{k—f,t-q} (4.49)

Consider now the total number of transitions from any
given state S(h) to any state of given weight, say, o (A
should satisfy, of course, Theorem 4.20).

Since S{h)} is given so is its weight ¢ and the distribu-
tion of the ¢ ’ones’ in the memory of the associated cir-
cuit. Hence ¢ & T are given as well; if A (= w[S(h+1)1) is
given, then p is also given, since eqn (4.47) determines
that n = 6 + t - ¢.

Note that the various .transitions leaving a specific
state are generated by ’playing’ with the I/P bleck. In this
case, the only restriction on zhis on its weight. Specifi-

cally, w[zh] must satisfy Theorem 4.10 and eqn (4.47):
Ii+p+c¢c=<t & pr=f+1t-g¢ — ist-hH-=

Since the size of the DIG is §f, I may assume any value

between 0 and f, provided it does not exceed t - 1 - T.

Hence, 0 £1 % MIN{f,t—ﬁ-t} —

p=n+v-~¢g —

Note that the contents of the DIG do not reside in the
memory, hence they do not participate in the formation of
the next state. The DIG provides only the multiplicity of
the labels. On the other hand, the chosen combination of n
'ones’ will determine the next state, hence the MIG speci-
fies S(h+1), although w[S(h+1)} is fixed.

Hence, the number of combinations of p 'ones’ in the MIG
equals the number of transitions from S{(h) to a state of
weight n; for each such transition the number of single-edge

labels {or label multiplicity) equals the total number of

Section 4.5 Page 107

combinations permitted in the DIG. If o = MIN{f,t-ﬁ-t}:

a
Label multiplicity, per transition = ,C(f,i) (4.51)

i=0
Obviously, the number of transitions equals the number of
combinations of p 'ones’ in the MIG, which is the same with
the number of ways one can place p indistinguishable objects
in k - f places. Since p = i + T - ¢, the number of transi-

tions equals

(n+t -G (4.52)

The results of the above discussion can be summarized in

the following theorem:

4.5.4. Summary. of Results

Theorem 4.21: Consider the central portion of the con-

strained trellis of an {(n,k,m) normal LSC, with transfer-
function matrix P(D), total memory M and weight-constraint
t. If §f & f[P(D)1*, the following hold true:

i) 0 sw[sth)]&¢st
and MAX{0,9+k-M-f} < w[R(h)] & ¢ = MIN{k—f.q}
ii) Number of states of weight ¢, with an REG
of weight t = (k;f)(Mégif
i) Total number of states of weight ¢ = (g)
iv) ¢ =1t g w[S(h+1)] 2 f < MIN{t—t,k-f+q-r}
v) Number of transitions from a given state,

of weight ¢, to some state of weight i = (ﬁ%;iq)

a
vi) Label multiplicity, per transition = Ec(j',i)
i=0
where: a = MIN{f,t—ﬁ-t}.

n
=13

vii) w[M(h)] u +T-¢ & 05usHIN[k-f,t-c]

|
Y

iix) < w[D(h)] < MIN{f,t—ﬁ-t}

¥ See Theorem 3.1 (p. 57}.

Section 4.6 Page 108

1.6 AR E_THE GENERA E IR]

The only difference between the constrained trellis and
its simplified version is the removal of the weight-t region
from the latter; this generates transitions of length more
than one time-unit {(the so«called long transitions =- see
Note 4.7).

The existence of the 'long’ transitions is a feature of
the simplified trellis. Since the rest of the details of the
general constrained trellis (and hence of the simplified, as
well) were discussed in the previous section, what remains
to be examined is the number, length & labels of the 'long’

transitions and, if possible, their destination.

4.6.1, Introduction

Consider any given state S(h) of weight w[S(h)] = w, and
an I/P block z, that causes a one-time-unit transition to a
state S(h+l) of weight t. Since the circuit contains t
'ones’ at time-~unit h+l1l, it is assumed that no other ‘'one'
will be loaded until it looses at least one of these bits
(see Theorem 4.10). Hence, what is important here is the
time-unit at which the circuit looses the first of its t
’ones’. This will be determined by the ’distance’ (in SR

'one’® in each of the SRs, from the

stages) of the foremost
SR’s end. Cbviously, the minimum of these ’distances’ deter-
mines the duration of the stay of the circuit in the w=t
region, and consequently the length of the corresponding
'long’ transition.

A ’long’ transition of length B starts from a state of
weight less than t and ends in a state of weight less than
t; hence at the O0th and the fth time-units the circuit con-
tains less than t ’ones’, while it contains exactly t ’ones’
at time-units 1,2,...,8-1. Note that it makes no sense to
expand the term ’'long’ transition to normal transitions,
i.e. of length B=1. Hence, from now on the ’long’ transition

will have length 5>1.

Section 4,6 Page 109

Theorem 4.22: Consider the central portion of the sim-

plified trellis for a normal LSC with weight-constraint t.

If a 'long’ transition is to start at time-unit h, then

w[o(h)] w[R(h)] =0 —

—> (4.53)

w[M(h)]

t - w[S(h)] —

where, it is repeated that, S(h) is the current state of
the circuit and R(h}), D{(h} & M(h) are the current states of
the REG, DIG & MIG, respectively.

Proof: During the 1st time-unit (i.e. between time-units 0
& 1) the circuit looses Tt ’ones?, where Tt = w{R(h)] and
gains p 'ones’, where p & w{M(h)].

There are twe restrictions on t, p & ¢ = [S(h)]:

Firstly, Theorem 4,10 requires that the combined weight
of the I/P block and of the state must not exceed t, at any

time, which means that ©t, ¢ and I = [D(h)], must satisfy:
Ii+p+gst (A)

Also, the next state’s weight must be t, hence (by Theo-
rem 4.21),
¢ ~T+unu-=t (B)

From relns (A) & (B} it is easily concluded that

+ T £0 x> i=1t=0.

i

i+ pu+¢ g -1 +n e

Sincet =0, n =t - ¢.
QED

So far, it has been concluded that the I/P block will
contain no ‘ones’ in the DIG and t-w ’'ones’ in the MIG,
while the current state should be such that the REG contains
no 'ones’, If the transition is to last exactly £ time-

units, then between time-units h+B-1 & h+8 the circuit must

loose its first 'one’ (or ’'ones’). These 'foremost ones’
should be in the last stage of their corresponding SRs at
time=-unit h+$-1. Since at time-unit h+8-1 these bits are at
the thh stage of their corresponding SR, at time-unit h+l

they should have been at the (Mj—ﬁ+2)th stage.

Section 4.6 Page 110

4.6.2, Preparation

The main conclusion of the previous paragraph is ex-

pressed by the theorem below:

Theorem 4.23: Consider the simplified trellis* for a
normal LSC with weight-constraint t and SRs of length MJ
/j=1,2,...,k. If a transition of length at least A>1 is to
start at time-unit h, then at time-unit h+l the circuit must
contain exactly t ’'ones’, restricted at stages 1v2»---s(M3'
B+2) of their corresponding SRs, which must satisfy Mj-B+2 >
1,

From the theorem above, the following three results/con-

ditions, are extracted:

Theorem 4.24: Consider the central portion of the sim-
plified trellis for a normal LSC with weight-constraint t
and SRs of length Mj/j=1,2,...,k. If a transition of length

B>l, is to start at time-unit h from a state of weight w
(bsﬁgéjj-then it is neceggarx_gnd sufficient that:'

i) At time-unit h, the circuit’s memory should con-
tain exactly w ’ones’ restricted to stages 1,2,...,(MJ-B+15
of those of the k SRs that have length szﬁ.

ii) The I/P block 2, should contain exactly t-w 1ls, at
positions that correspond to SRs of length B-1 or more.

iii) Either, a) at least one of the w 'ones' of S(h)
must_beAjE the ¢M5—6+1)th stage of its SR, or b} at least
one of the tlw ‘ones’® of z, must Se in a position-that-cor-

lgespc_m_ds to an SR of--length-B8-1. - - - -

Proof: Let a transition of length £ start at time-unit h.
Then, according to Theorem 4.23, at time-unit h+l1 t ’ones’
are stored in the memory; furthermore, these ’ones’ are re-
stricted in the first MJ-B+2 stages of the ’long' SRs {i.e.
of the SRs that have at least as many stages).

At time-unit h the circuit is at the given state, of
weight w, hence it contains exactly w ‘'ones’. If at time-~
unit h+1l, no 'ones’ are to be found beyond the (MJ—B+2)th

¥ The central portion of the trellis 1s, only, considered.

Section 4.6 Page 111

stage of their corresponding SR, then at the previous time
unit the w ’ones’ would have been restricted in the first
Mj—B+1 stages of their corresponding SRs. The SRs that can
accomodate ’ones’ at time-unit h are, obviously, those for
which stages 1,2,...,0%-B+1) do exist, i.e. those SRs for
which M- B+121 o szﬁ.

According to Theorem 4.22, the I/P block z,
t-w ’ones’ all in the MIG. The only remaining question now

must contain

is, in which positions of the MIG are these t-w ’ones’ al-
lowed to be placed? Firstly, there is no restriction because
of the existence of the w ’ones’ in the circuit memory. Even
if some of the w ’ones’ do reside in the FEG at time-unit h,
they will evacuate it during the S(h) —> S(h4l1) transition,
so that all the k-f positions of the FEG can accept the I/P
'ones'. The restriction is imposed by Theorem 4.23. At
time-unit h+1 the t-w I/P ’ones’ should not be beyond the
(MJ-B+2)th stage of their SR. Since these bits are launched
at the 1st stage of their SR, anyway, the restriction is
reduced to the choice of SRs whose 1st stage does not exceed
(M,-8+2): (MJ-B+2}21 (m==> M 28-1.

The first two restrictions consider the case of a transi-
tion of length B, or more. If this transition is to last

'one’ should leave

exactly £ time-units, then at least one
the memory at time-unit h+8 or, the same, at time-unit h+il
there must be at least one 'one’ in the (Mj—ﬁ+2)th stage of
its SR. The question now is, where this bit will originate

from? The t 'ones' that exist in the circuit at time-unit

h+l come
i) either from the I/P block 2z, (exactly t-~w of them), or
ii) from the ’early’ stages of the circuit memory (exactly
w of them).

So, either at least one ’one’ of the I/P block should be

in a2 position corresponding to an SR of length B-1, or at

’ L

least one of the current state should be in stage

(MJ-B+1) of its SR,

one

QED

According to part (i) of Theorem 4.24, states of weight w

from which transitions of length B8 or more may start, can be

Section 4.6 Page 112

generated by placing w ’ones’ in stages 1,2,...,(MJ-B+1), of
those SRs with length 8 or more. At this point it would be

useful to define some new terms:

Definition 4.6: Consider an (n,k,m) normal LSC and its
set of SR stages, MEG¥., The REG was defined as the part of
the circuit-memory made of the last stage of each SR. An

extension of this concept is the REG of order i, denoted by
REG(i,), 1€£i<m, which is defined to be the set of the last i
stages of each SR. To preserve compatibility, the contents
of the REG{i,), at time-unit h, are denoted by REG(i,h).

Definition 4.7: Consider an (n,k,m) normal LSC and its

input group, iNg* {i.e. the k x 1 memory which holds the
current input block, prior to its shifting into the LSC).
The DIG was defined as the part of the I/P block that corre-
sponds to SRs of length 0. An extension of this concept is
the DIG of order i, denoted by DIG(i,), 1£i<m, which is de-
fined to be the set of the I/P block positions that corre-
spond to SRs of length i or less. To preserve compatibility,
the contents of the DIG(i,), at time-unit h, are denoted by
DIG(i,h).

Note here that the REG is the REG of order one, while
REG(1,h) = REG(h). Similarly, the DIG of order 0 is the DIG,
while DIG(0O,h) = DIG(h). A quantity of particular importance

is the number of elements in the previously-defined sets.

REG(i,) & DIG(i,) are sets of memory SR-stages. REG(i,h)
& DIG(i,h) are sets of bits residing in REG(i,) & DIG(i,),
respectively, at time-unit h. These four sets can, also, be
thought of as functions of i (and of h, for the first two).

Notation: Let A represent any part of the memory of a
cireuit. Then 1A| denotes the number of SR-stages in A.

Let f{i) be any function of an integer variable i. Then
the difference f(i) - f{(i-1) will be denoted by &f(i).

* see also Definition 3.1 {p. 58) & Definition 4.3 (p. 87).

Section 4.6 Page 113

For example, since MEG represents the total of the cir-
cuit’s memory, then -MEG = @, while |MEG| = M. Also,
8REG(1,) = REG(i,) - REG(i~1,), etc. Also, from Definition
A4.,2.2, MEG - REG(i,) = -REG(i,), etc.

The following lemma defines the parts of the memory and
the I/P block that are allowed to accomodate ’ones’, if a
’long’ transition is to be launched. This lemma is a combi-

nation between Theorem 4.24 and Definitions 4.6 & 4.7.

Lemma 4.12: Consider the central portion of the simpli-
fied trellis for a normal LSC with weight-constraint t and
SRs of 1length Mj/j=1,2,...,k. If a transition of length B
(8>1) is to start at time-unit h, from a state of weight w,
then:

i) At time-unit h, the w 'ones'® of the circuit’s
memory should be concentrated in the -REG(S8-1,) (# o).

ii) The ‘ones’ of the I/P block z, should be concen-
trated in the -DIG(S8-2,) (# @).

] L]

iii) At least one should reside either in the
8REG(B,) (# @), or in the 8DIG(B-1,) (# @).

one

Proof: According to Definition 4.6, the REG(S8-1,) is made
of stages MJ,MJ—I,...,Mj-ﬁ+2 of each SR, hence its complemen-
tary, -REG(#-1), will be made of SR stages 1,2,...&%—B+1.
Similarly, according to Definition 4.7, the DIG(SB-2,) is
made of the I/P block positions that correspond to SR
lenghts 0,1,...,8-2, Hence, the =-DIG(S8-2,) will be made of
the I/P block positions that correspond to SRs of length §-
1,...,m.

Finally, the S8REG(SB,) is made of the (Mj-B+1)th stage of
each SR. Similarly, the 8DIG(S-1,) contains those I/P block
position(s) that correspond to SR(s) of length £-1.

QED

4.6.3. Intermediate Results

This paragraph will use the tools introduced by the

previous paragraphs to produce some intermediate results,

which in turn will be useful for the conclusion., Specifical~

Section 4.6 Page 114

ly, the number of stages in the REG{(i,) and in the DIG(i,)
are parameters of particular importance.

In order to assist the presentation of the results the
memory-distribution function, F, is defined below. Clearly,
f & F have been modelled on the probability density function
and the probability distribution function.

Definition 4.8: For a normal LSC, the memory-distribu-

tion function F(i) denotes the number of shift registers of
length i or less:

i

F(i) = 2f(3) /320 (4.54)
§=0

|

Theorem 4.25: Consider an (n,k,m) normal LSC, with to-

tal memory M. Then the following relationships hold true:

, ‘ p== F(i) if i=0 —
1) fei) e §F(i)} if i>0 — > (4.552)

ii) F(m) = k (4.55b)
iii) SIF(§) = (mtl)k - M (4.55¢)
§=0

Proof: See Appendix 4.9 (§ A4.9.1., p. 368).

The following two lemmas will provide some useful in-
termediate results:

Lemma 4.13: Consider an (n,k,m) normal LSC with total
memory M. Then the following relationships hold true, for
all pe[l,m]:

B B-1
if(i) = BF(B) - X F(1) (4.56a)
i=1 1=0
m A1
2if(i) = M - BF(B-1) + X F(i) (4.56b)
i=p0 i=0

Proof: See Appendix 4.9 (§ A4.9.2., p. 388).

Section 4.6 Page 115

temma_4.14: Consider any two parts A & B of a circuit’s

memory. Then

|A-B| = |aUB| - |B (4.57a)
end if, B C A) then: |A - B| = |A| - |B] (4.57b)
where, if X N Y = g, then |[X| + |Y| = |X U Y| (4.58)

Proof: See Appendix 4.9 (§ A4.9.3., p. 369).

||
Theorem 4.26: With respect to an (n,k,m) normal LSC,
with total memory M, for all RBe[l,m]:

81

i) |REG(8,)| = Bk - D F(i) (4.59a)
1=0

ii) |REG(1,)]| =k - f & |REG{m,)| = M (4.59b)
1ii) o1

|-REG(B,)| = M - |REG(B,)| = M - Bk + D F(i) (4.59¢)
i=0

iv) |8REG(B,)| = k - F(B8-1) (4.59d)

v) |DIG(B,)| = F(B) (4.59¢)

vi) |DIG(0,)| = f & |DIG(m,)} = k (4.59f)

vii) |-DIG(B,}| = k - |DIG(B,)| = k - F(8) (4.59g)

iix) |8DIG(B,)] = §(B) (4.59h)

Proof: By Definition 4.6, the REG{S,) is made of the last
B stages of each SR, i.e. of stages M, -B+1,M,-B+2,...,M, for
all iel[l1,k] for which M ~B+12]1 Qo M,28, where Befl,m].
Since REG(S3-1,) is made of stages Mi—ﬁ+2,Mi—B+3,...Jg_then
the relative complement, OREG(fB,) = REG(SB,) - REG(8-1,),
will be made of those stages of the REG{(8,) that do not be-
long to REG{(B-1,), i.e. of the (Ml-ﬁ+1)th stage of each SR
that has length M,28. |8REG(B,)| is then equal toc the number
of SRs that have length at least B, or since the number of
SRs is k, |BREG(S,)| equals k minus the number of SRs that
have length at most B8-1 [the latter quantity is F(B8-1), ac-

cording to Definition 4.81. Hence,

% BCA = "B is a subset of A".!

Section 4.8 Page 116

|8REG(8,)| = k - F(8-1) (d)

Since REG({pB8-1,)
and egqn (d):

C REG(8,}, then according to Lemma 4.14

|8REG(i,)| = |REG(i,)| - |REG(i-1,)] = k - F(i-1) /i=2,..,m

B A1 8-1
=——> J|REG(i,)| - J|REG(i,)| = J[k - F(1)]
i=2 1=1 i=1

g1
===> |REG(8,)}| - |REG(1,}] = (B-1)k -~ D F(i)
i=1
REG(1,) is simply the REG, which contains k-f stages.
Since, f = F(0) [see eqns (4.42a) & (4.55a)]:

81
—=> |REG(SB,)]| = Bk - JIF(i) (a)
i=0
Eqns (b) are trivial cases, while egn (c) is based on the

fact that MEG - REG(i,) = -REG(i,) and on eqn {(a).

According to Definition 4.7, lDIG(ﬁ,)| is the number of
SRs of length 8 or less and this is simply F{B8)}, according

to Definition 4.8: {DIG(B,)| = F(B) (e)
From eqn (e}, IDIG(O,)I = F(0) = f [by egns (4.55a) &
(4.422)] and [by egqn (4.55b)1: |DIG(m,)| = F(m) = k (f)

Since DIG(i-1,)
and eqns (e) & (4.55a) {(the latter egn holds true since
Befl,m]):

C DIG(i,), then according to Lemma 4.14

|8DIG(8,)| = [DIG(S,)| - |DIG(E-1,)| = F(B) - F(8-1)
Hence: |8DIG(B,)| = f(8) (h)

Finally, since -DIG(fB,) = ING -~ DIG{S,) (see Definition
4.3): |-DIG(8,)| = JING| - |DIG(B,)]| = k - F(B) (g)
QED

4.6.4. Conclusions

The results of the previous paragraphs will now be com-
bined to produce the main theorem of this section.

Consider an (n,k,m) normal LSC, with total memory M and

Section 4.6 Page 117

weight-constraint t. Let a transition of length £8>1 start at
time-unit h, from a state of weight w.

According to Lemma 4.12, the w 'ones’ of the memory
should reside in the -REG(SB-1,).

Hence, there are (l'REGéﬁ'l’)l) such states.

Consider now any specific state from which a transition
of length B may start. There are two possibilities with re-
spect to such a state. Since S8REG(S,) is a subset of
-REG(8-1,),

i) either there is no ’one’ in the 8REG(S8,), or

ii) there is at least one ‘one’ in the 8REG(S,).

This distinction is important because if the transition

’

is to have length B, exactly, then the state has to bhe such
that (ii) above holds true {see Lemma 4.12). If though (i)
holds true, the I/P block should be such that at least one
‘one’ resides in the 8DIG(S-1,).

i) There are no ’ones’ in the B8REG(3,). Then, this
means that the w 'ones’ of the memory are concentrated in

the rest of the permitted region, i.e. in
-REG(8-1,) - 8REG(S,) = -REG(B8-1,) ~ [REG(SB,) - REG(S8-1,)]
===> -REG(S-1,) - SREG(SB,) = -REG(A3,) {a)

The result, above, is based on Theorem A4.2.2 [egn (c)]
and on the fact that REG(S8-1,) C REG(A3,).

So, there are {l'REG£B’)|) such states.

ii) There is at least one 'one’ in the SREG(B8,). The

number of different ways one can place w ’ones’ in a certain

’ ¥

region R so that at least one ’one’ is in a specific part A
of that region, equals the total number of ways the w 'ones'’
can be placed in R, minus the number of ways the w ’ones’

‘one’ is placed in A; the lat-

can be placed in R so that no
ter equals the number of ways the w ’ones' can be placed in
R-A (which is the number of ’unacceptable’ cases). In the
case under examination, R is -REG(S8-1,) and A is BREG(A3,).
Then the ’unacceptable’ region [according to eqn (A), above]

is -REG{pB-1,) -~ BREG(S8,) = -REG(SB,) and therefore:

Section 4.6 Page 118

There are (l-REG&B'l’)l) - (l'REGéB')l) such states.

From each of these states there is a number of transi-
tions of length 8. This depends on the number of pernmitted
I/P blocks. This, in turn, is defined by Lemma 4.12, part
(ii). The t-w ’ones’' of the I/P block should be concentrated
in the -DIG(p-2,).

Hence, there are (|"DI§££'2’)1) such transitions.

i) Returning to the 1st case, for a transition of

length B8 to start, at least one ‘one’ should reside in the

8DIG(B-1,) [see Lemma 4.12, part (iii)]l. Then, using the

same argument as above, one can count the number of °

ac-
ceptable’ I/P blocks by subtracting the number of the ’unac-
ceptable’ ones, from the total. The 'unacceptable’ region is
-DIG(pB-2,) - 8DIG(B-1,) = -DIG(B-2,) - [DIG(B-1,)-DIG(S-2,)]
= -DIG(fB-1,), where the above result is based on Theorem

A4.2.2 and on the fact that DIG(B-2,) C DIG(B-1,). So:
-DIG(B8-2 ~DIG(5-1
There are (l t££ ')|) - (l tig ’)I)
transitions of length B out of such a state.
If the results of Theorem 4.26 are also used, the follow-

ing has been proved:

Theorem 4.27: Consider the central portion of the sim-

plified state-transition diagram of a normal LSC, with total

memory M and weight-constraint t. Then,

i) The number of states of weight w, from which a

transition of length £>1 may start is

(I-REGLA-1)]) (4.60a)
B2

where: |-REG(B-1,)}] = M - (B-1)k + D F(i) (4.60Db)
i=0

ii) There are (I'REGéﬁ;l’)l) - (I'REG£B’)I) (4.60c)
states, of weight w, from which
-DIG(B-2, - - -
(17PT¢L8-2)1) = (k-f(B-2)) (4.60d)

transitions of length B>1 start, where:

Section 4.6 Page 119

|-REG(B,}| = |-REG(5-1,)] + F(B-1) - k (4.60e)
iii) There are (l'REG&B’)l) (4.60f)

states, of weight w, from which

(|—DI%S£=2,)[) - (|-DIG£§;1,)|)

— (k-fLE2)) - (EfLE-1)) (4.60g)
transitions of length B8>1 start,
|
Example 4,3: Consider the arbitrary LSC of Fig. 4.7.

Then, m = 4, k = 6 & M = 12. The f & F functions have the

following values:

ING MEG
— x R
— X, L K »
— x, b
———s X, I H G P >
— X i E D C B *
— x, A >

Figure 4.7: The input group (ING) and the memory group (MEG) of
an arbitrary normal LSC.

JABLE 4.2
fto) =1 (1) =2 §(2) =1 f(3) =0 J(4) =2
F(0) =1 F(1) =3 F(2) =4 F(3) =4 F4) =6

Section 4.6 Page 120

Note that the f & F functions do indeed satisfy previous
results, like Theorems 4.19 & 4.25 and Lemma 4.13.

Consider now the REGs & DIGs of various orders:

JABLE 4.3
REG(1,) = {A,B,F,J,K) |REG(1,)]| = 5
REG(2,) = {A,B,C,F,G,J,K,L} |REG(2,)| = 8 ‘
REG(3,) = {aA,B,C,D,F,G,H,J,K,L} |REG(3,)| = 10
REG(4,) = MEG |REG(4,)] = M = 12
8REG(2,) = {C,G,L} | SREG(2,)| =
S8REG(3,) = {D,H} |8REG(3,)]| =
6REG(4,) = {E,I} | SREG(4,)]| =
-REG(1,) = {c,D,E,G,H,I,L} |-REG(1,)]| =
-REG(2,) = {D,E,H,I} | -REG(2,)]| =
~REG(3,) = {E,I} | ~REG(3,)] =
DIG(0,) = {x,} |DIG{0,)| =1
DIG(1,) = {xl,xa,xs} |DIG(1,)| = 3
DIG(2,) = {x, 0%, %5 4%, } |DIG(2,)] = 4
DIG(3,) = {xl,xz,xa,xs} |DIG(3,)| = 4
DIG(4,) = ING |DIG(4,)| = k = 6
8DIG(1,) = {xy %5} |8DIG(1,)| = 2
8DIG(2,) = {x,} |8DIG(2,)] = 1
8DIG(3,) = ¢ |8DIG(3,)] = 0
8DIG(4,) = {x,,x.} |6DIG(4,)| = 2
|
"'DIG(O,) = {xz ,x3,x4 ,xsgxs} ‘“DIG(O,)‘ = 5 |
-DIG(1,) = {x,,%x,,%5} |-DIG(1,)| = 3
-DIG(2,) = {x, %} |-DIG(2,)| = 2 ‘
-DIG(3,) = {x4,x5} |-DIG{3,)| = 2
-DIG(4,) = ¢ |-DIG(4,)| = ©
Consider transitions of length B8 = 3, from a state of

weight w = 2; let t = 4. According to Theorem 4.27,

there are (]-RES(Z,)]) = (%) = 6 such states.

From these 6 states of weight 2,

Section 4.6 ' Page 121

(]-RE8(2,)|) - ([-RE3(3,)[) = (%) - (%) = § states have

(l—Dggél’)l) = (%) = 3 transitions (of length 3)
each,

while one state has
(l-D%E£1’)I) - (I-Digéz’)l) = (g) - (%) = 2 transitions.

For a transition of length 3 to start from a state of
weight 2, if t=4 the I/P block must have weight 2. The gques-
tion is where to place the 2 'ones’ of the MEG and where the
2 'ones’ of the ING. According to Lemma 4.12, at time-unit h
the 2 ’ones’ of the MEG should be concentrated in the
-REG{2,)={D,E,H,I}. Note that there are indeed 6 ways to
place these 2 ’ones’ in the -REG(2,): (H,D),{H,E),(H,I),
(D,E),(D,I),(E,I}). Note, also, that the first 5 combinations
will result in a transition of length 3, provided of course
that the ’'ones' of the I/P block are concentrated in the
-DIG(1,) = {xznﬁ,xs}. Hence, for each of these first 5
states there are 3 I/P blocks that cause transitions of
length 3: (xz,x4),(x2,x5),(x4,x5). For the 6th state though
[with ’ones’ in (E,I)], at least one of the 2 I/P-block
'ones’ should be in the 5DIG(2,)={x2}. Hence there are two

transitions from such a state: (xz,x4) & (xz,xs).

Appendix 4.10 (Example A4.10.2, p. 372), contains a sec-

ond example, on Theorem 4.27.

4,7 TRA MPLIF E P AL _CA

In this last section, simplified results for various spe-
cial cases will be developed. The general parameter of in-
terest is t and the simplest case is the one of t=1. Some
other special cases correspond to the value of k; the sim-
pPlest case here is the one of an (n,1,m) circuit. Finally,

the case of a circuit with equal-length SRs is of particular

interest.

Section 4.7 Page 122

4.7.1. 1.18C wi =1

The following lemma is a special case of Lemma 4.9.

Lemma 4.15: Consider an (n,k,m) normal LSC with total

memory M and weight-constraint 1. Then:

ZE =M+ 1 {4.61a)
e kK + 1 if w=0

To{w) mum {4.61b)
] if w=1

k- f+1 if w=0
Z¥(w) ~— fe el (4.61c)
|

So, according to Lemma 4.15 above, the constrained trel-

lis has exactly M+l states; in its central portion, from a
state of weight w=1 only one other state can be reached,

while from S,, k - §f + 1 states can be reached.

Theorem 4.28: Consider an (n,k,m) normal LSC with SR
lengths M;sMyy 000y M, and weight-constraint 1. The central

portion of its simplified trellis has the following charac-

teristics:

i) The only state is Sge
ii) The total number of different labels is k+l.
iii) Its transitions have lengths 1,1+M1,1+M2,...,1+Mk,

{and hence, they vary between 1 and m+1).

Proof: Consider the corresponding constrained trellis and
let M denote the total memory of the LSC: according to Lemma
4.15 the total number of states is M+l {one state of weight
0 and M states of weight 1), while according to Lemma 4.11
there are M states with a single 0/P {(and I/P) transition,
which are removed from the diagram in order to generate the
simplified trellis (see Note 4.7). That leaves only Sg*

According to Lemma 4.8 only I/P blocks of weight 0 or 1
are allowed. Obviously there are k+l different blocks and
hence k+1l labels (note though that the labels might be of
various lenghts).

The simplified trellis has only one state, S Hence

0-

Section 4.7 Page 123

transitions are from Soto So‘ Obviously transitions of the
same length will merge into a multiple-edge one. According
to Theorem 4.10, the I/P block Z, may contain up to one
‘one’; this block is injected into the circuit only if the
latter is at state Sy» i.e. with its memory ’clear’., If z =
0 then the transition triggered, has length 1 because the
circuit remains in state S, If w{zh] = 1 then there are k
Places for the single ’one’; these are the 1st stage of each
of the k SRs of the circuit. The transition will end when
the circuit returns to state S; again and this happens when
leaves its SR. If its SR has length one

then the transition will have length two because during the

the single 'one’

1st time=-unit the 'one’ is stored in the SR and during the
2nd time-unit it is discarded. In general, if M, is the
length of the ith SR (1%i<k) then the lengths of the k+1l
transitions are 1, 1+M,, 1+4M,, ov. , 1#M,. Since 02M <m {for
all i=1,2,...,k - see egn (3.1)] then the minimum transi-
tion-length is one and the maximum one is m+l.

QED

Finally, the decoding algorithm (which is introduced by
Note 4.6) will be modified for the simplified trellis of t=1
codes. Note that this special case is very important because
at each time~-unit there is only one path, hence the decoder
memory requirement is very much relaxed. This is the result
of the simplification of the constrained trellis.

Nevertheless, it is not easy to deduce the exact memory
requirement. This is so because even if ties are not consid-
ered, there may exist ’dead-end paths’ of various lengths,
that need to be stored until it is made certain that they
are not needed. This matter will be discussed later on, but

it is clear that it needs further investigation.

Note 4.8: To decode:
i) Let time-unit be h=0.
ii) Calculate the current syndrome block S, .
iii) If B+1 is the length of the branch, for each one,
with label [z z . h]/[qh__ qhdqh], calculate W, where W &
wilz, jvez, n]) + w([qhﬂ "Gy Ol sy g0 08,8, 0D

Section 4.7 Page 124

iv) For time-unit h+l and for all paths entering 8§,
keep the one with the smallest metric M;,, and store the path
and the metric (M, = M, + W).

v) Store any dead branches with their own metric and
the time~unit at which they leave the main path. Discard all
information about dead branches ending m+l1 time-units be-~
fore. A dead branch is a part of the main path that is aban-
doned for another route forward.

vi) If there are more blocks to be decoded, increase h
by 1 and go to (iii), otherwise proceed.

vii) Subtract the survivor path {which is the hyperch-

annel error sequence, %) from r{®, to obtain U.

Example 4.4: Consider the simplified trellis diagram of

Example 4.2 (see Fig. 4.5). For comparison, the message and

Syndrome sequence s

Time Unit
0 1 2 3 4 5 6 7 8 9

— 0 0 1 0 1 o 1 1 1
20/11 20/t 20/11 20/11 ZO/11 20/11 20/11

] 2 2 2 2 2

3
2 4

300/111 300/111 300/111 300/%11 300/111 300.1111 300/111
100/101 100/101 100/101 100/101 100/101 100/101 100/102

Figure 4.8: Decoding using the simplified trellis diagram of
Fig. 4.5.

error sequences of Example A4.6.,1 are used, i.e. u=(000 111
111 000 000 111 111) and e=(0000 0000 0010 0000 0000 0000

Section 4.7 Page 125

1000 0000 0000). v, r and s have been calculated in Example

A4.6.1. As can be seen in Fig. 4.8, the same z is obtained.

Further to the discussion earlier on, the path entering
Sofor each time-unit, is considered (see Fig. 4.9 - 3 more
time-units have been added, corresponding to no channel er-
rors). Obviously, the final survivor is the path marked
ABDEHI, while the dead paths are BC, EF & EG.

The memory-size problem arises because the decoder, at
any time-unit, must store the main path so far, as well as
some of the dead ones. The dead paths should be stored be-
cause some of these may be activated later to form part of
the main path; hence they are dead, given the information

available at a certain time-unit.

JABLE 4.2
Time-unit Main Path Dead Paths
2 00/0
3 000/1
4 0000/1
5 00100/1 2/00/1
6 001000/1 2/00/1
., 3818988/ e
8 00100020/2 2/00100/2 6/0/1
001000300/2 2/00100/2 6/0/1 €/20/1
10 0010003000/2 2/00100/2 6/0/1 6/20/1
11 " 00100030000/2 6/20/1
12 001000300000/2

NOTE: The 2nd column contains: (main path)/(metric). The 3rd col-

umn contains: (originating time-unit)/(dead path)/(metric). For the main

One observation from the 3rd column of TABLE 4.4 .is the
randomly varying amount of storage space requi;ed {when
channel is noisy). Note, though, that if a dead branch ter-
minates m+l time-units before, it cannot be reactivated be-

cause the longest transition is m+l1 time-units (see Theorenm

Section 4.7 Page 126

Time Unit
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.9: The survivor path at each time-unit, for the decod-

ing example of Fig. 4.8.

4.28). Note, also, that at node F there is a tie, which may
be resolved (if needed), by tossing a fair coin.

Hence the buffer for the dead paths need” not be large.
But the question that must be answered is: "Is there an up-
per bound in the number and length of the dead paths, and af

ves what is it?"

4.7.2. r SC with t=2

Consider an (n,k,m) normal LSC with total memory M and
weight-constraint 2. According toc Theorem 4.21, its con-
strained trellis will have C(M,¢) states ' of weight ¢, where
0s¢<2. In particular, for each te[MAX{0,g+k~-M-f},MIN{k-f,g}]
there will be C(k-f,t)C(M-k+f,¢c-t) states of weight ¢.

From each particular state of weight ¢ and for each t, as
defined above, C(k-f,fitt-¢) other states of weight fi can be
reached, where fAe{g¢-t,MIN{2-t,k-f+g-t}]. The 1+M(M+1)}/2

states are grouped as following:

There is one state of weight ¢=0, § Since t=0, the

0.
weight, fi, of the next state satisfies the inequality:
0<iisMIN{2,k-f}. There is one transition from S, to S,. There

are k-f transitions from S, to the weight-1 region. If k-f22

Section 4.7 Page 127

there are C{k-f,2) transitions to the weight-2 region.

There are C{M,1)=M states of weight ¢=1. T, the weight of
R(h), satisfies MAX{O,1+k~-M-f}<t<MIN{k-f,1}. Since, k-f21 &
M2k-f, 1+k-M-f<1, then 0=5t<1; if, though, M=k-f, then t=0.

There are M-k+f states of weight ¢=1, with t=0. The
weight, fi, of the next state satisfies 1<AsMIN{2,k-f+1}=2,
since k-f21. There is one transition to the weight-1 region
and k-f transitions to the weight-2 region.

There are k-f states of weight ¢=1, with t=1. The weight,
fi, of the next state satisfies 0<ASMIN{1,k-f}=1 since k-f21.
There is one transition to Suand k-f transitions to the

weight-1 region.

There are C(M,2) states of weight ¢=2, The restriction on
T becomes: MAX{0,2+k~-M-f}<$t<MIN{k-f,2}.

There are C({M-k+f,2) states of weight ¢=2 with t=0, pro-
vided that M-k+f22. The weight, fi, of the next state is re-
stricted to fi=2. There is one transition to the weight-2
region.

There are (k-f)(M-k+f) states of weight ¢=2 with t=1,
provided that M-k+f21. The weight, fi, of the next state is
restricted to fi=l. There is one transition to the weight-2
region.

There are C(k-f,2) states of weight ¢=2 with t=2, provid-
ed that k-f22. The next state is Sye

Finally, each of the examined transitions has label nul-~
tiplicity o, where, if A is the weight of the next state and
Tt the weight of R(h):

c = 1+C(f,1)+C(f,2)++++4C(f,a) /a = MIN{f,2-fi-T} (4.62)

The following theorem has been proved (for an example see
Appendix 4.10, p. 369).

