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ABSTRACr 

The object of this work (featuring the study of alignment of lines in 

space) is to produce a novel system for automatic production of 

optoelectronic components. It begins by reviewing the different 

components associated with optical fibre transmission and examines 
the existing laser-fibre coupling methods. The manual alignment 
technique adopted by STC to align a laser beam with a monomode 

optical fibre is then presented. 

The various interpretations of alignment are explored. The results 

obtained from the analysis determine the type of manipulator required 

for laser to optical fibre coupling. The central axis of a divergent 

beam emitted by a semi-conductor laser diode is manipulated for 

alignment with the axis of the fibre. Such an alignment places 

stringent displacement tolerance and accuracy demands on the 

manipulator. 

To construct a manipulator, actuators need to be coupled together. 

The coWling methods are studied and presented. Prior to this study, 

commercially available actuators are surveyed leading to the 

selecticin of the Oriel Encoder Mike actuator. This actuator exhibits 

some inherent control problems but meets the laser-fibre coupling 

accuracy demands. Various types of couplings are also examined based 

on the expansion of the Kelvin coupling for the construction of a 
four degree of freedom manipulator. A computational algorithm 

analogous to that used to solve two plane balancing problems is 

sucessfully tested on this manipulator for alignment of a 

conventional He-Ne laser beam with the centres of two transparent 

screens. This algorithm requires linearity for its success. For this 

reason and for purposes of completeness, spatial displacement 

characteristics of the manipulator are analysed and confirmed 

experimentally. 

This work ends with the ocnstruction. and testing of a program based 

on a hill climbing technique for the control of a three degree of 
freedom (Oriel Encoder Mike) manipulator to align a laser beam 

emitted by a semi-cmductor laser diode with a mcrxxnode optical fibre. 
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CHAPTER 1 

INTRODUMON 

Optical fibres have been increasingly used in communication systems 
because of their inherently high bandwidih and low attenuation, 
immunity from electromagnetic es and freedom from noise and 
pick up In the U. K, optical fibre communication has been restricted 
to txunk networks because its high costs (compared to copper cables) 

makes it ly viable only when the data traffic density is 

high (Wilkinson [11). In 1984, a company called Mercury planned a 440 

mile figure-of-eight network round the U. K linking London, 

Birmingham, Manchester, Leeds, Liverpool and Bristol [4]. The 

ccnstnmtcn of this 1300 nm single-mode fibre (described in Chapter 

2) communication system network transmitting data at the rate of 1400 

Mbits/s commenced in 1985 and has now been completed (Ball et al [2], 

[1]). British Telecom expects 50% of its U. K trunk transmission 

network to be optical fibre by 1988 [1]. 

In Japan, as of beginning of 1985, optical fibre cables totalling 

7000 km have been installed for commercial communicaticn(Kimura [31). 

This system is based on a 1300 run carrier and achieves data rate 
transfer of up to several Gbits/s with repeater (described in Chaper 

2) spacing exceeding 100 km [3]). No information on the exact data 

rate transfer is given. 

uSA is known[l, 4] to be the world leader in fibre optics technology, 

production and applications. However, it has not been possible to 

obtain the total length of optic fibre so far laid or the greatest 
bandwidth achieved. 

The major components of optical fibre communication are the laser 

diode, optical fibre and the laser detector. The light signal emitted 
by the laser diode is launched into the fibre and propagates through 

it by means of total internal reflection. TI-)e signal is then detected 

at the far end of the fibre. An optical fibre is a dielectric 

waveguide that consists of the inner core with higti refractive index 

and the outer layer (with lower refractive index) called the 

cladding. Depending on the size of the core diameters, fibres are 

classified as single- or multi-modes. The aligrunent of semiconductor 
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laser diodg with a single mode fibre is, however, nxxm difficult to 

perform than with the latter because multimode fibre core diameters 

are much larger than single mode fibre core diametAw& 

lasers are suitable for cptical communication because 
they produce coherent laser radiation. This means that the output 
radiation is highly nxxx)d=matic and the laser light beam is very 
directional (Keiser [5]). Laser action is the result of three 

processes namely photon absorption, spontaneous emission and 
stimulated emission. Absorption takes place wben an electrcn normally 

at ground state absorbs an impinging photon and gets excited to a 
higher energy level. Since this electron is unstable at this state, 
it will either drop down to the ground state by itself or be induced 

by an external stimulation (incident photon). A photon of energy is 

released in both cases and if it corresponds to the former, the 

emission is spontaneous which is of random phase appearing as a 

gaussian output (laser output power versus wavelength) otherwise 

stimulated [5]. The latter is in phase with the incident photon 

producing a coherent radiation. This laser emission can be modulated 
for both analog and digital data transmission [5]. 

Laser-fibre coupling presents a major problem in optical fibre 

communication. Several approaches to the problem of laser-fibre 

coupling featuring different techniques have been reported together 

with their accompanying efficiencies. Sunak and Zampronio [6] report 
laser/fibre transfer efficiencies of 10% to 18% for plane ended 

multimode fibres (butt-joints), Saruwatari and Nawata [7] report 25% 

efficiency using plane ended single mode fibres. The latter is 

relatively more efficient because single mode fibres are several 
times smaller in size. The. same authors used a selfoo lens (defined 

in Chapter 2) configuration and achieved 22% efficiency. Timmerman 
[8] on the other hand achieved 80% efficiency when he incorporated 

hemispherical or tapered hemispherical or cylindrical lenses. Lastly, 
by incorporating a cylindrical lens together with a rotationally 

symmetric lens, Ashton et al [9] report efficiency of 50%. No 

efficiency figures were quoted for use of single cylindrical lens 

configurations described by others to enhance laser-fibre coupling 

STC is a U. K based company employing 47,000 people [10]. In 1966, STC 

laboratory was the first to come up with a proposal that glass fibres 
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can be used to transmit laser signals (Baocn [111). Although there is 

an 4ndicaticn of its involvement with lasers since 1970 
[2], it is not clear when STC actually started manufacturing them. 
Recently, STC set up a project to produce a novel system for 

aubcxnatic alignment of cptmlectrcnic CO[Ltpcnmts. 

The problem of laser-fibre alignment clearly irr4olves ttj9 concept of 
aligrunent of two lines in space. This is because the central axis of 
the laser beam can be regarded as one straight line in space while 
the axis of the fibre is the other. A straight line can be defined as 
an infinitely continuous line for which the distance between any two 

selected points along it is least. The concept of general line 

zeipmesentaticn, in space, line transformations and the mathematical 
description of a straight line as an essential prerequisite to the 

derivation of this transformation are summarised by Rooney [121. This 
highlights the fact that a line has four degrees of freedom of 
location and orientation compared to three for a point. Thus, the 

alignment of lines in space is a four degree of freedom problem. 
Another type of ling is the line segment. It is defined as that part 
of an infinite straight line which is bound by (or terminates at) two 

points. Alignment of line segments requires one more degree of 
freedom compared to that of infinitely continuous straight lines 
because line segments have finite lengths. Alignment of lines can 

alternatively be called superposition of lines. Alignment can be 

extended to cover superposition of spatial congruent figures but this 
is irrelevant to this work. 

A mathematical description of the misalignment of lines is the first 

step towards solving the problem of their aligrunent. Bottema [13] 

studied the screw displacements needed to displace rigid bodies in 

space, superpose misaligned line segments and lines respectively (see 

Appendix A) and concluded that: 

(i) the screw required to move a body from one position to another in 

space is unique provided that the rotation angle, the translation 
distance and the screw axis are fully detennined. 

(ii). there are altogether ool screw displacements transformiryj a row 

of points on one line segment into a congruent row on the other. 
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(iii) there are 002 ccxnplete screw displacements required to align 
two skew lines. 

A literature search on alignment conducted in the course of this 

researth revealed no reported work by others on alignment by meth od 

of kinematics apart from Bottemals. Alignment however, features 

quite prominently in other areas like machinery alignment, circuit 

alignment and so on. 

Inorder to obtain an automatic method for optical fibre/laser 

alignment using the concepts of spatial line alignment, it is 

necessary to use some mechanical device to position and orientate the 

objects relative to each other. A manipulator is the most appropriate 
device because its function is to reach a set of desired points in 

space with the end effector in prescribed orientations. That is, from 

the view point of kinematics, a manipulator is essentially a 

positioning device. 

-6 Cýý 
manipulators may be classified into two major categories accordingk 
their basic design. These are the serial and parallel manipulators. A 

seriai'manipulator has actuators comiected in series along a more or 
I P-ý 

less throýýc arm, each actuator being at or associated with a r\ 
single degree of freedom joint. This type of manipulator accumulates 

exrors from shoulder out to end-ef fector. Such manipulators suffer 
from lack of rigidity and are subject to load dependent errors. A 

parallel manipulator on the other hand, has actuators connected in 

parallel and again each actuator has one degree of freedom. Even if 

each &-, tuator on its own has more than one degree of freedom, this is 

aw reduced to one in the overal manipulator ccnfiguraticrL This l 
type of actuation is characterised by rigidity and lightness and 
because actuator error is not cumulative, greater precision is likely 
to be attained. 

The control of manipulators has been extensively studied and 

generalised by the use of transformations relating coordinate frames 

attached to the various arm segments, the end-effector and the 

manipulated object. That is, to control a manipulator, it is 

necessary to understand the relationships between the objects, and 
betweenthe objects and manipulator. A method used by Paul [143 to 

describe manipulators with respect to these relationships is the 
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homogeneous transformations. These -transformations which consist 

primarily of translation and rotation were first employed by Denavit 

and Hartenberg [151 to describe linkages. 

The use of an articulated mechanical system (eg manipulator) is 

related to its behaviour in the task space (00iffet [161). This space 
can be represented by a set of cartesian coordinates bound to the 
body of a manipulator. If the structural parameters are given, the 

coordinates and the velocities of the different points of the 

articulated system as well as the orientation and velocity of 
displacement of the various sets of coordinate axes linked to the 

body in space can be obtained [16]. As in homogeneous 

transformations, the results of such an analysis help to predict the 

position of end effector in space which can in turn be linked to the 

positions of objects to be aligned and thus their alignment. This 

problem is tackled by considering a complete chain of articulated 

segments and performing vector translations and rotations [16]. 

Apart from vector and homogeneous transformations, others like screw 

calculus, tensor analysis and combinations of these have also been 

described by people like Rooney- [17], Duffy [18] and so crL since all 
these methods aim at determining the equations that relate the 

parameters of motion in joints and that of the trajectory plus the 

orientation of the end-ef fector, it is pointless to try and report 

all of them here. However, manipulators are commonly described in 

terms of the Denavit-Hartenberg parameters (Gupta [19]). Examples of 

such applications have been described by other authors notably Litvin 

and Parenti Castelli [201, Lee [21] and Pieper and Roth [22] who have 

presented closed-loop manipulator solutions along these lines. The 

solutions to those equations are not unique because the manipulator 
links can form various configurations when the manipulator executes 
the given trajectory. 

This is a multi-disciplinary research work putting together differ-ent 

technologies with a view to solve the alignment problem. The ultimate 

objective is to produce a novel patentable system for automatic 

production of cptoelectronic components. 
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CHAPTER 2 

CPTICAL FM3RE 7WWb=ION 

CHAPTER OVERVIEW 

Although the bulk of this work is centred on the study of mechanical 
laser/fibre or fibre/fibre alignment, it is first necessary to 

understand the functions and characteristics of the associated 

components as well as the difficulties involved in getting them to 

couple the minimum acceptable power level. A review of such 

components is therefore presented 3n section 2.1-while a theoretical 

analysis of the laser field distributions and the laser/fibre 

coupling efficiency are discussed in section 2.2. 

The angular and lateral misalignment problems and the different 

methods of launching the laser beam into optical fibres are presented 
in section 2.3. The difficulties associated with the physical set up 

of each method and ocnsequently their effects on the final alignment 

results are also discussed. 

The literature survey of the presently available alignment 

experimental results are presented in section 2.3.5 while the 

problems associated with the manual laser/fibre coupling process 

currently employed by STC are discussed in section 2.4. A brief 

account of a proposed basic sequence of operation intended for a 
semi-skilled operator conducting the laser/fibre alignment process 

and the alignment specifications are then presented in section 2.5. 

2.0 INTRODUMON 

ontical fibre conveyancing is superior to its wi-re cable counterpart 
in many ways. Firstly, light signals are transmitted in form of 
photons. This means that high electric or magnetic fields can not 
affect the transmission because the photons are not charged. 
Shielding signal bearing fibres cuts off leakage flux which in turn 

eliminates interference. 
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By means of electromagnetic pick up loop, wire cable transmission can 
be easily tapped. In contrast, there is no easy way of picking up 
information transmitted optically along the fibres for illicit use. 

The propagation of light waves through optical fibres is accompanied 
by large bandwidths (i. e. information carrying capacity). This 
bandwidth varies inversely only as the first power of the fibre optic 
cable length while in conventional wire cables, it varies inversely 

as the square of the wire length [1]. For this reason, optical fibre 

carrying capacity is exceedingly higher than the wire cable carrying 

capacity. 

Cptical fibres are more resistant to flexure, impact and crush than 

conventional wire cables of the same size subjected to similar 

abuses. For the same amount of information capacity, optical fibres 

are lighter in weight and tolerate severe environmental conditions 
better than wire cables. 

Saruwatari and Nawata [2] state that the transmission loss of optical 

fibres has been reduced to 0.5 dB per km. It is therefore clear that 

a viable long distance transmission system using single-mode fibres 

is feasible. However, non-uniformity and inhomogeneity of fibres can 

cause signal dispersion along the fibre. Wolf [3] states that in 

graded index fibres where the refractive index varies hyperbolically 

as the radial distance from the centre of the f ibre, it is 

practically difficult to achieve the required profile. So, some other 

methods of reducing losses need to be devised. 

Morris [4] states that fibre optical conveyance can be used to 
transfer both analog or digital data, although ideally, it is best 

for digital data by just switching ON and OFF according to the data 1 

and 0 state respectively. Keiser [5] states that the power of an 

optical pulse launched into an optical fibre is distributed over all 
(or most) of the modes (defined in 2.1.1) of the fibre. Each of the 

modes that can propagate in a multimode fibre, travels at a 
different velocity. Data voltage pulses are converted into optical 

pulses by driving an electrical current pulse through a light emitted 
diode (LED) as shown in Figure 2. This radiates light pulses into the 
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fibre. This signal propagates through the fibre and is picked up by a 

photodiode at the opposite end. 

Light transmission thr-ouqh an ficat f lbre 

DATA OPTICAL FIBRE DATA 

-j IL 

qN) 

ýOUT 

Light Photo 
Emitting diode 
Diode 

Fi g-2 

2.1 REVIEW OF FIBRE OPTICS TRANSMISSION COMPONENTS 

The major components of the optical fibre communication system are 
the laser emitter, optical fibre and the laser detector. Coupled to 

an optical fibre at a spacing of 2 to 6 km for purposes of long haul 

transmission, are the repeaters. These are receivers and transmitters 

connected back to back [4]. Apart from converting optical signals to 

electrical signals by way of light detection, they also amplify the 

signals and then reconvert them to optical signals for further 

propagation along the fibre. 

2.1.1 Optical Fibres 

An optical fibre is a dielectric waveguide that consists of a pure 

glass fibre core surrounded by a concentrated layer called the 

cladding. Allan [6] states that the cladding has a lower refractive 
index than the core so that a light generated at one end of the fibre 

propagates along the fibre by total internal reflection principles 

with minimum loss. The angle of the light signal as it enters the 

fibre is important to the propagation success. 

The cladding is covered by a protective material normally made of 
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silica to strengthen the fibre. The outer jacket is made of plastic 

and the whole fibre diameter is between 2 to 4mm as given in [31 and 

sl-zwn below. 

There are two major types of optical fibres whose attenuation and 

signal dispersion characteristics depend entirely on their core 

material compositions. Those in which the refractive index changes 

abruptly from core to cladding are the step index fibres while those 

whose Index profile assumes a parabolic shape are called the graded 

index fibres [3]. 

jypical optical fibre 

Outer fibre coating 

Fibre cladding 

Fibre core 
Fig. 2-1.1 0) 

The two classes can be further distinguished depending on whether 

they can support single or multi- modes. The single-mode fibres 

support only one mode of propagation while the multi-mode fibres 

support hundreds [3]. Modes of a waveguide are defined [51 as a set 

of guided electromagnetic waves. These guided modes are sometimes 

referred to as bound or trapped modes [5]. Each guided mode is a 

pattern of electric and magnetic field lines that is repeated along 

the fibre at intervals equal to its own wavelength. Only d certain 

discrete number of modes are capable of propagating along the fibre. 

In step index multimode fibres, a small index difference (A=I-n2/nl) 

of 1% or less is quoted [3] where n, is the core index and n2 the 
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cladding index. Since different partial rays propagate at different 

angles and therefore follow different paths, they exhibit different 

transit times giving rise to a limited bandwidth of the fibre. Ashton 

et al [7] states that for an interface between two media of different 

refractive indices, the transmission T= 4rigil/(nl+ no)2 where n, and 

no are the refractive indices of core and air respectively. The 
transmission loss is defined [7] as 10loglo(l/T) dB. 

In step index single-mode fibres. the core diameter (2al) is so small 
that essentially only one axial partial ray can propagate. 
Mathematically, the critical fibre core radius is expressed [3] as a, 

= (l. 202/TT)(X/nl(2, A)l/2 ) where X= wavelength of propagated light 

andA= 1-n2/nl. These fibres are most attractive for achieving large 

bandWidths (data rate transfer capacity) but they present severe 
fabrication restrictions. 

In graded index multi-mode fibres, the parabolic index profile solves 
the problem of the difference in transit times between partial rays. 
The gradation of the refractive index causes the light to be guided 
by distributed diffraction rather than total internal reflection. 
These fibres are described mathematically [3] as n(r) = nosech(pr) 

where no is the refractive index at the fibre axis, pis the radial 

variation constant related to the focussing distance and r is the 
distance from the fibre centre. This index profile is difficult to 

achieve in practice and probably explains why it is extremely 
difficult to produce single-mode graded index fibres. 

These fibres are shown in Figure 2.1.1(b) with typical core diameters 

ranging from 1 to 5 pm for monomode step-index, 30 to 100 pm for 

multi-mode step index and 20 to 50 [im for multi-mode graded index 
fibres as given in [3]. 

A measure of information capacity of an optical fibre is given [51 by 
the bandwidth-distance product in MHz. km. For a step-index fibre this 
is limited by the various signal distortion effects to about 20 

MHz. km while in graded-index fibres it can be as high as 2.5 GHz. km. 

Single-mode fibres, however, can have capacities well in excess of 
this (5]. 
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Semiconductor lasers and the light emitting diodes (LED) are the only 
two forms of light sources utilised for optical data transmission. 

Davies et al [8] state the reasons for this as the only sources that 

can be directly modulated at the high bit rates required with such 
low drive and high output power. The laser is used for the wideband 
long haul communication systems while LEDs are used for short and 

medium range nar-row band systems. This is because lower output power, 
lower frequency response and broader spectrum are not the limiting 

factors in short and medium range systems and more importantly, the 

LEDs drive and control circuitry is simpler to construct. 

These two sources are characterised by high speed, efficiency and 

reliability and these qualities are highly suited to optical fibre 
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ccmnunicaticn. 

2.1.3 Light Emitting Diodes (LED) 

In general, light intensity produced by LEDs bears a direct 

relationship to the current magnitude flowing tbrough them resulting 
in incoherency of data link signal. They also produce light over a 
broad spectral width with a large divergence angle which results in a 
limited modulated rate. Their emissicn response time (the time delay 

between the application of a current pulse and the onset of optical 

emission) is generally high [5]. This results in the limitation of 
bandwidth with which the source can be directly modulated by varying 
the injected current. The coupling efficiency of these devices into 

optical f ibres is therefore quite poor. Most of these 

characteristics are in fact the opposite of the laser diode 

characteristics discussed in the next secticn. 

There are two types of LEDs: the surf ace emitters and the edge 

emitters (EI ). In surface emitters, light is emitted normal to the 

pn junction plane through the surface. Most of the radiation is 

absorbed in the substrate and the emission is Lambertian (wide- 

angled) [8]. That is, the source is equally bright when viewed from 

any direction [5]. 

In edge emitters, light is emitted in the plane of the junction thus 

little absorption takes place. Its emission is directional when 
stripe geometry is used [8]. This structure offers better external 
quantum efficiencies and far more efficient and easier coupling to 

optical fibres. While internal quantum efficiency is known [5] to be 
ill defined ( vary from 0.6 to 0.7 at room temperatures) for laser 
diodes, external quantum efficiency is defined [5] as the number of 
photcns emitted per radiative electrcn-bole pair recombination above 
threshold. It is reported [8] to use the same geometry as the stripe 
laser minus laser action. It is characterised by ease of operation 
and low noise, with output power, launch efficiency and modulation 
rates approaching those of the laser. The ELED therefore has a much 
longer range and better bandwidth performance than the surface 
emitters. It is suited to digital and analog links of medium data 
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capacity and range. 

There are two versions of GaAs/GaAlAs ELED operating at 850 nm 

wavelength. ELEDs performance makes it suited to demanding 

communication systems such as cable TV links. A description of the 

two versions and comments on the current trials of a broadband 

optical fibre link carrying high'quality TV programs on a cable 

network operated by British Telecom are presented in (8]. 

2.1.4 Laser Diodes 

In contrast to LEDs, the injection laser diode (ILD) is a threshold 

device which emits signal only if the current through it is above a 

limiting value. It'is reported [4] that the threshold level of an 

injection laser diode is usually about 100 mA and they reach maximum 

emission of light at about 120 mA. ILD signals are coherent and ideal 

for ONIOFF data transmission with extremely high speeds. They produce 

na : row light bands which are highly directed and ocnfined resulting 

in higher modulation rates and better coupling efficiency. 

Currently, most laser diodes being investigated and used for cptical 

communicaticn purposes are multi-layered heterojunction structured 

optical devices. A typical stripe geometry S'02 insulated laser 

illustrated by Selway et al [9] is shown in Figure 2.1.4(a). The 

junction structure is a conventional double heterostructure with 
GaxAll_xAs passive layers containing nearly 35% Al and an active 

region with nearly 5% Al (9]. According to these authors, the latter 

quantity minimises the strain in the active layer caused by thermal 

expansion mismatch between the GaAs substrate and the GaxAll_xjks 

passive layers. A detailed analysis of the major aspects of laser 
diodes are carried out by the same authors, [3] and [8] and can also 
be found in books covering laser light sources for optical fibre 

communications. 

The relationship between the laser output power versus the diode 

drive current is illustrated in Figure 2.1.4(b). This is a purely 
theoretical representation but in practice, kinks usually appear in 

the curve. It is reported [91 that these were experimentally proved 



to be associated with a sideways displacement of the light filament 
and that the near and far -field patterns change in the vicinity of 
the kinks. Several practical methods have, however, been developed 
to avoid the kinks[g]. 

Zn skin 
diffusion 

T /ýu 
c onfac t 

Oxide, 

tripe cont-act 
10-20, mm wide 

ouble heterostructure 
layers 

Light output= ýx 56. 

S102 Insulated stripe geometry 
Laser 

Fig-2-1-4 (a) 

[ýight output versus drive curren . 

tased 
0u rput 

timulated emission 

SpgntcLneous 
emission j hreshold current (IT ) 

current 

Fig-2,1.4 (b) 

At low diode currents, only spontaneous emission is obtained. This 
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emission has both a broad spectral range and lateral beam width 

similar to LED emission. A stimulated power output or emission 

sharply shoots out as soon as the tbreshold current IT is reached. Cn 

approaching this point, the spectral range and the beam width will 
both narrow down. The final spectral width is approximately lnm and 
fully narrowed lateral beam width is nominally So to 1CP while the 

diode respcnse time is less than 1ns [5]. These diodes are capable of 

coupling several mW of useful luminescent power into an optical 
fibre. 

Sensitivity of the threshold current IT vary with temperatures and 

also depends on the laser diode used. It is stated [8] that the 

maximum temperature of continuous wave cperatim is determined by the 

threshold current, the temperature sensitivity and the thermal 

resistance of the heat sink. The same authors report a maximum 

temperature range of 100C) to 120PC for oxide insulated stripe GaAlAs 

lasers and 500 to 600C for GaInAsP devices although advanced 

structures can operate at temperatures of 30P to 409C higher. 

The two principal methods used to vary the optical output from laser 

diodes are pulse modulation used for digital systems and amplitude 

modulation used for analog data transmission [5]. 

In conclusion, because the laser diode light signals are stimulated 

rather than spontaneous like in LEDs and the fact that their matching 

efficiency is much better, makes them more attractive for data 

transmission. However, because LEDs are cheaper and have a longer 

life span than ILDs [5], they are preferred for some applications 

particularly short distance transmission. In addition, ILDs have 

cooling problems because they have high switching speeds accompanied 
by high power emitted from very small chips [4]. 

2.1.5 Photodatectors 

In any optical alignment system, the optical fibre is terminated with 

a detector in the form of either photoemitting diodes or avalanche 

photodiodes both of which are sensitive to light. This detection is a 

way of interpreting the infomation omtained in an optical fibre. As 



13 

I 

the luminescent power falls on the surface of a photodiode, the 

electric current magnitude flowing through them changes. The diodes 

then convert the light input signals to variations of electrical 

currents [5]. These current variations are amplified and reshaped 
before generating them back to voltage data pulses. In order to 

achieve this, the pbotodiodes must be permanently biased by a current 
that flows through them. The current variations are generally small 
for photodiodes and so they operate with a specially designed high 

impedance low noise preamplifier which is sensitive to small current 

changes [51. 

The photodetectors used for this type of application must meet very 

high performance requirements because the optical signal arriving at 

the end of a long optical fibre is generally weakened, distorted or 

simply degenerated. The vital features include good sensitivity in 

the emission wavelength range of the optical source being used and a 

fast response speed [5]. It should have long operative life and be 

compatible with the physical dimensions of the optical fibre. 

Normally, the avalanche photodiodes are preferred for the detection 

of low optical power signals. Detailed reviews of photodetectors can 

be found in [3,8 and 9] and other books on optical communication. 

While it is critical to observe the alignment tolerance of a laser 

beam to a monomode or multi-mode optical fibre, the positioning 

tolerance of the photodetectors are not so important [8]. 

2.2 ANALYSIS OF LASER DIODE - OPTICAL FIBRE COUPLIIG 

It is established 121 that single-mode optical fibres are more 

efficient to use in the 1.3 pm wavelength region since silica fibres 

exhibit both low loss and zero dispersion near this wavelength. 
According to these authors repeater spacing is limited by the amount 

of light launched into the optical fibre rather than fibre 

dispersion. In order to achieve a proper single-mode f ibre 

communication systems therefore, a rigid connection with high 

coupling efficiency is the answer. 

In this section, the coupling efficiency and the alignment tolerance 
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between a laser diode and a single-mode fibre are described. The 

butt-joint configuration alignment of laser diode to single-mode 
fibre has been chosen for this design study because it offers the 

worst alignment conditions. This is known 121 to be due to the 

following factors: (a) the core diameter of a single-mode fibre is 

only about a tenth (5 to lOpm) of that of a multimode fibre, (b) the 

laser diode has a large beam divergence angle (400 to 600 ) 

perpendicular to the junction plane and (c) the alignment tolerance 

of the laser relative to the fibre axis is as small as 1 pm. 

2.2.1 The Gaussian Beam Approximatim 

Kogelnik and Li [10] reviewed the fundamental properties of laser 
beams and showed that the beam emitted by a semiconductor laser diode 
is not uniform in intensity (power per unit area) over its cross- 
sectional area. It has a Gaussian distribution similar in form to the 

random error frequency distribution curve. Its specified diameter 
(2w) is the beam width at which the intensity has fallen to 1/e2 of 
its peak value (Figure 2.2.1(a)). 

It is shown [10] that the measure of the decrease of the field 

amplitude E with the distance z, from the axis is given by 

w2 (Z) = Wo 2 [1+(Xz/ Wo 2) 21. The intensity distribution is Gaussian in 

every beam cross-section but the width of the intensity profile 
changes along the axis. This Gaussian beam contracts to a minimum 
diameter of 2wo at the beam waist (Figure 2.2.1(b)) where phase frcnt 
is plane. z is measured from this point in order to simplify the 

expansicn laws [2,10]. 

Sunak and Zamprcnio [111 reported the dimension of the lasing slit to 
be much smaller than the core diameters of the fibres. This means 
that the launching efficiency is hardly affected in the laser near 
field but seriously reduced in the far-field by the much larger beam 
divergence angles compared to the maximum fibre acceptance angles. It 
is therefore important to first study the laser far-field radiation 
patten, before attempting to construct a suitable laser/fibre 

coupling procedure that achieves acceptable launch efficiency. They 
found the experimental curves of these far-field patterns to be 
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slightly narrower than a Gaussian fitted to the 1/e2 x maximum 
intensity points. These are shown in Figures 2.2.1(c) and (d). 

Coupled with the work of these authors, two sample far-field patterns 
(supplied by STC) are shown in Figures 2.2.1(e) and (f). The far- 

field patterns of the beam both perpendicular (x-axis) and parallel 
(y-axis) to the junction plane are approximately Gaussian. 
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2.2.2 Field Distributions of Laser and Fibre 

Nicia [12] states that the power distribution in a single-mode step 
index fibre can be approximated by a Gaussian shape to within 1% 

error as long as the normalised frequency V of the fibre is in the 

range of 1.9 to 2.4. Since this condition is true for a practical 

single-mode fibre, the characteristics of the field leaving the fibre 
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end can be estimated sufficiently accurately by a Gaussian 

approximation. Marcuse [13] gives the beam spot size wo for step 
index fibres (its only characterised geometrical parameter at e-l 

amplitude [12]) as 

wo 1.619 2.879 
0.65 + V3/2 + V6 

where a is the fibre core radius. 

The optical radiation within the resonance cavity of a laser diode 

sets up a pattern of electric and magnetic field lines called modes 
(as in fibres) of the cavity [5]. These can be separated into two 
independent sets of transverse electric (TE) and transverse magnetic 
(TM) modes. Generally, a set of modes can be described in terms of 
longitudinal, lateral and transverse electromagnetic field variations 
along major axes of the cavity. These modes determine both the 

profile of the laser beam and its radiation pattern (angular 

distribution of the optical output power) and the threshold current 
density [5]. The stimulated emission rate into a given mode is 

proportional to the intensity of radiation in that mode and this 
intensity varies exponentially with the axial distance z that it 
traverses alcng the lasing cavity [5]. 

In fact the profile of the laser beams emanating from laser diodes is 

more complex than those leaving the single-mode fibres [12]. The 
field pattern of the emitted laser is described by (a) the far-field 
divergence angle Or at full width at half maximum intensity 

perpendicular to junction plane (b) the far-field divergence angle 0L 

at full width at half maximum intensity parallel to the junction 

plane and (c) the astigmatism 5, the virtual distance between the 
beam waists in both planes having a width of 2wr and 2WL. (Figures 
2.2.2(a) and (b)). The subscripts r and t are used here and the rest 
of the chapter to distinguish between the dimensions (angles and 
widths) of the laser beam in the perpendicular and parallel planes 
respectively. 

It is stated 121 that the beam spot sizes wr and wt oorresponding to 
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the two planes are related to the far-field divergence angles Or and 
0, respectively by wrýX/TTOr and w, = X/TTO,. Steenwijk [14], IK)wever, 

expresses the two beam spot sizes slightly differently as w, 

0 
tarl(u X (21n2) ýý/2 Ti tan(99, /2) and wrý Xo (21n2 )1/12, /Zr ),. /2) where, \Ois the 

free space wavelength of light and X is the wavelength of the light 

under investigation. 
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2.2.3 Laser-Fibre Coupling Efficiency 

A divergent laser beam cannot be transmitted efficiently along an 

optical fibre unless the divergent angle of the beam emanating from 

the semiconductor laser diode is less than or equal to the acceptance 

angle of the fibre. The laser beam is propagated along the fibre by 

total internal reflection principles. 

Considering Figure 2.2.3(a), if efficient transmission is to occur, 
the internal reflection angle must exceed the the limiting or 

critical angle OL where sin ()L = n2/nj.. Thus a ray entering at an 

angle greater than P is lost. Snell's Law gives the relation between 

the angles of incidence P and refraction ý via the refractive 
indices as: 

n. -s-2np = njsiný = nsin(Tr/2- OL) = nl(l-sin2 OL)1/2 

= (n, 2 
- n22 ) 1/2 

Therefore, sin P= (1/rio)(n, 2 
- n22 ) 1/2 

= (n, 2- n2 2) 1/2 (2) 

if no is the refractive index of air. 

The right hand side of equation (2) is called the numerical aperture 
(NA) of the fibre. Allan [61 points out that the numerical aperture 
(NA = (n, 2 

- n22 ) 1/2) is independent of the fibre diameter and holds 

for fibre diameters as small as 5 pm but breaks down for any smaller 
fibre diameters. In that case the geometric approach is invalidated 

and the electromagnetic theory then takes over to supply the 

acceptance conditions. Thus if the fibre is placed in air, 

siri-'(n, 2- n22 ) 1/2 (3) 

where n, and n2 are the refractive indices of the fibre core and 

cladding respectively. 
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Increasing NA by simply increasing the refractive index of the 

step/cladding core interface results in a further fibre dispersion 

[7]. This in turn gives rise to a high bit, error rate in a long haul, 

high speed communication link [7]. The dispersion is caused because 

light travels in the fibre on a broad path (00 to 90-GL) so that a 

ray following the maximum angle path arrives later than paraxial 

light. The distribution of these arrival times affects pulse 

broadening and thus in practice NA should be kept between 0.1 and 0.2 

[7]. The pulse shape remains in its basic rectangular form as long as 

the delay between transit times is only -a minute proportion Of that 

between successive inputpulses or-the input pulse width. 
- __ __ __ __ 

The propagation properties of a fibre is best described by the 

normalised frequency V. This is in fact a structural parameter rather 
than a frequency and is expressed [3] as 

TT a) (n, 2- n2 2) 1/2 
x 

or V= (qTra)NA, 
x 

where a= radius of fibre core and X is the wavelength of the 

transmitted laser beam. 

Cohen [15] expresses the power coupling efficiency of a Gaussian 

laser beam represented by parameters wr and w, into a single mode 
fibre (another Gaussian distributed field for the fibre mode) as 

Kr' KL' 

where Wr' = 2/((wr/a) + (a/wr)), W, I= 2/f(wj /a) + (a/w, Kr' = (1 

+ 2z/[k(wr 2+ a2)j)1/2, KI, = (I + 2z/[k(w, 2 +-a2)]11/2 k= 2TTA. 

k is the propagation constant in free space and a is the mode 
radius within a single mode fibre. 

The value of a can be obtained from equation (4), the expression for 

the normalised frequency V. The author found out that for a 3.2pm 



single mode DeBell Richardson fibre 79% of the power was transmitted 

within the core and for a 3.7pm single mode CIorning fibre only 57% of 
the power was transmitted within the core. A one-dimensional form of 

equation (5) (wt ý wr ý W. ) was then plotted [15] against the axial 

separation z between two optical fibres (3.2 pm-solid curves and 3-7P 

m-dashed curves) and lasers parameterized by wo (radius of beam waist 

parallel or perpendicular to the junction plane). These are presented 
in Figure 2.2.3(b) where the coefficient q gradually tilts off in the 

laser far field because of the increasing mismatch between the beam 

and the fibre diameters. These theoretical results compare quite 
favourably with the experimental results of Figure 2.2.3(c) produced 
by STC. These were obtained by measuring the power received by an 

, optical fibre as it was being gradually moved away from the laser 

source in the axial direction. Weidel [16] reported that the slow 

rise in the experimental curves up to z< = 10[im, is due to 

oscillations caused by small optical feedback into the laser from the 

input end of the f ibre. This optical feedback is a result of optical 

reflections. 

Laser beam e aianaVing from a lasýr 

t(j= beam divergence 
angte 

z'- d12 (tan(o)) 

e= fibre acceptance 
angte . 

---L- dý= 
core radius 

Fig-2-2.3(d) 

It is also shown [15] that a multimode fibre begins losing additional 

light when the fibre is separated from the laser by more than a 
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critical distance z= d/2tano (Figure 2.2.3(d)). This is the point 

at which rays normally within the fibre's acceptance core hit the 

cladding and get reflected away from fibre core having diameter d. 

Some very close theoretical and experimental results. were obtained 
[16,151. The latter, for example, had z(theoretical) = 24[Lm, 

z(experimental) = 19Vm for a 10pm core diameter fibre and 

z(theoretical) = 46pm, z(experimental) = 45 Pm for a 20PM core 

diameter fibre. Angular misalignments can, however, greatly affect 

these results. 

2.2.4 ar and Lateral Misaligrunent 

Equation (5) (2.2.3) formulated in [15] does not take account of the 

lateral and angular misalignments x and ý respectively (Figure 

2.2.4). Kogeinik [171 shows that the coupling efficiency between two 

Gaussian beams is given by 

71 =k expf-k[x2/2 (1/wl. 2+1/w 
0 

2) +Trtý(w, 2(z) +w0 2)/2Aý 

/w, 2 1) 

where k= 4w, 2w 
0 

2/[(w, 2 + Wo 
2)2 + )Fz2lWj; 

W3.2(z) = W12 [I + (Xz/rrwi 2) 2]; X is the beam wavelength, wo is the 

beam spot size of single mode fibre and wl is the incident Gaussian 

beam waist. If z=0, the efficiency simplifies to 

TIO koexp(_2x2/(WýL2 + W02) - (2rr q)2w 1 
2w 

0 
2)/ýF(wJL2 +wo 2)) (7) 

where ko = 4/(wo/w, + wl/wo)2. 

The excess losses caused by the angular (ý) and lateralM misalignments 

are inseparable as long as the beam waist is located some distance 

away from the fibre end. However, these losses become independent of 

each other if the beam waist is located just at the fibre end as 

shown by equations (6) and (7) of this secticrL 
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The laser beam emerging from the semiconductor laser diode has an 

elliptical cross-section. Thus, the beam spot sizes perpendicular and 

parallel to the junction plane (wr and w, respectively not only 
differ quite markedly from each other (w,, w, ), but also from the 

characteristic spot size wO of the fibre. The coupling efficiency 
between an elliptical laser beam and a single mode fibre set in a 
butt configuration can therefore be calculated from the modified 

equations (6) and (7) above. This efficiency is also e-Vr\--ssed [2] as 
1 1/2 r 1/2 the product of [90(w, , WO) I and [90(w, wo)] where the former 

corresponds to the coupling efficiency between one-dimensional 
I Gaussian beams whose spot sizes are wl and wo and the latter to 

efficiency between spot sizes wlr and wo. 

1 . 2-2- 4 

The present literature on the alignment techniques of optical fibres 

and semiconductor laser diodes does not give a theoretical method of 

calculating the tolerances in any particular axis taking account of 

all the misalignments (x, y, z and ý). In an attempt to investigate 

the variations between angular(ý) and laterai(x) misalignments when the 

incident beam waist is located at the fibre end, it was discovered 

121 that as the incident beam spot size increases, the lateral 

alignment tolerance also increases but the angular alignment 
tolerance decreases and vice-versa. However, this is only true for 

rotationally symmetric beams. In a butt-joint configuration, the 

angular alignment tolerance perpendicular to the junction plane of an 

Gaussian beam to optical 
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elliptical beam is larger than that parallel to the junction plane 
whereas the lateral alignment tolerances are of the same order and 
independent of misaligment directions 121 - 

2.3 DIFTERENT METHODS OF COUPLIIG LASERS TO OPTICAL FIBRES 

Efficient launching of laser beams from semiconductor laser diodes 

into optical fibres is very important in loss limited high capacity 

communications systems for maximum repeater separation. Any suitable 

methods that can achieve acceptably high laser/fibre coupling 

efficiencies would therefore go along way to maximise separation 
distances between repeaters and improve the quality of optical 

communication links. 

The Gaussian laser beam emitted by a laser diode diverges more 

rapidly in the plane perpendicular to the juncticn than to the plane 

parallel to the Juncticn forming an elliptical shape at any sec-tim 

alcng the beam. A typical parallel divergence angle range is 2o to 50 

while the perpendicular divergence angle ranges from 150 to 300 

(Figure 2.2.2(a)) 121. Single mode cptical fibres, however, have far 

less range of acceptance angles than those indicated above. It is 

typically (20 to 100) for some multimode fibres [11]. The authors 

report launching efficiencies of 10 % to 18% for plane ended 

multimode fibres (butt joints). Timmerman (18] reports that when 

microlenses (hemispherical or tapered hemispherical or cylindrical) 

are incorporated, efficiencies as high as 80% are known to be 

achievable. 

Quite a few laser diode to single mode fibre coupling experimental 

results obtained by different methods have already been reported. 
These include a simple butt joint, a selfoc-lens, a cylindrical lens 

placed at the input end of a fibre, a micro-lens fabricated at the 

fibre end and a combination of a cylindrical and a selfoc lens. A 

selfcc lens is a cylindrical lens with graded index of refraction 

which decreases as the square of the radial distance from the optical 

axis [191. Due to this parabolic index of refraction, the selfoc lens 

performs the same optical functions as the standard spherical 
(rotaticnally symmetrical) lenses with the added feature that the end 



ý"IT': (See p. 29, parag. 3, line 4) 

In this work, the words launching and coupi inq ef f iciency are used 

interchangeably to mean the proportion of laser light emitted by a 

laser diode that can be coupled into an optical fibre. 
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surf aces are f lat. As shown in Figure 2.3.2, it converges the 

divergent non-linear laser beam to a point on the optical axis. A 

cylindrical lens on the other hand, has a uniform index of refraction 

and because of its shape, it focuses rays of light to a line rather 

than a point. When it is rotated, the focal line also changes its 

orientation. This implies that cylindical lenses are rotationally 

asymmetrical. 

These configurations are summarised in the accompanying sub-sections 

below. Owing to the differences in the laser diodes and optical 

fibres used, the coupling efficiencies of these methods cannot be 

directly compared. 

2.3.1 The Butt-JoLrit Configuration 

In this set up, the spacing between a laser diode and a single mode 

fibre must be as small as possible. Results of the experimentation 

conducted in 121 revealed that a spacing of 10 pm was achievable 

resulting in a maximum launching ef f iciency of -6.2 dB or 25-08. The 

lateral alignment tolerances were found to be far more sensitive than 

the axial ýji ignment tolerances. They were found to be about ±1.4ýn 

and +1.6ýiii along directions perpendicular and parallel to the 

junction p] ane reýýpectively. 

Although this configuration (Fig. 2.3.1) is simplest in fabricating 

laser-diode coupler arrangement, the coupling efficiency is limited 

to a small value because of the mismatch between the laser diode 

pattern and the power distribution in the single-mode fibre. 

LD 

Optical fibre 
Fig, 2,3,1 Butt joint configuration. 

LD = laser diode 
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2.3.2 Selfoc Lens ODnf igurati 

The coupling efficiency achieved by this method cai-mt be improved 

over the butt-joint efficiency because of the rotational symmetry of 

the selfoc lens which is incapable of transforming the asymmetrical 

laser beam into a rotationally symmetric form 121- An experiment was 

conducted 121 in which three selfoc lerises: with diameters of 1.25 mm, 
1.5mm and 2. Omm were examined. The lens lengths were set to 1/4 pitch 

of the undulation period and the maximum launching efficiency 

achieved with the 1.5mm diameter lens was -6.5dB or 22%. One pitch 

corresponds [19] to the lens length for one cycle of cyclic move of 

the ray in the lens. The coupling efficiencies of the other lenses 

were found to be 3dB or 4% worse. While the axial spacing tolerance 

was found to be five times larger (50 pm within l-dB loss) than that 

obtained for the butt-joInt, the lateral tolerances were nearly the 

same as those of the butt-joint. A typical coupling arrangement 

utilising a selfoc lens is illustrated in Figure 2.3.2. 

LD 

L'aser ý4 Opticat fibre 
beam 

Fig, 2,3,2 Selfoc lens configUration 
IY LD=- Laser diode 

Section A-A of the tens 
showing parabolic index 
profile. 

x 
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2.3.3 Cylindrical Lens Method 

A number of investigations using this coupling metTiod have already 

been carried out. Since pl-kotoetching entails a complicated prricess off 
fabricating a lens and directly forming it at the fibre end, an 

experiment was conducted 121 in which the laser diode, lens and fibre 

were independently moun-ted on separate manipulators- Phis is shown 

schematically in Figure 2.3.3 (a). Borosilicate glass cylindrical 

lenses of radii 11 pm, 8.35 pm, 7.3 pm and 6.25pn were used. The 

greatest coupling efficiency is reported [2 ] to have been obtained 

with the smallest lens ensuring that the separations between lens and 

laser diode and between lens and fibre were minimised. 

LD Optical fibre 

cy ylindrical 
lens Fig, 2ý, 3 (a) Cylindrical lens 

configuration. 
LD =- Laser diode 

Fig, 2,3,3 (b) 

Gaussian beam transformation 
by cytindrical tens 

laser beam 
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The lateral misalignment tolerances required to keep the excess loss 

to within l-dB were found 121 to be ± 1.4 pm and ±1.8 pm for a 
6.25 pm and 11 pm radius lenses respectively. These tolerances are 

quite comparable to those for the butt-joint. It was also realised 
121 that coupling through a cylindrical lens is more tole37ant of 

axial separation than the butt-joint method. 

Thus the application of a cylindrical lens for laser to fibre 

coupling not only improves the coupling efficiency but also the 

tolerances for lateral and axial misalignments. Above all, it appears 

that a lens with a small radius can focus tl-. e laser beam to a smaller 

spot than a lens with a larger radius. Figure 2.3.3 (b) shows an 

illustration of a Gaussian beam transformation by a cylindrical lens 

given in 121 -w is the emitting spot size of the laser diode at the 

e-1 amplitude perpendicular to the junction plane, R is the radius of 

the cylindrical lens and n2 its refractive index. d is the spacing 

between the laser diode and the lens and ni is the refractive index 

of air. The focused beam waist wl is located at distance z from the 

lens surface. 

2.3.4 Cylindrical and Rotaticnally Symmetric Lens Mthod 

As already noted (2.3-2), a rotationally symmetric lens has not got 

the capability of transforming an elliptical laser beam into a 

rotationally symmetric beam. In anticipating a higher coupling 

efficiency, this arrangement has a cylindrical lens placed between a 

laser diode and the rotationally symmetric lens. This configuration 

hýs the advantage of increasing the spacing between the laser diode 

and fibre. An experiment was conducted 121 in which a selfoc lens of 

1.5 mm radius was used to replace the rotationally symmetric lens. 

The combined system achieved an improved launching efficiency of 40%-. 

In general, these couplirxj methods (2.3.1-2.3.4) allow for very small 

positioning tolerances of components. Although the selfoc lens 

arrangement has a relatively large spacing between the selfoc lens 

and the single mode fibre, it couples a very small amount of power 
into the monomode fibre 12 1. Its coupling efficency can hardly be 
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improved over the butt joint configuration 121. The rest of the 

ocnfigurations present obvious handlirxj and positional problems which 
are incompatible with large scale producticn. This is because two or 
three manipulators would be needed to handle the fibre, lens and 
laser diode separately within a confined space. 

