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Abstract 

This thesis forms part of a joint universities project in which it is 

required to design and build a digital modem for the transmission of 

speech or data over a 900MHz land mobile radio channel. The main 

objectives being to try to maximize the bandwidth efficiency and attain 

near-optimum system performance. 

The theoretical modem design is presented here. The other parts of 

the system, that is the error control coding, speech coding, RF design qnd 

the actual hardware implementation are described elsewhere. All the 

systems described here have been designed to satisfy the overall system 

requirements. In particular, it must be possible to build this modem with 

existing technology without undue equipment complexity. 

All aspects of the digital'modem design are addressed, namely the 

choices of modulation scheme, pulse shaping filtering, packet structure 

and timing and synchronization methods suitable for the transmission of a 

digital signal over the fading radio channel. The important problems of 

channel estimation and data detection are examined in more detail. 

The first system describe~ is one in which only one digital signal is 

transmitted in a narrowband channel. In the second system a novel 

technique of transmitting two signals in the same frequency band from two 

different mobiles to a single base station is described, which makes USe 

of the fact that these two transmission paths are fading independently. 

The third system describes a method for transmitting back to these mobiles 

from the base station, again in the same frequency band. 

Although these systems have been designed specifically for use over 

900MHz cellular land mobile radio channels, the ,techniques described are 

directly applicable to digital signal transmission over any flat fading 

channel. 
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CHAPTER ONE 

Introduction 

The ultimate objective of mobile communications is to allow anyone who is 

travelling in a vehicle to talk to anyone else by radiotelephone in 

exactly the same way as would be achieved using an ordinary fixed 

telephone connected to the Public Switched Telephone Network (PSTN). That 

is, via a private, full-duplex (two-way) channel, with the quality of 

reception normally expected from the PSTN. In the United Kingdom, up 

until 1986 there were only very limited mobile communications facilities 

available to the general public. The most commonly used were push-to-talk 

systems such as Citizens Band, where any call is free of charge but there 

is no privacy and the range is limited to only a few miles, after which 

the quality of reception· becomes very poor. Radiophone System 4 was the 

only mobile radiotelephone system in operation, but the charge for calls 

was always kept artificialfy high to keep demand low because the system 

capacity was very limited. There was no way this system could ever cope 

with the estimated· nationwide demand of many millions of users. 

The concept of a cellular radio telephone network developed in 1979 

[1-6] at Bell Labs was peen as the solution to this problem. With 

cellular radio, the whole country is divided into small areas called 

cells, with a small number of the available full-duplex channels allocated 

to each cell. The channels used in any cell are also used in other cells 

which are far enough apart to ensure that serious co-channel interference 

is avoided. Thus the demand for the whole country can be met with as few 

as several hundred separate channels in all, occupying a bandwidth of less 

than lOOMHz. The size of any cell is carefully chosen so that the N 

channels in that cell are enough to serve the demand in that area. 

Theoretically, the increasing demand for channels can always be met by 

splitting one cell into two smaller cells, still with N channels in each 

cell, so halving the area that is covered by N cells. In 1986, the first 

United Kingdom cellular system TACS [7] came into operation. This is 

essentially a narrowband system, with a separate 25kHz full-duplex channel 

allocated to each mobile in the 900MHz region of the spectrum. An 

analogue frequency modulation scheme is used to transmit the speech. It 
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is planned to phase out the existing TACS system in the mid 1990's, to be 

replaced by an all digital system. 

The work reported in this thesis forms part of a project in which it 

is required to design, build and test a digital modem for use in such a 

system. The overall functions of this modem have been broken down as 

shown in Fig.l.l. This thesis describes the theoretical design of the 

modulator / demodulator sections shown. At the transmitter, the modulator 

must convert the bit stream of information that is to be transmitted into 

a suitable baseband digital signal ready to be mixed up to RF (radio 

frequency) and transmitted. In the receiver demodulator, the bit stream 

is recovered from the received baseband waveform. The standard 25kHz 

channel spacing is used to make it compatible with the existing analogue 

system.(7]. The emphasis in th~ design of the different systems is on: 

1) Increased bandwidth efficiency, in terms of the number of bits per 

second transmitted for each Hertz of bandwidth occupied (bit/s/Hz). This 

is the most important consideration. 