Theorem 4.29: Consider an (n,k,m) normal LSC with total
memory M and weight-constraint 2. If o denotes the label
multiplicity per transition, then in the central portion of
its constrained trellis:

There is one state of weight 0, S,, with one transition
to itself [o=14C{f,1)+C(f,2)], k-f transitions to the

Section 4.7 Page 128

weight-1 region {o=1l4min{l,f}] and, if k-f22, (k-f){k-7-1)/2
transitions to the weight-2 region [o=1].

There are M states of weight 1. M-k+f of them have one
transition, each, to a weight-1 state [o=1+min{l,f}] and k-7
transitions, each, to the weight-2 region [o=1]. The rest,
k~f, states have one transition, each, to S, [o=1+min{1,f}]
and k-f transaitions, each, to the weight-1 region [o=1].

There are M(M-1)/2 states of weight 2, with one transi-
tion each [o=1). (M-k+f)(M~k+f-1)/2 states transit to anoth-
er weight-2 state, provided that M-22k-f. (k-f){(M-k+f)
states transit to a weight-1 state, provided that M-12k-7.
The rest, (k-f)(k-f-1)/2, states transit to Sy,+ provided
that k-f22.

Following the directions of Note 4.7, about the construc-
tion of the simplified from the constrained trellis, one
readily concludes that the simplified trellis will have M+1
states only, which is an improvement of [{M-1}/M]x100% for
large M, say M>5. Note that the % improvement approaches
100% as M increases (for M=10, it is 90%). The reduced num-

ber of states means, of course, a reduced number of paths.

4.7.3. Egual-lLength Shift Registers

The following theorem deals with the above-mentioned spe-

cial case. It is based on Theorems 4.21 & 4.27.

Theorem_ 4.30: Consider an (n,k,m) normal LSC with

weight-constraint t and shift registers of equal length.

With respect to the central portion of its constrained
trellis:
i} There are (gk) states of weight ¢, where:

0 < w[S(h)] &g <t

ii) For each T € [max{O,q—(m—l)k} , min{k,q}]

there are k (m:l)k states of weight ¢,
t]l ¢-1

each of which has (ﬁ+¥—q) single-edge

Section 4.7 Page 129

transitions, to the weight-fi region, where:
¢ -1 S w[S(h+1)] 2 fi € MIN{t-t,k+g-T}

With respect to the central portion of the simplified
trellis:
iii) There are (%) maximum=-length transitions

(8 = m+l), all starting from state Sg

iv) There are (k(m;B+1)) - (k(g-ﬂ)) states
of weight ¢, with (tEq) transitions of length
8 each, where B € [2,m].

v) There are (g) states of weight ¢, where ¢>0,
with (tEQ) transitions of length m, each.

Proof: See Appendix 4.11 (§ A4.11.1., p. 374).

In order for one to verify (part of) the above results,
qualitatively, one has to remember that a transition of
length B, starting at time-unit h, implies that the circuit
memory contains t ’ones’ at time-units h+l, h+2, h+B (see §
4.4.3.,); otherwise, the memory will arrive at a state (of
the constrained transition diagram) of weight <t, hence with
more than one transitions out of it.

From part (v), above, there are no transitions of length
m, from S,+ This is expected, since if the current state is
Sg
memory for m time-units, since all SRs have length m {caus-

any ’ones’ injected into it will remain in the circuit

ing thus a transition of length m+1), Furthermore, for a
transition of length m to occur, at time-unit h there must
be ¢ ’ones’ in the lst stage of as many SRs, hence there are
C({k,¢) starting states of weight ¢. For each one of them,
the I/P block must contain t-¢ ‘ones’, hence there are
C{k,t-¢) such blocks and because all transitions are
single-edge {(f=0), there are as many transitions out of each
state.

According to part (iii), above, transitions of length m+l

may start, only from Sge This is so because for such a long

Section 4.7 Page 130

transition to occur, and since all SRs have length m, at
time-unit h there must be no 'ones’ in the memory (hence one
must start from So), while at time-unit h+1l, there must be t
*ones’ in the 1st stage of t different SRs. Furthermore,
there are C(k,t) ways to place these t ’ones’ in the 1st
stage of k SRs.

4.7.4. {n.d.m) Normal 15Cs

The following theorem deals with the above~mentioned spe-

cial case. It is based on Theorem 4.30,

Theorem 4.31: Consider an {(n,1,m) normal LSC with

weight-constraint t.

With respect to the central portion of its constrained
trellis:
i) There are (g) states of weight ¢, where:
0 = W[S(h)] = ¢ £ t, Transitions are single-edge.

ii) From Sy there is one transition to Soand one to

s, .

There are (m;l) states of weight ge[l,t),
each with two transitions, to states of weight ¢ &
¢+l and (mgl) states of weight t, each with
one transition to a state of weight t. Also, there
are (g:% states of weight g¢e[1,t), each

with two transitions to states of weight ¢=1 & ¢

and %:% states of weight t, each with one

transition to a state of weight t-1. If t2m, there
is one state of weight m with one transition to a
state of weight m-1 if t=sm, and two transitions to
states of weight m-1 & m if t>m.

With respect to the central pertion of the simplified
trellis:
iii) There is one maximum-length transition (8 = m+l1),
if t=1, starting from state Sy and none if t>1.

Section 4.7 Page 131

iv) There are (m-g+1) - (m;B) states of weight

ce[t-1,t], with one transition of length B each,
where pe(2,m+l-¢]. There are no such transitions

from states of weight less than t-1,

v) The longest transition has length m+2-t. There is
only one such transition, and starts from state

S,» where a=2%1-1, with an input of 1.

Proof: See Appendix 4.11 (§ A4.11.2., p. 375).

An (n,1,m) normal LSC is made of one SR of length m.
Since the I/P block is made of one bit, there are, at most,
two (single-edge) transitions from each state.

If the current state is S,+ the next one may be [00:+:0]
= 8, or [00---01]=Sl. Remember that the bits of a state are
arranged starting from the end [see (3.2)].

If the current state has weight ¢e[l,t) and the last bit
of the SR is 0, there are C{(m-1,¢) ways to arrange the ¢ 1s
in the rest of the stages, and hence as many states of
weight ¢ [note that C(m-1,¢)=0, if ¢2m]. Then, during the
transition, the SR will not loose any 1s, hence the next
state will have the same weight (if the I/P is 0), or weight
¢+l (if the I/P is 1). If though the state has weight t, the
I/P must be 0,

If the current state has weight ¢el[l,t} and the last bit
of the SR is 1,- there are C(m-1,¢-1) ways to arrange the
rest of the 1ls in the rest of the stages, and hence as many
states of weight ¢. During the transition, the SR will loose
one 1, hence the next state will have the same weight (if
the I/P is 1), or weight ¢-1 (if the I/P is 0), If though
the state has weight t, the I/P must be 0.

If t>1, there is no maximum-length transition (see the
proof of Theorem 4.18). For a transition of length m to oc~
cur, cne must start with one 1 in the first stage, hence
from state Sy and inject a 0 if t=1, or a 1 if t=2, but if
t>2, the transition will have length <m.

A one-SR memory can be brought into a weight-t state*,

only if, at most, one 1 is missing.

* and, hence, start a long transition.

Section 4.8 Page 132

4.8 CONCLUSIONS

In this chapter, the theory of the constrained state-
transition diagram, for binary ncrmal LSCs*, was developed.
Such a diagram may be obtained from the ordinary one by im-
posing a limit on the sum of the Hamming weights of the cur-
rent state and the current input.

The idea is due to Reed & Truong [24], who used it to
develop error-trellis syndrome deccding (its analysis may be
found in Sec. 4.1). The advantage of using a constrained
trellis lies with its reduced complexity (which may be a
fraction of the ordinary trellis complexity) and as a conse-
quence with the opportunity to use ’longer’ codes. If a con-
strained trellis was to be used at all, for deccding, it
seems rather obvious that it could not be the encoder-
trellis, because all channel sequences, Vv, are equally prob-
able (normally). On the other hand, the error sequence e
tends to have small Hamming-weight {(in fact its probability
decreases exponentially with w[el), hence a trellis operat-
ing with e is required. e is, of course, unkown but the syn-
drome sequence, 8, is a function of e (s=eH').

For binary systematic codes it was proved that u = r(®;z,
where e = [z,2zP+s8]. Clearly, 2z is the message-bit error se-
quence, and it is the gquantity to be estimated. The estima-
tion criterion is obviously wl[e], which must be minimized.
Because high-weight es are less likely, they are not consid-
ered. The weight-constraint is t, over an actual con
straint-length. The decoder’s task is to find z, sc that the
distance between [Z,2P] & [0,8] is minimized. The trellis
arises because an LSC is assumed to exist (the ’regulator
circuit’) driven by z and responding with [z,zP]. This is
clearly a replica of the encoder. The decoding algorithm
(Sec. 4.3) is very similar to the Viterbi one. The work, in
Sec, 4.1, is a more complete and formal repetition of that
by Reed & Truong [24]. It resulted in a deeper understanding
of the theory of convolutional codes and syndrome deceding.

The rest of the work is original and is concerned with

the complexity of the constrained trellis. A binary normal

¥ See Definition 4.2.

Section 4.8 Page 133

LSC is assumed with a total memory M and a general weight-
constraint, t, on the sum of the weights of the current
state & I/P block. The work in Sec. 4.5 evolves to Theorem
4,21 which, given the weight of the current state, provides
expressions about the number of transitions to states of a
given weight, the number of labels of a particular transi-
tion, etc. The theorem also provides the conditions for the
existence of transitions, given certain information about
the current state, etc.

The concept of the simplified trellis was introduced in
Sec. 4.4; this is obtained from the constrained one, by re-
moving all states with one transition, introducing, thus,
long transitions. The aim of the rest of the work is to ob-
tain formulae about the number and length of the long tran-
sitions. To this end, the following concepts were intro-
duced: f(i) = No of SRs of length i; F(i) = No of SRs of
length <i; REG(i,) = set of the last i stages of each SR;
DIG(i,) = set of I/P block positions corresponding to SRs of
length Si.* The next step was to obtain relations between
the number of elements of the various sets and the memory
functions § & F (Theorem 4.26). Finally, Theorem 4.27 pro-
vided expressions (in terms of F, k, M, t, B & w)} about the
number of transitions of length 8 from states of weight w,
the” number of such states, the maximum-length transitions
and associated existence conditions, etc.

The last section (4.7) examined special cases (t=1, t=2,
M;=m & k=1). For t=1 the simplified trellis has only one
state. The decoding algorithm was modified and it was shown
{via some examples)} that the simplified trellis offers gains
in decoding complexity. Some complications were also dis-
cussed, like the need to store ’'dead paths’ for a brief pe~
riod of time (see Example 4.4). The rest of the cases were
restricted to a restatement of Theorems 4.21 & 4.27. The
formal mathematical language of these theorems was followed
closely for the special cases and for some examples. The
'predictions’ obtained were contrasted with qualitative ex-
planations and corresponding state~transition diagrams. The
main result here was the verification of the ’prediction’

power of these theorems.

¥ See Definitjons 4,5, 4.8, 4.6 & 4.7, respectively.

W T AR W VY A TR < R
n [S -
won Y B -

5

........
''

ERTET FVER L Wi AL

’,,z.?fz"-Thresho‘Td ---- Decod 1ng

:::::

............................
..

Chapter 5 is an introduction to the basic terminoclogy and
theorems of threshold decoding. This technique, discovered
by Massey [18], offers net coding-gains of 1 to 3 dBs, with
relatively simple implementations and hence at very high
data rates [13].

Unless otherwise stated, the communications channel be-
tween the encoder and the decoder is assumed to suffer from
additive noise, which is statistically independent from di-
git to digit.

5.1 X ER M

In this section the basic decoding problem will be intro-
duced. The wvarious digits involved in the discussion will
be, initially, denoted using a single subscript, like for
example ejfor the various error digits. The proper notation
for the error digits is of course e{Y /i=1,2,...,n & h =
time-unit, but this notation would unecessarily complicate
the discussion, at this stage. This section is mainly based
on the work by Massey [18].

Definition 5.1: Let the error digits eJ/j=1,2,...,N

take values from GF(q). Consider J linear combinations of

the ejs:

A, & ch.me‘1 [i=1,2,...,J & uijEGF(q) (5.1)

Section 5.1 Page 135

£, is called the ith composite parity-check. A composite
parity check £, is said to check an error digit e iff
a,,#0, i.e, iff e, participates in the formation of £,. The
set of all Eisis denoted by {Ei}.

Definition 5.2: A set of composite parity-checks {Ei}

is said to be orthogonal on an error digit e, iff e, is
checked once by each member of the set, but no other error

digit is checked by more than one member of the set:

a,,=1 for all ief{l,J] -—

o..=0 for all ie[1,4] |~ For 3=L:2,....n /j#m (5.2)
137 ’

except at most one i

JGGF(q), most of the a ,s are either

Note that, although a 3

0 or 1.
It follows from Definition 5.2 that if {£,} is orthogonal

on en'then this digit affects all composite parity-checks,

i

while any other error digit affects at most one. Then, the

following formulation can be proposed:

Decoding Problem: Given a set of J composite parity~-

checks, orthogonal on e determine e, SO that a certain

criterion of goodness’ is satisfied.

Massey [18] proposed two algorithms [for the non-binary
case of GF(q)l, that solve the above problem; the majority-
decoding algorithm and the a posteriori probability (APP)

decoding one.

5.2 IHE_DECODING ALGORITHMS

This section is made of four theorems; they cover majori-
ty & APP decoding for the nonbinary and the binary case.
Again, the concern is on how to decode an abstract set of

error digits, so the latter remain unstructured. The results

Section 5.2 Page 136

follow closely the work by Massey [18].

5.2.1. The Non-Binary Case

Theorem 5.1: Consider a set of J composite parity-

checks EyE,y++.,E,, orthogonal on e,» and the set {ej} of
error digits that are checked by {£,}. Assume that no more
than |J/2] of the e s are non-zero. Then, according to the
majority-decoding algorithm, e, is given correctly as that
value of GF(q) which is assumed by the majority of the com-
posite parity-checks. If there is a tie that involves 0, let

e = 0. |x] denotes the greatest integer =x.

Proof: See Appendix 5.1 (§ A5.1.1., p. 378).

Definition 5,3: The a posteriori probability (APP) de-

coding algorithm assigns to enthat value of VeGF(q) for
which the conditional probability P(en=V[{Ei}) is maximum,

where {Ei} is orthogonal on e,

The APP decoding algorithm ":..makes the best possible
use of the information contained in a set of J parity-checks

orthogonal on emin arriving at a decision on the value of
en"[18].

Theorem 5.2: Consider a set of J composite parity-

checks orthogonal on e, For APP decoding, let e, = V, where
VeEGF{q) is such that (5.3), below, is maximized.

J
logP(e,=V) + 3, logP(£,|e,=V) (5.3)
i=1

Proof: See Appendix 5.1 (8 A5.1.2., p. 378).

5.2.2. Ths.Binary Casg

The two theorems that follow are special cases of Theo-
rems 5.1 & 5.2,

Section 5.2 Page 137

Theorem 5.3: Consider a set of J composite parity-

checks £ ,%£,...,8,, orthogonal on e, and the set {ej} of
error bits that are checked by {Ei}. Assume that no more
than |J/2] of the e;s are one. Then, according to the majo-
rity-decoding algorithm for the binary symmetric channel, e,

=1 iff
J
T = Zﬁi > Ta/21 {5.4)
i=1
where the summation, above, denotes real-number addition
and lx1 denotes the smallest integer 2 x.

Proof: See Appendix 5.1 (§ A5.1.3., p. 379).
|

Theorem 5.4: The APP decoding rule for the binary sym-

metric channel is: Choose e, = 1 iff

J J
ISE1[210g(qi/pi)] Y Dloglq,/p,) (5.5)
1=1 1=0

where, P = 1 - qoﬁ P(e.=1) and p, = 1 -~ q, is the proba-
bility of an odd number of ’ones’ in the error bits, exclu-

sive of e, , that are checked by the ith parity-check K.

Proof: See Appendix 5.1 (§ AH.1.4., p. 380).

5.3 PECTS OF E

From Theorem 2.13 (p. 47), if e is the error sequence of
an additive-noise channel, then the syndrome sequence is
given by:

s = eH’ (5.6)

It is obvious from the above that the syndrome bits* are
linear combinations of the channel-error bits. If H is such
that orthogonal check sums can be formed, for each of the

error bits, then the code can be majority-logic decoded.

* Unless otherwise stated, only binary codes will be considered.

Section 5.3 Page 138

5.3.1. Intreduction . Yerminglegy

Consider the result of Theorem 2,15 (p. 50):

N = (k i) (i) j € -
sf¥ = el 4 2 zef Jgfs) . /15isn-k & h20 (5.7)
z=0 i=]

where 6 = MIN{h,m}.

Consider all those syndrome bits that may check on e,:

k
s = e & W | Jisjin-k (5.8a)
Jy = (k+3) (1), (1) s -
8) e, + z Zel_z Bxey,z /1%jisn~k (5.8b)
z=0 {=1
n k
gy = (k+}) (1y,(1) Ty -
sy = el + }aem__zgl“:hz /1<5sn-k (5.8¢c)
z=0 1=1
3y o (k+]) (1) (1) i€ —
Sat1 = Can1 + z ze-u-z hj,z /15jsn-k (5.8d)
z=0 i=1

Note from eqn (5.8a) that the 0th syndrome block, s
checks on the 0th error block, €,;
{6.8b), that the 1st syndrome block, 8,
two error blocks, e, & e,. Note finally [from eqns (5.8¢c) &
{5.8d)] that the mth syndrome block, s, checks on e ,e,,...,

e,; while the (m+l1)th syndrome block does not check on e,.

0!
note also, from eqgn
checks on the first

So the (n-k){(m+l) syndrome bits of the 1st constraint-
length, n, @ (m+l)n, check on the Oth error block, e,.

Definition 5.4: An (n,k,m) convolutional code is called
self-orthogonal iff the set of J1 syndrome bits which check
eé“ are orthogonal on eé“ for i=1,2,..,k. This code is capa-
ble of correcting any error sequence with [J/2] or fewer

~

consecutive positions, where J =

errors in a span of n
MIN{Jngzg LN] ,Jk} .

A

Section 5.3 Page 139

Definition 5.5: Consider a set {£,} of J composite

parity-checks, orthogonal on e, The number of error digits,
exclusive of e, s that are checked by £, is called the size
4+ The total number of distinct
error digits checked by {Bx} is called the effective con-

of £1and is denoted by c

straint-length for the decoding of e, and is denoted by
nl(e_). It follows from the definition that,

n, =1+ z::i (5.9)

i=1
|

Definition 5.6: An (n,k,m) convelutional code is called

J-orthogonalizable if it is possible to form J or more pari-
ty-check sums, orthogonal on e?’ for i=1,2,...,k by taking
linear combinations of the first (m+l1){n-k) syndrome digits.
If dlin
then this code is called completely orthogonalizable.[12]

is the mimimum distance of this code and J=d_, -1,

5.3.2. Degoding Modes

Consider again eqns (5.8). Clearly, by the time 8, is
formed the decoder has already an estimate of the 0Oth error
block (éo). If this estimate is fed back into the syndrome
register, in an appropriate way, the effect of these past
error bits will be removed. Obviously, this feedback opera-
tion can become permanent so that every error bleck that is
estinmated is fed back into the syndrome register to cancel

its effect on the syndrome.

Defijnition 5.7: Under the feedback decoding (FD) mode a
convolutional decoder will use the estimate of the currently

decoded error block, e = (el“” er‘.z’ -+- e™), to remove its

h
effects from all those syndrcme bits that check on these
error bits. The altered syndrome bits are then used normal-
ly, for the estimation of the subsequent error blocks. The

mode of operation of a convolutional decoder where no feed-

back takes place, is called definite decoding (DD).

Section 5.3 Page 140

5.3.3.

The following theorem has been discussed and proved in
Appendix 5.2 (p. 381):

Theorem 5.5: Consider an {(n,k,m) systematic convolu-

tional code with generator sequences gsJ /i=1,2,...,k & j=1,
2y¢..3n-k. Then, under definite decoding, for a20:

[s]e= = [El[wo]" « [el= 50

where the syndrome & parity error vectors extend from
block a to block a+m, while the message error vector from
block a~m to a+m {for their precise definition, see Appendix
5.2)., If a<m, the message error vector is suitably truncat-
ed. If -m<B<m, 1=<p<k, 0<t<m & 1%0<n-k, then:

8¢9 checks on e(“ iff gw = 1 {(56.11)

ary k+c,T+B

The syndrome bits checking on e{!) correspond to 1s along
the [(n-1)(2m+1)}+m+1-8]th column of H(I'). The message error
bits, checked by syndrome bit s{?), correspond to 1s along the

[(o=-1)(m+1)}+T+1]th row, of H(T).

Furthermore, if J1/1515k denotes the number of syndromes
checking on error bit ef’ /hzm and c; /15jsn-k denotes the

size of syndrome bit s{J’ /h2m, then:

n-k

g = Ju[e] /1sisk (5.12)
=1 .
c; = 14 Zw[N1 715550k (5.13)

i=1

In Example A5.2.1 (p. 387), the above theorem is tested

against a (2,1,6) systematic code.

Note, from (5.13), that under DD the various syndrome
bits do not have the same size. The analysis is wvalid for
any block h, 'beyond the first constraint-length (h2m)}. The

results for the first constraint-length are similar to the

FD case (to be examined below).

Section 5.3 Page 141

5.3.4.

Consider now the alterations on the syndrome eqns {(5.7),

due to the action of a FD decoder.

To decode €,, syndrome blocks s 8,4.4.,8_ are needed. As

o!
soon as the estimate of eois obtained, and before decoding
e, all bits from e, are added mod-2 to all syndrome bits
that check on them. In general:

In order to decode e,, syndrome blocks 8,,8, ,,s+::,8,,,
needed. With FD, all error bits in efJ /i=1,2,..,k & x<h

have been cancelled (assuming correct decoding) from the

are

ahove collection of syndrome blocks. Then, immediately after

the decoding of e the m+l syndrome blocks of the regis-

h-1?
ter have the following composition:

k

sfd = eV + FJefVglll | /15j2n-k (5.14a)
i=1
3y = (hJ) 1) (1) e
Spvr T Cpy F 2 Eem-z B3,z /15jsn-k (5.14b)
2=0 i=1
« - k¢ 1) L) f
shiz = el(u-“ + Z Eehu-z ko}.z /15jsn-k {5.14c)

z=0 1=1

Note that equations (5.14) are identical (for h=0) to
eqns (5.8). Hence, the decoding circuit for the zeroth
block, e
block, €,
bits that are used for decoding have been modified by this

0r 1S identical to the circuit for any subsequent

Consider also the feedback process. The syndrome

process. If the corresponding decoding decisions were not
correct, then the syndrome bits are inverted and hence a
decoding error becomes more possible. This is called the

error-propagation effect.

Theorem 5.6: Consider an (n,k,m) systematic convolu-

tional code with generator sequences giﬂ /i=1,2,...,k & j=1,2

ye+syn=k. Then, under feedback decoding:

Section 5.3 Page 142

[s]s = [E°]3 [H(WD]T + [E°]5 (5.15)
where the syndrome & the two error vectors extend from

block 0 to block m and H(L\) is the parity-triangle matrix

{for their precise definition, see Appendix 5.3).
If O0facm, 1<p<k, 0£t<m & 12ofn-k, then:

s{®) checks on e!V iff gi‘::.t_‘ = 1 (5.16)

The syndrome bits checking on e?” correspond to 1ls along
the {(p-1)(m+1)+a+1ith column of H(A). The message error
bits checked by syndrome bit s!” correspond to 1s along the
[{c=1)(m+1)+Tt+1]th row, of H(L\).

Furthermore, if JiIISiSk denotes the number of syndromes
checking on error bit ef’ and c /1%jsn~-k denotes the size

of syndrome bit sﬁ” /hz20, then:

3:h

n-k

J = Dw[e)] /1sisk (5.17)
31
k h

e, = 1 4+ 2 el /1sjsn-k (5.18)
i=1 z=0

Proof: See Appendix 5.3 {p. 389).

In Examples A5.3.1-2 {(pp. 394-7), Theorem 5.6 is tested
against a (2,1,6) and a (3,2,13) systematic code.

Parity triangles are very useful tools for the analysis &
synthesis of convolutional self-orthogonal codes (CSOCs).
Nevertheless, they will not be useful for the further devel-~
opment of this thesis. The results obtained, in Appendices
5.2 & 5.3, are original, at least in their generality. This
includes the matrix eqns involving the syndrome & error bits
of one constraint-length.

Two interesting questions arise now that the structure of
the parity-check matrix has been linked to the formation of
orthogonal parity checks. First, what conditions should be
imposed on the generator sequences so that the syndromes
that check on an error bit are orthogonal on that bit? Sec-

ond, how can one construct codes that are self~orthogonal?

Section 5.4 Page 143

5.4

Consider a binary (n,k,m) convolutional code. According
to Definition A2.5.3 {(p. 310},

dusn * MIN[A(TV 1, IV)] ¢ [w' 1 # [u’]] (5.19)

Note that in computing dnhionly the 1st constraint-length
is considered and only codewords that differ in their first
source block are compared [2]. Hence, d‘h'is a useful esti-
mate of the code’s power when decoding is based on only one
constraint-length; this is the case with threshold decoding,

but not with Viterbi, error~trellis or sequential decoding.

The following theorems relate dn"lwith J.

Theorem 5,7: For an {(n,k,m) convolutional code, with
minimum distance de, the 1st source block [u]ocan be cor-

rectly decoded provided L|L(d , -1)}/2] or fewer errors have oc-

min
cured in the first constraint-length [r]mof the received
sequence. Conversely, there are some received sequences,

containing |(d ., -1)/2] + 1 errors in the first constraint-

min
length, which will result in [u]obeing incorrectly decoded.

Proof: See Appendix 5.4 (§ A5.4.2., p. 398).

Definition 5.8: The maximum error-correcting capability

of a code, when the decoding of the 1st source block [ul, is
based on the 1lst constraint-length, is denoted by t and is
defined as:

t & L(d,,,~1}/2] (5.20)

win

A feedback decoder which achieves the maximum error cor-

recting capability t is called an optimum feedback decoder.

Theorem 5.8: Consider an (n,k,m) convolutional code. If
at least J orthogonal parity checks can be formed for each
of ef! /i=1,2,...,k, then J £ d__- 1.

min

Proof: See Appendix 5.4 (§ A5.4.3., p. 400).

Section 5.5 Page 144

In this section the very important class of CSOCs will be
briefly examined. The previously derived results will be
simplified for the case of CSOCs.

5.5.1., Definite Decoding of LC50Cs

Theorem 5.9: The syndrome bits checking on e{!) are
orthogonal on e;” if, and only if, the code is a CSOC.[19]

Proof: See Appendix 5.5 (p. 400).

The implication of the above theorem is that a CSOC is
capable of correcting up to [|J/2] errors in both the DD &
the FD mode. The difference between the two modes arises
when one considers the total number of error bits which are
'allowed’ to contain |J/2] or fewer errors. From Definition
5.5, it is obvious that a CSOC can correct up to [|J/2] or
fewer errors in a set of n, error bits; nevertheless, n, for
a CSOC in the FD mode is less than n, for a CSOC in the DD
mode. Hence, the error correcting capability of the CSOC is
weakened, by DD; on the other hand, a DD does not suffer

"+esean analysis -

from error propagation. Nevertheless,
comparing the effect of error propagation with feedback to
the reduced error correcting capability without feedback «+-
concludes that feedback decoders will usually outperform

definite decoders.” [2].

5.5.2, ructurs o rd Tri las for a CSOC

As mentioned earlier, parity triangles are useful, in
general, for the study of orthogonal codes. In particular,
for CSOCs they can provide an easily digested, illustration
of the orthogonality conditions and how these can be ful-
filled. A brief discussion and some examples, are included
in Appendix 5.6 (p. 402).

Section 5.5 Page 145

5.5.3. ffective Lon int-Length of a CSOC

Note that the effective constraint-length depends on the
specific error bit considered. Hence, what is required is =a
definition for the code, i.e. one that takes into account
all error bits of a block. The adopted definition considers
the code parameter to be the maximum among the bit parame-
ters. It is felt, though, that this term is not very effec-
tive in describing how many bits are (in effect) inveolved in
the decoding. Where the actual constraint-length includes
all bits that are involved in the decoding of a block (and
also of a bit, of that block) the effective constraint-
length considers the exact maximum number of bits that are
involved in the decoding of any one bit of a block. Maybe a
more ’'fair’ parameter is a cummulative one, that considers
the exact number of error bits that participate in the de-
coding of a block.

Definition 5.9: Consider an (n,k,m} systematic CSOC.

Let J, be the number of syndromes checking on ef{! /i=1,2,..
+ k. The maximum of JI,JZ,...,Jkis called the effective con-

straint-length of the code and is denoted by n Further-

EO
more, the total number of distinct error bits checked by the
J1+Jz+---+Jksyndrome bits will be called the block effective

constraint-length of the code and will be denoted by Ng.

For instructions on how to calculate N, and an example,
see Appendix 5.7 (p. 405).

5.5.4, ror Pr ati i SOCs

As mentioned earlier, feedback decoding (FD) suffers from
error propagation. This occurs when an erroneous decision is
made by the threshold decoder; because of the feedback mech-
anism, 2 number of syndrome bits (specifically those that
check on the error bit that was erroneously decoded) are fed
with the wrong information.

Consider an erroneous decoding decision on error bit e™
where pe[l,k] & a20. The gquestion that will be considered is

if, in the absence of any channel errors, the decoder will

Section 5.5 Page 146

cease eventually to make decoding mistakes. The part of the
decoder that needs examination is the syndrome regaister.
Because the decoding decisions are based on one actual con-
straint-length, the syndrome register is an (n-k)-input
memory, organised in as many shift registers (SRs) of
lengths up to m stages [for an (n,k,m) systematic CSOC - see
Fig. 5.1]. In the absence of any channel errors, starting at
time-unit a+l1, a2ll subsequent syndrome blocks will be
'zero’, hence the I/P to the syndrome register may be dis-
connected and the circuit is driven by the outputs of the k

(m} I,(ll) {m)

’l+n b+m rh ﬁh
4 - "\ ft
0 @ [\ T ol o
@ @ || E | a¥l @
o E o e . |
8 (k+1) D v \1: '
I]g (k+2) Feedback
R
(m) l
N
&+D) 4 Ve W)
&+2) |\ A) _ H
S U i " "
e . Yy
3 =T - O
(r) sU Syndrome Register
h+m At m
l, 21 J, 211 21
\MGk/ ﬁ% @B Jomd g™
! S S g)

Figure 5.1: Complete majority-logic decoder for an (n,k,m) sys-

tematic convolutional code.

majority gates. Because of these gates, the circuit is a
nonlinear feedback shift register (NFSR) and the task is to

study its autonomous behaviour. For an interesting study,

Section 5.5 Page 147

the reader is referred to Massey & Liu [37].

Consider the syndrome register {SYRE) in its autonomous
behaviour. The decoder will be able to ’safely’ tackle chan-
nel errors again when the SYRE is completly reset {and in
general earlier than that, but that depends on the specific
circuit). Note that if no ’ones’ are fed back, the SYRE will
reset itself after at most m time-units; this sitution cor-
responds to éi“ = 0.

If, on the other hand, &® = 1, then more than T = J/2 of
the syndromes that check on the corresponding error bit are
‘one?', say T+d of them, where 1<d<T. Because of the feedback
action, these J syndromes are inverted. So, J-T-d of these J
syndromes are now ‘one’, i.e. the number of ’ones’ in the
syndrome register was reduced by T+d-J+T+d = 2T-J+2d = 2d 2
2. Hence, in the autonomous state, every ’one’ that is fed
back reduces the weight of the syndrome register by at least
2., Hence, eventually all syndrome bits will be ?'zero! and
the decoder will be able to tackle channel errors again. The

following theorem has been proved:

Theorem 5.10: Consider a feedback decoder for a CSOC.

If no channel errors follow an erroneous decoding decision,

the decoder will always recover from error propagation.

Robinson & Bernstein [38] & Robinson [39] have developed
upper bounds for the extension of the error propagation ef-
fect in CSO0Cs., In particular they showed that one or two
constraint-lengths are more than adegquate for the recovery

from a decoding error.

5.5.5. i opartie £SO

In this paragraph, d.h‘and J will be linked. Before that,

though, it is necessary to explain how dnh‘is calculated,

Theorem 5.11: Consider an (n,k,m) systematic convolu-

tional code with parity-check matrix H. Let [H]nbe the sub-
matrix of H made of the first {(n-k){(m+l) rows and n{m+l)

columns of H.* Then d_hlequals the minimum number of col-

¥ Ssee Definition 2.13 (p. 45).

Section 5.5 Page 148

umns of [H]m, including at least one of the first k, that

sum up to zero.

Proof: See Appendix 5.8 (8 A5.8.1., p. 409).

Theorem 5.12: Consider an (n,k,m) systematic CSOC with
parity-check matrix H. Then, Ju’ the number of syndromes
orthogonal on esm /12u2k equals the weight of the pth column
of H (or the same of [H]).

Proof: See Appendix 5.8 (§ A5.8.2., p. 410).

Theorem 5.13: Consider a systematic CSOC which has at

least J syndrome bits orthogonal on each of e{!’. Then d_, =

J+1, i.e., the code is completely orthogonalizable.

Proof: See Appendix 5.8 (§ A5.8.3., p. 411}).

5.6 CONCLUSIONS

This chapter discussed the method of threshold decoding
and the properties required from codes so that they are
threshold decodable.

All work starts with Massey’s results, which are briefly
presented in Sec. 5.2. The interest, in the rest of this
thesis, remains with majority-logic decoding, for binary
systematic codes. This algorithm requires, from the code,
the ability to form J orthogonal parity checks, for each bit
to be decoded. Over the BSC, the decoder estimates the error
to be 1 iff the sum of these parity checks exceeds [J/21.

For an additive noise channel, it is known that each syn-
drome bit is a linear combination of error bits from the
current and the last m blocks. These bits can then be used
for majority decoding. Under feedback decoding (FD), the
already estimated error bits are fed back to the syndrome
register to cancel themselves out of those syndromes that

check on them. This mode of operation improves the perform-

Section 5.8 Page 149

ance of the decoder because each syndrome depends on a
gmaller number of error bits, hence the likelihood of an
erroneous estimation decreases; whenever the latter happens,
though, error propagation occurs, but overall FD outperforms
definite decoding (DD).

Both modes were examined, and matrix eqns were obtained
relating one constraint-length of syndrome bits to the cor-
responding error bits, via a system matrix which was shown
to have a structure made of triangles (for FD), or squares
(for DD), of g-coefficients. This was then used to extract
the necessary & sufficient conditions for a given syndrome
bit to check on a given error bit. The last result was, in
turn, used to obtain formulae for the number of syndromes
checking an error bit and for the size of these checks.
These results (original, in their generality) are given in
Theorems 5.5 & 5.6, while examples, (which also verify
them), are given in appendices. It is also shown that, under
FD, the decoding circuit for the 1st block is identical to
that for any subseauent block.

In Sec, 5.4 it is proved that the number of syndromes
orthogonal on any error bit, cannot exceed dmn.'l‘

If all Jlsyndromes checking on ey) are also orthogonal
on this bit, the code is called self-orthegonal. The maximum
of J;s /1£i2k, is called the effective constraint-length of
the code., A similar measure, called the block effective con-
straint-length, was introduced and defined to be the total
number of distinct error bits involved in the decoding of

e An example and instructions on how to calculate this,

0°
are also given. It is felt that this latter measure may be
related more closely to the code’s performance.

A brief discussion on error propagation concludes that it
is limited, if no more errors occur.

Finally, it is shown that if a systematic CSOC has at
least J syndromes checking on each error bit, then d , =

J+1.

e AT e s Ad e o grrernl =1 freere v v

,,,Opt 1mum Thresho 1d f‘or

In Chapter 6, the threshold for majority decoding of
CS50Cs is re-examined; this threshold was set at [J/21, by
Theorem 5.3 {(p. 137). In this chapter, it is assumed that
the threshold is not known. Its value, T, will be determined
so that a certain performance measure is optimized. This
measure is the probability Pdof decoding a bit in error.

An expression for B, is developed, as a function of T,
and then PdVT) is differentiated wrt T and set equal to 0.
The sclution of the resulting equation will give the optimum
value of T for the given code and channel.

Complications arise because under feedback decoding (FD)
the syndrome bits participating in the estimation of any
error bit have different sizes (see Theorem 5.6) and hence
different probabilities of error. This is true for definite
decoding (DD) as well (see Theorem 5.5}, but only in gener-
al. In most practical cases, the syndrome bits have the same
size and hence the same probability of error; as a conse-

quence, a simple solution is possible for DD.

In Sec. 6.1, some general results are obtained, including

expressions for PdFT). In Sec. 6.2 the case of equal-size

syndromes is investigated, while the last section deals with
the optimum threshold under FD.

Section 6.1 Page 151

6,1 PERFORMANCE OF MAJORITY-LOGIC DECODING

Consider a set of J bits orthogonal (see Definition 5.2)
on error bit e . Let I represent their {arithmetic) sum
{i.e. 0£Z<J) and T the threshold. e, is erroneously decoded,
either if e is received in error (e.=1) and the decoder
fails to recognize this (because I<T), or if e, is received
correctly (e-=0) and the decoder 'thinks?’ otherwise (because
ZI>7T) (see Theorem 5.3, for the majority-decoding rule):

B, = P(e,=0)P(I>T|e,=0) + P(e,=1)P(ZsT|e,=1) (6.1)
6.1.1. Introduction to the Optimum Threshold
Let p denote the probability of a channel bit . error.

Then, P(e.=1)=p and P(e =0)=1-p.