To avoid the above problems, the fibre end is modified into a 
hemispherical form. This is dcne by fusing a bead of glass directly 
to the fibre end, controlled etching of the fibre or melting the 
fibre tip to form a bead [7]. The techniques produce a prealigned 
lens/fibre that can be inserted into a modular package. In general a 
hemispherically fused end doubles the effective NA of the fibre axis 
(7]. This increases the launch efficiency considerably as well as 
laser/fibre alignment sensitivity. An offset of 10 pm for example, 

produces a fall in launch power of 50% [7]. This type of fibre is 

used in this thesis to align a laser beam with a monomode optical 
fibre. 

The majority of suppliers such as STC, normally sell these products 

already assembled with a generally short length of optical fibre (lm 

or less). A typical STC arrangement already assembled in an optimum 

position is shown in Figure 2.4. This short fibre length is called a 

"pigtail" or "flylead'. 

2.3.5 Summary of Reported Experimental Aligment Results 

A number of extensive alignment investigations have been carried out 
in order to reduce the coupling power loss. A close survey of the 

available literature yielded the results of various experiments 

presented in table 2.3.5 below. 

Since the object of this thesis is to produce a general purpose semi- 

automated alignment system capable of obtaining the optimum 

efficiency for any coupling method, it is best to base it on the 

worst available tolerances. These can be obtained from table below. 

These tolerances will OnlY take account of any misaligroents on the 

axes for which they are quoted. 
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It is recommended by STC (the supplier of the laser diode and 

monomode fibre used) that the axial separation between the laser 
diode face and the fibre input end must not be less than 40 11m. This 

prevents the fibre from knocking and consequently damaging the laser 
diode emitting f ace. The program constructed in chapter 9 for the 

automatic alignment of the components is intended to combine the 

effects of misalignments in (a) the x, y and z-axes for a purely 
translational 3-axis manipulator and (b) all the three translational 

axes and two rotary axes (ýx andý y) that is, for a 5-axis 

manipulator. The tolerances listed below could be useful in checking 
the validity of the results obtained by the use of the program to 

control the relevant manipulator. 

TABLE 2.3.5: A Survey of Experimental Aligment Results. 

ClPrICAL FIBRE ALIGNMENT TOLERANCES 

REFS . DIMENSICNS CoupLiNs, P, TO Pr TO ANGULAR AXIAL 

CORE CLADDING tS= Jn. PLANE Jn. PLANE ()/deg. Z/ gra 
4m ý/4m xt/gm Y, /4m 

2 5.3 70 Butt-Jlt 1.4 1. -6- - 7 

2 5.3 70 Selfoc 1.2 1.6 - 50 

2 5.3 70 Cylindr. 1.8 1.8 - 26 

(ý44pm) 

2 5.3 70 Cylindr. 1.4 1.4 - 22 

(ý25pm) 

11 61 127 Butt-ilt - - 41) - 
11 42 120 Butt-jlt - - 2.50 

20 9.9 125.5 Butt-jlt 3.1 3.2 - 18.8 

20 9.9 125.5 Hem. Lens 

cn S. M. F 1.4 1.5 8.0 

20 9.9 125.5 Taper9d 

Hem. Lens 

cn S. M. F 1.3 3.0 - 17.0 

13 8.3 - Butt-jlt - - 0.90 - 
21 8.0 Hem. Lens 

cn S. M. F 1.5 1.4 8.0 
(ý17 ILW 
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Pr, Pt , Jn. and JIt in table 2.3.5 stand for perpendicular, parallel, 
junction and joint respectively. 

2.4 CURRENT MANUAL COLJPLIIG PROCESS 

In this section, a typical coupling procedure of "pigtails" to laser 

diodes carried out in STC workshop at Paignton is described. This 

manual coupling process is currently done by hand under a microscope. 
The output end of an optical fibre is connected to a laser detector 

which measures the amount of laser intensity launched and transmitted 
through the fibre. 

The coupling module (Figure 2.4) is mounted into a pair of clamps (or 

heat sink) under a microscope. The semiconductor laser diode that 

emits the beam is already premounted in position inside the module 
(sub-mount) and a power line connected to it so that it can be fired 

or activated during alignment. The operator threads the brass 

strengthened input end of the fibre through the hole inside the 

epidermic tube and then into a saddle which rests on the submount 
platform (Figure 2.4). The laser is then fired and by simply 
observing through the microscope, the operator carefully moves the 
fibre in front of the laser diode ensuring that an estimated axial 
gap of approximately 40 pm between the laser diode and the fibre 
input end is not traversed. The desired fibre position at which more 
than a set minimum value of laser intensity is recorded by the 
detector is obtained by trial and error. The fibre is then soldered 
(to the epidermic tube) in this position while being held steady as 
the solder sets. 

When the unit has cooled down, it is removed and checked for 

efficiency degradation because the fibre tends to be pulled out of 
position as the solder sets and solidifies. This checking procedure 
takes place under a second microscope where the soldered fibre tip is 

physically tweaked into some other position in an effort to pick up a 
higher level of laser intensity. This procedure compensates for the 

possible pulling effect of the solder during the solidification 
process which tends to move the fibre away from the alignment 
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position. The saddle is then spot welded on to the platform. The 

assembled unit is removed and transferred into a seam welding kit 
inside a vacuum chamber. The module is then encased or closed up by 

seam-welding a separate plate onto the top of the box enclosing the 

laser and the soldered fibre and the process is repeated. 

Such an alignment procedure has a number of drawbacks. Firstly, it is 

extremely slow and inaccurate. Secondly, it can be very wasteful 
because after soldering the fibre into positicn, then tweaking, spot 

welding and finally encasing the unit by means of seam-welding, the 

laser intensity launched into the fibre could deteriorate to an 

unacceptable level. This can easily occur because of the ef fect of 

creep and stresses developed as the solder and weld sets in position. 

2.5 DEFINITION OF THE LASER-FIBRE ALIGNMENT OBJECTIVES 

The manual laser/fibre alignment process described above is liable to 

errors which are in turn responsible for the low laser power 

coupling. In order to avoid this problem, the alignment process must 
be automated and this in turn quickens the procedure. Thus, in 

essence, the objective is to design and test a semi-automatic system 
for coupling laser diodes to optical fibres using any coupling 

method. The specifcations upon which the design is to be based were 

outlined as follows: 

minimum coupled power = 70% of input (emitted laser) power. 
maximum transmitted welding forre =2N. 
Maximum weld temperature rise above ambient = 60C. 

Minimum laser to fibre separaticn. 
(during and after alignment) = 40 pm. 

overall alignment time =3 minutes. 

maximum load carried during alignaLent = 40 gm. 

Laser wavelength = 1300 nm. 

nxicimode fibre core diameter =5 to 10 pm. 

ovality (clearence) between the brass strengthened fibre tip and the 

laser package hole =5 pm (± 2.5p). 

Due to the minute dimensions of the laser/fibre aligrunent components, 
an extremely accurate micromanipulator is needed for their alignment. 
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The results of a survey of microactuators presented in Chapter 4 for 

purposes of locating such a positioner, is entirely based on the 

first six specifications. These were outlined right at the onset of 
this research. However, the last two specifications were given after 
the survey, selection and purchase of the manipulator. Since this 

research only looks at the hard and software alignment procedures, 
the welding specifications (force and temperature rise) play no role. 

The following sequence of the aliganent system operation is proposed: 

1. the operator mounts the module which contains premounted laser 

diode onto the surface of the manipulator; 

2. the laser diode is then fired or activated using a marmal switch 
(constant current source of 125 mA); 

3. the operator comects the output end of the fibre to a detector 

which is in turn ccmected to a desk top computer; 

4. the operator then threads or places the fibre into the epidermic 
tube inside the module and then has it gripped into a stationary 

positicn; 

5. the program is then run and the manipulator optimises the 

position of the laser diode (premounted inside the module in 

front of the fibre) using feedback readings obtained by the 

detector and fed to the computer; 

6. when the optimum position for that particular arrangement (butt 

joint or other) is reached, the manipulator automatically comes 
to a stop; 

7. a separate robot is then used to solder and spot weld the fibre 

in the optimised position; 

B. the module is then encased by means of seam welding as soon as 
the solder bas cooled down; 
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9. lastly, the grippers release the fibre and the manipulator moves 

out of the vacuum chamber and the operator removes the fully 

assembled unit. 

It is, however, envisaged that the last three steps can not be 

accomplished in this particular exercise but can be implemented at a 
later stage. In addition, a further investigation into the effects of 

creep and stresses developed after soldering and welding will also 

need to be carried out if later deterioration in the coupled laser 

power level has to be avoided. 

This system should be capable of speeding up the assembly process and 

significantly increase both the quality of the product and its 

reliability. Above all, it should not require a highly skilled worker 
to operate it. 
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CHAPMR 3 

ALIG14ENT OF IMES 

CH"TER OVERVIEW 

In this chapter, the various interpretations of the word alignment 

are explored. This is done by considering the alignment of points 
(3.1), lines (3.2), line segments (3.3) and the superposition of two 

congruent figures (10.4) in two ways: (a) from first principles and 
(b) by screw displacements. The latter is summarised in Appendix A. 

While the screw method investigates all the different screw 
displacements for each alignment (3.1 - 3.4), the former specifies 
the degrees of freedom involved and thus the manipulator required to 

correct the misalignment. The results of both methods (summarised in 

3.5) aims at drawing the attention of engineers to the application of 

screws as well as the role of manipulators in alignment. 

3.0 INTRODUMON 

Evidently, efforts in carrying out alignment has been in existence 
for a long time. Harrison [1] gives two very early examples as the 

Nazca lines on an and plateau in Peru and the 'Alignments, at Menec 

in Brittany. The former is said [1] to comprise of a series of 

straight-edged geometrical shapes and straight lines formed by 

removing loose surface rock; spread over a distance of 50 km. The 

latter comprise (11 of twelve impressive parallel rows of granite 

blocks almost 1 km long. Their purpose is not only intriguing but the 

techniques used for their construction can be challenging even to the 

yptian pyramids pre-sent day engineers [1]. The same applies to the Eq 

built nearly five thousand years ago. 

The purposes of alignment are numerous and varied depending upon the 

discipline involved. Current literature reveals that physicists, 

photo-optical and electronic engineers and researchers in other 
fields have produced a large amount of alignment results. For 

purposes of this thesis, the discussions are confined to laser-fibre 

coupling (chapter 2) and partly machinery alignment. The former and 

others like circuit alignments are classified under optical aligntnent. 
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This is because circuit alignment is almost wholy dependent on the 

use of light as described by Fehrenbach (2]. On the contrary, methods 
employed in machinery alignment may be completely divorced from 

optical alignment as described by Mitchell [. 3]. A few other alignment 
examples ([9] to (13]) are also cited. These andmany others not 
mentioned serve little or no purpose here but simply gives an idea of 
the extent to which alignment is studied. 

Essentially, laser-fibre coupling as well as machinery alignment can 
be reduced to the alignment of lines in space. The central axis of a 
laser beam is one line in space while the axis of the fibre is the 

other. Similarly, in machinery alignment involving the alignment of 
two coupled shafts or a machine string, the central axes of the 

shafts represent two lines in space. It follows that the analysis of 

alignment of lines in space could provide ready solutions to the 

above problems. It is for this reason that alignment is investigated 

in this chapter. 

Figure 3 illustrates a typical shaft to shaft misaligrunents. Angular 

misalignments Gy and Gz about Y and Z -axes respectively require 
correction. Gx has no effect on the misalignments of shaft axes 
except for torque and can therefore be disregarded. Other significant 
misalignments are the linear displacements along the X, Y and Z-axes. 
They are referred to as axial (X-axis) and transverse (Y and Z-axes) 

misalignments respectively. As in laser/fibre coupling, there are 
five independent variables (2.2.4) that require correction. it is 

stated [3] that the objective of alignment is to have two coupled 
shafts in perfect coincidence under operating conditions. Due to 
large temperature differences from ambient to operating conditions, 
twisting or uneven settling of the support structure and'other 
factors that influence the position of one machine relative to the 

coupled one, it is difficult to achieve this objective. To solve this 

Problem, couplings which accommodate changes in operating alignment 
as well as slight offsets due to tolerances in both the measurement 
and alignment procedures and also absorb for short periods, the 

offsets applied to compensate for thermal growth are employed [3]. 
Methods used for accurately aligning shafts and a machine string are 
relegated to (31 and Murray (4]. 
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Y Fig, 3 Types of shaft misalignment. 
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Alignment is described [1] as the measurement of a departure of a 

series of points from a straight line which 

IflhJ¼JtLJl uIII. JtJ11591111L. IuI 

Transverse misalignment 



45 

may have any attitude. This is a quantification of misalignment which 
is only part of a complete definition of alignment. Alignment is the 

corrective process necessary to collocate non-collinear points in 

order to achieve collinearity. In this chapter, alignment is analysed 
in terms of superposition of skew lines, superposition of line 

segments and superposition of two spatial congruent figures. The 
latter is discussed simply for purposes of completeness of the 

alignment investigation. 

3.1 ALIGNMENT OF THREE POINTS 

Dagnal and Pearn [5] define a straight line as the shortest distance 

between two given points A and B and that there can only be one such 
line. This is, however, the definition of a line segment as opposed 
to a straight line. A straight line is defined as an infinitely 

continuous line for which the distance between any selected pair of 

points along it is least. 

In general, the alignment of arly three points A, B, &C in space is a 
three dimensional problem. This can be demonstrated by arbitrarily 

placing a frame of reference XYZ (Figure 3.1(a)) so that the position 

of points A (xaya, za), B (xb, yb, zb) and C (xc, yc, zc) are described 

by three dimenicnal, vectors Ra, Rb and Rc respectively. The alignment 

of A, B and C can be reduced to a two dimensional problem if plane 

ABC defined by the points can be identified and the X-Y axes placed 
in it. Maxwell [61 presents a method of identifying such a plane 

passing through three given points (xl, yl, zl), (x2, y2, z2) and 

(x3, y3, z3) as well as the normals to it. 

The misalignment of three points can be quantified in three 

alternative ways. These are distinguished in Figure 3.1(b) for a 

plane ABC with a reference frame XOY set in it. The vectors ra, rb 

and rc respectively quantify the misalignments of points A, B and C 
from the other two. In this case the vectors are coplanar but in 

general they are three dimensional. The process of collocating any of 
the displaced points requires a two-degree of freedom manipulator. 
This is because two variables (displacements and angles) are required 
to specify the misalignments of the displaced point. That is, A is 

I- 
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moved to A' so that the required straight line is A'BC or similarly B 

to B' or C to C'. Vector ra is any one of oo 
1 

pencil of lines among 

00 
2 

passing through A and similarly for rb and rc. 
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Fig, 3,1(b) Alignment of points. 



3.2 ALIGtZ= OF SKEW LINES IN SPACE 

Two lines that do not intersect and are not parallel are said to be 

skew. Unlike the alignment of three points (3.1), alignment of two 

skew lines is more difficult because it requires four degrees of 

freedon-... This is because four independent quantities or variables 

(displacements and angles) are necessary to describe their 

misalignments as shown in F-Lgure 3.2. 

The Y-axis and the origin 0 of the frame of reference of Figure 3.2 

are chosen so that the X-axis lies along the stationary line A. A 

common perT)endicular of leryjth h drawn from a skewed moveable line D 

-he, origin. D makes an angle 0 intersects Aa distance Ld away from -11 

with A while the common perpendicular makes an angle ý with the Z- 

axis. 
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E\ 
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Id 

7 
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Fig, 3,2 Alignment of two skew lines in space- 
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The alignment of these two lines can be achieved in a number of 

different ways by changing the order by which each of the four 



quantities is reduced to zero. The sequence of such an operation is, 

however, irrelevant to the final result. It is envisaged that one 

such sequence through which alignment can be achieved is to translate 

D in the Y-directicn (negatively if D is above A) until a point PD on 
it intersects a point PA on A. Let the new position of D be D'. This 

translation accounts for one dimension. D' is then rotated about a 
line EE1 drawn through PA parallel to the Z-axis so that it occupies 

the same plane as A (X-z plane). Let this position be D". This 

rotation gives the second dimension while the choice of EE' is a 
third dimension. Finally, D" is rotated about a line drawn through 

the point of intersection of A& D" parallel to the Y-axis to bring 

it into alignment with A. This is a fourth dimension. 

In this alignment procedure, the intersection of a point on D with 

another point on A is completely arbitrary. If it is conducted such 
that a given point on D coincides with another specifed point on A, 

then it becomes a five dimensional task. This is the alignment of 
line segments discussed in the next section. A similar alignment 

procedure involving the use of screw motion is explained in Appendix 

A (A. 4). 

3.3 ALIGNMENT OF TWO LINE SEGMENTS 

A line segment is defined as the line which has the shortest distance 

between arry two fixed points A and B. Like two infinitely continuous 
lines, two line segments can either be coplanar or skew. The 

alignment of line segments is therefore not significantly different 

from the alignmment of lines. However, since line segments have 

definite ends and therefore definite lengths, the moveable line 

segment has got to occupy a specific position relative to the 

stationary line segment after the alignment procedures of section 3.2 

are accomplished. This means that the alignment of line segments 

whether coplanar or skew has one more dimension compared to the 

corresponding alignment procedures of lines (3.2). 

Let AlBl be a fixed line segment lying along the X-axis and A2B2 a 

moveable line segment lying along line D (Fig. 3.2). For these line 

segments to be aligned, the procedures for aligning lines (3.2) are 
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repeated provided that care is taken to ensure that A2B2 intersects 
AlB1 when it is translated along the Y or Z-axis. This places A2B2 

anywhere along the X-axis. If it is required that A2 should coincide 
with Al or Bl, then a further movement of A2B2 along the X-axis is 

necessary. If the line segments are equal in length, then the 

corrective action needed to transform one on to the other such that 
Al coincides with A2 and Bl with B2 is known as superposition. if one 
is longer than the other, then the normal process of transforming one 
to the other is conducted such that a row of points on one is moved 
to coincide with a congruent row on the other (A. 2 - Appendix A). 

3.4 SUPEPJ30SITION OF TWO COMMENT SPATIAL FIGURES 

After the completion of alignment of lines or line segments, the 

final orientations or attitudes of the bodies that contain them are 
irrelevant to the problem. Such orientations are only important when 
the superposition of spatial congruent figures are considered. 

It has been shown (3.1 to 3.3) that the alignment of three points, 

skew lines and line segments are respectively 3-(reducible to 2-), 4- 

and 5-dimensional and therefore requires the corresponding number of 
degree of freedom manipulators to align them. In a similar 

progression, and in an attempt to analyse the various interpretations 

of the word alignment, it is shown here that the superposition of two 

congruent spatial figures is a 6-dimensional problem. This is because 

it requires six independent quantities (angles and distances) to 

describe their misalignment. 

In Figure 3.4, two congruent spatial figures ABC and PQR are shown. 
ABC is fixed in space with A and C located on a fixed or stationary 
line parallel to the Z-axis such that AB is parallel to the X-axis. 

PQR, a moveable figure, occupies a completely different plane in 

space such that PR and AC are two line segments located on the 

correspcnding infinite lines whose commcn perpendicular of length du 
is parallel to the Y-axis. 

Since PQR is a moveable figure in space, the coordinates of P, Q and 
R can be arbitrarily defined by a total of nine different variables 
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as P(x yzz) and R(x Since PO, QR, and RP are P, P, p 
Q(xq, yq, q r, Yr, zr 

line segments in space, their corresponding equations can be set out 

as follows: 

((xp-xq )2+ (yp-yq )2+ (z p- zq) 
2) 1/2 

= kl ............. (1). 

«xq-xr) 2+ (yq-yr) 2+ (z q-zr) 
2) 1/2 

= k2 ............. (2). 

f (xr-xp )2+ (yr-yp) 2+ (z 
r-zp 

)2) 1/2 
= k3 ............. (3). 

where kl, k2 and k3 are the respective line segment lengths. Three 

equations are therefore obtained but with nine independent variables. 

Since a line is completely defined by only four independent 

variables, it means that three variables must be dropped to leave 

six. This proves that the procedure of superposing PQR or, to ABC is 

6-dimensional requiring a six degree-of -freedom manipulator. 

Y 

Fýý, 4 Superposifion of two spatial 
congruent figures. 

Q 
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3.5 SUMMARY OF ALIGNVETU 1, =CDS 

Roth [7] defines a screw displacement as a rotation of a body about a 

given axis sij and a translation dij along the same axis. i and j 

being the initial and final positions respectively. That is, the 

position of a body can be transformed into a second position by a 

screw displacement. For the displacement of a rigid body in which the 

rotation angle Yij j, 
the translation distance dii and the screw axis 

sij are fully determined, the screw is unique. This fact was 

established by others and restated by Bottema [8]. This method was 

utilised (81 to solve the alignment problems (3.2 - 3.4) the results 

of which are presented in Appendix A. 

The results of Appendix A and those discussed above are summarised in 

table 3.5 below. While Appendix A investigates the different screw 

systems involved in each alignment, the alignment discussions 

presented in this Chapter lead to a recognition of the number of 
degrees of freedom required of the manipulators. It is also meant to 

draw the attention of engineers to a more practical solution to the 

the problem of alignments and possibly the usefulness of screws in 

alignment. As shown in the table, the manipulator degree of freedom 

and the order of screws for a particular alignment adds up to six. 

TABLE 3.5: THE GENERAL ALIGNMENT RESULTS 

---------------- 
ALIGNMENT 

------------------- 
MANIPULATOR 

--------------- 
INDEX OF SCREW 

---------------- 
VIANIP. FREEDOM 

(SUPERPOSITION) DBG? M OF FREEDOM . -- SYSTEM + 

SCREW ORDER 

---------------- 
POINTS 

------------------- 
2 

---------------- 

oc)4 
----------------- 

2+4=6 

----------------- 
LINES 

------------------- 
4 

---------------- 

002 
----------------- 

4+2=6 

---------------- 
LINE SEGAENTS 

------------------- 
5 

---------------- 

001 

----------------- 
5+1=6 

--------------- 
RIGID BODIES 

--- ---------- 
6 

---- ----------- 

000 

-- ------------- 
6+0=6 
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CHAPTER 4 

SURVEY OF MICROACRIMURS 

CHAPTER OVERVIEW 

This chapter presents the results of a survey of commercially 

available micropositioners. The differences between microactuators, 

micrcpositioners and mi=manipulators are made clear in secticn 4.1 

by defining each of these terms. The reasons for conducting this 

su--, -, 7ey are stated in the introducticii. 

Some specifications (not given in Chapter 2) which outline the 

lateral, axial, and angular tolerances based on the presently 

available literature are also presented in the introducticrL 

A brief survey of bimetals is presented in sections 4.2 to 4.2.1 

followed by a detailed survey of piezoelectric actuators presented in 

sections 4.3 up to 4.3.13. This includes locking at their properties, 

problems associated with their cOnStructicn and briefly commenting cn 
the presently available micromanipulators ccnstxucted cut of them. 

The survey of electric motor actuation is presented in Appendix B. 

The reasons for selecting the Oriel Encoder Mike micrometers as the 

most appropriate actuator for use in this thesis are also discussed 

in the Appendix. The survey ends in section 4.5 with a brief 

discussion of fluid actuators comprising of pneumatic and hydraulic 

actuators. 

4.0 INTRODUMON 

A literature review of the various optical fibre transmission 

components'and their associated coupling problems have been discussed 

(2.1) followed by the analysis of alignment of lines (chapter 3) with 

a view of linking them for a possible solution to the coupling 

problems outlined. A selection procedure to obtain a suitable 

actuator for the ocnstructim of an appropriate manipulator aimed at 

achieving this is presented. This procedure can cnly be carried out 
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after the aligrunent tolexances to be accommodated by the actuator are 

specified. 

Since the object of this research work is to produce a general 

purpose semi-automated micro-alignment system capable of obtaining 
the optimum launch efficiency for any coupling method (2.3.1-2.3.4), 

it is important to base the specifications on the worst available 

established practical tolerances. These are partly obtained from a 
literature survey of the presently available alignment results 

already discussed (2.3.5) and partly from STC the supplier of the 

semiconductor laser diode and the monomode optical fibre to be 

experimented up cn. 

The results from the literature survey of Chapter 2 produced the - 
following selected tolerances: 

Lateral aligrunent tolerance = 1.2 11m. 
Axial aligrunerit tolerance = 7.0 pm. 
Angular aligrunent tolerance = 0.9P. 

These specificaticns will cnly account for misalignment tolerances 

for particular coupling configurations (methods) and the axes for 

which they are quoted. 

However, the optical fibre provided by STC for experimental purposes 

has a cornrerging lens of 35 pm in diameter and focal length of 80 [Im 

permanently inserted into its input face. In order to avoid contact 

between this lens and the laser diode face, which could result in the 

damage of botli, STC recommends a minimum separation axial distance of 
40pm between this lens and the laser diode face and that the maximum 
load (weight of laser diode package) to be tested is 40 gm (2.5). It 

is also exrAsaged that the maximum overall distance to be covered by 

an actuator along any axis during the laser fibre alignment can not 

exceed 6 mm. As it was later discovered (2.5), for laser/fibre 

aligrynent, the largest distance traversed by any actuator can not in 

general exceed 100 pm. 
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4.1 ACIUATORS FOR ALIGNMENT 

An actuator may be defined as a coupling which contains an element 
that provides power and motion. If the optical misalignment problems 
involving minute tolerances of the order discussed above are to be 

solved by an automated means as suggested in the specifications, then 

a very precise actuator whose respcnse is least affected by applied 

electrical signal as well as temperature must be utilised. It is 

necessary to highlight the calcise definitions and discussions of the 

associated terms like stability, repeatabilty, resolution, hysteresis 

etc, before delving fully into the discussions of these actuators. 
These in turn help foster a good LTAerstanding of the properties and 

capabilities of some of the actuators to be discussed. 

nnfi ni +-4 eNnc-- 

1. The mechanical accuracy is defined as the difference between a 
theoretical and a real dimensional value. In micropositioning, 
the dimension measured is the difference between two successive 

positions of the same obj ect. In a measuring instrument, accuracy 
is the instrument's ability to record the true value of the 

measured variable whereas in a controlling instrument it is its 

ability to establish the desired value of the variable being 

omtrolled. 

2. iiysteresis is defined as the difference in the absolute position 

of the moving portion of a stage after travelling in one 
direction and then reversing to return by the opposite way. It 

would appear to be backlash but in fact is a change in the 

equilibrium position created by an inversion of the direction of 

frictiai force. 

Dario and De Rossi [11 define hysteresis as the difference in the 

value of a physical parameter (such as an electric charge) 

according to whether a phenomencn on which it depends (such as a 
force) is increasing or decreasing. 
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3. Repeatability is defined as the ocnsistency in the quality of a 
measurement system. It is by far the most important factor in 

such a system. If the same value of the measured variable is 

reproduced many times under the same environmental conditions 

and origin of reference, then the instrument is said to have a 
high degree of repeatability. 

4. Sensitivity is the ability of a positicner to respond to motion 

command. That is, the smallest change in the input signal that 

will cause a change in its displacement position. In a measuring 
instrument, it is the size of the deflection produced by the 

instrument for a given change in the measured variable. Jones 

[2] states that sensitivity is used to denote the smallest change 

in the value of the variable being measured to which the 

instrument will respond. The largest change in the measured 

varlable to which the instrument does not respond is called the 

dead zcne [2]. 

5. Resolution is the smallest movement attainable in an actuator. 

micropositioner which is driven by a stepper motor can be said 
to provide a resolution of 1 step. This single step can be 

equivalent to a linearly resolved distance of say 1 micron. A 

micropositioner driven by Oriel Encoder Mikes, for example, has 

a resolutim of 0.02 microns. 

6. The limit of resolution is defined as the threshold at which the 

positicner's motion will correspcnd to the value of the command 

signal. 

7. A microactuator is defined as a movement reduction element 

providing a unidirecticnal moticn. 

8. A micropositicner is defined as a movement reduction instrument 

providing translational movement in 2-dimensions. It comprises 

of two microactuators assembled together to give the two 

transiatim moticns. 

9. A mi=manipulator is a movement reduction instrument providing 
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translational motion in 3-dimensions. It consists of three 

actuators assembled together so that each actuator is directly 

associated with a translation motion in a particular direction. 

It must be realised that 5-degree of freedom micromanipulators 
with three translational axes and two rotary axes or some other 
combinations including 4-degrees of freedom are also available. 

4.1.1 Drift 

Drift of an instrument is defined [2] as a gradual shift of its 

calibration over a period of time. It is directly related to the 

repeatability of a measuring system. The higher the degree of 

repeatability, the less is its tendency to drift. The causes of drift 

are dependent cn the operating system. It may occur in thermocouples 

owing to changes in the metals as a result of contamination. It 

occurs in flowmeters because of wear of the differential pressure 

producing element and may occur in hydraulic systems because of 
leakage due to wear and tear. 

4.1.2 Stability of a Positicner 

The stability of a system is its ability to maintain its performance 

characteristics under different environmental conditions over a 
period of time. The stability of a positioner or arry other system is 

dependent on the interaction of-various factors or constraints 

normally considered an elastic equilibrium pherx)mena. 

Although in a stable environment the position repeatabilty is 

oonsidered ideal, a small amount of drift can not be"ruled out. This 
drift is caused by factors of unequal importance namely wear and 
tear, variation in lubricant thickness with contact pressure and 
thermal equilibrium with particular reference to sporadic localised 

heatirxj. 

4.1.3 Creep 

Olsen [31 summarises creep as the time dependent strain that occurs 
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at elevated temperatures when a material is subjected to stress for a 
prolonged period of time. 

In piezoelectric actuators when a step voltage is applied, the 

actuator executes a step displacement which texx1s to increase over a 
period of time. This phenomena takes place at a specific voltage 
range for a given piezoelectric actuator and can lead to fracture at 
even higher voltages. This is also known as creep. 

Unless otherwise stated, the word MICRO will be detached from 

actuation (actuators), positioning (positioners), and manipulation 
(manipulators) but implied in f-urther discussions because it appears 

quite frequently in the Chapter. 

In an attempt to find a suitable micro-actuator, a survey of four 

major types of conventional actuators is now launched. These comprise 
the bimetallic, piezoelectric, electric motor and fluid actuators 

respectively. Electromagnetic actuators are dismissed because of 
their poor response to hysteresis problems. 

4.2 BIMErALLIC MMMAL ACIUATORS 

A bimetallic strip consists of two permanently bonded layers of 
dissimilar metals with different coefficients of thermal expansion. 
on applying heat, the metal with a higher coefficient of thermal 

expansion will tend to move away from its counterpart. This results 
in the bending of the entire strip because of the bonding between the 

two metals. Baker et al [41 state that depending thus entirely on the 

elastic property, this type of element is not suited to high 

precision. 

The bending action of these elements has for a long time been 

utilised for actuating automatic recorders, telemetering devices and 

ccntrols. Such selections are made on the basis of (a) the simplicity 

and (b) the relatively low cost of the bimetallic operated units. 

Although nothing tangible has been reported in the presently 

available literature about the role of bimetallic actuators in 
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manipulation, Umetani [5] reports that thermal expansion type 

manipulators employing elongation properties of materials by heating 

are in operation. 

4.2.1 Range of Maximum Sensitivity and the Response of Bimetals 

The American Gas Association [6] reports that although a specific 
bimetal is normally recommended for use at a-particular temperature 

range, it does not necessarily maintain the same deflection over the 

entire range. 

It might in fact be desirable to use some bimetals over the maximum 

sensitivity range for some particular applications. If this happens 

to be important, it means that successful operations can only be 

carried out if the temperature of the thermal bimetallic element 

remains within its range of maximum sensitivity. 

In addition, due to heat inertia, the deflection of bimetallic strips 
is not proportional to the rate of heat flow (i. e. electrical power 
p= 12R, where I= current and R= resistance). On the contrary, the 

deflection is pi )rtional to the temperature. That is, temperature 

lags behind the heat f low through the strips. Likewise, the strips 

are slow to cool down. 

In conclusion, bimetallic strips are dismissed for a possible 

application in this thesis on the grounds that their response are 

generally too slow. In addition, it is ocnfirmed [4] that depending 

on the elastic property of bimetals, they are unsuitable for high 

precision work. 

4.3 PIEZOELECIRIC ACTUATORS 

Piezoelectric materials have only been recently introduced in the 

construction of manipulators. The majority of cases have been carried 

out at experimental stage by people like Spanner and Marth [71 and 
Umetani and Suzuki (81 aimed -at solving problems associated with 

microcircuit assembly, cellular biological research and bacterial 

culture. As far as the present literature suggests, nobody has so far 
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successfully utilised block piezoelectric translators by themselves 

for laser/fibre or fibre/fibre alignment. 

There is, however, no doubt that these materials are indeed promising 
for such alignment tasks. This belief is shared by Spanner and Marth 
(71 who successfully incorporated a fine adjustment x-y-z 

piezoelectric block translators on top of a coarse mechanical x-y-z 

stage for laser/fibre alignment. Quite recently (Octber 1986), two 

companies (Centronic Sales-Croydon and Photon Control -Cambridge) 
claimed to have produced similar alignment manipulators with uniaxial 

resolution of 0.1 pm. It was therefore not only found necessary to 

investigate the major drawbacks of this material in micropositioning 
but also to study its properties, areas of current application and 

evaluate its future potential for micro-alignment. 

4.3.1 Piezoelectricity in Ceramics and Polymeric PVDF 

Piezoelectricity, discovered by Jacques and Pierre Curie in the 

1880's, is defined by Vernitron [9] as the capability of certain 

particular class of materials to change their dimensions when 

subjected to an electric field or conversely produce an electric 

signal when mechanically deformed. It is therefore sometimes called 

pressure electricity. Pyroelectric materials on the other hand 

develop an electric charge from a thermal change but according to 

Bloomfield et al [101 inverse pyroelectricity is of minor importance. 

only 20 out of the normal 32 classes of crystals known to the 

crystallographer exhibit piezoelectricity but 10 out of the 20 

exhibit both piezo- and pyroelectricity [10]. The only linkage 

between the 20 groups being the absence of a centre of symmetry. 

The two major groups of piezoelectric materials currently in 

commercial use are the ceramics and polymer films. However, the very 
first piezoelectric materials ever known to scientists were naturally 

occurring Rochelle salt and quartz. More recently, ceramics that 

have improved piezoelectric activity have been synthesized. The 

advantage of ceramics over polymers in the energy conversion from one 
form to another, lies in its greater rigidity [11,12]. These brittle 
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materials are, however, hard to make in the thin large sections that 

are common place for polymer films [13]. Their applications can be 

classified (10] as either generator (mechanical vibration transformed 

into an electrical signal) or motor (electrical signal transformed 

into a mechanical force). Thus these two materials are more 

complementary than competitive as confirmed by their comparison given 

below. 

4.3.2 Piezoelectric Polymers Versus Ceramics 

Of all the ceramic and polymeric materials so far investigated, the 

action of lead zirconate titanate (PZT) and polyvinylidene fluoride 

(PVDF or PVF2) have been found by Corey and Hudspeth [11] and Toda 

[131 respectively to have higher piezoelectric activity than any 

other piezoelectric materials in the two respective groups. These 

materials differ from each other in many respects. Most of the 

typical prcperties of PVDF which sharply contrast with those of the 

ceramic PZT are summarised in table 4.3.2 below. 

TABLE 4.3.2: Comparison of PVDF and PZT materials 

No. DESCRIMON PVDF or PVF2 

POLYMER 
_ 

PZT 

_CERAMIC 

FEE ax= 

1 Approximate minimum 

obtainable thickness 6 to 7 pm Urkrimm but 

for the same length. max. thickness 13, p. 127 

is 0.25 mm 

2 Induction of electric 
field for same applied 

voltage. High LOW 13, p. 127 

3 maximum safe voltage 

applied (without 
degradation) 300 kv/cm 3 kv/an 13, p. 127 

18, p. 14- 
46 
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4 Maximum mechanical Five times Cne-fifth 13, p. 127 

power output per larger than of that of 18, p. 14- 

unit volume for PZT PVDF 46 

5 Density 'm73 1.789Tr 7.59mcm73 18, p. 14- 

38 

6 Piezoelectric 

constant, d3l 21xlO-12C/N -274xlO-12c/N 18, p. 14- 
38 

7 Relative dielectric 

constant 12 3400 18, p. 14- 
38 

8 Max. strain produced 
by application of max. 

safe voltage 10-4 10-5 18, p. 14- 

46 

9 Force produced as a Low but accom- High but accom- 

result of the appli- panied with panied with small 

cation of electric large displac- displacement of 
f ield ment of PVDF PZT 9,13,17& 

. 
11 

10 Flexibility, softness Very flexible Quite brittle 19 for 

and ruggedness , soft and PVDF and 
pliable 9,11,12 

for PZT 

11 maximum safe service 19,13 for 

temperature before PVDF and 
depolarisaticn. 8OPC 20OPC 12, p. 251 

I I I for PZT 

4.3.3 Fabricaticn of Piezoelectric PVDF and PZT Actuators 

The PVDF and PZT can both be fabricated into various shapes. Although 

PZT is rigid, Vernitron [91 has devised some special techniques of 

fabricating it into a cylindrical form. However, due to PVDF 
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pliability, Dameron and Linvill (14) were able to fabricate a 

(--ylincbr out of it with ease. 

Metatised Polymer Monomocph showing directions 
of oolarisation and accentuation whe-n a vottaQe- 
is ap tied to the electrode - 

Ly L 
-Z 

i L, 1 
-t 

Ele'ctro des Direction of actuation 
Ab[arisation Direction 

Fig, 4,3,3 (a) L= Length 
w -=Width 

At = Actuation due to applied volt-age 

The basic unit of either material is called a monomorpl-L When two or 

more monomorphs (usually an even number) are glued together, they 

form a bimorph. On application of an electric field, a monomorph 

executes a linear displacement (expands) but contracts with reverse 

polarity (Fig. 4.3.3(a)). By contrast, a bimorph bends as shown in 

Figure 4.3.3(b) and the direction similarly changes with reverse 

polarity. Toda [13] reveals that while the bending displacement of a 

bimorph is proportional to the reciprocal of the total number of unit 

layers (monomorphs), the force due to bending is proportional to the 

square of the same number of layers. This bending displacement is a 

result of having differing relationships between the polarisation 

di3ýections and the electric field for each laypx. The design analysis 

of conventional bimorph structures carried out a long time ago by 

Thurston (151 and others has been superseded by the modern design 

analysis of the mechanical output of (a) a multi-layer bimorph device 

composed of a central non-piezoelectric layer, (b) a multi-layer 
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bimorph device composed of various membrane thicknesses and (c) a 

single layer device with interdigitated electrodes fabricated by Toda 

[16]. It is stated [13] that the length of a bimorph is limited by 

gravity sagging at the far end of the bimorph if its major surface is 

horizontal. This is because gravity sagging is proportional to the 

fourth power, of the bimorph length [13]. 

ACTION OF A PVF2 BIMORPH 

Fi Q, 43,3 (b) 

V7 apptied vottage 

I 

4.3.4 Fabrication of Bimorphs 

N 

direction of 
>> movement 

The PZT and PVDF bimorphs are fabricated in a similar manner. Most 

PVDF films used for this purpose normally range from 5 to 9VLm in 

thickness [10,171 while PZT layers can each be up to 0.25mm thick 

[18,13,11]. 

The PVDF films and PZT layers are normally bound together by means of 

epoxy resin [17,111. It is necessary to minimise the thickness of the 

epoxy layers since they are not normally actively useful in the 

device action. LiqLad epoxy resin becomes solid after mixing with a 
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hardener [17]. 

in this technique, epmW resin and the hardener are separately coated 

on the surfaces to be bound and almost completely wiped of f. So, a 

very thin layer covers each surface and does not harden during the 

coating and wiping of f process. The surfaces are then contacted by 
fingers to give a tight bcnd. 

The thickness of the epoxy layer can be estimated from the difference 

in the thickness of a given number of epoxied layers and the same 

number of non-epoxied layers (piezoelectric matrial). Each epoxy 
layer was estimated [17] in the case of ten 9-micron thick PVDF 

layers bound togther , to be only about 0.3 micrcns thick. 

In the case of PZT ceramics, it is recommended [11] that two 

POlYcrYstallim ceramic laYers be epoxied to a flexible, electrically 

conductive centre strip, say a brass vane, such that the poling 

fields are anti-parallel. 

4.3.5 Fabricatim of Cylindrical Actuators 

The task of rolling the pliable PVDF films into piezoelectric tubes 

is normally easier than rolling the brittle PZT ceramic. Figure 4.3.5 

shows a PVDF structure being rolled up into a tube. 

Dameron and Linvill [14] criticises the technique of winding PVDF 

films on a mechanical rig. This is because the films tend to develop 

folds and wrinkles which form as the film is being rolled and 

propagate as it is wound further. 

A hand method in which the cylinder is rolled tightly between the 

fingers by applyiryj a force transferred tangentially to the sheets is 

preferred. In such a method, the application Of methanol to the PVDF 

layers in order to irxzease friction by means of surface tension so 
that the cylinder winds down properly without slipping is recommended 
[14]. In the process of winding, the epoxy resin and hardener are 

separately coated to the surfaces to be bound and almost completely 

wiped off before bindirxj the sheets together. 
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In the case of PZT ceramic tubes, Vernitron [9] has a number of 
different variations. Electrodes may, for example, cover the 

cylindrical surfaces with polarisation in the thir-kness direction. In 

another, the electrodes may cover the ends of the 4-tube with 

polarisation in the lengthwise direction and thirdly, the tube is cut 

lengthwise into an even number of curved plates. Electrodes are then 

applied to the cut edges. The individual plates are then polarised 

and the cylinder is finally assembled. 

Holtow cytinder formed from a sheet of PW2- 

flection 

Def tecti on 
Hollow cylinder 

direction 

PVF2 Applied voltage 
sheet 

Rolled up in this direction 

Cross sectional area of PVý 

Fig, 4,3,5 

4.3.6 Action of Cylindrical Actuators 

The hollow cylinder fabricated either by hand or a mechanical jig is 

operated in a length extender mode along the film stretch directicx-L 

Hengstenberg [12] mathematically describes the change in length AL 

when an electric field is applied across the tube wall as AL = 
(LxVxdl3)lw where L= length of tube, V= applied voltage, w= wall 

thickness and d13 is the transverse piezoelectric constant of the 

tube material. The tube expands (AL>O) if the electrical field is 

positive on the inner face of the tube and contracts (AL<O) with 

reverse polarity. 
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It is stated [14] that when the tube is operated below its resonant 
frequency where the strain is considered uniform along the length, 

then the deflection AL versus applied electric field is proportional 

to the length of the tube. Since the stiffness of the tube is 

proportional to the cross-secticnal area of PVDF used (14], it can be 

varied by the number of turns wound round to form the tube. 

4.3.7 Ap2licaticn of Piezoelectric Actuators in Micrcpositicning 

The feasibility of piezoelectric PVDF in manipulation has been 

demonstrated by Umetani and Suzuki [81 and also to a large extent by 

spanner and Marth [7]. According to the first authors, PVDF 

manipulators for handling very delicate and light objects can be of 

great interest for operation in cellular biology, bacterial culture, 
integrated circuit manufacturing and micxx>-mechanical manipulation. 
Apart from just performing mechanical tasks, Umetani [5] demonstrated 

that piezoelecric manipulators can be equipped with an electronic 
feedback circuit to provide tactile sensitivity. 

An x-y-z fibre manipulator in which two block piezoelectric 
translators, each with an expansion range of 50 mic=ns, are screwed 
directly on top of a linear mechanical stage for x-y alignment is 

also described [7]. This linear stage, driven by a high resolution 

stepper motor, takes care of alignment in the fibre axis. 

It has been found [111 that because the apparent Centre of rotation 

of a probe atta&. ed to a cantilever mounted bimorph is at the Centre 

of the bimorph, many plausible arrangements of bimorphs fail to 

produce motions along orthogonal axes. Workable solutions [11] for 

PZT bimorphs, involve the use of struts to transfer the displacement 

in a parallelogram arrangement or mounting configurations other than 

the cantilever. The authors discovered a Pi- configuration which is 

much stiffer compared to the strutted parallelogram arrangement. It 

is pointed out [111 that the Pi configuration is sufficiently rigid, 
low in drift and therefore suited to holding microelectrodes for cell 
impalement. It is also believed [11] that depending upon microscopic 

visibility, an electrode tip may be readily positioned to within a 
few tenths of a micrcm 
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The device can be used [11] for mechanical stimulation of cells, 

microdisection, and positioning of microelectrodes to impale cells. 

The attenuation in tle control electronics brings all sensitivities 

of the device to 0.5 microns per volt although -. the individual 

sensitivities along the z(probe), y(vertical) and x(horizontal) axes 

were found to be 0.56 microns/V, 1.25 microns/V and 2.0 microns/V 

respectively (11]. 

Hengstenberg [12] developed a piezoelectric jolter which ccnsists of 

a small piezoceramic tube attached to a micromanipulator and carries 

a microelectrode at its front end. Precise steps measured in 

nanometres per volt were linearly achieved with this tube up to a 

maximum excursion of 2 micrcns at 450 volts D. C. 

It is reported [ 121 that interneurcns of the visual system of a blow 

fly were impaled with the device attached to a hydraulic microdrive. 
In addition, it was possible to penetrate and stain fibres as small 

as 1 micron in diameter buried more than 100 microns deep in 

neuropil. 

4.3.8 The Drawbacks of Piezoelectric Actuators to Micromanipulatim 

Although piezoelectric actuators are envisaged suitable for 

microalignment, they have some drawbacks arising from the physics of 
their operation. Some of these are due to the improper construction 

of the actuators while the rest are mainly the result of applied 

electric potential and their control. - 

Some of the major drawbacks of these materials have been 

summarised [7] as follows: 

(a) The piezoelectric ef fect is non-linear at high electric field. 

This results in an S-shaped curve of strain dependence versus 

applied electric field. 

(b) The piezoelectric effect in artificially poled ceramic depends on 
time in certain voltage ranges. At high electric fields, an 

additional polarisation occurs and the piezoelectric translator 

F 
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changes its expansion by a small amount even if the applied high 

voltage is constant. This creeping depends logarithmically on 
time and has a value of 1% to 2% during each order of magnitude 
increase in time. 

(c) The achievable length variation is up to I or 2 thousandths of 
the piezoelectric ceramic lengUL The expansion of piezoelectric 
translators, including lever amplification, is limited to about 
Imm because of size limitations and stability considerations. 

However, other drawbacks have also been considered and presented in 

sections 4.3.9 to 4.3.12. 