2) Optimizing the system performance for a given average transmitted 

energy per bit. 

3) Cost. The equipment at the mobile is kept relatively cheap at the 

expense of the base station equipment cost. 

4) Complexity. The modem must be simple enough to build with existing 

hardware. 

Novel techniques of combined detection and estimation with regular 

retraining of the channel estimator are used in the digital modem. With 

this method, coherent detection of narrowband quadrature amplitude 

modulated .(QAM) signals is achieved, when these signals are transmitted 

over the 900MHz mobile radio channel. Probably the most important result 

from this work is the demonstration of the fact that it is possible to 

transmit simultaneously two 4-level QAM signals in the same frequency band 

where the two signals originate from two different sources and fade 

independently at the receiver. The independent fading of the signals 

itself performs a process of collaborative coding that enables the signals 

to be distinguished from each other at the receiver. Thus a doubling of 

the bandwidth efficiency is achieved over the conventional single 4-level 

QAM transmission system. This is a completely new multiplexing method for 

fading channels. 

All aspects of the digital modem design are addressed in this thesis. 

Namely the choices of; modulation schemes, pulse shaping filtering, packet 
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structure and timing and synchronization methods suitable for the 

transmission of a digital signal over the 900MHz land mobile radio 

channel. The important problems of channel estimation and data detection 

are examined in more detail. 

However, before any digital speech/data transmission system can be 

designed, the effect that the transmission path has on the signal must be 

known in detail. These channel properties are described in Chapter 2, the 

most important of which is known as flat Rayleigh fading. Also discussed 

here are; the lognormal fading component [8,9,37-44) of the transmission 

path, the additive noise [8,23,31-36) and co-channel and adjacent channel 

interference [4-9,45-48). The quadrature amplitude modulated (QAM) 

signals used throughout this thesis [52,53) have been chosen to give a 

good performance under these conditions, with coherent detection at the 

receiver. As a consequence of the Rayleigh fading some form of frequency 

modulation (FM) is usually proposed as a suitable signalling scheme 

because the frequency of the signal is effected less by Rayleigh fading 

than are its amplitude and phase [8,9). Tamed FM [85-87) and Gaussian 

minimum shift keying (GMSK) [88,89) are generally said to be particularly 

suitable for a bandwidth efficient system [43,90). But in practice with 

these schemes, particularly for Tamed FM, it has proved difficult to 

extract a timing waveform. Also as a result of the Rayleigh fading it is 

almost invariably stated that coherent demodulation cannot be used because 

it would be practically impossible to achieve an accurate phase reference 

(8). The only exception to' this in the literature seems to be a method 

known as SSB with TTIB and FFSR [78-83). That is, single sideband with 

transparent tone-in-band and feedforward signaL regeneration. This 

narrowband SSB scheme achieves coherent demodulation by multiplying the 

received data signal by the received pilot tone to remove the effects of 

the Rayleigh fading. The results suggest [81,82) that this works with a 

bandwidth efficiency approaching 1 bit/s/Hz, but the signal processing 

techniques required to extract the pilot tone and generate the received 

signal are very complex. Also the transmitted signal does not have a 

constant envelope and power is wasted in transmitting the pilot tone. 

However, the two bandlimited quadrature amplitude modulated (QAM) signals 

described in Chapter 2 give a more bandwidth efficient modulation scheme 

than Tamed FM and GMSK. Coherent demodulation of these QAM signals can be 

achieved giving a good tolerance to additive noise without using a pilot 

tone. Methods are described by which it should be possible to achieve 
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carrier frequency synchronization and symbol timing simply and 

inexpensively with this system. 

It soon becomes' clear in this work that the key to successful system 

performance lies in the quality of the channel estimation process. It is 

often quoted in the literature [63,114] that a complicated Kalman type 

estimation process must be used in a fast fading channel because of its 

fast converging properties. Other estimation processes such as the 

Gradient (steepest descent) algorithm are deemed to be too slow to react 

to changing channel conditions. But in contrast, a wealth of successful 

research has been carried out in recent years at Loughborough University 

applying simple Gradient algorithm estimators to fading channels 
114·115 

[64,65,69-7~J. These two types of estimation processes and a few novel 

ideas are tested in this thesis. 