The probability that Z<T, equals the probability that
3=z0, plus the probability that Z=1, plus +++ plus the proba-
bility that Z=T. Also, the probability that Z>J is 0 and the
probability that Z<J is 1. Then, from eqn (6.1)*:

J T
B,(T) = (1-p) 3} P(I=n|e,=0) + p JP(I=ple,s1) /T<y (6.2a)
p=T+1 p=0

B(J) = p (6.2b}

Note from eqns (6.2) that B, is a function of T. Then it
is sensible to attempt to optimize the decoding algorithm by
using that wvalue T;, of T, which minimizes R,. This can be
achieved, of course, only if B, decreases continuously as T
increases from 0 and then at T=T_ it starts increasing
again; 1; is the optimum threshold for the particular code

and channel. T is an integer variable with range [0,d].
Let BPd(T) - rd(T) - Pd(T-l) J0<Ted (6.3)

Then, from eqns (6.2) & (6.3):

8B (T) = pP(Z=T|e,=1) - (1-p)P(Z=Tle,=0) /0<T<J (6.4)
From egn (6.4): SR, (T) = 0 < >
<=m=> P(E=T|e=0)[P(E=T|e=1) = p/(1-p) /0<T<J (6.5)

¥ Transmission over the BSC is assumed (see Theorea 5.3, p. 137).

Section 6.1 Page 152

Note that in the above equations, the probabilities are
conditioned on both e =0 & e_=1. The following lemma will

simplify calculations:
Lemma 6.1: Consider a set of J bits orthogonal on error
bit e, and let I be their (arithmetic) sum. Then:
P(Z=n|e,=0) = P(Z=y-m|e,=1) /u=0,1,...,J (6.6)

Proof: See Appendix 6.1 (§ A6.1.1., p. 412).

From the discussion on the derivation of result (6.5) and

Lemma 6.1, the theorem below follows easily:

Theorem §.1: Consider a set of J bits orthogonal on

error bit e, and let I represent their (arithmetic) sum. If
SPdFT) < 0 for T ¢ X and SPd(T) >0 for T > X and, in case
X = integer, BPd(X) = 0, then, and only then, T = [X] is
the optimum threshold for the decoding of e_,. Furthermore,
if p is the channel bit-error probability, 1} may be deter-

mined by one of the following equations:

P(£=T,|e,=0)[P(Z=T |e,=1) = p/(1-p) (6.72)

P(z=T,{e,=0)[p(2=0-T |e,=0) = p/(1-p) (6.7b)

Proof: See Appendix 6.1 (§ A6.1.2., p. 412).

To solve the above eqgn{s), one needs to express the con-
ditional probabilities P(Z=p|e.=0) in terms of p and the
code parameters. The probability that pnp of the J syndrome
bits are 1, depends on the probability that a syndrome bit
is 1. Let:

P, & Pfs,=1]e,=0) /1sisy (6.8)

§.1.2. -Exact.and Approximate Yalue of P -

The following theorem relates the probability that a syn-

drome is 1, with its size and the channel bit-error proba-
bility.

Section 6.1 Page 153

Theorem 6.2: If p is the probability that a bit is 1,
then the probability, P, that the mod-2 sum of ¢ statisti-
cally independent bits is 1, is

P = 3[1-(1-2p)°] (6.9)

Proof: See Appendix 6.1 (§ A6.1.3., p. 413).

Note that p is a very small positive number (typically
less than 10°3), It may be possible therefore, to obtain an
approximate expression for (1-2p)°F.

The following two approximations of {1-2p)° are derived
in Appendix 6.1 (§ A6.1.4., p. 414):

LIM (1~2p)S = e~2p¢
—0

{6.10)

(1-2p)¢ = 1-2pc /pe«i (6.11)

As mentioned earlier on, 'typical values of p range be-
tween, say, 107° and 1073, On the other hand c, the size of a
syndrome, is usually small, say less than 100. From the re-
striction (p —> 0 & pc<l) it is obvious that the approxima-
On the other hand, ¢=100

also corresponds to a worst-case condition. TABLE 6.1, be-

tion becomes better as p —> 0.

low, illustrates the accuracy of the approximations.

(1-2p)° e~?pc 1-2pc
p=10-3 c=100 0.818567 0.818731 0.800000
p=10-3 c=50 0.904747 0.904837 0.900000
p=10-3 c=10 0.980179 0.980199 0.980000
p=10-* c=100 0.980197 0.980199 0.980000
p=10-*% c=50 0.990049 0.990050 0.990000
p=10"* c=10 0.998002 0.998002 0.998000

Note that for worst-case conditions (p=10"% & ¢=100) the
1st approximation is perfect to within 3 significant digits,
while for a typical case (p=10"* & c=50), it is perfect to

within 5 significant digits.

From eqns (6.9), (6.10) & (6.11):

Section 6.1

Pz (1-e™%¢)/2 /p—> 0 (6.12)
P = pc (6.13)
Note also, that:
e 2 1-2pc /pc « 1 (6.14)
JABLE 6.2
3[1-(1-2p)°] (1-e-%)/2 pc
p=10-3 c=100 0.090717 0.090635 0.100000
p=10-3 c=50 0.047627 0.047581 0.050000
p=10°-3 c=10 0.009910 0.009901 0.010000
p=10-4 c=100 0.009902 0.009901 0.010000
p=10-4 c=50 0.004976 0.004975 0.005000
p=10"1% c=10 0.000999 0.000999 0.001000

Page 154

Consider the results of TABLE 6.2, above. Under worst-
case conditions (p=10"3 & ¢=100), the approximation error is
0.09% & 10%, while for a typical case (p=10"* & c=50), the
error is 0.02% & 0.5%.

6.1.3. Calculation of P(I=ule =0}

P, was defined by eqn (6.8). Consider the following defi-

nitions, as well:

Qial-P /i=1,2,-no,J (6-15)

i

Kii‘-\'Pi/Qi /i=1,2,...,J (6-16)

P(Z:u[el=0) is the probability that exactly n of the J

syndromes are 1. Then:

P(z=“| e-=°) = 2 PanPrd " " PenS @ * *Yy-m

x(1),y(J)
14x(f)<x(isd)es
1y () ev(3el)gd

x{1)#y())
1cip,183¢d-n

(6.17)

Eqn (6.17) needs some explanation. The probability that n
of the J syndromes are 1, is the sum of the probabilities
that any specific combination of p syndromes, say, Sy1y?

are 1 and all the rest, s)38 ;,1¢¢+18,,.,

Sx2y? 2 3yt

Section 6.1 Page 155

are 0, over all C(J,p) distinct combinations. Obviously,
1€x(i)<x(i+1)sd & 1<2y(3)<y(j+1)sJd and x{i)#y(j) for all
i=1’2’lii’p & j=1’2'00||J-p0 The probability of the above

mentioned combination is

P ,.P

xFx@ " * Prany@y)" " Y oew

because the channel noise is random, hence the error bits

are statistically independent,
Using (6.15) & (6.16), eqn {6.17) can be re-written:

P(E:ple_:O) = (Q1Qz tee QJ) sz(nKx(z)"'Kx(p) (6.18)
x(1)

lex(i)cx(i+1)J
1cicn

P(Z=P|e.=°) = (P1Pz P.:) 2[Kyu)Ky(z)"'Kyu-ml-l (6.19)

1<y(3),:(VJ()J +1)ed
1¢3¢d-p
Appendix 6.1 (§ A6.1.5., p. 416) contains some examples
on the calculation of P(Z=p|e_=0). In Example A6.1.1, two
expressions for P(Z=3|e.=0) were developed (corresponding
to the two egns, above). The first one required eight multi-~
plications more than the other. This illustrates the need to
minimize the number of calculations required for the compu-

tation of Pd.

For the arbitrary case of J=4 & p=10-%, the probabilities

were found to be as follows: _

P(Z=0|e,=0) = 9.978x107! P(I=1]e,=0) = 2.195x1073
P(X=2|e_=0) = 1.467x107° P(Z=3|e,=0) = 3.415x10710
P(I=4|e,=0) = 2.157x107M

Note that P(2=p|e'=0) decreases steadily, as p increases
from 0 to 4.

One important question with respect to the probability
distribution P(Z=p|e_=0) /p=0,1,..,J arises: "Is P(Z=ple=0)
a decreasing function of n?" If the answer is yes, then the
existence of an optimum threshold for all codes is guaran-
teed; furthermore, this threshold will depend on the code
parameters (specifically, €,1€,9+++3¢,) and on the channel

probability of error, p.

Section 6.1 Page 156

6.1.4., Genaral Expressions for. B,

From eqn (6.2) & Lemma 6.1:

J J
B, (T) = (1-p) 3] p(z=p|e_=o) + p R P(I=nfe=0) /T<y (6.20)
p=T+l p=J-T

B,(J) = p (6.21)

Note from eqn (6.20) that the 1st summation uses the J-T
last probabilities of the distribution P(2=p|e_=0), while
the 2nd summation uses the last T+1 probabilities. Since
there is a common set of probabilities in each summation,
from MAX{T+1,J-T} to J, this can be exploited to reduce the

nunber of calculations:

J
B(T) = X} P(Z=n|e,=0} + B ZP(I =p|e,=0) (6.22)
n=r p=J+1-T
where: I = MAX{T+1,J-T}, T<J and
e N T+1<J=-T verw— T<(J=1)/2
B —te— P ;T+1=J-T < n— T={J-1 ;2
e b /TH13J-T Comm> T>(J-1)72

Note that the expression for B,y in {6.22), is economical
with calculations, compared with (6.20). Let (6.22) be sepa-

rated into its three cases:

For J > T > (J-1)/2:

B,(T) = J) P{z=u|e,=0) + pZP(Z nle,=0) (6.23a)
p=T+1 p=J-T

For T < (J-1)/2:

J J-T-1

R (T) = P(Z"ple =0) + (1-p) X P(Z=nle,=0) (6.23b)
u=J-T p=T+1

B, (T) = 2P(Z"p|e =0) /T = (4-1)/2 (6.23c)

n=T+1

The above relations are used in Example A6.1.4 (see Ap-
pendix 6.1, § A6.1.5., p. 417}, to calculate the probability
of decoding error for the case with parameters J=4, p=10-*
and c1=1, °z=3’ 03=6 & c4=12. The optimum threshold for this

Section 6.1 Page 157

case is To=2.

In calculating Pd(T) no attention was paid to the proba-
bility of erroneous decoding at an earlier stage. In other
words, it was assumed that there was no error propagation
(see Paragraph 5.5.4., p. 145). It can be seen from egn
(A5.2.1) (p. 381) that this is not the case. Nevertheless,
consideration of the past decoding errors would make calcu-
lations virtually impossible. Hence, it is assumed that ei-
ther PdCT) expresses the probability of the first decoding
error B, , or that "a magic genie always feeds back the cor-
rect channel error symbol"” [13], thus eliminating error
propagation; however, the decoding decision is not affected
in any other way by the genie action. Then, Pdis simply Pmr
Clearly, P“‘:Pgd.
be put into the following theorem:

The results derived in this paragraph can

Theorem 6.3: Consider a set of J syndromes orthogonal

on e and let X denote their (arithmetic) sum. If T is the
threshold used, then the probability P, of first decoding
error, or (the same) the probability Em1°f 'genie decod-

ing’, for error bit e, is given by:

Pﬁ(d) = Pmﬂd) = p (6.24a)
J r-1
R, (T) = By(T) = 3 P(S=nje,=0) + B 3 P(Z=nje,=0) (6.24b)
p=r p=J41-T
where: ' & MAX{T+1,J-T}, T<J and
puase 1-p JT+1<J-T < w—> T<{J-1)/2
R W JT+1=0-T Cumem> T=(J-1})72
b /T+1>J-T — T>(J-1)/2

The concept of the optimum threshold will be discussed in
the example below, for two cases and a number of channel

error probabilities, p.

Example 6.1: Consider the case of Example A6.1.2 ("Case
1"} and also "Case 2": J=8, c,=4,c,=10,c,=16,¢c,220,c,=22,
c4=28,c,=38,c,=50.

Section 6.1 Page 158

JABLE 6.3

Probability P“ for Case 1

Threshold
0

B W N

Threshold

<

00 =3 O O & W N =

p=10-2
1.896x10"}
1.223x1072
4.058x10°*
1.917x10°3
1.000x1072

p=10-2

p=10~-3°
2.167x107%
1.463x10™
4,799x10°7
2.169x1075
1.000x1073

p=10~*
2.200x1072
1.467x10°%

p=10-3
2,197x10°*
1.470x1078

4,882x10°10 4,889x10"13

2.200x10°7
1.000x107%

JABLE 6.4

p=10-3

p=10~4

7.904x10°t 1,689x10°1 1,860x1072

4,258x1071
1,479x10?
3.277x1072
4.854x10"3
1.864x1073
4.317x1073
7.984x10"3
1.000x10"2

1.273x10*
5.288x10°*
1.304x10°5
2.064x10°7
5.310x1077
1.274x10°5
1.691x107*
1.000x1073

1.447x10°%
6.103x1077
1.518x10°9

2,200x10°°
1.000x10°3

Probability Ph,for Case 2

p=1077°
1.878x10"3
1.466x10°°
6.192x10"1°
1.541x10°%3

2.413x10712 2,451x10°17
6.103x1071! 6,192x10°15

1.447x10°8
1.860x1076
1.000x1074

1.466x10°1
1.878x10°8
1.000x1073

From TABLE 6.3 it is obvious that the optimum threshold
for Case 1 is T_= 2, i.e, fJ/21 (as set by Theorem 5.3).

From TABLE 6.4,
mum threshold is T = [J/21 =
102, it is T_= 5.

it can be seen that for Case 2 the opti-
4 for p < 10°%, but for p =

A first conclusion may be risked at this stage: For ade-

quately small channel error probabilities p, the optimum
threshold is indeed T = rv/21,

To; this effect becomes more dramatic for

but as p increases so does
'longer® codes
{i.e. for codes with large css, OT the same for codes with

large effective constraint-lengths n,Z -~ see Definition 5.9).

but

both with J =

with different effective constraint-lengths.

Consider two more cases, 11 syndromes,

>

Section 6.1 Page 159

Example 6.2: Let the following two J = 11 cases:

Case 1: c¢,=4,¢,=210,c,=15,¢c,=20,c,=30,c,=40,¢,=60,c =80,
¢4=100,¢,,=120,c,,=150

Case 2: ¢,=40,c,=45,¢,250,¢,=60,¢.,=70,c,=80,c,=90,c,=100,
€g=110,c,,=120,c,,=150

The optimum threshold for each of the two cases is calcu-

lated, for various channel error probabilities, p. Note that

although both cases use the same number of syndromes, the

effect of increased p is more dramatic for Case 2 (which has

n, = 916, as opposed to n, = 630 for Case 1).

JABLE 6.8 (f4/21 = 6]

P To/Case 1 To/Case 2
0.010 7 10
0.007 7 8
0.005 7 8
0.002 6 7
0.001 6 6
|
Instead of the term ’'codes’, the term *cases’ has been

used. This is so because the choice of the c,s is arbitrary
and it is not known whether or not codes with such parame-
ters exist. Furthermore, the channel error probability was
used without any regard to the channel capacity. See Appen-—
dix 6.2 (p. 418) for an introduction to channel capacity and

tables of R, versus p and P, Versus R.

Definite decoding (DD) is the mode with no feedback from
the decoding decision device to the syndrome register (see
Definition 5.7). Obviously, there is no error propagation
effect in the DD mode, hence the probability of first decod-

ing error B, is also the probability of decoding error B,.

fe
According to Theorem 5.9, CSOCs have the property that the
set of syndromes orthogonal on e{! is the same under both

the FD & DD modes.

Section 6.2 Page 160

Under DD, according to Theorem 5.5 (p. 140), the size,
¢y, of syndrome bit s;” /1%j<n-k & hm, is c;=1 + w[gzﬁ] +
+ w[gg;] Foost w[gg;]. This implies that, unless n-k = 1, the
syndromes used for the decoding of an error bit will have
different sizes, in general.

Note, though, that it is very likely for the syndrome
bits to have the same size, under DD. In contrast, under FD,
the size of sf) depends not only on j, but also on h (see
Theorem 5.6, p. 141)., Hence, under FD, it is virtually impo-

sible to have syndrome bits of the same size.

6.2.1. Study of P(f=ule z0)

Consider now the case where all syndromes checking a par-

ticular error bit have the same size. Let this size be c: c,

= ¢, = *** = ¢, = c. Then, from Theorem 6.2:
P2Pp=P=--. =P [1-(1-2p)°]/2 (6.25)
Also, Q = 1-P {6.26)
and: K= P/Q (6.27)

From (6.13), for pc«l: K = P/{(1-P) = pe/(1-pc) = pc
K = pe /pe«l (6.28)

From eqn (6.18), since there are C(J,n) distinct products
of the J Kf, taken p at a time:

P(z=nje,=0) = @KYJ} /m=0,1,...,9 (6.29)
Consider now the variation of P(Z=p|e_=0) with p:
8(n) = P(Z=n|e,=0) - P(Z=n-1]e,=0) /u21 (6.30)
Then: 6(p) £ 0 (o>
Comma> QUKMJI/R/(J-p)! S QEEMII/(p-1)t/(J-psl)t *

{mmem> K/m £ 1/(J-u+l) < o—> K(J+1) -~ Kp £ n

o> 1 2 (J+1)K/(K+1) = (J+1)(P/Q)/(P/Q+1) (J+1)P

If 6(n)s0, for all p, since pxl, it is enough for (J+1)P
to be ¢ 1. Since P depends on p & ¢, what is required is the
set of conditions on p, ¢ & J, that make (J+1)P < 1.

' ¥ xtylz denotes fxlf)lg.t

Section 6.2

P = [1-(1—2p)°]/2 < 1/(J41) <mmmm> 1-2/(J41) < (1-2p)°

(rwwmm> (J-1)/(J+1) < (1-2p)°
(A) Commom> [(J-l)/(J+1)]”° < 1-2p Cmmma>
(> p < {1-[{J-1)/(J+1)]1’°}/2
Also: (A) o> ln[(J-l)/(J+1)] < cln{1-2p)
¢<==> ¢ < In[(J-1)/(J+1)][in(1-2p)
Hence:

Theorem 6.4: Consider an (n,k,m) binary CSOC,

syndromes, each of size ¢, checking on e{!) /h2m.

P(Z=p|e;”=0) is a continuously decreasing function

and only if,
either p < {1-[(J—1)/(J+1)]”°]/2

or c < ln[(J-l)/(J+1}]/ln(1-—2p)

J=10 & c=50, p<2x10°3,

{J+1)P and then it will start decreasing.

6.2.2, Qptimum Threshold

From eqn {6.4) and Lemma 6.1:
8B,(T) = pP(Z=4-T|e{l'=0) - (1-p)P(Z=T|e{V)=0)

Using eqn (6.29) in eqn {(A):
8B(T) = p@'K™T(2r) - (1-p)QK7({)

since, (ydr) = 91/(4-T)t/T1 = ({), ean (B) gives:

f_" x/ylz denotes (2y /2.

for all p 2 (J+1)P /P=[1-(1-2p)€1/2. Also, (J+1)P < 1 if,

From the above, P(Z=p|e;“=0) decreases continuously, iff
either of (6.31) or (6.32) holds true. These two inequali-
ties are not difficult to be satisfied, but do not hold true

in 'extreme’ cases., For example, from the 1st one and for

As a conclusion, P(Z=p|e;“=0}, 'normally’, is expected to
decrease as p increases, but if J, ¢ & p are such that
{(J+1)P > 1, then P(Z=p|e;”=0) will increase with p up to =

Page 161

(A)

with J
Then,
of n,

(6.31)

(6.32)

(A)

(B)

Section 6.2 Page 162

6B(T) = @'(§)[pK*T-(1-p)K"] (6.33)
From (6.33): B8B,(T) > 0 <me=> pk*T> (1-p)K'
(> K321 5> (1-p)/p <> (J-2T)1nkK > 1nl(1-p)/p]
(o> J=2T < 1n[(1-p)/p1/1nK *
(> T > J/2 - Inl(1-p)/p)/21nK = 4/2 + 1n[p/(1-p}]1/21nkK

Hence, SPd(T) >0 ee— T

v

J/2 + In[p/(1-p)]/21nK

N

Similarly, 8B,(T) < 0 (memm> T < J/2 + 1n[p/(1-p)1/21nk
and, if GPd(T)=0 has a solution,

6P, (T) = 0 <wmmm> T =J/2 + 1In[p/(1-p)]1/21nK

From the above results and Theorem 6.1:

Theorem 6.5: Consider an (n,k,m) binary CSOC with J

syndromes, each of size ¢, checking on error bit e{Y’ /h2m.

Then, the optimum threshold for e{!, is:
T = [J/2 + $In(p/(1-p)1/H(p,c)] (6.34a)

where: H(p,c) & 1n{[1-(1-2p)°]/[1+(1-2p)°]} (6.34b)

Note that H(p,1) = In{(1-(1-2p)]1/[1+4(1-2p)]} = 1ln[p/(1-p)].
Consider now the behaviour of H(p,1)/H(p,c). The results
of Theorem 6.6, are proved in Appendix 6.3 (p. 421):

Theorem 6.6: Let F(p,c} % H(p,1)/H(p,c), where H(p,c)
is defined by (6.34b). Then, the following hold true:

F{p,c)} 2 1 (6.35a)

dF{p,c)/dp > 0 for 0<p<0.5 (6.35b)

dF{p,c)/dc > 0 for c21 (6.35c)

#Ey F(p,c) = 1/(1+lnc/lnp) /pec«l (6.354)

LIM F(p,c) = LIM F(p,c) = +o (6.35e)
c—ie

0.5
|

¥ From (6.9), if p<}, then P<§, hence E<i, hence 1nK<D,

Section 6.2 Page 163

The following conclusions can be drawn about To, from the

results about F:
From {6.35a): Fz1 < eomman> J/2+4F/2 2 3/2+41/72 = (J+1)/2
— {J/2+E/2] 2 {(J+1)/2] — (using Theorem 6.5)

> T 2 L(J+1)/2] = /21 {6.36)

o

Consider the conditions under which To = (To) From

Theorem 6.5 & reln (6.36):

ein*

T, = LJ/2+F/2) = (T,)

0 m1n

= L(J+1)/2]

If J=even, T, = J/2+{F/2] = (To) = J/2 — F < 2.

min

If J=odd, To L(J+1)/24(F-1)/2] = (J+})/2+L(F-1)/2J =

= (T, = (J4#1)/2 ===> F < 3.

min

So, if F<2, T°= (To) and from (6.35d):

win?

1/(1+lnc/lnp) < 2 m=mm> lne/lnp > -1/2 ===> p < 1/c?

The above condition on p is consistent with p«l/c, hence
the optimum threshold equals [J/21, the nominal threshold,
for p < 1/c?. This result was obtained in a different way,
in Lemma A6.3.2 (p. 426).

Note from Theorems 6.5 & 6.6 that Tois an increasing
function of ¢ ¢or p. Note also that since F increases without
bound as p —> 0.5, or ¢ —> +o, so does T, but T, should
not exceed J.

The following theorem is based on the above results:

Theérem 6.7: Consider an (n{k,m) binary CSOC with J

syndromes, each of size ¢, checking on error bit e{Y /h2m.
Then the optimum threshold, for el!’, is an increasing func-

tion of ¢, or p, which satisfies the following:

T, 2 L(J#1)/2]1 = Fu/21 (6.37a)
g..I)a{{To} = L3(J+1)] = T2JT OR T, = MJ1 if pe?<1 (6.37b)
N o i o

LIM{T } = LIM{T } = J {(6.37¢c)

=08 ° c=)ts ©

Section 6,2 Page 164

In general, as p increases, Tnincreases in steps of one,
from [J/21 to J. It is difficult though to obtain analytical
expressions for the threshold values of p, i.e. for these
values of p that cause an increase of T by one. This can be
done numerically, or via graphs. Theorem A6.3.4 (p. 425)

provides some information towards this end.

6"2.3. r 1. i O r r

Consider now the probability of decoding error, with the
optimum threshold T . From (6.37a),

T, 2 r4/21 2z J4/2 —> J-T, 2 J/2 ¢ T < T 41 —
I & MAX{T +1,J-T_} = T _+1

L{J+1)/2] $ (J+1)/2 < [(J+1)/2]+1 S—>

L(J+1)/2] > (J-1)/2 (and since, by Theorem 6.7}

T 2 L(J+1)/2] ===> T_> (J-1)/2

The first two eqns of the following theorem are based on
the above conclusions, the expression for Pd(T) {see Theorem
6.3) and the expression for P(E=p|e£“=0) [see egqn (6.29)].
The last result is proved in Appendix 6.4 (p. 426).

Theorem 6.8: Consider an (n,k,;m) binary CSOC with J

syndromes, each of size ¢, checking on error bit e{' /h2m.
If the optimum threshold is used, the probability of decod-

ing eﬁ” in errcr, under DD, is given by:

P,(J) = p (6.38a)
3 T
B(T) = @[3k (3} + »2x(3)] (6.38b)
p:To'll |l=J-T°
Also: Pd(To) <p /T°<J {6.38¢c)

Hence, the use of the optimum threshocld guarantees that

Pd<p however high the BSC’s error rate, p, is.

Consider now a few examples that illustrate the gains

Section 6.2 Page 165

that may be achieved by the use of the optimum, instead of

the nominal, threshold.

Examplie 6.3: let the following arbitrary cases:

Case: 1 2 3 4 5 6 7 8
J: 6 6 12 12 30 30 30 50
c: 20 100 20 100 20 100 400 500

For each of these cases, and for various error probabili-
ties, p, the following will be calculated: The optimum
threshold, T , the error extension ratio EER & lﬁ(fd/21)/p
(i.e. the ratio of the probability of decoding error with
the nominal threshold, over p), and the error gain Ge-a
Pd(rJ/ZT)/Pd(TO) (i.e. the ratio of the probability of decod-
ing error with the nominal threshold, over that with the
optimum threshold). p will range between 1/c? and 0.01. Note
that 1/c? is the approximate value of the break point, after

which the optimum threshold 'departs’ from the nominal one.

TABLE 6,6 {c = 20; 1/c® = 2,5x10"%)

J =6 J = 12 J = 30
P T, G, EER T, G, EER T, G, EER
2.5x10°% 4 1.0 3x1072 7 2x10"* 16 1.0 2x10°%
4x107% 4 1.5 1x10°' 7 1.5 2x10* 16 1.5 1x1078
7x10°3 4 2.3 4x10°! 7 2.2 3x10% 16 2.2 1x107%
1x102 4 2.8 9x10°1 7 1x10°! 16 2.5 5x10°%
JABLE 6.7 {o = 100; 1/c* = 1x10™)
J =6 J = 12 J = 30
P T, G, EER T, G, EER T, G, EER
1x10°* 4 1.0 1x10°% 7 1.0 7xi0® 16 1.0 2x10°%
2x10"* 4 2.0 1x102 7 2.0 4x10°® 16 2.0 3x10°16
4x10°* 4 3.7 8x102 7 3.6 2x10%* 16 3.5 5x10°12
7x10°* 4 5.6 4x10°! 7 5.3 4x10°% 16 5.0 1x10°®
1x10° 4 6.8 9x10°' 7 6.0 3x10°% 16 5.5 9x10°7
2x10"2 4 7.4 4x10*° 7 5.7 6x10°! 16 4.7 2x10°
4x10"* 5 13.9 1x10** 8 9.6 6x10*° 17 6.7 6x10°!
7x102 6 21.7 2x10'! 10 17.6 2x10*! 19 10.9 1xio*!

Section 6.2 Page 166

v JABLE 6.8

J = 30, ¢ = 400 J =50, ¢ = 500

p T, G EER T, G, EER
4x10-¢ 15 . 6x10-32 26

a
1.0
7x1076 16 1.1 3x10°28 26

1x10°5 16 1.6 6x10~2F 26 6.0 3x10°20
2x10-% 16 3.1 2x107%1 26 7.4 4x107%¢
4x10-3 16 5.9 4x10717 26 8.5 8x10°%
7x10°3 16 8.9 1x10-13 26 11.3 4x10°2
1x10-% 16 10.4 2x10-11 26 11.8 2x10717
2x10°% 16 10.3 2x107%7 26 9,2 5x10711
4x10-% 17 9.1 8x10-04 27 13.1 2x10795
Tx10~% 17 13.5 2x10-01 28 15.2 6x10702
1x10°3 18 17.8 3x10*00 29 19.5 2x10+09
2x10°3 22 49.0 5x10*01 36 67.8 7x10+01
4x1073 30 85.9 9x10*0 50 98.6 1x10%9?

The gains obtained (in error rate) may be substantial (up
to an order of magnitude) for long codes, as can be seen

from the tables above.

6.3 7 OPTIMUM THRESHOLD FOR FEEDBACK DECORING

The calculation of the optimum threshold for DD was not a
very easy task. The problem becomes even more difficult for
the case of FD. The reason is that while under DD there is
(usually) only one K, in the case of FD there are J differ-
ent (in general) Ks, for each of the k error bits e{l).

As a consequence, P(Z=p|e;”=0) is proportional to the
sum of all possible distinct products of p Ks {see eqgn
(6.18)]. There are C(J,pn) such products and their sum may be
replaced by the arithmetic mean of all the products, multi-
plied by C(J,n). This arithmetic mean, a product of p ’aver-

age’ Ks may be replaced by the geometric mean of these K,

raised to power p. As a consequence, the concept of the uth

generalized mean takes shape.

Section 6.3 Page 167

6€.3.1. The uth Generalized Mean

Consider J positive real numbers KI’KZ""’KJ' To form
their pth generalized mean Au’ where p=1,2,...,J, the arith-
metic mean of all distinct products of n K;s must firstly be
formed. This may be expressed by:

J=p+l J-ns2

3
Lynlya " Ly = [Z Koy 2082y *°° 20 Koy] / (ijx)

x(1)=1 x(2)=x(1)+1 x{w)=x{p-1l)s1

The geometric mean of the pn Ly s is the pth root of

(i)
their product. Hence:

Definition 6.1: The uputh generalized mean, of the J

positive real numbers K,+K,y+¢+4K;, is denoted by AlJl and de-

fined by:

J=p+l Jop+2

J
8,5] DBy Dy DEew | [(7)} 713080 (6.39)

x(1)=1 =x(2)=x(1)+1 x()=x(p-1)+1

In the rest of this paragraph, some properties of the

generalized means will be discussed.

Theorem 6.9: Consider J positive real numbers K ,K,,..
K. Their arithmetic and their geometric mean is their 1st

and Jth generalized mean, respectively.

= (K +K,++++4K) /J (6.40a)
- T] 1"’
A, = (XK, K,) (6.40b)
Furthermore: A, > A, for all n<J {(6.40c)

Proof: See Appendix 6.5 (§ A6.5.1., p. 428).

Theorem 6.10: Consider J positive numbers K sKyhee0hKyo

Then, if not all K, are equal:
If K, < 1: (A > () for n=2,3,...,d (6.41a)

If K2 1: (Ap-l)“-l < (A“)ll for n=2,3,...,J (6.41b)

Section 6.3 Page 168

Proof: See Appendix 6.5 (§ A6.5.2., p. 428).

Unfortunately, the most important relation among the gen-
eralized means was impossible to prove. It is a very tight
inequalitiy and all known inequalities that could help in

this matter were not tight enough.

Conjecture:
noet all equal. Then:

Consider J positive numbers Kldg,...,Ky

A 1> A for 1<usd (6.42)

Discussion: Note first that if K, = K /i=1,2,...,d, then

A“= K /p=1,2,...4d. If at least one of the K;s is different

then (6.42) holds true, The difference A , - A may be very

small, if the K;s are very close to each other. As an exam=-

prle consider the case Klz K2= see = K15 = 4 & K¢ = 4,1; the

results are arranged in TABLE 6.9, below.

JABLE 6.9

u A“ B All n An

1 4.006250 7 4.006221 12 4.,006197
2 4.006245 8 4.006216 13 4.006192
3 4,006240 9 4.006211 14 4,006187
4 4.006235 10 4.006206 15 4.006183
5 4,006231 11 4.006202 16 4.006178
6 4.006226

Notice from TABLE 6.9 that Apdecreases continuously as n
increases from 1 to J=16; furthermore, A“__1 is consistently
greater than An’ and what is more remarkable, by 5x10°% {ex-
cept for one or two cases, perhaps due to rounding errors).

It has been observed that the difference between A& A
increases as the K,s become more different from each other.

Consider, for example the following three cases:

Case 1: K ;=1 K,=2 K,=3 K,=4 K,=5 K =6 (o = 1.71)
Case 2: K =1 K,=3 K,=5 K,=7 K,=9 K=11 (o = 3.42)
Case 3: K,=1 K,=4 K;=7 K, =10 K;=13 K.;=16 (o = 5.12)

Section 6.3 Page 169

Case 1 Case 2 Case 3
n Ay A‘l A
1 3.50 6.00 8.50
2 3.42 5.80 8.19
3 3.32 5.58 7.83
4 3.23 5.33 7.42
5 3.12 5.04 6,92
6 2.99 4.67 6.23

Consider also the effect of Kisless than 1:

Case 1: K1=0.01 K2=0.1 K3=4 K4=22
Case 2: K1=0.0001 K2=0.001 K3=0.01 K4=0.1

TABLE 6.11%

Case 1 Case 2
B A'l A "
1 6.53 0.0278
2 3.89 0.0137
3 1.34 0.0065
4 0.54 0.0032

Many more tests were carried, via a computer, trying to
disprove the above conjecture. The results verified the au-
thor’s belief that the conjecture is correct.

A computer was used to examine why all known inequalities
could not assist in the proof of the conjecture. The conclu-
sion was that they were not tight enough. In the process of
trying to prove the above conjecture, many partial results
were obtained, which nevertheless will not be discussed
here; although they may contribute towards an eventual

proof, their value is limited to just this.

6.3.2. Optimum Threshold

Consider firstly an expression for the conditional proba-
bility P(Z=p|e§“=0), in terms of the generalized means of

Section 6.3 Page 170

the quantities K, = P1/(1—P1), where P, - [1~(1-2p)°Fi]
(i=1,2,...,d4). Let Andenote the nth generalized mean of the
Kﬁ. Then the sum of all the distinct products of n Kf is
simply (APFTHJ,p) (see Definition 6.1). From egn (6.18), if

Q) = QQ,+++Q, (6.43)
P(Z=p) & P(Z=n|efV=0) = Q(J)(A)*(}} /0spsy (6.44)

Note that Auis not defined for values of p outside the
interval [1,J], but in P(Z:ples)=0) n is defined in [0,J].
From eqn (6.18), P(Z=0|e§“=0) = Q(J)}. So:

A= 1 (6.45)

Following eqn (6.44), an expression for P ,(T) - B,(T-1)
will be developed. This will in turn be used to derive the
optimum threshold, as the one that minimizes the probability
of error, B,

Appendix 6.6 contains some intermediate results that lead
to the proof of the theorem below.

Theorem 6.11: Let J syndrome bits, with sizes ¢,

/fi=1,2,...J, check on error bit ef“ and K, be defined by eqn
(6.16). If Au/p=1,2,...,d denotes the uth generalized mean
of the K;s, with A;=1 and p the BSC’s error probability,
then the optimum threshold, T, for FD of e;” is at least
equal to [J/21 and satisfies the following relation:

T,= L {Inlp/(1-p)1 + JinA . }/In(a, cAr) | (6.46a)

o

with T, = MIN{J,T} (6.46b)

Alternatively, T is that integer T € [TJ/21,J] which

minimizes:

T - {inlp/(1-p)] + JInA,;}/In(A, cA;) l (6.46c)

Proof: See Appendix 6.6 (p. 431).

The result of Theorem 6.11 is very important, but unable

to provide a closed-form expression for the optimum thresh-
old under FD. Nevertheless, the RHS of (6.46a) is a weak
function of To, because the two generalized means, that are

Section 6.3 Page 171

functions of To, can be approximated by other generalized

means, independent of To; this will not cause a serious ap-
L] L A .

proximation error because the generalized means are extreme-

ly close to each other.

6.3.3. t old

In this paragraph, an approximate solution of eqns (6.46)
will be attempted. Note that there are two functions of To
in the RHS of eqn (6.48), A, and A, . . From Theorem 6.11, T
is at least J/21. Then:

L]

1 <J-T s J/2 2 [U/21 = T, T,=J {6.47a)

From reln (6.47) and the Conjecture of Paragraph 6.3.1.:
Ay 2 Aj 2 A2 A2 A (6.47b)

Since the logarithm is an increasing function of its ar-
gument:
1nA12 1nA, . 2 lnA, 2 1nA; 2 1lnAj {6.47c)

Consider again egn (6.46a), in relation to the inequali-
ties of (6.47¢c):

o

T, = L {1nlp/(1-p)] + JlnA, . }[in(A, ;Ar) | (6.46a)

To create an upper bound on 1} replace the 1st lnAJ__To
with something larger (lnA;) and the 2nd 1lnA, . & 1lnA; with

something smaller (lnAh‘& 1nAJ). Hence:

o

T, L {inlp/(1-p)]1 + J1na }/in(A 8] (6.48a)

Similarly, for a lower bound:

T,2 L {1nlp/(1-p)1 + Jina. }[In(AA,) | (6.48b)

[+]

It is understood that if the bounds exceed J, they are

reduced to J.

To obtain an approximate solution for To, consider first
the product A, ;A + Note, from TABLES 6.9, 6.10 & 6.11, that
Au - Awl % constant = §. Hence A“-A‘“d % d6, and then:

AwdAuui= (Au+d6)(A"-d6) = (A“)z - {d8)% < (A“)z (6.49a)

— A AL ® (A)? (6.49b)

Section 6.3 Page 172

The above approximation is usually good, because (d8)% <«
(Au)z. Note though that the product in the LHS of (6.49b) is
overestimated.