4.3.9 Prcblems Associated with Constructim of Piezoelectric 

Actuators 

Piezoelectric tubes formed by a rolling process, normally develop 

prcblems. The winding process that forms the tubes usually produces 

small creases in the film which causes small cracks in the 

electrodes. These cracks are known [14] to electrically isolate 

portions of the film preventing all or portions of the film from 

being excited. The damaged films and electrodes are prone to quick 
failure due tc) high current densities and weaker electrodes. This is 

aggravated by thermal expansion of PVF2 and the conductive epoxy 

causing micro-cracks to form in the electrodes both of which give 

rise to favourable propagaticn failure sites. 

The use of thicker PVDF films (say 30 microns) is recommended (141 

because they have less number of flaws and usually give fewer winding 

and cracking problems. They, however, need larger voltages in order 
to produce the required electric strengths. 

The construction of bimorphs can also develop similar problems if (a) 

the layers are not properly pressed down onto each other resulting in 

the formation of wrinkles and (b) there are cracks or flaws in the 

individual layers. These problems are more Common in PVDF than 

ceramics. 
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4.3.10 Rescnance of Piezoelectric Actuators 

Due to the elastic compliance and mass of a bimorph, it has to 

display mechanical resonance. Mechanical failure can occur if a 
bimorph is driven undamped , and unloaded at the resonant frequency. 

It is known [11] that the large flexion that occurs can cause a 
strain failure. The mechanical damping is usually low giving 

significance to the rescnant behaviour. 

When the driving voltage is of a frequency near the resonant 
frequency, the motion of the bimorph will greatly accentuate that 

component of the driving voltage. The response of the bimorph to a 

step in the driving voltage has been given (14] as a graphic example. 
The step has a contIrAxxLs frequency spectrum including the resonant 
frequency and so the bimorph "rings" following the STEP. Although 

other waveforms like the triangle waves contain smaller high 

frequency components, the ringing can still be significant. 

It was found [11] that for a combined effective mass and compliance 

of a PZT-5H cantilevered bimorph, the rescnant frequency fr = Kr/ t2 

where K, = 0.2 Hzm2 and t is the length of the cantilever. This 

problem can only be solved by either (a) constructing a circuit to 

counteract the resonance or (b) devising alternative means of 

moLmting the bimorPh [111. 

4.3.11 Creep 

It is stated [11) that following a step displacement, the PZT-5H 

bimorph's displacement continues to increase over a period of 

milliseconds to seconds to a value 15% larger than the initial 

displacement. This is called creep. At high electric fields an 

additional polarization of artificially poled ceramics occurs and the 

piezoelectric translator changes its expansion by a small amount, 

even if the applied voltage is constant (7]. This creeping depends 

logarithmically on time and has a value of about 1% to 2% during each 

order of magnitude increase in time [7]. None of these authors 

specify the creep time scale of tl*-se materials. 
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It is reoognised [7] that there are two distinct types of creep. Cne 
is intrinsic to the bimorph and the other is attributable to its 

coupling to probes and holders. 

Since creep and resonance inevitably contribute to, the malfunction of 
the bimorph, they have to be reduced or eliminated. One method of 
reducing creep is by a mechanical preload but can only be eliminated 
[7] with a separate linear sensor operating in a closed loop circuit. 

4.3.12 Problems Associated with Control of Piezoelectric Actuators 

In order to construct a proper control of piezoelectric actuators, 
Syrinx (20] recommends the use of a power supply with a very good 

regulator and a large reservoir. This is because an electric signal 

applied to such an actuator usually decays after sometime and if 

improperly topped up, the actuator drocps. 

The impedance representing the mechanical system in a resonant device 

may become a resistance of relatively low value at resonance [9]. 

This is shunted by static capacitance. Shunt static capacitance is 

known [9] to be undesirable whether the device is designed for 

operation at resonance or for broad band below resonance operation. 
In electrically driven devices, it shunts the driving amplifier or 

other signal source requiring that the source be capable of supplying 

extra current. 

The problem of control is made more complex by the fact that it is 

designed to look after both creep and resonance. The general SC)lUtim 
for resonance is given [11] as being the removal of high frequency 

components from the driving voltage. This is effected by filtering or 

otherwise shaping the wavefonn if ringing is found to be significant 

above certain frequencies. The time course of the slow displacement 

like that of other viscoelastic relaxations, is not a simple linear 

or exponential relationship, but is adequately fitted by a sum of 

exponential decays with time constants nearly an order of magnitude 
apart [11]. The authors also state that shaping the driving signal to 

correct for such a creep requires compensation, for each of the terms. 
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4.3.13 Ccnclusicn 

In general, the major limitations of the usefulness of piezoelectric 

actuators 3n micromanipulatiai are their slow speeds, high applied 

voltages that give very small change in length and the costly 
electronics to go with it. 

Although Spanner and Marth (7] (and the claim put forward by the two 

companies (4.3)) strongly suggest that the positioning of monomode 
fibres will undoubtedly be an important future application of 

piezoelectric actuators, evidence from the investigations carried cut 

on the subject still defies it. Effective reduction in hysteresis, 

creep, the cost of electronics to go with it, the time of operation 

and possibly the cost of manufacture are mandatory if these materials 

are to be used for precise positioning of optical fibres. Thus 

despite their attractive properties, piezoelctric actuators are still 

envisaged generally unsuitable. 

4.4 ELECIRIC MOTOR AMIATION 

Mechanical manipulators have been more successful compared to other 
designs because they have no major inherent design limitations, more 

easily manufactured and consequently less expensive. This is because 

the manufacture of actuators (translators) used for assembling these 

manipulators is based up on known technology and there is high demand 

for them. There are currently a variety of commercially available 

motorised mechanical micropositioners produced by various 

manufacturers. Although their load capacity, accuracy, speed, 

repeatability and other properties already discussed vary a great 
deal, they are either motorised by DC or stepper motors both of which 

are geared down and converted to linear motion. 

A few actuators thought to be representative of the type required for 

the alignment work are discussed in Appendix B. The reasons for 

picking Oriel Encoder Mike actuator for this work are outlined in 

that Appendix. To maintain ccnsistency, the sequence of sub-section 

numbering (4.4.1 - 4.4-4) is continued in the Appendix and the 

references given there are presented at the end of this chapter. 
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4.5 FLUID ACIUATORS 

Generally, mechanical micromanipulators or actuators are more 

successful because they have far less inherent design limitations. 

Thus, in addition to those already discussed, a brief survey of the 

non-mechanical ones like hydraulic and pneumatic actuators are also 
discussed in this sectiom 

4.5.1 Pneumatic Actuators 

It is stated (111 that while pneumatic and hydraulic manipulators 

give exellent control for manipulation in up to three dimensions, 

they can not be driven at high frequencies. In addition, they are 

usually bulky and quite expensive. 

Pneumatic manipulators in particular, have two major limitations. 

Firstly, air volume changes due to variation in ambient temperature , 
result in spurious output movement. Secondly, because of air 

compressibility, the output movement does not correspond directly 

with the input movement and so there is a tendency for it to lag 

behind and then overshoot. This is most evident in situations where 
the output has to exert a force. 

4.5.2 Hydraulic Actuators 

in hydraulic micromanipulators, movement reduction is obtained in the 

same way as in pneumatic design except that liquid is used instead of 

air. There are severe practical difficulties involved both in 

excludirxj air bubbles and makirxj good low-friction piston seals. Thus 

both of these micromanipulator types would not be of any great value 
in this exercise sime their deficiencies will generally affect their 

accuracies and tolerances. 

4.5.3 Conclusion 

The overall literature analysis presented in this Chap-ter, strongly 

suggests that there are no better actuators presently suited to 
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laser-fibre alignment than the Oriel Encoder Mikes. Although 

relatively slow, its tolerance and accuracy and other notably supeiOr 
features it possesses, greatly favour it for use in this 

microaligrunent work. 

The other actuators that could be seriously considered after the 

Ehooder Mikes, are the Stepper Mikes (except for its price and size) 

and piezoelectric actuators in that order. 

**** 

REFERcEs. 

1. P. Dario and D. De Rossi. 

"Tactile Sensors and the gripping challenge", IEEE 

Spectrum. August 1985 (p. 46-). 

2. E. B. Jcnes. 
"Measurement of pressue level, flow and temperature.,, 

Instrument Technology Vol. l. Butterworths 1965 (p. ix). 

3. G. A. Olsen. 

"Elements of Mechanics of Materials. " 

Prentice Hall 1982 (p. 84-85). 

4. H. D. Baker, E. A. Ryder and N. H. Baker. 

"Temperature Measurement in Engineering", John Wiley and Sons 

Inc., vol. 1,1953 (p. 16). Second printing March, 1963. 

5. Y. Umetani. 
"Principle of a piezoelectric micromanipulator with tactile 

sensibility", Proceedings of the 8th International Symposium on 
Industrial Robots (ISIR), vol. 1,1978 (p. 406-13). 

American Gas Association Testing Laboratories. 
"A study of Bimetallic Thermal Elements", Research Bulletin No. 42 

(Sponsored by Committee on Domestic Gas Research, F. M. Banks, 
Chairman). First published, 1947. (p. 2,16-19). 



76 

7. K. Spamer and H. Marth. 

"Precise positioning with piezoelectric translators (Direct 

Electrical to Mechanical Conversion yields Effective 

Micropositioning)", Lasers and Applicatims. August 1983 (p. 61- 

63). 

8. Y. Umetani and H. Suzuki. 

"Piezoelectric micromanipulator in multi-degrees of freedom with 
tactile sensibility", Proceedings of the 10th International 

Symposium on Industrial Fobots (ISIR), 1980 (p. 571-79). 

Vernitrm Piezoelectric Divisicn, Bedford, Ohio (USA). 

"Piezoelectric Technology (Data for Designers) Catalogue", 1983 

(p. 1,4,7,10,13,17). 

10. P. E. Bloomfield, R. A. Ferren, P. F. Radice, H. Stefanou, and O. S. 

Sprx)Ut. 

"Piezo- and Pyroelectricity in Poly(Vinylidene Fluoride)", Naval 

Research Review, vol. 31,1978 (p. 1-15). 

11. D. P. Corey and A. J. Hudspeth. 

"Mechanical Stimulation and Micromanipulaticn with Piezoelectric 

Bimorph Elements", Journal of Neuroscierce Methods, vol. 3,1980 

(p. 183-202). 

12. R. Herxjstenberg - 
"A piezoelectric device to aid penetration of small nerve fibres 

with micro-electrodes", Journal of Neuroscience Methods, vol. 4, 

1981 (p. 249-255). 

13. M. Toda. 
'Voltage-induced large amplitude bending device - pvF2 bimorph - 
its properties and applications", Ferroelectrics, vol. 32,1981 

(p. 127-133). Gordon and Breach, Science Publishers, Inc. 



77 

14. D. H. Dameron and J. G. Linvill. 

"Cylindrical PVF2 Electromechanical Transducers", Sensors and 
Actuators, vol. 2,1981/82 (p. 73-84). 

15. E. G. Thurston. 
"The theoretical sensitivity of three types of rectangular bimorph 

transducers", Journal of Acoustics Society of America, vol. 25, 

1953 (P. 870). 

16. M. Toda. 
"Design of Piezoelectric Polymer Moticnal Devices with various 

Structures", The Transactions of the IECE of Japan, vol. E-61, 

Nd. 7, July 1978 (p. 513-18). 

17. M. Toda and S. Osaka. 

"Electromotional device using PVF2 Multilayer Bimorph", The 

Transactions of the IECE of Japan, vol. E-61, No. 7, July 

1978 (p. 507-512). 

18. P. Dario, C. Domenici, R. Bardelli, D. Do Rossi and P. C. Pinotti. 

"Piezoelectric Polymers: New Sensor Materials for Robotic 

Applications", l3th international symposium on Industrial Robots 

and Robots 7. Conference Proceedings, vol. 2, April 17 - 21,1983, 

chicago - USA. (p. 14-34). 

19. G. M. Sessler. 

"Piezoelectricity in Polyvinylidene Fluoride", Journal of 
Acoustics Society of America, Vol. 70, No. 6, Dec. 1981(p. 1596-1608) 

20. Syrinx Precision Instruments Limited. 

(Manufacturer of PVDF Polymer-Edinburg, U. K. ) 

Personal Ccmunication. 

21. Ealing Corporation, Mass. -USA. 
"(Ealing Optics Catalog, 1981)". 

22. Microcontrole Evxy, Cedex - France. 

"(Microcontrole Catalog 1985-86)". 



78 

23. Oriel Corporation, cbnneticut-usA. 

"(Oriel Motorized Precision Motion Devices with position Read Out 

Catalog and personal ommi-Lication)". 

24. Newport Corporation, California, USA. 

"(Newport Corporation Catalog 1983-84 and The New Product 

Supplement Catalog 1985)". 

25. McLeman Servo Supplies Ltd, Surrey - England. 
"Digitran Stepper Motor Drive TM 164C Catalog". 

26. Unimatic Engineers Ltd. 

"Stepping Motors - Sigma Motion Control Catalog", Printed in USA, 
1984. 



79 

CHAPTER 5 

CXXIPLINGS AND THE OF VZMTMATCM 

CH=R Uv' MWIEW 

Manipulators are required for different purposes. In this chapter, 
they are examined for the purpose of alignment. This is tackled by 

looking at different types of couplings (actuators) inorder to gang 
them together to form the required manipulator. That is, manipulators 
need actuators to be coupled together either in series or parallel as 
discussed in section 5.1. In section 5.7, a three-legged parallel 
coupling called the Kelvin Coupling (Figure 5.6.1(a)) is analysed for 

a possible transformation into a four degree of freedom manipulator 
for this aligrunent. 

The Kelvin coupling consists of two parts. One of them (a tripod) has 

three vertical legs that make contacts with a second surface (5.6.1). 

These legs are close to each other and this makes it difficult to 
introduce a fourth leg let alone incorporating actuators. This in 
turn leads to difficulties in manipulation. Inorder to overcome these 

difficulties, a variant of the same coupling is formed (5.7) by 

moving the legs further apart and introducing a fourth leg. This 

variant'is then later (chapter 6) transformed into a manipulator by 

incorporating actuators in all the four legs for purposes of 

alignment. The need for a four degree of freedom manipulator is 

explained by the fact that two misaligned lines in space require four 

independent variables to define fully their misalignment (3.2). 

A general discussion of couplings including series and parallel 

couplings is also presented. For purposes of completeness of the 

discussion on couplings, a distinction is also made between form and 
force closures. 

5.0 INTRODUCrION 

The launchirg of a ncn-linear laser beam into a mono- or multimcde, 

optical fibre needs a manipulator. The basic unit required for the 

construction of a manipulator is called an actuator. An actuator may 
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be defined (4.1) as a coupling that provides unidirectional motion. 
They are normally coupled together either in series or parallel to 

form the respective manipulators (series or parallel). Series 

coupling is structurally the simplest of the two. In an attempt to 

build a manipulator with actuators in parallel, it. is necessary to 

first examine suitable couplings to see how they can be mcxUfied to 

accomodate the actuators. In this chapter, a distinction is made 
between series and parallel couplings as well as between form and 

force closures. 

5.1 MANIPULATORS 

As already described (section 4.1), a manipulator consists of three or 

more actuators coupled together such that each actuator executes 

motion in or about a particular direction. This means that its 

overall number of degrees of freedom may be 3,4,5 or 6 depending on 

the purpose for which the manipulator is required. The particular 

number of degrees of freedom mentioned above can either be all linear 

or mixed with rotation by incorporating the appropriate actuators. 

The actuators are assembled either in series or parallel givirxj rise 

to a series or parallel manipulator respectively. These two types of 

manipulators have advantages and disadvantages over each other. 

Discussions of these two types of manipulators including their 

advantages and disadvantages are relegated to chapter 6 to leave room 

for couplings here. 

Since the object of this chapter is to seek a manipulator for the 

alignment of lines in space, it is appropriate to point out the 

reason for the need of one with four degrees of freedom. This can be 

explained by referring to the discussions of the alignment of two 

skew lines in space (section 3.2). In that section, it is established 
that four independent variables are required to fully describe the 

misalignment of two skew lines. This implies that a four degree of 
freedom manipulator is required to correct the misalignment. Either a 

series or parallel manipulator can be used but the latter has 

advantage over the former because generally, it accumulates less 

errors during manipulation. 
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5.2 COUPLINGS 

The term coupling is used to describe any means by which a wrench can 
be trasmitted from one body to another. Phillips (1] quotes others 

who describe a wrench in terms of a dual vector quantity comprising 

of (a) a resultant force upon the whole body acting along a given 

axis and (b) a couple acting parallel with the force and applicable 

at every point within the body This statement is only partly correct 

as confirmed by Hunt [2] who describes a wrench as a force-couple 

combination associated with a particular line called the wrench axis 

or screw axis. The combination ocAsts of a resultant force upon the 

whole body acting along the wrench axis but the resultant couple acts 

at a specified point parallel to the same axis. 

Couplings are introduced with different objectives in mind. Some of 
t1je objectives will simply be mentioned in this sectiorL As already 

stated, couplings are discussed here with the aim of building a 

manipulator for alignment. In their most general form, they include 

fluid (hydraulic), flexible, elastic, gravitational and contact 

couplings. A contact coupling, can be described as a connected 

network of bodies, of which two are the only members in contact with 
bodies that do not belong to the network. If it comprises of only two 

bodies, this coupling is described as simple and the contacting 

elements are referred to [2] as a kinematic pair. Others with more 
than two bodies (Hooke's joint or ball and roller bearings for 

example) are compound. 

Broersma [3] explains that the primary role of couplings is to permit 

certain machine elements either to be manufcýctured in separate parts 
to a higher degree of accuracy or to be heat treated separately to a 

more uniform quality. Generally, they are used for both purposes and 
in addition [31 to obtain increased freedom of movement of machine 

parts relative to each other. Thus inorder to provide for dynamic 

freedom of the machine parts relative to each other, the flexible, 

fluid or electromagnetic couplings are employed. These couplings 

yield the possibilty of dampening certain types of vibrations (for 

example, torsional and turbine blade vibrations) or impact loads 
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(say, propeller loads) propagated from one point of a propulsion unit 
to another [3]. That is, they provide compliance. Contact couplings 
on the other hand, serve to increase quasi-static. freedom of relative 
movement between parts. It is stated (31 that such a coupling can be 

used to absorb misalignment between a prime mover and a marine gear 
due to changes in their relative position created by thermal 

expansion. This change depends on speed and power conditions. The 

expansion occurs slowly enough to enable the acceleration effects to 
be assumed negligible during the expansion process. Such a process is 
known [3] as quasi-static. Another example of a contact coupling is 

an involute tooth type coupling found between steam or gas turbine 

and the first reduction pinion of a gear. This is described [3] as 
fine toothed coupling. 

Trylinski [4], however, narrows down the use of couplings to the 

connection Of shafts and that theY can be divided into flexible and 
rigid types. While flexible couplings provide elastic connection of 

shafts, allow for some misalignment and damp shocks and vibrations, 

rigid couplings provide either for complete rigdity or just in the 
direction of rotation. Those that provide rigidity in the direction 

of rotation may be sub-divided into (a) expansion couplings where the 

shaft has freedom of axial movement; (b) slip couplings if the shaft 

axes can shift while remaining parallel to each other; and (c) 

universal joint, couplings where the angle formed by the joined shafts 

can vary [ 4]. 

Rigid couplings have severe limitations. Stewart [51 states that if 

one of the coupled shafts is supported in more than one bearing, then 

unless the shaft system itself is flexible, considerable loading and 

wear will develop at the bearings and in the shaft due to small 
amounts of misalignments. The solution [5] is to employ a common 
housing for the two shafts and to ensure that the tolerances and 
accuracy of fitting are such as to achieve the necessary precise 
alignment. 

Sinclair (61 who deeply studied hydraulic couplings points out that 
fluid couplir)gq are essentially of the two element type having only a 

and, soc"arl 
primary, member without any intermediate guide vane or reaction member 
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such as is necessary to obtain torque conversion. The torque at the 

output shaft being equal to the torque at the input shaft under all 
conditions of speed, filling and slip. 

5.3 FORM AND FORCE CLOSURES 

Since this chapter is largely dedicated to the discussions of the 

different types of couplings, there is need to give some space to 
form and force closures for purposes of completeness. These are the 
two major methods of locking couplings together. A distinction 
between them will help to clarify the methods by which couplings 
interact together. 

The movement of a rigid body in space can be constrained (fully or 

partially) by making contacts with fixed surf aces. Lakshminarayana 
[7] states that if such a contact is maintained by virtue of the 

action of certain forces, then it is called force closure. When 

contact is maintained without reference to the applied forces, then 

it is called form closure (7]. 

it might appear rather premature to talk about the Kelvin coupling at 
this stage but the use of gravity and spring force to close two 

bodies is well illustrated by this coupling. The coupling is 

introduced in the summary and it is hoped that this will suffice for 

it to be used here to illustrate force closure. Otherwise full 

details can be found in section 5.6.1. 

Normaly, the elements of this coupling (Figure 5.6.1(a)) are closed 
by the force of gravity. Pollard [81 and Furse [91 explain that 

whenever gravity can not be utilised to maintain contacts, spring 
force applied at one or more points may be used. In the Kelvin 

coupling, separation of the elements can be avoided by this method. 
it is important that rcne of these springs should define a position 
for the body on which they act but to apply unidirectional force only 
[9]. That is, the direction of the applied forces must be determined 

correctly. This is called force closure. 

Figure 5.3(a) illustrates another application of force closure in 
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which A can be adjusted relative to a fixed plate B. Rod Al has a V- 

groave at its free end and is fi-xed to A while A2 has a sphere at its 

free end and is screwed to A. B also carries two rods B1 and B2 both 

fixed to it. Bl has a head spherical end which interacts with the V- 

grocyve of Al while the tri-hedral hollow of B2 interacts with A'2). The 

result is five constraints leaving A to rotate about a single axis 

that joins the centres of the two spheres B1 and A2. Inorder to fix A 

relatLve to B, screw M is arranged to contact a prolongation of A. 

The two bodies are Ulien locked together by two springs K. Rotation of 

M will then make A rotate about the given axis (Figure 5.3(a)). This 

approach was employed (81 to adjust the slit of a large spectogr3pý-L 

SECTION X-X. 

>0 

X 

A2 II jAl 

7 I1 I 
B2 B1 

BL 

Fig, 5,3 (a) Bodies A and Bare locked in a force closure 
arrangement by two springs K 

Another example of a force closure is a cam and tappet mechanism 

shown in Figure 5.3(b). As the cam rotates, the spring Kl pushes 

upwards to close the valve. 

Figure 5.3(c) illutrates a simple example of form closure. It is a 

cam mechanism in which the curve is made in form of a slot forming 

two equidistant curves cl and c2. The roller R is unable to roll 

simultaneously on both surfaces thus clearence is required between 

the roller and the two surfaces. There are a number of other examples 

of cam mechanisms that illustrate form closure. 
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(b)Cam and tappet arrangement 
illustrating force closure. 

(c) Cam mechanism 

Fi gs, 5,3 

Figure 5.3(d) is another example of form closure in which balls are 

trapped inside a cage between two races. 
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Lower pairs where an element completely contains another within its 

profile are constrained and closure is complete. If restraint is 

incomplete, force closure is necessary. Form closure is usually 

preferred to force closure because it is difficult to determine the 

direction of applied forces. 

In general, force closed higher couplings with requisite point 

contacts c (f = 6-c), need an extra point contact for complete 

restraint. Laksminarayana, [7] quotes others who established that 

while a minimum of four point contacts are required to completely 

restrain a rigid body in planar motion, seven are necessary to 

restrain those in space. 

5.4 SERIES AND PARALLEL COUPLINGS 

Analogously to electrical network circuits, the two extreme 

approaches that are used for-coupling bodies together may be 

described as the series and parallel arrangements. While the series 

arrangement consists of couplings joined end to end and therefore 

forming a single chain (zero loop), the parallel coupling method 
forms independent loops or circuits. A distinction between these two 

couplings is made in sections 5.5 and 5.6 below. 

In a complex coupling system, a mixture of these two arrangements is 

employed. It is stated [2] that more complicated connections or 

couplings consist of several kinematic pairs themselves connected in 

series or parallel. 

An electrically powered actuator like the Oriel Encoder Mike (4.4), 

has. one degree of freedom. A piston and a cylinder on the other hand, 

can have one or two degrees of freedom depending on how they are 

connected to the rest of the network. Similarly, series and parallel 

couplings represented by edges need not all have the same number of 
degrees of freedom as illustrated in sections 5.5 and 5.6 below. Each 

edge can be constrained to have a different number of degrees of 
freedom from another provided that the overall coupling system has no 

more than six degrees of freedom (-see Figure 5.6 (b)). 



NOM: (See p. 87, parag. 2) 
This is because in a serial manipulator, each actuator is carried by 
theOther actuators below it on the arm. Therefore errors due to 

encoder inaccuracies and other system control effects (eg steady 
state errors) are cumulative. 
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In general, the series coupling arrangement is represented 

graphically as in Figure 5.5. These couplings are connected end to 

end and in tuns connect body A to B. The bodies are represented by 

vertices none of which needs to be fixed. This arrangement allows six 
degrees of freedom because there are six edges each representing a 

single degree of freedom (f = 1). 

SincO this chapter deals lar901Y with the develcixnent of a parallel 

manipulator for the alignment of lines, little needs b: ) be said about 

series couplings. It is therefore considered appropriate to terminate 

further of series couplings here. 

A 

f=1 
Fig 5,5 Graphical repmsentation 

for each of a series coupling. 
coupling 

B 

5.6 PARALLEL COUPLINGS 

The parallel coupling arrangement of Figure 5.6(a) is a graphical 

representation drawn with each edge k0ependently connecting body A 

to B. This results in the formation of a loop between any two edges. 

This coupling arrangement has six edges connecting A to B but only 

five independent loops are formed. It allows zero degrees of freedom 

but each of the six edges r resents five degrees of freedom (f = 5). 
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for each 
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f= 
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V. 

Fig. 5,6 Graphical representation of parallel couplings. 

There is an upper limit on the number of independent circuits 

associated with a graphical representation of a parallel coupling. 

Figure 5.6(a) is one such example in which each of the six edges of 

the graphical representation of a zero degree of freedom coupling has 

one constraint. That is, if an actuator is introduced into the 

coupling represented by each edge, the resulting manipulator acquires 

six degrees of freedom. Since the object of this study is to produce 

a four degree of freedom manipulator for alignment purposes (5.1), 

four independent paths f rom A to B need to be created. This is an 

intermediate parallel arrangement (Figure 5.6 (b)) in which two edges 

are each associated with two constraints (f = 4) while each of the 

remaining pair has one constraint (f = 5). A coupling that matches 

this type of arrangement could be modified to achieve the required 

manipulator. 

This leads to the discussion of the Kelvin coupling presented below 

(5.6.1). As stated earlier, this is a parallel coupling in which 

three vertical legs of one component interacts and makes contact with 

a seccnd surface. The contacts being maintained by gravity. 
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5.6.1 The Kelvin Coupling 

There are evidently two methods of supporting bodies (instruments in 

particular) in a definite position. One is always attributed to Lord 

Kelvin and the other, though according to Maxwell [10] is known to 

Lord Kelvin, is not attributed by him or as far as the present 
literature reveals, to a named inventor. 

Furse (9] points out that one of the earliest forms of kinematic 

fixtures known as the hole, slot and plane fixing was devised by Lord 

Kelvin. By implication, it has a trihedral hollow T, a V-groove G 
(with both axes inclined at 450 to the base and cut in a direction 

passing through the centre of the hole) and a plane surface Ps, all 
formed in the surface of the base E2 (Figure 5.6.1(a)). The tripod El 

has three hemispherical feet one of which rests in the trihedral 

hollow T and produces three point contacts, a second one interacts 

with G and makes two point contacts while the third rests on the 

plane surface Ps making a single point contact. Overall, six point 

contacts are made between the hemisphexical feet and the base E2 such 
that El is fully constrained and kept in place with respect to E2. Ps 

and T substitute S and H as originally used by Lord Kelvin to avoid 

confusing them with the universal representation of the spherical 
joint and the screw pair respectively. 

It is stated [10] that in his design, Lord Kelvin chose to arrange 
the tripod El to have three hemispherical feet of unequal lengths. 

The longest foot was made to interact with T making three point 

contacts, the second longest interacted with G producing two point 

contacts and the shortest rested on Ps making a single point contact. 

There is no advantage of this over the tripod with equal leg lengths 

because all the forces still pass through the legs and so, there is 

no bending. In fact, that method presents more design problems 
because it has to cater for the appropriate dimensions of G and T to 

accomodate the different leg lengths so that El is levelled with 

respect to E2. This point was seized by later designers who made all 
legs equal. 

The seccnd method to which even Maxwell [101 does not attach a name, 
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consists of three similar V-grooves G formed on the surface of B2 

(Figure 5.6.1(b)). The direct: ions of these v-grxxyves meet in a single 

point preferably at an angle of 1200. It is not essential that the 

grooves meet at this angle but it is preferred because of symmetry 

and also ensures well oorditioning [11]. Another possibility is that 

the three V-grooves could be engraved on B2 so that the three lines 

(p, q, r) of intersection of their planes meet each other at different 

points a, b, c shown (exagerated) in Figure 5.6.1(c. ). The tripod Bl 

with three equal hemispherical feet, each of which interacts with G 

and makes two point contacts, is fully constrained and kept in place 

with respect to B2. 

El 
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In Lord Kelvin's method where the tripod has three unequal feet, it 

is impossible to place any but the correct foot into the hole without 
detecting the mistake. However, it is mechanically difficult to 

produce T and normally a conical hollow is used but this is 

kinematically unsound unless the mating foot is machined away to 

provide three point contacts (9]. It is stated (12] that a trihedral 

hollow is preferred to a conical hollow because it is simply 

constructed by pressing a trihedral punch into soft brass which is 

less costly to produce than drilling a conical hollow. Above all, it 

ensures that proper contacts are made. Other methods of constructing 
the trihedral hollow are discussed in section 5.6.3. 

For an instrument to stand in a definite position on a fixed base, it 

must have six point contacts arranged such that if one of the contact 

points was removed, the direction in which the corresponding point on 
the instrument would be constrained by the rest of the point contacts 

must be as nearly normal to the tangent plane at the contact point as 

possible (10]. This statement implies that a body can only stand in a 
definite position on a fixed base if it makes six point contacts with 
the base. Secondly, the point contacts are considered kinematically 

sound only if by removing one of the point contacts, the direction in 

which the corresponding point on the instrument is constrained to 

move by the rest of the point contacts is as normal to the tangent 

plane at the contact point as possible. A coupling that conforms with 
the latter is said by Phillips [1] and Steeds [111 to be well- 

conditioned. 

5.6.2 Temperature Effects 

When El or Bl (Figures 5.6.1 (a) and (b)) are removed and replaced, 
they will normally go back to occupy exactly their original 

positions. This is always true provided that there are no dimensional 

changes due to thermal variations and the friction at ccntact points 

are small. This is because thermal variation leads to dimensional 

changes which in turn cause the two feet resting on Ps and G (Figure 

5.6.1(a)) to slide on the plane surface Ps and along the V-groove G 

respectively. The third foot however, remains seated in T. If the 

frictional forces at Ps and G are small, then the resulting strains 



will be negligible [2]. The stationary point (Sp), which is a point 
on the base of the couplings that does not move with respect to the 
feet, is therefore left at the third foot position in T [10]. 

In Figure 5.6.1(b), however, thermal changes will cause all the three 

feet to slide outwards in their V-locaticns and if friction is small, 
the strain will be negligible. Consequently, the centre of the tripod 

Bl remains unchanged with respect to the centre of the base B2 [10]. 

This means that the centre of the tripod Bl lies on the same vertical 

axis as the stationary point (Sp) located at 0 on the surface of B2. 

This type of coupling is not only suited to the design of instruments 

where the vertical axis of the tripod needs to retain its position 

relative to the base regardless of thermal changes but also ensures 
that the tripod resumes its original position precisely in the event 

of a displacement. Symmetry is also maintained in this coupling. 

In Figure 5.6.1 (c), when there is a relative expansion of the tripod 

with respect to the base, the tripod experiences a small rotation. 
ribis is because the feet are constrained to slide in directions other 
than 1200 to each other. 

5.6.3 Mthods of fo=ing a trihedral hollow 

As stated in section 5.6-1, one major problem with the Kelvin 

coupling is the production of the trihedral hollow T. Two simple 

methods of producing T which have been successfully used are outlined 
in [9]. The first consists of three inclined surfaces at one end of a 

cylindrical rod or block. An angled cutter, usually 450 is then used 
to make three successive cuts across the diameter of the rod or 
block; rotating it through 120c) for each cut. This is shown in Figure 

5.6.3(a). 

The second method (Figure 5.6.3(b)) consists of three balls pressed 
into a hole or ring to give three cOntact Points with a hemispherical 

foot. The size of the hole (ring) may be calculated [9] from D= d(l 

+ sec 30P) where D is the diameter of the hole and d the diameter of 

the balls. 
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Apart frx: xn these two and a third in which a conical hollow is used to 

replace T, Figure 5.6.3(c) shows yet another method which consists of 

three cylindrical rods welded together into an equilateral triangular 

shape Ts. Three other rods: are in turn symmetrically welded onto each 

of the apex of Ts and all three converge at a point P where they are 

again welded. The trihedral structure can then be inserted in to a 

conical hollow and welded in postion. The three inclined rods then 

make three point contacts with an interacting hemispherical foot in 

the same way as the trihedral hollow of the Kelvin Coupling. On the 

other hand, a larger hemispherical foot resting on the welded 

triangular shaped rods Ts makes a single point contact with each of 

the mid-points of the sides of the triangle. In that case, the 

inclined rods do not support the interacting hemispherical foot. In 

all the three methods discussed above, the three common normals meet 

at a single point inside the sphere. 

5.7 VARIATION ON THE KELVIN AND 3-GROOVED COUPLIM PRIWIPLES 

The review of the different types of couplings reveals that the 

Kelvin coupling is suitable for modification to achimye the required 

manipulator. As a start to this construction, it is necessary to 

examine and analyse the possible variants arising from the two 

coupling methods (Figures 5.6.1 (a) and (b)). In order to carry out 

such analysis, it is important to first understand the various ways 
by which contacts are made between the two bodies. This is because 

the variants are produced by splitting up the trihedral hollow T and 
the V-groove G and increasing the corresponding number of interacting 

hemispherical feet Sh of the tripod. 

Essentially, the manipulator is needed for aligning two lines in 

space (central axis of fibre with the central axis of a laser beam). 

Inorder to align two lines in space, a four degree of freedom 

manipulator is required as already discussed (3.2 and 5.1). A 

coupling variant with four feet is therefore sought inorder to 

produce this manipulator. For purposes of completeness, coupling 

variants with five and six feet are also briefly mentioned. 



NOM: (See p. 95, parag. 3, line 11) 
Fig. 5.7(d) (p. 96) is a special case where feet Al and A2 lie in the 

same plane as the 900 v-groove. If Al and A2 lie in a different 

Plane, then the normal forces will be skew. 
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In both couplings (Figures 5.6.1 (a) and (b)), not only must the 
bodies be properly ocnstrained but the contacts between them should 
be well ocrx1itioned. It is stated [111 that the force exerted between 
the surfaces of an ill conditioned contact is always greater than 
that in a well conditioned one. 

In the Kelvin coupling, the three ways of contacting surfaces are 
between a sphere Sh and a plane surface Ps, a sphere Sh and a V- 

groove G and a sphere Sh and a trihedral hollow T. These will be 

referred to here and the rest of the chapter as the ShPs, ShG and ShT 

-configurations respectively In the ShPs-ccnfiguraticn, the common 

normal passes t1-m-oq2bthe Centre of the sphere. In ShG, the two commcn 

normals intersect at the Centre of the sphere and similarly for ShT 

where the three normal forces also intersect at the Centre of the 

sphere. Configuration ShG is shown in Figures 5.7(a), (b) and (c) 

while ShT is shown in Figure 5.7 (e). Configuration ShPs is 

illustrated by Figure 5.7(d) where contacts are made between the 

plane surfaces and each of the hemispherical feet. 

However, overturning configuration ShG (as in Figure 5.7(c)) and 
indeed the Other two configurations does not affect the normal forces 

provided that the two bodies in question can support each other's 

weight. They still'intersect at the centre of the sphere as in ShG 

and ShT and pass through the hemispherical foot as in ShPs. That is, 

the set up in each of the three configurations is interchangeable. 'An 

inversion of these three configurations produces the same results. 
That is, the plane surface, the V-groove and the trihedral hollow can 
be replaced by short hemispherical projections or stumps while they 

are transferred on to the contacting surfaces of the corresponding 
hemispherical feet. It is shown (Figure 5.7(d)) that by having two 

hemispherical feet Al and A2 resting on an enlarged V-groove instead 

of one as in Figure 5.7(a), the common normals N1 and N2 can still be 

made to intersect at a single point. This is a general case where 
lengths of the feet are unequal. The feet can also be chosen to have 

equal lengths without affecting the kinematical soundness of the 

supports. If such changes are to be effected on the V-grooves and 
trihedral hollow of Figures 5.6.1(a) and (b), then the final 

orientations of the resultant planes must be maintained in relation 
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to those of the parent V-grooves or trihedral hollow in the two 

couplings. This ensures well-conditicning. 

It must be remembered that even though there may be quite a few legs 

or feet interacting with a second body after the changes are made, 

the common normals for a particular expanded V-groove or grooves 

could be skew. This is acceptable as long as bending forces are not 

introduced in the legs of body 1 and the correct constraints are 

maintained between the bodies. Also, the heights of the contact 

points on the enlarged (new) planes are unimportant to the 

kinematical soundness of the resultant support configurations 

provided that the attitudes of the planes are maintained with respect 
to those of the parent V-grooves (Figure 5.7(d)). 

In the ShT-configuration (Figure 5.7(e)), the three contact normals 
intersect inside the sphere. The three point contacts in such a 
configuration could be regarded as a combination of a V-groove G 
housing one hemispherical foot and thus making two point contacts and 
a plane surf ace Ps making one point contact with a second 
hemispherical foot (Figure 5.7(f)). With both the plane surface Ps 
and the V-groove G inclined at the same orientations as those of the 
parent trihedral hollow (Figure 5.7(e)), the contact normal N2. can be 
made to intersect the line of action of the resultant force R 
produced by the other two normals in the V-groove. However, if the V- 
groove as well as the plane surface (X-X) are horizontal (Figure 
5.7(g)), then the contact normal N2 will meet R at infinty. if the 

plane surface (Y-Y) is inclined, however, the contact normal N2 
intersects R (Figure 5.7 (g)). The former is regarded well- 
conditioned as long as body A is properly constrained with respect to 
B regardless of the number of feet involved. This is also true for 
the latter depending on how A is constrained with respect to B. 
Imagine that body A has three feet instead of two as ilustrated and 
that B has two parallel V-grooves (drawn as in Figure 5.7(g) with the 

second groove hidden) such that two feet interact with the grooves 
and the third rests cn a plane surface leaving one degree of freedom. 
it is pointed out [11] that the contact made with the plane 
horizontal surface X-X is well-conditioned while that made with Y-Y 
is ill-ccnditicried. This is because the common tangent plane X-X at 



98 

the contact point Px is perpendicular to the direction in which Px 

would move if the surface X-X were removed but in the latter, the 

tangent plane Y-Y is at an acute angle to the direction of motion of 
the equivalent point Py. 

I/ 

0/ 
AA second conf iguration 

atso derived from (e) 
with N2 and R either 

N2 paratle( or intersecting 
la t 0. 

x -1 6 
II Iirru 

B B 
2 

Fi g, 5,7 (g) 

The trihedral hollow can still be further split up so that the three 

planes are inclined at the same orientations as the corresponding 

parent planes each making contact with a hemispherical foot. It does 

not matter whether or not all the three common normals or just two 

intersect provided that the two bodies are properly corL, 3trailled and 

all the contacts are well-oonditioned irrespective of the number of 
f eet involvecL 

Several possible alternative support configurations can be derived 

from the different contact cases already examined. Figure 5.7(h) is 

just one of many support configurations derived from the Kelvin 

coupling. It is produced by splitting up the trihe-dral hollow T of 

the Kelvin coupling (Figure 5.6.1(a)) to form a plane surface Tp and 

a v-groove Tg. The original V-groove G and the plane surface Ps being 

left unchanged. The new and old V-grooves Tg and G are closer to each 

other than they are from the new and old plane surfaces Tp and Ps. 

a- 
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The origi na I tripod Is replaced by atrIang ri IarprIsm( body A 

whose hemispherical feet Sh interact with the V-grrxyms and the plane 

surfaces. Shapes do not affect the kinematical soundness of this 

coupling as long as the oontacts are well ocnditioned. The original 

flat base is changed in to two inclined slabs 1 and 2 on to which the 

grooves are engraved. These changes enhanoe better contacts between 

the feet and the slabs than if the slabs were lying flat (horizontal) 

and the feet vertical. It also allows the resultant manipulator to 

execute larger displacements while maintaining all the necessary 

contacts. 

- Fig 5,7 (h) 
Support of a coupling 
derived from the Kelvin 
coupling - 

The new and original V-grooves: Tg and G can each be further split in 

turn increasing the number of feet of body A to f ive and six 

respectively. 

hý 
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CHAPTER 6 

MANIPULAT(M AND THE EXPERIMENTAL LASER/SCREEN ALIGNMENT 

alAPTER OVERVIEW 

In the last two chapters, couplings and actuators were discussed. 

Inorder to produce a manipulator, the two concepts must be 

amalgamated. In this chapter, a four degree of freedom manipulator is 

sought for alignment of lines. The reasons for selecting four degrees 

of freedom are already discussed (3.2 & 5.1). 

Initially, the Kelvin manipulator derived from the Kelvin coupling is 

discussed (6.2). Its discussion bears no real tangible practical 

puxpose, but serves to illustrate the difference between series and 

parallel manipulators. The modification is then extended to achieve 
the required manipulator (6.3). The manipulator without a computation 

procedure can not solve the problem of alignment. The analogy between 

two plane balancing and the alignment of lines is therefore examined 
(6.5) in an attempt to adapt the balancing procedure for use in 

conducting tests to align a laser beam with a line in two ways namely 

manipulating (a) the line and (b) the laser. 

In addition, a distinction is made between series and parallel 

manipulators by giving specific examples of manipulator arrangements. 
The manipulators are reviewed from literature based on robotics. 

6.0 INTRODUCTION 

Fichter and McDowell [11 state that manipulators and robots are 
becoming ever more ubiquitous because they are used to perform 

monotonous and hazardous tasks. Nearly all robot arms in use today 

are essentially similar to human or animal limbs [1]. A description 

of an anthropomorphic arrangement in which Hunt (2] closely relates 
the shortening of a linear actuator across a "hinge" with the 

contraction of a muscle arising from one bone and insering in an 

adjacent one across a hinge confirms this claim. The authors [1,2] 

describe robot arms (manipulators) based on the open and closed 
kinematic chains and give a detailed account of the advantages and 
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disadvantages of both types. 

The application of manipulators in industry is not only confined to 

monotonous and hazardous tasks. They have been increasingly 

introduced to the manufacture and alignment of communications 

components as well as the manipulation of microscopic bodies in 

bacterial culture (4.3.7). 

An established method of alignment of lines in space would provide 

ready solution for alignment of the central axis of a non-linear 
laser beam with an optical fibre (3.2). This is because the two 

procedures are essentially the same. In search for a suitable means 

of manipulating a line inorder to align it with another, a start is 

made by describing the design and construction of a four degree of 
freedom manipulator based on the Kelvin Cmpling. The modification of 
the Kelvin coupling for incorporation of actuators to achieve this 

manipulator follows directly from the previous chapter (5.7). 

6.1 SERIES AND PARALLEL MNNIPULATORS 

The word manipulator or micro-manipulator and the associated terms 

are fully discussed in chapter 4. As in couplings, manipulators can 

also have either series or parallel structural arrangements. In this 

section, the difference between series and parallel manipulators is 

illutrated by discussing specific manipulator arrangements. 

A method of manipulating an end-effector (table) in planar motion 

with all three actuated connecting chains fully in Parallel with one 

another is shown in Figure 6.1(b). This arrangement, described in 

[2], is the antithesis of a simple in series actuation of a three 

axis motorised manipulator shown in Figure 6.1(a). In the latter, MX, 

My and Mz are motorised actuators each stacked on top of another 
(series) such that the motion of Mz af fects the positions of Mx and 
my and Mx in turn affects My but My affects none of them. It is 

stated (2] that most robot-arms (whether for industrial robots or 

other manipulators) have their actuators connected in series along a 

more or less 'anthropomorphic' arm , each actuator being at or 

associated with a single degree of freedom joint in the arm. 
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tlix 
Fig 6,1 (a) 

Motorised SeHes 
Manipulator. 

Motion of Mz 

B 

d-effector 
gTf: SýA 

/4': Fig, 6,1(b) Athree-freedom planar 
robot-arm. 

A series-actuated arm is known [2] to accumulate errors from slxmlder 

out to end-effector. It is stated [2] that such arms often suffer 

from lack of rigidity and in the absence of sophisticated computer 

control techniques, are subject to load-dependent error. Ofcourse, 

series-jointed links can be stiffened but this increases the arm-mass 
to be moved thus making greater demands on the actuator-system. With 
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in parallel actuation, there are prospects of an arm having both 

greater rigidity and lightness [2]. Since actuator error is not 

cumulative, greater precision is likely to be attained without 

excessive ocntrol complicaticrL 

Another in-parallel arrangement of actuat=s which is fully analysed 
by Stewart [3] and recited in a slightly different form in [1] is 

illustrated in Figure 6.1(c). It is described [1] as an octahedron 

with two opposite rigid faces; the base and the platform. The other 

six faces are open and the six edges that outline these faces are 
linear actuators. With the base fixed, the platform has six degrees 

of freedom. The freedom can be worked out from the mobility equation 9 
expressed [2] as F= 6(n-1) - 7- ui ............................ 6.1. 

i=0 
where n is the number of jointed members, g is the number of working 
joints between the n bodies, ui is the number of constraints of the 

ith joint and F is the number of degrees of freedom of the 

manipulator. The solution is shown below the graphical network 

representation of the Stewart Platform (Figure 6.1(d)). 

Ball- and socket 
joint 

Six legs 

uke joinf 

Stewart Platform based on 
an octahedron 
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Movable 
Platform. 

, ý4 
f -- 3 
c I 

for each coupfing. c=3 

for each cout)lin*g. C= 

'f=2 for each coupring. c=4 
Hied Base 

Fig, 6,1(d) Graphical Representation of the 
Siewart Platform. 

Freedom of the Stewart Platform is given by the nobility equation 
(Section 6.1): 

6 (n-1) -I 
i=O 

n= 14 and total nunber of constraints, C or (U,. +g) = (6x4) + (W) + (W) 

F=6x 13 - (18+2X24) = 12 

But each piston has one degree of freedom to rotate about the ball 

joint to cylindrical joint axis. Thus freedom = 12 - (6xl) = 6. 