It is also important to note the improvements in system performance 

that can be achieved by suitably combining the signals received from two 

spatially separated antennas, when there is uncorrelated Rayleigh fading 

at each antenna. It is unlikely that a bigger improvement could be 

obtaiped w~th an error correcting code [43]. 

In Chapter 3, 'one 4-1evel QAM signal is transmitted in the narrowband 

channel, System 1. The data is detected coherently by maximum likelihood 

detection or by Viterbi-type detection. Several different channel 

estimation processes are tested. In the rest of this thesis, the aim is 

to extend the successful coherent methods of System 1 to different· 

modulation schemes that would double the spectral efficiency from about. 

1 bit/s/Hz to 2 bit/s/Hz. 

In Chapter 4, a novel technique of transmitting two of these 4-1evel 

QAM signals in the same frequency band from two different mobiles to a 

base station is described, which makes use of the fact that the two 

transmission paths are fading independently when separating the two 

signals at the receiver. This is called System 2. 

System 3 is described in Chapter 5. Here, a single 16-level QAM 

signal is transmitted from the base station back to these two mobiles, 

again in the same 25kHz frequency band. 

The logical sequence followed in this thesis is shown in Fig.l.2. 

Chapter 2 is seen as a pre-requisite for all the chapters that follow. It 

contains all the information required to model the systems and then 

analyse their performances. The reasons for choosing the particular 

coherent demodulation / detection techniques used throughout this 
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investigation can only be appreciated after carefully studying this 

theory. In a similar way, System 1 is seen as a pre-requisite for Systems 

2 and 3, in that the methods of Viterbi detection, channel estimation and 

retraining used in Systems 2 and 3 are all basically extensions of the 

successful methods used in System 1. So whenever possible in Chapters 4 

and 5 reference is made to descriptions already given in Chapter 3 to 

avoid needless repetition. Only descriptions of the various techniques 

tested and the main conclusions are described in Chapters 3 to 5. The 

computer simulation results are all given in Chapter 6. 
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CHAPl'ER '!Wo 

BASIC THEORY 

2.1 Introduction 

Before a digital speech/data transmission system can be designed and 

tested by computer simulation, a suitable mathematical model of this 

transmission system must be defined. The aim of this chapter is to define 

such a model and analyse it to show the way the data signal is affected 

during transmission. Then, a general method is proposed by which coherent 

demodulation can be acheived at the receiver. This method forms the basis 

for all systems tested in this thesis. 

Firstly, the important channel properties are.discussed in detail in 

Sec.2.2. Then the bandwidth efficient modulation schemes used in this 

thesis are described in Sec.2.3, and their baseband equivalent models are 

defined from which all computer simulation results are obtained. Then in 

Secs.2.4-2.6 the general descriptions of the complete data transmission 

systems tested in the followin9 chapters are given. Finally, the timing 

and synchronization methods used are described in Sec.2.7. 

2.2 Channel Properties 

In a typical 900MHz land mobile radio link, full duplex radio signals are 

passed between mobile and base station. The mobile unit is surrounded by 

tall buildings and other mobiles whereas the base station is mounted upon 

a nearby roof top or any other convenient high point. Generally there is 

no direct. line-of-sight path between mobile and base station, so the mode 

of radio wave propagation from transmitter to receiver is largely by way 

of scattering either by reflection from, or diffraction around other 

mobiles, buildings or terrain features [8-111, as in Fig.2.2.l. 

Each path in Fig.2.2.l'represents a radio wave travelling at the speed 

of light. Different path lengths mean that there will be a corresponding 

time difference in the arrival of the wave along each path. These 

propagation paths change with time as the mobile moves among the 

scatterers causing the received signal to undergo rapid fading known as 

Rayleigh fading. 