Since K1<1, their generalized means are also <1, hence
their logarithm is negative. To draw the right conclusions
one may multiply both numerator & denominator of eqn (6.46a)

by -1 and let the logs 'absorb?' the minus sign:

To= L {1nl(1-p)/p] + JIn(1/A,)} [In(1/(A (1 A)1 1 (6.50)

o

From approximation (6.49a}:
1n[1/(A, ;A)] 2 21n(1/A;) (6.51)

Hence, if (6.51) is used in egqn (6.50), T, will be over-

estimated. To compensate, 1n(1/A which appears in the

}s
J-To
numerator, should be underestimated. From {(6.47c¢c):

In(1/4,.) 2 1n(1/A)) (6.52)
From the last three expressions:
T,* L {inlp/(1-p)1 + Jina}[(21na;) | (6.53a)

The approximation, above, may be rewritten:

T, L (4/2)(1nA/1nA,) + lalp/(1-p)1/(21nA,) J (6.53b)

o

Note the similarity between the above expression and eqgn
(6.34a) {(for the optimum threshold under DD). This suggests
that a 2nd approximation may be attempted.

Consider again inequalities (6.47c):

2 2
lnAJ-To = 1nATn =~ lnATo

Then, from (6.46a):
To* L (J/72) + 1nlp/(1-p)1/(21nA;) | (6.53¢c)

Comparing (6.53b) with (6.53c})}, it is obvious that the
latter is, in general, an overestimation of To, since, from
(6.47c), 1lnA; 2 InA, <=mms> 1nA / 1lnA, <1 {1nA<o0).

What remains to be done is to test the wvalidity of the
above results. Four cases will be considered, two J=11 and

two J=10 cases. The results are diplayed below:

‘

Section 6.3

Example 6.4:

0.200
0.100
0.070
0.050
0.020
0.010
0.007
0.005
0.002
0.001

Example 6.5:

LB

11
11

10

A h G Oy =

0.200
0.100
0.070
0.050
0.020
0.010
0.007
0.005
0.002
0.001

Example 6.6:
c4=30, c5=40, cs=60, c7=80, °s=1°0' c9=120, c,,=150.

See overleaf for the table.

¥ Lb=Lower Bound, To=0ptilu- Threshold, Titlth approximation of 'l'o, UB=Upper Bound.

LB

11
11
11
11

10

o o -1

TABLE 6.12

T

[+]

11
11
11
10

8

B N~ ~ =)

"IABLE 6,13

T

11
11
11
11
11
10

o 3 0 o

Consider Case 1:
c4=20, c5=30, c6=40, c7=60, ca=80, c9=100, c1°=120, c11=150.

T

11
11
11
11

8

[o- B« TN « - B« - IR |

Consider Case 2:

T

11
11
11
11
11
10

h ~ © o

Consider Case 3:

Cz=10’

Case 1 ¥ {n, = 630}

T2

11
11
11
11

9

o G =1 =1 =]

°1=40' c2=45, c3=50,
c4=60, c5=70, °6=80’ c7=90, c8=100, c9=110, c1€=120, cuflso.

Caze 2 ¥ {n, = 916}

T

11
11
11
11
11
10

gy ~3 0 W

c2=10,

Section 6.3 Page 174

TABLE 6.14; Cese 3 * {n = 615)

P LB To T1 T2 UB
0.200 10 10 10 10 10
0.100 10 i0 10 10 10
0.070 10 10 10 10 10
0.050 10 10 10 10 10
0.020 7 8 8 9 9
0.010 6 7 7 7 8
¢.007 5 6 6 7 7
0.0056 5 6 6 6 7
0.002 5 6 6 6 6
0.001 5 6 5 6 6 i

|
Example 6.7: Consider Case 4: c¢,=40, c,=50, c,=60,

c,=70, c,=80, c¢=90, ¢,=100, c,=110, c, =120, c=150.

TABLE 6.15; Case 4 ¥ {n, = 871)

P LB T, LA T, UB
0.200 10 10 10 10 10
0.100 10 10 10 10 10
0.070 10 10 10 10 10
0.050 10 10 10 10 10
0.020 10 10 10 10 10
0.010 10 10 10 10 10
0.007 8 8 8 8 8
0.005 7 7 7 7 7
0.002 6 6 6 6 6
0.001 6 6 6 6 6

|

Consider now the results displayed in the four tables,
above, The two approximate expressions for T; will be com-
pared with the actual value of the optimum threshold. Also,
the width UB-LB will be examined, along with the agreement

between the two approximate expressions for To.

l1st Approximation: Out of a total of forty bit-error
probabilities examined there is a disagreement of 1, in four

¥ Lb=Lower Bound, T°=0pt1-u- Threshold, Tislth approximation of To' U8=Upper Bound.

Section 6.3 Page 175

instances; for p = 0.050, 0.007 & 0.005, in Case 1 and for
p=0.001 in Case 3,

Width of UB-LB: Consider the difference between the UB
& the LB for each of the four cases. The differences are
arranged in order of descending bit-error rate p.
Case 1: 00012221t Case 2: 000000111 C0
Case 3: 0000222211 Case 4: 0000000000

Difference between the two a oxipations: Consider the
difference between the 2nd & the 1st approximations; the
results are arranged in order of descending p.

Case 1: 00001011040 Case 2: 0000001000
Case 3: 0000101001 Case 4: €0 Q00000000

Consider now some general conclusions about the above
results.

For Case 4 there was absolute agreement between the two
approximations and the true value of To; also, the two
bounds coincided in all cases examined. From the other three
cases, Case 2 behaved best; the 1st approximation was accu-
rate while the 2nd failed only once, by one., This distinct
behaviour is due to the smaller spread of the cis(and con-
sequently of the Kf), for Cases 2 & 4, compared to 1 & 3.

The difference between the UB and the LB never exceeded
two and was zero in 25 of the 40 instances considered. Fur-
thermore, all values of Toand their two approximations were
inside the range [LB,UB].

The 2nd approximation of T, overestimated T,» but only in
7 out of the 40 instances considered and only by one. In the

rest of the instances the two approximations of Tocoincide.

6.3.4. EProbability of Dacoding Error

In this paragraph, expressions for, and approximations
to, the probability of decoding error will be developed.
What is remarkable, is the similarity with the corresponding

results for DD (see Paragraph 6.2.3.).

Consider firstly an exact expression for Ed(To). From
Theorem 6.11, T _2 rg/21 = (J+1)/24 > (J+1})/2-1 = (J-1)/2.
Hence, T > (J-1)/2 and from eqn (6.23a) and eqn {(6.44):

Section 6.3 Page 176

R,(T,) = Q) | ﬁ,‘(Au)"(;{) F o3 (a)*)] (6.54)
TO

p=T°+1 p=d-

Consider next the limit value of To, as p —> 0.

The pth generalized mean, Ap, is the pth root of the sum
of all the p-products of the K;s, divided by C(J,n). If ap-
proximation K, = pciisee (6.28)] is used,; each of the dis-
tinct C{J,pn) products of n K.s becomes a product of the cor-

responding p c,s multiplied by p*. Let Cndenote the uth gen-

i
eralized mean of the J C 8. Then:

For u=1,2,...,J: A“z pCIl /pcr«l (6.55)
Cbviously, azs p —> 0, Ilnlp/(i-p)] —> 1np (6.56)

From the last two approximations and the 2nd approxima-
tion to To[(6.53c)]:

#gy{To} = L (J/2) + lnp/[21n(pC,)]] (6.57)

The limit value of T under DD is L(J/2)+1lnp/[21n(pc)l]
[from (6.34a), with approximations (6.55) & (6.56)]. Hence,
the role played by ¢ under DD, is played by C,, under FD.
Following the same reasoning as in the discussion leading to
Theorem 6.6, one concludes that as p—>0, Toassumes eventu-
ally its minimum value, [J/21; in particular, that happens

when p becomes (approximately) smaller than 1/(ChJ2. Hence:
T, = ry/21 = T, for p < 1/(C.r)z (6.58)
n

Finally, two approximations will be attempted, on egqn
(6.54), for small values of p. If p satisfies the condition
in (6.58), then from (6.55) & (6.54), for J=even:

J
2,(T) = Q) [Tec)¥(n) + p72UC,) " (472)] (6.59)
p=J/2+1
In the above approximate expression for Pd, powers of p
multiply each term in the summation, in the RHS. Since p is
very small, cone may assume that only the terms corresponding

to the minimum power of p, (J/2+1), are significant. Hence:

B, (T,) = Q()p’! [(J/E’fi-l)(C.urzu)”m1+ (J#Z)(cuz)m] (6.60)

Section 6.3 Page 177

The above expression is an approximation and hence one

can assume that C = C Furthermore, from eqn (6.13),

37241 Jz*
if pc, €« 1, then P, ® pc, « 1 ==m> Q, =~ 1. Hence, Q(J) = 1.

From the results above:

R,(T,) = p'2Y 195)(C,) 2 C, 0/ (142/0) 41 (6.61)

6.4 CONCLUBSIONS

In this chapter, one aspect of majority-logic decoding
for CSOCs, was examined. Specifically, while Massey set the
threshold at [J/21, it was proved, by the author, that this
is the optimum* setting only if the bit error rate, p, is
smaller than a certain value,

An expression for Ed(T), the probability of decoding a
bit in error, was derived, as a function of the threshold, T
[egqn (6.1)). Given this eqn, it seemed natural to ask, what
is the value of T that minimigzes Pd{T)? The sign of the dif-
ference Pd(T) - Pd(T—l) was examined, as T ranges from 0 to
J. If the difference is negative for T<T°, and positive for
T>T,, then Tois the optimum threshold (see Theorem 6.1).

Ed(T) is a function of the probabilities, P,, that the
various syndromes, checking on the bit to be decoded, are
1. In § 6.1,2., it was proved that P, = 3{1-(1-2p)%] = pc,,
where c, is the syndrome size. In § 6.1.3. & § 6.1.4. gener-
al expressions were obtained for P(Z=u|e_), the probability
that the sum of the syndromes checking on e_is B and for
Pd(T). Example cases were considered which showed that there
is, indeed, an optimum threshold, which is [J/21 for small

values of p, but which increases as p increases.

The case of constant-size syndromes was considered, at
first (this is, usually, the case of DD). The probability
distribution P(Z:u]e-) was studied and it was proved that it
reaks for p = P(J+1), If P(J+1) < 1 (which is usually the
case) P(Z=p|e_) decreases as 1 increases (see Theorem 6.4).

Eqn PB,(T)-B,(T-1) = 0 was solved for T, and the optimum
threshold was found to befLJ/2+§ln[p/(1-§)]/1nKJ,ﬁ where K =
P/{(1-P). The relation between Toand”p_&ib was studied and

* 'Cptinmum’ weans minimum probability of decoding error.

Section 6.4 Page 178

it was proved that Toincreases with p, or ¢, while it
tends to its nominal value, Tna ri/21, as p —> 0. It was
also proved that T, *departs’ from T, from about p=1/c?.
Example cases showed that the error rate is improved by

about one order of magnitude, for long codes.

Finally the case of FD. was considered. This is very com-
pPlicated because P(Z:p[e_) is proportional to the sum of all
combinations of the P,s of the syndromes that check on the
error bit to be decoded. It was thought, though, that there
must be an 'average’ syndrome size, which could play the
role played by ¢, under DD. The concept of the uth general-
ized mean, A“, of J positive numbers (12p<J) was introduced
(an original idea), to assist in these calculations (see §
6.3.1.). This was a successful generalization, since it was
proved that A, is the arithmetic mean and A, the geometric
mean, and also that A“> AJ/u<J. It was further observed
p-1 > A, for all

p=2,3,...,J. This conjecture was tested and was found to be

(but it ‘was impossible to prove), that A

true, in all cases. It was also observed that the general-
ized means are very close to each other. All expressions
invelving T, & Pd(T), use some generalized means”.

A non-closed-form expression for the optimum threshold,
under FD, was derived in Theorem 6.11. The inability to ob-
tain a 'useful’ expression for Tois due to the existence of
syndromes of various sizes. Tight upper & lower bounds on T,
were obtained [see relns (6.48)] as well as two good approx-
imations, [see relns (6.3)]. The 2nd approximation is very
similar to the corresponding approximation for DD. Their

only difference is that FD uses C instead of ¢, where C

¥
is the pth generalized mean of t;: sizes of the syndrome:
checking the error bit. It was also argued that T 'departs’
from T from about p=1/(CﬁJz. Four example cases were con-
sidered which proved the validity and the tightness of the
bounds and the approximations. This result then suggests
that the way to obtain the optimum threshold, under FD, is
to use the bounds to restrict the range of To(to usually
one or two values), and then to employ the exact expression

[(6.46c)] to determine which value minimizes To.

* pither of the quantities B, ® P,/(1-B;), or of the syndrome sizes.

...

el A A . vt
arer r g risfiereerdti eIirifoe 1 gt reRTerd ranern eeneen ree 'r’ ey Hien oor i .’wn:‘rn,:’rﬁhn’r’r‘ (e v

Structure o C Tc Cs
2rerfiner e fredng

...

Chapter 7 will introduce the class of ’cyclic’ convolu-
tional self-orthogonal codes. This class of systematic codes
was proposed by McQuilton [42], in 1979; the term ’cyclic’
refers to the fact that these codes can be decoded cyclical-
ly, using k/(n-k) threshold gates (instead of k gates).
Another important characteristic of this clase of codes is
that it has an infinite number of members including codes
that are multiple error-correcting at extremely high rates.

'Cyclic’ CSOCs are based on number theory and (as a con-
sequence) they have a 'rich’ mathematical structure. The
latter may be exploited to achieve a number of results, in-
cluding expressions for the code performance and ways to
systematically alter the initial design in order to achieve
specific goals, As an example, a method to shorten the codes
was proposed by McQuilton [43], in 1980.

The author would like to admit that he was ’intrigued’ by
number theory. In particular, this theory seems to have a
very rich structure which remains unexploited, and on many

occasions unknown.

Although the class of ’cyclic’ CSOCs was discovered by
McQuilton, the work in this chapter is largely original. Its
primary aim is to show that the above class of codes is the
general solution of the problem of, systematically, con-
structing systematic CSOCs under a small set of specific
constraints; the latter are introduced in an effort tc fa-

cilitate the solution. A second aim is to generalize McQuil-

ton’s results, in the hope that other classes of similar

Chapter 7 Page 180

codes may be discovered, by other researchers.

To that end, an alternative representation of systematic
convolutional codes is firstly considered. Specifically, an
array of integers is used to generate the code. The problem
which is addressed is the determination of the necessary and
sufficient conditions so that this array generates self-
orthogonal convolutional codes. The first ’arbitrary’' re-
striction is imposed and the previous results are according-
ly refined, up to the point where the effort exceeds the
limits of the thesis, This process is repeated until McQuil-

ton'’s work is duplicated.

7.1

Convolutional codes for threshold decoding were discussed
in Chapter 5. It was explained there that in a CSOC the set
of syndrome bits that check on error bit ey) /1<isk should
be orthogonal on that error bit. Hence, a systematic way of
constructing CSOCs is equivalent to a systematic way of con-
structing the syndrome equations, so that the orthogonality|

principle is satisfied.

7.1.1. A Disgussion on the Daesian Approach

Consider eqn (5:7) {p. 138). Note that error bits eé“ /i=
1,2,...,k are checked by syndrome bits sf’ /3=1,2,...,n-k &
h=0,1,...,m. Hence, the syndrome bits that check on error
bits eg“ /i=1,2,...,k are:

h k

(N - (kt3) (1), (1) -

sy = ef + €28y, /12jSn-k & O<hsm (7.1)
z=0 j=1

According to Theorem 5.6, s{) checks on e{!) iff ggjﬁ‘= 1.
Ideally, one would like to determine the necessary & suffi-
cient conditions on the 'g-coefficients’ so that the corre-
sponding systematic convolutional code is self-orthogonal.
Given that such a result is at least very difficult, and

possibly impossible, to obtain, one would try to simplify

the problem. This may be done either by following a differ-

Section 7.1 Page 181

ent approach, or by attacking a partial case.

In this section the work will start by following a dif-
ferent approach and narrowing the problem a little bit. Spe-
cifically, an array of integers will be used to completely
specify the parity-check generation for systematic convolu-
tional codes. The array will have n-k rows, one for each
parity-check. The integers along each row will specify the
message bits from each block that participate in the forma-
tion of the corresponding parity-check. Since there are n+l

blocks that participate in the formation of the current one,

the array will have m+l columns. Each entry (cell) of the array

{located by the column and row numbers) contains an unspeci-
fied number of integers. The above idea gives rise to a one~
to-one correspondence between a systematic convolutiocnal
code and its associated array of integers, to be called the
initial array.

So, the initial array (IA) for an (n,k,m) systematic con-
volutional code will be made of (n-k) x (m+l) cells. Row j
{1<j<n-k) of cells defines the way the jth parity-check is
formed., Column i (1%i<m+l1) of cells provides the contribu-
tions from the (h-i+l1)th message block, where hth is the
block currently encoded. Cell (j,i) may contain up to k en-
tries (all positive integers) or it may be empty. Entry,
say, X indicates that the xth bit (1sx<k)} of the (h-i+l)th
message-block participates in the formation of the jth pari-
ty-check of the hth channel-block, i.e. bit v{*!) depends on
bit ul*) .

Because of the similarity between the parity-check and
the syndrome equations [compare egqn (2.47b) with eaqns
(2.76)]1, the IA may be used to study the syndrome equations,
and in particular the set of syndromes which check on each
of the k error bits e{V,e{®,...,e{*). This may be done as fol-
lowing: Assume that one wishes to collect all the syndromes
that check on error bit e{*) /1<x<k. The IA must be scanned
to determine all entries equal to x. Assume that such an
entry is found in cell (j,1i) /1%js$n-k & 1%£ism+1; according
to the above discussion, syndrome bit s?’ checks on error

bit e?_‘iu, hence syndrome bit 3;31-1 checks on error bit e,‘""-

Section 7.1 Page 182

Since a three-dimensional array is difficult to work
with, a partial case will be considered. A possible family
of CSOCs could specify up to one bit from the current and
each of the past m blocks; in such a case, 0s along the row
would indicate no contribution from the corresponding block.
Another construction could specify exactly two (or maybe up
to two) bits from each block, etc. These two families may be

described by two-dimensional arrays.

7.1.2. Introduction fo Typa-A Codes

The class of ’cyclic’ CSOCs has been given a distinct
property: From the current and each of the past m message
error blocks, only one bit participates in the formation of
each of the current syndrome bits. Accordingly, a family of
systematic convolutional codes, described by a two-dimen-

sional IA, is defined below:

Definition 7.1: An {(n,k,m) type-A code is a systematic

convolutional code satisfying

1) (2 ., gk] =
L ERTESN g8,z = 1 (7.2)

for all j=1,2,...;,n~k & 2z=0,1,...,m. Equivalently, from
each of the message error blocks (eP)h, (e'hhl,..., (e‘hp_,
exactly one bit participates in the formation of each of the

current syndrome bits, s{! '51(.2)' ceoy sf]"'k).

From (7.2), it is obvious that for each gﬁ;J /i=1,2,..,k,
exactly one of them is 1:; hence, for each value of j
(1£jsn~k) and each value of z (0£z<m) there exists a value

of i, a function of j & 2z, for which gti) =1,

k+§,z
1if =
For 1£jsn-k & 0Szsm: gi) ="|: o ie Has.m (7.3)
' a

J,zel

Notation: The a-coefficients of the initial array will

be denoted either by alj,z], or By e

From the discussion above, it is obvious that each cell

Section 7.1 Page 183

of the JA has exactly one entry, hence the IA is a two-di-
mensional array of positive integers; furthermore, a, . indi-
cates the bit, from message error block (e‘hhﬂl, which par-
ticipates in the formation of sr) /5=1,2,...,n-k & z=1,2,.
+e,m+1l, It is also obvious that lSaLsz for all j & z. Using
result (7.3) in eqn (7.1}):
h
st = D) efalhztll} 4 o (03 sochem & 18j<n-k (7.4)
z=0
The initial array (IA) for an (n,k,m) type-A code has the

following format:

Determines contributions from block: - (h is the current block)
bew> h h-1 h-z+1 h-m
Defines:
s 24,1 41,2 see 84,2 Ty 81 ,a+1
5p) > 22,1 2z,2 oo 8,z cos 8;,a41
.es e “sas raa sae ces
St(lx) ——— a1 2,2 R Bz LR By mel
s e e ces ces o s
sr(an-k) —> | Znx,1 8n-x,2 oo 2n-x,z see 2 k,mt1
Note 7.1: Consider an (n,k,m} type-A code. The initial

array (IA), corresponding to this code, is the array of ele-
ments ay o where x=1,2,,..,n-k & 2z=1,2,...,n+1. The general
element a, . indicates the error bit, from message error
block (e'hhmd, which participates in the formation of syn-

drome bit st(l"’ .

To decode error bit e{!? /1gigk one should collect all
syndrome bits that check on this error bit. These syndrome
bits may be determined from the IA and eqn (7.4), which is
repeated below in a slightly different form:

h+l
s;d) = 3 elg-li-zll + e;f*-ﬂ /0<h<m & 15j$n-k (7.5)

+1-2

z=1

Section 7.1 Page 184

One should scan the IA to locate entries equal to i. If
a&w=i, i.e, if an i exists in row x, column w, from (7.5),
J=x & z=w; from the latter and h+1-2z=0, it follews that
h=w-1. So, syndrome bit s{*) checks on e{l).

Assume that syndrome bit s{*) checks on error bit e{!’. Then

from egqn (7.5},

w
siX) = D) elalnzl) 4 o) /igusm+l (7.6)

w-z
zz1

Because s!¥) checks on e{!’, the z=w term in the above sum-
mation will be the bit from message error block (eF)o; since
exactly one bit from each error block participates in the
formation of each syndrome bit (see Definition 7.1), this
bit will be the ith one of that block, hence amw=i.

The following theorem has been proved:

Theorem 7.1: Let a, ., /x=1,2,,..,n-k & z=1,2,...,m%1l be
the elements of the IA of an (n,k,m) type-A code. Syndrome
bit sf¥) /1<x<n-k & 1<wSm+l checks on error bit e{! /1gick if,

and only if, axw=i.

The question that arises, at this point, is "how to con-
struct the IA so that the corresponding systematic convolu-
tional code is self-orthogonal?".

7.1.4. Qrihogonality Conditions for Yype-A Codes

Let us consider now the equivalent condition under which
the type-A code generated by the IA is not self-orthogonal.

Theorem 7.2: Let a, . /x=1,2,..,n-k & 2=1,2,..,m+l be
the elements of the initial array of an (n,k,m) type-A code,
A necessary and sufficient condition for this code not to be
self-orthogonal is that the same pair of integers, separated
by the same number of places, appears along two of the rows
of the IA. Stated otherwise, this condition requires that,

for any two elements a . & ah"of the IA which are equal,

there exists at least one positive integer c, less than u &

Section 7.1 Page 185

w, such that a = I
If a = a, ., there existsc:a _ =a (7.7a)
where 1<r,vsn~k & 1<u,wsm+l & O<c<MIN{u,w} (7.7b)

Proof: See Appendix 7.4 (p. 447).

Note that in the above thecrem it is not necessary to
have r#v, i.e. to consider two distinct rows. Hence, even
if the same number appears in the same row, more than once,
the code will not be self-orthogonal if (7.7) do hold true.

7.2 IYEE-H CODES - THE USE OF NUMBER THEORY

Although Theorem 7.2 sets the conditions for orthogonali~-
ty, it does not do so in a way that is practically useful.
It may be possible to persist and be rewarded, but it is
tempting to simplify the problem by introducing a new re-
striction. This time it concerns the way the elements of the

IA are generated.

Def.in.it.ion 7-2: Let az,z /x=1g2'oo,n"k & Z=1,2,..,m+1
be the elements of the initial array of an {(n,k,m) type-A
code. Then the IA corresponding to a type-B code is generat-

ed as following:

a _= za, {mod k+l) /x=1,2,..,n-k & 2=1,2,..,mn+1 (7.8)

With the above definition, the construction and the
properties of the IA come under the ’jurisdiction’ of the
theory of congruences*, and in general of number theory.
Note that a special symbol (=) was introduced; it was chosen
by Gauss to suggest analogy with the equals sign (=).

Furthermore, the problem of the construction of the IA
has been reduced to that of selecting its lst column, so

that the corresponding type-B code is self-orthogonal.

* See Appendix 7.2 for a brief introduction to congruences.

Section 7.2 Page 186

7.2.1.

Theorem 7,3: Let a, /x=1,2,..,n-k be the elements of
the 1st column of the initial array of an (n,k,m) type-B
code {obviously, ISastk, /x=1,2,...4yn~k}. Then, if row x is
not to contain a zero, its leng@h should not e;ceed

(k+1)/{k+1,a_,)-1,* and consequently m is restricted by:
x,1 Pt B sintink il _ ,

n < MIN{(k+1)/(kelpa,)} - 2 (7.9)

Proof: See Appendix 7.5 (§ A7.5.1., p. 448)

Note that, according to (7.9), the maximum value of m is
k-1. This is achieved if all elements of the first column
are relatively prime to k+i.

Consider also the other extreme, namely the ninimum of

the maximum value of m, given by the following theorem.

Theorem 7.4: For the initial array of an (n,k,m) type-B

code to exist, it is necessary that the maximum value of m,

m satisfies

m,_ 2 p-2 (7.10)

where p is the smallest prime factor of k+l. For a
(2k,k,m) type-B code to be self-orthogonal, it is necessary
that .= p-2.

Proof: See Appendix 7.5 (§ A7.5.2., p. 449).

Lemma 7.1: Consider an (n,k,m) initial array with ele-
ments ay g where x=1,2,..,n~k & z=1,2,..,mn+1. Then, for any

a, . and for any c, nonnegative:
[}

ca, , (mod k+1) (7.11)

az.zl»c = ax,z
Proof: See Appendix 7.6 (§ A7.6.1., p. 450).

Consider again Theorem 7.2; in effect, it gives a neces-

——— _—

it S

'-*, _{a,b) denotes the greatest common divisor of a & b,

Section 7.2 Page 187

sary & sufficient condition for an (n,k,m) type-B code not
to be self-orthogonal: The code is not self-orthogonal if,
and only if, there is at least one pair of elements 8,y =
8, v and at least one integer c¢, such that Brue = By y-c?
where 0<c<MIN{u,w}. The next theorem re-defines the orthogo-
nality conditions, set by Theorem 7.2, exploiting the IA

generation rule introduced by Definition 7.2.

Theorem 7.5: Consider an (n,k,m) type-B code and its

initial array with elements a_ where x=1,2,..,n-k &

lz’
z=1,2,..,m+1l and m satisfying condition (7.9). The code is
not self-orthogonal if, and only if, there are two equal

elements in two rows, say elements a = a where

r,u v,w!?
1<u,wsm+1l, and at least one positive integer ¢, less than u
& w, such that:

cla_, - awl) = 0 (mod k+l1) {7.12)

r,l
Proof: See Appendix 7.6 (§ AT.6.2., p. 450).

The corollary to the above theorem will be its logical

negation:

Corollary: Consider an {n,k,m) type-B code and its ini-

tial array with elements a where x=1,2,..,n-k &

1
z=1,2,..,m+]l and m satisfying ;;;dition {7.9). The code is
self-orthogonal if, and only if, for any two rows, say r &
v, and for all elements 8w’ awﬂ‘of these two rows that are
equal, where 1<u,w<m+l, and for all positive integers c,
less than u or w:

c:(al_'1 - aVJ) #F 0 (mod k+l1) (7.13a)

< —> arJ_ﬁ a,, {mod (k+1)/(k+l,c)) (7.13b)
|

The 2nd condition follows from the 1st & Theorem A7.2.4.

The above corollary, although useful and important, lacks
in clarity and presentation due to the number of conditions

which accompany relation (7.13). An attempt to simplify this

&

Section 7.2 Page 188

will follow the examples below:

Example 7.1: Consider an (n,k,m) type-B code and its
IA. Let k+1=8 and consider two rows with elements aL1=1 and
82J=3. Then, from (7.9), both rows may have length m+l = k =
7

1.2345¢617
36147265

The columns with common elements (apart from the 1st one)
are: 2 & 6 (element 2, or 6), 4 & 4 {(element 4) and 5 & 7
(element 5, or 7). Then: For element 2 (or 6), u=2 & w=5,
hence c¢=1. For element 4, u=w=4, hence ¢=1,2,3. For element
5 (or 7), us5 & w=7, hence ¢ = 1,2,3,4. According to Lemma
7.2, the first-column elements (1 & 3) must be incongruent
{mod (k+1)/(k+l,c)) for ¢=1,2,3,4, i.e. incongruent modulo
8/(8,1)=8, 8/(8,2)=4, 8/(8,3)=8 and 8/(8,4)=2, i.e. incon-
gruent modulo 8,4 and 2. They are incongruent modulo 4 and
8, but not modulo 2, ¥

Corresponding to the above IA the following syndrome

equations may be obtained [see eqn (7.4)]:

(1) = (1) (2) (3) (1) (5) (6) (N (8)
Syt T te e el te telltelldoe {A)
2y _ (3) {6) (1) (4) (7 (2) (5) (9)
Sy Toe te b e st e te el te s e (B)

The fact that the above IA does not generate a self-or-
thogonal code may be seen from the two syndromes checking on
bit esn [or es”]; they both check on e;”, as well:

(1) 15} 1)) 2) 1) (8)
8, €3 + e; + e, + e, + eI + e,

(2) - .15} (2) n (%) 13} (6) (3) (9)
Sg = e, +e1 +e2 +e3 +e4 +e5 +es -I-c'es

What really matters in the two equations above is that,
apart from the first column, the sequences of the numbers in
brackets are not distinct. The first column contains the bit
that is checked (5). The two syndromes above are not orthog-
onal because they have one more common element (1 in the §th
column). Hence, orthogonality can be checked by looking at
the leftwise sequences:

**(s_l_,il_a)‘_rie}liief the 7g_.|:_'eatest common Ei_;isor of a & b,

Section 7.2 Page 189

54321
5274163

It is clear from eqns (A) & (B), above, that ¢ ranges
from 1 to a maximum value 8-1, where B is the first element
of the ’rightmost’ pair of common elements in the two eqgns.
In the above example this ’pair’ is element 5 in columns 5 &
7 (or, the same, element 7 in columns 7 & 5). Hence, f=5 in
the above example and ¢ ranges from I to 4. As a consequence
{k+1)/{k+l,c) takes on the values 8, 4, 8 & 2. The last val-
ue is the one that causes the ’damage’, because one can only

have two numbers that are incongruent modulo 2.

Definition 7,3: Consider an (n,k,m) type-B code and its
initial array, with elements a, . /x=1,2,...4,n~k & z=1,2,..

.,m+l, The leftwise sequences of error bit eS’ /12i<k & h20
are rows of elements of the IA, of lengths varying between 1
and m+l., In particular, for every entry of the IA which is
equal to i there is a leftwise sequence of elements, which
is the sequence of all IA elements to the left of i. In oth-
er words, for every a u=i /1<veén-k & 15u<m+l, there is a

¥,
leftwise sequence i = a, a a see g

u v,u-1 v, =2 a

v,1*

v,2

Example 7.2: Consider an (n,k,m) type-B code and its

initial array. Let k+1=8, a 1=1 and a

1 =7

2,

12345617
7654321

The columns with common elements (apart from the 1lst one)
are: 2 & 6 (element 2 or 6), 3 & 5 (element 3 or 5) and 4 &
4 {(element 4). Then, the ’'rightmost’ pair is 4 & 4 and the
first of the pair is 4, hence B=4 and ¢ ranges from 1 to 3,
requiring thus that the first-column elements are incongru-
ent modulo 8, 4 & 8. Since 7 = 3 (mod 4), the above IA
should generate a self-ortogonal code. This may be checked

by examining all leftwise sequences:

1 21 321 4321
1234656717 2345617 345617 4 56 67

Section 7.2 Page 190

54321 6 54321 7654321
567 6 7 7

Since they are all distinct, the syndromes thet check on
every bit are orthogonal on that bit, hence the code is
self-orthogonal. Incidentally, n-k=2, k+1=8 & m+l1=7, hence
the resulting systematic convolutional code is a (8,7,6)
one., Furthermore, there are J=2 syndromes checking on each
message bit, so the code may correct up to one error within
one constraint-length [n, = n{m+l) = 9 x 7 = 63].

The corollary of Theorem 7.5 places restrictions on the
elements of the 1st column of the IA. Consider any two rows
r & v and assume that they contain at least one common ele-
ment in columns other than the first one. Let B denote the
1st column of the rightmost pair of columns which contain
the common elements. Then the first elements of the two

rows, a , & a must be incongruent modulo (k+1)/{k+l,c)

v,1?
for ¢=1,2,..,8-1. If the two rows contain no common element,
then it is enough for 8, & a,, to be incongruent (mod k+1);

in any case if they are not, the two rows will be identical.

The process followed so far leads to the proof of the
existence of the ’'cyclic’ CSOCs. Nevertheless, the approach
is such that the results are general; stated otherwise, they
are meant to include McQuilton’s work, hence the introduc-
tion of two broad catagories of codes, namely type-A & type-
B (see Definitions 7.1 & 7.2). So far, two ’arbitrary’ in-
terventions were made in the process of determining the nec-
essary and sufficient conditions so that a systematic convo-
lutional code is self-orthogonal. The 1lst restriction was to
use exactly one bit from the current and each of the past m
message error blocks in the summation that determines the
current block (see Definition 7.1). The 2nd restriction is
the way the IA elements are generated from the elements of
the 13t column {(see Definition 7.2). It is the author’s op-
pPinion that the main reason for the introduction of these
two restrictions is the simplification of the calculations.
They definitely limit the range of the search, but they also

Section 7.2 Page 191

bring the solution within the sphere of the feasible::

7.2.4.

The fcollowing three theorems present some useful interme-
diate results on type-B codes. Specifically, some progress
is made towards simplifying the conditions for the existence

of type-B self-orthogonal codes.

Theorem 7.6: Let a /x=1,2,..,n-k & 2=1,2,..,m+l be

X, Z
the elements of the initial array of an (n,k,m) type-B code,

with m satisfying reln (7.9). Then, the elements of any row
of the IA are distinct, while the elements, =say, arﬂland 8, u
of column u (12u<m+l1) are equal if, and only if, the corre-

sponding elements of the first column, a, . & a, are con-

gruent modulo (k+1)}/(k+1,u):

1’

a'r,u = av,u < > a'.'t.‘,l

Ea,, (mod (k+1)/(k+1l,u}) (7.14)

Proof: See Appendix 7.7 (§ A7.7.1., p. 451).

Theorem 7.7: Let ax’z /x=1,2,co'n"’k & z=1,2,..,m+1 be

the elements of the initial array of an (n,k,m) type-B code.

If p is the smallest prime factor of k+l and m<p-2 then a
necessary and sufficient condition for the code to be self-
orthogonal is that the elements of the first column are dis-

tinct.

Proof: See Appendix 7.7 (§ A7T.7.2., p. 452).

Theorem 7.8: Consider an {(n,k,m) type-B code with m <
p-2, where p is the smallest prime factor of k+l, The fol-
lowing are necessary conditions for the code to be self-
orthogonal:

i) The code rate, R, is not less than 0.5: R 2 1/2.

ii) k is even.

iii) No column of the IA contains two equal elements.

Proof: See Appendix 7.7 (§ A7.7.3., p. 452).

Section 7.2 ; Page 192

Example 7.3: Consider an (n,k,m) type-B code with k=34.

The smallest prime factor of k+1=35 is p=5. If m<p~-2, then
m=1,2 or 3. Let m=3 and R % k/n = 1/2, hence n=2k=68. Then,
the IA is a k X (m+l) = 34 X 4 array:

f

1 2 3 4 > 18 1 19 2
2 4 6 8 19 3 22 6
3 6 912 20 5 25 190
4 8 12 16 21 7 28 14
5 10 15 20 22 9 31 18
6 12 18 24 23 11 34 22
7 14 21 28 24 13 2 286
8 16 24 32 25 15 5 30
9 18 27 1 26 17 8 34
10 20 30 b 27 19 11 3
11 22 33 9 28 21 14 7
12 24 1 13 29 23 17 11
13 26 4 17 30 25 20 15
14 28 7 21 31 27 23 19
15 30 10 25 32 29 26 23
16 32 13 29 33 31 29 27
17 34 16 33 34 33 32 31

Note that each of the four columns contains the integers
1,2,++.334 exactly once, hence the IA contains each integer
exactly 4 times. Then, there are exactly 4 syndromes check-
ing on each error bit, i.e. J=4, According to Theorem 5.3,
this (68,34,3) systematic convolutional code can correct up

to 2 errors in a span of nAﬁ n(im+l) = 68 X 4 = 272 bits.

Note, from the above example, that a higher code rate may
be achieved if n-k is reduced. This requires the deletion of
at least one of the rows of the initial array and will re-
sult in the reduction of J, from 4 to 3. This will reduce
the error-correcting capability, t, to [J/2] = 1, hence one
might, as well, reduce J to 2. This calls for the removal of
as many rows as possible so that the remaining rows contain
the integers 1,2,...,34 at least twice. There may exist an
analytical solution to this problem, but it seems possible

that only computer-aided calculations may produce results.

The last result of this paragraph is concerned with the
the relation between the effective constraint-length, n,, of

type~-B codes and the corresponding leftwise sequences.

Theorem 7,9: Let 8y . /x=1,2,..,n-k & 2=1,2,..,m+1l be
the elements of the initial array of an (n,k,m) type-B cocde.