6.2 M ImVIN MANIPULATOR 

If the table is. overturned so that the base E2 of Figure 5.6.1(a) 

(Kelvin Coupling) is now uppermost and the tripod El is the base, 

then the number of contacts made between El and E2 are still the same 

and nothing else changes. An inversion also produces the same 

results. That means the trihedral hollow T, the V-groove G and the 

plane surface Ps on the surf ace of E2 are replaced by short 

hemispherical projections (stumps) while they get transfexred onto 

the contacting surfaces of the corresponding hemisperical feet of El. 
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The introduction of a linear actuator into each of the three 

couplings of the overturned Kelvin coupling ensures a small motion 

manipulation of the end-effector E2. This is a three degree of 
freedom manipulator shown in Figure 6.2(a). The number of degrees of 
freedom is obtained from the mobility equation as before and this is 

shown in Figure 6.2(b) (-the graphical representation of the 

manipulator). Each of the three actuators must have a small 
displacement otherwise the contacts between the spheres and the 

trihedral T and the groove G could be lost rendering this 

configuration kinematically unsound. Since the actuators execute 

small displacements, the rotary motion of the manipulator is 

correspondingly minimised. 

All the three actuated couplings of this manipulator are in parallel 

with one another. Like the manipulator of Figure 6.1(b), this 

arrangement is the antithesis of the simple in series actuation such 

as that shown in Figure 6.1(a). Roth [4] states that manipulators are 

usually formed by an open loop chain of binary links where every link 

has one degree of freedom relative to one of its neighbours. Due to 

lack of rigidity of such manipulators and the accumulation of errors 
from shoulder out to end-effector[l], parallel manipulators might 

present a better alternative. 

A manipulator aloryj the lines of Figure 6.2(a) will be referred to as 

the "Kelvin Manipulator" because it is derived from the Kelvin 

Coupling. It is probably more appropriate to call it the Kelvin 

miczx>-manipulator because of the minute amount of actuation executed. 

A similar procedure of overturning the table and introducing 

actuators can also be applied to the coupling of Figure 5.6.1(b). The 

result is again three actuated couplings in parallel with one 

another. Such a manipulator as well as that of Figure 6.2(a) has 

three degrees of freedom. 

The advantages and disadvantages of the parallel versus series 

manipulators are discussed in [1,2]. Some of these are re-cited in 

section 6.1. 
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"The Kelvin maniputator" 

Fig, 6,2 (a) The Kelvin coupling of fig, 5,6,1 (a) overturned 
and actuators Al, A2 -and A3 introduced- 

2 
4 

:5 

Fig, 6,2 (b) Graphical representation of the 
Kelvin coupling. 

Freedom of the Kelvin manipulator is expressed (Section 6.1) by: 
9 

F= 6(n-1) -IU. as before 
i=0 I 

n=5 and total number of constraints, C or (U -g) =3+1 +2 + Qx5) 
1 

Freedom =6x4- (6+15) = 
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6.3 A FX= DEGREE OF FREEDCM DVMPLJLATOR FOR ALIGMENT OF LINES 

The need for a four degree of freedom manipulator for the aligrunent 

of lines is explained in section 5.1. In this section, the design and 

construction of a manipulator to demcnstrate the alignment of lines 

experimentally is presented. The manipulator is derived directly from 

the Kelvin coupling variant of Figure 5.7(h) which has been modified 
to have four parallel couplings. This is achieved by irxx)rporating an 

actuator into each of the four feet. The result is a four degree of 
freedom parallel manipulator. 

This alignment can also be achieved by a four degree of freedom 

series manipulator as lcng as a suitable method for conducting tests 

can be improvised. A parallel manipulator is chosen here beacause its 

design is selected for simplicity. For this reason, it can be 

constructed locally without the need for special skills. It is 

therefore cheap and above all, its design and construction (6.3.1) 

allows for a linear response to feet adjustments. As will be seen, 
the procedure adopted for carrying out the alignment tests on this 

manipulator requires this linearity for its success. 

6.3.1 Constructign of the aligment manipulator 

The manipulator consists of two separate parts. One is a 900 V-shaped 

perspex body P (Figure 6.3.1(a) -simply referred to hereafter as P) 

and the other is a steel base (Figure 6.3.1 (b)) on to which four 450 

angled stands T are firmly moLmted. The stands in turn carry threaded 

bolts (A', B', Cl and DI) with steel ball bearings glued on to their 

tips so that two lines drawn through the axes of a pair of feet (A' 

and BI or C' and DI) form a right angle (view V-V, Fig. 6.3.1(b)). 

These ball bearings ensure that single and two point contacts are 

made with a plane surface and a V-groove respectively. 

P is 300 mm lcng by 80 mm and 7 mm thick and has a series of equally 

spaced V-grooves G (each about 1.5 mm wide by 4 mm deep) milled 
inside it. It is supported on the four feet so that A' and BI on 

plane 1 each makes two point contacts with it via a pair of smaller 



110 

PLAN AND END VIEWS OF PERSPEX HOLDING SCREENS 
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Four hemisphericat feet 4, W, C& D" support and make con ta c ts wi th P 
49 B' each makes two point contacts while C'& D' ecLch makes one 
point contact. 
Smatter grooves Gl & G2 screwed to P accomodate A& B'. 

Fig, 6,3,1 (a) 

Fig, 6,3,1 (b) 

Stands T holding the feet which in hirn support the 
V-shaped perspex body P in (a) above. 

BI 
. q(threaded 
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V-grooved perspex Gl and G2 both fixed onto it (Figure 6.3.1(a)). Gl 

whose axis is parallel to that of P, acconvKDdjtcs. A' while the second 

foot B' sits in G2 whose axis is perpendicular to both the axes of P 

and Gl. Details of the grooves Gl and G2 are shown in Figure 6.3.1 

(c) with the screw or hemispi-iexical foot in position. Consequently, 

the resultant force through these four contacts is a ver-tical force 

tlu-ough the axis of the main body P regardless of adjustments made to 

any of the four feet (Figure 6.3.1(a)). 

ij 
AorC 

/ 
/ 

61 or 62 

/ 

rD End view V-V 
ofFig. 6X (b) 

Screw or Threaded 
bolt. 

Fig, 6,3,1 (c) Details of grooves 
G1 & G2 with foot A 
or B in position. 

The remaining two feet C' and D' on plane 2 each makes a single point 

contact with P (Figure 6.3.1(a)). Thus the four feet make a total of 

six point contacts with P. P can be removed and replaced but all six 

contacts are maintained at the same locations as long as no foot is 
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adjusted. The distance between planes 1 and 2 can not be altered, 
which means that all point contacts are generally fixed unless 
affected by secondary motion. This is an erratic forward motion of p 

caused by a combination of the fairly large backlash and any non- 
linear behaviour of the feet. 

In order to reduce friction between the ball bearings and the perspex 

surface where contacts are made, glass was glued onto the appropriate 
locations including the inclined planes of the grooves Gl and G2. 

Bowden and Tabor [51 found the coefficient of static friction between 

metal (steel inclusive) and glass to be 0.5 to 0.7 when the surfaces 
are uniubricated compared with 0.2 to 0.3 when lubricated. Thus the 

glass surfaces were lightly greased. 

6.4 THE NEED (REQUIREMENTS) FOR CONDUCrING ALICNMEW TESTs 

The manipulator described above is incomplete without a proper means 

of conducting the tests. Inorder to achieve completeness, two 

physically misaligned lines in space both of which are adjustable 

must be created. Secondly, accurate prediction of the arbitrary 

changes of the adjustable line position due to feet adjustments is 

necessary for a successful general alignment procedure. This requires 

an algorithm and a means of measuring the position changes. 

As revealed later, the first problem is solved by mounting a fixed 

collimated He-Ne laser L in a similar way to P supported on four 

similar feet (6.3.1). The laser beam emitted by L then represents one 
line in space. A second line is formed by two circular target points 
located at the centres of two transparent screens mounted inside P. A 

detailed description of the method is given towards the end of this 

Chapter. Here, in an attempt to find a suitable algorithm, a two 

plane balancing procedure pioneered by Thearle [6] is investigated 

for a possible adaptation for use in this alignment. This leads to 

the discussion of the balancing analogy presented below. 

6.5 ANUAMY BEMMN TWO PLANE BALANCIIG AND ALIGNMENT OF LINES 

The investigatim of a vectorial aligrunent method based on two plane 
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balancing of stiff rotors for alignment of lines forms the basis of 
the discussions that follow. The problem of two plane balancing of 

stiff rotors was solved [61 by assuming that vibration amplitudes are 

proportional to the forces that cause them. This asssumption is valid 

only if damping as well as speed of rotation remain constant for all 
tests conducted [6]. 

To ascertain the existence of analogy between two plane balancing and 

the alignment of lirwas, the balanciryj procedure is first described. 

Thomson [7] states that a rotor is unbalanced if its shaft is 

violently rocked about the bearings during rotaticm This is due to 

unbalanced rotor-mass on both planes. Generally, such a rotor is 

balanced by fastening the appropriate corrective weight on to each 

rotor plane [7]. 

The determination of size and location of the two balance weights 

only needs three test runs conducted at the same speed [7,8]. The 

vibration levels V and phase angles Y produced by the unbalanced 

masses are then measured at both bearings for each test run. Test 1 

is carried out without attaching weights to the rotor planes. Test 2 

is conducted at the same speed with a reasonably sized mass Ml firmly 

attached to plane 1 at some angular locatiorL Ml is then removed and 

another mass M2 of similar size is attached to plane 2. Test 3 is 

then ccnducted at the same speed as before. 

The object of this exercise is to produce two simultaneous vector 

equations with two unkowns [8]. The solutions to these equations 

correspond to vibration vectors with equal magnitudes but opposite 

phase angles to those produced by the required balance masses on 

planes 1 and 2 respectively [8]. The balance masses am then obtained 

by multiplying each vibration level with the corresponding trial 

mass. Details of the equations and the reasons for conducting three 

tests are given in [7,8]. 

The balancing equations were rePrcxk1ced [81 and stored in a magnetic 

tape in form of a program for gener-al purpose two plane balancing. By 

keying the tape into an HP67 calculator [8] and entering values of 

displacements, angles and trial masses into the calculator in the 
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correct order [8], the required balance masses are produced. 

Let two transparent target screens be mounted inside P (6.4) (which 

is in turn supported on four feet AI, B', C', D'- Fig. 6.3.1(a)) so that 

one of them occupies the same plane as A' & B' and the second one 

shares the same plane with C' & D'. These planes are analogous to the 

rotor planes described in the last paragraph. Thus the amount of 

adjustment made to the feet is analogous to the forces or added mass 
to the corresponding rotor planes while the change in body position 

and consequently the laser spot position represents the vibration 

amplitudes. The validity of this particular analogy depends entirely 

on the linearity of the manipulator. That is, the amount of 

manipulator adjustment must be pr )rtional to the change in laser 

spot positions. This is because, as already stated, the concept of 
two plane balancing is based fundamentally [61 on the assumption that 

vibration amplitudes are pr )rticnal to the forces causing them. In 

the alignment manipulator (6.3), this can be achieved by making small 

adjustments to the feet which in turn causes small changes in body 

position. To ensure that this is achieved, the existence of linearity 

in the alignment manipulator must be verified. Since the verification 
involves measurements, the method of measurement first needs to be 

described. 

6.6 D=CD OF MEASUREMENr 

It is argued (6.4) that the alignment manipulator is incomplete 

without an algorithm and a means of measurements. Since the arguments 

presented (6.5) suggest the existence of analogy between two plane 

balancing and alignment of lines, it needs to be proven. A practial 

proof can be carried out if a suitable method of measurement is 

obtained. This leads to further discussion of the screens already 

mentioned in 6.4. 

Two transparent glass screens S (Figure 6.6) each about 1.4mm thick 

cut so as to fit into grooves G (Figure 6.3.1(a)), were etched with 

radial and circular lines at equal intervals for two reasons. 
Firstly, their centres form a second moveable line (6.4). Secondly, 

they provide a means of reading the polar coordinates of a fine 
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impinging He-Ne laser beam representing the other line in space. This 

enables measurements of laser spot positions to be made for use as 

entry data into the balancing program [8]. Each screen can also be 

individually mwed from cn-e groove to the other thus allowing their 

planes to be varied- 

Fig, 6,6 Etched glass screen, S (10* every 5mm radius)- 

6.7 SIGN CONVENTION 

suitable convention which must be consistent with that used for 

reading the position of weights attached to unbalanced rotors is now 

sought for reading the polar coordinates of the impinging laser beam. 

Figure 6.7(a) shows the alignment set up in which a collimated He-Ne 

laser beam b impinges on two etched glass screens Sl and S2. It is 

finally blor-ked by a steel plate R which simply provides a stop. The 

two screens are held in separate slots inside a perspex body P2 

supported by A', B', C', D' (6.3.1) while the laser L is held inside a 

similar perspex body P1 supported by A, B, C, D. Both manipulators are 

fixed on to a steel base (Fig. 6.7 (a)). 
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The balancing planes of P2 (holding the screens) where it makes 

contacts with the screws are distinguished as the R. H. S. (plane 1) 

and L. H. S. (plane 2) as they would appear to an observer facing the 

manipulator (Figures 6.7(a)). Angles are measured positive in a 

counter-clockwise sense from the datum position established by the 

postion of the screws A' or C' (Figure 6.7(b)). The positions of the 

laser spots on the screens are read only from one face of the 

, creens; preferably from those receiving the beam. This avoids laser 

penetration Into the eyes and ensures that consistency is mainta-lr*KL 

Screen showirQ d 
dke-C tio-n-s-olf-SEa-S 
Lasjer spot dispt c 
and anquiar DOSiti( 

Positive dii 
of displan 

ý or 

Fi g-6,7 (b) 

The displacements are measured positive from the centres of the 

screens outwards at some angle (P relative to the POSition of A' or C' 

(Figure 6.7(b)). A screw turn clockwise is analogous to adding mass 

to a plane and is therefore regarded Positive while a counter- 

direction of 
angular meosurement 
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clockwise turn is analogous to removal of mass from that plane and is 
therefore regarded negative. After conversion of the screw turns into 

linear displacements using specified screw pitch values, they are 
then keyed into the HP67 calculator (81 as negative or positive 

values depending up on the direction of screw turning. 

The same procedure applies to the adjustment of the laser while the 

screens are left stationary. In this case, the R. H. S. (plane 1) 

containing screws A and B and the L. ILS. (plane 2) containing screws 
C and D supporting the laser, correspond to the screens S1 and S2 

respectively (Figure 6.7 (a)). That is, plane 1 on PI correspond to 

plane 1 on P2 and similarly for plane 2. 

6.8 VERIFICATION OF LINEARITY IN THE ALIGNAENT MNNIPULATOR 

It is necessary to demonstrate the existence of linearity in the 

manipulator (6.5) before conducting alignment tests. Using the set up 
in Figure 6.7 (a), the fine He-Ne laser beam b emanating from L held 

in P1 is manually adjusted and aligned with the centres of the 

screens Sl and S2 held in P2. One of the screws (feet) A' supporting 
P2 is then adjusted firstly in a clockwise direction (positively) and 
the laser spot positions on both screens (Sl and S2) noted for every 
half a complete turn made to the screw. This is continued in this 

direction until either the base of the screw is reached or the 

screens are completely traversed by the laser spots. The screw is 

then wound in the reverse direction (negatively) until both spots 
fall again at the centres of the respective screens and the procedure 
is repeated in a counter-clockwise direction. Again this is 

continued until either the top of the screw is reached or the laser 

spots completely traverse the screens. The spots are again returned 
to the centres of the screens by srewing A' clockwise. The same 

cycle is then repeated for each of the remaining three feet (screws) 

B', C' and D' in turn. 

The results of these experiments are presented graphically in Figures 
6.8 (a) and (b). In Figure 6.8(a), the laser beam paths on both 

screens Sl and S2 are traced by adjusting screws (feet) A' and B1. It 

can be seen that the traces produced by A' on both screens are only 
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linear up to 5 mm radius from the centres of the sareens but becomes 

increasingly non-linear outside this range. However, the traces 

produced by BI are completely linear and the same applies to those 

produced by adjusting C' and DI (Figure 6.8 (b)). 

IIIc! I Inn 

Due to the orientations of the axes of G1 and G2 (Figure 6.3.1(a)) 

which accomodate A' and BI respectively, the displacements of P 

respcnd differently to these feet adjustments. While the perspex body 

P2 (Figure 6.7(a)) simply slides down the axis of G2 as BI is 

adjusted resulting in the position tilt of P2, the adjustment of A' 

not only brings about tilt but tends to move with the whole body and 
imparts secondary motion to P2 (6.3.1). This results in the non- 
linear respcnse of foot A'. 

C' and DI interacting with the plane surf aces of P2 have no 

restriction and therefore impart a linear action to P2 as each is 

adjusted. These results help to explain why it is possible to achieve 

alignment of lines in space by directly applying the balancing 

algorithm [8]. The non-linearity introduced by the action of A' is 

equivalent to inherent ncn-linearities and measurement errors found 

in rotary machines usually solved by a balancing refinement [6]. 

6.9 EXPERIMENTAL ALIGNMENr WTS 

with the manipulator now complete, a start is made to pn: )ve the claim 

of analogy advanced in section 6.5. As stated earlier, the two plane 
balancing program stored in tape [81 is utilised for this purpose. 

This means that the procedure dictated by the program has to be 

followed except for the method of measurements used and the 

adjustments of manipulatc)r feet as opposed to adding mass. 

Figures 6.7(a) and 6.9 illustrate the alignment arrangement used. 
With the arrangement ready, the laser L is switched CrL Either L or P 
is then readjusted to give the largest possible misalignment between 
the laser beam and the centres of the two screens. The two sets of 
polar coordinates where b impinges on the surfaces of the two sar\-, em 
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Sl and S2 (Fig. 6.9) are read and recorded in row 1 of table 6.9.1(1) 

below. A given number of screw turns n (clockwise or anti-clockwise) 

are then made to one of the two R. H. S. feet (A' or B' on plane 1) 

leaving the laser stationary. A new set of readings of the polar 

coordinates where the spots get shifted on Sl and S2 (Figure 6.9) are 

again read and recorded in row 2 of table 6.9.1(1). This adjustment 

is removed by screwing the same foot n times in the reverse sense. 

The two beam spots on S1 and S2 are then checked to ensure that they 

fall back to their original positions. Finally, a new adjustment is 

made to one of the two L. H. S. feet (C' or D' on plane 2) say m times 

clockwise or anti-clockwise and a third set of readings on Sl and S2 

noted. These are recorded in row 3 of the same table and the 

adjustment is removed as before followed by a check in spot positions 

to ensure that they return to the original misalignment as measured 

by the first set of polar coordinates. These are recorded in row 4. 

'7! %1 

N Leg (screw) 
'H HrIon" 

R Laser stop \A 
sl &s2 Target screens 

b Laser beam 
P Perspex holding screens s1Rs2 

and (aser, L 
A, B, C, 8, D Screw Adjusters 

B'/ C&D, ' (Those supporting the screens 
- are not shown) 

cl Zc2 Centres of sl&s2 respective[ 
(aline dr, 3wn through these 

Lo 
points 

forms asecond skew line in si3ace) 

AhQnment appaf-atus show'inQ laser bea m--b- 
misallQned with the centres cl& c2 of screens sl &s2. 

N 
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These results are then keyed into the HP67 programmable calculator 

with a copy of B and K magnetic program card WW9002 [8] to obtain the 

necessary adjustments (as opposed to balance masses) required. The 

procedure of keying these results is given in [8]. Table 6.9.1(1) 

presents one set of experimental results. When the adjustments 

obtained from the calculator are made, the beam should then pass 
through the centres Cl and C2 of screens Sl and S2 respectively 

(Figure 6.7(a)). Conversely, the screens can be left stationary 

while body Pl holding L (Figure 6.9) is adjusted. 

6.9.1 Presentation of Results - Screen Adjustments. 

Table 6.9.1(1) below shows the results produced by adjusting screens 

placed in slots 280mm apart leaving the laser stationary. Each screen 

is 10mm outside planes 1 and 2 of the pair of feet A' & B' and C' & 

DI respectively (Figure 6.3.1 (a)). 

Results of adjusting screens 
Table 6.9.1 (1) 

RUN AMOUNT OF SCREEN RHS SCREEN 1 LHS SCREEN 2 
No ADJUSTMENT (PLANE 1) (PLANE 2) 

Displ/mm Angle/deg Displ/mm Angle/deg 

1 None V1,0=10mm Yl, oý-1500 V2,0ý5mm Y 
2,0ý-700 

2 Amount of adjustment 
made to RHS only 
(ý1 =900, SCREW B') Vl, 1=12.5mm Yl,, ý-1340 V2,1=5.5mm Y2,1=-700 
Ml=-4x(25.4xO. O4l67) 

=-4.234mm 

3 Amount of adjustment 
made to LHS only 
(ý2=9C)O, SCREW D') Vl, 2=8. Omm 'Y 1,2=-1520 V2,2=3.0mm 2=400 2 
M2=7x(25.4xO. O4l67) , 

=7.409mm 

4 None (recheck on V1,0=10mm Y1,0=-1500 v 2,0=5. Omm Y2,0=-700 
first run) 

Pitch of screws = 0.04167". 
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These results are then keyed into the HP67 programmable calculator 

with a copy of B and K magnetic program card WW9002 [8] to obtain the 

necessary adjustments (as opposed to balance masses) required. The 

procedure of keying these results is given in (8]. Table 6.9.1(1) 

presents one set of experimental results. When the adjustments 

obtained from the calculator are inade, the beam should then pass 

through the centres Cl and C2 of screens S1 and S2 respectively 
(Figure 6.7(a)). Conversely, the screens can be left stationary 

while body P1 holding L (Figure 6.9) is adjusted. 

6.9.1 Presentation of Results - Screen Adjustnents. 

Table 6.9.1(1) below shows the results produced by adjusting screens 

placed in slots 280mm apart leaving the laser stationary. Each screen 
is 10mm outside planes 1 and 2 of the pair of feet A' & BI and C' & 

DI respectively (Figure 6.3.1 (a)). 

Results of adjusting screens 
Table 6.9.1 (1) 

RL)N AMOUNr OF SCREEN RHS SCREEN 1 LHS SCREEN 2 
No ADJUSTMENT (PLANE 1) (PLANE 2) 

Displ/mm Angle/deg Displ/mm Angle/deg 

1 None Vl, o=lCnTn Y1,0=-1509 V2,0=5mm 0=-7CP y2 
, 

2 Amount of adjustment 
made to RHS only 
(ý1=90P, SCREW BI) V1,1=12.5mm Yl,, =-1340 V2,1=5.5mm Y2,1=-700 
Ml=-4x(25.4xO. O4l67) 

=-4.234mm 

3 Anxxmt of adjustment 
made to LHS only 
02=90o, SCREWD') V1,2=8-()mM Y1,2=-1529 V2,2=3.0mm 2=400 T2 
m2=7x(25.40.04167) , 

=7.409mm 

4 None (recheck on V1,0=10mm Y1,0=-1500 V2 0=5.0mrI Y2 0=-700 
first run) , , 

Pitch of screws = 0.04167". 
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REsoLviw,, RESULTANr VE=RS A= ODMPUTATION OF RESULTS 

(Hewlett-Packard HP-67 (15 secorxls)).. 

Table 6.9.1 (11) - Position of Laser Spot 

b, 

4 

ýk 

LBG ADJUSTVEM SCREEN SCREEN 

(DISPLACEMENT/MM) Si S2 

NCM lomm @ -1500 5mm @ -70P 

Leg BI (-4 Turns) 12.5rmn @ -134P 5.5mm @ -7CP 

= -4.324mm 

Leg D1 (+7 Turns) 8. Onm @ -1529 Man @ 400 

= 7.41mm 

(HEWLETr PACKAM HP-67 ONLY 15 SECXWS) 
I 

ý)k 

PLANE ADJUSTVMI? r/MM 

Legs A' andBl -9.62nn @ (900+113.890) 

Legs Cl and DI 5.19mm @ (900+37.960) 

N 
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FINAL ADJUS'ITITý COMPONENTS 

L NEAR EIDUIVALL-NT No. 
LEG DISPLACTIIIEýTr/MM OF TURNS 

A' 8.795 8.31 
H' 3.8c)6 3.68 
cl 3.192 3.02 
D' 4.092 3.87 

DIVISION OF Mý=M VECTORS 
INTO FINAL ADJUSTMWI' COMPONENfS. 

RHS (LEGS A' AND B') LHS (LEGS C' AND D') 

PLANE1 PLANE2 

R=-9,62 mm 
dl) =20: ), 8 90 3 

(datum) 
Q'8 

ý' t 

0 

0 

R= 5119mm 
0-127,960 

C(datum) D" 
/4 

6turns 
r 3mm 2 

3'9mturns 

R=-9,62mcn 

B' 3,9mm 
i- 37 tu rn 3,7 turn 

Di recti on of --- 
angular measurement. 

F 6,9,1 

27,96" 

R= 5,? mm 
Direction of 
angular measurement. 

(b) 
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RESULTS AND CCMENTS 

After the appropriate adjustments (Figures 6.9.1(a) and (b)) were 

made to the four screws, the laser spot on the R. H. S. (plane 1) fell 

approximately 0.5mm away from the centre of the screen S1 at an angle 

of approximately +300. The spot on the L. H. S. (plane 2) fell exactly 

at the centre of the screen S2. 

The outside arrows in the two triangles of Figures 6.9.1 (a) and (b) 

show the directions and the number of turns that an individual screw 

needs to be adjusted for alignment. The directions of screw 

adjustments indicated by these arrows are opposite to those worked 

out by calculations. A possible explanation for this is that the 

planes of adjustment of the screws supporting the screens are outside 
those supporting the laser. 

In addition to the above experiment, many similar ones were also 

ocnducted with different number of screw turns. The majority achieved 

reasonably good aligrunent results. In certain exceptional cases, the 

final number of screw turns obtained from the computer results were 

either too large to be accomodated on some screw lengths or the 

perspex body holding the screens simply moved out of contacts with 

screws A' or BI (or both). The reason for this is that the number of 
turns for the trial (or initial) adjustments were too large and the 

effects were reflected disproportionately onto the screws in the 

plane of adjustments. That is, one screw tended to have many fewer 

final corrective turns than its couterpart on the same plane. They 

can, however, be accomodated by lcnger screws. 

Conclusim. 

The minor discrepancies in the successful aligrunent results could be 

attributed to a number of factors namely: 
i- the crudeness of ýthe screw mountings with imminently large 

)k backlash. 

ii- the inaccuracies in estimatirxj the location of the centre of 
the laser spot especially when it falls close to the centres 

of the screens . 

ý6 
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iii- the glass screens never fitted squarely into the slots because 

the screens were inaccurately cut out. 
Apart from these minor discrepancies and the loss of contacts caused 
by large initial trial screw turns, alignment by screen adjustments 

were successful and thus proves the existence of analogy between 

balancing and alignment. 

6.9.2 Adjusbment of the laser. 

Since alignment by laser adjustment follows exactly the same 

41 procedure as in 6.9.1 above, it is pointless to try and present 

results obtained by this method. As in screen adjustments and for 

similar reasons, the outside arrows in triangles obtained by this 

method (similar to those in Figures 6.9.1(a) and (b)) give directions 

of final adjustments. 

1h In all the experimental attempts conducted using this method, the 

problem of inadequate screw lengths sometimes involving two srews 
(one from each plane) were encountered when making the final 

adjustments. This problem persisted even when the screens were moved 

closer to the laser source. This suggests the existence of an optical 
lever. Longer screws, likely to accomodate the relatively large 

hk number of turns, and longer V-grooves to avoid loss of contacts are 

suggested. 

************* 
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CHAPMR 

lb 
SDVJ, L DISPLAýNý ANALYSIS Of 3- AND 4-DEGREE 

OF FREEDCM blANIPULATORS 

CHAPTER OVERVIEW 

In Chapter 6, alignment of lines in space has been successfully 
demonstrated by means of a 4-degree of freedom manipulator of unknown 
displacement characteristics whose construction is based on the 

Kelvin Coupling. This chapter examines the potential of such a 

manipulator in laser/fibre alignment by first analysing its 

displacement characteristics theoretically. Establishment of the 

characteristics leads to better prediction of the variation of laser 

diode position either on or outside the manipulator with respect to 

actuator displacements. These displacements are responsible for 

laser-fibre misalignments and can therefore be directly linked to the 

laser efficiency equations (2.2.4). In this respect, a vectorial 
technique devised by Davies [21 is applied to analyse the spatial 
displacements of 3- and 4- degree of freedom manipulators (7.1.1 and 
7.1.2) respectively. Results obtained from the latter are checked 
intuitively (7.2.1), experimentally (7.4) and by computation (7.5). 

This technique is unique because it does not only involve the normal 
vector transformations (used for transferring quantities from one 
f rame to another) but it also brings in the application of 
Kirchhoff's Laws [3]. The derivations of some of the essential 
transformation matrices applied in this method are presented in 

Appendix B. 

The study of both spatial and planar small motions of bodies can be 

pursued as a matter of general interest. In this chapter, the study 
is specifically linked to the analysis of manipulators in order to 

try and solve the. problems of mechanical misalignments between a 
laser beam and an optical fibre. In Section 7.3, the relationship 
between the displacements of a selected point of interest on a 4- 

degree of freedom manipulator and the laser/fibre coupling efficiency 
is derived. All the three mechanical misalignment tolerances which 
must be greatly minimised in order to obtain an acceptable coupling 
efficiency, are taken into account in that analysis. Although this 

analysis is deemed successful, the discussions and conclusions 

16 
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presented in section 7.4.4 highlight the major reasons for dismissing 
these results for direct application to the practical laser/fibre 

alignment. 

7.0 INTRODUMON 

Successful launching of the non-linear laser beam emanating from the 
face of a semiconductor laser diode into a monomode or multi-mode 
optical fibre depends largely upon the ef fects of mechanical 
alignment tolerances to the input coupling loss. Barnoski (1] states 
that In the design and development of the practical laser source to 
fibre coupling, not only is it important to realise the expected 
magnitude of the coupling coefficient but also the effects of the 

mechanical tolerances. There are three basic types of mechanical 
tolerances that contribute to the coupling loss. These are (a) the 
lateral misalignment tolerance, (b) the longitudinal misalignment 
tolerance and (c) the angular misalignment tolerance between the 
laser diode and the input face of the fibre. Due to the non- 
linearity of the beam, it has been discovered [1] that the lateral 

misalignment tolerance has the most severe effects on the coupling 
efficiency followed by the longitudinal misalignment and lastly the 

angular misalignment tolerance in that order. 

Evidence of the imposition of severe lateral misalignment tolerance 
is presented [11 in Figure 7(a) where the increase in input coupling 
loss is plotted as a function of radial displacement of the centre of 
a Coming low-loss step index (NA = 0.14) fibre and the centre of a 
50p diameter surface emitting LED manufactured by plessey. The plot 
shows that the input coupling is highly sensitive to lateral 

misalignment. 

The effects on the input coupling loss of the other two remaining 
mechanical tolerances (longitudinal and angular misalignments) are 
shown plotted [11 in Figures 7(b) and (c) respectively. As can be 

seen, the input coupling is relatively insensitive to both the 
longitudinal fibre-to-LED (source) separation and the angular 
misalignment of the axis of the source to that of the fibre. These 

plots show that if the fibre and LED are separated by a distance of 
150 pm, the increase in coupling loss is approximately 0.9 dB while 
an angular --; Idft of the fibre axis with respect to the LED surface of 

, Aýl 
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100 produces a loss Increase of only apprmcimately 0.25 dB. 

Barnoski [1] also found out that the severity of these mechanical 

alignment tolerances are not only restricted to input oouplexs using 
single strands but are equally sensitive in bundle couplers. It is 

16 the differing effects of these three types of alignment tolerances 

(particularly the effects of lateral misalignments) on the laser- 
fibre coupling efficiency that has prompted the im-estigation of the 

study of small displacement analysis of 3- and 4-degree of freedom 

manipulators. As will later be seen, such analyses are targeted on 
the displacements of positions thought to be best suited for mounting 

semiconductor laser diodes for a possible alignment with stationary 

optical fibres. 

INCREASE IN INPUT PLESSEY LTD 
COUPLING LOSS, dB 

1.0 
(LED TYPE HR952) 

0.5 

15 to 505 10 5 

LED-FIBER ANGULAR MISALIGNMENT/deg 

Fig, 7 (c) Increase In input coupling loss versus 
angular misalignment. 

7.1 Mathematical Analyses of Spatial Displacements of a 3- and 4-_ 

Degree of Freedom Manipulator 

I& 

One way of ensuring a successful laser/fibre alignment is to be able 
to accurately predict the exact position of the laser diode mounted 

on a manipulator for any change given to some or all of its 

actuators. The most accurate, but not necessarily the easiest and 

only way of accomplishing this, is by formulating a mathematical 

expression that correctly describes the path prescribed by the point 

of interest when the manipulator changes position- In Sections 7.1.1 

and 7.1.2, method I which utilises a tensor technique [2) is used to 
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produce analytical results for the 3- and 4-degree of freedom 

manipulators respectively. 

This technique, however, is only usef ul in determining the 

characteristics of a manipulator with any number of degrees of 
freedom as long as the actual size of adjustments to the feet are 
known (7.1.2). It cannot be used to solve the laser/f ibre 

misalignment problems at this stage because of both the practical and 
analytical problems associated with the process (as later seen in 
7.4.4). 

The two manipulators analysed here are symmetrical. This symmetry 

makes it generally easier to work out the manipulator position 
changes when the actuators execute motion. The figure used in this 

analysis to represent the manipulators is essentially the same as 
that used in Chapter 6 for the alignment of lines in space. 

Another method that can be used to achieve the same alignment 
(obviously not with the same accuracy) is by a suitable adaptive 
control technique. For reasons given in section 7.4.4, this method is 

eventually adopted in Chapter 9 in order to solve a practical laser- 
fibre alignment problem. 

7.1.1 The analysis of a 3-degree of freedom manipulator 
(Method I) 

The analysis of the small displacements of point o located on the 

surface of this manipulator (Figure 7.1.1(a)) is presented in stages 

as outlined below. 

Selection of the position of global frame with origin at 0 on the 

surface of body 3 is given in Figure 7.1.1(a). 

2. Setting of local frames and the corresponding velocity 

owponents. 

J) Coupling A: (_Fig. 
_7.1-. 

I(C)-) 

This coupling has four degrees of freedom and hence four velocity 

components. The local frame is set (at 0a) parallel to the global 
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SUPPORT OF A3-DEGREE OF FREEDOM MANIPULATOR 
(A, D&E EACH MAKES TWO POINTS CONTACTS) 
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frame so that only translation is necessary. The pc)sition of Oa wit!, 
respect to the global frame is given by x= -rsin e, y= -rcos 0 and z 
= P, . 

(Va 

i 

i 

V2 a 

V3 a 

0 

0 

V6 a 

xi a X2 a X3 a 

xi 00 goo goo 
X2 goo 00 goo 
X3 goP C) 0 0n 

Table of angles between the local and 
global frames. 

X2A 

u 

X1, a Xi 

a 
--Xi X3, X3a.,, 'Z 

Fig, 7,1,1 (c) 

ii) Coupling D: (Fig. 7.1.1(d)) 

I 

vi 

V2 d 

V3 d 

V4d 

0 

0 

i 

with four degrees of freedom, D has four velocity components. X2d is 

set along body 4 (leg) and Xld parallel to the groove G which forms 

part of body 1. The position of Od with respect to the global frame 

is given as x= rsine, y= -rcos6 and z=z. 

xi d X2 d X3 d 

xi 0 900+0 goo 

X2 900-0 0 goo 

X3 900 goo 00 

Table of angles between the local and 
global frames. 
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Od W- 0e xi 

F ig" 

Od 

ig, 7,1,1 (d) 

iii) CoupLings Band C: (Fjgs. 7.1.1(e) and(f)) 

Actuator B has only one degree of freedom and hence only one 

velocity component along X2 b. The local frame can be set at either 

point U (no translation needed for transformation) or at Ob but both 

yield the same result when transformation to the global frame is 

effected. 

IX2 

i 

/ 

X 90-8 
u or obýýG 

Fig, 7,1,1 (e) 

At U, xY=0, z=k 
b At 0 AsinO, y XCOSO, z 



5 

4 

i 

i 

(v 
Rb)= 

13 -1 

0 xi b Xqb X3 b 

0 xi 0 goý- 0 goo 
0 X2 900+0 0 goo 
0 X3 90C) goo 00 

V5 b 

0 Table of angles between the local and 
global frames. 

As for coupling B, the local frame for actuator C can be set either 
at U (in which case only rotation is required when performing 
tranformation) or at Oc where both rotation and translation are 
required when transforming to the global frame but the same result is 

obtained for either method used. 

0 xi c X2 c 

0 xi 1800-0 900-0 

(V919 o X2 900+ 0 1800- 0 
0 X3 goo goo 

V5 c 

0 Table of angles b( 

global frames. 
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00 
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This coupling has four degrees of freedom and therefore four velocity 

components. The local f rame is set such that X2 e and Xle are parallel 

to the respective planes of the groove body 1. That is, tJ-ie position 

of Oe with respect to the global frame is x=0, y= -Xe and z= -Z. 

iv) COUPHrIg E: (Fig. 7.1.1(g)) 

I 

I 

i 

I 

i 

i 

vi e 

V2 e 

V3e 
0 
0 
V6 e 

Vt 

Q, 
-Vfý 
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xi e X2 e X3 e 

xi 0 900+0 goo 

X2 900-0 0 goo 

X3 goo goo 00 

Table of angles between the local and 
alobal frames. 

z 

Mpim F: (Fig. 7.1.1(h)) 

X2 

9 90-0 0-0 
oe 

Fig, 7,11 (g) 

This is an actuator with a single degree of freedom. The local frame 

is set parallel to the global frame at point V so that no rotation 

would be required. In fact the result is not affected whether the 

local frame is set at V or Of. 

At V, x=0, 

(V zf)=ý 

0 xi f X2 f X3 f 

0 xi 1800 goo goo 

0 X2 goo 1800 goo 
0 X3 goo goo 00 
V5 f Table of angles between the local and 
0 global frames. 
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I 

i 

3. Transformation of vectors to the global frame. 

[Mv] is used throughout this section to mean a matrix that 

transforms the components of any velocity motor subspace (VMS) 

from a local to global frame (see Appendix C). 

i) Coupling AI 
1 0 0 0 0 0 
0 1 0 0 0 0 

[Ma]. 0 0 1 0 0 0 
0 - P, -rcos 1 0 0 

k 0 rsin 0 0 1 0 

rooso -rsino 0 0 0 1 

k 

i 

But (Val = [Mva] (V a 
z 
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vi a 

V2 a 

V3 a 

(P'V2 a+ V3 a. rcos 0) 
kv 1a+ V3 a. rsinO 
Vla rcoso - V2 a rsino + V6 a 
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ii) Coupling D 

Cos -sin 0 0 0 0 

sin Cos 0 0 0 0 
[Mý dj= 0 0 1 0 0 0 

zsin -zcos a y Cos 0 -sin 0 0 

zcos -zsin 0 _x sin 6 cos 0 0 

pine -ycose xcose +ysiriD 0 0 0 1 

vidCose -V2 
dsine 

Vlds'ne +V2 d coso 
Vd 

dd (Vd, [Mýd] (Vd) -Vl sinO Zcose+ V *y +V d. cose 
d 

-V2 
d 

Y3 
d x+V -V2 zsinO_Vn 

3. 
sinO V, zCOSO 34 

V, (xsinO-ycos e)+V2 (xoos ei-ysin 0) 

But x= rsin 4y= -rcos 4 

v Ildcoo -V 2 
dsinO 

V, inO +26 

jVd) 
3d- 

e+V2dýoso) _X(V, s _V3d. rcose+V4d. cose 
k (Vld 0-ý dsine)-V d. rsino+V dsiM 

V, d. r 
234 

iii) Cowlincr B 

Since the local frame is chosen to be at U (Figure 

7.1.1(e)), only rotation is required. 

Cosa sin a 0 0 0 0 
-sinO Cos 0 0 0 0 0 

b [MV 0 0 1 0 0 0 
ksine -kooso 0 Cosa sino 0 
koose ksine 0 -sine Cosa 0 
0 0 0 0 0 
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0 

0 

(Vb, = [e] (V Z 
b) 

=0 
V5 sin 
V5 bcos 

0 

iv) Coupling C 

Since local frame is again chosen to be at U (Figure 
7.1.1(f)), only rotation is required. 

-Cos 0 sin 0 0 0 0 

-sinO -Cos 0 0 0 0 
lmý c1 0 0 1 0 0 

k sin 6 P, Cos 0 0 -COS sinO 
-Z Cos e k sin 0 0 -sin e -cos e 

0 0 0 0 

0 

0 

(VC) 0 
V5c8in 0 

-V5 c cOs 0 
0 

Coupling E 

0 
0 
0 
0 
0 
1 

Cos 0 -sinO 0 0 0 0 
sinO Cos 0 0 0 0 0 
0 0 1 0 0 0 

Z sinO Mose -xe cosO -sinO 0 

-tcose tsine 0 sinO cose 
L, ý e's 0 -,. Xesine 0 0 0 
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V1 ecos e_ V2 esin e 
V1 esinO+ V2 ecos 0 

CVej [tV](V el It V3e 

t (V 1 
esine + V2ecose)_V 3 e. ýe 

t (_Vlecose + V2 esiile) 

xe V2esin e) + V6e e(Vl coso 

vi) Coupling F 

00 0 0 0 

0 -1 0 0 0 0 

[MV f] 001 0 0 0 

0t0 -1 0 0 

100 0 -1 0 

000 0 0 1 

( 
10 

0 

fVf) [DVI IV f) 0 0 

-vr, 
I10 

4. Now apply Kirchhoff Is circulation law [3] to the two circuits of 

Figure 7.1.1(b): 

a) Thus for Circuit 1 (involving couplings A, B, C and D), 

(Va) + jVb) + (Vc) + jVdj = to, 

Co 0 -so 0 0 0 0 0 V1a 
0 so 1 Co 0 0 0 0 0 0 V, d 

0 0 0 0 1 0 0 0 0 ,a v2 
0 -£so -1 -Z Co -rcO -rc 0 c0 so so d v2 

L 9, CO 0 -£so rso -rse so c6 -c 0 V3a 

rcO r -rs0 0 0 0 0 0 0 1 V3 d 
d V 4 

V5 b 

v5 c 

V6 a, 

1-2(0). 



143 

Note that co and so stand for cos 0 and sine respectively. But 6= 450 

and so the constant matrix becomes 

1 1172- 0 -llv(2- 00 0 0 0 0 
0 l//2.. l 1172- 00 0 0 0 0 
000 0 11 0 0 0 0 

2/v(2-- -£ -£/v72- -r/Y'l -rý/-2- 1/Y(2-- 1/Y(2- l/VI 0 

x Z/ Y, 1 0 -. Z/vr2- r/vOl -r/v(2- 1/Y/2- 11)72- -1//2- 
r/ ýT r -r/ VZ 0 00 0 0 

or 

0 
0 
0 

Z/ -2 

r/ YT 

or 

1, 'r2- 0 -1172- -1 0 0 0 0 0 

l/VOT 1 1/Z2- 0 0 
0 0 0 0 1 

g. £/ v12- 0 -r 
91v12- 0 -£ / Y'l -L 0 
r/ v7 r -r/vr2- 0 0 

J Hence, 

j) V1 a/ V/2- - V2 ap/2- - V2 d=0 

ii) V1 a//2- +V1d+V2 a/ r2- 
=0 

ii: L) V3a+ V3 d=0 

iv) _ a/ d 
. tV 12 _jtV 1_ tV 2 

aIV2 - r. V3a+V5c 
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v) Z Vla/V"2 - PV2a//2 - YW2cý- r. V 3d+V4d+ V5b =0 

vi) r Vla//2 + r. Vld _r V2a//2 + V6a 0 

b) For Circuit 2 (involving couplings C, D, E, F), 

(Vf) + (ve) - fVc) - fVd) = (0) 

-Co Co so -so 

-so s6 -Co Co 
0 0 0 0 
£so £so Zco £Co 

-£CO -£Co £so £SO 

xeco 0 -xeso 

0 0 0 0 0 0ý V, d 
0 0 0 0 0 0 V1e 

-1 1 0 0 0 0 V2 d 

rco -x e -Co -so 0 0 V2e 
rso 0 -so Co -1 0 V3 d 

0 0 0 0 0 1 r 
v 4 
V5c 

f V5 

V6 e 

= {o1. 

Again c0 and s0 stand for cose and sine respectively and 6= 450, so 
the ccnstant*matrix becomes: 

-11v72- 1/b72- 11v72-- -11v72- 0 0 0 0 0 o- 

-1//2 1172 -11V-2 lIrf2- 0 0 0 0 0 0 
0 0 0 0 -1 1 0 0 0 0 

- £/Y/2 - £ /ý2 - Z /yf2 - Z /vf2 - r/72 -X. -11v7-2 -1152 0 0 
-tIF2 -£/Y'2- Llt7-2 Z /vlr2-- r/, /r2- 0 -1 /Y/-2 1/v(-2- -1 0 

-r Xe/v'Z 0 -x e /Y/-2 0 0 0 

or 

0 0 0 0 0 
0 0 0 0 0 

-1 1 0 

r -Xe 2 -1 
r 0 -1 

-X e/vz 0 0 0 

or 
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00 -1 0 00 000 

-1 10 00 00 000 

000 0 -1 10 000 

0 00 -Xe/v/-2 0 -1 11V-2 0 
00 r -Xe/r2 -1 0 -1/v/2 0 

L -r 
Xe//: f 0 Xe/ Y'4Z 0 00 001 

Hence, 
i) V2d= V2 e 

ii) v1e-v1 

V3 d V3e 

iv) kv d +. ZVe _ V3e )L 2=0 1 e/ 
/ 

v) 2. - V2 d+ kV2e + IV d_Ve /ýf2 =0 33 )e 

rVe. +Ve=0 vi) -r. Vld + Vle. 'N e/ 
Y2 -2 'N e//2 6 

5. Final solutions of the spatial analysis 

The detailed procedure of working out the final solutions is 

relegated to Appendix D to avoid labouring a relatively minor 

point in the main pages further than its importance justifies. 

The final solutions are presented here because they are thought 

to be more important than merely showing the manipulation of 

numbers. 

since the displacements are very small, the velocities y5b ,V5C 
and V5 f can be replaced by displacements cb, cC and cf. Now, 

since this is an analysis of a 3-degree of freedom manipulator, 
the corresponding motion or displacements of point 0 in body 3 

can be obtained from thp- re-Wlts of jVa)ý- + (Vbj (Appendix D) as - 1 +V2 b+ (3r-vl. 2 -Xe ecin the X -direction (a) x, 7-2 c 
,. V, 2. r 1 

(C b+Cc+cf 
Equations 7.1.1 (b) x2' in the X2-direction 2 V2 

(X 
e -r, (2-) 

c 
(C) x3 = --22-F2 -k F- in the X3-direction 
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These solutions are made easier by selecting O= 450 and the solutions 

of the angular displacements are ignored because this is a 3-degree 

of freedom manipulator. 