Fig.2.2.1 Scattering model of signal propagation 
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2.2.1 Rayleigh Fading 

The well known mathematical model of the Rayleigh fading that 

characterizes this land mobile radio system was first derived by 

R.H.Clarke [lO), and is often referred to as the Clarke model. This 

original theory was further developed in the references [8,9,11), and many 

field trials have served to confirm the accuracy of the model [12-17). 

The basic theoretical development has been repeated in Appendix A and the 

important properties of the Rayleigh fading that follow from this model 

are summarized here. 

Consider first the case where the modulation is removed and only a 

constant amplitude carrier waveform is transmitted from the base station. 

The transmitted signal is 

S(t) = Vcosw t (2.2.1) 
c 

and the signal phasor at the input to the mobile receiving antenna is 

Vy(t) = VA(t)cos(w t + 6(t» (2.2.2) 
c 

Where, W =2rrf is 
c c 

the angular frequency of the carrier in radians/sec. 

f =900MHz is the carrier frequency. 
c 

A(t), 6(t) are respectively the time 

varying amplitude and phase waveforms of the received carrier. 

A(t) and S(t) are independent lowpass random variables and are assumed 

to vary slowly in time relative to the rapid variations exhibited by the 

cosine function of the carrier (Eq.(2.2.1». 

By expanding the cosine function in Eq.(2.2.2) a second representation 

of y(t) is obtained, namely 

Vy(t) = VA(t)cosS(t)cosW t - VA(t)sine(t)sinW t 
c c 

= VYI(t)cosWct - VYQ(t)sinWct 

where, 

YI(t) = A(t)cose(t), 

and conversely 

A ( t) = ,f'-y-I-2 -( -t -) -+-y-Q""2-(-t~) , 

YQ(t) = A(t)sin8(t) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

Finally, a third representation for y(t) is obtained from Eq.(2.2.2) 

by defining the complex envelope y(t) as 

so that 

Vy(t) = V.Re[y(t)exp(jW t») 
c 

(2.2.7) 

(2.2.8) 

where Re[) denotes the real part of the complex-valued quantity in the 

brackets. Thus the rece,i ved fading carrier is completely described by any 

one of the three equivalent forms given in Eqs.(2.2.2),(2.2.4) or (2.2.8). 

The signals YI(t) and YQ(t), termed the in-phase and quadrature 
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components of yet) respectively are [8-11,18-23); identically distributed, 

zero mean, statistically independent Gaussian random variables, that are 

varying slowly in time relative to the rapid variations of the carrier 

waveform Set) (Eq.(2.2.1». It now follows [24,25] that the amplitude 

A(t) has a Rayleigh probability density function (hence Rayleigh fading) 

and the phase is uniformly distributed from -TI to +rr. 

It is assumed throughout this thesis that the .variances of both YI(t) 

and YQ(t) are always equal to ,. And since YI(t) and YQ(t) are 

statistically independent, the mean-square value of A(t) is 1. So there 

is no change in average signal level during transmission. This avoids 

unnecessary complications in determining the signal-to-noise ratio in the 

computer simulation tests. 

The statistical properties of these random variables YI(t), yQ(t), 

A(t), art) are summarized in Table 2.2.1 and Fig.2.2.2. Where, for any 

random variable x with probability density function f(x), its mean, 

mean-square and variance are defined by 

mean = x = 1~~f(x)xdX (2.2.9) 

mean square = Xl = ~:~f(X)X2dX (2.2.10) 

variance = x' - (x), = mean"'square - (mean)' (2.2.11) 

Now consider the frequency characteristics of yet) in Eq.(2.2.2). The 

individual radio waves (Fig.2.2.1) are assumed to arrive at the mobile 

from all (horizontal) directions with equal probability. Both 

transmitting and receiving antennas are omnidirectional, vertical rnonopole 

antennas. The transmitted signal is assumed to be vertically polarized 

and the polarization unchanged during transmission [9,10] so the antenna 

receives the electric field component of the signal, which due to the 
density 

motion of the mobile has the powerjspectrum given by [8-11J 

where, 

mean received 

f = carrier 
c 

f = maximum 
m 

v = vehicle 

fading 

1 

-«f-f)/f)2 
c m 

power = 1 

frequency = 900MHz 

Doppler frequency shift 

speed ::: 60 miles/hour :::: 

for f -f 'f~f +f c m c m 

elsewhere 

= v/" = 80Hz 

26.8 metres/second 

(2.2.12) 