Then, the effective constraint-length, n corresponding to

Section 7.2 Page 193

any particular error bit eSJ /1<i<k & h20, equals one plus
the number of elements in the leftwise sequences of that
error bit. Furthermore, if the initial array elements which
are equal to i, are a[xl,wll,a[xz,wzl,...,a[xJ,wJ], then the
effective constraint-length, for that error bit, equals one
plus the sum of all the column-numbers of the columns that

have an entry equal to i:

J
n,=1+ JZWJ (7.158)
=1

Proof: See Appendix 7.7 (8§ A7.7.4., p. 453).

7.3 -81 - 4 ’ .

The following results introduce a class of systematic
CSO0Cs that have rate 1/2.

Theorem 7.10: For every even positive integer k and

every integer J in the closed range [{2,p-1], where p is the
smallest prime factor of k+1, there exists a (2k,k,J-1)
type~-B self-orthogonal code, with exactly J syndromes check-
ing on each error bit. Such a code will also be called the
(k,J) type-Bl code.

Proof: Consider a {2k,k,m) type-B code and its IA. Let k &
P be as defined above and 1sm<p-2. The IA is a k X (m+l)
array, and since its elements are restricted in the range
[1,k], the first column may be formed (without loss of gen-
erality) by letting a,,=x /x=1,2,...,k. Hence, by Theorem
7.7, the code is self-orthogonal, By Theorem 7.8, each col-
umn contains the integers 1,2,...,k (in some specific order)
exactly once. Hence, the k X (m+l) array contains each of
1,2,...,k exactly m+l times, hence there are exactly J=m+l
syndromes checking on each error bit.
QED

In Appendix 7.8 (8§ A7.8.1., p. 454) there are some exam-

ples of type-Bl codes. Example A7.8.1 refers to a k+l = p,p,

Section 7.3 Page 194

case, while Example A7.8.2 refers to a k+l1=p® case. The lat-

ter may be generalized by the following lemma:

Lemma 7.2: For every odd prime p, every positive inte-
ger b and every integer J in the range [2,p-1], there exists
a (2p°-2,pP-1,J-1) type-B self-orthogonal code with exactly

J syndromes checking on each error bit.

Proof: This is clearly a partial case of Theorem 7.10, for
k+l = p® /b21l., Since p = odd prime =mm> P23 wemm> pP23 ==m=> k
= pb—l = even positive integer. Also, since p is the small-
est prime factor of k+l = p®, each error bit is checked by
exactly J syndromes, according to Theorem 7.10.

QED

A measure of the ’'power’ of the code is the ratio
LJ/Zj/nA, i.e, the maximum number of errors the code guaran-
_tees to correct within a certain span of bits, over that
span of bits. For simplicity, the ratio (J/Z)/namay be con-
sidered. Since 15_3 n(m+l), for the (k,J) type-Bl code,
this ratio is (J/2)/[n(m+1)] = J/[2(2k)J] = 1/(4k), hence it
decreases as k increases, and is independent of J.

Nevertheless, |J/2] should be measured against the effec-

tive constraint-length n which is equal to the maximum

!’
number of distinct error bits that affect the decoding of
any message error bit esn /12igk (see Definition 5.9 & Exanm-

ple A7.8.3).

Theorem 7.11: Consider the (k,J) type-Bl code. Its ef-

fective constraint-length, n is given by:

n, = 14J(J+1)/2 (7.16)

Proof: According to Theorem 7.10, the (k,J) type-Bl code
is a {2k,k,J-1) self-orthogonal type-B code with m = J-1 =
p-2, where p is the smallest prime factor of k+l. According
to Theorem 7.8, it is necessary that all IA columns are made
of a distinct set of integers. Since the IA elements are
restricted in the range [1l,k] and since each column contains

exactly k elements, then each column contains exactly one

element equal to i, where 1£icgk.

Section 7.3 Page 195

From the above discussion, there are exactly J entries in
the IA which are equal to i, one in each column. Hence, the
column numbers of the elements which are equal to i are
1,2,...3J. According to Theorem 7.9, the effective con-
straint-length corresponding to error bit e;“ /1£ifk equals
1 + (142+4-++4J) = 1 + J(J+1)/2.

QED

According to Massey [18] (p. 35) "it is impossible to
find a rate-1/2 convolutional code with J parity-checks or-
thogonal on esn, for which n, is smaller than this number"
[given by (7.16), above]. Hence, the type~Bl codes have the

minimum possible effective constraint-length, for a given J.

For a given J, apart from n,, it is also important for

the actual constraint-length, n to be as small as possi-

L)
ble. According to Massey [18], :,large ratio rh/nlis unde-
sirable. It has been celculated already that (J/Z)/nA =
1/(4k) (see discussion following Lemma 7.2). Hence, for a
given J, /J22, the best code is the one corresponding to
minimum k., By Theorem 7.10, J<p-1l, where p|(k+l) =mmm> p<k+l.
Hence, JSp-1%k wee=> k>J and the minimum value of k is J, BUT
this is permitted only if J+1 is an odd prime. The following

theorem summarizes these findings:

Theorem 7.12: Let J be any integer greater than one.
The ’'best’ (k,J) type-Bl code has k=p-1, where p is the

smallest prime greater than J. ’Best’ here means a code with

minimum actual constraint-length. For the above case,

n, = 2J(p-1) 2 24 (7.17)

Proof: Let J>1 and consider the determination of those
values of k, for which the (k,J) type-Bl code exists.
According to Theorem 7.10, 25J$p-1, where p is the small-

est prime factor of k+l, i.e.
k+l = p‘lp;z e p:r /rzl, P<p,< *** <p,, a1 {A)

Since n, = n(m+l) = (2k)J (see Theorem 7.10), the mini-
mum*nAcode (i.e. the 'best’' code) corresponds to the mini-

Section 7.3 Page 196

mum possible value of k, for a given J. From (A) it is obvi-
ous that this k is p-1 and since J<p-1, the ’'best’ code is
the one with the minimum k, such that k = p-1 =z J. Hence,
the first prime p, greater than J is chosen for k+l.

The actual constraint-length is n, = 2kd = 2J(p-1). The
minimum possible value of p is achieved when the first inte-
ger, after J, is a prime, i.e. if J+1=p. Then n, = 2J%,

QED

The table in Appendix 7.8 (§ A7.8.2., p. 456) gives the
'best’ type-Bl code, for various selected values of J, to-
gether with the corresponding values of k, Ny Qa&'nn/nr
The n, of the ’best’ type-Bl codes is compared with that of
rate-1/2 CSOCs constructed by Massey [18], or Wu [45].

From the table, one may conclude that type-Bl codes, when
compared with codes discovered by Massey [18], or Wu ([45],
are equally good as far as the effective constraint-length
is concerned [all codes satisfy (7.16)], but longer, as far
as the actual constraint-length is concerned.

Type=-Bl codes become relatively shorter, as J increases
{they are only 2.5% longer for J=100) and the trend is for
this difference to disappear.

If only the codes meeting the lower bound [see relation
{7.17)] on nA(nA=52J2) are considered (they are marked with
an ¥), then type-Bl codes are only slightly longer in n,
compared with the Massey or Wu ones {(the % extra n, is shown

below for various Js):

%: 100.0, 7L.4, 28,8, 21.0; 8.0, T.4, 3.3, 3.4y 2.8, 2.%
5 4 - 6 10 12 18 28 42 60. 72 _ 82

It is obvious that type-Bl codes are less than 8X longer,
for J218, than the corresponding Wu codes, This figure goes
down to 2.8% for J272.

The class of type-Bl codes is obviously infinite, as far
as the permitted values of J is concerned, although one can-
not expect to think of applications of CSOCs with Js in ex-
cess of, say, 100. For example, the last entry of TABLE
A7.8.1, is a rate-1/2 CSOC which guarantees to correct any
error pattern, of weight up to 4,500, within a span of 162

Section 7.3 Page 197

million bits (= 19.3 Mbytes).

Finally, it is cbvious from the table that, the ratio
1H/n!takes on values around 4 and as J increases it stabi-
lizes to 4. This may be verified theoretically, from eqgns
(7.16) & (7.17):

nA/nB= 2(p-1)J/[J(J+1)/2+41] —

n/n, = 4J(p-1)/(J%+J+2) = 4/[J/(p-1)+1/(p-1)+2/J/(p-1)]
According to Theorem 7.12, if J+1 = prime, J = p-1:
n,/n, = 4/(1+1/J+2/J%) < 4 and n,/n,—> 4 [J—>+o

For J+1<p, and J greater than about 10, 1/(p-1) +
2/{J{p-1)} = 1/{(p-1). For the same reason J/{p-1)+1/(p-1) =
J/(p-1). Hence, n,/n = 4(p-1)/J > 4, but as J increases,
(p~1)/J tends to become 1 and n,/n, —=> 4.

Theorem 7.10 introduced a class of (2k,k,m) type~B self-
orthogonal codes, where k=even, 1<mSp-2 and p is the small-
est prime factor of k+l, {(type-Bl codes).

The important restriction with this class of codes is not
their rate (1/2), or that k=even, but that m<p-1. It has
already been discussed (following Example 7.3), that the IA
of a type-Bl code may be modified to produce a self-orthogo-
nal code of higher rate (and lower J), by deleting some of
its rows. That type-Bl codes are used as a starting point
owes to the fact that each column of their initial array
contains each of the integers 1,2,...,k exactly once (see
Theorem 7.8). Another group of codes that offer this 'facil-
ity' is the (n,k,k-1) type-B group of codes. In this case,
each row contains each of 1,2,...,k exactly once.

It must be obvious, by now, that the relation between m &
P is crucial for the structure of the initial array. So far,
the case m<p-1 and R<1/2 (in practice R=1/2 - see Theorem
7.8) has been considered. In the next paragraph, the case
m<p-1 and R>1/2 will be considered (this completes the gen-
eral case m<p-1). In paragraph 7.4.2., the case p=-1<m<k-1

Section 7.4 Page 198

will be examined. Finally, in the next section, the case
mzk-1 will be looked-over (in practice m=k-1, because k-1 is

the maximum value of m - see immediately after Theorem 7.3).

?.’4.’1.

Example 7.4: Consider the initial array for the (24,4)
type-Bl code introduced in Example A7.8.2. In order to in-
crease the rate, n-k (= number of rows) will have to de-
crease, A consequence will be the reduction of J from 4 to
3, and since even values of J are preferable the problem may
be stated as following: "Delete as many rows as possible, so
that there are at least two entries for each of the integers
1,2,.4+,24". Obviously, the optimum solution is to delete
exactly half of the rows. Then there will be 12 rows, of 4
elements each, a total of 48 elements, exactly enough for
each of 1,2,...,24 to appear twice. Then, n~-k = 12 and since
k = 24, n = 24412=36 and R & k/n = 24/36 = 2/3. So, the best
solution will be a rate-2/3 code. Hence, the following
strategy for the reduction of the IA:

"Choose a number of rows, so that no number appears
twice. If necessary, add a mimimum number of rows so that
each of 1,2,...,24, appears at least once. Repeat the abaove,
until each of 1,2,...,24 appears at least J times".

During the first ‘effort’ rows 1,5,6,11,16 & 21 are cho-
sen. A quick check verifies that all 24 integers are includ-
ed exactly once. During the second 'effort’, rows
2,7,10,12,17 & 22 are chosen. Again it can be verified that
no more rows are needed:

Original IA Modified IA
1 2 3 4 —> 13 1 14 2 1 2 3 4
2 4 6 8 14 3 17 8 2 4 6 8
3 6 912 16 6 20 10 5 10 15 20
4 8 12 16 16 7 23 14 6 12 18 24
5 10 15 20 17 9 1 18 7 14 21 3
6 12 18 24 18 11 4 22 10 20 5 156
7 14 21 3 1913 7 1 11 22 8 19
8 16 24 7 20 15 10 5 12 24 11 23
918 2 11 21 17 13 9 16 7 23 14
10 20 6 16 22 19 16 13 17 9 .1 18
11 22 8 19 23 21 19 17 21 17 13 9
12 24 11 23 — 24 23 22 21 22 19 16 13

The resulting code is a rate-2/3, J=2 CSOC, with nAﬁ
n{m+l) = (24412)(3+1) = 144, The effective constraint-length

Section 7.4 Page 199

for bit e#’ /18i€24 is equal to one plus the sum of the IA
columns that contain i {(see Theorem 7.9). nxfor the code is
the maximum for all i = 1,2,...,24. This is obviously n, =
1+3+4 = 8 (for, say, i=3, or i=13, etc).

Theorem 7.13: Consider the initial array for the (k,J)
type~Bl code, Then, for any positive integer y, less than k,
there exists a (2k-y,k,m) type-B self-orthogonal code. The
minimumr number of syndromes, J, that check on any error bit
is upper-bounded by (m+l1){(1-y/k).

Proof: See Appendix 7.9 (§ A7.9.1., p. 458).

For any useful results to emerge, Theorem 7.13 alone is
not sufficient. The problem area is the wvalue of J. If rows
are deleted at random (from the initial IA of the type-Bl
code), it is possible that J<2, which will make the code
useless. Even if J 2 2 the code may be inefficient, in case
rows are deleted in such a way that some integers (from the
set {1,2,...,k}) are under-represented, The optimum solution
would correspond to all integers being equally represented,
which corresponds to the upper bound mentioned in the above
theorem. For the case of Example 7.4, k=24, m+l=4 and y=12,
Then the new code should have a value of J upper-bounded by
{m+1)(1-y/k) = 4(1-12/24) = 2. In fact J=2, for the above
example, hence the resulting type-B code is the best.

What is required thus, is a method for the best possible
way to delete rows from the IA of a type-Bl code. Specifi-
cally and for a given value of J, a method is required to
delete rows so that each integer in the set {1,2,...,k} ap-
pears exactly J times in the remaining initial array. If
this is impossible (and under what conditions is this so?),
the next best solution should be cbtained.

Note from Example 7.4 that the first-column elements that
were left after the deletion are 1,2,5,6,7,10,11,12,16,17,21
& 22. Ignoring for the time being 5 & 10, the rest form a
pattern: 1,2,6,7,11,12,16,17,21,22. Note also that multiples
of 5 (i.e. integers 5,10,15 & 20) appear only along the rows

Section 7.4 Page 200

with first-column elements 5,10,15 & 20, while all other
elements cnly along the rest of the rows. Hence there is a
partition of the elements in two distinct groups of rows:
Multiples of 5 (remember that 5 is the smallest prime divi-
sor of k+l1) appear‘along rows with 1st elements 5i
/i=1,2,3,4, while all the rest along rows with 1st elements
J /3i=1,2,...,24 & Jj#5i. The above may be generalized with
the help of the following theorem:

Theorem 7.14: Consider the initial array of the (k,J)

type-Bl code, with elements a, ., /x=1,2,...,k & 2=1,2,...,J.
Let p be the smallest prime factor of k+1l and 8,1~ X

1
/x=1,2,...,k. Then the following hold true:

i) a .t B0, " k+1 (7.18)

ii) For all x /13xSk: p|x <(===> p | a, . (7.19)
iii) For any b, i#j, 2z & w, such that 1<b<p,

1<i#j<(k+1)/p & 1<z,wsJ: (7.20)

atnip.z # a’b+3p,w

Proof: See Appendix 7.9 (§ A7.9.2., p. 459),
|

Hence, ‘the IA of the (k,J) type-Bl code has the following
properties: 1. The elements along rows with 1st elements x
and (k+1)}-x add-up to k+i. 2. The elements along rows with
1st element ip {i=1,2,...,(k+1)/p-1] are all multiples of p,
while no multiple of p appears elsewhere. 3. The elements
along any two rows, with row-numbers that differ by a multi-
ple of p and which are pot multiples of p, are distinct.

The above results may be used to delete rows from the IA
of the (k,p-l)* type~Bl code. According to Theorem 7.10, the
integers in the set {1,2,...,k] appear exactly p-1 times
each. By Theorem 7.14 the IA is partitioned into two sets of
rows, according to the lst element, x, of each row:

Rl & {x /x=1,2,...,k & p[x} (7.21a)
R2 & {ip, i=1,2,...,(k+1})/p-1} (7.21b)

Because R1 & R2 are disjoint and their union is {1,2,..
«yk}, |R1]| + |R2| = k (see Biggs [36], p. 44). Then, |R1l| =

¥ The (k,p-1) type-Bl code has the widest possible IA.

Section 7.4 Page 201

(p-1)(k+1)/p and |R2| = (k+1)/p-1. |A| denotes the number of
elements in set A.

Set Rl contains the 1lst-column elements that are not mul-
tiples of p, while set R2 contains the multiples of p, only.
Also, by Theorem 7.14, rows with lst elements 1,p+l1,2p+l1,..
.y k+2-p contain a distinct set of integers:; the same applies
to rows with first elements 2,p+2,2p+2,..,k+3«p, etc, p-1,
2p-1,3p-1,...,k. Each subset of rows contains (k+l)/p rows,
while each row contains p-~1 elements, hence each subset of
rows contains (p-1)(k+1)/p distinct elements. It would be
ideal if this number equals the number of non-multiples of p
in the range [1,k], i.e. the elements in set Rl. In such a
case, if J of these subsets were to be chosen, then each of
the elements of Rl is chosen exactly J times and the code
construction problem is reduced to the selection of rows
whose 18t element is a multiple of p, so that each of the
multiples of p appear also exactly J times (or, failing
that, as close to, and not less than, J times). If this suc-
ceeds, then a self-orthogonal code has been constructed with
J syndromes checking on each error bit.

According to the above discussion, and for the general
(k,J’) type-Bl code (1<J’<p), the subset of Rl containing
rows with 1st elements b,p+b,2p+b,...,k+1+b~p, where 1<b<p,
contains J'(k+l)/p distinct elements that are not multiples
of p, while there are |R1| = (p-1)(k+1)/p distinct elements
in the IA that are not multiples of p. Since, by Theorem
7.10, 2s5J’<p, if J’=p-1, then each of the above-mentioned
subsets of rows contains each of the numbers 1,2,...,k, that
are not multiples of p, exactly once.

Then, to construct a self-orthogonal code with J checks
on each error bit, one would start with the initial array of
the (k,p-1) type-Bl code and keep only rows with 1st-column
elements b,p+b,2ptb,...,k+l+b-p, for J values of b, between
1 and p-1. This will result in exactly J copies of each ele-
ment in the new IA, but no elements that are multiples of p

are included, as yet. Hence, the following theorem:

Theorem 7.15: Consider k & J integers, such that 1<J<p

and k is even and positive, where p is the smallest prime

Section 7.4 Page 202

factor of k+l. Then, there exists an (n,k,p-2) type-B self-
orthogonal code, with at least J syndromes checking on error
bits e{®) /i=1,2,..,(k+1)/p-1 and exactly J syndrome bits
checking on the rest of the error bits.

The elements of the first column of the initial array are
selected as following: J values of b between 1 and p-1 are
chosen, at random. For each one of them, b,b+p,b+2p,...,k+l1+
b~p are selected as elements of the first column, a total of
J{(k+1)/p elements. Furthermore, from the set of the multi-
ples of p, [a total of (k+1)/p-1 elements], a minimum number
is selected so that the corresponding rows contain at least
J copies of each of the multiples of p. n equals the number

of rows of the resulting initial array plus k.

The theorem below gives bounds on n, for the (n,k,p-2)

type-B self-orthogonal codes, introduced above.

Theorem 7.16: Let k be a positive even integer and J an
integer in the closed range [2,p-1], where p is the smallest
prime factor of k+l. Then the (n,k,p-2) type-B self-orthogo-

nal code has n bounded by:
Jk/({p=-1)+k s n € (J+1)(k+1)/p-1+k (7.22)

Proof: See Appendix 7.9 (§ A7.9.3., p. 460).

Let us recap. Consider the initial array for the {(k,p-1)
type-Bl code, where k is even and p is the smallest prime
factor of k+l. This IA is used as a starting point. A number
of rows are to be deleted so that a higher-rate code is ob-
tained (remember that the number of rows equals n-k), with
at least J syndromes checking on each error bit. The new
code will be an (n,k,p-2) self-orthogonal one, but for a
given value of J, n may be unecessarily high. This will hap-
pen if some error bits are checked by more than J syndromes;
the latter is equivalent with some of the integers in the
set {1,2,...;k} appearing in the IA more than J times.

Hence, the ideal solution is to include enough rows so that

each integer to appear J times. Such an ideal solution may

Section 7.4 Page 203

be non-existent, for k & J given, and in any case it may not
be easy to obtain. Note also that the code, to be construct-
ed, has m=p-2, clearly a breach of generalization (which
would require 2<m+1<p-1). This is done because if m<p-2, it
would not be possible to construct an IA containing each of
the elements of Rl, exactly J times (only at least J times).

The best that can be done, at this stage, is to consider
a few special cases and propose a computer-aided search for
the general case. The special cases will be related to the

way the rows with the multiples of p are chosen.

Certainty and optimality can be achieved if |R2| equals
p-1, i.e. the number of IA columns. Under such a condition,
each row will contain all the multiples of p, exactly once.
From (7.21b), (k+1)/p-1=p-1 ===> k+l = p?, Then, the new IA
should include J of these rows. On top of these, there are
J{k+1)/p rows containing the non-multiples of p (see Theorem
7.15). Hence, the IA will have J+J{k+1)/p = J(k+1l4p)/p rows,
so n = k+J{k+1l+p)/p = pi-1+J(p+l) = (p+1)(p-1)+J{(p+1)
{p+1)(J+p-1). Also, the the actual constraint-length is nAﬁ
n{m+l) = (p+1)(J+p-1)(p=-1) = (p?-1)(J+p-1) and the code rate
is R = k/n = (p-1)(p+1)/[(p+1)(J+p-1)] = (p-1)/(J+p-1).
Hence, the following theorem:

Theorem 7.17: For every odd prime p, and every integer
J, such that 2<J<p-1, there exists an (n,p*-1,p-2) type-B
self-orthogonal code, with exactly J syndromes checking on
each error bit and block length n = (p+1){(J+p-1). The code
rate is R = (p-1)/(J+p~1) and the actual constraint-length
is n, = (p?-1)(J+p-1). Such a code will also be called the
(p,J) type-B2 code.

The elements of the first column of the IA are selected
as following: J values of b between 1 and p~1 are chosen, at
randon. For each one of them, b,b+p,b+2p,...,k+1l+b-p are
selected as elements of the first column, a total of
J(k+1)/p elements. Furthermore, J multiples of p are select-

ed, also at random, to serve as the remaining 1lst-column

elements.

Section 7.4 Page 204

Another useful case is the one where the number of multi-
pPles of p is greater than the width of the array but not
greater than twice that width. In such a case, two rows are

enough if they contain a distinct set of integers.

Theorem 7.18: For every odd prime p, and every prime q,
such that p<q<2p (if such a q exists) and every integer J,
such that 25J%(q-1)/2, there exists an (n,pq-1,p-2) type-B
self- orthogonal code, with at least J syndromes checking on
each error bit and block length n = (q+2)J+pg-1. Such a code
will be called the (p,q,J) type-B3 code.

The elements of the first column of the initial array are
selected as following: J values of b between 1 and p-1 are
chosen, at random. For each one of them, b,b+p,b+2p,...,pq+
b-p are selected as elements of the first column, a total of
Jg elements. Furthermore, elements ip & pg-ip /i=1,2,...,J

are selected to generate the multiples of p.

Proof: See Appendix 7.9 (§ A7.9.4., p. 461),

Example 7.5: Let p=7. Then q (if it exists) should be a
prime such that 7<q<14. There are two choices, q=11 or qg=13.
I.et g=11. Then, k=pq-1=76, m=p-2=5 and 2<J=5(11-1)/2=5. Let
J=4, Then, n=(q+2)J+pg-1=13x4+476=128, R=k/n=76/128=19/32 and

n,® n(m+l) = 128 x 6 = 768.

7.4.2. IypezB 3alf Orthogonal Codes with p-2imik-i

As mentioned earlier, the relation between m and the di-

visors of k+1 is an important factor influencing the con-
struction of the initial array of a type-B self-orthogonal
code. Let d, & d, be divisors of k+1 such that
p5d1£m+1<d2<k+1, where p is the smallest prime factor of
k+1, For example, if k+l = 52 x 7 = 175, then p=5 and the
divisors of k+1 (which are <k+l1 & 2p) are 5, 7, 25 & 35. If
d1=7, then dz=25 and m+l1 may be between 7 and 24.

It has been shown that the problem of constructing a

self-orthogonal code has been reduced to the one of select-

Section 7.4 Page 205

ing a subset of {1,2,...,k} to serve as the 1st column of
the IA. This subset must be such that: 1. m is £ p-2 (or,
the same, Theorem 7.3 is satisfied). 2. The code is self-
orhogonal (or, the same, the corollary of Theorem 7.5 is
gsatisfied)}). 3. J is 22 (or, the same, the IA contains at

least 2 copies from each integer in the set {1,2,...,k}).

The theorem below deals with the first two specifica-

tions:

Theorem 7.19: Consider an (n,k,m) type-B code® and its
initial array with first-column elements x, where 1<xsk. Let
ch & dzbe two consecutive divisors of k+1, such that
p$d1$m+1<dz<k+1, where p is the smallest prime factor of
k+1l, Then if a row is not to contain a zero, its first ele-
ment, x, must not be a multiple of any divisor of k+l great-
er than (k+1)/d2. Furthermore, Ji,
checking on error bit eg” /15i<k, equals the number of pairs

the number of syndromes
(x;2) which satisfy the congruence xz = i (mod k+l). 2z is
restricted to be in the range {1,m+1] while x must not be a
multiple of any divisor of k+l greater than (k+l)/d, and

must be in the range [1,k}].

Proof: See Appendix 7.9 (§ A7.9.5., p. 463).

Consider now the congruence xz = i {mod k+1). This will
be solved for x, fer each value of z=1,2,...,d2-1, and the
result will be tested to determine if it is a multiple of a
divisor of k+l1l, greater than (k+1)/dz. The range of values
of z will be partitioned by three subsets, This arises from
the observation that either (z,k+1) = 1, or d & (z,k+1)>1
and if the latter condition is valid, either d|i, or dfi.**

According to Theorem A7.2.7, if (z,k+1l) = 1, then congru-
ence zx £ i (mod k+l) has a unique (modulo k+1) solution
given by x = iz*®1-1 (nod k+1). The solution will not be
acceptable if (x,k+l1l) > (k+1)/dz.

According to Theorem A7.2.5, if (z,k+l) & d > 1 and d|i,
then congruence zx = i (mod k+l1) has exactly d solutions,
given by t + j(k+1)/@8 /j=0,1,...,d-1; t is the solution of
congruence (z/d)x = i/d (mod (k+1)/d). A solution, x, will

* 1f it exists. B
!** {a,b) denotes the greatest common divisor of a & b.,

Section 7.4 Page 206

not be acceptable if (x,k+1) > (k+1)/d2.]
According to Theorem A7.2.5, if (z,k+1) = d > 1 an dfi,
then congruence zx = i (mod k+l) has no solutionsf**'

The following theorem is based on the above idea.

Theorem 7.20: Consider an (n,k,m) type-B code® and let
d1& c% be two consecutive divisors of k+l, such that
p<d,sm+1<d,<k+1l, where p is the smallest prime factor of
k+l. Let an initial array (IA) element i (ie€[l,k]) and let
the greatest common divisor (gcd) between i & k+l be e
[(i,k4#1}) = e]. Then IA column z (z€[l,m+1]) contains up to d
copies of element i, if i is divided by d4, and none other-
wise: d is the gcd between z & k+l [d = (z,k+1)].

Specifically, a column z which is relatively prime to k+1
[{(z,k+1) = d = 1], contains exactly one copy from each ele-
ment i (where ie[1,k]) which is such that e = (i,k+1) £
(k+1)/dzand no elements i for which (i,k+l)} = e¢ > (k+1)/d2.

A column z not relatively prime to k+l [(z,k+l) = d > 1],
contains only elements i that are both multiples of d and
such that e/d £ (k+1)/dz. There may be up to d copies of
each multiple of d, along column z, depending on the number
of js (0€£j€d-1) which satisfy inequality (7.23a).

ged(o+i(k+1)/d, k1) S (k+1)/d, (7.23a)
where, ¢ 2 (i1/d)(z/d)* DAYl (pod (k+1)/d) (7.23b)

Proof: See Appendix 7.9 (§ A7.9.6., p. 464).

The last theorem is a contribution towards the determina-
tion of J (i.e. the minimum of J1/i=1.2,....k, where Jiis
the number of syndromes checking on the ith error bit). It
is possible to obtain an expression for J, for at least some
partial cases {(like, for example, k+l=pq, or k+l=pqr, or
k+1=p", etc, where p, q & r are primes). Such an exercise
though, is judged to be not worth exploring. This is so be-
cause most of the type-B codes with p-2<m<k-1, are not
self-orthogonal. The determination of which are and which

are not self-orthogonal codes requires a {(relatively simple)

* If it exists.

f_i"_tji;b) denoted the greatest common jd-iviisior of?;b.—‘ -

Section 7.4 Page 207

computer-aided investigation, which can easily determine J.
For example, a simple Basic programme required about =a
minute of processing time in an Amstrad CPC6128 to conclude
that the (344,174,5) type~B code is a J=5 self~orthogonal
one, Similarly, it was found that the (nl,174,23),
(n2,174,33) and (n3,274,9), are not self-orthogonal codes.

T+8 = - o

The aim of this section is to investigate under what con-
ditions an (n,k,k-1) type-B code is a self-orthogonal one.
The intention is to modify, for the {(simpler) case of m+l=k,
the results presented in Section 7.2.

The next theorem is an application of Lemma 7.2, for the

case where m = k-1.

Theorem 7.21%: Consider an (n,k,m) type-B code and its
initial array (IA), with elements a, ;o where x=1,2,...,n-k
and z=1,2,...,m+l, and with k = even.

A necessary and sufficient condition for the IA to have
m+l = k columns [or, the same, for an (n,k,k-1) type-B code

to exist], is:
*
(2.,10k+1) =1 for all x=1,2,...,nk (7.24)

Furthermore, the (n,k,k-1) code is self-orthogonal iff
the elements of the first ceolumn of the IA are incongruent

to each other moduloc any non-trivial divisor of k+l:
For all x,y € [1,n-k) /x#y,
a, , ¥ a, (mod d) for all dj(k+1) /1<dsk+l (7.25)

Proof: See Appendix 7.10 (8§ A7.10.1., p. 466).

The theorem above is very useful in dgenerating results
and, in particular, in generating methods for the systematic
construction of self-orthogonal type-B codes. It is wvalid
though only for even values of k. The next theorem deals
. with all odd-k cases.

l.‘ - — —_ - — - -
* (a,b) denotes the_greatest common divisor of a & b. |

Section 7.5 Page 208

Theorem 7.22: For every odd integer k /k>1, there ex-
ists a (k+2,k,k-1) type-B self-orthogonal code with two syn-
dromes checking on each error bit (J=2). Such a code will
also be called the k type-B4 code (k = odd & >1)}.

The following hold true for a k type~B4 code:

i) There are exactly ®(k+l) distinet initial arrays
{IAs) corresponding to the above code.

ii) The two elements of the first column of the IAs
are x & k+l-x, where x is any positive integer re-
latively prime to, and nct exceeding, k+1.

iii) If z = (k+1)/2, a, _= 8

1,z 2,z
iv) For k = odd, there are no other self-orthogonal

= 2.

type-B codes, apart from the type-B4 ones.

Proof: See Appendix 7.10 (§ A7.10.2,, p. 468).

Theorem 7.22 proved the existence of a class of single-
error correcting (J=2), high-rate [R = k/(k+2)] self-orthog-
onal codes with n, = k(k+2), for every odd integer k > 1.
The next theorem deals with even values of k.

Thecorem 7.23: For every even positive integer k and
every integer n in the range [k+l,k+p-1], where p is the
smallest prime factor of k+1, there exists an (n,k,k-1)
type~-B self-orthogonal code with J = n-k syndromes checking
on each error bit., Such a code will also be called the (n,k)
type~B5 code. The (n,k) type-B5 code is the only (n,k,k-1)
type-B code that is self-orthogonal. Furthermore, the set of
first-column elements {.t.a.x'1 /x=1,2,...,n-k} is any subset of
the set B(n), defined for any (un,k+1) = 1, by:

B(p) & {bj /3=1,2,...,p=1, b, = pj (mod k+l), 1bjk] (7.26)

Proof: See Appendix 7.10 (§ A7.10.3., p. 476).

Note that Thecorem 7.23 proves that, if k+l1 = odd and
nelk+l,k+p~1] {(p is the smallest prime factor of k+l), the
(n,k) type-B5 code is the only (n,k,k-1) type-B self-orthog-
onal code. Although the theorem provides ways for the con-

struction of the IA, it does not specify if the proposal

Section 7.5 Page 209

generates all the appropriate IAs. It may be proved that n
in (7.26) may be replaced by By i.e. a separate value of p
for each bJ/j=1,2,...,p-1. 0f course pjwill be restricted
to be relatively prime to k+l and possibly it will be re-
stricted otherwise, as well. The author believes, though,
that this generalization will not generate more valid IAs
because of duplications. Of course this is something to be
proved but, because of the insignificance of the potential
results, the effort on type-B codes will terminate with the

following example.

Example 7.6: Let k+1l = 5 X 7 = 35. According to Theorem
7.23 there exist (n,34) self-orthogonal (S50) codes with n e
[35,38] & J = n-k (corresponding to 15J%4), Let J=4, hence n
= k+4 = 38. Then, R = 34/38 = 17/19.

1 may assume any value, provided that (n,35) = 1. From
(7.26): B(1) = {1,2,3,4}, B(2) = {2,4,6,8}, B(16) = {16,332,
13,29}, etc. The elements of the Bs are supposed to be in-

congruent modulo any non-trivial divisor, d, of 35. Reduced
{mod 5), the elements of B(16) are 1,2,3,4, while those of
B{2) are 2,4,1,3. Reduced (mod 7) the elements of B(16), or
B(2) are 2,4,6,1, Therefore, B(1), or B(2), or B(16), or

etc, can indeed provide the 1st column of the IA.

A third (and final) ’arbitrary’ restriction will be im-
rosed on the codes., The previous ’arbitrary’ restrictions
were the one imposed on systematic convolutional codes by
Definition 7.1 (type-A codes) and the one imposed on type-A
codes by Definition 7.2 (type-B codes).

Threshold decodable codes are especially suitable for
hardware implementation of their encoder & decoder. A linear
encoder is made of shift-register (§R) stages and X-OR

gates. The corresponding decoder (see Fig. 5.1) is made of a

demultiplexer, a replica of the encoder, X-OR gates, majori-
ty gates (MGs) and the syndrome register (SYRE) (Fig. 7.1).

Section 7.6 Page 210

The MGs are the most expensive part of the decoder, hence
it is reasonable for one to try and minimize their number.
Hence, a reduced number of MGs is required, hopefully one,
perhaps more, but definitely less than k. This is expected
to be achieved by sharing the MGs and exploiting some
property of the code. For example, after the decoding of
e;”, an appropriate shift of the contents of the SYRE could
bring the syndromes, checking on another bit, at the input
of the gates used by e{!’, and so on.

Syndrome Register (SYRE)

] Shea | Snemr | Smemz | cer | Sheae | .o s
— Swa | Shea-r | Shia-2 Spea- e sp))
= Sna | Shes | Sneez S R B
> Shia | Shm-r | Swea-2 Spia-z e sy
e LV B v B v Shemez | eer | s

Figure 7.1: The contents of the SYRE at the time-unit of the

estimation of e,

The type of shift envisaged is a vertical or horizontal
one, by one position. This assumes that the extra hardware
required to shift the contents of the SYRE, either vertical-
ly or horizontally or both, will not exceed the savings ob-

tained by the reduction of the number of the MGs.

Definition 7.4: A code is cyclically decodable if there
exist at least two error bits, e & e{® /12a,8%k & a#B,

such that the syndromes checking on eg” can be brought into

the positions (co-ordinates) of the syndromes checking on
e,”, by a one-step uniform cyclic-shift of the syndrome-
register (SYRE). A one-step uniform shift is the one where
all the contents of the SYRE are shifted simultaneocusly by
one position either to the right, or to the left, or up-

Section 7.6 Page 211

wards, or downwards. A shift is c¢yclic if the contents of
the last stage are fed back into the first stage, and vice-

versa, according to the direction of the shift.

7.611!’ 01' - b‘f& a-— -]

The first theorem excludes the possibility of a horizon-
tally-shifted SYRE:

Theorem 7.24: There are no horizontal-shift cyclically

decodable type-B self-orthogonal codes.

Proof: See Appendix 7.11 (§ AT7.11.1., p. 478).

Consider now the necessary conditions for the existence
of vertical-shift SO type-B codes. In Appendix T7.11 (8§
A7.11.2., p. 479), it was proved that these conditions are:

z(l)a;xu).1 E z(2)£;.x(2)'1 E ces = z(J)ax“)d_(mod k+1) (7.27a)
z(l)axuxg,15 z(2)au2u1d.5--£ z(J)a“JulJ.(mod k+1) (7.27b)

where sl{,fi-(’;g_l /3=1,2,..,J are the syndromes checking on e{*.
(7.27) are 2J-2 simultaneous congruences in J unknowns. A
solution (if it exists) depends on the relation among the
By05),1%? z{j)s and k+1, and has to satisfy the corollary of
Theorem 7.5, as well.

Since results do not seem to be easily obtainable, from

(7.27), a more strict specification will be introduced:

Definition 7.5: An (n,k,m) type-B code will be said to

be an (n,k,m) type-C code, if all its error bits are cycli-
cally decodable®,

Before an attempt is made to quantify Definition 7.5, in
terms of some relation among the elements of the 1st column

of the IA, some properties of the SYRE will be proved.