7.1.2 Soluticris of the analysis of a 4-degree of freedom manipulatc)r 
(Method 1) 

The detailed analysis of a 4-degree of freedom manipulator follows 

exactly the same trend as that of the 3-degree of freedom 

manipulator. In order to avoid labouring essentially the same points 
here, therefore, the details are relegated to Appendix E. In this 

section, however, only the final solutions to the 18 equations (of 
the three circuits) derived in Appendix E by the application of 
Kirchoff's Laws (3] are presented. 

Selection of a path frcm body 1 to 3 and surnmation of velocity 
vectors: 

((V59 - V5b + V5f - V5c)/2Jt). I/V'I 

(Val + (Vb) =I 

f(V5f - V5C - V59 + V5b)/2. t). l/vr2- 

v5f/r 

k/ /2- b 
V5 

f+ 
V5 

f 
-V5 

cVb/ 

Y/2- ýTk (V54J - V5 - V5f + V5c) -2 -77- 5 

LIVY b 
V5 (v f- 

(v 5 V5C b //2- 
2X 59 - V5 + V5f - V5C) + -72- -- 721- + V5 

r W5ý1 - V5b) + (V5b - V59 - V5C + V5f ) r/2 Z 
2L 

f(V5f + V59) - (V5b + V5c))/2, r2-i 

b ((V5f - V59) + (V5 - V5c))/2T2t 

vf 
f+ (5 

/r 
V5 g_ V5 ý5b 

- V5c))/2y'2' 

((v5g + 75f) + (V5b, + V5c))/2/2 

(v5f - v5c)r/21 
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Since the displacements are very small, the velocities V5 b, 75c, V5 f 

and V59 can be replaced by the displacements c5 b, c5C, 95 f and c5 9 

respectively. Since this is an analysis of a 4-degree of freedom 

manipulator, the solutions must include at least one angular rotation 
as well as three linear displacements. This is because it would be a 
waste to use a four degree of freedom manipulator for the 

manipulation of a point -a task that cnly requires a three-degree of 
freedom manipulator as already demonstrated in Section 7.1.1. 

So, if rotations about the Xl- and X2-axes are considered negligible, 
then the solutions to this analysis are obtained from the results of 
(Va) + (Vb) shown above as: 

Equations 7.1.2 

(a) x, = -- 
1 (eg - cf +Cb- cc) in the Xj- 2,72- 

directim 

1f+ 
c9 + Lb + EC) in the X2- (b) x2 ' (C -272- 

direction 

(C) X3 ý'- (c f- cc) r/2 Z in the X3-direction 

(d) ()3 ý-- ef/r (rotatiori about X3-axis) 

Again these soluticns are made easier by selecting 0= 450. 

(II 

In general, this tensor technique (Method I) gives results of the 
form (6) = [M]fA) where (A) are the known displacements of a 
manipulator feet (actuators), [M] is a characteristic matrix of a 
manipulator that depends on geometry and (6) is a column vector of 
three angular (velocities or) rotations about the Xl-" X2- and X3- 

axes and three linear (velocities or) displacements in the X l- , X2- 

and X3-directions. It is a very useful technique because the 

characteristics [M] of any manipulator with any number of degrees of 
freedom can be obtained once the actual size actuator-adjustments are 
known. 

I 
It cannot, however, be used to solve the laser/fibre misalignment 

problems because of the practical difficulties -involved (Section 

7.4.4) and above all the analysis of a 4-degree of f reedom 
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manipulator tackled here gives the results of the small displacements 

of a point (position of laser diode 0) -a task already solved by the 

analysis of the 3-degree of freedom manipulator. Section 7.4.4 gives 
the conditions that need to be fulfilled before this method can be 
effectively applied to answer the misalignment problems. 

7.2 MATHEMATICAL FORML]LATION OF THE DISPLACEMENTS OF THE 4-DEGREE OF 

FREEDOM MANIPULATOR (MEMOD II) 

The first method which has been applied to the geometrical studies of 
the displacements of the 3- and 4-degree of freedom manipulators 
(Section 7.1) makes use of a vectorial transformation. This section, 
however, presents a second approach which is totally intuitive and in 

general simpler than the first but only valid for this particular 
manipulator. It is however more difficult to solve similar problems 
intuitively for more complicated manipulators. As this is not a 
general method, it is felt that its illustration on a 4-degree of 
freedom manipulator is not only representative but sufficient for 

purposes of comparison with Method I. There is therefore no need for 

repeating the procedure for a 3-degree of freedom manipulator. 

7.2.1 The Intuitive Analysis of a 4-Degree of Freedcm N&-: InipUlatX)r 

in this method, like in the preceding cases of the general vector 
approach, point G (Figure 7.2.1(a)) located symmetrically on the 

surface of the manipulator is considered the best position for 

placirxg a laser diode. It is this point whose displacements are of 
major interest in this section. 

The apparatus used in this analysis is adopted directly from Figure 
6.3.1(a) (Chapter 6). The only exception is that the laser L has 
been replaced here (Figure 7.2.1(a)) by the solid triangular pexSpex 
body p while the feet A, B, C and D are drawn without stands T 
because they are unnecessary for purposes of this analysis. 

Assuming that Figure 7.2.1(a) shows the initial (datum) position of 
body P, then the positions of G can be worked out in terms of the 

amount of displacements of feet A and B as follows (Fig. 7.2.1(b)): 
i) Initial positions of A', BI and G1, measured with respect to 

frame 2 
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�1 

B 

A 

Fig, 7,2,1 (a) SUPPORT OF A4 DEGREE OF FREEDOM 
MANIPULATOR 

X1 

Sta nds 
a 

Fig, 7,2,1(b) Hemispherical feetA, B supporting ptanel 
of body P 

i 

k 
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(-a, o), BI = (a, o) and G, = (o, a) 

ii) Now, let foot A be extended by a small amount (measured in 

microns), CA7 

iii) The new positions of A' and B' measured with respect to frame 2 

will be given by cA cA 
A' = (-(a -7,1 -ý-2 ) and 

(al, o) 

rIhe position of G, measured with respect to frame 1 is given by 

G, A ý: A 
72-' 72- 

That is, the position of G, is defined by the total change in 

the positions of A' plus the total change in the position of 
BI. 

iv) Now, let foot B also be extended by a small amoLmt e B, then the 

positiais of A' and BI measured with respect to frame 2 will be 
cA EA cB CB 

A' = (-(a - 7y 72- ) and BI= ((a - 7/7: 
-ý'), 

72- 

But the position of G, now measured with respect to frame 1 is 

cA -C BcA +c B (-ý2ý' -77217'- ) 

Similarly if G2 is situated at the mid-point of the second 

plane, (that is between C' and DI), then when similar changes 

are made or effected on feet C and D (eC andc: D) the position of 
G2 measured with respect to frame 1 will be 

cc7cD cc +C D [B] 7-2 1/2 

v) To obtain the coordinates of G with respect to frame 1, it is 

then a matter of getting the coordinates of the mid-point of 
the line joining G, to G2. Thus, the position of G measured 

with respect to frame I is: 



I 

(EA+Fc-ca-ED, 
2%/2 

Thiis 
E A+ f: C-E- B-ED 

ý2 

I ý) 1 

A+CB+cc+cD 
2 Y'2 

and Y( A+ cB +C c +C D 
2-v72- 

[C] 

These f inal equations are consistent with equations 7.1.2(a) 

and (b) respectively. 

Conf irination of Angular displacements 01-02 and 03,, 
_ 

Angular rotation a, about the Xl-axis is given by the difference in 

the Y, and Zl-coordinates of G1 and G2 (Fig. 7.2.1(c)). 

Fig, 7, Zl (c) 
ANGULAR ROTATION OF GlG2 
(Fig, 7,2,1 (a)) ABOUT Yl-AXIS. 

4 

(YG2-yGl)/2L assuming negligible change in the ZI-coordinates of 
Gl and G2 after adjustment of manipulator. 

But yG, :ý (EA +FB)/V'2 and (Eqns. 7.2.1 [A] & [B]). YG2 F-C + ID) / yr2 

01 ý I(CC +F D) - (E A +CB) vf- t 

Similarly, 02 about the Yl-axis is given by the difference in Xl- and 

Zl-coordinates of Gl and G2 (Fig. 7.2.1(d)). '02 = (xG, -xG2)/21 assuming 

negligible change in Zl-ooordinates of Gl and G2 after adjustment of 

manipulator. 

But XG1 ý (F-A -E B) IV2 and xG2 = qC - Eb (Eqns. 7.2.1 [A]&[B 

e. 02 A- '-B) + (c D-E: C»/2v2 

k 
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Fig, 7,2,1 (d ) 
ROTATION OF GlG2 (Fig, 7, Z, l(a)) 
ABOUT Yl-AXIS 

GI 

Fig-Lire 7.2.1(e) represents plane 2 of Fig. 7.2.1(a) with a slight 
difference in that the actuator positions are swopped with their 

corresponding grooves. This change is immaterial to the kinematical 

soundness of the manipulator but it is made inorder to relate it 

directly to Figure 7.1.2(a). 

When actuator C is extended, point contacts D' 
UP 

represented by a 

single point (Fig. 7.2.1(e)) for simplicity, slides I along the groove. 
A' and B' (Fig. 7.2.1(a) with point contacts swopped) slide slightly 
forwards and the whole body tilts about the Xl-axis rather than the 

Zl-axis- Similarly, when A or B is extended, both A' and B' slide 

upwards while C(also represented by one point) and D' rotate about 
line C'D'. Thus, the overall rotation is about the Xl-axis again. 

When D is extended, A', B', and C' all rotate about lines parallel to 

k 

FIg, -/, 41 (e) 
PLANE2 (Fig, 7, ZlO)) WITH THE GROOVE POSITIONS REVERSED 
(SHOWING THE EFFECT OF EXTENDING ACTUATOR D BY F-D)- 
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the Zl-axis. Consequently, tilting takes place about the Zl-axis 
following the dashed triangle (CIDIG21) of Fig. 7.2.1(e). Since the 

change in actuator length ED is very small, the change in angle 03 is 

even smaller. Thus from Fig. 7.2.1(e), tan 03 "ý 03 "ý cDlr* 

rrint- Ii mi r)n 

These results for linear displacements x, along Xl-axis, x2 along Yj- 

axis, and angular displacements 01,02, and 03 are consistent with 
those obtained below section 7.1.2 provided that velocities V. 5 are 
replaced by displacements c5 and the difference in lettering Figs. 
7.1.2(a) and 7.2.1(a) are noted. The results confirm theoretically 
that the methods as well as the results are valid. It was, however, 
found intuitively difficult to validate the linear displacement in 
the Zl-direction. For this reascn and for purposes of satisfying the 

linear Z, displacement x3 obtained by method I, further validation of 
these equaticns are conducted experimentally (7.4) and by computation 

method (7.5). 

7.3 RELATIONS BETWEEN THE POSITION DISPLACEMENTS OF G (FIGURE 7.2.1(a)) 

AND THE LASER/FIBRE COUPLIWCT EFFICIENCY 

Saruwatari et al [4] gives the laser/fibre coupling efficiency (if 

misalignment is in the X-z plane as shown in Figure 7.3) as: 

2. 
(1/w, 2 + l1w 2) +w2e2[wl2(z) +w 2j/2X2-xez/w, 2)) n= K exp(-K (2L (a) 

200 

where K 4W2. w2 
2+ 2)2 

+ X2z2/7r2 10 /[(Wl too I. 

W2 (Z) =W2 El + OZ/11101 2)2] 
11 

x= wavelength of the laser, wo fibre core radius and 
W= laser beam neck radius (that is at z= 0). 

The same expression is also used to represent the coupling efficiency 

when misalignment takes place in the Y-Z plane except that x- the 

lateral misalignment, and 0- the angular misalignment in the X-Z 

plane, are replaced by the corresponding lateral and angular 

misalignments y and 0 in the Y-Z plane. 
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Fig7,3 Gaussian Laser Beam 
to optical fibre couOing. 

I 

If however, the input end of the optical fibre lies at ti-ie bearn waist 
(neck), then z=0. In that case the above equations reduce [41 to 

rlo = k. expf_2x2/(w 1 
2+w 

0 
2) 

-2 7126 2w 2w02/ [X2 «3 2+ 
w 

2) ]) (b) 

where ko = 4/ (w /, l) 1+ w2 /w 
01 0) 

In the x-z and y-z efficiency relationship analyses that follow, the 

support configuration of plane 1 (Figure 7.2.1(b)) which is the same 

as that of plane 2 is assumed to represent the datum support position 

of body P (Figure 7.2.1(a)). In addition, the laser diode is placed 

close to the origin G (Figure 7.2.1(a)) such that (a) its emitted 
beam is propagated along the Z, axis; (b) the beam waist is located 

at the origin G and (c) a stationary receiving optical fibre lying 

along the Zl-axis has its input end also located at G. This implies 

that z is fixed at zero. Bearing in mind these conditions, the x-z 

and y-z efficiency relationships can now be presented. 

i) Analysis of misalignment in the X-z plane 

For very small displacements of the point G (Figure 7.2.1(a)) the 

angular displacement 0 Now, 

(E: 
A+E: C-E: BD 

xG = 
2/2 

from equation 7.2.1 [C]. 

... 0= 
(c 

(rads) 
2/2 i 

Substituting for 0 into the efficiency equation -/. 3(L)) for the X-Z 
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plane, 

Ti 
0= ko exp -fk, 

2 
where kl - (wlz+ w04) 

, 17,2 
22 

k2 2, - '. Wl (13() 
- 

x2 (W 
12w0 

2) 

2 
c A+E: C-EB-CD) 

8. 
+ k2 

CP: C-ý'B-ý'D) 

82 

and k4 0 (w 
0 

/W 
1 

+W 
1 

/W 
0 

Analysis of misaligment, in the Y-Z plane 

) 

Similarly, for very small displacements of the point G (Figure 
7.2.1(a)) the angular displacement ý= yG/ ý But 

YG A+E: B+ EC +C D)/2ý 2 

fran equation 7.2.1 [C] 

(CA + C, B+cc+cD) /2f2 

4 

NOw, substituting fOr ý intO the coupling efficiency equaticn 7.3(b) 
for the Y-Z plane, (C +C +C +C )2 +C )2 

-{k 1, 
ABCD+k cP: B+cC D 

TIO = koe 82W 

2 
2Tr 2w12w02 

'0 ftiere k, = 2/ (w l4w 0, k2 = 
A2 (W 1 

2+W 
O)and 

ko = 41(woAol +wl/wo)2. 

In both the coupling efficiency expressions of the X-Z and Y-Z 

planes, maximum efficiency is obtained when the exponential 
expression is unity. That is no = ko. l. So, from the X-Z and Y-Z 

planes 

k. k 
)2 ý( cA+ ct_ cB_ c 12 

D)2 0 (c B-C D t2 T8 
k k, 

it 
1 

-'"': Vc D) 
2= 

z1f. -B CD20 and (c A: "c B (c A: tr -fe -te 

Hence CAý Ed- 9B- 9D =0 and c A: lr- B+ 9C + cD 
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i 

Fran these two equatims, cB = _cD and CA I- -CC' (c) 

The experimental results of Figures 6.8(a) and (b) (Chapter 6) 

obtained by adjusting feet A, B, C and D clockwise (positive) and 
anticlockwise (negative) clearly support these results. 

7.4 VALIDATION OF THE MATHEMATICAL MODEL DERIVED IN SECTIONS 7.1 

AND 7.2 

In order to ensure that the equations derived for the displacement of 
the position of a laser diode mounted on the manipulator are correct, 

some experimental tests need to be carried out. 

Although the general vector method (applied in Section 7.1) seems to 
hold for a manipulator of any number of degrees of freedom, a 4- 

degree of freedom manipulator has been selected for this experiment. 
This is because it is much simpler to construct and carry out such a 
verification on this manipulator. 

7.4.1 Ccnstructicn of Apparatus for Verificatim of the Mathematical 
Model 

A similar apparatus used for the alignment of lines in space (Chapter 

6) is adopted for this experiment. A right angled solid V-shaped 

perspex body P (Figure 7.4.2) with a rectangular top surface 360 mm 
by 113 mm and two equal but opposite right angled isosceles 
triangular faces is supported on four hemispherical lengthwise 

adjustable feet in the same way as the laser L (Figure 6.3(a)). 

These hemispherical feet are threaded screws or bolts with steel ball 
bearings glued onto their tips. To avoid repetitions, see sections 
6.3 and 6.3.1 of Chapter 6. 

The apparatus is, however, redrawn here (Figure 7.4.2) with a clock 
gauge spindle pressing against the top surface so that the change in 

position of the central point G can be measured once A, B, C and D 

are adjusted. This body P is supported symmetrically on four feet so 
that the two planes of support coinciding with the axes of a pair of 
feet A and B and C and D respectively are 60 mm from the respective 

ends while G is 180 mm from either end. 
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7.4.2 Eýýimental Test Procedure Using the Apparatus of Figure 7.4.2 

The flat rectangular surface of the perspex body P supported in 

Figure 7.4.2 is first levelled by adjusting the four feet 

appropriately and then checking it by means of a spirit level and the 

clock gauge Y to ensure that it is levelled. The dial gauge is 

mounted on stand M c3uch that its positior, can be varied by loosening 

and then retighteru-ng the suppor-t screw W. The stand M itself has a 

magnetic base which firmly grips the surface of a flat steel table. 

G Mid point of P 
1, G2 Symmetrical points 

on planes 1 and 2 
respectively. 

Fig, 7,4,2 Support of the solid perspex body P 
showing the spindle position of dial gauge Y. 

A and B Hemisphericat screws interacting with 
V- grooves - 

C and D Hemispherical screws interacting with 
ýane surfaces. 

With the whole arrangement placed on a steel table and the surf ace of 

P levelled, a known number of turns n (preferably small) clockwise or 

anticlockwise are made to each of the four feet (n does not have to 

be the same for every foot). The reading on the clock gauge Y 

mounted directly on top of G will change from the initial value 

I 
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I I 

measured when P is levelled to some other value. The difference 

between the initial and final readings on the gauge is then the 

experimental value of the overall change in the position displacement 

of G due to the changes made to the feet. The gauge is then moved to 

positions Gl and G2 and the corresponding readings noted. Again, the 

difference between the initial gauge reading and those in the final 

positions of Gl and G2 respectively give the correspcnding changes in 

the positions of Gl and G2. 

Now, applying the theoretical model, the values of yGl, YG2 and yG 

can be calculated directly from the amount of adjustments (with a 
known pitch, the number of screw turns can be transformed into linear 

displacements) made to all the individual screws. The results are 

given in Table 7.4.3 (Section 7.4.3). 

7.4.3 Presentation of Experimental Results 

When a screw (foot) is turned clockwise, the number of turns recorded 
and subsequently its linear displacment (after conversion) is 

regarded positive while a counterclockwise turning is negative. This 
is because a clockwise turn on any screw (foot) has a tendency to 
lift the body P upwards and hence G while an anticlockwise turn has 
the opposite effect. For this reason, the initial setting of the 

gauge Y during the levelling of P must be conducted in such a way 
that Y records a reasonably high initial reading. In that case, when 
the four feet are adjusted anticlockwise and the level of G falls, a 
final reading (lower than the initial gauge reading) can still be 

recorded. Thus the amount of fall in G can be found and hence the 

experimental value of YG- 

Example of theoretical evaluaticn 

In order to illustrate the theoretical evaluation of the y- 
displacements of G1, G2 and G, case 1 of the results presented in 

Table 7.4.3 is analysed. Such an evaluation is effected directly 

from equations 7.1.2(b) or 7.2.1 [A] to [C] as follows: 

FE +C E +E 
-C+cD -B+F 

YGtl 
AB 

Y= 
CD 

and YGt '2 
£AýF 

v/2 et2 2 v/2 
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But eA = 2.117 M, EB = 5.292 m, cC = 1.0584 mm and eD = 4.234 mm. 

2.117+5.292 
= 5.239 rnm, yGt2 = 

1.0584+4.234 
= 3.742 mm yGtl = 72 V2 

and yGt = 
2.117+5.292+1.058+4.234 

= 4.491 m as shown'in Table 7.4.3. 
2 V2 

It should be noted that the pitch of the screws used 0.04167". So, 
for n. screw turns clockwise, the linear displacement (n. x 0.04167 x 
25.4) mm. This value is then substituted into the theoretical 
formulae (equations 7.2.1[A] to [C]) as a positive figure otherwise 
negative for a counterclockwise tLn-n. 

7.4.4 Ccmments and Conclusion 

The experimental procedure discussed above was conducted to find the 

position changes of G, Gl and G2 only in the y-direction. This does 

not mean that it is impossible to obtain the displacements of these 

points in the x and z directions, but it was found to be practically 
difficult. However, sixteen different experiments conducted, 
produced relatively accurate results for the y-displacements 
depending on the amounts of adjustments given to each of the four 
feet. The larger the amounts of adjustments, the less accurate the 

results are. Four samples of the results given above compare very 
favourably with theoretical results despite the crudeness of the 

apparatus. 

So, although the displacements in the x- and z-directions have not 
been confirmed experimentally, the theoretical confirmation by the 
two methods already discussed in this chapter and the partial 
displacement validation in the y-direction are sufficient to verify 
this model. Thus the general vector approach (Method I) which is 

applicable to any manipulator is very useful. 

However, it is envisaged that this model cannot be utilised at this 

stage for a laser/fibre alignment. This is because even if the 
displacements can be directly linked with the coupling efficiency as 
in Section 7.3 there are still many practical problems associated 
with establishing the laser diode datum position in relation to the 
fibre input face for such minute displacements. In addition, the 

coupling efficiency equatiorm (7.3 (1) & (ii)) obtained as a function 
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of the linear screw displacements (cA, cB, EC and cD) does not 
produce independent results for E A, c B, cC and r: D in terms ofwO and 
u)l when maximised or minimised. It is therefore difficult to 
implement the idea in reality and more work needs tc) be dcne towards 

solving the equation if the concept is to be utilised. 

Ideally, a 5-degree of freedom manipulator is most appropriate for 
laser/fibre alignment because it takes into account all the alignment 
tolerances. It is, however, envisaged that a 3-degree of freedom 

manipulator is the best manipulator for experimental laser/fibre 

alignment. This is because firstly angular and longitudinal 

misalignments are not very sensitive to laser/fibre alignment [1]. 
Secondly, it is more economical to use a 3-degree of freedom 

manipulator and more importantly, very much easier to program it for 
the purpose of such an alignment. 

Thus due to the difficulties already discussed, it is felt that the 

use of a suitable adaptive control technique in conjunction with an 
accurate 3-degree of freedom manipulator (say Oriel Encoder Mike) 

will achieve a satisfactory alignment result. Such an algorithm, 
devised for the programming of a 3- and 5-degree of freedom 

manipulator and believed to be a better alternative to the model 
derived in this section is presented in Chapter 9. 

7.5 CCUTWATION ll=OD 

An attempt to evaluate the linear x3-displacement by the intuitive 

method yielded a completely different result from that produced by 
method I. It was also found to be practically difficult to measure it 
by experimental method. 

Thus, since it is not possible to check the results of Method I 

either intuitively or experimentally, a NAG FORTRAN subroutine 
(F04AAF) available on the University main frame computer was used to 

calculate all the linear and angular displacements. Generally, the 

routine can be used to solve linear equations of the form A. X =B 
where A is an array of coefficients of column vector X and B the 

array (or column) of constants. In this respect, the three sets of 

circuit equations derived in sections 4(a), (b) and (c) (of Apperxiix 

D) were all assembled in terms of the actuator velocities Vb 51 Vc 51 
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Vf5 and V95 in the form AX, = BV. This is shown in matrix form in 

table 7.5(1) where A is a l8xl8 coefficient matrix of the unknown 
local velocities I and B is a 4x18 matrix coefficient of the four 

actuator velocities Y. Choosing t (= 2) and r(--F2) arbitrarily and 
then substituting into the circuit equations of Appendix D gives the 

necessary data (table 7.5 (1)) for entry into the pro gram. 

By entering the data into the E04AAF column by column starting from 

matrix A and then running the program, the final results were 

obtained in terms of the primary variables (the 4 actuator 

velocities) as shown in table 7.5(11). From sections 3(1) and (ii) of 

Appendix E and section 7.1.2, 

Valcoso + va 2sino 
Vaý, ýo - Valsino 

(Vaj + (Vb) 
l(va 

Va 3aaab 
ls'nO- v 2COSO)- v 3, rcc)sO+ v 4cc)sO+v 5s'nO 

I(Valcoso+ Va2sinO)+ vaj. rsino- va4sino+vb5coso 

r. Val + Va6 i 

TABLE 7,5 (ID: COMPUTED RESULTS FROM INPUT 
DATA OF TABLE 7,5a). 

-ýO. 25 --0.00 0.00 0.25 b' Vi 
0.00 0.25 -0.25 C. 00 V C 
0.00 0.25 -0.25 0.00 5 

vf 0.18 0.18 -0.18 -0.19 0.00 -0,25 0.25 0.00 
-0.25 0.00 0. -0 c 0.25 
-0.25 0.00 0.00 0.25 
-0.18 0.18 -0.18 0.18 

v 0.00 0.00 0.71 0.00 [ l= ö. oo 0.00 -0.71 0.00 
0.00 0.0.9 -0.71 0.00 
0.00 0.00 -0.71 0.00 43 0.00 -1.00 1.00 0.00 

-1.00 0.00 -1.00 C. 00 
0.00 0.0 n -1.00 -1.00 0.35 -0.35 0.35 -0.35 
0.00 0.00 0.00 0.00 

> -0.35 0.35 -0.35 0.35 

Vector JVJ represents all the local velocities 
in table 7,5 (1). 
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Table 7.5(11) gives a computer output of values of all the local 
velocities that appear in Table 7.5(1). A check was made by 

substituting values of the local velocities (7.5(11)) into the above 
equations and the results were found to be consistent with those 

obtained in Section 7.1.2. Since only the linear x3 displacement 

needs to be checked and because the substitution procedure (from 
Table 7.5(11) into above equations) is simple, the rest will be left 
to the reader. 

Thus, from the aLxne equations, x3 = r. Vla + V6a 

Fran Table 7.5(11), 

V1a= (v5g-V5- b) /4 and 
V6a=0.35(V5b-V5c+V5f-V59) 

That is, x3 = 0.35(V5f-V5c) which confirms the results of section 
7.1.2. 

***** 
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CHAPTER 8 

DESIGN OF LASER ALIGMWr CCtRW)L CIRCUIT 

CHAPIER OVERVIEW 

The fast growth of the optical fibre market has been accelerated by 
the need for better communication-, (2.0). The fibre assembly requires 

repetitive handling of a number of components such as injection and 
detection terminations, connectors, couplers etc. Such assembly 

process is still very frequently handled manually (2.4) which limits 

the coupling efficiency. 

This chapter examines individual design circuit ccxnpcmits with the 

aim of constructing an overall omtrol circuit for use in automatic 

laser-fibre alignment. This type of alignment needs a suitable type 

of ccntrol. A description of an open loop control deemed suitable for 

this purpose is presented in section 8.1. The Oriel Encoder Mike 

(4.4.3) drive circuit designed for purposes of their ocntrol is then 

presented in section 8.2.1 followed by a general description of shaft 

encoders and an experimental proof of the selected motor accuracy. 

The detector circuit is summarised in section 8.2.4 followed by a 
description of the peltier drive cicuit, a gripper for the optical 
fibre and the laser protection cicuit respectively. Also given in 

section 8.2.10, is an account of the different types of computers 

available on the market and the reasons for selecting a Transam 

micro-cariputer. 

interfacing the individual Oompcnents to the MPU namely the motor and 

encoder circuits is examined in section 8.3 and the accompanying 

subsections. Finally, this is followed by a summary of the power 

supply circuit which channels the appropriate signal levels to the 

different parts of the overall control system. 

8.0 Introduction. 

in general, successful automated optimisation of laser-fibre 

alignment requires a transverse alignment accuracy of the order of 

laser wavelength or even better. This is because the dimensions of 

the monOmOde fibre core diameters and laser beams are of the order of 

a'few microns (Chapter 2). Apart from resolution, factors like 

_t 
- 
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backlash, repeatabilty, and control circuit efficiency, ease of 

programming and safety power handling also play an important parL 

The majority of these in turn depend on the type of actuators used 
(Chapter 4). With the advent of automated microalignment work 
(lasers, circuits and bacterial culture (4.3.7)), progress has been 

made in producing better actuators and the corresponding alignment 

control systems such as described by Edye et al [11 and others which 

are mentioned in Chapter 9. 

In this Chapter, an attempt is made to select the appropriate 

components to build an electronic control circuit system for 

automating the search for optimum laser-fibre alignment. This 

includes selection of the type of control used and the discussion of 
the fibre gripper which must be set manually each time a fibre is 

gripped. Some circuits already designed by STC are simply adopted and 

produced here to avoid wasting time and a possible design repetition. 

8.1 The Control System. 

The Oriel Encoder Mike actuator (4.4.3) has operating variables like 

load, torque (friction and inertia) and possibly amplifier gains 
because it is a dynamic system. It is therefore necessary to select a 

suitable system of control to compensate for variations in these 

parameters. In open loop control, the output follows the desired 

function provided that all such system parameters are constant. As 

outlined by Electrocraft [21, any change in load, amplifier gain or 

any other system variable causes a deviation from the desired value. 

closed loop control, however, has the capability of compensating for 

such variations. Ideally, this type of control would be preferred for 

this kind of work. 

Using the Oriel Encoder Mike together with its dedicated controller 

results in an initial overshoot of 15Vm (4.4.3). As outlined in 

Chapter 2 (2.5), this choice was based on the initial research 

specificaticns. The updated specifications, however, indicates that 

this overshoot conflicts with the maximum clearence of 5p between 

the outer diameter of the optical fibre and the hole through which it 

is threaded into the laser box for alignment. Due to lack of time and 

expertise in the Department, a suitable controller could not be 
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designed to overcome this problem. For this reason and tlx)se outlined 

in sections 8.2.3 and 8.3.1, an open loop control system is chosen. 

Fig. 8.1 shows a typical control circuit applied to the laser-fibre 

alignment system. Thus further discussions of closed loop control 

with respect to this work will be terminated but must be considered 

for similar problems provided that the controller is compatible. For 

example, the system discussed in [11 utilises closed loop control for 

laser-fibre alignment. Details of both types of control applied to 

D. C. motors are given in [2]. 

MOTOR DRIVE& LOAD 

DESIRED PULSE 
+ -4 LOADJ WI DTH, T POSITIONO 

x 

Fig, 8,1 OPEN LOOP CONTROL 
OF D-C MOTORS 

8.2 of the Control Circuit 

The block diagram of the layout of electronic control circuit is 

shown in Fig. 8.2. Each circuit consists of a Hex Buffer driver, an 

Cpto-isolator, a Relay, a D. C motor with an optical encoder attached 

to it, a Multiplexer and a Microcomputer. A detector whose function 

is to couple the laser beam from the fibre to the mic=mputer also 

forms part of the circuit. The decision to incorporate the various 

components into the circuit was based partly on availability but more 

importantly cn their suitabilty to the functioning of the circuit. 

Discussion of the individual I are presented in the sections 

below. Since new products frequently replace older ones, it is 

necessary to update relevant information on these components. Some of 

the product sources are given in Chapter 4 but lasers, detectors and 

optical fibres were provided by STC. Other common components like 

cpto-isolators, relays, buffer drivers etc. were obtained from local 

dealers. Table 8.2 shows details of their costs. An overall estimate 

can be reached if the cost of the microcomputer is includkL 
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TABLE 8.2 : CCMPONENT ODSTS 

r -------------------------------------------------------------------- 

UNIT OCVPONENT NAME1 TYPE SUPPLIER QUANTITY 'I ODST/E 

No. 11 ', +(V. A. T), 

---------------------- 1 ---------- ------------- ---------- i -------- 

Encoder mike Miniature Oriel Corp. 1 12805: 68p! 

manipulator 1D. C Motors', 11(3 motors), ' 11 

------------------------------------------------------------------- 
21 Laser 3.300 rin 

11 ', wavelength', STC Plc- 11 41 

II 
(cw) 11 (Loan) I 

------------ -------------------------------------------------------- 
1 11 

3 11 Detector 11 STC Plc. 11 

(Loan) 

-------------------------------------------------------------------- 
4 Cptical Moncmode STC Plc. 11 

Fibres (Loan) 11 2 

------------------------------------------------------------------- 
Thennistor, 11 

11 
Local Dealer', - 11 823: 17pl, 5 Transformers, 

OpAMS & other, 

canponents. II 

------------------------------------------------------------------- 
6 Power Supply I Hewlett 1 11486: 95pl 

(Laser Drive) it Packard 1 11 

--------------------------------------------------------------------- 
7 I/03Interface', 11 Transam 1 457: 70p! 

IMicrosystems Card I 

-------------------------------------------------------------- 

8.2.1 D. C. Motor Drive Circuit. 

The motor drive circuit of Fig. 8.2.1 forms part of the overall 

control circuit already discussed (Fig. 8.2). It consists of three 

motors (Mx, My and Mz) each connected to a relay and an opto- 

isolator. The relay is then comected to a commcn optoisolator (4) 
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via a transistor. The opto-isolators are in turn connected to a Hex 

Buffer driver which terminates into port B2 (141) of the Mpu. Each of 

the motors is selected or deselected via this port. During selection, 

the motor direction (forward or reverse) determined by the F/R line 

and controlled by opto-isolator (4) must also be specified. The opto- 

isolator will not trigger unless the voltage signal V sent from the 

computer is 2.4 <V< 5. The purpose of the driver is to enhance this 

signal. 

Sending 1 or 0 to bits 0,1,2 or 3 is equivalent to sending a5V or 
0v signal respectively to the opto-isolators via the driver. To move 

motor Mx in a given direction, aI must be sent to bit 1 of the port 

and 0 to bits 2 and 3. This triggers opto-isolator (1) via the driver 

which turns on the transistor (ZTX651) connected to a 12 V line. This 

changes the voltage level at P+M 13 of relay RLX from 0 to +12 V. 

If a1 is also sent to bit 0, then opto-isolator (4) is similarly 

triggered which turns on all the tbree transistors (2N3053) connected 

to it. Since the transistors are connected to the 12V line, they will 

activate all the respective relays. Since bits 2 and 3 have 0, cpto- 

, isolators (2) and (3) are not activated and will therefore provide 0 

-volts at pin position 13 of the relays RLY and RLZ. Thus motors My 

and Mz remain staticnary. In RLX, pin 11 makes contact with 13 while 

,8 makes contact with 4 due to attraction by the coil and so Mx 

-rotates in one direction (say, clockwise). When a0 is sent to bit 0 

on, the port, all the coils are de-energised resulting in pin contact 

-changeover at positions 4 and 13. The motor polarity is accordingly 

changed and direction of rotation is reversed. The same procedure 

holds for the rest of the motors. The purpose of the diodes Dx, Dy 

and Dz is to protect the driver circuitry from back e. m. f surges and 

to speed up release times. 

8.2.2 Motor Shaft Encodexs. 

Electrocraft [21 defines an encoder as an electromechanical device 

used to mcnitor and translate information on the position or motion 

of an operating mechanism. Basically, it consists of four components 

namely: a light source (for example, an LED), a pattern of 

alternating opaque and translucent segments (usually a disc mounted 

, between the LED and an associated sensor), a light sensor (normally a 

I 
_L. 
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phototransistor) and a conditimiM circuitry such as may be required 

to convert sensor output to properly formatted information for 

interface. To achieve increased resolution, the LED is collimated and 

a mask is added between the disc and the sensor [2]. In such 

applications light is transmitted to the sensor only when the 

translucent segments of both are in alignment. 

Encoders are either linear or rotary. The former obtains direct 

digital information of the position or velocity of an arm moving 

along a linear axis while the latter senses position or movements of 

rotary devices. The latter is preferred and can either be incremental 

or absolute in its encoding function. Although both absolute and 
incremental enooders are used for control of industrial robots and NC 

machines, the latter is preferred for speed control while the former 

is best for position control [2]. This is because the absolute 

encoder mechanism for reading and maintaining memory of shaft 

position is superior to that of the incremental encoder. The former 

reads and maintains memory of the shaft position information within 
the encoder system itself. Such information is not erased or changed 

whether or not the encoder is powered down. However, the latter 

maintains memory of position in an external digital counter which can 

be lost when the incremental encoder is powered down. The absolute 

encoder is therefore better in this respect but an assessment of the 

two encoders by Udoakang (3] reveals that the choice between them 

normally lies in the cost trade-offs. Details of their construction 

and functioning procedure can be obtained from manufacturers like 

Litton (U. K) [4] and other books on encoders. 

In Oriel Encoder Mikes, a pair of LEDs and phototransistor detectors 

are used with a shutter to generate square signals in synchronisation 

with motor operation. The shutter has ten equally spaced openings 

which produces ten quadrature cycles per motor revolution. one 

complete revolution of the motor being equivalent to 1 pm of linear 

displacement (4.4.3). Thus each cycle represents 0.1 Pm of motion. 

Signals obtained from the Encoder Mike encoders by driving the motor 

using a program constructed in chapter 9 are shown in Figs. 8.2.2(a) 

and (b). Fewer signals are recorded when the motor is driven for a 

short period of time as shown in Fig. 8.2.2(b) where the motor has 

Moved approximately 0.1p compared to IIIM in (a). 

I 
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Because of the specifications given in chapter 2 (maximum distance 

traversed = 5pn), 8 bit counters were used to keep track of encoder 

position information. That is, fifty encoder pulses are produced over 

a Ej= linear displacement and this is easily accommodated by the 8 

bit counters. 

8.2.3 1 Proof of Encoder Mike Displacements. 

The accuracy and tolerance of the Oriel Ehooder Mike Micrometers were 

obtained both from the manufacturer's catalogue (chapter 4) and 

through personal communicaticiL To ensure that the specified motor 

accuracy and tolerance (chapter 4) are correct, an experiment was 

conducted to confirm the claim. This helps to dismiss any suspicion 

of the possible effect of motor accuracy on the alignment results. An 

interferometer technique was chosen on the grounds of availabilty of 

laser and other necessary optics accessories. Interferometry is based 

on the principle of interference both of which are described by Born 

and Wolf [5]. That is, the intensity of two or more superposed light 

beams from the same source varies from point to point between maxima 

which exceeds the sum of intensities in the beams and minima which 

may be zero. 

There are a number of interferometric arrangements that can be used 
to determine micro-displacements of the order of a laser wavelength 

such as those said to be produced by the Oriel Encoder mike. In this 

test, the principle of the Michelson interferometer is adopted. 

Details of this method and others which are similar in principle are 

given in [5]. The experimental arrangement is shown in Fig. 8.2.3(a). 

IIt is illuminated by a He-Ne laser source S (wavelength = 0.6328pm) 

producing approximately straight parallel beam. The laser beam 

emerging from the interferometer is collected by a lens L. Ml is a 

plane mirror mounted onto the surf ace of Oriel Encoder Mike 

manipulator normal to the beam Il emanating from the beam splitter B. 

M2 is a second mirror placed normal to the optical axis of L such 
th at Ml, M2 and B are about the same distance from each other. This 

arrangement gives an optical path difference between the emergent 

rays which intersect at some point P (see [5]) between Ml and B and a 

corresponding phase difference of 2 Tr m where m=0,1,2,3... n when a 



1? 6 

bright fringe is formed and m=0.5,1.5,2.5,... n/2 for a dark 

fringe. It is stated [51 that due to a departure from monochromatism 

of the source, the fringes are visible only if the optical paths from 

the two arm--, are approximately equal. Details of this method are 
discussed i-n [5]. 

Direction of motion. 

Encoder Mike 
Manipulator 

11 
Beam Splitter 

iB Photocell 
C 

2 Microscope Objective 
Lens, L 

Lightmeter 

mS LM 

He-Ne 
Laser 

Oscilloscope 
(NICOLLET) 

Fig, 8,2,3(a) Interferometer arrangement for determining Encoder 
Mike response to step drive pulses. 

The microscope objective L focusses the laser onto a photocell C 

connected to a light meter (LM). The meter is in turn connected to an 

oscilloscope (NICOLET). When the Encoder Mike manipulator moves in 

the given direction (Fig. 8.2.3(a)), the fringe pattern on the 

photocell changes. This in turn produces a sinusoidal wave which is 

captured by the NICOLET when triggered. Each peak of the wave 

corresponds to a bright fringe while the trough corresponds to a dark 

fringe. The distance from peak to peak or trough to trough is the 

wavelength of the laser usecL The total number of waves n produced is 

4 
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equivalent to the manipulator displacement (nM where X is the laser 

wavelength. 

Results of experiments carried out by drivirxj the Oriel Encoder mikes 

for different periods produced corresponding displacements shown in 

Figs. 8.2.3 (b) to (d). It should however, be realised that any 

manipulator displacement under X/2 can not be resolved because the 

change in fringe patterns can not be resolved below this point. 

Manipulator movements producing about 0.3pm were consistently 

obtained as shown in Fig. 8.2.3(d). Since no laser light source with a 

wavelength below 0-6328pm was availabe, displacements below 0.3pm 

could not be measured. Since consistent displacements of 0.3 pni were 

recorded, it is reasonable to assume that the manufacturer's claim of 

O. Jpm resolution is true. The ripples superimposed onto the signals 

are due to noise and background light. The experimental arrangement 

used here is cniy valid for the direction shown. To test movement in 

any other direction, the surface must be turned round to face Il 

normally with a plane mirror like Ml stuck on to it. 

8.2.4 Laser Detector. 

To measure a quantity of light, some form of detecticn is require& 

The detector used is determined by the region of light spectrum. 

Burnham (6] gives details of the common types of detectors available. 

By concept, laser action produces an intense, highly concentrated 

light beam of single wavelength radiation. This is important because 

the main problem with any form of light measurement is to obtain an 

absolute meaningful output. This can only be done if the right 

detector and the characteristics of the detection system including 

the spectral emission of the source are known. That is, to detect a 

laser, a suitable detector together with the associated electronics 

capable of interpreting the detected signal are required. In this 

section, the laser wavelength of interest is 1300 nm. This is 

normally said [61 to be covered by a detector called a multi-juncticn 

thermopile detector. 

The detector used in this alignment is a development unit provided by 

STC. For this reason, details of the circuit were not provided. The 
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Fig, 8,2,4 Differential Amplier Circuit. 

VId= 9,52V (Detector (circui 11) output voltage) 
Vf = Reference signal voltage (9,56 V) 
Vop=0,08V (Amplifier output voltage at balance) 

Amplifier gain Av = -ý-' where R2 source resistance + RA 
R2 1 K. 

PIN No. FUNCTION 
1 OFFSET 
2 INVERTER 
3 NON INVERTER 
4 -ve SUPPLY 
5 OFFSET 
6 OUTPUT 
'7 
1 +ve SUPPLY 
8 UNCONNECTED 
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skeletal details given shows that it is fundamentally an FET- 

photodetector operated device which is spectrally matched to the 

detected 1300 nm laser. The output of the detector circuit does not 

read laser power directly. The laser signal is transformed so that 

the ouput records a voltage proportional to the amount of laser 

launched and detected. With no laser launched, the output (VId) was 

found to be 9.52 V. This signal can not be input into the computer 

because it is larger than 5 volts. Above all, launching of laser 

light into the detector would inevitably increase the output well 

above this value. To offset VId to 0 volts, a differential amplifier 

circuit shown in Fig. 8.2.4, was ccnstx: ucted. It was then connected to 

the detector output and varied to read 0 volts when no laser is 

lam-ched. 

That is, by varying the reference voltage Vf using Rv2, the amplifier 

output at point (pin) 6 is reduced to 0 volts. Transistor-Transistor 

Logic Circuits (TM) are designed to operate within the voltage range 
0 *<- VTL < 5.25. For this reason, RV1 or a combination of RV1 and RV2 

are used to offset the output to 80 mV in order to maintain it 

constantly above 0 volts. Adjustment of Vf to 9.56 volts when VId is 

9.52 volts produces an output Vop of 80 mV with no laser launched. 

When the laser is fired and launched into the detector, Vop varies 

proportionately with it. For zero power, Vop = 80 mV and at peak 

power, it records 5 volts. This construction is used in Chapter 9 to 

test the alignment program. 

8.2.5 Effect of cn Laser Cperaticn. 

The semiconductor laser diode is fired from a constant D. C. current 

source. The output power varies proportionately with the amount of 
drive current supplied (Fig. 2.1.4(b)). STC laser diodes are fired 

with currents varying from 0 to 500 mA (7]. Many electronic devices 

exhibit temperature dependent parameters and semiconductor laser. 

diodes are no exception. In general, this is caused by heat 

dissipation which in turn depends on the amount of current flow 

through the compcnents. 

I 
According to STC [7] the life expectancy of a 1300 nm wavelength 

laser is in excess of 100,000 hours at 250C to 50%- increase in 
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threshold current under suitably controlled conditions. Its lasing 

threshold current and wavelength are both said [71 to be temperature 

dependent (2 to 3% OC-1 over a range of 25 to 50 OC and 0.35 nm OC-1 

respectively). It is therefore recommended that this device be 

operated such that the chip is maintained at a ocnstant temperature 

of 250C and the case at about 650C. Storage and usage should be 

limited to a maximum temperature of 500C or 650C depending on the 

laser type otherwise its life is reduced. Laser output rises with 

reduction in temperature and damage to the laser below ambient (250C) 

can be avoided by reduced drive current and/or by heating the laser 

submount. 

In order to cool the device, a separate circuit with the help of a 
heat sink needs to be incorporated. A peltier drive is normally used. 

This is a heat pumping device which extracts heat from the cold side 

and deposits it on the hot side of the module. This heat is then 

conducted away by another body called a heat sink otherwise the 

surface gets progressively hotter. Fundamentally, a heat sink must be 

maintained at a temperature higher than ambient so that heat can be 

transferred from its surface into the surrounding air. Thus, the 

surface of the heat sink must be highly conductive. The higher this 

temperature difference, the more heat can be transferred from the 

heat sink. Obviously there is a limit to this. Literature on the 

peltier drive suggests that as the temperature difference across the 

peltier becomes excessively large, the heat pumping capacity drops. 

Details of the peltier circuit applied to semiconductor laser diode 

cooling is presented in the next section. 

8.2.6 The Peltier Drive Circuit. 

The Peltier cooling circuit shown in Fig. 8.2.6 is Provided by STC. 

The 334Z is a constant current source device that provides a fixed 

current. The READ/SET Switch SW1(A) which is also connected to SW1(B) 

shown dotted in the diagram, is first opened and by varying RV, (the 

10 KC2resistor), the therm'stor voltage VRTH aCrOss Pins 11 and 12 is 

Set to 1 volt. SWI(A) is then closed and the output of the 

cPeraticrO3L amplifier (1) is then set tO 0 volts by varying Rv2 (the 

20 KC2 resistor). 



184 

$1 

ty 
W 

Cl- 

cl C: L 
>> 

C) > 1: 
C) co 

:D 

ýle 

p 
C- 

/. 
f 

'm 

uj 
C3 

uj C3 
C3 uj 
C3 f- ir C) <m I-- Li :D ul L. J 

uj ul 
0- 0- cn 

uj 
F- --i 
<-<m cr C13 

o U-i cn w C: ) c) < 
M F- F- 0, 

tr L4 uj < 
. 