Table 2.2.1 Statistical properties of YI(t) , Y a(t) , A(t), e(t) 

Random 
Variable 

Y1 ory a 

A 

e 

(a) 

f(A) 

(b) 

Fig.2.2.2 

Probability Mean . Mean-
Density square 

1 2 1 
-; exp(-y I)' for -oo<y<oo 0 -

2 

2 
A.exp(-A ), for A>O J; 1 

0, elsewhere 

1 
0 1t2 

- for -1t<e<1t -21t' 3 
0, elsewhere 

f(x) 

-3 -2 -1 0 1 2 3 

2 3 

A 

4 5 

• X (x=Y
1 

or Ya) 

f(e) 

e 

Variance 

1 -
2 

1 - 1t 

1 

/,21t 

1t2 

-
3 

Probability density functions of 
(b) Rayleigh A (c) uniform e 

(a) Gaussian Y 0 r Y 
I a 

+1t 
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A = carrier wavelength ~ 0.33 metres 

This is shown'in Fig.2.2.3. It is usually referred to as the Doppler 

power spectrum. The spectral shape shown in Fig.2.2.3 has been observed 

in field trials [171. 

The vehicle speed of 60 miles/hour was chosen to represent urban worst 

case fading conditions. Some tests are also carried out for a simulated 

vehicle speed of 

This Doppler 

30 miles/hour (f =40Hz) 
m 

power spectrum has been 

for comparison purposes. 

suitably scaled so that the 

mean-square received fading power is still unity. 

~ 
f +f 

c m 
I Y ( f) I 2 df = 1 

f +f 
m m 

That is, 

(2.2.13) 

The autocorrelation function with time of the Rayleigh fading channel 

Y(tl is given by the inverse Fourier transform of iY(fli 2. For the 

vertical monopole antenna which senses the electric field, this is (see 

Appendix A). 

Jf, +f.. I I R (Tl = f -f Y(f) 2exp( j21TfT)df 
yy < m 

= J
O

(211f
m 

Tl 

(2.2.14) 

(2.2.15) 

where J
O

() is the zero-order Bessel function of the first kind, as shown 

in Fig.2.2.3'. This can be used to indicate how the fading is likely to 

change in short periods of time T. 

The discussion thus far describes the received fading waveform at the 

mobile where the transmitted signal is an unmodulated carrier. Now 

consider the received fading signal when a modulated carrier waveform is 

transmitted. 

Digital quadrature amplitude modulated signals are considered in this 

thesis (Sec.2.3), which occupy a bandwidth of 24kHz centered around the 

carrier frequency of 900MHz. The duration of each individual transmitted 

signal element, T, is about 83~s. In an urban environment, the time 

dispersion or spread in time delay of the various received signals 

arriving at the mobile along the different propagation paths (Fig.2.2.1) 

are small in comparison with the nominal duration T of a received signal 

element. This small time delay spread of generally less than 3}Js (for 

this carrier frequency) [8,9,12,13J does not cause any intersymbol 

interference. Under these conditions, all frequency components of the 

received data signal can be considered to fade in unison. Such fading is 

described as "flat" fading or "frequency non-selective" fading. 

So, the transmitted quadrature amplitude modulated signal can be 
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S(t) = M(t)COS(W t 
c 

where M(t), ~(t) are the amplitude and 

the digital modulation. 

+ ~(t» (2.2.16) 

phase components respectively of 

Now, ignoring any delay in transmission, the signal phasor at the 

output of the Rayleigh fading transmission path at time t is assumed to be 

accurately represented by 

R(t) = A(t)M(t)cos(W t + ~(t) + 6(t» 
c 

(2.2.17) 

This is simply the transmitted signal phasor S(t) shifted in amplitude (by 

A(t» and phase (by e(t» by the Rayleigh fading, with no time dispersion 

in the received signal. This signal representation is in polar 

coordinates. An equivalent representation of this fading process in 

Cartesian form can be derived as follows, that is easier to simulate on 

the computer. 