Theorem 7.25: The following are necessary conditions

for the existence of an {(n,k,m) type-C code:

* only vertical shift will be considered - see Theorem 7.24.

Section 7.6) Page 212

i) No row, or column, of the syndrome register con-
tains more than one syndrome checking on the same error bit.

ii) The initial array is organized into k/{n-k) groups
of columns, called cosets. By necessity, n-k must divide k.
Each column of a coset is a cyclic shift of another column
of that coset. The first column (= the one with the small-
est column number) of a coset is called the coset leader.
The first coset is the one with the 1st column as coset

leader. If coset i contains Jicolumns, then:

k/(n-k)
2J1 = m+l {7.28a)
1=1
Jis n-k /i=1,2,---,k/(n-k) (7-28b)
iii) If a is the first element of the first column of

the IA, there must exist a column B of the first coset, such

that the elements of the first coset of the IA are congruent

(mod k+1) to a,Ba,B%a,...,8**la. Also:
Bl # 1 (mod k+1) /i=1,2,...,n-k-1 (7.29a)
B™Ta = o (mod k+1) (7.29b)

Proof: See Appendix 7.11 (§ A7.11.3., p. 479).

The following lemma (proved in § A7.11.4., p. 483), is an

elaboration on the last statement of the last theorem.

Lemma 7.3: Consider an {n,k,m) type-C code and let a
denote the top element of the first column of its initial
array (IA) and B (1<B<m+1) be one of the 1st-coset columns.
Then, the following are necessary conditions for the exist-

CK
ence of such a code: *.

1. If s&(B™%-1,k+1): a = i[(k+1)/s] /i=1,2,..,8-1 (7.30a)

2, If r=2(a,k+1): B™*= 1+i[(k+1)/r] /i=0,1,..,r-1 (7.30b)

3. If (B,k+1)>1: n-k < (k+1)/(k+1,8) - 1 (7.30c)
4., If (B,k+1)=1: n-k < &(k+1) (7.304)
5. If (a,k+1)=1: Oord,,.(B) = n-k /(B,k+1) = 1 (7.30e)

¥ (a,b) d;o;es_thg_ g;’gat-e?tj&;;mbnkéivisorrgf a&b,

Section 7.6 Paga 213

n-k | ®(k+1) (7.30£)

(a, ,kt1) = 1 /§=1,2,...,n-k (7.30g)

7'6'2'

In this paragraph the possibility of decoding cyclically
a type-Bj self-orthogonal {(S0) code will be discussed.

Consider a type=-Bl code. By Theorem 7.10, this is a
(2k,k,J-1) code, hence its IA has only one coset., Its
first-column elements are the integers 1,2,...,k. Then,
since by (7.30g) (i,k+1) = 1 /i=1,2,...,k, k+l must be a
prime, p. As a consequence (8,k+1)=(a,k+1)=1, hence B must
have order n-k = k = p-1 (mod p). Since &(p) = p-1 (see The-
orem A7.1.15), B must be a primitive root (mod p) (whose
existence is guaranteed by Theorem A7.3.3). Then, by Theorem
7.25, the 1l1st-column elements are a,Ba,...,BfP2%a. Finally,
since there is only one coset, all the other columns will be
cyclic shifts of the first one, hence, {see Definition 7.5)

the code can be decoded cyclically.

Theorem 7.26: For every prime p» and any Jel[2,p-11],
there exists a (p-1,J) type-Bllcode* which is also a type-C
code., The 1st column of its initiel array is a,ga,g2a,..
.»8%2%a, where g is a primitive root {mod p) and ae[l,p-1].

No other type-Bl code, is also a type-~C code,

The next theorem excludes all type-B2, B3 & B4 codes.

Theorem 7.27: There is no type-B2, B3 or B4 code, which

is also a type=-C code.

Proof: See Appendix 7.12 (8 A7.12.1., p. 484).

7.6.3.

Consider the decoding of the k type-B4 code. By Theorem
7.22, this is a J=2 {(k+2,k,k-1) code. Hence its SYRE has

X See Theorem 7,10,

Section 7.8 Page 214

dimensions {n-k) X (m+1l) = 2 X k (see Fig. 7.1). From The-
orem 7.1, syndrome bits s{}) /tr=1,2,..,k, check on error bits
eé“lﬁ]} /t=1,2,...,k, respectively. Since 80 = 8 ko /o=1,
2,..0,k, [by (A7.10.2)], it follows that syndrome bits sgi
/9=1,2,...,k check on error bits e{tlt:1l /g=1,2,...,k,
respectively.

The two syndrome bits, checking on a particular error
bit, are located along the two rows of the SYRE. According
to the above, 52; & s!2) check on the same error bit, if t =

o-1
= k+l~o. Hence,

sil) & sf?) check on eg‘“"” /t=1,2,..,k, respectively (7.31)

There are two basic ways to decode, the serial & the par-
allel. Strictly speaking, parallel decoding requires k MGs.
From (7.31), fo aralle]l decoding, the ith (1£isk) MG (used
for the decoding of e?‘hin) is connected to stages (1,i) &
{2,k41-i) of the SYRE (see Fig. 7.2).

ﬁ_ (o) /2}— - — iy —fis __E
J—E—T— e 2)—- - —Jur1-1 —T- -]

H o B

1.0 : MG : kilnd
glalt, i) glallkei-11}

Figure 7.2: Parallel decoding of the k type-B4 code.

The idea behind type-C codes is to use fewer MGs, by per-

forming non-parallel decoding. This can be achieved by ex-

ploiting some kind of cyclic structure in the IA.

Consider the ith & (k+l-i)th MGs of Fig. 7.2. If the lat-
ter MG is dropped, after the decoding of e?‘“*”, one may
shift (2,i) to {(1,i) and (1,k+1-i) to (2,k+l-i) to decode
e?“hk”’“}. For i=1,2,...,{(k-1)/2, all error bits are decod-
ed, except for e?‘“‘hl”zn. This bit needs its own MG, which

Section 7.6 Page 215

will be used only once, before the vertical shift. Hence:

Theorem 7.28: A k type-B4 code can be decoded using
(kt1)/2 majority gates {(MGa). MG i [1%i<(k-1}/2] is connect-
ed to stages (1,i) & {(2,k+1-i) of the syndrome register
(SYRE). Error bits ef*}i1} /i=1,2,...,(k-1)/2 are decoded in
parallel from MG i /i=1,2,...,(k-1)/2, respectively. Error
bits e?‘hk”’“} /i=1,2,...,(k-1)/2 are decoded in parallel
from MG i /i=1,2,...,(k-1)/2, respectively, after a vertical
cyclic shift of the SYRE. Error bit eﬁ“ﬂJkﬂJn]) is decoded
from MG (k+1)/2, with the first, or the second group. This
gate is connected to the [(k+1)/2]th stage of each of the
two shift registers of the SYRE.

b

¥ I 3 & 5 8 t=5 <(—immediately
I I Error bits e{{)‘u"” decoded:
4 {—inmediately . .

6 ¢—after a downward cyclic shift

AN m—

1 2
9 =8 =

Figure 7,3: Vertically-cyclic decoding of the 9 type-B4 code.

Finally, the k type-B4 code can be decoded serially using
only one MG, with inputs from stages {(1,1) & (2,k). These
stages decode egﬂnJ]} (see Fig. 7.3), but if the 1st SR is
shifted leftward and the 2nd rightward, both by one posi-
tion, then the MG will decode ef*1:21} (see Fig. 7.3), etc,
while at the (k-1)th shift the gate will decode ej*l*¥},

Theorem 7.29: A k type-B4 code can be decoded serially

using only one majority gate, which is connected to stages
{1,1) & {(2,k) of the syndrome register {(SYRE). After the

Section 7.6 Page 216

decoding of the first bit, the top row of the SYRE is shift-
ed cyclically leftward and the 2nd row cyclically rightward,
both by one position, for the decoding of the 2nd bit. A
complete cyclic shift decodes all bits.

+

~
[
-]
(L]
-9
eh
(=]
-3
e -]
(=]

' |o—u aternan

41 {2 |3|4]|5]6]|7181{93 —+—+—4_

y)
<

Figure 7.4: Horizontally-cyclic decoding of the 9 type-B4 code.

Note that the decoder of Fig. 7.4 is cyclic, but was not
predicted by the work, so far, on type-C codes. This is so,
because only uniform shifts were considered®. The decoder of
the last figure does not use uniform shifts, because the two

rows are shifted at opposite directions.

7.6.4. Xlypez(5 CLodes

Let us consider now the possibility of cyclically

decodable type-B5 codes.

Theorem 7.30: For every odd integer k+l, there exists a
{k+J,k,k-1) type-B self-orthogonal code [equivalently, a
{kt+J,k) type-B5 code], which is also a type-C code if, and
only if, there exists an integer B € [1,k], such that a,aB,
aB?,...,af’! are incongruent to each other modulo any non-
trivial divisor, d, of k+l and relatively prime to k+l. Such
a code, if it exists, will be called the (k,J) type-C5 code.
No other type-B5 code can also be a type~C code.

Proof: Assume that there exists Be[l,k] such that a,aB,ap?
ysesyaB’! are incongruent to each other modulo any non-
trivial divisor, d, of k+l and relatively prime to k+l.
Then, by Theorem 7.21, there exists a (k+J,k,k-1) type-B
self-orthogonal code [which, by Thecrem 7.23, is the (k+J,k)}

¥ See Definition 7.4.

Section 7.6 Page 217

type-B5 code]. Furthermore, let the elements of the 1lst col-

umn of its IA be a,aB,aB?,...,aBf¥1,

Let us examine now if this code is also a type-C code.
Let two columns x & y that have a common element in rows z &
w, respectively. By the IA generation method® and the

first-column elements, 85,1 = af! (mod k+1):

a, = a, = xa, , € ya,, (mod k+1) —

xaf* = yap" (mod k+1) ===> (multiplying by B8):
xaB®! = yap**! (mod k+1), xaB*? 2 yaB™? (mod k+l), etc ==>

If a = a _, then: a = g = etc.

Z,% R Z+1,X wal,y? 2ze2,x Boe2,y?

Hence if two columns have two equal elements then the one
is a cyclic shift of the other. Since each row has k dis-
tinct elements (see Theorem 7.6), then there are exactly J
columns with one common element, hence a cyclic shift of
each other. Since there are k columns and Jlk, then there
are k/J such cosets. According to the discussion so far, on
the relation between the SYRE and the IA, this code satis-

fies Definition 7.5, i.e. it is cyclically decodable.

Conversely, assume that for every odd integer k+l, there

exists a (k+J,k,k-1) type-B code, which is also a type-~C
code. This will have an IA with J rows and k columns. By
Theorem 7.25 the only type-B codes that can alsoc be type-C
codes must have a,aB,aB?,...,aB’"! as the first-column ele-
ments of the IA., Then, by Theorem 7.21, these J integers are
relatively prime to k+1 and incongruent to each other (mod
k+l).,
QED

It is necessary to elaborate on the above equivalent con-
ditions and to obtain a solution, which will also verify the

existence of the type-C5 codes.

Since it is desirable to obtain all type-C5 codes, the
equivalent conditions on J must also be deduced. The follow-
ing number-theoretic function will assist in obtaining the

range of J. The author is not aware of any reference on it,

* Ssee Definition 7.2 (p. 185).

Section 7.6 Page 218

in number theory, hence it can be claimed that it is a new

and, possibly, widely useful function.

Definition 7.6: Given any integer m, with prime factors

PysPysesesPs the theta function is denoted by 8(m) and is
defined to be:
e(m) - gcd(pl-lgpz-lgoao’pr_l) (7.32)

Theorem 7.31: For every odd integer k+l, and every in-
teger J22 such, and only such, that J | 6(k+l), there exists
a (k,J) type-C5 code if, and only if, there exists Be[l,k]
/(B,k+1)=1, such that Ord,(8) = J, for every non-trivial
divisor d, of k+l. The first-column elements of the initial
array are then a,aB,aB?,...,aB’ !, where a€[l,k] /(a,k+1)=1.
It will be said that o & B generate* the (k,J} type-C5 code.

Proof: See Appendix 7.12 (§ A7.12.2., p. 486).

Hence, the existence of this class of codes depends on
the existence of 8. Thankfully (!) there is at least one

sclution, for B:

Theorem 7.32: For every odd integer k+! and every inte-
ger J22, such that J | 6(k+l), there exists B, such that
ord,(B) = J for every non-trivial divisor d, of k+l. This B

is given by:

r /
B = el (ke1)/p})Y (mod kt1) (7.33a)
i=1
Where: f(i) - P:(i)-l(pi"l) /i=1’2'lo|,r (7.33b)
r
k+tl = ||p;“’ /a(i)2l, i=1,2,...,r (7.33¢c)

i=z1

and, for i=1,2,...,r:
g, = primitive root (mod p,): gff*# 1 (mod p}) (7.33d)

Proof: See Appendix 7.12 (§ A7.12.3., p. 488).

¥ 1f there is such a B.

Section 7.6 Page 219

Hence, the last theorem guarantees the existence of
type-C5 codes for any k=even and any J | 0(k+1l). This is the
class of codes discovered by McQuilton and named ‘’cyclic’
CS0Cs. The following lemma elaborates on the above theorem,

for the three most common cases.

Lemma 7.4: For every odd integer k+l, there exists a
(k,J) type-C5 code generated by:

i) If k+1 = p, then 8 = g1 (pod p) (7.34a)
& Jlp-1, where: g & prim.root (mod p}.

ii) If k+1 = p2, then B = g!/? (mod p?) (7.34b)
and J | p-1, where: gP!# 1 (mod p?),
g = prim. root (mod p) & f = p*(p-1).

iii) If k+1 = p,p,, then J | (p,-1,p,-1) &
B = g{PrD/plyl 4 gP-D/pPt (mod p,p,) (7.34c).

where: gil= primitive root (mod pi).

In Appendix 7.12 (§ AT7.12.4., p. 491), there are sone
examples of type-C5 codes. In particular, the IAs of the
(22,11), the (24,4) & the (64,4) type-C5 codes are given,
and the calculation of their B is illustrated. These codes
are (33,22,21) (rate-2/3), (28,24,23) (rate-6/7) &
(68,64,63) (rate-16/17) type-B self-orthogonal codes, re-
spectively. Also, the (18,6) type-C5 code is considered (see
Example A7.12.4., p. 493), together with the connections
from the syndrome register to the three majority gates. The
arrangement is such that the 18 bits are decoded in six

steps, but in an ’arbitrary’ order, as can be seen below:
From Ma1y &P &Y Y g g g
From MO2y EPM EM gOn gm gm o g
From MA3y &SP &M g gh gm x0

It is ’'natural’ to require that the error bits are pro-
duced in ’order'. The ‘'order’ should be such that the output

serial bit-stream is ﬁfj, ﬁf’,..., ﬁf“. Hence it would make

Section 7.6 Page 220

sense if, in the above example, MGl, MG2 & MG3 were to pro-
duce &V, &2 & &M, respectively, at the first time-unit,
é;‘), & & &%, respectively, at the second time-unit, etc.
This may be achieved if the message bits are suitably trans-
posed, prior to entering the encoder, so that they appear in
their 'natural’ order at the output of the decoder. For the
case of the above code, the transposition (or mapping)
should be:

8 —>1 16 —> 2 13 —> 3
7 —> 4 14 —> b 9 —> 6
18 —> 7 17 —> 8 15 —> 9
11 —> 10 3 —> 11 6 —m> 12
12 —> 13 b —> 14 10 —> 15
1 —> 16 2 —> 17 4 —> 18

Note that this corresponds to adopting the same mapping
for the 1st, 2nd & 4th columns of the IA (the three coset
leaders) & hence for the rest of the IA. It is necessary,

therefore, to use a different array for encoding:

Definition 7.7: Let k+l1 be any odd integer, and J22 any

integer such that J | 0(k+1). Consider the initial array
(IA) corresponding to the (k,J) type=C5 code and let columns

c1=1,c be the coset leaders. Then, the encoding

z’l.‘,ckIJ
array (EA), corresponding to the given IA, is a J X k array
of integers b{(x,y) /15b(x,y)<k, 12x5J & 1<y<k, defined by

the following mapping:
b(x,cz) - Z+(x-1)k/l-| /x=1'2’|o,J &. Z=1,2,..,k/J (7.35)

The rest of the elements of the EA follow the above-
defined mapping, so that the cyclic structure of the IA is
passed into the EA.

Note that McQuilton [42] used a different mapping for the
EA: b(x,cz) & x+(z-1)J. It seems though that this mapping
results in a more unfavourable demand on the decoder. Since
there is some kind of parallel decoding (in the case of Ex-
ample A7.12.4, three bits are decoded at each time-unit),
there must be a kind of parallel-to-serial conversion in-

volved. One would like to keep the cost of the convertor

down., If MGl outputs ég”, &8¥,..., &9, as suggested by

Section 7.6 Page 221

McQuilton, then the output of MG2 must be delayed by six
time-units, while the output of MG3, by 12 time-units.
Hence, there is a need for a store of 6+12=18 bits. On the
other hand, if mapping (7.35) is used, the store needed is 1
for MG2 and 2 for MG3. *

In general, a (k,J) type-C5 code uses k/J MGs, each of
which decodes J bits. With McQuilton'’s mapping MG2 needs a
delay of J, MG3 a delay of 2J, etc, hence the total delay is
(1424-+++k/J-1)J stages. With mapping {(7.35) the correspond-
ing figure is {1+2+4++++k/J~1) stages, i.e. J times less.

T.7 EROPERTIES OF THE INITIAL ARRAY : :

The following theorems present some of the properties of
the IA of type-Cb codes:

Theorem 7.33: For any (k,J) type-C5 code, generated by
a & B [given by (7.33a)]l, with J = even:

82’ k (mod k+1) (7.36)

Proof: See Appendix 7.14 (§ A7.14.1., p. 497).

Theorem 7.34: For any (k,J) type-C5 code, generated by
az1 & B [given by (7.33a)]}, if a, ., [/x=1,2,.0.4Jd & 2=1,2,...

sk are the elements of its initial array:

a,,= 2 /221,2,..4,k {(7.37a)

For J = even: 8y, = k+l-z /z2=1,2,...,k (7.37b)

8ot By, = K4l /x=1,2,00,0/2 & 271,2,..,k (7.37¢c)
J

218, = (kt1)J/2 /2=1,2,...,k (7.37d)

x=1
Proof: See Appendix 7.14 (§ AT7.14.2., p. 498).

Theorem 7.35: For any (k,J) type-C5 code, generated by
a=l & B [given by (7.33a)], if a,, /x=1,2,...,J & 2=1,2,...

¥ It all depends on the decoder configuration.

Section 7.7 Page 222

yk are the elements of its initial array:

J
Zax.z = 0 (mod k+l) /2=1,2,...,k (7.38a)
¥=]
&x'z-l- a:ll.kﬂ.-: = k+l /x=1,2,¢0.,J & 251,2,...,k (7.38b)
J J
zax.z + zax.kn.-z = J(k+1) /251,2,...,k (7.38c)
x=1 x=1

Proof: See Appendix 7.14 (§ A7.14.3., p. 499).

The examples, below, will help clarify the above results:

Example 7.7: Consider the {(22,11) type-C5 code of
Example AT7.12.1 (p. 491). For this code, k+1=23 & J=ll=o0dd.
Note that - /2=1,2,...,22 [as predicted by (7.37a)].

Consider C{(z), the sum of the elements of column z:

c(1) 2+4+8+16+49+18+13+4346+12+1 = 92 = 4 x 23

C(5) 10+420+17+11422+21+19+154741445

161 = 7 x 23

All the other columns will sum to one of the above two
results, because there are two cosets, and 1 & 5 are their
coset leaders. For instance, C(3)+4C(23-3) = C(3)+C(20) =
(447) x 23 = 11 x 23 = J X {k+1l) [as predicted by (7.38c}].

Example_ 7.8: Consider the (24,4) type-C5 code of Exam-
ple A7.12.2 (p. 492). For this code, k+1=25 & J=4. Note that
a) ta, 2,2784,2 = 25 = k+1 /z=1,2,...,24 [(7.37c)])., It is
also easy to verify all results of Theorems 7.33 & 7.34. For
instance, C(1) = C(2) =+++= C(24) = 50 = 256 x 2 = (k+1)J/2.

The next theorem relates the elements of the IA with

quadratic residues*, for J=odd codes,

ta = a

Theorem_7,36: Consider any (k,J) type-C5 code, with
J=o0dd, generated by a=1 & 8 [given by (7.33a)]. For every
prime factor, Py of k+1, a column of the initial array con-

tains either multiples of p,, or quadratic residues, or

¥ See Appendix 7.13 (p. 495), for an introduction to quadratic residues.

Section 7.7 Page 223

quadratic nonresidues (mod Pi)' The first column contains

always J distinct quadratic resicdues, modulo any 10

Proof: See Appendix 7.14 (§ A7.14.4., p. 500).

C5 code illustrates the validity of the above results.,

. e e e e
L4 — -~ -
~ - .

The results of the previous section will be used now for

the determination of the n‘of the type-C5 codes.

Theorem 7.37: If 8,z /x=1,2,...,J & 2=1,2,...,k denote
the elements of the initial array (IA) of the (k,J) type-CH
code, then the effective constraint-length, n!(i), corre-
sponding to the feedback decoding of ei“, is given by:

s
n(i) = 1 + :a a; =1+ (k+1)q(z) (7.39)
J=1

where IA element a . is mapped into encoding array (EA)
element i, via mapping (7.35) (p. 220) and q{z) = integer,
defined by (7.39).

Proof: According to Theorem 7.9, if
a[l,zll = a[2,zzl = eee = a[J,zJ] = a (A)
then, na) =14+ 2z, 4+ 2,+ °+ + 2z, (B)

Note that a refers to the IA, while the codes are encoded
using the EA. Let then a —8> i, via mapping (7.35). In (B),
z,/j=1,2,...,J are the column numbers of the columns that
contain a. Then, all these columns belong to the same coset
{see Theorem 7.25). Furthermore, from (7.37a), a[J,zJ] = Zy
j=1,2,...,J, hence the column numbers are also elements of
the columns and hence of the coset. Since they are distinct,
they are also the elements of the coset. Then, the sum of
the column numbers equals the sum of the elements of any of

these columns. lLet z & zland use the fact that ¢ —> i, in

Section 7.8 Page 224

{(B): nn(i) =1+ a, 3.z

Finally, from (7.38a), the sum of the elements of a col-

Lt Bt e toa

unn is a multiple [say, qa{z}] of k+l.
QED

Theorem 7,38: For any (k,J) type-C5 code, for J = even:

For all i=1,2,...,k: ny(i) = ny= 1 + (k+1)J/2 (7.40)

Proof: The result follows from Theorem 7.37 & eqn (7.37d).

The above result was deduced, independently by the au-
thor, 6 months before its publication by McQuilton ([47])*.

A closed-form expression for Ny, for J = odd, is impossi-
3. The follow-

ble, for at least some cases, except for J

ing thecrem introduces upper & lower bounds.

Theorem 7.39: For any (k,;J) type-Cb code, with J = odd:

ny =1 + (k+1)MAX{a(z)} = 1 + (k+1)[J - MIN{a(z)}] (7.41)

1 + (k+1)(J+1)/2 < ng$ 1+ (k+l)(J-1) (7.42)

In particular, for J = 3: n, =1+ 2{k+1) {(7.43)

Proof: See Appendix 7.15 (§ A7.15.1., p. 504).

Note that these bounds are as tight as such a bound can
be without taking into account the particular properties of

k & J. To illustrate this, consider the following examples:

Example 7.9: Let k+1 = 67 (= prime). Since 0(67) = 686,
J=2,3,6,11,22,33,66. Let J = 11. From TABLE A7.3.1, g=2 is
a primitive root (mod 67), and from Lemma 7.4, B = 266/11 = 26
64 (mod 67). The q(z)s for the coset leaders (there are
66/11 = 6 cosets) are: q(l) = q(6) = q(7) = 6 and q(2) =
q{3) = q(4) = 6. Then MAX{q(z)} = 6, and from (7.41): n = 1
+ 67 x 6 = 403. The bounds are 1 + 67 x 6 £ n, £ 1 + 67 x 10

— 403 = n, < 671. Hence, it meets the lower bound.

"

¥ At that time the result did not seem to be worthy of a publication.

Section 7.8 Page 225

Example 7.10: Let k+1 = 71 (= prime). Since 0{(71) = 70,
J=2,5,7,10,14,35,70., Let J = 5. From TABLE A7.3.1, g=7 is
a primitive root (mod 71), and from Lemma 7.4, B = 779/5 =z 74
54 (mod 71). The q{z)s for the coset leaders {there are
70/56 14 cosets) are: q(3) = 1, q(l1) = q(2) = q(8) = q(7)
q(9) q(18) = 2, q{(11) = q{13) = q(14) = q(21) = q(22)
Q(27) = 3 and q(42) = 4. Then MAX{q{z)}} = 4, & from (7.41):
n,= 1+ 71 x 4 = 285, Also, 1 + 71 x 3 S n, £ 1 + 71 x 4

—d 214 £ n, < 285. Hence, it meets the upper bound.

n
n

It

Note that, since q{z) + a{k+l-z) = J /z=1,2,...,k [see
(A7.15.1)1, if for some column w, q(w)=1 then q(k+l-w)=Jd-1,
which is the upper bound of q(z) [see (A7.15.2)], hence n, =
1 + (k+l1)(J-1). This was the case with the last example,
where q(3) = 1.

The following theorem is the last result that could be

obtained on n for J = odd.

Theorem 7.,40: Consider the (p-1,{(p-1)/2) type-C5 code,
where p is any odd prime. If p = 3 (mod 4), the code effec-

tive constraint-length, n equals one plus the sum of the

E,
quadratic nonresidues (mod p)*. A closed-form expression for
n, - is equivalent to solving one of number theory's unsolved

problems.

Proof: See Appendix 7-15 (§ A7015020’ P 505)-

Of course, research may reveal more results, but it seems
that the above theorem is a deterrent. This is so because
{(by Theorem 7.36) the sum of the elements of each column of
the TA, is the sum of some quadratic residues, or nonresi-
dues, or some multiples of a prime factor of k+l. Thus, the

problem is made even more difficult, than above, for R>2/3.

¥ por (p-1)/2 = even, ny = 14p(p-1)/4 - see Theorea 7.38.

Section 7.9 Page 226

7,9 EXISTENCE THEOREMS FOR 'CYCLIC' CSOCe

One important characteristic of the above class of codes
is the infinite number of its membership. It would be use-
ful, therefore, if a method is given for the construction of
a code with one given parameter (J, R, n, k). The next theo-

rem will facilitate the choice of the other code parameters.

Theorem_ 7.41: For any (k,J) type-C5 code, if ¢ = k/J:

R = ¢/{c+l) (7.44a)

n = (c+l1)J (7.44b)

n, = c{c+1)J? {7.44c¢c)

* 1+(cJd+1)MU/27 < n, £ 1+(cd+1){J-1) (7.444)
%% 1/(1-R) = c+l £ n,/n, € 2(c+l) = 2/(1-R) (7.44e)
For J = even, (J/2)/nE x 1/(cJd) = 1/k {7.44f)

Proof: See Appendix 7.16 (p. 508).

Consider any odd integer k+l, and let p <p,{---<p_ be its
prime factors. According to Theorem 7.31, J must divide all
pi-l /i=1,2,...,r. Hence, there must exist integers q; such
that p, = Jq; + 1 fi=1,2,...,r. So, if J is given, the prime
factors of k+l must be of the form Jq1+1 /qi=i,2,3,...
Since p, = Jq1+1 = odd, then Jq1= even, and if J = odd, then
by necessity q, = even. There are no restrictions on the
exponent of each pi(in the prime factorization of k+l).
Finally, if J = 2, because 2|6(k+l), for all k+l=odd, there
is always a (k,2) type-C5 code. Hence:

Theorem 7.42: For every k+l = odd, there exists a (k,2)

type-C5 code. Its parameters are R = c/(c+l), n, = 4c(c+l) &

n, = 2(c+l1), where ¢ = kX/2. Given J>2, a (k,J) type-Cb6 code
is obtained by finding primes of the form p = qJd+l /gq=zinte-
ger & g=even if J=odd. Then any of the above primes can be a

prime factor of k+l1, each raised to any integer power.

Example 7.11: Let J = 6. Then p=6gq+l /q=integer. From
the set {(7,13,19,25,31,37,43,...}, all but 25 are primes.
Let us select 7 & 19, Then k+l1 = 7% x 19, for any positive

%X 1f J = even, the effective constraint-length always meets the lower bound.
¥% 1f J = even, the ratio always meets the upper bound - bounds are approximate.

Section 7.9 Page 227

integers a & b. Obviously, J = 6 | 8({k+1) = (6,18) = 6.

Let J = 7. Then p=7q+1 /gq=even. From {15,29,43,57,71,..},
all but 15 & 57 are primes. If 29 & 71 are selected, k+l =
29* x 71b, for any positive integers a & b. Note that J = 7
| 6(k+1) = (28,70) = 14.

The case of given k is covered by Theorem 7.31 (p. 218),
which introduced this class of codes. The case of given rate
is equivalent to the case of given k/J [see (7.44a)], but a
useful construction-method is very difficult {(if not impos-
sible) to obtain. The same applies to the case of given
code-length, n. These last two cases will be covered in the

next chapter, by computer-search programmes.

7.10 CONCLUSIONG

McQuilton [42] discovered a class of (n,k,k-1) systematic
self-orthogonal (S0) codes which can be decoded cyclically
using k/{n-k) majority gates. His work, which concentrated
on the proof of their existence, was studied and it was con-
cluded that the class of codes he discovered is based on
three 'ideas’: Each syndrome bit checks on exactly one errcor
bit from each block; the error-bit numbers of each block are
related via a congruence {(mod k+l):; and the codes are cycli-
cally decodable.

In this chapter, the widest possible approach was fol-
lowed. The aim was to illustrate the process of systemati-
cally designing SO codes, by obtaining the necessary & suf-
ficient conditions so that a general (n,k,m) systematic con-
volutional code is SO. Since a general solution is not fea-
sible, a minimum number of restrictions were to be imposed,
in stages, and only when confronted with a seemingly unsolv-
able problem.

The effort started with an ’alternative’ representation
of the codes, via the so-called initial array (IA). This is
an (n-k) X (m+l) array of cells with integers in the range

f1,k}, which represent the error bits checked by each syn-

Section 7.10 Page 228

drome bit. Cell (j,i) contains the numbers of the error
bits, from (e'hpiu, checked by sg”. Then, the problem is
reduced to determining these integers, so that the code is
S0. Because the IA was very complicated, the ’'population’ of
each cell was restricted to one. These codes (with each syn-
drome bit checking exactly one error bit from each block)
were named type-A codes and the necessary & sufficient con-
ditions for self-orthogonality were deduced (Theorem 7.2).
Other possible restrictions on the cell population, are up
to one element/cell, two elements/cell, etc.

A restriction placed on the type-A codes, generates the
type-B codes. Specifically, if the jith element of the IA is
ay 49 then, a,,; = i.-;v.j.1 (mod k+1). In this way, the problem is
reduced to that of obtaining the 1st column of the IA. Theo-
rem 7.3 proved that for an (n,k,m) type-B code, it is neces-
sary that mS(k+1)/(k+1,aL1)-2, for j=1,2,...,n-k:kFinally,
the corollary of Theorem 7.5 gave the necessary and suffi-
cient conditions, on the 1lst column of the IA, so that the
code is SO. Thereafter, some new classes of SO codes were
discovered.

Type~Bl codes are (2k,k,J-1) type-B SO codes with exactly
J syndromes checking on each error bit. These codes exist
for any even k and any Je[2,p~1], where p is the smallest
prime factor of k+i. Theorem 7.11 proved that they also meet
the lower bound on the effective constraint-length.

Other classes of codes with m<p-1, but of rate >1/2, were
obtained by deleting rows from the IA of type-Bl codes (see
Theorem 7.15). Unfortunately, the conditions were too gener-
al for a clear picture, about the ’quality’ of these codes,
to emerge. For this reason, some special cases were consid-
ered. Type-B2 codes are (p®~-1+J{(p+1),p*-1,p-2) type-B SO
codes, with exactly J syndromes checking on each error bit,
where p is any odd prime and Je[2,p-1] {(see Theorem 7.17).
Type-B3 codes are (pq-1+J(q+2),prq-1,p-2) type-B SO codes
with at least J syndromes checking on each error bit, where
P & g are any odd primes, with p<q<2p and 25£J<€{q-1}/2 (see
Theorem 7.18). Instructions for the construction of the IA,
for each of these three classes, are also provided. Theorems

7.19 & 7.20 make some progress towards obtaining SC type-B

*7 (—a,b; ;it_motes ktt;eig}egtes_t common diviﬁor of 7; &b, l

Section 7.10 Page 229

codes, with m2p-1, but no concrete general results were ob-
tained. Nevertheless, some S0 codes were discovered, with
the assistance of a simple computer programnme.

The last effort on type-B codes was for m=k-~1, and re-
sulted in two more classes of codes. Type-B4 codes are
{k+2,k,k-1) type-B SO codes with exactly two syndromes
checking on each error bit, where k is any odd integer (see
Theorem 7.22). Type-B5 codes are (n,k,k-1) type-B SO codes,
with exactly J=n-k syndromes checking on each error bit,
where k is any even integer and nel[k+1l,k+p-1] (p is the
smallest prime factor of k+i) (see Theorem 7.23).

Type-C codes were defined to be any type-B codes which
are cyclically decodable (see Definition 7.5). Necessary
conditions on the code parameters and the elements of the
first column of the IA were derived. These codes are gener-
ated by twe integers, a & B, which are relatively prime to
k+l and less than k+l; (B has to satisfy some other condi-
tions, as well - see Theorem 7.25). These results were used
to test the various classes of type-B codes, for ‘’cyclic
decodability’. The only type-Bl codes which satisfied the
type-C requirements are those with k+l=prime {(see Theorem
7.28), It was proved also that type-B2, B3 & B4 codes cannot
be type-C codes (see Theorem 7.27). It was shown, though,
that there were alternative techniques for cyclically decod-
ing the type-B4 codes (see Figs 7.2, 7.3 & 7.4).

Type-C5 codes are (k,J) type-B5 codes, which are cycli-
cally decodable, using k/J majority gates, where k is any
odd integer and J | 0(k+1). O8(k+1l) is a number-theoretic
function, introduced by the author (see Definition 7.6).
Hence, there are type-B5 codes which are not type-~C [those
with J < 8(k+1), dbut J r 6(k+1)]. Theorem 7.32 provides
instructions for the construction of the IA.

McQuilton's codes are the type-B4 codes and the type-C5
codes (with a=1).

Finally, it was illustrated that the IA has to be mapped
to the encoding array (EA}, so that the bits are decoded in
their natural order (see Definition 7.7). This was proposed
by McQuilton, but it was shown that his mapping would result

in an unfavourable demand on the memory of the parallel-to-

Section 7.10 Page 230

serial converter of the decoder. Another mapping was pro-
posed instead, which requires J times less storage,

A number of properties of the IA of type-C5 codes (with
ac=1), some of them new, were also proved. So, the sum of the
elements of any column is a multiple of k+l, while the sum
of the elements of any two columns z & k+l-z is J(k+l). The
most important conclusion, though, is that the IA is much
more ’predictable’, for J = even, than it is for J = odd.
So, for J = even only, it was proved that the sum of the
elements of any column is (k+1)}J/2. On the other hand, for J
= odd, the last result is not wvalid. Finally, Theorem 7.36
linked the IA with quadratic residues. So, the elements of
the first column of the IA are quadratic residues modulo any
prime factor, p, of k+l. The elements of the rest of the
columns have the same quadratic character*, (z|p). as the
column number 2z, hence they are either multiples of p, or
quadratic residues, or nonresidues (mod p), for any p | k+i,

The above results were used to obtain expressions for the
effective constraint-length of the type-C5 codes. For the
reasons mentioned above, this was possible for the J = even
codes [n! = 1+(k+1)J/2], but impossible for the J = odd
codes, exactly because the sum of the elements of a column
of the IA is not known. Of course, one is entitled to ask if
this is not known to the author, or if in general it is a
result impossible to obtain. Again, there is no proof either
for, or against, but for a special case. It was proved that
for rate 2/3 type-C5 codes, with k+l = p = prime & J = odd,
n,-1 equals the sum of quadratic nonresidues (mod p). This
implies that any closed-form expression for nl—l, would also
solve an unsolved number-theoretic problem. It seems also
that for the rest of the J = odd cases, the problem will be
even more difficult to tackle. For the J = odd cases, bounds
on n, were obtained, which were as tight as they can be. The
lower bound coincides with the nlfor the J = even codes,
hence the latter are at least as good as the J = odd codes.

Concerning the quality of J=even codes, nl/n=== 2/{(1-R),
while (J/2)/nnz 1/k. So, the rate-1/2 codes are the 'best'’
(with n,/n, * 4), while shorter codes have a better relative

error-correcting capability (= 1/k) (see Theorem 7.41).

¥ The quadratic character is defined in Appendix 7.13.

LR T LA S B A L]

Computer 1mu7at10n s

......................

oo Tas n P I I IR PP W RN a g by

e AN b s

S e e e w e e ey g P 3w e s en ey sprsedeesy eopar srshe o

nnnnnnnnnn) tad T T reriae e
e O T TS A AT T Wl ST T A AT IR A AL R R A TN T e T

: .t
£ r D L A R I LTI IR (Y R TR L S

e ‘

- ooy frrtreys £ s s L.