1: X: 
z 0 ýLj L-) > 

Lj i- 1--of 
" -, - -, 

LIJ UJ 

Lj LLJ 0 U-j LA 
0 tn 

C3 a_ ! tý CL 

z> 

clq 

Ln >F , -I 
Q! ý 

licý 
C> 

Ln 

0-11 
r 

--I>f -I LU 
U) 
11 

(m 
0 

: 3'- 
- -- 

LLJ 
LLJ 

L. J 

C) C: Ljj C) > L. J E 
M 

CL 
(14 

C> LLI 
> > 

Lf) Ln c> + Lr) 
url (14 1 

co 

-i Nr- CL + (D 
C=> Cý 
" (14 m C14 
co C14 co 

P-ý- I C) 

Z3 

of 

(A 
uj 
CL 

C3 U-i < V) LLJ 
=L Z: 

C) ý91- 
co CD Nf M: 

co 

of 
Cý 0 ý14 00 

-6 > uj 
U- 

> 

I-- 
V) > 

, Lo D 
I Of z 

C) CD (/) 
< U- ::: ) (if 



185 

The laser is then fired when the setting is ocxnpleted. The voltage vp 

across the peltier drives current through the submount which causes 
heating and voltage change from Vp to some other value VIp. This 

change is due to a change in the resistance of the submount and the 
flow of current. This change in current is detected by the thermistor 

ccmected across pins 11 and 12 because the same current is fed back 

to it. If this change occurs such that the current flowing through 

the thermistor is increased, then more power is dissipated in the 
thermistor and the temperature therefore rises. Since this is a 
positive temperature cofficient device, its resistance also increases 

, which means that VRTH also rises. The output of amplifier (1) then 
drops. Note that its output voltage Vout = gxVRTH where the gain g= 

-82. This reverses the direction of current flow leaving a small net 

amount of current in the submount peltier. Less power is therefore 

dissipated and so laser temperature is stabilised. This current is 

again fed back to the thermistor causing VRTH to drop. If VRTH drops 

well below 1 volt (to even some negative value), then because g=- 
82, the output increases and so does the current flow in the 

submount. Power dissipation is similarly increased and the laser 

temperature starts to rise again. This current rise increases the 

thermistor temperature , resistance and VRTH as before and thus the 

process continues. As this process takes place, part of the output 

signal from amplifier (1) is used to drive amplifier (2) to give a 

status indication via the bi-colour LED (Heat/Cool) on the front 

panel. 

8.2.7 The Heat Sink. 

it is recommended [71 that a laser device must always be mounted on a 

metallic heat sink and temperature control augmented if necessary by 

a peltier heat pump of suitable capacity. In some cases, use of 
thermally conductive grease between the laser case and the heat sink 
is recommended as long as it does not short the laser pins to the 

heat sink. 

In this section, a description of a heat sink used in conjunction 

with a peltier drive is presented. The heat sink (Fig. 8.2.7) made 

from aluminium, is designed to cover three surfaces of the laser box. 

The laser box has 14 pins which are inserted and gripped by 14 slots 
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(each containing moveable metallic inserts) specially moulded on top 

of a zero force insertion plastic socket SK (8.2.9) whose 

corresponding pins (14) are soldered on to a circuit board. The board 

is in turn mounted on top of the manipulator (PLATE 8.2.7). Since the 

laser box sits on top of SK, the heat sink was designed to cover the 

laser box from the top of the socket (8 mm from the surface of the 

circuit board) up to the top of the laser box (20 mm from the surface 

of the circuit board). The laser box inserted into SK was then set up 

so that it rests firmly against two surfaces of the heat sink while 
the third surface is closed in by means of a spring releasing 

mechanism (Fig. 8.2.7) when the laser is inserted into the slots. 

8.2.8 The Optical Fibre Gripper 

In the manual alignment procedure (2.4), a fibre is threaded into an 

cpen box housing the laser diode and manipulated manually by means of 

a pair of tweesers without the need for a gripper. In an automated 

alignment procedure where a semiconductor laser diode is manipulated 
for aligning its beam with the fibre, cne of the components (fibre or 
laser) needs to be held firmly in one position. Since this facility 

was not provided, one needed to be designed and made. In this 

section, the description of such a fibre gripper is presented. 

Although the input terminations (tips) of the fibres used for this 

alignment are strengthened with brass sleeves, they are still 
flexible and are liable to permanent bending during alignmnet. This 

is particularly true when the fibre is moved hard against the inner 

walls of the tube through which it is threaded (Fig. 8.2.8(b)). This 

could result in a false alignment as well as introducing strains in 

the fibre. In order to avoid this problem, the gripper needs to be 

designed to fit the limited space (7.8 mm x 6.0 mm) inside the laser 

box (Fig. 8.2.8(b)). In addition, the gripper must not come into 

contact with the pins inside the box thus causing a short circuit 

which destroys the laser and can damage the power supply. This 

gripper is shown in Fig. 8.2.8(a). Part 1 is ordinary splung steel 30 

mm long ,5 mm wide and 1 mm thick which is firmly screwed onto 

another piece 2 also made of steel. The latter is purposely made thin 

at the tip (2 mm x5 mm) to fit inside the box and give allowance for 

manipulation but gets Progressively wider at the top to provide for 
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rigidity. A right angled V-groove is made at the tip to fit the fibre 
brass terminations Imm in diameter. A fibre can only be threaded into 
the V-groove if 1 is pushed out of position. This is done by means of 
a rigid slender pin inserted into a hole 2.5 mm in diameter drilled 
15 mm from the tip of piece 2. The latter is firmly screwed onto a 
cylindrical steel piece 3. The gripper assembly is mounted onto a 
separate manipulator M2 (PLATE 8.2.7) by holding the cylindrical 

piece 3 firmly in the mirror mount. M2 is a manual manipulator which 
allows the gripper to be lowered accurately into the laser box and 
then onto the fibre. 

8.2.9 Laser Protectim Circuit. 

The operation and handling precautions of continuous wave (cw) lasers 

must be observed if the laser is to last. STC [71 recommends that a 
1300 nm cw laser should be operated at 250C under suitably controlled 

conditions if it is to last for 100,000 hours to 50% increase in 

threshold current. These devices are said (7] to be easily damaged by 

current surges and overdrive. To minimise the risk of damage, the 
following guidelines must be followed. 

A voltage limited power supply in conjunction with a 10 ohm 
limiting resistor should be used where possible. 

Many nominally constant current power supplies give current 
surges and may oscillate or transmit line transients when 
switched ON or OFF. Such supplies must be transient suppressed 

and turned down to zero before switching on or off. Thus during 

circuit development, it is advisable to employ a 10 ohm resistor 
as a dummy load until the circuit behaviour is under control. In 

addition, when the laser is inserted, it should be shunted with 
a manual switch until supplies have settlecL 

In general, semiconductor lasers are sensitive to static voltages and 
may be permanently damaged if exposed to high electrostatic fields. 

This can be curea by use of anti-static bags, mats and earthing the 

work table. However, Fig. 8.2.9 is a circuit purposely built to 

suppress such transients. The circuit is supplied by STC and 
comprises of beads FB, inductors Ll, L2, capacitors Cl, C2 and a 
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diode Dl. This laser is a negatively operated device. Thus its anode 

and ground (pin 10) are comected together but the cathode (pin 9) is 

separate. Power is supplied to these pins from a Hewlett Packard 

constant current power pack via this circuit. Dl conducts any 
transient or current surges from the laser cathode line to the anode 

and ground but not vice-versa. The beads, capacitors and inductors 

suppress ripples produced by the transients. 

A zero force insertion socket SK with provisions (slots) for 

accomodating 14 laser pins is soldered onto the circuit board PB 

(Fig. 8.2.9). These are cpen/close spring adjustable slots controlled 
by a spring loaded lever mechanism LR. The laser pins can ti-ye-refore 

be locked or released by turning LR when the laser is being moLmted 

to or removed from the board. The positions of the slotted holes on 

SK corresponding to the laser pins are shown in Fig. 8.2.9. As 

recommended above, the laser is shunted by a manual switch to isolate 

transients produced by ONIOFF switching of the power supply. 

8.2.10 The Microcomputer- (MPLJ) 

There are numerous computers in the market today. The automation of 

laser-fibre alignment and similar problems require relatively small 

Computer storage space. For this reason, it is difficult to weigh the 

advantages and therefore the choice of one computer against the 

other. Currently, literature on the theory and applications of 

microcomputers are in abundance. Throughout this work, MPLJ is used 
interchangeably to designate the microcomputer and the processor unit 

or the microcomputer unit. 

In general, any standard MPU will suf fice for purposes of this 

research. Computers with 8 or 16-bit data buses, accumulators and 

registers are, however, preferred for purposes of software and data 

handling. Similarly, it is preferable to have an MPU with dedicated 

input and output 16-bit ports and a separate one for control. The 

8080/8085,6800 and the 6809 processors are ama)g a few of those that 

possess these features. 

The Transam microcomputer is based upon the Intel 8080 processor. It 

will accept the use of BASIC, 8080/8085 and the Z-80 assembly 
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language programming. The use of BASIC and any of the assembly 
languages interchangeably makes it relatively easy to program this 

machine. It also has four 8-bit input/outgit ports, three independent 

16 bit programmable event timers or counters, eight. 0 to 5 volt A/D 

channels with 8 bit resolution and similarly for D/A. In addition, it 

has 8 bit data bus, 8 bit accumulators and registers and a 64 K 

memory. The decision to choose this computer was based mainly on 

availability. 

8.2.11 Analoque to Diqital Cbnverter-(ADC). 

This type of conversion involves transformation of numerical 
information contained in an analogue signal into a digital coded 

word. This is the opposite of digital to analogue ocnversion. Kuo [8] 

recognises that ADC conversion is a more complex process and is 

generally more expensive with a slower response time for the same 

conversion accuracy than DAC. The input signal to the ADc ocnverter 

can be in form of a voltage or current. Different types of the ADC 

circuits, details of its working procedure, the associated conversion 

errors as well as the range of typical conversion periods are given 
in [8] and books on ADC programming and ccntrol. 

For greater resolution, an increase in the number of bits in the 

output signal is recommended [8]. This increases circuit complexity 

and a possible total conversion time which is liable to affect 

stability of closed loop control systems. The 1/03 card of the 

Transam computer discussed in 8.2.10, contains eight 0 to 5 volt 

analogue to digital channels with 8 bit resolution. Its coversion 

time is 13.5 or 18 ps depending on whether a4 MHz or 2 MHz clock is 

used. It has a ocnversion accuracy of ±0.4% Fs ±1 bit and a settling 
time of 4 ps. It is set in a unipolar mode so that 0 volts input 

gives a value of 00 hex when read and 5 volts input correspcnds to IFF 

hex in full scale. Details of the unipolar logic coding relating the 

analogue input value to the output code (binary) can be obtained from 

the Transam 1/03 catalogue available from the Transam microsystems 

manufacturers. 

8.3 interfacing amtrol Circuits to the MPLJ. 
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The three motor control axes are connected to the MPU through two 

interface cards. The motor drive circuit (8.2.1) interfaces the 

motors directly to the 1/03 card in the MPU while the encoder board 

interfaces the encoders to the 1/03 via a multiplexer (Fig. 8.2). 

Accessing the encoders (motor positions) is done through the 8-bit 

data buses. The encoder interface circuit is discussed in section 
8.3.1 below. 

8.3.1 The Encoder-MPLJ Interface Board. 

The encoders attached to the Encoder Mike motor shafts are of the 

optical incremental types. This means that the board must possess 

some latching features, a means of counting the pulses and if 

necessary, a direction sensing capability. This circuit is sbown in 

Fig. 8.3.1(a). 

The circuit accepts two identical signals (lines A and B) phase 

shifted by 9CP via dil switch Sl RS-337526 and converts them into two 

outputs UP or DOWN depending on whether the shaft is rotating 

clockwise or anti-clockwise. The first pair of inverters (ul) ccnvert 
high data to low while a combination of the 2700resistors and the 

0.01PF capacitors form low pass filters which absorb ripples from the 

signals. The second pair of inverters reocnvert the low data signals 
to high (11s). At this juncture, the signals are differentiated for 

direction sensing. 

Fia. 8.3.1(b) shows two signals phase shifted 900. The location of the 

peaks, troughs, falling and rising edges of signal A relative to B 

are used to detect the direction of rotation of the motor shaft. 
Detection of these peaks, troughs, falling and rising edges are 

accomplished by means of inverters or mcrz)stables or both (Ul 6, U2). 

Resultant signal C indicates clockwise rotation of the shaft if it is 

read from left to right and anti-clockwise if read from the opposite 
direction. For clockwise rotation, the signal is read as: 

Aý., B + A. Bý + J4. B + 4.. -A and for anticlockwise rotation, it is read 

as T. B$+ AB + A. Bj + Aj. -B in that order. 
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c 

Fig, 8,3,1 (b) 

AH3+A-Bt+ Al-B+ T-4 ........ - CLOCKWISE (CW) 

ý-- --- +A4-T3+A-4+At-B +T-Bt 
COUN TER 

CLOCKWISE (CCW) 

ENCODER SIGNALS(A&B 900OUT OF PHASE) 

-A MEANS OF DIRECTION SENSING- 

Each signal pair above is then channelled to the NAND gate U4 or U5. 

The first set of four (U4) NAND gates read the output signal from 

left to right while the remaining four (U5) NAND gates read from 

right to left. The outputs of LJ4 are channelled to the first AND gate 

U6 and the latter into a similar corresponding AND gate U6. If all 

the inputs are high, a high pulsed data is output by U6 otherwise low 

if any of the four inputs into U6 is 0. This output signal is finally 

channelled to the counters Ull and U12. 

The data In the counters is latched into U13 and then read to port A2 

(140 -Fig. 8.2). This latching is controlled from port C2 (142 -Fig. 
8.2) and multiplexed by U17 to control the three circuits. Details 

for the use of control lines to latch data are discussed in chapter 

9. 
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8.4 The Power Supply Unit 

Ail the various component control circuits already discussed (8.2.1, 

8.2.4,8.2.5 and 8.3.1) require a separate D. C. power supply for 

their operation. The drive voltage and current signal levels are 
different for each circuit. The motor drive circiuts, for example, 

require +12V D. C. supply and IJLOO mA to drive the motor. The logic 

circuits that operate this supply reuires +5V D. C. supply. The 

required voltage levels are given in the respective circuits. The 

circuits are designed to accommodate a certain minimum level of 

ripple content depending on the application. For example, a ripple 

content of 10% or less of unregulated D. C. supply is satisfactory for 

most peltier drive applications. Specifications for detector and 

peltier drive circuits were provided by SM 

Rectificatiai of the mains supply is the most economical method of 

providing D. C. power. This is a means of obtaining D. C. signal (below 

240V through a step down transformer) from the mains A. C. supply via 

a special diode circuit. Although the required voltage levels as well 

as the ripple contents of the component circuits are different, the 

principle of rectification is the same. A description of one power 

supply circuit shown in Fig. 8.4 is therefore sufficient. 

The diode circuit arrangement shown in Fig. 8.4 Producing +5 V D. C and 

-5 V D. C respectively is called a full wave rectification bridge 

circuit. Details of full wave and half wave rectification are 

discussed by Millman and Halkias [9]. The D. C. output voltage depends 

mainly on the A-C output voltage of the step down transformer. The 5V 

D. C output obtained can be explained by the relation: 

Vdc = 2Vm - IdcRf given in [9] 
Tr 

where Vdc = 5V, Vm = 12V, Idc = D. C (load) current f lowing in the 

circuit and Rf = load resistor. Assuming Rf = 0, Vdc = 7.6 volts. 

Thus, since there is capacitative load and Obviously Id-C flowing, Vdc 

must be less than 7.6 V. Based upon this relationship, different 

voltage levels can be obtained depending or, the transformer output. 

A ripple voltage is defined [9] as the deviation of the load voltage 
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from its average or D. C value. This occurs because the output voltage 

of a rectified circuit is not constant and depends on the waveform 
(full or half wave rectification), variation of load current and the 

input voltage. To overcome the first problem, filters must be 

incorporated in the output as shown in Fig. 8.4. This minimises 

ripples. The rest are overcome by sensing or sampling the output 

voltage and passing it to a controller to monitor and maintain the 

required output voltage. This process is known as voltage regulation. 
It utilises either zener diode or series/switching methods both of 

which are described in (9]. 
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CHAPTER 9 

SOFTWARE DEVELOFIvMENT 

CHAPTER OVERVIEW 

This chapter examines the development of software based on a hill 

climbing technique to cmtrol. the motion of a three degree of freedom 

manipulator for purposes of aligning a laser diode with a monomode 
fibre. Due to pre-alignment difficulties discussed in section 9.4, 

-this arrangement was substituted by the fibre-fibre alignment. The 

alignment principle and therefore the program developed for the 

latter arrangement is equally applicable to the former because the 

laser beam emanating from the fibre is approximately Gaussian asý 

stated in section 2.2.1. The objective is not only to automate the 

alignment process but also to try and achieve it in about three 

minutes as specified in section 2.5. 

The reasons for using a three degree of freedom manipulator for this 

alignment are outlined in section 9.1 followed by the discussion of 
the hill climbing technique in section 9.2. The different aspects of 
the software design are presented in section 9.3. The alignment 

results and the associated experimental test procedure are presented 
in section 9.4. Finally, conclusions pertaining to the alignment 

objectives are then outlined in section 9.5. 

9.0 Introduction. 

Alignment of a monomode fibre with a laser beam or fibre with another 
fibre needs to be done quickly and accurately. Such a process can be 

achieved by automation. Automation helps to improve both the speed 

and quality of the alignment and consequently save on the time spent 
during the alignment process and wastage of components due to manual 

alignment inconsistency (2.4). Based on the desired alignment 

specifications outlined in section 2.5, the results of the search 

reported in Chapter 4 revealed that there were very few companies 

capable of supplying satisfactory positioning systems to solve this 

problem. This was the positionin 1984 when the Department first 

initiated this research. 
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Methods that have already been tested (2.3) include the butt-joint, 

selfoc lens, hemipherical and cylindrical lens. Their major 
deficiencies are either due to low coupling efficiencies or 
difficulties in handling the different component parts during the 

coupling process or both. In the last two years, a few positioning 
systems have sprung up. Andrews et al [1], for example, produced an 
automatic fibre splicer capable of application in the field. Its 

optimisaticn procedure is said [11 to utilise a hill climbing method 
called the IsimplexI technique. Not much is known about this system 
but the IsimplexI method is said 

* to be incapable of finding the 

global maximum. This means that the system assumes that there is only 
one peak to arrive at which is not true in the case of laser beams 
having spikes. Centronic [2] 

' 
has quite recently (summer 1986) 

produced an automatic alignment system called the Polytrope 1000. It 
is claimed [2] to be driven by a high resolution mechanical 

positicner and that it resolves 0.1 lim with a capability of aligning 
two discrete components with automatic signal optimisation. It is 

also said (2] to handle a wide wavelength range of 800-1800 nm and 
that it completes the laser/fibre alignment in under one minute. 
Apart from its current price of E26,000.0 excluding VAT, details of 
the system capability are still unknown. The same company also 
produces a piezoelectric full: y manual alignment system which 
incorporates a TV monitor and costs f. 4,000.0 excluding VAT. Assuming 
that it conforms with the above specifications, the former is still 
considered expensive for this type of work and the latter, unsuitable 
because of its totally manual features. 

Edye et al [31 also describes an alignment closed loop system but not 

much is known about its practicality. Others like Newport's PM500 (4] 

said to be accurate to 0.1 gm resolution and completely 

microprocessor controllable capabble of driving up to 5 axes and 
walmore's AS-85M (51 manufactured by Cabloptic are some of the latest 

to come into the market. Very little is still known of them in terms 

of capability and price. The same applies to positioning systems 

produced by Photon Control [6]. 

There is no doubt that these systems are being built but until they 

flood the market and satisfy demand, highly aCCUrate Systems built 
fOr easy PrOgramming are likely to remain OTensive. Above all, there 

TH Davies#, Dept Of IJeýanical Engineering, LUT - personal conr=i- 
cation 
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is no (guarantee that they will be suited to the current SIC (or other 

canparry) pruduct designs. 

1 Reasons for sfqfrUpq a ýýý of freedom manipulator. 

Ideally, an automatic laser/fibre coupling device requires five axes 

of movement if the alignment is to be carried out successfully. That 

is, three linear displacements along X, Y and Z-axes and two angular 

rotaticns about the X and Y-axes respectively when both the fibre and 

laser diode emitting face are set along the Z-axis as shown in Fig. 

9.1. Analysis of the optimum configuration of these axes (e. g. 

mounting the fibre on three linear axes and the laser on two rotary 

axes etc. ) is not considered in this work. 

Oy 

Emitting face 

sy Laser Diode 

Fig, 9,1 LASERIFIBRE 
x ALIGNMENT SHOWING 

5 d-o-f MOTION OF LASER- 
Lase. r Platform 

'Fibre ýstationary)- 
d-o-f = Degree of 

Freedom 
Ox= Angular rotation 

about X-axis. 
ýy=Angular rotation 

about Y-axis. 

8x= Linear Laser Displacement 
along X-axis. 

8y= Linear Laser Displacement 
along Y-axis. 

Sz= Linear Laser Disptacement 
along Z-axis. 

LEDs in general produce light with larger divergence angles than 

lasers (2.1.3). Contrary to this, the results surveYed in section 7.0 

reveal that an angular shift of the fibre axis with respect to the 

LED surface of about 100 produces a loss increase of only about 

0.25dB. Since laser beams have smaller divergence angles than light 

produced by LEDs, it can be safely deduced that angular misalignment 

has even less significant effect on laser/fibre coupling efficiency. 

In addition, the cost price of each actuator (linear or rotary) can 
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vary from as low as E400.00 (Oriel Encoder Mikes -price in 1984) to 

nearly E800.00 (Oriel Stepper Mikes -price in 1984) or more. This 

suggests that a 3-degree of freedom manipulator is not only adequate 
for such an alignment but it is also much cheaper than a 5-degree of 
freedom manipulator (7.4.4). These were the major reasons for 

selecting this type of manipulator for alignment tests carried out in 

this Chapter. However, since a 5-degree of freedom manipulator is a 

viable possibility, a flow chart predicting an alignment control 

method for both manipulators is given in section 9.3. 

9.2 The Approach to the Maximun (Hill Clirrbing). 

The laser beam intensity emitted by the semiconductor laser diode is 

very closely Gaussian in shape (2.2.2). Figs. 9.2(a) and (b) show 
typical experimental results obtained by STC depicting laser 

intensity parallel (//) and perpendicular (J_) to the junction plane 
for different drive currents. Three-dimensional ly, the laser beam 

intensity distribution forms a hill as shown in Fig. 9.2(c) whose 

contours are depicted in Fig. 9.2(d). To align the beam with the 

optical fibre core, a signal (feedback) is obtained from a sensor 
that measures laser intensity emitted from the far end of the fibre. 

This signal is then utlised as a measure of the accuracy of alignment 

for use in the control of the alignment actuators. 

The problem is that of the transverse alignment of an optical 

waveguide to be excited with a light source (Fig. 9.2(c)) that can be 

the output of a laser diode or another fibre . The optical components 

to be aligned are not in contact. The approach used to get to the top 

of the hill assumes that at least some light is initially launched 

into the fibre and that all or part of the guided power can be 

measured. That is, since the two components are not in contact, the 

fibre position in the gripper in relation to the laser diode (8.2.8) 

must ensure that the initial laser power is non-zero. Mechanical 

contact between the components could result in the destruction of the 

laser diode emitting face and the microjens inserted into the fibre 

face. This type of approach would not interfere with the alignment 

mechanics to be described but would certainly damage the components 

themselves. 

I 
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In this approach, the move to the maximum (Fig. 9.2(c)) is based on a 
hill climbing technique. That is, some laser light (>, 3.5% of peak 

power in this case) is first picked up at some position PI 
(Fig. 9.2(d)). The choice of 3.5%- being completely arbitrary. By 

moving motor X one step (0.1 pm) at a time praUd to the X-axis (line ab) 

while reading and storing the signals, a curve similar to one of the 

Gaussian curves shown in Figs. 9.2(a) or (b) is traced. To ensure 
that a full curve is traced, the motor looks for 2%- of peak power on 
the other side of the curve. Again this choice is arbitrary. A 

program is then used to scan the stored signal values to obtain the 

peak value PkI which is smaller than the global peak of the overall 
laser intensity. Another subroutine then reverses the motor to the 

peak of this curve by looking for this value. This is followed by 

reversing the second motor Y down to c where the laser intensity < 
3.5% of global peak power. Y is then moved forward in 0.1 11m steps 

along cd via Pkl while storing the signals as before. This curve, 

although Gaussian in shape, is larger than ab but smaller than the 

largest curve which passes through the global peak position. Its peak 
Pk2 is again located and motor Y reversed to it in the same manner as 
X. Finally, by changing to motor X and repeating the same procedure 

as before, the largest curve ef is traced with its peak position at 
Pk3 which is also the global peak. Curve ef is also Gaussian. For 

experimental purposes, alignment is considered successful as lcx-)g as 

a set minimum power (i. e. shaded region (Figure 9.2(c))) is achieved 
(e. g. >, 70% of global peak power) so that ef does not necessarily have 

to pass through the global peak position. Also, in practice, a swop 
between motors X and Y can go on for either more or less than three 

times (as given above) before reaching the global peak. 

The process of taking a slice of the hill each time and homing on to 
the local peak positions (Fig. 9.2(c)) by means of motor movement is 

called hill climbing. Although the description of the above procedure 

seems to indicate that the alignment is two-dimesional, change over 

should strictly be shared between 3 or 5 motors depending on whether 

a 3- or 5-degree of freedom manipulator is used. In the case of a 3- 

degree of freedom manipulator, motor Z which is responsible for 

alignment in the fibre axis (Figure 9.1) is first moved and set in a 

suitable position within a range of say, 40 to 100 pm fmm the laser 

diode face before X-Y alignment commencýes. This stops the fibre from 
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hitting and possibly destroying the laser diode face. That is, the 

position of the fibre in relation to the semiconductor laser diode 

along the Z-axis determines whether or not the above procedure 

achieves the desired peak power (Fig. 7(b)) and therefore making it a 
3-dimesional problem. 

9.3 Software Design 

In this section and the accompanying subsections, the software 

developed for the control of a 3-degree of freedom manipulator (Oriel 

Encoder Mike manipulator (4.4.3)) is described. In such an 

application, the computer is working in real time or on line 

controlling both the electrical and mechanical hardware via the 

control circuit described in Chapter 8. 

Writing and OPtimising the software can take a long time. At this 

stage, not only is it necessary to have a thorough understanding of 

the language used but also the handling of input/output data and the 

general working of the computer. The Digital Research CP/M Operating 

Manual [7], L. A. Leventhal [8] and similar books on the Assembly 

Language Programming cover this area sufficiently well. 

Details of the software design for this alignment is directly linked 

to the hill climbing technique described in section 9.2. The control 

programme for the 3-degree of freedom manipulator is wholly written 

in the 8080/8085 Assembly Language Programming. A general purpose 

flow chart summarising the control of both a 3- and 5-degree of 

freedom manipulator is given in section 9.3.4. 

3.1 Enc0der COunts - 

As outlined in section 8.2.2, the Encoder Mike has a pair of light 

emitting diodes (LEDs) and phototransistor detectors used*with a 

shutter to generate quadrature signals in synchronisation with motor 

operation. The shutter has 10 equally spaced openings (one every 360) 

that provide 10 quadrature cycles (signals) per motor revolution 

(8.2.2). That is, one complete revolution is equivalent to 14m of 

linear motion so that each signal represents 0.1 ý= of linear 

displacement (Figures 8.2.2(a) and (b)). Unfortunately, the encoders 
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produce signals of unequal widths for any ccntir&xxm linear motion 
below 3 Pm23t. Oriel estimates this stabilising point to be in the 

range of 3 to 5 pm and recommends that Encoder Mikes should be tested 

individually in order to establish these point-cs. Thus, an attempt to 

channel the signals (Fig. 8.2.2(a)) to the Encoder circuit (Fig. 
8.3.1(a)) and tapping it from the output points of the two AND gates 
U6 of the Encoder circuit produced many results similar to those 

given in Fig. 9.3.1. These are in complete contrast to those shown in 

Fig. 8.3.1(b) which represent the standard output gate signals 

obtained when quadrature signals of equal widths are channelled into 

the Er=der circuit. 

Since the Encoder circuit detects and records the edges of the input 

signals (8.3.1) and because the continuous linear motion is below 1V 

m, it is not surprising that the results obtained for any two Encoder 

Mike (input) signals are consistently dissimilar. This renders the 

Encoder circuit of Fig. 8.3.1(a) useless for purposes of Encoder Mike 

signal detection and therefore reading and recording its correct 

displacements. This was the major reason for conducting tests (8.2.3) 

to ensure that the Encoder Mike step movements can be maintained at 

O. IjLm or close to it and thereby supporting the use of open loop 

control (8.1) in this work. 

9.3.2 of Ports. 

The 1/03 has four 8-bit input/output ports and many other versatile 
features as outlined in section 8.2.10. For purposes of this 

laser/fibre alignment, it was found unnecessary to use all these 

ports. Two output ports B2 and C2 and one input port A2 schematically 

shown in Fig. 9.3.2(a) were found to be adequate. To configure the 

ports input or output, control data word 90H is output to port 143 

(Fig. 9.3.2(b)). This is the initial step in any system dynamic 

control programming. It is accomplished by means of a dedicated 

Programmable Interface 1/0 chip (8255A-5) which forms part of the 

1/03. The chip operates in three different modes 0,1 and 2 depending 

on the control word used to configure it. With the above data word, 
the chip operates in mode 0. Details of the dif f erent mode 
configurations and the operating features of this chip can be found 
in the TTL data hand book or the 1/03 manual available from the 

23t. See reference 23, Chapter 4. 
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Transam system Mamifacturers. 

IX JENýENCyIENCkl( ýý x PORT B2 S/ ST3)j (SM/YST 2)1 (SM/ STVJ (141)-OUTPUT 76543210 

x= 1 or 0 

Al 
ELECI ELECT INPUT I PORT C2 
L(ýl koýEN (142)-OUTPUT 

IIIA 
(Ao ABLE G 

7654321 
x= 1 orO 

PORT A2 TT (140)-INPUT 

76s4.3 210 
ALL INPUT POSITIONS (TO BE PEAKED FOR ENCODER DATA) 

MOTORS (Mx, MyMz) 
ENCODERS (EN(ý, ENCy, ENQz) 
EN CODER DklA LATCH SEL EC TS (A, B, CorA0, A 1, A2) 
FORWARDIREVERSE CONTROL UNE(F/R) 
ON/OFF MOTOR CONTROL LINES (SISTn). n=1,2,3- 

Fig9,3,2 (a) PORTS A, B& C SHOWING WIRING OF MOTORS AND 
ENCODERS OR THE ENCODER DATA LATCH SELECTS. 

After por-t configuration, any of the three motors Mx, my and mz can 
be selected and moved forward or reversed. For example, to move Mx 
forward, a1 is sent to bit 0 and O's to the rest of the bits of port 
B2(Fig. 9.3.2(a)). This data (01H) selects direction (forward), 
deselects all the motors and resets all the encoders (ENCx ENCy and 
ENcz). Secondly, a1 is sent to bits 0,1,4,5 and 6 of the same 
por-t. This data (73H) selects motor Mx and drives it forward keeping 
all the encodcr positir-xis high. The motor is then stopped by sending 
71H to port B2 (i. e a0 to bit position 1). The time lapse between 
73H and 71H determines the motor drive pulse width and subsequently, 
the distance traversed by the motor. Mx is reversed by sending 72H to 
port B2 (i. e a0 to bit 0). A similar procedure applies to the 
movement of My and Mz. It is, however, possible to move all three 
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PORT 143 SHOWING MODE DEFINITION AND 
CONFIGURATION OF PORTS A, B&C, 

D7 I D61 DSI D41 D31 D21 D1 I DOI-CONTROL WORD (Port 143) 

GROUP 6\ 
PORr C (LOWER) 

1 =INPUT 
0=O`UTPUT 

PORT B 
1=INPUT 
O=OUTPUT 

MODE SELECTW 
O=MODE 0 
1=MODE 1 

GROUP A 

PORT C (UPPER) 
1=INPUT 

PORT A 
1=INPUT 
O=OUTPUT 

MODE SELECTION 
00=MODEO 
01=MODE 1 
1X =MODE 2 

MODE SET FLAG 
1=ACTIVE 

07 D6 DS 0403 02 Di DO-CONTROL WORD 
ýi 101011 1010 10 101 A- PA7- PA 0 

825SA PC7 - PC4 
D7-DO c4 pr, Dr- 

ýJ, PB7-PBO 

Fig, 9,3,2 (b) 
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motors at the same time by sending l's to bits 1,2 and 3 (: L. e 7FH or 
7EH to port B2) but this makes it extremely difficult to Control the 

manipulator motion. This is why each motor must be selected and 

controlled individually (9.3-4). The control circuitry featuring each 

motor drive has been discussed (8.2.1). 

9.3.3 The Control and Latching of Data. 

The basic data latch principle of the encoder circuit of Fig. 8.3.1(a) 

is illustrated by Fig. 9.3.3. The latter is the lower portion of Fig. 

8.3.1(a). This arrangement requires a decoder select, an enable 

select and a dil switch select to enroute data from the 373 to the 

input port A2 (Fig. 9.3.2(a)). The enable select is used for purposes 

of demultiplexing encoder data. Since the maximum overall linear 

displacement for each motor is 5pm (2.5), the total number of steps 
that can be recorded is 50. Each step being O. Igm (8.2.2 and 8.2.3). 

This means that only the least significant byte (LSB data) are 

recorded and latched so that Yl, Y3 and Y5 can be ignored (Fig. 9.3.3). 

A simple logic circuit from which a functional table relatirxj to the 

working of the 138 is derived, shows that the input selects A (AO), 

B (Al) and C (A2) control YO-Yl, Y2-Y3 and Y4-Y5 respectively. Part 

of this table which is taken from the TTL (Texas Instruments) data 

Handbook is shown in table 9.3.3. Latching of encoder ENC; c data into 

the 373 is accomplished by sending OOOOB to port C2 (Fig. 9.3.2(a)) 

followed by 0010B and finally by 0001B. The first data enables the 

138 while the second data selects input position A (AO) connected to 

encoder position ENCx in the 373. This latches the encoder (position) 

data to the 373. The last data select disables the 138 and deselects 

all the encoder input selects AO, Al and A3 corresponding to ENCx, 

ENCy and ENCz respectively. That is, a0 in bit 0 of port C2 enables 

all the encoders while a1 in the same position inhibits data flow. A 

1 in bits 1,2 or 3 of port C2 selects the corresponding encoders 

while a0 deselects them. This select/deselect procedure simply 

latches the LSB ignoring the MSB. A similar procedure is followed 

when latching ENCy and ENCz data. Since the most significant byte 

(MSB) is ignored, only three different sets of selections 

corresponding to the three encoders are made. 



213 

TABLE 9.3.3., 

FUNMONAL TABLE R=IW-7 TO THE WORKIWG OF CHIP 138. 

coNTRoL woRD (AO-A2 + ENABLE) INPUr 

--------- ---------- ---------- ----------- SELEMON 

Enable AO Al A2 

--------- 
0 

------------ 
0 

------------ 
0 

---- 

------- --- 
0 

---------- 

------------- 
YO 

---------- 
0 

----------- 
0 

-------- 
0 

--- 

- 
1 

------ - 

------------- 
Yi 

--------- 
0 

------------ 
0 

--- 

--- lm ------ 
1 

---------- 

--- 
0 

---------- 

------------- 
Y2 

-------- ---------- 
0 

-------- 
0 

-- 

1 

------------ 

1 

----------- 

----- 
Y3 

------- --------- 
0- 

---------- 
1 

------ 

0 

---------- - 

0 

------ ---- 

------ 
Y4 

------- ---------- 
0 

----- 
1 

------ 

0 

------------ 

1 

----------- 

------ 
Y5 

-- --------- 
0 

------ 
1 

------ 

1 

------------ 

0 

----------- 

----------- 
Y6 

------------ ---------- 
0 

--------- 

------ 
1 

------------ 

1 

------------ 

1 

---------- 
I 

- 
Y7 

------------ 

The data latch mechanism is effected by means of a clock CK. Data is 

cleared by sending a signal through the clear line CLR on U7. Details 

of the various data latching and selection codes can be found in TM 

(Texas Instruments) data Handbook. 

Due to variation in encoder signal widths produced by the Oriel 

Encoder Mike motion (9. -3.1), the encoder circuit of Fig. 8.3.1(a) is 

useless for purposes of closed loop control and subsequently for use 

in this work. However, should the circuit be modified to accomodate 

signals with unequal widths such as these, the data latch mechanism 

outlined above would still apply. That is, the discussion of the 

latch mechanism Is primarily intended for a future alignment work 
featuring closed loop omtrol which is more desirable when applied to 



'-'] 

D. C motors than using the open loop type control (8.1) for the same 
type of motors. The latter is best for the control of stepper motors. 

Latched 
to COMPL 

A2 

AO 
Al 
A2 
ENABLE 

Fig, 9,3,3 PART OF THE ENCODER CIRCUIT (Fig, 8,3,1(a)) 

SHOWING OIL SWITCH SETTINGS, U13 trU17- 

U13 U17 U7 
74LS 373 74 LS 138 74 US 74 

CK- CLOCK 
C7- CLEAR 

9.3.4 The Proqranuie. 

Data into 
the 

373. 

The alignment programme outlined in Apppendix E is written in the 

8080/8085 Assembly Language programming and tested on a 3-degree of 

freedom manipulator. The f low chart shown in Fig. 9.3.4 can be used 

for the control of both the 3- and 5-degree of freedom manipulators. 

The required motor is selected from the motor select box immediately 

after START. 

The programme written for control of the 3-degree of freedom 

manipulator is based on the hill climbing technique described in 

section 9.2. Although motor z is not included in the programme, the 

alignment in the z-axis is arranged by manually moving the fibre 
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Fig, 9,3,4 FLOW CHART FOR CONTROL OF 3- AND 5-D. O-F MANIPULATORS- 
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towards the laser source and fixing it in position inorder to 

maintain a constant gap between the two components (9.2). In the 

experimental fibre-fibre alignment, this gap can be as large as 3 mm 
while for laser/monomode fibre alignment it is as small as 40pn or 
less (2.5). A detailed description of the various stages and 
procedures in the programme is given in Appendix F.. Due to the 
incapability of the motor drive circuitry (Fig. 8.2.1) to hold the 

motors when power is switched ON, a program that deselects and holds 

the motors is first run before the alignment programme commences. 

9.4 Tests. 

rib carry out a laser/fibre aligninent, a monomode fibre obtained from 

STC is first threaded into the laser box (plate 8.2.7) and a gripper 

(Fig. 8.2.8(a)) manipulated manually using manipulator M2 is then 

lowered into the laser box in order to grip the fibre. This gripping 

process was unsuccessful because the brass strengthened fibre tip was 

physically bent by the gripper each time an attempt was made to grip 
it. This can be attributed to a number of reasons namely: 
(a) the groove that holds the fibre was milled locally in the 

worksbop with an old relatively imprecise milling machine; 
(b) the gripper was sprayed with vycoat PVC coating inorder to 

insulate it from the laser box and the associated pins (8.2.8) 

to avoid shorting. This partially blocked the edges of the v- 

groove and an attempt to remove this material from the groove 

edges often led to flaking leaving a bare surface; 
(C) the series manual (Ealing Beck) micrometers assembled to form M2 

(plate 8.2.7) are unsuitable for positioning the fibre in the 

laser box because their tolerances are worse than 5 pm. And yet 
this is the ovality between the inner surface of the hole (in 

the laser box) into which the fibre is threaded and the outer 

surface of the fibre (2.5). 

All these reasons coupled with the inaccuracy of m ntir gripp ou )g the er 

on to manipulator M2 (causing both angular and lateral misalignments 

of the v-groove with respect to the laser box) and the fact that the 

manipulation of M2 is purely manual, makes the laser-fibre pre- 

alignment exercise extremely difficult. In particular, it is 
difficult to estimate the gap between the fibre input end and the 



NMM: (See p. 217, parag. 1, line 6) 
In optical fibre communication systems, fibre to fibre alignment is 

very important in the field [1]. This is because fibre defects 

usually occur along the communication lines and these can cause fibre 
breakage. Thus, inorder to bring the fibres back together again, 
fibre - fibre alignment must be used. 
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laser face to 40pm (2.5). Even if this was possible, if motor Z (Fig. 
9.1) changed positicn once this exercise is completed, then the fibre 
input end could hit and possibly destroy the laser emitting face. 

Thus since the laser beam power distribution emanating from a fibre 

output end is very closely Gaussian (2.2.1), laser/fibre alignment is 

essent-Jally the same as fibre-fibre alignment. For this reason and 
those outlined above, the alignment algorithm is tested for the 

alignment of two fibres (8 - 10 pm core diameter) obtained from sTc. 

Inorder to carry out the fibre-fibre alignment tests, a fully coupled 
laser/fibre package from STC producing over 95% of coupled laser 

power was mounted as shown in plate 9.4. The output end of the same 
fibre was then inserted into a tight fitting cylindrical hole drilled 

in a metal block B which is in turn mounted on top of the heat sink. 

A second fibre gripped in position by adjusting M2 then picks up 
(receives) the laser beam and channels it to the detector. The amount 

of laser launched into the receiving fibre depends on the extent to 

which the two fibres are misaligned. 

When all the control units (Chapter 8) are ccnnected up, the peltier 

drive is turned on and the laser is then fired. Proper laser handling 

and firing precautionary measures must be followed otherwise the 

laser could either be destroyed by overheating (8.2.5) or killed by 

static electricity (8.2.9). The gripped fibre which receives (picks 

up) the laser is then manually moved sideways (X-axis), up and down 

(Y-axis) (see Fig. 9.1) in order to locate the smallest possible laser 

power distribution curve from which to start the automatic alignment. 

This is done by adjusting M2 and observing the change in the detected 

power output which can be read directly in volts from a voltmeter 

connected to the detector output (8.2.4). The starting point on the 

curve must not be less than 3.5% of the peak power because the 

program is constructed to pick up an initial laser power at or above 

this value (9.2). 

once the small curve is established (the two fibres are misaligned), 
the program is run. The alignment results produced by running the 

program achieves over 90% of the peak power. This is well above the 

70% specification given in section 2.5. This value (over 90%) was 

consistently obtained every time a deliberate misalignment between 
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the two fibres was made and the experiment repeated. Results of 

coupled laser power obtained by running the program with fibre-fibre 

axial gap distance of about 1 mm are presented in table 9.4. These 

results are then omverted from hexadecimal to decimal by means of a 
conversion routine before plotting the curves. The intial small curve 
traced by motor Y is plotted in Fig. 9.4(a) while the larger curve 

traced by motor X is plotted in Fig. 9.4(b). By increasing the gap 

distance manually, it was found that the coupled laser power starts 

to drop very slightly (4.88 V to 4.87 V) when the fibre faces are 3 

mm apart. With further increase, the power falls raipdly down to 50% 

at a gap distance of 4.5 mm. Figs. 9.4(c) and (d) show similar curves 

at a gap distance of about 2.5 mm. The contrast between Figs. 9.4(b) 

and (d) can be attributed to the nature-of the beam emanating from 

the fibre 12§ýnd the motor accuracy (8.1). 

The fibre/fibre alignment process takes less than me minute. This is 

a successful result considering that the alignment specification time 

is 3 minutes and the minimum required coupled power is 70% (2.5). 

since the dimensions of the laser diode, mcnomode fibre and the neck 

of the emitted laser beam are extremely small (Chapter 2), it is 

quite possible that laser/fibre aligrunent could even take less time. 

I 
9.5 Cair-lusions. 

Due to the prealignment difficulties discussed above, the major 

objective of the thesis (laser-fibre alignment) has not been met. 
However, since fibre-fibre alignment is essentially the same as 

laser-fibre alignment, the principle of the alignment objective has 

been successfully demonstrated as shown above. The consistently large 

output power obtained from this alignment exercise could be due to 

the fact that the extremely tight ovality clearence of +2.5 pm (2.5) 

is absent in fibre-fibre alignment. This power output is achieved in 

a considerably short time despite compounded inaccuracies such as the 

use of open loop type control to drive the D. C motors (Oriel Encoder 

mikes), misalignment errors incurred by mounting the gripper onto M2 

and the manual manipulation of M2. 

126. See reference 12 of Chapter 2 
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Fibre - Fibre Coupling Response 
(X-Axis) 
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Fig, 9,4 (b) 
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TABLE 9,4.. Fibre-hbre alipment test results. 