Since the band of frequencies occupied by S(t) (24kHz) is small 

relative to f (900MHz) the signal is a narrowband bandpass signal. Now, 
c 

the cosine function in Eq.(2.2.16) can be expanded to give 

S(t) = M(t)cos9(t)cosW (t) - M(t)sin~(t)sinW t 
c c 

(2.2.18) 

= sr(t)coswct - sQ(t)sinWct 

with complex envelope 

s(t) p sr(t1 + jSQ(t) (2.2.19) 

where Sr(t)=M(t)COS~(t) and SQ(t)=M(t)sin~(t) are the in-phase and 

quadrature components respectively of S(t). 

Similarly, Eq.(2.2.17) can be expressed in Cartesian form 

R(t) = A(t)M(t)(COse(t)cos~(t) - sinB(t)sin~(t»cosW t -
c 

A(t)M(t)(cose(t)sin~(t) + sine(t)cos~(t»sinw t 
c 

= (sr(t)Yr(t) - sQ(t)YQ(t»coSWct -

(sr(t)YQ(t) + sQ(t)Yr(t»sinWct 

where Yr(t), YQ(t) were defined in Eqs.(2.2.S) and (2.2.7) 

The complex envelope of R(t) is 

r(t) = rr(t) + jrQ(t) 

where, from Eq.(2.2.20) 

rr(t) = sr(t)Yr(t) - sQ(t)YQ(t) 

rQ(t) = sr(t)YQ(t) + sQ(t)Yr(t) 

r(t) = s(t)y(t) 

(2.2.20) 

(2.2.21) 

(2.2.22) 

(2.2.23) 

This important restult forms the basis for the computer simulation 

model used in all tests. rn the baseband equivalent model of this 
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microwave radio transmission system (described in Appendix B), only the 

complex envelopes of the signals need be simulated [26,27). All linear 

frequency translations involved in modulation and demodulation are assumed 

to be ideal so can be ignored in the simulation. So first of all, the 

complex envelopes of the data and channel, set) and y(t), must be 

generated and the signal at the output of the Rayleigh fading transmission 

path is given by r(t), which is f?rmed from Eqs.(2.2.22)-(2.2.23). 

The above discussion gives all that needs to be known to model the 

fading on a computer. However, a good understanding of the fading is 

essential in order to develop the best possible system. A detailed 

analysis of this flat Rayleigh fading for land mobile radio is given 

elsewhere [8-11). Some of the important results of this analysis are 

listed below. 

It is well known that errors in signal detection usually occur during 

deep fades. The deep fades encountered in Rayleigh fading are a property 

of the Rayleigh distribution. For example, the amplitude distribution in . 
Table 2.2.1 predicts that for 99% of the time A~O.l. (0.1 is 20dB below 

the root-mean-square value of the amplitude level). This result is 

independent of the Doppler power spectrum of the fading [11-28]. 

However, to evaluate receiver performance it is of interest to know 

the rate of fading and the average duration of deep fades. This can only 

be determined by considering the additional information contained in the 

Doppler power spectrum of the fading signal. With the omnidirectional 

vertical monopole antenna, the rate at which the fading amplitude falls 

below a level A is given by [8) 

N(A) = J2TIf Aexp(-A') 
m 

(2.2.24) 

N(A) is plotted in Fig.2.2.4. The average duration of this fade is given 

by 

~(A) = exp(A2) - 1 

Sf A 
m 

~(A) is plotted in Fig.2.2.5 

(2.2.25) 

For example, at 60 miles/hour and 900MHz, 20dB fades occur at a rate 

of about 22 fades per second with an average duration of about 500~s. 

500~s is about 6 symbols duration, which accounts for the fact that errors 

tend to occur in short bursts. 