Chapter 8 concludes this thesis with the results of the
computer simulation of the type-C5 codes.

Because a great number of codes was to be simulated, it
was decided that a separate computer programme for each one
of them would have been an exercise prone to errors, as well
as a tedious one. Hence, a separate library of routines was
built which, given the code parameters k & J, generated and
stored in arrays all the data necessary for the encoding and
decoding of the code (See Appendix 8.1). As a consequence,
the simulation programmes were designed for the general
(k,J) type-C5 code (see Section 8.2). Also, a number of sub-
routines had to be designed for the monitoring, processing
and presentation of the results of simulation. Section 8.3
discusses the choice of performance data and their statisti-
cal confidence. Section 8.4 presents & discusses the code-
performance data (net coding-gain & error-extension ratio)
under feedback-decoding and with the use of the nominal syn-
drome threshold. The gains obtained from the use of the op-
timum threshold are discussed in Section 8.5. The error-
propagation effect is analysed in Section 8.6, while the

lagst section looks at the unequal error-protection perform-

ance of the codes.

Section 8.1 Page 232

8.1 PUTER oF 'CY ?

The decoding of a (k,J) type~C5 code is done via the en-
coding array (EA)} and the syndrome array (SA), both of which
are generated by the initial array (IA). The latter is gen-
erated by a & B, of which a is taken to be 1, while B is
calculated from eqn (7.33a). This requires, the prime decom-
position of k+l, the primitive roots of the prime factors of
k+1l and the ability to raise an integer to an exponent and
then obtain the least positive residue modulo some integer
m, without overflow. The last requirement also implies the
ability to form the product of two integers and reduce them
(mod m) and this, in turn, to form the sum of two integers
and reduce them (mod m), without overflow. Also, a routine
for the calculation of the greatest common divisor between
two integers is required, in order to calculate 6(k+1l).

Once the above-outlined number-theoretic library is de-
veloped, the generation of the IA, EA & SA becomes a
straightforward task. The basic flow-charts of the number-
theoretic routines are given in Appendix 8.1, while the as-
sociated FORTRAN programmes in Appendix 8.2.

The routine which returns the least positive residue of
a® (mod m), without overflow, is the most useful of the li-
brary. It was designed to operate efficiently over all inte-
gers a,B,m € [l,MAXIN]*. From the rest, the one returning
the smallest primitive root {mod m), for me[l,MAXIN], is the

most sophisticated.

8,2 MULAT Mp

The codes will be tested over the AWGN channel, with a
binary PSK modulator and coherent demodulation with hard
decisions. This model is briefly discussed in § 1.1.2. *x

The objective of the simulation is the counting of bit
decoding-errors, at various signal-to-noise power ratios, T.
According to statement {(Al1.2.13) an error occurs, if "so(t)
is transmitted and n,< -E, or sl(t) is transmitted and n_ 2

+E". E is the received energy per bit and n, is a zero-mean

¥ MAXIN denotes the maximum integer of the computer.
¥* see, also, Appendix 1.2 (p., 285).

Section 8.2 Page 233

Gaussian random variable with variance o? = Efi/2, where #i/2
is the double-sided noise power spectral density. From
{Al1.2.14), the probability of error, P,y is P(n>E). For the
purpose of collecting results about errors, it seems obvious
then that generality is not lost if only sl(t) is consid-
ered. Then an error occurs only if n, > E. *

Let binary 0 correspond to sl(t). Then, the hard-decision
output is 0 if n_<E {no error) and 1 if n >E {error). The
decoder is expected to invert all 1s and produce an all-zero
ocutput. Hence, the number of decoding errors is the number
of 1z, at the decoder output. Furthermore, it is assumed
that E = 0.5, Then, o2 = n/4, so n, is a zero-mean Gaussian
random variable with standard deviation o = {n/2. A sample
from such a variable is returned by calling the appropriate
random-number generator [nc= GO5SDDF(0,0) - a NAG Library

routine] (see Fig. A8.3.1, p. 535). **

The decoder is implemented using the majority-logic cir-
cuit of Fig. 5.1, as a model. Its operation requires the use
of the following arrays: a) IRA (k x k), for the last con-
straint-length of received message-bits; b) JRA (1 x J), for
the current block of received parity-bits; e¢) ISR (k x J),
for the last constraint-length of syndrome~-bits; d} JAR
(J x k), for the encoding array & e) KAR (J x k), for the
syndrome array. The last two arrays are returned by a call
to subroutine CODARZ (see Fig. A8.1.8, p. 518). After the
initializations the decoder shifts IRA & ISR, to make space
for the current blocks, stores the data, counts the channel
errors so far, calculates the syndromes, collects the syn-
dromes checking on each error bit, estimates the error bits,
counts the decoding errors so far and resets the syndrome
register, as appropriate, The above is repeated for the
specified number of blocks to be decoded and subsequently

for each of the channel error-rates to be considered. kX

The above-mentioned straightforward apprcocach to decoder
implementation is inefficient, because it uses one
computer-word to store one bit. As a result, attempts to
simulate long codes (k2160) hit the computer~memory limit.

An alternative implementation uses bit-manipulation commands

* The error probability remains as above.
See Appendix 8.3 (p. 533), for a discussion,

Section 8.2 Page 234

to store b bits of data in one word {(b=60, for the CDC-7600
mainframe, used). The above-mentioned approach requires a
very sophisticated programme because the decoder, for the
general (k,J) type-C5 code, has to be assembled using a
minimum number of 1 X b subarrays. Complications arise be-
cause of word-boundary conditions, during the shift (verti-
cal or horizontal}) of the arrays, or the writing-in, or
reading-from, selected bit-positions. The resulting pro-
grammes* allowed the simulation of longer codes (by a factor
of yb) and improved the processing time by a factor of/2-3.
Examples A8.3.1 & A8.3.2 (pp. 536-41) illustrate the above
technique, as well as the support required, for such a de-
coder to operate efficiently. § A8.4.2. (p. 543}, lists the
corresponding (complete) FORTRAN programme. .

The above-mentioned programmes return the net coding-
gain, the probability of decoding error, etc. Variations of
this programme were ’enriched’ with a choice between feed-
back & definite decoding, as well as transmitter feedback
(or ’'genie’'® decoding). In addition, the autocorrelation
function of the decoder output error-sequence, as well as

the error performance of each coset, were also available.

The main programme makes use of a number of subroutines
for the processing & presentation of results. This includes,
the calculation of the net coding-gain, the inversion of eqn
P, = ferfc(4T'), the calculation of the BSC capacity, the
calculation of the theoretical probability of decoding er~
ror, the ordering of data in descending order, the determi-
nation of the C(N,t) combinations of N things taken t at a

time, etc. Their flow-charts are explained in Appendix 8.5.

In order to facilitate the choice of suitable type-C5H
codes, three subroutines were designed that select a code
that best matches given code parameters (like k, J & rate).
For example, given positive integers ¢ & k, subroutine IORD4
(see § A8.7.2, p. 564) returns the type-C5 code with rate
c/(c+l) and information-block length as close to k as possi-

ble. Appendix 8.7 presents & discusses these routines.

* The new decoder implementations were tested against the older ones, for correctness.

Section 8.3 Page 235
8.3 PERFORMANCE DATA

The test to which a given code is subjected is the deliv-
ery at the decoder I/P of blocks of corrupted data. The de-
coder is expected to correct them, but it does not always do
so. The three fundamental parameters obtained are, the total
number, Nb, of bits considered (sample-size), the total num-
ber of channel errors, Nce, and the total number of decoder
errors, Nde. For a given Nb, the decoder is subjected to Nce
errors and its performance is assesed by counting the number
of failures, Nde. As is the case, though, with all perform-
ance-data graphs & tables, a degree of normalization is re-
quired. The usual way, for error-correcting codes, is a
graph of the probability of decoding error {(in log-scalel,
P,

~ % . . .
over 1" . The simulation curves are compared with the corre-

versus 10logl'y, where T is the energy per information-bit

sponding theoretical curve, for uncoded transmission.

It has been mentioned already (see Section 1.4), that the
net ceding-gain, G, is the most 'fair’ measure of the effec-
tiveness of a code. G may be obtained from the above-men-
tioned graph by measuring the dB difference between the cod-
ed & uncoded cases, for a given error rate. This error rate
is the P, of the coded system and the probability of channel
error, P_, of the uncoded system. Furthermore, P, corre-
sponds to a specific I' Hence, an alternative representation

is Gvs T, or G vs P_.

8.3.1. Estimation of G, P & EI

What one gets from a simulation programme, such as the
one described above, are some data from a sample (of size
Nb), the sample taken from a hypothetical population {(i.e.
one which can be conceived, without being able to attain in
practice). Such a population is taken to have infinite size.

The 'population? mentioned, is the set of all bits at the
decoder input. Due to the adoption of an all-zero transmis-
sion, the population average is also the probability of
channel error, Pe. A second population is the set of all
bits at the decoder O/P**. Similarly, its average is Py

* This is the one-sided noise power spectral density.
* Strictly speaking, the 2nd population is obtained from the 1st one & the decoder.

Section 8.3 Page 236

To estimate the population statistics, the sample ones
will be used. The sample mean is known to be the best esti-

mate of the population mean. Hence:

P = Nce/Nb (8.1a)

e K
n

4 = Nde/Nb (8.1b)

The corresponding best estimate of G is now required.
From eqns (1.19) & (1.18), G = 10log(T’/r'), where I’ is the
'T quantity’ for uncoded transmission with error rate Py»
E.e. ' & [erfc"’(2P,)]?. Since the best estimate of P, is
P

a? then'i(iin_‘lg_uitively) the best .e:ég‘.imét_;e of T’ 3_.5

I = [erfc'l(Zf’d)]z (8.2)
I' is the energy per information-bit over fi, for the coded

case, From egqn (1.15):
I = [erfc™*(2P,}]1?/R (8.3)

Be3e2e confidence Intervals

Since it is attempted to estimate the population mean
from the sample mean, one has to declare one’s confidence c¢n
the accuracy of the experiment. The sample mean is a random
variable. It can be proved (see Erricker [49], p. 196) that
if the sample size is sufficiently large (230) then the sam-
ple means are normally distributed random variables. Then,
it may be proved* that if ﬁx is the sample mean, the proba-
bility that P lies in the interval below, is 99%.

P,-2.58/[P_(1-P,)/Nb] < P, < P +2.58{[P (1-P)/Nb]** (8.4)

8.3.3. Presentation of Results

From the preceding discussion, it is obvious that confi-
dence intervals are introduced not only for Py but also for
P,. The random number generator may be assumed to be the
hypothetical population generator. A sample (of size Nb) is
taken from its O/P. In response to this, a decoder O/P bit
stream is generated, from which Pdis estimated. The decoder
responds in a deterministic way, given the sample of the

input bit stream. Hence, the only uncertainty lies with the

* See Appendix 8.9 (p. 569).
* 2.58 iz replaced by 1.96 for 95% confidence, by 1.645 for 90% and by 0,8745 for 50%.

Section 8.3 Page 237

relation between the sample and the I/P bit stream, i.e.
between 58 and P,. This though generates an uncertainty be-
tween 56& P, and an uncertainty between é & G, as well as f
& T'. Hence, the confidence intervals should be two-
dimensional. One may test the code against the given
random-~number generator settings, in order to avoid the
two-dimensional confidence intervals. But, as will be seen
later on, the uncertainty on the channel actual error-rate

is insignificant.

From Fig. A8.3.1, n_ = GO5DDF(0,0), hence, the channel is
chosen via o¢. The uncertainty between o & & generates the
uncertainty between P_ and ﬁe. Since o* = Efi/2 [see equation
(A1.2.11)] and since E = 0.5 (see Section 8.2), then o =
ii/4, Since E = energy/bit — E/R
bit ====> I = (E/R)/fi = (0.5/R)/{40%):

energy/information

T = 1/(85%R) (8.5)

The confidence intervals on f are obtained, though, from

those on 52, via egn (8.3).

Consider now é. From (1.19) and the discussion so far:

G = 10log(T’/T) (8.6)
where f’ = [erfc'1(2f’d)]z {(8.2)
and I = [erfc!(2P,)1? /R (8.3)

The major uncertainty in (8.6) is about Py. To obtain
therefore the confidence limits on G, one has to substitute

those for P, in (8.2) and then in (8.6). From (8.4),
P, + 2.58/[P,(1-P,)/Nb] (8.7)

are the confidence limits on P,. Hence, P, is obtained
from Nde/Nb, substituted in {(8.7) and these three values are

used in {(8.2) to obtain three values for f’, and finally in

(38.6) to obtain three values of é (average & 99% confidence

limits). -

Section 8.4 Page 238

8.4 AIN AN PERFORMAN RITER N F

A number of type-C5 codes were simulated over the binary
symmetric channel (BSC) using feedback decoding. The simula-
tion programme produced figures for the net coding-gain, G,
based on the obtained probability of decoding error, P,. G
is plotted against I', the signal-to-noise ratio per informa-
tion-bit, The_mipimum I' used was such that the BSC capacity
was not 'exceeded.” .

Consider now the reliability of the experimental data.
From relation (8.7), the 99% confidence interval on the es-
timated P is P{1 + 2.58{[{P(1-P}/N]1/P}. If 4 is the number of
errors and N is the sample-size, then P = d/N and the rela-
tive width of the interval is 2.58y[P(1-P)/(NP%?)] =
2.584[(1-d/N)/d] = 2.58/(1/d-1/N). If this is to be small,
say less than 0.1, then 2.58f(1/d-1/N) < 0.1, or 1/d4-1/N <
1.5x1073, or d > (1.5x10"% + 1/N)"', If at least 10,000 blocks
are considered and the smallest information-bleock length
tested is k=12, then 1/N is at most 1/120,000 = 8,3x1075,
Then, d > (1.5x10°%)"' = 660. So, N must be such that at
least 660 decoding errors occur (if the relative width of
the confidence interval is to be less than 0.1). On the oth-
er hand, the computer processing-time limitations were such
that N could not exceed 107. For example, to obtain one
point of the P, versus I' graph for the (1320,6) type-C5
code, 740 secs of processing time were required** for a
10,000-block simulation (13,260,000 error bits were inject-
ed). With such a limit on N, the minimum decoding-error
probability which could, confidently, be estimated was of
the order of 660/107 = 7x10°%, i,e. not small enough. For the
code performance to be evaluated at useful channel error-
rates, small values of d had to be accepted. From above, the
relative width of the 99% confidence interval is = 2.58/4d.
This is 1, for d = 2.58% = 7, which means that the corre~
sponding 99% confidence interval ranges from 0 to 2§d.

P

d -~
values of I' {(i.e. for small Pd), d may be small enough so

is used to estimate G, the net coding-gain. For high

that the confidence interval of Pd to start from Pd= 0, to

which the asymptotic coding-gain, G , corresponds {see Sec-

* see Appendix 6.2 (p. 418) & relation (3,3},
On a CDC-7600 mainframe.

Section 8.4 Page 239

tion 1.4). Once though 4 reaches 20, the relative confidence
interval of ﬁdis about 1*0.5. The corresponding range for G
is not wide any more because of the non-critical dependence
of G on P,, for high I's, since G tends asymptotically to G,
as ' —> +w,

The uncertainty on Peis smaller than that on Py because
P, < P, for at least those values of P_ which ’lack’ confi-
dence. The lowest channel error rate used, must be high
enough to produce at least one decoding error. Since the
code performance is very good at very low values of Pe, the
number of channel errors injected must be at least two or-
ders of magnitude greater than the number of decoding er-
rors. Furthermore, care was taken to increase the number of
blocks transmitted, if the expected number of channel errors
was less than, say, 350. In the extreme case where this was
true, the relative width of the confidence interval on 59 is
2.58/{350 = 0.14. Therefore, the uncertainty on P_,, and
hence on I'y may be ignored exactly because the experiments

were designed so that this uncertainty is insignificant.

G vs T graphs of type-C5 codes of rates between 1/2 &
39/40 are presented below and in appendices. The range of T
is between 3 & 8 dB, while the net coding-gains obtained
were between -2 & 3 dB. Figs 8.3-5 {see also Figs A8.10.3-5,
in Appendix 8.10, pp. 572-4) contain G=f(I') graphs of codes

of the same rate.

o 4 .

p goomkoc *“*u.~ (kD)

£2 Tax & A

£ 1 h T El

2 i p—py . (139

E 1.2 o‘. 6- ¢- .e_ 0_ *) .

¥ " .

§ 9.8 bl ﬁ_‘ q-' . N

I e - - 6_

£ 04 ~eg Y

s' -\x‘- - &l- -

§ e . , : £
48 5,3 5.8 &3 68

S8 7 inforsationrtit (B

Figure 8.1: EER vs T for codes of rate 14/15. *

* EER = error extension-ratio.
' = signal-to-noise power-ratio per information-bit.

Section 8.4 Page 240

a 2.4

: +
- \}H J ¢

£ 2 N T X y (@:xa

L6 g o \ (K,),

1 . R=1/2 N

S Wi B %

s . \ X | Re14/15

; & R=3/4 | .

L 04 j LN

L ~

i 8- : ‘ ™~ 9= = o= =% ¢t

2.8 3.8 4.8 5.8 &8

S8 /7 inforaation bit (dB)

A

Fidqure 8.2: EER vs T for codes with large J. *

As a first conclusion, as T decreases towards its value

corresponding to the channel capacity {3-4 dB), G tends
asymptotically to a negative value of a few dBs. It 1s an-
ticipated that the syndrome-feedback mechanism prevents the
further deterioration of G. This is expected to be so be-
cause, at low TI's too many channel errors cause even more
decoding errors which are then fed back to the syndrome reg-
ister and cancel, by accident, some of the incoming channel
errors. This will be verified at a later section, when the
error-propagation effect is studied. Figs 8.1 & 8.2 (and
A8.10.1-2, p. 571), show that the error-extension ratio, EER

(= Pd/Pe), stabilizes around 1.5-2.5 and even decreases for

a3 X

a R=4/5) X

v 2 . .

s et
5 ! X X 7
4 8 ,a-'—'-"'B-FB-—'EI (x,9)
;g‘ &

vo-

*

z -2

) 7]
SR 7 indorsabiobat ()

Figure 8.3: Net coding-gain vs I' for codes of rate 4/5. *

¥ EER = error extension-ratio.
I' = signal-to-noise power-ratio per information-bit.

Section 8.4 Page 241

A3

% . R=6/7

Vo2

E

£

§

£ B %)

3 4 (40

S (&, d)

: ¥

z 24 , , , : -
3.9 45 5.5 45 25 8.3

SR 7 wdorsztion-bit (dB)

B=13/14

(2
== (Bud)

(%,)]

Het codinmng-gaimn <dERE>
[~]
ENNSAVINETE RUNTH TR W] FU T

3.5 4.5 5.9 6.5 2.3 8.5
S8 7 wrdorsatioeetat (R

A 34

% 3 R=16/17"

Vo2

L

£

|

£ 3 @

- - + %

3 -1 (k)

%

Z 24 : . : : -
1.5 4,5 5.5 6.5 2.5 8,5

S 7 inforestiorbat ()

Figure 8.4: Net coding-gain vs I', for codes of rate 6/7 (top),
R=13/14 (middle) and R=16/17 (bottom). ¥

* p= signal-to-noise power-ratic per information-bit.

Section 8.4 Page 242

e RE16/17

u F]

Vool X .

t .~

f, 1 .) e

2 . 5 @Y

: W X {29
v -1 X PP R | | fi,J)‘
. (&,),
P,

4,5 LS 63 PA 8.5
SE 7 inforsation-bet (dB)

A3

- R=22/23

v 2 /

C ; b

i oo g

|

&"] B (44,

2 4 ()

3 -l ¢ § (kaj)

1]

&

z - , . : . .
4.5 53 6.5 2.5 8.5

SR 7 indeemationbat (B

A 3

3 R=24I?5

v

k

{‘, |

5

L 8 + 2%

3 “ (54)

2 4 AED)

v

zZ 2 . . : . '
4.5 5'5 6]5 ?ls 8!5

SR 7 irdorgtion bt (dB

Figure 8.5: Net coding-gain vs I', for codes of rate 16/17 (top),
R=22/23 (middle) and R=24/25 (bottom). *

* r : signal-to-noise power-ratio per information-bit.

Section 8.4 Page 243

codes with high Js (28) (with every decoding error, J errors

are injected into the syndrome register).

A second conclusicn, that can easily be drawn, is that

for codes of the same rate the G=f(I') characteristic has a
higher slope for 'longer’ codes. This reveals that these
codes achieve a higher net coding-gain at high I's but per-
form worse for low I's. The slope-difference increases with
the ’length’-difference. What is not known, at this stage,
is which of J or k is responsible for the higher slope of
the 'longer’ codes? This can be deduced, though, from con-
stant-J and/or constant-k graphs.

The asymptotic coding gain Ga, for codes with rate R and
J orthogonal check-sums is R{|J/2]+1). Hence, for two codes
of the same rate, with J & J+8 orthogonal check-sums, re-
spectively, the G=f(I') characteristic is expected to be
10log[(L(J+8)/2f+1)/(LJ/2]+1)] dB higher, at high I's, for
the 'longer? code. For codes with the same error-correcting
capability [J/2)], (J=even & 8=1), the two characteristics
are expected to start from the same point (at high I's), but
the J+1 code is expected to do better for moderate values of
'y because of the extra check-sum. For low I's the difference
is expected to disappear, or at least be reduced, because
the J+1 code corrupts its syndrome register with one extra
error, with every erroneous decoding. From Fig. 8.4 (top) it
may be seen that the J=7 code has an advantage of about 1 dB
at moderate values of I'; this advantage is reduced to about
0.5 dB at low I's (the two codes have rate 6/7, hence they
are expected to have G, = 5.4 dB).

On the other hand, for J=odd, two codes with the same
rate but with J & J+1 orthogonal check-sums have different
error-correcting capabilities [(J-1)/2 & (J+1)/2, respec-
tively], hence they are expected to start from different
points, at high I's. For J=3, the codes have Gf;that differ
by 1.8 dB. From Fig 8.5, the (88,4) code has an advantage of
about 0.8 dB, over the (66,3) code, for T = 8 dB.

In order to explain some of the observations, it is nec-

essary to compare codes with the same J {see Figs8.6 & 8.7,
as well as Figs A8.10,.6-8, pp. 574-6).

Section 8.4 Page 244

R=16717

z /9

(R=14/15

NHet codimng-sairn <dB>
=
n

3 5.3 ¢ 6.3 ? %3 8 8.3

98 7 indormationhit (dD)

A3 B
a R=16/17,
Vo2
E "R=36/37'
“ 1 X - 7|
1
oo 2
0 ot k6
v X keld
t‘
2 94

3 4 3 b 7 B §

SR / wrdormtion bt (dh

NHet coding—asin <dB>
—

45 6] 53 é 6.3 7 25 8
SR 7 irdorsstronrtnt (4B

Figure 8.6: Net coding-gain vs I', for codes with J=3 (top), J=4
(niddle) and J=5 (bottom). ¥

¥ 1 = gignal-to-noise power-ratio per information-bit.

Section 8.4 Page 245

L2}

A

T o A

c .n=1§/15
y §

P

3 : £ k=R
S - k=%
3 - k=%
)

'

z

-23 .
"R=6/T "'
-3 L3 L] T

A

2.9 3 3.9 4 4.5 3) é 6.5 7 25
SR 7 indorsstronbit (B

A3

o]

b

v
2

L

-l

&

g1

i

4

L8

3

vooA

%

z 24

3 3.3 4 45 5 5.9 b 6.5 ? 23
S8 7 invformatior-tat <db)

Figure 8.7: Net coding-gain vs 'y for codes with J=6 {top), and
J=7 (middle). *

A third conclusion is that the value of J seems to be

responsible for the slope of the graph. Codes with the same
J have the same slope, while the characteristic of longer
codes is displaced towards higher values of I'. To state it
differently, a longer code achieves the same G for higher
values of I'. For example, for the (40,5) & {70,5) codes, the
latter requires an extra 0.5 dB in I' to achieve the same G
of 2 dB. The (16,4), (64,4) & (144,4) codes, achieve a net-
coding gain of 1 dB at T = 6, 7 & 8 dB, respectively.

Figs 8.8 & 8.9 contain graphs of codes with the same k
(see also Figs A8.10.9 & A8.10.10). It is obvious, from

these graphs, that codes with larger J have a steeper slope

¥ p= signal-to-noise power~ratio per information-hit.

Section 8.4

Net codimp—gmimn <dB)> Het codimng-—@aimn <dB)>

Net codine—gain <dB>»

Page 246

| J=3
- & J=4

3 3.5 § 43 3 5.3] 8.5 7 PR
SR / inforsstionbat (D)

-0 et
L T T

3 3.5 4 4.5 3 5.3 b %
SR 7 idormationetet (dB)

~J
e
-

[,]

R=6/7

2 R=12/15 |

33] 4.5 3 5.3] 6.5 7 PA 8
S8 7 idormstionhit (B

Figure 8.8: Net coding-gain vs I', for codes with k=12 (top),

k=30 (middle) and k=42 (bottom). ¥

¥ p- signal-to-noise power-ratio per information-bat.

Section 8.4 Page 247
3 ! R=10/11

R=15718

e

Met coding—gain <IE)>

-t T T

4.3) 3 ¢ 6,3 7 PA] 8
SR 7 idorestionhit (D)

R=8/9
2.5 1 'R=22/23

L
|
(s3]

Het codimng—mairn <dB>
|

T T T

O 4 45 5 8% 4 &5 7 A5 8BS
SR 7 indermtionetat (dD)

| ¥

R=16/17 -4 =3

oL

m

a1}
h

R=14/15

Het codima-gain <dB>
L3

<+

) 3.9 & 6.5 ?
SR 7 informationbit (dB)

Figure 8.9: Net coding-gain vs T, for codes with k=60 (top),
k=88 (middle) and k=112 (bottom). ¥

* p-= signal-to-noise power-ratio per information-bit.

Section 8.4 Page 248

for moderate to high values of T', but end with a worse value
of G for low I's. For example, the (12,4) code is better than
the (12,3) for ' > 5 dB. At T = 6.5 dB it offers one extra
dB {their G, is 3.5 & 2.0 dB, respectively). The (42,7) code
is better than the (42,3) for I > 5 dB. At T = 6.5 dB it
offers 2.5 extra dBs (their Gais 5.4 & 2.7 dB, respective-
ly). The (60,6) code is better than the {60,4) code for T >
5.5 dB, offering 0.8 extra dB at I' = 7 dB. The (88,11) code
is better than the (88,4) code for I' > 5.5 dB, offering 2.9
extra dBs at ' = 7 dB.

8.1 -
8.8l —

13

4 —
' R=36/37

1E-5 -
¥ rete/17

FPLdecodimng srereaor]

1E-6 =

{E-4 1£-3 B, 8.1
Plctarnel errordy Pe

| R=14/15

REY

e beb

1E4

1E-3

PLdecodimng stror]

I Red/5

1E-6

1E-3 8.81 B.1
Pleharre] errordy Fe

Figure 8.10: Probability of decoding error, P,y vs probability of
channel error, P_, for J=4 codes (top) & k=28 codes

(bottom).

Section 8.4 Page 249

Figs 8.10 contain P, vs P, graphs for J=4 codes & k=28
codes, respectively. The constant-J graphs have approximate-
ly the same slope, and are displaced along the I'-axis. The
constant-k graphs have différent slopes. Hence, the earlier
findings about the relation between J and the rate at which
the code~-performance deteriorates, as channel conditions
worsen, were not the result of the normalization of signal-
to-noise ratio to the code rate, but the working of the syn-

drome-feedback mechanism.

A (fourth) conclusion can be reached about the displace-
ment of the constant-J graphs towards smaller Péi(greater
I's). As k increases, this must be (at least partly) due to
the worsening relative error-correcting capability t, =
lJ/72)/[(k+J)k]. For J=4, the code guarantees to correct any

*

two errors within one constraint-length, n, = k{k+4). For

A
P_= p, the probability of three errors in N = n, bits is
p3(1-p)™3C(N,3) = (p3/6)IN!/(N-3)!] = (p3/6)N3; hence this
probability increases as the cube of the actual constraint-
length. Fig. 8.11 contains the graph of P, vs QE = Pefhrfor
J=4 codes; the longer codes perform better at the same @QE.
This reversal of roles is due to the better noise~averaging

performance of longer codes (see § 1.2.2., p. 9).

From the groups of graphs, considered so far, one may
conclude that as 4 increases so does the slope of the G=f(T)

8.1 = |
n |R=?(5
504 - At R/,
; —' R=36
3o B=36/37
£ & |4
L i
N +* kel
1]
LI 2k
L

{£6 4 | | | , _ |

{ 3 5 7 g 1 13 5

Pe 7 [I2mA) = &

Figure 8,11: P, vs QE, for J=4 codes.

¥ In fact, within one effective constraint-length, which equals 1+42(k+1),

Section 8.4 Page 250

graph. For constant-R codes, G, [= R(J+2}/2] increases with
J. For constant-J codes, G, increases with R {hence with k).
For constant-k codes, G, increases with J. Hence, high-J
codes are expected to offer high coding-gains at large
values of ' As T decreases, though, Pdincreases and the
syndrome-register feedback mechanism starts injecting errors
at a rate which is proportional to J. Hence, for a given
high value of T'y the G of high-J codes is greater, but as T

decreases it deteriorates faster.

A fifth conclusion concerns the range of values of T, for

which a code is useful, i.e. that value FD, of 'y, for which
G = 0. Fig. 8.12 contains graphs of T vs k, for 4 = 3-7.
For a given J, longer codes are useful at higher wvalues of
' For a given k, the higher-J codes are useful over a wider

range of Ts.

Long codes were expensive teo simulate. Some results were

obtained for eight such codes (see Fig. 8.13). As expected,
they are wéék:gﬁén_at normally high values of I'. This is so
because their relative error-correcting capability is very
low. For the (996,12), t, = 6/[996x(996+12)] =~ 6x10°%, i.e.
it guarantees to correct the equivalent of one error in
167,328 consecutive bits. In effect, what matters is the
effective constraint-length which (for J=even, by Theorem
7.38) is n,= 1+ {k+1)J/2 = 5,983, hence the code guaran-

27
']
LY,
&
l 6l?
® 42
é 5.7
£ 52
0

4.7

8 L & 1% 168
Irborwtion-block lerathy k

Figure 8.12: T, vs k, for codes of various Js. *

X I‘o = signal-to-noise power-ratio per information-bit, at which net coding-gain = ¢ dB.

Section 8.4 Page 251

A 3 0 (ﬁs,m{nisaléu

: R

v , o e U X
: 'R=343/344"
& -— —
?

Lol

c - [

g "peisas1as ¢ R-128/129 ‘;11;:’:)_3_91

3 ‘ Heee,n (1152% W

¥

'E -1 4 x ' X tn:zzﬁ]zzil

T T T T A\J

68 7 nr W4 %68 &8 B2 84 B84 8B ¢
SR /7 wdorzabioeit (dBY

Figure 8.13: Net coding-gain vs T, for long codes. *

tees to correct any 6 errors in 5,983 selected bits. For the
channel error rate used (Pe = p = B.9x10°%) the probability
of 7 errors is = p'{1-p)}>%7%(5983,7) = p(1-p)°¥® x 5.43x10%?
= 0.117, the probability of 8 errors is 0.117p(5983-7}/{1-p)
/8 = 0.078, etc. Hence, even at high I's the guaranteed er-
ror-correcting capability of the code is frequently exceed-
ed. On the other hand, the asymptotic coding-gain for these
very high-rate codes is virtually |[|J/2]J+1 (because R = 1),
hence they are expected to offer high coding-gains at very
high T's [G, = 8.4 dB, for the (996,12) code],

8.5 ACK_DEC N

A number of type-C5 codes were simulated, with a thresh-
old different than the nominal one (f‘/21), for various
channel error rates (Pe). For this, and other apprlications,
Ig was normalized to the guaranteed error-correcting capa-
bility, t & [J/2]/n,: QE & P_/t . The graphs obtained'of the
net coding-gain, G, vs QE, for various thresholds T =
fJ/214dT are shown in Figs 8.14 & 8.15.

Consider the (36,4) code [Fig. 8.14 {(top)]. Its nominal
threshold is 2 and this is expected to be the optimum for P,
< 1/(01.“)z [see (6.60)]. For this code, B=31 and the 1lst-
column elements of the IA are 31,36,6 & 1, while the 2nd-

* 1 : signal-to-noise power-ratio per information-bit,

Section 8.5 Page 252

a 237 %b%ﬁ (38,4)]

3 2 | R=9/10"

5 L5 - 8- di=f

% | - - di=l

r

) 9.5 - N

H ? -

2

0 8.5 —

s 1

R e : S
{ 2 M 4 5 é 7 8 9 18

13

A 2,9 = 0 | (90,6)

% Y \E\ ln=1s_/1_s_F

C 1,5 - R 0 4=

P { - & gl

P

o 8-5 =

< B - :

7

E 4.5 g

' 17 5 5

2 LS , '

fE
| L (156,4);
7R=39]40
8.5 0 di=A

X g

Net codimg—gmirn <dB>
b
wn o

o
1 A0

Figure 8.14: Net coding-gain vs QE, under FD & thresholds T = T,
+ dT (dT = 0,1), for the (36,4) code (top), the
(90,6) code (middle) & the (156,4) code (bottom). ¥

¥ QE = (channel error-rate) |/ (error-correcting capability/actual constraint-length).

Section 8.5 Page 253

column elements are 25,35,12 & 2. Then, for the 1st coset
(C)% = (31x36+31x6+31x1+36x6+36x146x1)/6 = 265.2, while for
the 2nd coset (Cnﬂz = 289.8. So, for the decoding of the
1st coset T = 3, for P > 1/265.2, or QE > 2,7, while for
the 2nd coset T = 3, for QE > 2.5, etc. These predictions
are verified from the graph of Fig. 8.14, where T=3 becomes
better than T=2 from about QE=2.5. Note also that when the
nominal threshold:ceasgg to be useful (G=0dB), the T=3 one

offers G = 0.3 dB, while when the latter seizes to be use-

ful, the nominal one has deteriorated to G = -0.9 dB.
§
7 -
? - 0 d-2
& di=l

Het codimng—a»irmn <dB
<
|

'
<4
|
1 P9
[na)

4.8
4.9 -

o =
-LI_
-1'2 -
-1.3 -
-1‘4 -
-1.5 -
-1.6 d
-1.? -

Het codimga—gnin <dB>

Figure 8.15: Net coding-gain vs QE, for the (30,10) code under
FD & thresholds T = T _+ dT, where dT = 0,1 (mid-
dle), & dT = 2,3,4 (bottom). ¥

¥ QF = (channel error-rate)] (error-correcting capability/actual constraint-length).

Section 8.5 Page 254

For the (90,6) code, the T=z4 threshold offers 0.9 dB ex-
tra when the T=3 threshold results in G = 0 dB. When the
former returns G = 0 dB, the latter has reached G = -1 dB.

For the {(156,4) code, the T=3 threshold offers 0.8 dB
extra, when the T=2 threshold results in G = 0 dB. When the
former returns G = 0 dB, the latter has reached G = -0.8 dB.
For this code, B = 129, and the 1lst column of the IA is
129,156,28 & 1, giving (C, })* = 4736.17. Hence, the optimum
threshold for the 1st coset is 3, for QE = 2.64.

Fig. 8.15 shows that further increase of the threshold,
beyond [J/271+1, does improve the code performance but that
it is likely that this will happen at channel error-rates at
which the code is useless, anyway. Note that the G vs QE
graph for the {30,10) code with T = 9, is wvirtually flat and
tends to ~-1.25 dB. This is expected since the probability of
decoding error remains = E% with the optimum threshold,
hence, as Peincreases, P,—> P, and G —> 1010gR*. Hence,
with the optimum threshold, G 2 10log{(3/4) = -1.25 dB.

8,86 RROR _PROPAGATION

Error propagation is studied by obtaining various results
both for 'normal’ feedback-decoding (FD or DE f/b) and for

.
Lsa
{
¢
‘49
)
t %
wl
H
v A
[]
7
s |8
0
3 9

[} i 11a 113 128 15 13 1% 148
Tiee-umat <48 blocks)

Figure 8.16: Decoder-output error-sequence of the {80,6) code,
at QE = 5, with b = &0.

¥ see equations {8.2), (8.3) & {8.6)

Section 8.6 Page 255

"4
0
L
Vo3 :
v A
]
7
;" \/\ﬂ,ﬂ
Ll
1}
L
19 118 1% 13 14

Time-umt (48 blocks)

Figure 8.17: Decoding errors, due to incorrect syndrome-reset-
ting, for the (60,6) code, with QE = 5 & b = 60.

what has been called 'genie decoding’.* Under this mode,
which does not exist in the real world, the syndrome regis-
ter is reset using transmitter feedback (TX f£/b), i.e. the
true value of each error bit, instead of the decoder’s esti-
mate of it. For some applications, the decoder output
error-sequence is considered. This is the sequence of num-
bers representing the number of decoding errors per b (k-
bit) blocks (b=1,2,3,...).

Fig. 8.16 shows the number of decoding errors, per con-
straint-length, for the (60,6) code both under TX & DE f/b,
while Fig. 8.17 displays the difference between the two
time-sequenceé, i.e. the deceoding errors due to error propa-
gation.** The various ’'peaks’ in the TX f/b sequence are due
to corresponding peaks in the channel error-sequence. The
resulting decoding-errors are fed back in the syndrome reg-
ister and cause even more decoding errors, when the DE f{/b
mode is employed. Notice, for instance, that at time-unit
107 (i07th constraint-length), an undisclosed number of
channel errors cause 5 decoding errors, under TX f/b, but 21
under DE f/b, although both modes produced 1 error during
the previous time-unit. Although, (and obviously due to
channél conditions) under TX f/b, 5 decoding errors occur
during the next time-unit, (incorrect) decoder f/b adds

another 19 decoding errors. During the next 4 time=-units,

¥ see p. 157,
See also Fig. A8.11.1 (p. 578).