0A Liti 0 1? 011 (39 OA 09, 
OA OA oc 00 OA OA OA 
OB OB 10 oc OB OB oc 
013 OE OE 10 OD OF OE 
OD OF OE OF 10 OE OF 
14 2a 12 122 leg 11 OF 12 
12 12 12 12 12 12 12 
12 12 14 12 12 14 13 
13 12 12 1 Z, 13 13 13 
14 1 Z, 12 14 1 ZN 12 14 
1 13 13 12 1- 13 1.3 1-3 
12 14 12 12 14 12 12 
12 11 12 12 11 12 10 
OF OF 10 14 0- #- OF 10 
OF 10 OE OE OE OE 10 
OE 10 oc OE OB oc 10 
OE 10 Lic OB OB OB 10 
OA 
OB 

OA ' 
09 

OA oc OB 
08--w- (motor reve 

OA 

rses- to 
OA 

OA 05H) 
es OA OB 09 OA OA 09 
OB oc 09 OB OB 09 09 
OB OA OB OA 09 OA OB 
OA 09 OA OA OA OA OA 
OA OA OA oc OB OA OA 
OB OB OA 10 oc OB OB 
oc OD OB Lic 10 oc OD 
OB oc OE OD OE 10 OD 
10 OD GE OE OE 10 OD 
10 OD OF OF OE 10 (JE 
10 OE OF OF OE 10 14 
10 OF OF OF 10 OF OF 
10 121 OF- 10 14 10 12 
12 10 12 OF 10 14 OF 
14 11 12 14 12 12 14 
12 13 12 12 13 12 12 
12 14 12 1 Z, 14 12 lý 
12 12 IZ% 12 12 1z-. 12 
12 12 14 12 12 14 12 

12 12 lz% 12 12 1z-. 
14 13 12 14 12 12 14 
12 12 12 12 13 12 12 
12 14 12 12 14 12 12 
12 11 12 12 11 13 12 
OF 10 10 12 OF 10 14 
10 12 OF 10 14 OF OF 
OF OF OF 10 OE OF OF 
OE OF OE OE 10 OE OF 
OE oc OE OD OE 10 oc 
10 oc OE oc oc 10 oc 
10 oc OB 03 OB 10 oc 
10 oc OB OB OA 10 oc 
OA OA oc OB OA OA OA 
OA 09 09 OA 09 OA os 
OA 08 OA 09 OA os 09 
oc 09 OB OB 09 OB OB 
07 06 09 06 06 OB 06 

Data output 
from motorY 
(Reverse down to 
09H or less) 

Motor Y Forward 
motion (Storing down 
to 05 H). 
(see Fig 9,4 W) 
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TABLE 9,4 (contd) . 

r, i3 07 OB 06 06 
00 06 06 06 06 
06 06 06 07 06 
04 

oll 
113 

Totat data stored 
Y f d ti ( 

durin 
0 18N - orwar rm on = 1 ) . 14-Locat peak (Smax) 

12-0,9-Smax 
os 06 04 0S 06 
06 06 06 07 06 
06 os 06 06 os 
os 00 oc os os 
os os 09 oc os 
os 08 os OA 09 
OA 09 OB OA OA 
oc OA « OA oc OA 
OB OB OB OB OB 
OB oc 10 oc OE 
10 OE OF OE OE 
OE 
10 

10 
OF 

OF 10 OF 
12-. -(Y reverses to 

11 12 OF 10 14 
12 22 27 34 43 
EI 9 FB FB FB FB 
FB FB FB FB FB 
FB FC FErt FB FC 
FB FB FB FC FC 
FC FC FC FD FC 
FB FS FB FB FES 
FB FC FE FB FB 
FB FB FB FB FB 
FB FC FB FB FB 
FB FB FB FB FB 
FB FC FC FB FC 
FB FB FB FB FB 
FC FC FC FC FC 
FB FC FC FB FC 
FD FD FD FD FC 
FC FD FD FC FD 
FD FE FD FD FE 
FD FD FD FD FD 
FD FE FD FD FE 
FD FD FD FD FD 
FE FD FD FE FD 
FC FB FB FB FB 
FE3 16 15 16 16 
14 OF OF 10 OE 
oc OB OA OA OA 

071 forward motion. 

06 Last part of motor Y 061 
00 
06 
06 

oi, 
06 
OB 
OB 
os 
OA 
OB 
OB 
oc 
OD 
OF 
10 

0,9smax) 
12 
5F 
FB 
FB 
FC 
FC 
FC 
FB 
FC 
FB 
FB 
FB 
FB 
FB 
FC 
FC 
FD 
FD 
FE 
FD 
FD 
FD 
FD 
FB 
14 
OF 
OA 

06' 
06 
07 
09 
OB 
09 
OA 
oc 
OB 
oc 
OE 
OF 

12ý 
ei 
FB 
FB 
FC 
FC 
FC 
FB 
FB 
FB 
F 13 
FB 
FB 
FB 
FC' 
FB 
FD 
FD 
FE 
FD 
FD 
FD 
FD 
FB 
13 
OE 
0c 

Reverse motor Y 
to 0,9 MAX or better 

Change to motor X 
and reverse down to 

09H or less 

OA 0 C-1 "**'NX reverses to 08H) 



225 

TABLE 9,4 (contd 

OB 08 01? OB ov, 09 OB 
09 OA LJA oc 09 09 OA 
OA oc 440 oc OD oý OE 
OF OF OF 125 14 10 1- 
12 15 17 16 Iß 18 iß 
17 DO D9 E4 ED F5 F9 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FC FE FE FC FC FE FE 
FC FC FC FC FC FC FC 
FE FD FD FD FE FE FE 
FC FC FC FC FC FC FC 
FE FE FE FD FE FC FD 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FE 
FC FC FC FC FC FC FC 
FC FC FC FC FE FC FC 
FC FC FC FC FC FC FC 
FC FC FC FC FE FC FC 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FE FC FC FC FC FC FC 
FC FC FC FC FC FC FC 
FC FE FC FC FC FC FE 
FC FC FC FC FC FC FC 
FD FD FD FE FD FD FD 
FC FC -FC FC FC FC FC 
FE FE FD FE FE FE FE 
FC FC FE FC FC FC FE 
FE FE FE FE FE FE FE 
FE FC FC FC FC FC FC 
FE FD FE FD FE FE FD 
FC FC FC FC FC FC FC 
FE FC FE FC FC FE FC 
FC EC EC DE CE B4 95 
5E 17 16 15 15 IZ% 11.1 
12 14 OF OF 10 OE OF 
oc oc OB OB OA 10 oc 
OA 08 OA OB 08 oc 09 
oc 07 06 OB 07 06 06 
r. A ýZ. Cm a 

Move motorX forward 
storing signals down 
to 05H) 
(see Fig, 9,4 (b)) 

ný-xlbtil'dafa stored durinq X-forvard motionW35H)- 
Z-7% -5 f 

FE . Local Fbak (Smax =MAX) 
E4-0,9SMaX (: FO, 9MAX) 
06 05 06 05 05 06 
06 06 06 06 07 06 
07 oc 07 OB 0E3 OA 
OA OB oc OD OB oc 
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CHAPTER 10 

CENCLUSIONS AND RECOHMENDATIMS FOR FURTHER WORK. 

Although the laser/fibre alignment configuration was substituted by 

the fibre-fibre configuration because of prealigrunent problems (9.4) 

experienced during the experiment, the main objectives of this work 
have been achieved. The reascns for close similarity between the two 

configuraticns (9.4) justify this substituticrL The aligrunent ccntrol 

rig (system) described in Chapter 8 successfully denK=trated a hill 

climbing ccrr-ept applied to the fibre-fibre aligrunent. 

10.0 Conclusims. 

In the course of this research, conclusions based on the theoretical 

and experimental studies of laser/fibre or fibre-fibre alignment have 

emerged. These are outlined as follows: 

1- The replacement of the human operator coupling method by an 

automatic assembly process would certainly produce significant 
improvements in the speed and quality of the laser diode to 

optical fibre or fibre-fibre alignment. 

2- The assembly process ideally requires a5 degree of freedom 

manipulator in order to align a laser diode with an optical fibre 

or fibre to fibre efficiently. However, in Chapter 9, it has been 

demonstrated experimentally that a3 degree of freedom manipulator 
is adequate for fibre/fibre alignment. Since angular misalignments 

are insensitive to power coupling, it is envisaged that this 

manipulator will also suffice for laser/fibre alignment and above 

all, it is cheaper than the 5-degree of freedom manipulator. 

3- The laser diode/fibre prealignment problems (9.4) can only be 

solved by either purchasing or makirxj a more accurate gripper than 

the one used in this work and mounting it horizontally on +o the 

manual manipulator (plate 8.2.7). 

4- Ideally, the Oriel Encoder Mike actuators are designed for 
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continuous motion and not for very minute stepping motion for 

which it is applied in this work. As a result, the encoder circuit 
(8.3.1) designed to track the position of the Encoder Mike 

actuators for extremely small equal step (0.1 pm) motion was 
rendered useless (9.3.1) because the encoder signals produced were 

of unequal widths. However, for a continuous linear motion of 3 to 

5pm the Encoder Mikes are said23* to produce signals of equal 

widths. Also, when Oriel controllers are used, the resolution 

attained is of the order of 0.02 pm but stopping the motor in the 

reverse direction causes the spindle to overshoot by 15pm and then 

slowly returns to the end point (4.4.3). This is in conflict with 
the clearance specification given in Chapter 2. This means that if 

the Oriel Encoder Mikes are to be used, a better circuit capable 

of accounting for the encoder pulse differences must be designed. 

This will allow the use of a closed loop type control for the 

alignment positioning system which is more desirable than the open 
loop. 

5- The technique employed in Chapter 7 for the analysis of the 

manipulator characteristics has been recently develcpedýt in the 

Department. Its success in this respect means that it can be 

applied to evaluate the characteristics of other manipulators in 

general. However, the theoretical results of the characteristics 

of the 3- and 4- degree of freedom manipulators presented in that 

Chapter must be greatly improved upon if they are to be utilised 
to formulate a laser/fibre or fibre-fibre alignment algorithm 
(compare with the balancing algorithm used for laser/screen 

alignment in Chapter 6). In addition, the manipulators analysed in 

Chapter 7 need to be made to an extremely high accuracy because 

laser/fibre or fibre/fibre alignment calls for very stringent 

accuracy and tolerance demands (Chapter 2). 

10.1 ReccmTendatims for further work. 

During the course of this research, some important and interesting 

areas of the work have been found to deserve closer investigation. It 

is therefore suggested that the following actions should be taken: 

1- currently, alignment in the axial direction (9.1) is acoomplished 

23* Ref 23, Chapter 4, personal conw. m=cation with Oriel. Corporation 
2t Ref 2, Chap-ter 7 



N=.: (See p. 229, parag. 1, lines 10 - 21) 

Firstly, it is important to specify the accuracy tolerance to which 
the 40 Pm gap should be obtained. This means that the sum of the 

final positioning tolerances of the laser diode, fibre and the 

accuracy tolerance of the switch used must fall within this 

specification. If the latter can not be achieved, then a directl 

visual method involving the use of a powerful microscope such as that 

employed by STC should be adopted. 
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manually by adjusting the fibre and fixing it some distance away 
from the laser diode face. In order to fully automate the 3-axis 
iaser/fibre or fibre-fibre alignment procedure, it is recommended 
that all the three motors in the X-, Y- and Z-directions should be 

computer controlled. This will reduce the manual alignment time in 
the z-direction and increase the alignment reliabilityý That is, 
the final resting position of the f ibre (input end) in the axial 
direction should be consistent. To avoid damaging the laser diode 
face and the fibre input lens, the gap between the laser and fibre 

lens must be maintained at 40 p or a little less. This can be 
done by positioning an accurate switch along the axial direction 

such that X, Y, and Z alignment can commence at a gap distance of 
over 1()Opn axially and carries on closing the gap down to 40 pm or 
less when motor Z trips the switc17L That is, by utilising the hill 

climbing technique (9.2) and selecting each of the three motors in 
turn, the alignment is completed at a point 40 pm or less from the 

laser diode face. There is a chance that at this point, the 

required coupled power level might not have been attained yet. In 
this case, motor Z is stopped while the hill climbing alignment 
procedure (9.2) continues only between motors X and Y until the 

required power is coupled. 

2- Although theoretically, a 5-axis positioning device was found to 

account for all linear and the relevant angular misalignments, the 

actual configuration of the axes has not yet been studied. There 

are quite a number of possibilities based on the decision of 
whether or not to have either the laser diode stationary or the 

optical fibre stationary and hence avail all the five axes of 
movement to the moveable component. The other alternative is to 

split the five axes between the two components and give both a 
movement capability. If a5 degree of freedom manipulator is to be 

used, it is suggested that such configurations should be fully 

analysed to see if some have better performance than others. 

3- As already stated (2.5), some crucial alignment tolerance 

specifcations were given only after the Oriel Encoder Mike 
manipulator was already purchased. One slight drawback of this 

manipulator is that the actuators overshoot by 15 pm in the 
reverse direction (10.0). This can be overcome by approaching a 
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given point from the forward direction only. However, in future 
other types of actuators with suitable tolerances with no 
overshoot and unidirectional approach problems should be 
considered. In this respect stepper drives offer better features 
for the Control of laser/fibre or fibre-fibre alignment as long as 
they have a suitable resolution (0.1[lm or less) and their price is 

within reacii. 

4- As part of a total alignment automation, it is recommended that a 
detailed investigation of fibre welding onto the laser platform 
(2.4) should be carried out. Essentialy, fibre welding forms the 

second part of this work. Currently, STC has not yet found a 

suitable automatic welding method which maintains consistency of 
the welding forces produced during the welding operation and also 
takes account of the welding stresses and creep. These factors are 

responsible for the degradation of coupled power at a later stage 

as the weld sets (2.4) and pulls the fibre away from the aligned 

positicn. 

5- In order to avoid some unnecessary alignment and prealignment 
difficulties, there is a need to completely redesign the laser 
box. The height of the laser pins inside the box, for example, 

could be shortened to avoid short circuiting during alignment 

manipulation and the design of the hole through which the optical 
fibre is threaded (2.4) could be totally changed to avoid bending 

of the fibre. 
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APPENDIX TO CHAPTER 3 

(Appendix A) 

Application of Screws in ýýqat 

This appendix gives a summary of Bottema's (8] analysis of the screw 
displacements needed to superpose rigid bodies, line segments and 
lines in that order. Details of all the mathematical description and 

analyses of the axes and rotational angles of screws discussed here 

can be found in [8]. As already defined (3.5), a screw displacement 

is the rotation of a body about a given axis and a translation along 
the same axis. In contrast to the analyses presented in chapter 3, 

this method investigates the mathematical description of all the 

necessary screw displacements required for the different aligninerits. 

Mositim 6f two ccn- 1 SuPer x1ruent figures 

The position of a body in space is transformed into a second position 
by a screw displacement (8]. Since the body is moved to occupy a new 

positon in space, the second position can be regarded as another 

congruent figure. It is therefore equivalent to superposing two 

congruent bodies. For the displacement of such a rigid body in which 
the rotation angle Yij 

I translation distance dij and the screw axis 
sij are fully determined, the screw is unique. 

A. 2 Aligment of line segments. 

Consider two skew lines 11, t2 with a row of points AlB1 ... on t, and 

a congruent row A2B2... on t2 (Figure A. 2). These lines are chosen so 
that they form equal angles a with the Z-axis. Bottema [81 quotes 

others who define the line m (Figure A. 2) as the locus of the 

midpoints of the joins of homologous points on t, and t2 such that 

the projections of AlA2, BlB2.... on it all have the same length. A 

frame (origin 0) is then intrx)duced [8] with m as the Y axis and W as 
the oxy plane so that Al and A2 are the points (a, -d, 0) and (-a, d, 

0) respectively. It would appear that m should be the Z-axis but if 

Bl is above W cn L, and B2 is below W on L2 then this is possible. 

Let the complete set of screws that transforms tl : Lnto t2 be r. Out 



L32 

of this set, a few screws are identified [8] as follows: 

(a) so (e--r) acts along I ine ni with a rotation angle of 1800 and a 

translation 2d. This displacement is the basis for determiz-Ling 

other-s mathematically. 

Frg, A, 2 Aligment of two skew line segments ti and 12- 

A 

(b) SL (EF) is : another screw displacement with its axis along AlA2 

(Figure A. 2) which has the largest translation component 2p. Its 

rotation angle Y is given by tanY/2 = P/atana- 

(c) Sr (EEF) is the only single screw with a pure rotation. Its 

rotational axis is given by ax - dy = 0, z= dtana which is 

orthogonal to the li-ne AlA2 (dx + ay =z= 0) and intersects the 

Z axis at PO(0,0, dtana). Thus the rotational angle is <AlPOA2 

given by tanY/2 = P/dtaria. 

(d) Lastly, Smin OEF) is a screw with the smallest rotational angle 

Y= 1800-2a (angle between the oriented lines 11 and 12). Its 

axis is given by y=0, z= dtancL and the translation part is 2a. 
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It is reported (8] that there are altogether ool displacements 

transforming the row on 11 into a congruent row on 12. The Preceeding 

steps summarise the analysis leading to the mathematical description 

of the displacements. 

So is the displacement x1 = -x, y' =y+ 2d, z' -z .......... A2.1. 

Equations of t, and t2 are given respectively by 

x=a, y+d= -ztana ................. A2.2. 

and x= -a, y-d= ztan a ................. A2.3. 

if O<a< Tr/2, then the angle between AlBl and A2B2 is TT-2a. If R is 

any rotation about t2 then the displacements F= RSo. To obtain R, a 
frame A2XlYlZl is introduced with t2 as Zl-axis. The transformation T 

is then given by 

x, =x+a, yj = (y-d)cosa - zsin% 
z, = (y-d)sina + zcosa ................. A2.4. 

Inverse transformatim T-1 is given by 

x=x, - a, Y= YjCOS CL + ZlSin CL + d, 

z= -ylsina + zlcosct ................... A2.5. 

A rotation Rl about the A2Zl-axis is given by 

X1 cosý -SiI4 0 X., xjcosýr- yjsiný 

Yll = siný cx)4 0 yj = xsin4* yco! 4 ............. A2.6. 

zi 001 ZI Z1 

where ý is the rotation angle. Thus R= T-lRlT and the set r= RSo[8]. 

Calculatim of T-'R'TSO: 

(i) TSo: Link A2.4 and A2.1 by replacing x, y, z with xl, yl, zl. 
i. e. x, = xl+a = -x + a, yl = (yl-d)cosa - z'sina 

=(y+2d-d)coscL-(-zsina). 
Similarly, z, = (y+d)sina - zcosa 

(ii) RlTSo: Link A2.6 to the results of (i). 
I=I X, xloos(ý- Ylsirxý-- (-x+a)co-*((y+d)oosa + zsina)siný, i 

y' = xsiro+ y, 004= (-x+a)siro+((y+d)cosa + zsina)co4. I 

Similarly, z' = z, = (y+d)sina - zcosa. 

k 
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(iii) T-'R'TSo: Link A2.5 to the results of (ii). 

xl = x1-a = -xcosýýsasir-xý-zsinasiný-a(l-cos4)-dcosasir+ 

yl = ylcosa+zlsina +d II 
=((-x+a)siný+(y+d)cosacmý+zsinaoosý)cosa 

+(y+d)sin2a_ zoosasina + d. 
2 

=-xcosasiný+y(l-cos a(1-co4))-zsinacosa(l-cosý) 

+d(2_cos2Q(l_cosp). 

z' = -ylsina+zltcosa 
[(x-a)siný-(y+d)cosaco-4-zsincumsý)sina + (y+d)sinacosa 

-zoos2a. 
=-xsinasiný* ysinacosa(l-cos4) -z(l-sin2a(l-cos+)) 

-asinasin+ + dsinaoosa(l-cos+) ..... A2.7. 

Equations A2.7 are the complete set of screw displacements 

transforming il into the homologous line t2. Taking it further, it is 

found [8] that the locus of the axes of these screw displacements is 

a cylindroid. The screw Smin is its second generator through Po while 

SL is the second generator through the origin 0. A generator is a 

line that forms part of the surface of the cylindroid. The first 

generator is the axis of the screw So. Mathematical details leading 

to the determination of the cylindroid from A2.7 as well as its 

generators (screws already identified above) can be found in [8]. 

A. 3 Indirect Displacements. 

The above procedure (A. 2) that transforms L, into '12 is described as 
direct (method I). A similar but indirect method that transforms a 

space into a symmetric one is also described [8]. The coefficients of 
its linear terms are the elements of an orthogonal matrix whose 

eigenvalue is -1. It differs from the direct one because the rotation 
Rl (section A. 2) used to obtain the complete set of displacements 

transforming t, into t2 is replaced by a reflection U1 in any plane 
through AM. So and T are the same as before and the detailed 

mathematical analysis follows exactly the same trend as in method I. 

Inorder to avoid labouring essentially the same points here, the 

matter is referred to [8]. Following the same procedure as for direct 
displacements, but replacing the rotation angle ý (A. 2) with the 

angle of reflection 0, it is found (8] that the locus of the screw 
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axes of the indirect displacements transforming into the 
homologous line 12 is a paraboloid requius. 

A. 4 Screw displacements for two oriented lines. 

This section describes displacements transforming two skew infinite 

lines A and B without specified point rows on them. Line A is fixed 

and lies along the X-axis as shown in Fig. A. 4. Line B is moveable 

and skew to A. Let line segments 11 and . 
12 lie on A and B 

respectively. Thus t, and t2 are also skew. In order to align (or 

superpose) 11 with 12, the procedure described in section A. 2 is 

followed. Such a transformatim is satisfied by ool complete screw 
displacements (A. 2). il and 12 can traverse the overall lengths of 
lines A and B respectively if the line segments are moved along them. 

If these movements are made by shifting tl and 12 along A and B in 

predetermined steps, then for each of the shifts made, it requires 
ool screw displacements to superpose tj on to 12. Since A and B are 
both infinitely long, it means that ool shifts are needed to cover 
the lengths. It therefore follows that (ool). (ool) or 002 complete 

screw displacements are required to align A with B. This result is 

also reported in [8]. 

line segment) 

/ 

A 

L 

/' 
Fig A-4 Alignment of two skew lines A and B 

by screw method. 



236 

APPENDIX M CHAPIER 4 

B) 

Motorised Actuators 

This Appendix presents a summary of the survey of some actuators 
thought to be suited to laser/fibre alignment. The sequence of 

sub-section numbering follows from the main chapter inorder to 

maintain consistency for purposes of references made to this Appendix 

from other areas of the thesis. or vice versa. 

4.4.1 Ealing Motorised Actuators 

a) ACrLTAMR: Ealing Stepper Motor Stage. 

(SpECIFICATIONS FROM EALDIG OPTICS CATALOG [21]) 

manufacturer: Ealing (Mass. -USA). 

Range: 0- 12 mm (6 mm). 
(Travel is limited by microswitches). 

Load Capacity: 10 kg - at max. speed of 2,000 micra-is/s. 
(Stage Horizontal) 

Load Capacity: 7 kg - off-set by a max. of 20 mm at a max. 
speed of 2,000 microns/s. (Stage Vertical) 

Movement correspcnding 
to one step of motor: 

Half-step movement: 

1 micrcn 
0.5 micrcn. 

Step Range: 

Accuracy: 

i) Positioning accuracy: 
(Cne direction of travel) 

0.5 - 2,000 microns/s. 

1 micrcn. 

ii) Tracking accuracy: 1 micron 
(Over full range of travel) 

Movirxj Stage dimensions: 160 x 160 mm. 

Manufacturer's Descriptim and Comments 

These stages can be cross-stacked to form a manipulator (section 6.1- 

Fig. 6.1(a)). It is designed for carrying out fine adjustments in the 
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vertical plane and because it covers only a short length of travel, 

6mm either side of centre, speeds are restricted to 2,000 micrcns/s. 
It is quite possible to use the stage horizontally if required. 

The stage has a 90 mm clear aperture through the centre which is 

maintained throughout the 12 mm range of travel. This aperture is 

normally used for mounting a range of different accessories. 

r? -inr-. 1 i iczi nn 

Although Ealing also makes other stepper motor stages with various 

range of travel namely 50 mm, 100 mm, 300 mm, and 600 mm, the 12 mm 

range has far better accuracy than others. Its only major drawbacks 

for use in the alignment project are the extremely slow maximum speed 

of 2,000 micrcns/s and the the extremely large load capacity compared 

with the maximum load of 40 gm outlined in the alignment 

specification (2.5). 

The 50 mm range is faster with a maximum speed of 10,000 microns/s 
horizontally and shares exactly the same accuracy with the 12 mm 

range. However, it has such an excessively large travel range and 
load capacity (25 kg horizontally and 6 kg vertically) that it would 
be an overkill to utilise for a solution in this work. 

b) ACTUATOR: Ealing D. C. Motor Stage. 

(SPECIFICATIONS FROM EALING OPTICS CATALOG [21]). 

manufacturer: Ealing (Mass. -USA). 
Range: 0 to 25 mm. 

Load capacity: 10kg. 

Accuracy: 

i) Positicning accuracy: The micrcmeter reads directly to 

0.01 om and can be estimated to better than 0.005 rrm. 
ii) Tracking accuracy: 2 microns (over the entire range). 
Speed: Maxim= achievable speed is 16 mm/min. 
moving Stage Dimensicn: 80x144.6 mm. (Unit thickness= 26 mm). 

manufacturer's Descripticn and Comments 
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The stage provides a precision linear movement of 25 mm in a single 
plane. The moving stage rides on two rows of captured precision 
spherical ball bearings pre-loaded in ground and hardened V-grooves. 
The base is anodised aluminium. 

A 15 mm diameter aperture in the moving stage and a 15 mm diameter by 
a 40 mm long slot in the stationary base ensures a 15 mm clear 
aperture at all points of the 25 mm travel. This can be used for 
mounting a wide variety of accessories. 

Conclusim 

The available literature suggests that the smallest D. C. motor stage 
currently manufactured by Ealing is the 25 mm range. There are other 
stages with various range of travel namely 50 mm and 100 mm. These 
are, however, far less accurate than the 25 mm range and are also 
designed to support unnecessarily heavier loads than are required for 
laser/fibre alignment. 

It should be noted that a load capacity of 10 kg, a 25 mm range of 
travel and an inferior accuracy values of this actuator all weigh 
heavily against its possible application to this project. 

4.4.2 Microocntr-ole Motorised Actuator 

ACIUATOR : Model UT50-20. 

(ALL SPECIFICATIONS FROM MICROCONTROLE CATALCG [221). 

Manufacturer: Microcontrole (Evry Cedex, FRANCE). 

Range: 0 to 20 mm. 

Load: Working load is 2 kg. 

Accuracy: 
i) Average Accuracy: I micrcn. 

ii) Resolution: 

a) DC motor driven: 1 micron. 
b) Stepping motor driven: 0.1 micron. 

Speed: The nominal speed of this actuator when D. C. motor driven is 1 

mm/s but another option of the same model offers a speed of 0.1 mm/s. 
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Manufacturer's Descripticn and Comments 

This stage is a translation unit with ball bearing guidance. It is 

equipped with a choice of the following drive units: . 

i) differential manual drive, direct drive or dual sensitivity; 
ii) DC motor or Stepping motor. 

The travel range of 20 mm is limited by positive mechanical stops. In 

motorised systems, these stops are augmented by limit switches. The 

system can include one or more of the following options: incremental 

encoder, origin search device and a linear potentiometer. 

ccnclusim I 

Microcontrole manufactures quite a wide variety of both manually 
operated and programmable motorised actuators. Out of all these, only 
the manually operated MR-models and the motorised UT-models seem to 

match the specifications of the alignment problem. However, the major 
drawback of the MR-model is the fact that it is manually operated. On 
the other hand the UT-models are extremely slow and therefore not 
worth considering. 

The Mrl60 series have high speeds, some at 60 mm/s, and fairly good 
resolutions but excessively large working load capacity measured in 
tens and hundreds of deca-newtcns (daN). 

Most of these specifications, particularly load capacity, disqualify 

all the Microocntrole models for use in this alignment problem. 

4.4.3 Oriel Motorised Actuators 

AMUATOR: Oriel Stepper Mike. 

(ALL SPECIFICATIMS FROM ORIEL ODRPORATION CATALOG (231). 

Manufacturer: Oriel Corporaticn - Ccnnecticut, LSA. 

i) Cperaticn of stepper mike in full-step mode: 

Range: 0- 13 mm. 
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Load: The maximum loading (centred) of the Oriel Stepper Mike 

over the 13 mm range is 11 kg (horizontally) and 5 kg 
(vertically). 

Accuracy and Tolerance: The motors operate in discrete steps of 2 

microns per step in full-mode. The unidirectional repeatability is 

1 mi=n while bidirectionally, it is 3 mi=n at the end of each 

full step or completed half step. For each completed half step add 

0.5 microrL Accuracy of the motor being 5 mi=ns. 

Speed: The maximum step rate for full mode is 500 steps per second 

and the maximum spindle speed is 1.0 mm/s. 

Spindle Force: The maximum spindle force is 7 kg. This gives an 
indication of how much load can be safely handled by the motor. 

Ii) Operation of Stepper Mike in half-step mode: 

Range: 0 to 13 mm. 
Load: Loading is the same as above. 
Tolerance and Accuracy: When the Oriel controllers are used, the 

resolution as well as the step size of these translators 

(vertical or horizontal) is 1 micron. The straightness of travel 

is 1 micron per 10 mm measured horizontally at centre, of stage. 
Speed: The maximum step rate is 1000 steps per second and the 

maximum linear speed is 1.0 mm per seocnd. 
Spindle Force: This is the same as for full mode. 

Manufacturer's Descriptim and Comments 

Two models of the stepper mikes are available; one with a 12.7 mm 

range and the other with a 25.4 mm. range of travel. Both of them have 

exactly the same accuracy, load capacity and speed. Although 

compactly packaged, it is larger than the D. C. motor drives. 

When the motor coils are energised in a designated sequence, the 

stepping motor shaft rotates a fraction of a 3600 turn, usually 

expressed as 1.80 7.50 , or 150 per step. This is geared down and 

converted to linear motion with a lead screw. The non-rotating 
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spindle, itself a precision ball bearing translator, not only 

prevents frictional side loading of the driven device but also allows 
direct mounting of small components at the end of the spindle. 

The stepping motor takes a single discrete step for each voltage 

pulse sequence it receives. The rate of movement depends on the 

frequency of the drive pulses. This step by step movement produces a 

number of inherent advantages. Digital position read out is readily 

obtained by counting pulses bidirecticnally. 

A given movement can be Obtained Precisely by Preselectirxg the number 

of steps thus allowing precise point by point analysis. Scanning at 

constant speed can be done at any speed or any load up to the maximum 

specified. 

Conclusim 

As described above, the stepper mikes seem to have very high accuracy 

standards suited for use in this aligrunent. 

However, some major drawbacks of these drives include extremely low 

maximum speeds, fairly lower step and linear resolutions (especially 

in the double mode) and they are generally larger in size and more 

expensive than the Oriel Encoder Mikes (next section). For these 

reascns, the stepper mikes do not quite offer the best cpticn. 

(b) ACIUATOR: Oriel Encoder Mike. 

(ALL SPECIFICATIONS FROM ORIEL MOTORISED PRECISION MOTION 

CATAL40G [ 231 ). 

manufacturer: Oriel Corporation - Ccmecticut, Usk 

Ranges: 0 to 12.7 mm, 0 to 25.4 mm, and 0 to 50.8 mm. 

Load Capacity: The loading of an Oriel translator over 25 mm 

range of travel is between 1 to 2 kg with a varying speed of 12 

mm/min down to 11 mm/min. This is not significantly different 

for the other two ranges of travel. 
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Backlash: 6 microns typical (unidirectia-lally). 7b eliminate it, 
the target must be approached from forward direction only [23]. 

Accuracy and Tolerance: When Oriel controllers are used, the 

resolution attained is of the order of 0.02 microns. The 

unidirectia-ial repeatability is 1 micrcrL However, when stopping 
in the reverse direction, the spindle automatically ovexthoots 15 

ýon and slowly returns to the end point. The controller reduces 

velocity automatically before reaching the point. Since the 

maximum distance traversed is only 5ým (chapter 1), it means that 

the controller can not be used for this aligrinent. 

Speed: Maximum linear speed is 12.5 mm/min at very low loads 

under lkg and the minimum linear speed is 0.03 mm/min at a 
maximum load of approximately 10kg. 

Size of table top: 76x89 mm for a motor drive range of 0 to 12.5 

um but 127x127 mm for a motor drive range of 0 to 25 um. 

Manufacturer's Description and Ocniments 

Encoder Mike micrometers incorporate a miniature D. C. motor with 
integral gear head to produce ocntinuously variable speed over a wide 
range. A fine pitch screw running in a precision threaded nut 
combined with a 485: 1 gear reduction contribute towards the 

attainment of 0.02 micron resolution when Oriel controllers are used. 
The design of the Oriel Encoder Mike micrometers therefore allows for 

very high resolution positioning. 

Precise performance is achieved by cperatirxj the motor at slow speeds 
or by jogging it to its set point. When operated with an axial load 

greater than 0.45kg, a backlash of 6 microns is typical. Using the 

read cut display on the controllers, the unidirectional repeatability 

is 1 micrcrL 

rrint-limim 

The optical shaft encoder that provides positim information is not 
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the only advantage that this simple D. C. motor has over others. It is 

also small in size (Figure 4.4.3) and is said [23] to provide a 

smooth vibration free, high resolution positioning. Since position 

feedback is the key to computer control, the encoder provides a means 

of computer communication. 

However, D. C. motors with or without optical encoders do exhibit a 

backlash. '11-iis backlash, encountered only unidirectionally in Encoder 

Mikes, can only be compensated for by means of computer control. The 

maximum speculated mass of the semiconductor laser diode package tX-) 

be manipulated is 40 gm (2.5). The maximum speed that can possibly be 

attained with this load is 12.5 mm/min- 

Encoder Mike Micrometer 

ALL DIMENSIONS IN MM 

Lf 

0 
qr- 

Although the overall speculated manipulation time involved if this 

actuator was used to solve the problem would be prolonged by its 

fairly slow speed, the overall performance of this actuator is far 

superior to all its current competitors. Its high repeatability and 

resolution, the available means of computer communication, the 

comparatively low backlash compensatable by means of a computer 

program and its comparatively competitive speed are some of the major 

unrivalled features that make it a suitable choice for the laser- 
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monomode fibre alignment. Figure 4.4.3 shows a typical full size 
Oriel Encoder Mike micrometer drive having a 12.7 mm range of travel. 

However, a sixth manipulator that would very closely rival the Oriel 
Encoder Mike if it was not for its totally manual features is the F- 
915 precision fibre coupler manufactured by Newport Corporation-USA. 
Some other fine models include the F-916 and the F-917. In all these 
three models, fine translation is obtained without changing the 

angular orientation of the focussed laser beam on the fibre-end face 

(see [24] for further details). Other motorised. systems together with 
their associated algorithms are cited in Chapter 9. 

4.4.4 Other Stepper Motors 

In addition to the stepper motor systems already surveyed and 

presented, there are quite a few other systems of similar sizes 

produced by a number of manufacturers. Digitran (251 and Sigma [26] 

are two such systems cited for purposes of clarification. 

In order to be able to achieve a suitable resolution, these stepper 
motor systems and others in the same family need to be greatly geared 
down. However, this reults in very slow linear speeds. Infact, even 4- 
when these coarse stepper motor drive systems are geared down, their 

speeds, tolerance, accuracy and price are no match to those of the 

already discredited Oriel Stepper Mikes. It therefore seems like a 
worthless effort in trying to further any investigations into these 

stepper motor systems in order to utilise them for laser-fibre 

alignment. 
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APPENDIX TO CHAPTER 7 

(APPENDIX C) 

Analysis of Force and Velocity Motor Subspace 

Matters related to the spatial analyses of the 3- and 4-degree of 
freedom manipulators (Section 7.1) are relegated to this appendix in 

order to avoid going through a strenuous procedure of transforming 
the velocity vectors in the main pages. The major points of interest 

are picked up directly from Davies (21 to illustrate how the spatial 
velocity transformation matrix [Mv] is obtained. However, a general 
summary of all the spatial and planar transformation matrices for 
both the velocity and force motors are also presented. For further 
details of the transformation matrices that are simply stated here, 
the reader is referred to (2]. 

VMS and FMS are used in the appendix to mean velocity motor subspace 
and force motor subspace respectively. All references that appear in 

curly brackets in this appendix are stated in (2] specifically 
for the benefit of that work. The sub-headings in the appendix are 
numbered differently from those presented in [2] because of the 

omissions of the detailed derivations of some matrix transformations. 

1. VMS and FMS in Local Coordinates 

Any coupling can be characterised by a VMS or an FMS. One or the 

other is sufficient because, once one is known the other can be found 

using the reciprocity condition. 

We begin by utilising local axes. These are chosen in such a way 
that the subspaces are in their simplest, one might say canonical 
form. We will avoid the use of Greek symbols that previously (1-4) 
have been liberally used, if only for the sake of the typist. It is 
helpful to use some specific examples. We start with an f 

coupling, the H (helical) pair shown in Figure 1. 

We first need to identify a frame of 3 local axes (i. e. for use 
exclusively with this coupling). The axes are labelled x1aj, x2a, x3 a. 

The superscript identifies the coupling as coupling A in 

circumstances where there are several couplings and therefore several 
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sets of local axes. It is clearly convenient to align one of the 
three axes with the screw axis but there is no evidence to suggest 
which one. Here the x: 3a axis has been chosen arbitrarily. The 

origin Oa can be located anywhere on the axis and the other two axes 
can have any orientation provided they are perpendicular to the screw 
axis and to each other although, if we knew the orientation of the 

global axes this might influence our decision. The velocity motor 
subspace (VMS) of a coupling has up to 5 components (if 6 were 
present it would not be a proper coupling since it could not transmit 

a force). Associated with any coupling must be a sense and in this 

case we will say that it is body j with respect to (wrt) body J. 

This is indicated by the sense of an arrow on the network graph. 

A VMS for j wrt i if they were uncoupled would comprise the angular 

velocity components Vl, V2, V3 of j wrt i about the three local axes 

respectively and the translational velocity components V4, V5, V6 wrt 
i of the point in j that is instantaneously located at the local 

origin. If the bodies are coupled by a cylindrical (C) pair with its 

axis coincident with the X3a axis then the VMS is constrained to be 

VZa= (0 , 0, V3a, 0,0, V6 al, 

where the subscript z is a reminder that we are using a local frame. 

For an H-pair the two non-zero components are related by 

V a= hV a 63 

where h is the ratio translational velOCity/rotaticnal velocity and 
has the units length/radian. It is related to the pitch p of the 

screw by 

2 7rh = 

Thus for this H-pair the VMS can be written in terms of one 

component, as must be the case for any f=1 coupling. 

Va= (0,0, V a, 0,0, hV 33 
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Normally it is necessary to use the superscript a to identify the 

coupling associated with the compccients. However, while discussing 
individual couplings this is not necesary and the superscript can be 
implied unless a network is examined, although the superscript a is 
essential for the local axes to distinguish them from the global 
axes. 

The local FMS Ft has components that can be found by using the 

reciprocity condition 

vz. F£ = () 

Thus, if j and i were integral, all six components of force could be 
transmitted and the FMS would be 

F£ = (F� F2, F3, F4, F5, F6) 

where Fl, F2, F3 are components of moments about the local axes 

respectively and F4, F5 
, 

F6 are the components of force along. these 

axes. The reciprocity condition requires that 

"Fi 

F2 

F3 10) 
v3,0,0, hV31 F4 

F5 

LF6J 

because there is only one degree of freedcrn, and so 

V3 F3 + hV3 F6 20 

and F3 = -hF6 

while the four other components remain undetermined and can therefore 
take any value, 

thus Ft = (Fl, F2, -hF6, F4, F5, F63 
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It may be helpful in understanding the two subspaces to consider 
Figure 2. Here a closed loop has been formed from members i and j so 
that they are integral one with the other. Assuming there to be no 
friction in the H-pair then if there is to be any force built into 
the circuit with a component F6 along the x3 a axis then there must 
also be a moment -hF6 about this same axis. Such a force and moment 
would arise, for example, because of a differential expansion caused 
by a temperature change in the limb labelled X relative to the male 
part of the screw. The reciprocity condition we have used is 

essentially the application of the transpose of the KCL law to this 

circuit (4): the row vector Vk a being the freedom matrix. 

We could equally well derive the VMS from the FMS. The difference is 

that there are five reprocity conditions to be met instead of one 
because the coupling imposes five constraints. 

vi, 

F, 00000 V2 0 

0 F2 0000 V3 0 

000 F4 00 V4 0 

0000 F5 0 V5 0 

L- 
00 -hF6 00 F6_. LV6_, 01 

whence since F, ý 0, V, = 0, and likewise V2 'ý V4 r- V5 ý-' 0 

and -hF6 V3 + F6 V6 "" 0 

hence V6 = hV3 

it is not difficult to see that the local subspaces for a cylindrical 

pair B are 

b=bb VL (0,0, v, 0,0,1 3 V6 

bbbb F£ b= (F, , F2 , 0, F4 , F, 9 , 01 
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provided that the cylinder axis coincides with the 2c3 b axis. If the 

procedure explained in (1) had been used this coupling would have 
been dissociated into two joints, which could be equivalent to an R- 

pair and a P-pair in series labelled B, and B2 and the velocity 
compments would have been written as Lagrangian velocities ý 

bI and 

b2* 

2. The Velocity Transfoymatim 

We now seek the matrix Mv that will transform the components of any 
VMS from a local frame to one referred to a global frame having 

origin 0 and axes xl, x2, x3. The local VMS, VZa for a coupling A, 

becomes Va without the subscript Jt. The components of Va are the 3 

angular velocities of i wrt i about the global axes and the 

velocities of the point 0 in j wrt i. We begin with the general 

spatial case and then extract the submatrices that are sufficient for 

planar transformations. 

2.1 Spatial transformations 

The transformation can be performed in two stages and there are good 
reasons for doing this, me being that sometimes only one of the two 
transformations is required. The first transformation causes the VmS 
to be restated wrt a frame having the same origin Oa as the local 
frame but with axes parallel to the global axis as shown by do 

' 
tted 

lines in Figure 2.1 . This rotation of axes is followed by a second 
transformation that restates the VMS wrt the global frame. The two 
transformations can each be expressed by 6x6 matrices R and Tv 

whereby 

Va = TV R VL 

Ic 0' .i 
where R= and Tv 

0cs 

These expressions are similar to those used by Woo and Freuden, -tein 
(6, p 434, equation 3.1) with one minor departure that is now 



250 

explained in the following discussion of the 3x3 submatrices I, C 

and S. I is a3x3 unit matrix. The submatrix C is A in (6) where 
"A is the rotation matrix, sometimes called the (3. x 3) orthogonal 
matrix! '. The components of C are not provided in (6) but they are by 
Jaeger (7. p 9, equation 1.12) who uses the symbol X, and calls it 
the direction cosine matrix. As explained earlier we shall avoid 
Greek symbols where possible, and here we use C where 

Cii C12 C13 
C21 C22 C23 
C31 C32 C33 

A clear understanding of the meaning of these elements is vital. cij 
is the cosine of the angle between the ith axis of the global frame 

and jth axis of the local frame. The nine elements C are not 
independent: there are six relationships between them provided by 

Jaeger (7, p 15, equation 2.51 as follows: 

Cil 2+ C12 2+ C13 2-1 

C21 2+ C22 2 C23 2-1 

C31 2+ C32 2 C33 2l 

C11C21 + C12C22 + C13C23 0 

c2lc3l + C22C32 + C23C33 0 

C31cll + C32C12 + C33C13 0 

The first three are called normalisation ocnditions and express the 

fact that the elements of C are direction cosines not direction 

ratios. The last three are called orthogonality conditions and 
express the fact that the axes of the frames are mutually 

perpendicular. 

The (3 x 3) submatrix S is provided by Woo and Freudenstein (6, p 
435, equaticn 3.4): 

0 -Z y 
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where x, y, z are the coordinates of Oa in the global frame. 

We can now write the product 

Mv = TVR 

sc c 

. 
-ZC21 + YC31 -ZC22 + YC32 -ZC23 + ycý3i 

where SC zcll - XC31 ZC12 - XC32 ZC13 - XC33 

-Ycll + XC21 -YC12 + XC22 -YC13 + XC23_ 

3. A Summary of Transformations for Motors and their Subspaces 

Velocity motors and VM Force motors and R4S 

SPATIAL SPATIAL 

07 
T TF 

v 
sI 

m- = TF R -F 

c0sc0c sc 

Mv = TV R= 
sc c010c0c 

100 -y x 
MpV ý TpVRp ««= y c11 C12 TPF =010 

c21 c22 901. 
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TEV 

-x 

Co 

oc 

"PF 

-ZC21 + YC31 
SC zcll - xc3l 

ý-Ycll- 
+ XC21 

-Y x1 
100 

010 

-Ycll+ xc2l 
Cii 

C-11 
d- 

00 

Cl 
L 

C12 

C21 C-22 

-YC12+ XC22'i 
C12 

C-2 2 

-ZC22 + YC32 -zr 2-3+ YC33 

ZC12 - XC32 zC13 - xC33 

-YC12 + xC22 -YC13 + xC23 

Cii 
2+ 

c12 
2+ c13 

2-1 

c21 
2+ 

c22 
2+ 

c23 
2-1 

c31 
2+ 

c32 
2+ 

c33 
2=1 

c11c21 + c12c22 + c13c23 =0 

c21c31 + c22c32 + c23c33 =0 

c31c11 + c32c12 + c33c13 =0 

1000 -Z y 

Rp 0 c11 c12 Z0 -x 
0 c21 c22 -y 0 

a X3 

xa ýýFigj H-pair. X, 

cil C12 C13 

C21 C'22 C23 

C31 C32 C33- 

x 

Fig, 2 Closed Loop formed 
in H- pair 

x 

H9,23 Frames relating 
spatial transformations 
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APPENDIX 70 CHAPTER 7 
(APPENDIX D) 

S(XMIONS M THE ANALYSTS OF THE 3-DEME OF FREEDOM 

MANIPULATOR (METBOD I) 

This appendix presents the detailed working procedure of the 

solutions to the 12 equations of circuits 1 and 2 (Section 7.1.1) 
derived by the application of Kirchoff's Laws [3]. The figures 

mentioned here relate directly to those 3n the main chapter. 

1. Solutiais to the 12 (N! Iations derived fran the two 

circuits of Figure 7.1.1(b) 

Circuit (1) (Figs. 7.1.1 (a) and (b)) 

i) 
v1a_ V2 a_ 

V2 d=0 

vlr2- 

v+v2+ 
Vld =0 

V2 

: Lii) Va+ V3d 0 3 

iv) -Y, (Vla + V2a) - tV 1d-1: v ac 3+v V2 5 

(V 1a_ V2a) - ZV2 d- rV3d + V4d + V5b ý0 T2 

vi) r (V 1a_V2 
a) + r. Vld + V6 a=0 

72- 

vdb 
a) FYxn (i) and M, V3 d-4+ V5 

r 
a 

rV d+ rV d+Va=0 -ý- Vd= _(V2d +6 b) Fran M and (vi), 2161 

c) Fran (ii) and (iv), a5 V3 
r 
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V- d_V1d 

d) Fran (i) and (ii), M+ (ii) yields- V1a and 
dd 

(ii) -M gives V2a 
(V 1+ V2 

Circuit (2) (Figs. 7.1.1(a) and (b))*. 