Section 8.6 Page 256

RCE D ARCA>

RCE > -R<O>

RCEDARCDD

814 j

&2
b1

X . B

s

X!

2
)

Tie-umit {1 biock)

L}
MW A R

h= =

=
-
r

.

a

L]
(I |

Tuwe-urat (1 block)

8.3
8.5
8.2
8.15
8.1
8.8

Tieeumt (1 block)

Figqure 8.18: Normalized autocorrelation function of the decoder-

output error-sequence, with b = 1, for the (12,3)
{top & middle) and the (12,4) (bottom), code.

Section 8.6 Page 257

the channel ’calms down'’ and TX f/b produces 1,0,1 & 0 er-
rors, but DE f/b produces 20,12,8 & 3 errors, respectively.
At this channel-error rate (I' = 5.9 dB), a few decoder fail-
ures (1-5 per constraint-length) generate many times more
decoding errors, which need a considerable amount of time

{3-8 constraint-lengths) to clear-off the decoder.

Another way to study the error-propagation effect is via
the autocorrelation function, R{(t), of the decoder-output
error-sequence. If D{(i) denotes the number of decoding er-
rors in the ith b-block part of the sequence, then R{t) =
E[D(i)D(i+t)]. If there is no correlation between D{(i) &
D(i+t), then R{t) = E[D(i))® = E[D]?,** where E[D] is the
expected number of decoding errors per b blocks. It is ex-
pected that R(x) —> E[D]?®, as T —> +®, On the other hand,
R(0) = E[D*]. Frequently, it is suitable to study the nor-
malized wversion of R(t), Rn(T) = R(t)/E[D?], and since
Rn(O) = 1, the =0 value is omitted. Rn(t) is expected to
decrease as T increases, until it reaches a minimum of
E[D]*/E[D?®], for some value of v corresponding to, roughly,
one constraint-length. Rn(t) is expected to be steeper at
lower channel error-rates, reaching thus its minimum value

faster than at higher channel error-rates,

Fig. 8.18 (top) shows Rn(r) /t=1-39, for the (12,3) code,
for two channel error-sequences at QE=0.6. Note that both
sequences produce a similar ’picture’, even though at such a
low QE the number of decoding errors is low. As expected,
Rn(t) decreases towards a minimum (of about 0.005), which is
reached for ¥ = 13. There is no correlation among decoding
errors that occur more than one constraint-length apart
{b=1). This is the case at higher QEs, as well [see Fig.
8.18 (middle)]; note that as QE increases, Rn(t) stabilizes
at higher values, as expected [see Fig. A8.11.2 (p. 579)].

Fig. 8.18 (bottom) shows that the correlation length for
the (12,4) code at QE=0.5 is = 8, while at QE=1.0 it is =
17. The two characteristics crossover because they have been

normalized to different quantities.

It can be instructive to consider the autocovariance

* Both sequences were obtained using the same channel-noise samples.
% D is assumed to be a stationary random process.

Section 8.6 Page 258

8.8

; AR
.94 .oy
" RENREN - &
E 8.33 :- Y . .- E;
! oam T T E
N 0 el >
g e S s a. - L
Y e el
3 TR ..
1 ST EEisgeyy
e [ey L R PP Pyt oo BT LA EL ST
] 5 18 15 2 pal B 5 4
Tiee-umt (f blxck)
8.15
£ a3 ‘
5 8.1 - 0=t
c — =2
‘ @.89 . ~ E.g
¢ 8.8 -- (£
] S
Poasd .. ol
g a.% T Y . .
T Yol i ')
é 3‘81 :.-:-"-:""’“ ':::==""“Iﬂl‘"-"AAAAAA""
-2.81 . . , ‘ : . . — ,
] h] 16 15 . yal » k5] 49
Timeurat (1 blocks
8'82 - P
S g
Lowsd T . el
¥ K . - ¥
» B0t ’ R
0 . . .,
' / ot
o e
. 1 S TTeemeea . Aaped .,
0 41 e—_ —_— . et ez -

] 3 18 15 A Yol B B 4
Tise=umt €1 block)
Figure 8.19: For the (28,4) code, with b=1, Cn('c) vs t with DE

f/b (top), C,_,(t) vs t with TX f/b (middle) & Cn(t)'-
C.r(t) vs T (bottonm).

Section 8.6 ' Page 259

function, C(t) & R{t)-E[D]}?, or Cn(t) & C(t)/C(0) [note that
cC(0) = R(0)-E[D]® = E[D?*]-E[D]* = o;]. This is expected to
be flat and low at low QEs, but impulsive at higher QEs.

Consider, at first, the autocovariance function (fn) of
the (28,4) code with TX f/b [Fig. 8.19 (middle)]. Since C(xt)
= E[D(i)D(i+T)] ~ E[D{i)]IE[D(i+t)] = E[D{i)D(i+t)] - E[D]®,
the more positive the C(t) is, the greater the correlation
between the decoding errors in blocks i & i+t. Although
there is no feedback of the current decoding-errors to the
next ones, the graphs show a correlation which increases
with the channel error-rate. This is not a paradox, but the
result of the random fluctuations of the rate of channel
errors. When the decoder receives many* errors, over a con-
straint-length, these errors affect the decoding of the cur-
rent and the subsequent 27 blocks, because they reside in
the syndrome register. Of course, with every block decoded,
and due to perfect syndrome-resetting (TX f/b), the decoder
is gradually unloaded of them. Hence, C{t) is expected to
decrease ’smoothly', as t increases, and become = 0 for T =%
28, For a given 1T, C(t) is expected to increase with QE.
This reasoning is verified by the results. The graphs for DE
f/b are expected to be similar [see Fig. 8.19 (tcp)l].

A graph of the difference between the DE-f/b C(t) & the
TX-f/b C(t), would be a good measure of the correlation of
decoding errors due to incorrect syndrome-resetting [see
Fig. 8.19 (bottom)]. For QE=1, there is no visible correla~
tion, but for QE = 2 & 3 there is a strong one, especially
for v £ 14 (3 of the decoder’s memory). For QE=5, the corre-
lation, due to error propagation, reaches a sharp maximum
for v = 14, most probably because this is where the ’aver-
age’ decoding-error is fed back (the centre of the decoder’'s
memory). See also Fig. A8.11.3 (top), p. 580.

Fig. 8.20 shows R{t) with DE f/b, normalized to R{t) with
TX f/b. This time, the lower-QE graphs are more ’'swollen’
than the higher-QE ones. This reversal is not due to corre-
lations at low channel error-rates, but due to the average

number of errors. Note that, since

R(t) = C(t) + E[D]® = E{D]z[cu)/s[n]z + 1] then:

* More than the average.

Section 8.6 Page 260

RACE > RECLE >
o

e s m ®ieisie o m WIT B 4 & & e erm o mem o= oe oo o
P

8] 18 15 2 o] 3 k] 4
Tise~umat (1 blackd

Figure 8.20: Autocorrelation fn with DE f/b, normalized to the
TX-f/b autocorrelation fn, for the (28,4) code.

Ry(t)/Ry(t) = (EID,1/E[D,1)?[Cy(x)/EID 12 +1][[c, (x)/EID, 12 +1]

Then, as QE increases, E[DD] & E[DT] become strong,
enocugh to ’cover’ the variations of C{(x) with t, hence the
ratio tends to (E[Dn]/E[DT])z with QE increasing, as has
been verified by the simulation results,

Figs A8.11.3 (middle & top) show the normalized autocor-
relation fn for the (60,6) code, with DE & TX f/b.

Another way to conclude about the effects of error propa-

gation is via graphs of the difference between the net cod-
ing-gains of DE & TX f/b. Figs 8.21 & 8.22% verify earlier
conclusions about the effect of the decoding f/b mechanism.
Notice that at high TI's, there is wvirtually no loss due to \
incorrect syndrome-resetting. While the TX-f/b characteris- ‘
tic decreases almost linearly with I'y the DE-f/b one de-
creases fast, initially (due to the extra errors fed back in
the syndrome register), but then 'flatens out! because the
decoding errors stop increasing the number of errors the
decoder has to cope with, and start cancelling them.

The amount of signal power-loss and the I' at which this
occurs, depend on the code, but it seems to be between 1 & 2
dBs, at T's between 4.5 & 7 dB [see also Fig. A8.11.6 (top)].

Similar information may be obtained from graphs of the %

increase in decoding errors due to DE f/b, relative to TX

¥ See also Figures A8,11.4-5 (pp. 581+2).

Section 8.6 Page 261

1 (28,4) ¢
"R=1/8'
L]
.-"'
X3

3 4] é ?
SR /7 idormationrbit (0B

ro
|

—

+
o

-

Het coding-gmimn <dB>
1
— =

1llll'llllllllllll

AN

4 45 5 59 § %]
SR 7 iforstiontat ()

|
]
A3 _
& (36,6)
I
c
-
|
1]
L8 5 K i
E - T+t
v
%
Z -2 ' ' . . : ‘ . ’ ’
3.5 4 4.5 5 5.5 é R 7 PR
9E 7 irdorsstronefat (D
A CRY ;
3 | : R=10/11]
C
5 8
|
]
LA B K4t
g - T ib
v -2
1
z 3
|
|

Figure 8.21: Net coding-gain vs I', with DE & TX f/b, for the
(28,4) code (top), the {36,6) code (middle) & the
(60,6) code (bottom). * |

¥ p = signal-to-noise power-ratio per information-bit. ‘

Section 8.6 Page 262

Fower—loss <dB> Het codimg—gain <dB>

Power-—l1lossx <dB>»

2
1.9 !;ggijzgf 5
]
X //
¢ ”’;4r”’f | Kt
4.3 -+ b
-1
-1'5 — T T T T T T
3 53 6 63 7 7.5 8

SR 7 inforaation-tat (dB)

B+ (44
4 (B4
{36
(k)|

3 39 4 4.3 3 55 b 65 7
SR / ardormstion-tat (dB)

R=22/23

'R=24f25!
5 é
.0

- (8,8
4 (LY
= &8

(k,J)

9B / idorsstion-hat ()

Figure 8.,22: G vs I', with DE & TX f/b, for the (88,4) code (top);

power-loss vs I due to DE f/b {middle & bottom). *

¥ r : signal-to-noise power-ratio per information-bit.

Section 8.6 Page 283

L B W
T == {420
. = {0
t ¥ (k,J)
:
’ m
*
¢) o
t i R=16/17' - o
® " | | n'=_a/9_i | |

1E-4 1E-3 8.8 8.1
Channel error-rate; Pe ’

Figure 8.23: X% increase in P, due to DE f/b vs P_.
f/b (see Figs 8.23 & A8.11.6). At worst, P, increases be-
tween 150% & 300%. This occurs at channel error-rates be-
tween 1073 & 1072, It is evident that the worst loss in-
creases with J (= 150% for J=3, = 170-200% for J=4 & 5, =
300% for J=7) and also that it occurs at higher channel er-
ror-rates, for shorter codes. Most probably, this is due to
the ratio J/k, the rate at which J errors {due to decocder

failure) are injected into a syndrome register of k blocks.

8.7 Al _ERROR-PR

The probability of decoding error, Pd(see Chapter 6),
depends on the sizes of the set of syndromes checking on
each error-bit. Since this set is special for each bit to be
decoded, then Pdis expected to be different for each one of
them. For type-C5 codes, the ’'sizes’ are the elements of the
corresponding columns of the IA, hence identical for the J
bits of a coset.

Fig. 8.24 (top), shows the number of decoding errors* per
coset, for the (40,5) code, with TX f/b., Notice the close
agreement between the simulation & the theoretical
results**, Figs A8.12.1 (top & bottom) (p. 584) show the

results for QE = 1 & 10.
From reln (6.61) (p. 177) it seems that, for a given er-

* 10,000 blocks were considered, at QE=4.99.
** pquation (6.38b) was used for the theoretical calculations.

Section 8.7

Page 264

1% | eger, .
| ¢ ﬂ'ﬁtﬂ'. '
¢ 13
E 1
L 118 . \ |
¢ g ’ /
o /N
i ‘/ Y

il -0

{ 2 3 - 4 5 é ? 8
§ Coset rusber

Eﬂj | 5T
E 4, - E={e T
s /\ / \ "
c B; .

S -
W 5
) i '
I
X i b
-G‘B_ i T T T v —
| 2 3 4 5 § 7 g
Cocet ruber
{78
:
; 1o
{
{
LIS |-
%
B KBt
t 1420 4 o
a
g 1368
z
§ 2 3 4 5) 7 8
Coset rusher

Fiaure 8.24:

For the (40,5) code: No of decod. errors (QE=5 - TX
f/b - top); % deviation from the average (TX f/b -
mid.}; No of decod. errors (DE f/b - QE=10 - bot.).

Section 8.7 Page 265

dewviatiorn of Fd

22

Coset number

deviatiorn of FPd
L.

=z

{oset number

8 B ¥
- . * ¥ OR0l, B3N

deviation of FPd

o

i 2 3 4 5 é ? g
Coset nusber
Figure 8.25: % deviation of the coset-distribution from the

average, for the (40,5) code: DE f/b (top); QE=5
(middle); QE=5 & DE f/b (bottom).

Section 8.7 Page 266

ror bit, P, increases with C the Tnth generalized mean of

Tn’®
the syndrome sizes of the corresponding coset, where T, is
the nominal threshold (lJ/21). To simplify this, and since
the generalized means are very close to each other, the geo-
metric mean C, is considered. Fig. 8.24 (middle)} shows the %
deviation from the average, of the Pdof each coset, with TX
f/b, at QE = 5 & 10, Also plotted is the geometric mean of
the syndrome sizes. Notice that the latter follows very
reliably the coset Pd—distribution. Note also that the %
deviation, for the two different channel error-rates, is
virtually the same.

Consider now the number of decoding errors, per coset,
with DE f/b, from two different sequence of noise samples*
[Fig, 8.24 {(bottem)]. The consistency indicates that the
rerformance of each coset is not the result of statistical
fluctuations.

Fig. 8.25 {(top}) indicates that with DE f/b, the various
cosets have approximately the same behaviour, at various
channel error-rates. Fig. 8.25 {(middle) shows that the syn-
drome f/b mechanism moderates the non-uniformity of the co-
set Pd—distribution. Nevertheless, the geometric mean still
indicates the cosets that can offer better error-protection
[Fig. 8.25 {(bottom)]. See also Fig. A8.12.2 (top).

For comparison, the number of decoding errors per coset,
under definite decoding, has been plotted in Fig. A8.12.2
{bottom). As expected, the distribution is *'flat’,

8.8 CONCLUSIONS

A great number of the codes discovered by McQuilton [42]
were tested over a computer-simulated BSC. The FORTRAN pro-
grammes used, required a minimal! input for each run, which
could, reliably, produce a number of points for the G = f(I)
graph**, of any type-C5 code. Approximately twenty versions
of the main programme were used to generate a variety of
performance results. The input data required, consisted of
the code parameters k & J, the minimum nuﬁber of blocks

10,

* 10,000 blocks each, at QF =
¥ = signal-to-noise power-ratio per information-bit.

¥ G = net coding-gain; T

Section 8.8 Page 267

(NDMB) to be decoded, the minimum number of channel errors
for each point* and the channel error-rates the code was to
be tested on. The basic returns from the programme were the
number of channel & decoding errors. These were processed to
g0 Per T EER, etc. Variations of

the main programme could implement feedback & definite de-

produce results like G, P

coding, as well as ’genie’ decoding. Other programmes could
produce results for each coset, calculate autocorrelation
functions, etc.

Because the type-C5 codes have a large constraint-length
[k{k+J)], attempts to simulate k2160-codes hit the
computer-memory limit [the decoder memory is k*+J+kd, to
which the encoding & syndrome arrays have to be added]. In
order to test long codes, a special decoder~implementation
was used which stored b bits of data in one word (b is the
computer’s word-length). The problem to be solved was not an
easy one, because the decoder memory, IRA, of general dimen-
sions k X k, had to be composed of a minimal number of sub-
arrays of dimensions 1 x b, and horizontal & vertical cy-
clic~-shifts of the contents of IRA to be possible, as well
as writing in, and reading of, selected bit-positions. This
decoder allowed the simulation of codes with a k longer by a
factor of » {b and decreased the processing time by a factor
of 2 to 3 (because the bit operations are faster).

For the general decoder to operate, the encoding & syn-
drome arrays have to be supplied, given k & J. This required
the support of a number-theoretic library of subroutines
[including prime decomposition, primitive roots & the calcu-
lation of elements of order J mod (k+l)]. These subroutines
had to operate safely** over the entire range of the comput-
er’s positive integers. Furthermore, the presentation of the
various results required the support of another library of
subroutines which could, calculate the net coding-gain, in-
vert eqn P = 2erfc(4T'), calculate theoretical results (for
comparison), etc.

If the simulation results were to be useful & reliable,
the quality of the programmes & the confidence on their in-
tegrity should be unlimited. To this end, all routines were
tested under extreme conditions and optimized (both for

* NDMB was increased, if necessary.
¥%¥ without overflow.

Section 8.8 Page 268

processing-time & memory-requirement). The main programmes
were built in stages, each of which was exhaustively tested;
whenever possible, tasks were diverted to subroutines. Sim-
Ple programmes were built first, and tested manually for
accuracy; they were subsequently used as the measure of the
integrity of a more sophisticated programme. Extra features
were added only when the older & the new versions, produced
identical results.,

All data to be generated by the programmes, stemmed from
the observed numbers of channel & decoder errors. The confi-
dence on these data depends on their number. The G=f(T)
graph suffers from an uncertainty on both I' & G. The uncer-
tainty on G originates from both Pe& Pd. With 4 errors, the
relative width of the 99% confidence-interval is = 2.58/Jd,
for a large-enough sample-size (which was the case), Care
was taken to generate at least 300-400 channel errors, so
that the uncertaiﬂty on Pe(& T') to be insignificant. For
the 'difficult’ case of high T, P, is 1-2 orders of magni-
tude less than Pe, while the computer processing-time limi-
tations did not permit runs of more than 107 bits. Inevita-

bly, the high-T results suffer from uncertainty, on P,.

From the graphs produced it was concluded that the G=f(TI)
relation would have been an almost linear one, had it not
been for the effect of incorrect syndrome-resetting, due to
decoding errors. As I' decreases, this mechanism initially
accelerates the power loss, but it subsequently puts a brake
on it and eventually stops it, because of the overwhelming
(and accidental) error-cancellation in the syndrome regis-
ter*. The worst power-loss is of the order of 1-2 dB, which
occurs at I's between 5-7 dB (depending on the code). The
corresponding increase in decoding errors increases with J
and is of the order of 150-300% (for the codes tested). The
worst error-propagation occurs at a channel error-rate, P.»
which is lower for longer codes; in general, this P, seems
to decrease with J/k, the rate at which the decoder output
adds errors to the syndrome register.

The slope of the G=f(I’) characteristic increases with J.

A large J, is the main contributor to a high asymptotic net

* pue to the feedback of erroneous decoding~-decisions.

Section 8.8 Page 269

coding-gain, while at low I's it floods the syndrome register
with many errors, hence it contributes to a lower G. The
importance of J is such that {(at moderate to high TIs), if
increased by 1, G may increase by 0.5-1 dB,.

The effect of an increase in k is the weakening of the
code relative error-correcting capsbility [|J/2] errors in
k{k+J) bits], but also a better noise-averaging capability.
Hence, for a given k high-J codes are useful over a wider
range of Ts, while for a given J long codes are useful at
higher Ts.

The best Gs (2-3 dB) were returned from high-J (27)
codes, at T > 6§ dB.

The correlation among decoding errors is partly due to
the random channel-fluctuations which are stored in the de-
coder memory; nevertheless, at moderate-to-low TI's correla-
tions are mainly due to error propagation. In such a case, a
decoder failure at time T, greatly affects the decoding at
times t+l, T+2,..., T+3k; on occasion the (t+}k)th block is
affected more than the rest. From the results displayed, it
seems that the autocovariance function of the decoder output
error sequence (with 1-3 blocks per time-unit) is the best
indicator of correlations; the error propagation can be
studied by the autocovariance difference between the DE-f/b
& the TX~f/b modes,

The codes offer unequal error-protection to each coset. A
reliable indicator of the protection per coset is the geo-
metric mean of the associated syndrome sizes. Deviations
from the average P,, were up to #20%, for the (40,5) code.
Incorrect decoder-feedback tends to neutralize these devia-
tions, but this is expected to occur at moderate-to-low TIs.

Some of the codes were tested, under FD and with a syn-
drome threshold, T, different than Tn, the nominal one (ﬂ13
N/21). As predicted in Chapter 6 (see § 6.3.4., p. 175),
performance was improved with an increase of T; by 1, when
the channel error-rate exceeded 1/(Cm)2 * When, with the
nominal threshold, G fell to 0 dB, the use of a Tn+1 thresh-
old increased G up to 1 dB. Furthermore, the use of the op-
timum threshold increased the range of I's over which the
code is useful and kept G above 10logR dB.

* (:Il is the pth generalized mean of the syndrome sizes.

Afire COr PITIEE C N frairaere o o o A vy

--

T Fopedderds gesmr prparrrfinaniy 1T ST (e Sfes Sd rpnngs ap e p o weepgy pppddes copessorey prpge 04

Codes & decoding techniques are tested over a binary-in,
binary-cut, channel model with, or without, memory. The Bsc*
is the mest suitable one because of its simplicity & wide-
spread use; it is also argued that it is (usually) more
'demanding’ than a bursty channel, so that any performance
data obtained over the latter are expected to paint a more
optimistic picture. A BSC can be realized with a binary PSK
modulator with hard-decision coherent demodulation and
transmission over the additive white Gaussian-noise channel.
IJf E is the energy per information bit at the demodulator
input and #/2 is the double-sided noise power spectral-den-
sity, then the probability of a bit in error at the demodu-
lator output is P, = terfe[{{RT')], where T = E/fi. The per-
formance of a coding scheme is usually assessed via the de-
coding-error probability (Pd) vs P, relation, or via the P,
vs T one; an uncoded system operating at an increased sig-
nal-to-noise power ratio, I'y is used for reference. The ex~-
tra signal-power, G, required by the uncoded system so that
it matches the error performance of the coded one, is called
the net coding-gain of the coded system; the G=§f(I') relation

is one of the best measures of its performance.

The current channel block of an {(n,k,m) convolutional
code (CC) depends on the current and the past m information
blocks.** The minimal encoder for a linear (n,k,m) CC is,
usually, the normal encoder, a k-in, n-out, linear-sequen-
tial circuit (LSC) made of k shift registers (SRs) of
lengths between 0 & m and up to n X~OR gates. The code is
completely described by the kn transfer functions of the

encoder, called the generator polynomials. If the high-

¥ PBinary symmetric channel - a memoryless channel.
X% A block code is a CC with m=0.

Conclusions & Further Work Page 271

degree polynomials correspond to one or two of the encoder’s
outputs, the type~-II encoder may be the minimal one.

Although the CC generates a single codeword, a relation-
ship {developed by the author) is possible, between channel
blocks h to h+z, and information blocks h-m to h+z, via a
finite-dimensioned ‘’generator’ matrix [G]: {where h2m and
z20). It was then proved that the CC generator matrix, G,
may be defined as the limit of [G]:, as z —> +o,

CCs may be described either via the matrix approach, or
via the polynomial approach. The former, groups the bits of
a block into a vector and results in infinite-dimensioned
matrices. The latter, groups the bits of a port into a poly-
nomial, making use of the concept of transfer functions and
of finite-dimensioned matrices.

The parity-check matrix, H, was proved (by the author) to
be equal to the limit of [H]z, as z tends to +®, where
[G]:[H]: = 0 /220. H is used to define the syndrome, 8 = rH',
For an additive channel, s = eH', which means that the syn-
dromes are linear combinations of the current and the past m

error blocks.

The CC maximum-~likelihood decoding technique is based on
the encoder’s trellis-diagram, which is its state-transition
diagram expanded in time. This technique suffers from proc-
essing-time limitations, arising from the complexity of the
trellis. The decoder, for each received block, and for each
of the states of the trellis, has to calculate 2% metrics,
choose the best and store it, together with the sequence of
information bits leading to this state, at that time-unit.
Since, for an encoder of total memory M, there are 2%
states, hardware limitations do not permit the employment of
long codes (2"2* calculations per block time-unit & storing
of 2" information sequences). A quantitative relation be-
tween trellis-complexity and code~parameters, may assist in

the design/choice of more suitable codes.

The memory of a normal encoder (and of any similar LSC)

may be partitioned into three groups: The FEG (which will
store the next I/P block), the REG {(which looses its con-
tents with each transition) and the CEG (the rest). This

Conclusions & Further Work Page 272

approach helped to develop relations between trellis-
complexity and code-parameters. For instance, if § denotes
the number eof rows of G(D)* with 1s & 0s only, the number of
transitions into (or out of) a state is 2¥f, while each
transition corresponds to 2f different input-blocks. There
are 2¥1 self-loops, whose existence-conditions are given by
Theorem 3.5 (p. 63).

In an effort to use longer codes and trellis decoding,
the idea of a constrained trellis*® arises. This is obtained
from the ordinary one, by imposing a limit, t, on the sum of
the Hamming weights of the current state & input.

Using the memory partition of a normal LSC and the encod-
er parameters, Theorem 4.21 (p. 107) provides expressions
about the number of states of a given weight, the number of
transitions from a given state to a state of a given weight,
etc, as well as existence conditions.,

The simplified trellis is obtained, from the constrained
one, by removing all states with a single transition, intro-
ducing thus long transitions. Theorems 4.26 & 4.27 used a
refinement of the memory-partition technique, mentioned
above, to produce expressions about the number of states of
a given weight w, from which a transition of a given length
B may start, as well as the number of these transitions.
These results are expressed in terms of k, M, t, 8, w & the
memory-distribution function F, where F(i) is the number of
encoder SRs of length £ i.

For the special case of t=1, the simplified trelliis has
only one state, Sy and transitions of length 1, 1+M1,
14M, 000y 1+M,, where M, is the length of the ith SR (1=i<k).

Similar results were obtained for the special cases of
t=2, LSC with equal-length SRz & a 1-SR LSC {see Sec. 4.7).

A decoding technique, based on the constrained trellis,
has been proposed by Reed & Truong [24]. The encoder trellis
cannot be constrained because all possible channel-se-
gquences, VvV, are equally probable. This is not the case with
e, though, whose frequency of appearance decreases exponen-
tially with its Hamming weight. The syndrome eqn was solved,
e = [z,2P+8] and 2z (the error on the message bits) had to be

¥ The k x n watrix of polynomial generators.
¥%¥ The idea is due to Reed & Truong [24].

Conclusions & Further Work Page 273

chosen so that e was minimized. To this end, the trellis
corresponding to P was constrained and driven by s, using
the Viterbi algorithm. The simplified trellis® has a reduced
complexity and hence the potential to simplify decoding.

Majority-logic is a, syndrome-decoding, technigque ap-
plicable to systematic CCs with a special structure. Accord-
ing te the decoding rule, if J syndromes are orthogonal on
an error bit, then this is estimated to be 1, only if more
than T = [J/2]1 syndromes are 1. If all syndromes checking on
an error bit are orthogonal on it, the code is self-orthogo-
nal, and then J = d_ -1. B

It was proved by Massey [18] that T = [J/27 guarantees
correct decoding, provided that no more than [|J/2] errors

** error bits checked by the J syn-

have occured among the n,
dromes., It has been argued by the author (see Chapter 6),
that as Peincreases, the requirement of no more than
l¢/2] errors becomes hard to satisfy. If the probability of

decoding error, P is used as the performance criterion,

d,
then the value of T that minimizes Pys increases with P
from a minimum of [J/21 to a maximum of J. For syndromes of
size ¢ (ugggl;xjitﬁgipase of DD), it was proved that T, =
L%J+%ln[Pe/(1—Pe)]/1n[P/(1—P)]J& is the optimum threshold,
where P = é[l-(1;2§eﬁﬁ:—1t was proved, also, that T =
ry/721, for P, < 1/c2.

The case of J syndromes of various sizes, Cyr results in
‘cumbersome’ expressions with multiple summations of
products of probabilities. It was argued, though, that there
must be an ’average’' syndrome-size, which could play the
role of c¢. To this end, the concept of the puth generalized
mean, X“, of the quantities Xys Xp9eee9X, Was defined (by the
author), as the pth root of the arithmetic mean of all the
distinct products of x;s, taken p at a time [C(J,n) such
products]. It was proved that X, is the arithmetic mean & X,
the geometric mean. It was also found that X >X,>+++>X,, If
All is the pth generalized mean of K, - P1/(1"P1)’ where P, =
i{l-(l-ZPerﬂl {i=1,2,..+.44), then the analysis resulted in
T, = Lln[Pe/(1-Pe)+JlnAJ_To]/1n(AJ_T°AT°)J, an eqn that can be
solved fast, by trial and error, if the bounds and approxi-
mations on T are used (see § 6.3.3., p. 171). The bounds

¥ Pproposed by the author.
*¥ pfrective constraint-length.

Conclusions & Further Work Page 274

obtained (upper & ;gygr)_@if{g? by 0; 1 or 2 (in all cases
considered). T = IL%J+%1H[Pg7(1-Péf]/lnAnJ,i is expected to
be accurate for most cases of practical interest (r, =
J/21). It was shown that T, becomes T +1, at P, = 1/(CTn)z,
where C“is the uth generalized mean of the syndrome sizes

(hence it represents the average syndrome-size).

McQuilton [42] discovered a class of cyclically-decodable
convolutional self-orthogonal codes (CCSOCs). A study of his
approach concluded that his results were the partial solu-
tion to the problem of, constructing self-orthogonal (S0)
CCs under three ’arbitrary’ constraints. It was thereafter
concluded that an alternative approach to the problem, of
systematically constructing (n,k,m) systematic SO CCs, may
be via an (n-k) X (m+l) array of cells of integers in the
range [1,k] [called the initial array (IA)]. The jith cell
gives the numbers of the error-bits, from (thhhl, checked
by s;”. Necessary and sufficient conditions can then be de-
veloped on these numbers, so that the code is S0. Restric-
tions are imposed, if a practical solution seems unfeasible.
To this end, the population of each cell was restricted to
one* and necessary & sufficient conditions on the elements
of the IA were developed (Theorem 7.5). Subsequently, con-
gruence a, , & ja,“1 {mod k+1)* was used to reduce the procblem
to that of determining n-k integers (ai'1 /i=1,2,...yn=k) so
that the code is SO (type-B codes).

The insistence on discovering the necessary & sufficient
conditions, for a systematic CC to be SO, may make the prob-
lem more difficult, but it has the potential to discover all
such classes of codes. For this reason, the introduction of
the restrictions was delayed as much as possible, so that
general results can be developed. Some new classes of sys-
tematic SO CCs were discovered.

Type-Bl are (2k,k,Jd-1) codes (k=even & J<p). Type-B2
are (p®*-1+J(p+l1),p?*-1,p~2) codes (p=odd prime & J<p).**

X%k

Type-B3 are {pa-1+J(q+2),pq-1,p-2) codes (p,q are odd primes
with p<q<2p and J<q/2).** Type-B5 are (k+J,k,k-1) codes
(k=even & J<p).** Type-B4 are (k+2,k,k-1) codes with 2 syn-

dromes checking on each error bit (k=odd). Some other type-B

* one of the three properties of the CCSOCs.
L) syndromes check on each error bit - p is the ssallest primse factor of k+l.

Conc¢lusions & Further Work Page 275

SO codes were discovered via a simple computer-search.

Type-C codes were defined to be any type-B codes whose
error bits are cyclically decodable*. Necessary conditions
for the existence of type-C codes restricted the freedom of
choice on both the code parameters and the IA elements. Only
type-Bl (with k+l=prime} & type-B5 [with J a divisor of
6{k+1l), where 0(k+l) is a number-theoretic function intro-
duced by the author] can be of type~-C. Type-B4 codes can
also be decoded in some cyclic manner. Finally, the IA has
to be mapped into another array sc¢ that bits are decoded in
their ’'natural’ order. More than one ways can be proposed,
the final choice being dependent on the particular decoder-
implementation adopted. Type-C5 codes can be decoded with
k/J majority gates, while type-B4 with Jjust one (other im-
plementations are possible). The CCSOCs discovered by
McQuilton, are the type-C5 & the type-B4 codes.

It was proved that the only necessary & sufficient condi-
tion for the existence of type-CH codes is the existence of
an element B (= alJ), which has order J modulo any non-
trivial divisor of k+l. A formula for the calculation of §
has been obtained. The IA of type-C codes has a rich mathe-
matical structure which is less ’predictable’ if J=odd. It
was proved that for J=odd codes the 1st column of the IA is
made of quadratic residues modulo any prime factor, p, of
k+l, while the quadratic character of the elements of the
zth column is (zlp). For J=even, the effective constraint-
length is n!=1+(k+1)J/2. For J=odd though, it was proved
that (ns-l)/(k+1) € [{(J+1)/2,J-1], hence the J=even codes
are at least as good as the J=odd codes. For the special
case of rate-2/3 codes, with k+l=zprime, n,-1 equals the sum
of quadratic non-residues {(mod p)**. It is anticipated that

nldoes not have a closed-form expression, for J=odd.

A large number of type-C5 codes were tested over a com-
puter-simulated BSC. The best net coding-gains (2-3 dB) were
returned by high-J (27) codes, while the worst error-
extension ratio did not exceed 2.5. The slope of the G=f(TI)
characteristic increases with J (because of an increased
asymptotic G), while an increase in k displaces the charac-
teristic towards higher wvalues of T {due to the weakening

¥ One of the three properties of the CCSOCs.
% A closed-form expression for this sum, remains an unsolved mathematical problem,

Conclusions & Further Work Page 276

relative error-correcting capability, LJ/21/[k(k+J)}).

Incorrect syndrome-resetting resulted in a worst power-
loss of 1-2 dB (at I's between 5-7 dB). The G=f(I') character-
istic would have been an almost linear one, without error
propagation. This effect accelerates the power loss at high
I's, but does the opposite for moderate values of I and even-
tually stops it. Interesting results about error propagation
can be obtained from the autocovariance function, C{t), of
the decoder~output error-sequence ({(the number of decoding
errors per b blocks) with a small wvalue of b (1-3). The
C(t)-difference between (normal) feedback (f/b) decoding and
decoding with perfect f£f/b (’genie’ decoding) seems to be a
very sensitive indicator of the 'character’® of this effect,
at various channel error-rates.

The codes offer unequal error-protection per coset. A
reliable indicator of the error-performance of each coset is
the geometric mean of the syndrome-sizes associated with it.
Error propagation, though, tends to neutralize this effect.

The use of the optimum threshold improved the code per-
formance by 0.5-1 dBs, when G fell to 0 dB with the nominal
threshold. It also extended the range of I's over which the
code is useful (G>0). As predicted, the nominal thresheold
had to increase by 1, when P_ exceeded 1/(Chﬂz.

The decision to design and build =imulation programmes
for the general type-C5 code was a correct one, both because
it saved time, but also because it prevented any uncertainty
about the correctness of the simulation results. The use of
one computer word to store b bits of data, not only reduced
{by a factor of b) the total storage required, but also im-
proved the processing time by a factor of 2-3, The main
problem there was the design of support routines which could
efficiently permit the synthesis of a k X k array (the main
decoder-memory), using a minimum number of small 1 X b sub-
arrays; this had to be done in such a way that cyclic shifts
(vertical or horizontal) and writing in, or reading from,
selected bit-positions was possible. The software implemen-
tation of the decoder required the use of a number-theoretic

library, whose most powerful routine was the one which could

Conclusions & Further Work Page 277

(efficiently) calculate a® (mod m), without overflow, howev-
er large a, b & m may be. Finally, it is worth mentioning
that type-C5 codes constitute a very large family; to facil-
itate a search, subroutines were developed which return the
type-C5 code best matching the code parameters k & J, in a
specified priority (k, J or R).

Further work is required on the results of Chapters 4, 6
& 7. The decoding algorithm, using a simplified trellis,
must be improved & generalized*. The algebra linking the
trellis complexity with the code parameters, must be used in
an effort to select, and attempt to design, codes which are
more suitable for trellis decoding. Simulation results are
required in order to determine the performance degradation
of various codes, as a function of the weight-constraint, t,
of the trellis. Also, the ’complexity-gain’ of the con-
strained trelis can be determined by simulating codes of
different capabilities, but adjusting t so that they end-up
with the same decoding complexity.

Simulation results for other classes of codes, using the
optimum threshold, would be very useful in an effort to de-
termine gain-returns against code-parameters (length, rate,
J, etc), It is expected that large-J codes may have to in-
crease their threshold by 1, more than” once, as I' deterio-
rates. In addition, a threshold-adjusting mechanism is re-
quired for channels with memory (for instance, the number of[
estimated-errors per constraint-length); simulation-results
could prove the optimum threshold to be a more valuable
propesition for bursty channels. A problem-area, though, is
the synchronization between threshold adjustments and chan-
nel ’relapses’. It is possible that the code parameters,
especially its length, are critical in this respect.

New code designs can be pursued from the general results
of Chapter 7. For example, the consideration of an IA with
two numbers per cell and a cyclic-decodability property, or
the computer-aided 'shortening’ of type-C5 codes, could pro-
duce some useful results. The performance of the new codes

discovered (type-Bl1-5) should, also, be assessed.

¥ Beyond t:1 - see Note 4.8 & Example 4.4 (pp. 123-6).