') V2 d= V2 

Vld = Vle 

iii) Vd 3 

iv) £Vld + £Vle - V3e. 
ýe_ 

V5 c+ 
_m5f =0 

ded 

72. - 

e 

V2 
v51 

v) £V2 +X V2 + rV3 - V3e V4d 0 
1/2 

Vi) Xe Ve _ rVd _ Xe ee 
72- 72- V2 V6 

Fýxxn (ii) and (iv) 
f 

V, d= Vle (V3e le + V5C -5 2k v/2 
T2-) 

Fran (i), (iii) and (v) 
f 

V2 d= V2e = _1_ EV3d (2a _ r) + V4 d+ 
2x /2 2 

d=e=1 (V e (Xe d+v 5f or 7- - r) V2 V2 2. Z 32+ V4 72-1 

Fran (ii) and (vi) 

e Xe ve 
V, d= Vle = 

'V2 

Xe 
72- 6 

(7-2 - r) 
SOLUTICNS 

Fran circuits (1) (111) and (c) and 2(111) 

(a) 

(b) 

(c) 

vc 
VaVde-5 33 V3 

r 
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Fran circuit I(a) and (A] above, 

V4 d-_ (V5 b+ V5C) 

Fran circuit 2(a) and [A] above, 
f 

V, d= Vle =1 (Vc (3. _ 
Xe 5 [C] f-, r72- 2 

Fran circuit 2(b) and [A] and [B] above, 
f 

d-Ve EV C (1 - 
Xe Vb_Vc+ 

v5 
V2 2555 -rA 2t 

V5f r72- 
Xe 

V2 

[-ýT -V5b- r-72- 
V59 

Fran circuit (1) (d) and [C] and [D] above., 

Va-V2d_V1d11 (2 
V5 f- 

VbV c) 
V2 f* Ir- _72- 55 

1v5V5b+V 5c 
-ý2 [E] ! V2 

( 

and V2 a 
(V2 d+v 

1ý 1_ 
.1 (V 5c (1 _ 

2X e) _ V5 b 
V2 2 V2 z rV2 

=_ v12- (V5c (1 - 
2Xe) 

- V5b) [F] ýff --r72- 

Fran circuit (2)(c) and [C] and (D] above, 

e Xe e 
de 

{V2 . T2 V6 

Xe (7-2 r) 

or V6 eV1d (Xe - r) + V2e ýe 
T2 

vf 

T2 
v5f 

Xe 
-L (r - Le-) (V5c (1 -Xe '5 )+1. eb V5 - V2 2t V2 rV2 2 

V2 2 72= 
r 

V59 Lfý 

[V5c(r(l - 
Ae )2 f (Le Xe)) 

r7.2 
+ V5 -1 (r - V5 bXe 

2Z 
r (V2) 22 v/2 v/ 2 
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X2 2x 
e-xf Xe + Xe - r, __5 ei 

-2- Ev c(r-XeZ + -ýA 2£ 5 --ir- 2r + v5 -2 72- 

b ýe J- EV5c(r - Xevi) + V5f (Xe V5 -] 2k v/2 /2 

Fran circuit (1) (b) and [C] and [D] above, 

Va (Vld dr b) 
6+ V2 )= =- (v5c 1l V5 2x rV2 

CV5b _ V5c (I _ 
2Ae)) 

It rv2 

2. Selection of a path frcm body 1 to 3 and suTmtion of velocity 
vectors: 

(Val + (Vb) = 

V, a 

V2a 
V3 a 

- (Z V2a+V3a. rcc)s 0) +V5b sine 
(Z V1a+V3a. rsin 6) + V5b cc>s 6 
(V 1a rcoso - V2a rsine + V6a) 

, ýv5f -V5b 
+V 5c 

Z/2 /2 2 

1 2Xe) 
_ V5b) IV5c (1 - r72- 

c 
V5 

r 

1 (V c(, _ 
2X e) _ V5b) + 

V5 crVb 

-272- 5 r-72 r -v/2 4 
1 V5f W5 

b 
+v 5c -1 

V5 Cr V5b 
-2 .0+- T2 + T2 

Y/2 r2 72- 

v5f (V5b+V5c 
1--n ()+-. L (V5c(1_2xe)_ V5 b) 

2t _72- 2 4Z P2- 

(V b 2%- 
2z 5- V5C (1 - r-n))] 
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V5 
f 

vr2, -- (V5 b 
+V5 c 

2at 

{V b 
-V 

c (1- 2), e 
2T2 55r 2-)' 7 

v5c /r 

1 +, r2- b (3r-/2-Ae) c 
72-- v5 2 V2r V5 

V5 bc 
/2. r2 f /2/2- 

272- + V5 +v5 

c{ xe r V5 7 ý2t 2L 

v5f vr2-- (V 5b +V5 c 

2V2t 

1bc 2Xe 
72.. 72-t V5 -V5 (1 - --rT2 

v5c /r 

(1+n2 b (3r-v/2-xe) c 
72- '5 2 V2r V5 

(V5b+V5c+V5f) 12r2 

c{Xe-rr2l V5 2-72-T j 

The final solutions to these equations are presented at the end of 
Section 7.1.1. 
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APPENDIX TO CHAPTER 7 

(APPENDIX E) 

THE ANALYSIS OF A 4-DBGREE OF FWEDOM MANIPULMOR 

(MFRM I) 

The analysis of the small displacements of point 0 located on the 

surface of this manipulator (Figure 7.1.2(a)) is presented in stages 
as outlined below. The sequence of figure numbering in this Appendix 

relate directly to those in the main chapter (section 7.1.2). 

1. Selection of the position of global frame with origin at 0 on the 

surface of body 3 is given in Figure 7.1.2(a) 

2. Setting of local frames and the corresponding velocity 
components. 

i) Coupling A-(Fdg. 7.1.2(c)) 
This coupling has five degrees of freedom and hence five velocity 

components. The local frame is set with X2 a along the common normal 

and Oa at the point of contact between bodies 1 and 2. 

/ 

Fig, 7,1,2 (c) 

vi a xi aX2aX3a 

The local velocity V2 axa 900-0 goo 

vector is given by (Va) Va Xý 90C, +e 0 goo 3 
V4a X3 900 900 00 
0 

V6a Table of angles between the 
local and global frames. 
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. 
SUPPORT OF A 4: -]ýEGREE OF FREEDOM MANPULATOR 
(E&H EACH MAKES 2 POINT CONTACTS AND A&O EACH 
MAKES 1 POINT CONTACT) 

X2 

B, C, F &G ARE UNEAR ACTUATORS 
Fig, 7,1, 'L (a) 

CONSTRAINT GRAPH FOR THE MANIPULATOR ( ABOVE ) 

3 

2 

1 

6 

-F12 (b) 
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Position of Oa measured with respect to the global frame is given by 

x= -rsin. 0, y= -rcos 0 and z=ý- 

ii) q2uplhý D: (Fig. 7.1.2(d)) 

As for coupling A, this coupling has five velocity components. X2 d is 

along the common normal while Od is at the point of contact. Position 

of D measured with respect to the global frame is given by x= rsino 

y=- rcos 0 and z=k. 

re 

od 

vi d 

V2 d 

(VP, d V3 d 

V4 d 

0 

V6 

Fig, 7,1,2 (d) 

xi d X2 d X3 d 

xi 0 900+0 goo 

X2 900- 00 goo 

X3 900 goo 00 

Table of a ngles between the local 

and global frames. 

iii) Couplings B and C; (Fi gs. 7.1.2 (0 and (f )) 

For coupling B, the local frame can be set at either point U (no 

translation needed) or Ob (translation required) but both yield the 

same result when transformed to global frame. 
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At U, x=y=0 and z=k 
At Ob, x=- ksinO, y=- Xcoso, z 

0 

(V 
kb)= 

0 xi b X2 b X3 b 

0 xi 0 900-0 goo 

0 X2 goo+ o 0 goo 

V5 b X3 goo goo 00 

0 Table of angles betwe en the local and 

global frames. 

Like in ooupling B, the local frame for actuator C can be set either 

at U (in which case only rotation is required) or at Oc where both 

rotation and translation are needed but both will give the same 

result. 



tvzl-- )= 

0 

0 

0 

0 

V5 

xi c X2 C X3 c 

xi 1800-0 gffl- 0 goo 

X2 900+0 1800-0 goo 

X3 goo goo 00 

Table of angles between the local and 
global fraines. 

At U, x=y=0, z=k 
At OC, x=A sin 6, y=- Xcos 0, z 

xi 

90-a 

Fig, 7,1,2 (f ) 

iv) Couplings E and H, (Fýgs. 7.1.2(g) and (h)) 

The local fLame for coupling H is seL (at Ohl' parallel to Uie global 
frame so that only translation is required. Position of Oh with 

respect to the global fraw is given by x= -rsinO, y= -rcose, z =-I. 

Ix\ 

-V 
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U' 

= 

vi 

u 

X3, X 

A g, 7,1,2 (g) 

h 
Xi 

V2 h xi h X2 h X3 h 

V3 h xi 00 goo goo 

0 X2 goo 00 goo 

0 X3 goo goo 00 

V6 h Table of angle s between the local and 

global frames. 

With four degrees of freedom, coupling E has four velocity 

components. X2 e is set along body 5 and Xle along the V-groove. 

jX2 

90 

Oe 
V or Oe 0 

90- 

Fig, 7,12 (h) 

w 1ý 
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Position of Oe with respect to the global frame is given by x= rsin 0 

y=- rcos 0, zuici z=- ý- 

V1 e 

V2 e xi e X2 e X3 e 

rV e) Vex0 900+0 goo 31 
V4 e X2 goo-() goo 
0 X3 goo goo oo 

-0 
Table of angles between the local and 
global frames. 

V) Couplings F and G: (FigS. 7.1.2(i) ýAlld (j)) 

Like in B, the local frame for G can be set at either 09 or V but the 
final result of transformation to the global frame will be the same. 
Position of 09 with respect to the global frame is given by x= -X sine 

y=- XcosO and z=- 9ý 

t-0 

0 xi 9 X2g X3 9 

0 xi 1800-0 900+0 900 
(vk 9) = 0 X2 900-6 1800-0 goo 

0 X3 goo -00 00 
V5g Table of angles between the local and 

-0 
global frames. 

Fig, 7,1,2 (i) 
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F 
At-O 

f xi 

Like in C, the local frame for coupling F can be set at either Of or 
V but the result of transformation to the global frame from either of 
these two positions is the same. Position of Of with respect to the 

global frame is given by x= ýsin6, y= -Xcos-9and z= -Z 

0 

0 xi f X2 f X3 f 

f 0 xi 1800-0 900- 0 goo 
0 X2 900+0 1800- 0 900 

V5 f X3 goo goo 00 
0 Table of angles between the local and 

global frames. 

3. Transformation of Vectors to the Global Frame 

[Mv] is a matrix that transfozms the components of any velocity motor 
subspace (VMS) from a local to global frame. [mv] and the 

accompanying matrices below are obtained from Appendix c. 
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(v [mv] (v a), [MVI = [TV] (R] 
a 

lcl 101 [1] 101 
[R] = and [Tv] = 

101 [C] IS] (I] 

cll c12 c13 0 0 0 1 0 0 0 0 0 

c21 c22 c23 0 0 0 0 1 0 0 0 0 

c31 c32 c33 0 0 0 & [TV] 0 0 1 0 0 0 
0 0 0 c11 c12 c13 0 -Z y 1 0 0 
0 0 0 c21 c22 c23 Z 0 -x 0 1 0 

.0 
0 0 c31 c32 c33j ry x 0 0 0 1. 

Cii C12 C13 0 0 0 

C21 C22 C23 0 0 0 
lmvl= C31 C32 C33 0 0 0 

(YC31-ZC21) (YC32-ZC22) (YC33-ZC23) C11 C12 C13 
(Zcll-xc3l) (ZC12-XC32) (ZC13-XC33) C21 C22 C23 
(XC21-ycll) 

L 
(XC22-YC12) (XC23-YC13) Cý31 C32 C33 

i) Couplings A and D 
For coupling A: 

cose sinO 0000 

-sine cose 0000 
DO 001000 

zsina -Zcose y Cosa sinO 0 

zcose zsinO _x -sinO cose 0 

-(xsino+ycose) (xcose-ysine) 000 

(Vlacose + V2 asinO) 

Now: W2 acc)se _ VlasinO) 
jVaj = [tVj (V a, Va 3 

(V 1 azsino_V 2 azcoso+YV3a+V4acose) 
(z(Vlacoso+V2asine)_xV 3 a_V 4 asine) 
V2 a(xcose-ys: Lne)_Vla(xsine+ycc)se)+V6a 
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But z=Z, x= -rsinO, y= -roose. 
V1 acoso+V2 asinO 

V2 acose_V 
1 

asin 0 
fVa) V3a 

t(Vlasine-V2 acos e)-V3 arcose+V4 acose 

R, (VlacosE)+V2asine)+V3arsine-V4asinO 

r. VIa +76 a 

For coupling D: 
cose -sin 000 0 
sine Cos a00 0 
0010 0 

-LqinO -RCOSO -rcose cose -sine 
t Cos e -ýsin. O -rsine sine Cose 

Lr000 0 

V, d coso-V2 dsine 

V1 dsine+V2 doose 

V3 d 

jVdjqýV](V d) 
_p (V 1 

dsir. 10 +V2 docs 0) _V3droose +V4dcc)se 
y dsine 
. (Vld coso-V2 dsine)-V3C'rsinO+V4 

V1 dr + V6 d 

ii) Couplings B and C 

For coupling B: r 

0 
0 
0 
0 
0 
1 

Cosa sinO 0 0 0 0 
-sino Cosa 0 0 0 0 

0 0 0 0 0 
b 

zsino -zcose y cx)se sino 0 
zcoso zsinO -x -sinO Cosa 0 

C(Xse+YCO) (XCO-YSO) 0 0 0 1 
where x= -Xsine, y= -Xcose, z = k, cO= cosO and sO = sine. 1 

0 

0 

(Vbj = [DýP] (V kb0 
V5 bsinO 

V5 bcose 

0 
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For coupling C: 

-Cos 0 

-sin 
0 

zsinO 
-zooso 

sin 0 

-Cos 
0 

zoos 
zsin 0 

0 0 0 
0 0 0 
0 0 0 

-coso sine 0 

-sine -cosO 0 
0 0 1 (yoose-xsine) (ysine-xcose) 

where x= XsinO, y =-; kcosO and z=P, 

0 

0 

(VC) = ID1,9 fvý C) o 
V5csin 0 

-V5 c Cos 0 

L01 

The results clearly Inch e that in both cases, only rotation is required 
and it is therefore immaterial where the local frame is fixed. 

iii) Couplings E and H 

For coupling E: 

cose -sine 0 0 0 0 
sine cose 0 0 0 0 

VI 00 1 0 0 0 
-zsine -zcose y cosO -sinO 0 

zcose -zsinO _x sine oose 0 
(xsina-ycos6)(xoosO+ysin6) 0 0 0 11 

where x= rsin e, y= -rcos 0, z=-X. 

V1 ecos e-V2 esine 

V1 esino+V2 ecose 
jVej=[V](V e) = V3e 

k(Vlesirle +V2 ecoso )-r-V3 ecosq +V4 ecose 
j4V 2 esine_V 

1 ecoso)_V3e., Sine+V4esine 
V, e. r 
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For coupling H: 

0 0 0 0 0 
0 1 0 0 0 0 (x=rsin9, y---rcos 0 

Imý h1 0 0 1 0 0 0 and z=-A 
0 -Z y 1 0 0 
Z 0 -x 0 1 0 

x 0 0 0 1- 

because the local frame has been chosen such that (R] 1] 6,6 i. e. a 6x6 

unit matrix. 

.,. (Vh) = [tlpj (V z 
h) 

= 

iv) Couplings F and G 

For coupling F: 

vlh 
V2 h 

'43 h 

ý'v h-V. h roos 0 2h3*h 
V3 . rsine -X . V, 
vih. rcosO-V2h. rsinO+V6 h 

-Cosa sinO 0 0 0 0 
-sinO -Cosa 0 0 0 0 

[MV f 00 1 0 0 0 

zsinO zcose y -Cosa sino 0 

-Zcose zsine _x -sine -Cosa 0 
(ycose-xsine)-(xcose+ysine) 0 0 0 

0 

0 

jvf) = imfilvif) o 
V5fs'r'O 

-V5fcc)SO 

-0 

. Ad 
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For coupling G: 

-Cosa -sine 0 0 0 0 

sine -Cosa 0 0 0 0 
00 1 0 0 0 

-zsia zooso y -cose -sine 0 

-zooso -zsino _x sine -oosO 
(xsinO+yoosO)(ysino-xoos 0) 0 0 0 

0 

0 

0 

(vgj ý EV3 IV g, -V5gsinO 

-V5gcose 
0 

4. Applying Kirchoff Is Circulation law [31 to the three circuits of 

Figure 7.1.2(b) and noting that there are six equations for a 

single circuit: 

a) For Circuit 1 (involving couplings A, B, C and D), 

(Va) + (Vb, + (Vc, + (Vd) = 

Cos 0 cose sine -sine 0 0 0 

-sine sine cose 00so 0 0 0 
0 0 0 0 1 1 0 

tsine -tsino-moso -jpose-r-cose _rcose Cosa 
tcose tcose tsine -tsina rsine -rsine -sine 

r r 0 0 0 0 0 

00 0 0 6' V1a 
d 00 0 0 0 vi 

00 0 0 0 2 d ={Oj 
cose sine sine 0 0 V2 
sine cose -Cose 0 0 ya v3 

00 o 1 lj V3 d 
a V4 

, 
4d v 

vVb 
'5 c 5 
a 6d l 

6 

9= 450, and so the constant matrix becomes 



271 

vr2- 1/ v/2- 1172- -1/Y"2- 0 0 0 0 0 00 0 

v12 1/, /2 1 /' vr2 1/bF2 0 0 0 0 00 0 
0 0 0 0 

- 
1 

- 
1 0 0 0 00 0 

£/ V2- 
-Z1F2 -. Z/72- -£/vr2 -rI72 -rIF2 l/V-2 1/V/-2 1/ 1/ý7 11172--0 0 

vv72 £/v2 Z/V, 2 -9, /V, 2 rlv'2 -r/Y'2- -11V2 1/, /2 1//72- 11�r2- 0 0 

0 0 0 0 0 0 01 -1 
or 

vri-- f(l)-(2))-+(l) 
e* 

1 

Hence: 
j) V1aV2d 

ii) V, d 
_V 2a 

iii) Vad 

iv) 
3 -V3 

_ZV _p ,Va_ rV, a+Va+Vc0 
12345 

V) ZV 1a_ jV d- 
rV3 

d+ V4 d+ V5 b-0 

vi) rVa+ rVlý +V6a+ V6 d=0 

b) Circuit (2) (involving couplings C, D, E and F), 

(Vf) + (Vel _ (Vd) _ (Vc) = (0) 

Thus in matrix form: 

-Cos 0 Cos a sine -sine 0 0 0 0 0 0 0 V, d 

-sine sine -Cosa Cosa 0 0 0 0 0 0 0 V1e 
0 0 0 0 -1 1 0 0 0 0 0 V2 d 

2zine ksinO tcose kc0se rcosO -rcosO -Cosa Cosa -sine sine 0 V2 e 

-Jzcoso -Rcose ksinO tsine rsine -rsine -sine sine cose -Cosa 0 V3d 

L -r r 0 0 0 0 0 0 0 0 -1 V3e 
V4 d 

v4e 
NY C 

f V5 
d A 

O} 
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since o= 450, the constant matrhc beocmes: 

-1//2- 1/V2 1/V2 -1/V2 0 0 0 0 0 0 0 

-1/ 
r2- Ilr2- -llv'2- 11F2 0 0 0 0 0 0 0 

00 0 0 -1 1 0 0 0 0 0 

Z/Výz 9, /VZ ZIF2 ZIF2 rIF2 -r/F2 -11V2- 11F2 -11F2 11F2 0 

-klv*'2 -Z/v/2- klvr2- Ylr2 r/yr2- -r/vr2- -1142- 1142- 11F2 - 11V-2 0 

r 0 0 0 0 0 0 0 0 -1 

or 

-1 1 0 0 0 00 0 0 0 0 

f(l)-(2))-(2) 0 0 1 -1 0 00 0 0 0 0 
2 

VFI-- 
(3) - (3) 0 0 0 0 -1 10 0 0 0 0 

2 jk4)+k5))-(4) 0 0 't r -r -1 1 0 0 0 

1L2 C(4)-(5))-(5) z 0 0 0 00 0 -1 1 0 
2 (6) - (6) 

- 
-r r 0 0 0 00 0 0 0 -1- 

Hence: 
j) V1e Vld 

ii) V2 dV2e 

dVe iii) V3 3 
iv) Z ý2 d+ kV2 e+ rV3 

d_ 
rV 3eV4d+V4e=0 

TherefOre V2 d= V2 e =. 
v4d 

2L 

V4 e 

v) ZVld + kVe _ ,c +V f0 
1 v5 5 

Therefore Vld = V, e =, 
V5c-V5 f 

2Z 

vi) vl". r _ Vld. r - V6d -0 -+ V6d = 

c) For Circuit 3 (irwolving couplings E, F, G and H): 

(Vg) + (Vh) - (Ve) - (Vf ,= 

Thus in matrix form: 
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-Cosa sinO 1 0 0 0 0 0 0 d V, e 

-sinO -coso 0 0 1 0 0 0 0 0 ve v2 
0 0 0 0 -1 1 0 0 0 0 h v 

-ksinO -kcoso 0 z rcoso -rcoso -Cosa -sir-O -siro 0 h V2 
kcosO -ksino -P, 0 rsinO rsino -sino Cosa -CC)S() 0 e 

-r 0 rcosO -rsinO 0 0 0 0 0 1 h V3 

V4e 
V5 f 

V59 
V6 

, 

Since () = 450, and so the constant matrix becomes: 

-I/, r2- 1/ V'Z 1 G 0 0 0 0 0 0 

-llvrz -1/VZ 0 1 0 0 0 0 0 0 
0 0 0 0 -1 1 0 0 0 0 

- k1 r2- - Z/ r2- 0 P, r/yr2- -r/vr2- -1142- -llf2 -11V7 0 
2,1 VT - k/ V, 7 -k 0 r/v"z rlvrz -l/VIZ 1/VPZ -llvrz 0 

L7r 0 r/vr2- 0 0 0 0 0 1 

or 

-1 0 V'2/2 lr2-/2 0 0 0 0 0 0 
0 1 Y'2/2 - vl! Z/2 0 0 0 0 0 0 

2 (3) (3) 
, r2- 0 0 0 0 -1 1 0 0 0 0 
T ((4)+(5))-,, (4) 0 -z -klvf kfii r 0 -1 0 -1 0 
V2-- ((4)-(5))-j-(5) -k 0 k1 r2- Z/ V2- 0 -r 0 -1 0 0 
2 (6) (6) [ 7r 0 r/ vT -r/ v7 0 0 0 0 0 11 

Hence: 

vh ' vh 
j) _V e+ l 

ýj +2 
! ýj 

v 
ii) V2e +1 

V. 2 

iii) V3h-V3e 
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- R, he iv) m2e Vlh +ZV, + rV e- V5g =0 T2 /2 3 V4 

v) _XVle + Y, h+Zhhf=0 
72- Vl 72- V2 rV3 V5 

vi) -rVle +rV, h_r V2 h+ V6 h=0 

5. Solutions of the 18 equations derived from consideration of the three 

circuits: 
Circuit 1: 
Substituting (ii) into (iv)"4 a _ rV 3a+V5c-0 (a) 
Substituting M into (v)_ V4d 

a 
- rV d j. Vb-0 35 

d c 
(b) 

Subst-ituting (iii) into (a)- V4 + rV3 + v5 '= 0 (c) 
(b) + (c) gives V4a + V4d + V5 b+ v5c =0 (d) 

Therefore (V 4a+ V4 d)-- (V5 b+V5C) 

Circuit 2: 
de 

V4 
d 

-V 
e 

Substituting (ii) and (iii) into (iv) V2 
z2Z- 

(a) 

Substituting (i) into (v) d=Ve V5c-V5f 
(b) V, 1 2k 

Substituting (i) into (vi) V6 d=0 (c) 

Circuit 3: 

Fran M and (ii): 
e 

h1h 
(V 

1 +V2e) 

1-122 V2 
vlý 

Substitute Vlh and V2h intc) (jv) _). rV 3e-V4e=V5g (a) 

Substitute (iii) and Vjh and Y2 h into (v) -" -rV3e - V5 f 

or Ve=Vh _yEif (b) 33r 

Substitute for Vlh and V2h into (vi) -* V6h = r(VIe + V2e) (C) 

f 
Fran circuit (2) (111) and circuit 3 (b) -,, V3d e-Vh 

_5 3V5f 3ar 
-V3 

[A] 
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SO substituting these results into circuit (1) (b) _ V4d = -(V 
fb 

5+v 5 
[B] 

afc 
and circuit (1) (a) '(V4 ý Vý - V5 

[C) 

From circuit 3(a) and [A] above, 

-, e= rVe -V=- (V5f + [D] V4 
.3 5g 

V) 

and V4 h=0 (see Figure 7.1.2(b)) 

Fran circuit (2) (b), Vld = Vle - 
V5 c V5 

f 

[El 

Frcm circuit (2) (a) and ([B] and [D]) above, 

V2 d=V2e= 
22, f9 

(V 5 
f+V5b) 

+ (V5 + V5 

2x 

=V59-V5b 
2Z 

Now, frcm circuit (1) C(i) and (ii)), 

V, a=V2d, and V2a= -V 1d 

Therefore a=V 5g - V5b(see 
[F] above) [G] V, 2Z 

and a= Vr, f- V5 c 
(see [El above) [H] V2 2. x 

Fran circuit (3) f(i) and (ii)) and ([E] and (F]), 

h1e e) 1 V5 c 
-V5 

f 
-V5 

g +75 
b1 

V, - (Vi _V2. - (- .- (v5c-v5f -v5g+V5 
b) 

V12 V/2 2Z 2v/2X 
9_V b) 

a 'd vh1 (V e+V e) = ,- 
(V5c-V5f +V5 

_5 =1c -V 
f+V5g-V5 b) CII r2= 72 12 

V12 
72- (V5 5 2Z 2 v/2 P. 

Frcm Figure 7.1.2(h), V6e = Ofra, circuit 2(c), V6d =0 



276 

Therefore from circuit (1) (Vi) --l' V6 a= -r(Vi a+V 
1 

d) 
and from (G] and 

,, 
V a= -r (Vg -Vbf [E] above 655+ V5c - V5 

Vc -V 
f+V g 

-V5 
b 

From circuit 3 (c), V6 h= 
r(Vle + V2e) -* V6 h=r5.5 

4XI 
5 

The final solutions to these equations are presented in Section 
7.1-2 in the main chapter. 
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APPENDIX M CHAPTER 9 

(APPENDIX F) 

THE ALIGNMENT PROGRAM 

DELAY EQU 010 ; Tune for >13.5 ms 1/03 delay. 

SWOP EQU 08 ; Tune no. of motor changeovers. 
BDOS EQU 5 ; Entry point to BDOS. 

LIST EQU 5 ; Sends data to listing device 

CONOUT EQU 2 ; Console output. 
CR EQU 13 ; Fixed ASCII value for carriage return. 
LF EQU 10 ; ASCII value for line feed. 

ATOD EQU 82H ; Port 130 takes data to start A-D conversion. 
SIGNAL EQU 83H ; Port 131 on 1/03 contains coverted signal. 
PULSE EQU 8DH ; Por-t 141 on I/03-selects motor & direction. 

CONFIG EQU 8FH ; Port 143 on I/03-configures ports as I/P 

; or O/P. 

COUNrl EQU 500 ; Tune motor delay time. 

TIMER EQU 0001 

START ; Begin program. 
ORG 100H 

LXI H, 0 

DAD SP 

SHID OLDSP 

LXI SP, STKTOP ; Specify stack to avoid later 

; en=achment. 

mvi A, 90H 

OUT CONFIG ; Configure other ports I/P &/or O/P by 

; placing 144D into port 143. 

XRA A 

STA BYTCNT ; Iriitialise no. of characters/line. 

; *THIS PORTION OF THE PROGRAM READS AND PRI14TS SIGNALS BEFORE MOTOR* 

; *IS MOVED. THE SIGNAL IS THEN COMPARED WITH THE DESIRED VALUE (9()%* 

; *OF FFH). IF VALUE OBTAINED>=90%FTH, THEN PROWM REBOOTS. 

CALL READ ; Read signal before executirxj motion. 
CP1 231 ; Ccnpare accumulator with 90%FFH. 
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ic PROCDE ; Branch if accumulator<E7H. 
CALL CHECK ; Ensures that 7 characters are printed cn Me 

; line. 

r-ALL REBOCfr ; Go to reboot systm. 

; *THIS PART OF THE PROGRAM REVERSES MOTORI ONE STEP. IT THEN READS * 

; *SIGNAL AND COMPARES WITH 20%- OF FFIL IF SIGNAL>=20%FFH MOTOR CON-* 

; *TINUES, STEP MOVEMENTS IN THIS DIRECrION TILL SIGNAL<20%-FFH. 

PROCDE MVI D, SWOP ; Set no. of motor charyjeovers incase OE7H 

; (90-%FFH) or more is NOT FOUND. 

CYCLE PUSH D 

REPEAT1 MVI A, OH 

OUT PULSE ; Selects direction fran port 141. 

mvi A, 70H 

OUT PULSE ; Selects motorl, for reverse motion. 

mvi A, 72H 

OUT PULSE ; Starts reversing motorl. 

CALL WAIT Tune pulse duration. 

mvi A, 70H 

OUT PULSE ; Stop motorl but keep it ready to move. 
CALL READ ; Read new signal. 

CPI 09 ; Compare new signal with 3.5%- of FFH. 

JNC REPEAT1 ; Branch if A>=3.5%FTH. 

STA ADDR ; Otherwise store in ADDR. 

CALL CHECK ; Ensures that 7 characters are printed on one 
line. 

; *THIS PART OF THE PROGRAM CCMPENSATES FOR MOTOR1 BACKI&ASH. MOTOR1* 

; *IS MOVED IN FORWARD DIRECrION CCHPARING., NEW SIGNALS WITH ADDRESS* 

; *(ADDR) CONTENTS PASS THE 51D (20%FFH) POINT TILL 20%- OF FFH IS 

; *OBTAINED ON THE OTHER SIDE OF THE GJWSIAN CURVE (BEAM). 

BACKLASH1 ; Move motorl. forward and carpensate for backlash. 

MVI A, 01H 

our PULSE ; Select direction fran port 141. 
WI A, 71H 

OUT PULSE ; Select motorl for forward motion. 
MVI A, 73H 
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CUT PULSE ; Starts motorl in forward direction. 

CAM WAIT ; Tune pulse duration. 

WI A, 71H 

our PULSE ; Stop motor. 

CALL READ 
.: 
Read up signal. 

LXI H, ADDR 

CMP M ; Ccnpare accumulator with ADDR contents. 

JNC CONTINE ; Continue forward if A>=(ADDR) contents. 

imp BACKIASH1 ; Otherwise jump BACK to BACKLASH1. 

CONTINE CALL CHECK 

CALL FoRwARD1 ; move motorl forward storing signals. 
CALL MAXIMUM ; Find maximum signal stored in the above 

; array. 
CALL NINTYPC ; Find 90% of max signal. 
CALL REVERSEl ; Reverse motor to peak position. 
CALL DATRESET ; Reset array data. 
CALL M0TOR2 ; Change to motor2 & repeat procedure. 
CALL 
CALL 

FORwARD2 
XIMLM 

CALL 
MA 
NINTYPC 

CALL REVERSE2 - 
CALL DATRESET ; Go to reset array. 
POP D Retrieve no. of motor cycle change overs. 
DCR D 
JNZ CY= Swcp motors 8 times as long as location 90%- 

; of FFH or higher is NOT FOUND. 
CALL REBOOT ; Reboot system. 

CHECK 

; *SUBROUTINE THAT ENSURES CARRIAGE IS RETURNED AFTER PRINTING* 

; *A BLOCK OF DATA OR CHARACTERS (7 in this case)OBTAINED FROM* 

; *A GIVEN SUBROUTINE etc. 

MORCHR LDA BYTCNT 
MVI D, OH 
ORA D 

Jz FINISH 

CALL SPACE ; Create double spacing before next character. 
CALL LNFEED ; Check if 7 characters (exclude spaces) are 

; printed then carriage return. 
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amp MORCHR ; Otherwise print more characters. 

FINISH RET 

; *THIS SUBROUTINE DETERMINES VVMR PULSE DURATION. * 

WAIT ; Delay routine. 

LXI D, CCUNTl ; Load delay data into reg. pair DE. 

AGAIN DCX D ; Decrement regs. DE. 

MOV A, D ; To test for 0 mov D into A. 

ORA E ; Then logical OR A with E. 

JNZ AGAIN ; Branch if result 00. 

RET 

; *THIS PART OF THE PROGRAM KAM MOTOR1 FORWARD STORING ALL SIGNALS* 

; *IN INDEXED ADDRESS (ARRAY, X) using autopostincrement addressicng. * 

; *ALL PROG? ZAM STATEMENTS INVOLVING (PULSE) ARE DEFINED IN backlashl* 

; *routine ABOVE. 

FORWARD1 ; Move motorl forward storing all signals. 

LXI H, ARRAY ; Start of array. 

SHID BASE ; Store location array in BASE. 

IDA ADDR, ; Load up first data into accumulator. 

CALL BNHEX1 ; Print it out. 

LXI B, TIMER ; Start count to determineno. of signals 

; stored. 

; *Autopostincrementirxj adrress and storing accumulator. 

Loop LBLD BASE 

Mov M, A 

INX H 

SBID BASE 

INX B 

PUSH B 

mvi A, 01H 

OUT PULSE 

MVI A, 71H 
our PULSE 

DM A, 73H 
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OUT PULSE 

CALL WAIT 

MVI A, 71H 

OUT PULSE 

CALL READ ; Read up new data in I/o3. 
POP B 

CPI 05 ; C01rPare subsequent data with 05. 

JNC LOOP ; Move & read again if new data>=ADDR 

; contents. 
DCX B ; Decreasecounter toaccountfor last 

; unstored data. 

MOV H, B ; Store register pair B, C direct into COUNTER. 
MOV L, C 

SHLD COUNTER 

CALL CHECK 

RET 

11 
; *THIS SUBROUTINE CONVERTS ANALOGUE TO DIGITAL SIGNAL AND READS IT* 
*INTO ACCUMULATOR. 

READ MVI A, OFFH 

CUT ATOD ; All channels disabled. 

MVI A, OFOH 

OUT ATOD ; Enable multiplexer - select channel 0. 

MVI A, ODOH 

OUT ATOD ; Issue start conversion. 
MVI A, OFOH 

OUT ATOD ; Repeat as above. 
MVI A, DELAY ; Tune waiting time to 13.5ms or more fora 

; 4MHz clock to allow for conversion time. 

BACK DCR A 

JNZ BACK 

IN SIGNAL ; Read port 83H to obtain converted signal. 
STA POT 

CALL BNHEX1 ; Print it out. 
LDA POT 

RET 
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; *THIS SUBRCKJTINE PRINTS DATA FROM ACCLMMATOR ONTO SCREEN &* 

; *PRINTER. 

BNHEX1 ; Convert Hi-nibble to ASCII. 

STA POT 

ANI OFOH ; Get hi-nibble. 

RRC 

RRC 

RRC 

RRC 

CALL NASCII ; Oonvert hi-nibble to ASCII. 

CALL PRINT ; Go to print MSB. 

CALL BNHEX2 ; Go to Lo-nibble conversion routine. 

CALL SPACE ; Give double spacing. 

CALL LNFEED ; Go to print space and carriage ret 

IDA PCIT 

REr ; RETURN. 

BNHEX2 ; Ccrivert Lo-nibble to ASCII. 

IDA par 

ANI OFH Get lo-nibble. 

CALL NASCII ; Convert lo-nibble to ASCII & return it in L. 

CALL PRINT -Go to Drint LSB. 

RET 

NASCII CPI 10 

ic NASCIl 

ADI 7 

NASCIl ADI 

RET 

PRINr STA 

mvi 

mov 

CALL 

IDA 

mvi 

mov 

101 

PTR 

C, a)NOUr 

E, A 

BDOS 

PTR 

C, LIST 

E, A 

; Return to main program. 

; 0cmpare reg-A with 10. 

; Jump, if hi-nibble<10. 

; Otherwise add 7 so that after adding 

; 10 1 character will be in IAI..... IV. 

; Add ASCII 0 to make a character. 

; Return to main program. 
; Store data in temporary location 

; ready for printirxj. 
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imp BDOS 

; *THIS SUBROUTINE SIMPLY GIVES DOUBLE SPACING BE7WEEN ONE PRINTED* 

*DATA OUTPUT AND THE NEXT ON THE SAME LINE. 

SPACE WI A, 20H 

CALL PRINT ; Give a ie space for next data. 

IDA PTR 

CALL PRINT ; Give second space for next data. 

RET 

; *THIS SUBROUTINE CREATES SPACE AND ENSURES THAT THE CORRECT No. OF* 

; *DATA O/P IS PRINTED ON A SINGLE LINE BEFORE CARRIAGE RETURN. 

LNFEED CALL SPACE ; Create double spacing before next character. 

IDA BYTCNT ; Retrieve no. of characters already printed. 

INR A 

STA BYTCNT 

CPI 7 ; Are printed characters = 7? 

RNZ ; NO. RETURN. 

XRA A ; If yes then clear no. of counts in BYTCNT. 

STA BYTCNT ; START AGAIN 

mVI A, CR 

CALL PRINT ; Send carriage return ASCII. 

mvi A, LF 

CAM PRINT ; Start print on next line. 

RET 

; *THIS SUBROUTINE DETERMINES THE LAEGEST LOCAL SIGNAL REODRDED IN* 

; *AN ARRAY BY CCVPARIW, 7 ONE AGAINST THE OTHER. 

MA, XIMUM ; Determine largest signal recorded. 

LHLD COUNTER 

MOV A, H ; Get MB of no. of counts & print. 
CALL BNHEX1 

CALL C= ; Print high byte on a single line. 

LHLD OOUNTER ; Retrieve data counts & put in H, L. 
MOV A, L ; Get LSB of no. of counts & print. 
CALL BNHEX1 
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CALL 

UMD 
CHECK 
COMTER 

; Print low byte in the next line. 

MOV B, H ; Load register pair BC with counts 
MOV C, L 

LXI H, ARRAY ; Point to start address of data array. 
MOV A, M 

STA MAX 

NEXTEL IDA MAX 

INX H ; Next address. 

CMP M ; Is next element> MAXIMUV 

ONC DECRT ; If it is, jump to DECREASE. 

MOV A, M ; If greater or equal, replace. 

DECRT STA MAX 

DCX B ; Decrease no. of counts by 1. 

MOV A, B 

ORA C ; Then OR A with C 

JNZ NEXTEL ; If coLmter<>O, go to increase H. 

IDA MAX 

CALL 

CA 

BNHEXl Print out MAXIMM. 

LL 

RET 

CHECK 

NINTYPC ; 

; *THIS SUBROUTINE CALCULATES 90% OF MAXIMUM SIGNAL RECORDED * 

; *BY TACKLIýG ODD AND EVEN DATA SEPARATELY AND STORES RESULT* 

; *IN ADDRESS CALLED PERCNT. 

DIVISION ; Calculate 10's digit (i. e. 10% of MAXIMUM). 

; Divide data by 10D. 

;M= Quotient. 

;A= Remainder. 

; PROGRAM BEGINS HME. 

MVI B, OH 

LDA MAX ; Load accumulator with contents of mAx 

; i. e. maximLzn recorded signal. 
DIVLOOP ; Work Out 90% Of MAXIMUM. 

INR B Add 1 to quotient. 
MOV M, B 

SUI 0OAH ; Subtract 10D from A. 

JNC DIVL400P ; Branch if A>10D. 
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MVI D, OOAH 

ADD D 

MVI D, OH ; Test if A is 0. 

ORA D 

JNZ ODDNMB ; Branch if A00. 

MCV A, M 

LXI H'MAX 

DCR A 

CMA *Negate A. 

OMP RIBO 

ODDNMB MOV A, M 

LXI H, MAX 

CMA ; Negate accumulator. 

RIBO INR A 

ADD M ; Form -A + reg M 

STA PERCNT ; Store difference (90%) in address PERCNT. 

CALL 

CALL 

BNHEXl ; Print 909o- of MAXDM signal. 

aiECK 

RET 

; *THIS PART OF THE PROGRAM REVERSES MMOR Y TO PEAK POSITION* 

*D=RMINED BY THE maximum OR nintypc SUBROUTINES ABOVE. 

REVERSE1 ; Reverse motorl to peak position found in MAXIMU14 or 

; NINTYPC above. All program statements involving PULSE 

; are already defined at the beginnirxj of the program 

; startirxj at label statement REPEAT1. 

LHLD COUNTER ; Get no. of counts frcm (COUNTER). 

ýw B, H 

Mov C, L 

REPEAT PUSH B ; Save it in B, C reg. pair. 

wi A, OH 

CUT PULSE 

wi A, 70H 

our PULSE 

wi A, 72H 

OUT PULSE 

CALL WAIT 

MVI A, 70H 
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our 

CAL 

PULSE 

READ L 

POP B ; Retrieve counts. 

CPI 2-31 ; Compare signal with 90%FFH. 

ic TRY1 ; Branch if A<231. 

CALL CHECK 

CALL DATRESET ; Reset ARRAY to zero. 
CALL REBOOT ; Go to reboot system. 

TRY1 LXI H, MAX 

aVIP M ; Otherwise compare with maximum signal 

; (contents of VAX). 

JNC! GOBAK ; Return if A>=contents of MX. 

LXI H, PERCNT 

CMP M ; Otherwise compare signal with 90%- of 

; maximn signal. 

JNC GOBAK ; Return if A>=cmtents of PERCNT (9G% MAX). 

DCX B ; Decrease reg. pair BC (counter). 

Mov A, B 

ORA C 

JNZ REPEAT , Go to scan the next signal if B, C! 00. 

GOBAK CALL CHECK 

RET 

MMOR2 ; Changeover to motor2 and reverse. 

MVI A, OH 

ajT PULSE ; Selects direction of motion from port 141. 

r-M A, 70H 

our PULSE ; Selects motor2- 

DM A, 74H 

WT PULSE ; Starts motion in reverse direction. 

CALL WAIT ; Tune motor pulse duration. 

MVI A, 70H 

WT 

CALL 

PULSE 

R 

; Stop motor motion. 

CPI 

EAD 

09 Carpare new signal with 09. 

JNC MMOR2 ; Branch if A>=3.5%FTH. 

STA ADDR2 ; Otherwise store in ADDR2 before backlash 

; oorrection and forward motion. 
CALL CHECK 

BACFLASH2 ; Move M0t0r2 forward till signal(A)>=ADDR2 contents. 
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mvi 

our 

mvi 

OUT 

mvi 

our 

CALL 

mvi 

OUT 

CALL 

LXI 

CrIT 

JNC 

imp 

PROCEED CALL 

A, 01H 

PULSE ; Selects motor direction. 

A, 71H 

PULSE ; Selects motor2 for forward motion. 
A, 75H 

PULSE ; Nk)tor starts motion in forward direction. 

WAIT ; TLuie motor pulse duration. 

A, 71H 

PULSE ; Stcp motor motion. 

READ ; Read signal. 

H, ADDR2 

M; ocupare signal (A) with contents of ADDR2. 

PROCEED ; Return if A>=(ADDR2) contents. 

BAMASH2 ; Otherwise jump back to BACICASH2. 

CHECK 

REr 

; *THIS PART OF THE PROGRAM MOVES MOTOR2 FOEWRD STORIM ALL 

; *SIGNALS IN INDEXED ADDRESSING (ARRAY2, X) using autopostincr-* 

; *ment addressing. ALL PROGRAM STATEMENTS INVOLVIM (PULSE) 

; *ARE DEFINED IN backlash2 routine ABOVE. 

FORWARD2 ; move motor2 forward storim all siqnals. 

LXI H, ARRAY ; Star-t of array. 

SHLD BASE ; Store location of array in BASE. 

LDA ADDR2 ; Load up first data from ADDR2. 

CALL BNHEX1 

LXI B, TIMER ; Start up count. 

LOOP2 ; Autopostincrement address and store accumulator. 

LHLD BASE 

MOV M, A 

INX H 

SHID BASE 

INX B 

PUSH B 

Mvi A, 01H 

OUT PULSE 

Mvi A, 71H 

CUT PULSE 
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mvi A, 75H 

OUT PULSE 

CALL WAIT 

mvi A, 71H 

our PULSE 

CALL 

POP 

READ 

B ; Retrieve rx). of counts. 

CPI 05 ; cbnpare subsequent data with 05. 

JNC LOOP2 ; Move & store data if new data >= (ADDR2) 

montents. 

DCX B ; Decrese counter to account for last unstored 

data. 

MOV H, B ; Mom total no. or counts inco au reg. pcuLr. 

MOV L, C 

SHLD COUNTER ; Store HL reg. pair direct into COUNTER. 

CALL C= 

RET 

; *THIS PART OF THE PROG? M REVERSES MOTOR2 TO PEAK POSITION* 

; *OBTPJNED FROM THE maximum OR nintypc SUBROUTINES ABOVE. * 

; *ALL PROGRAM STATEMENTS INVOLVING (PULSE) ARE DEFINED IN * 

*motor2 routine ABOVE. 

REVERSE2 Reverse motor2 to peak (MAX) position. 

LHLD COUNTER ; Move no. of counts into reg. pair B, C. 

MOV B, H 

MOV C, L 

COUNTS PUSH B; Save no. of counts obtained frcm FORWARD2. 

wi A, OH 

our PULSE 

mvi A, 70H 

CUT PULSE 

mvi A, 74H 

OUT PULSE 

CALL WAIT 

mvi A, 70H 

OUT PULSE 

POP B ; Retrieve counts. 
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CPI 231 ; Ccnpare signal with 90-%-FFH. 

ic TRY2 

CALL G= 

CALL 

CALL 

DATRESEr 

REBOOT 
; Reset ARRAY data. 

TRY2 LXI H, MAX 

CMP m otherwise ccmpare it with (MAX) cOntents - 
JNC BACK2 ; Branch to motrorl if A>=(MAX) omtents. 

LXI H, PERCNT 

CMP m ; Cbnpare signal with 90%- of (MAX) ccritents. 

JNC BACK2 ; Branch to motorl if A>=(PERCNT) cOntents- 

DCX B 

MOV A, B 

ORA C 

JNZ COUNTS ; Go back to COUNTS if B00 

BA= CALL CHECK 

RET 

; *THIS PART OF THE PROGRAM REBOOTS THE SYSTEM* 

REBOOT LHED OLDSP ; Load H&L registers direct. 

SPHL ; Load stack pointer fran H&L registers. 

RET 

*THIS PART OF THE PROGRAM RESETS ARRAY DATA* 

DATRESET ; Reset all array data to zero. 

LBLD COUNTER ; Retrieve total no. of data stored. 

MOV B, H 

MOV C, L ; Place hi and lo in reg. pair BC. 

INX B ; Increase B to ensure next ARRAY data<MAX. 

LXI H, ARRAY ; Point to ARRAY. 

MLOOP Mvi A, OH ; Fill reg. M with 0. 

mov M, A 

INX H ; Increase H. 

DCX B ; Decrease BC. 

MOV A, B 

ORA C 

JNZ Mmp 
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mvi H, OH 

wi L, OH 

SPID COUNTER ; Reset contents of COUNTER. 

RET 

; *THIS PART OF THE PROGRAM ALLOCATES BYTES TO ADDRESS LABELS * 

; *AND DEFINES SPACES FOR STACK AND DATA STORED DURINGU FORWARD* 

; *MOTION. 

ADDR DS 2 ; Allocate bytes to all the address 

; labels. 
POT DS 2 

BASE DS 2 

COMTER DS 2 

MAX DS 2 

ARRAY DS 1800 ; Sets up space for data array. 
PERCNT DS 2 

ADDR2 DS 2 

PTR DS 2 

BYrXNr DS 2 

OLDSP DS 2 

DS 50 ; Sets up stack space. 
STKTOP EQU $ 

END 