These probability density functions in Table 2.2.1 and Eqs.(2.2.24)

(2.2.25) say nothing about the way the fading changes over short intervals 

of time. This a function of the Doppler power spectrum (Eq.(2.2.10». It 
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is worth repeating here that at any time t, the baseband equivalent 

Rayleigh fading can be expressed either in terms of its amplitude (A(t)) 

and phase (e(t)) components, or in terms of its in-phase (YI(t)) and 

quadrature (YQ(t)) components. The 'theoretical power spectral densities 

5 (f), 5 (f), 5 (f), 5e·(f) of the baseband quantities YI ' Y
Q

' A, e can be 
Y Y A _' 

derived from the Doppler power spectrum of Eq.(2.2.12·j [8,9,11,181 and are 

shown in Fig.2.2.6. Here, a is the rate of change of e, commonly termed 

random FM. 

The in-phase and quadrature components Y
I

' Y
Q 

have no frequency 

components greater than f , whereas the amplitude A is seen to occupy 
m 

twice the bandwidth with frequencies up to 

that the random FM theoretically, exists at 

2f • 
m 

It is important to note 

all frequencies. The mean-

square value of the random FM is infinite which means that instantaneous 

phase changes occur which would be impossible to predict. Clearly it 

follows that any channel estimation process which tracks the components 

Y
I

' Y
Q 

would perform much better than one which attempted to track the 

corresponding components A, e instead. 

50 far the discussion in this 5ec.2.2.1.has described the Rayleigh 

fading in the transmission path from the base station to the mobile unit. 

In fact, as a result of the reciprocity theorem [81 this equally well 

describes the Rayleigh fading in the reverse direction from the mobile 

unit to the base station. That is, the statistical properties of the 

fading signal and the autocorrelation versus time (or Doppler power 

spectrum) are identical for signals received at the mobile unit and at the 

base station. However, the correlation versus distance is different at 

mobile and base station which is important when considering space 

diversity reception. 

This difference in spatial correlation arises because the mObile unit 

is surrounded by nearby scatterers (Fig.2.2.1) so generally receives its 

component waves equally from all directions. In contrast, the base 

station is mounted up and away from the scatterers so the waves arriving 

at the base station from the mobile are generally restricted to a narrow 

angular spread. The effect this has on the correlation versus distance at 

both mobile and base station has been considered theoretically in 

references [B,9,i11. The important results from this are that two 

receiving antennas about six inches apart (t wavelength) in the same 

horizontal plane at the mobile can be assumed to receive practically 
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uncorrelated fading of their signals. Field trials suggest that this 

distance is nearer 0.8 of a wavelength due to a departure from pure 

Rayleigh statistics in the real world [9]. At the base station, the two 

receiving antennas might typically have to be 20 to 30 wavelengths apart 

to give the same decorrelation [11,16]. Also the actual placing of these 

antennas has an important effect on the decorrelation. In fact, if two 

antennas are separated along the line between base and mobile, there is 

practically no decor relation in their fading signals. However, Parsons 

and Feeney at Liverpool University have shown that [16] a vertical 

separation of receiving antennas at the base station can be used to give a 

decor relation in the fading which is practically independent of the 

direction of the mobile from the base station at any time. This vertical 

separation of space diversity receiving antennas at the base station is 

assumed throughout this thesis. 

Throughout this thesis wherever two antennas are used at the receiver, 

whether at the mobile or the base station, they are assumed to be spaced 

sufficiently far apart to reduce to zero any correlation between their two 

fading signals. In practice there is likely to be some correlation 

between these signals with a corresponding degradation in performance 

[8,9,29,30]. But without making specific assumptions"about the locations 

where these antennas are mounted, it is difficult to model the correlation 

reliably. 

2.2.2 Additive Noise 

In 900MHz land mobile radio, a level of background noise W(t) is added to 

the information signal. This is almost equally composed of man-made noise 

from vehicle ignition systems, and receiver front-end noise [8]. The 

man-made noise is impulsive in nature [31] whereas the receiver noise is 

generally described as additive white Gaussian noise [23]. Throughout 

this thesis, the additive noise W(t) is modelled as stationary additive 

white Gaussian noise that is added to the data signal at the output of the 

Rayleigh fading transmission path. It is generally considered in digital 

communications that the system which has the best tolerance to additive 

white Gaussian noise will usually perform best in practice [31-33]. The 

baseband equivalent model of this noise is quite simple to simulate on the 

computer (Appendix B) whereas there is no such widely accepted model for 

the impulsive noise. 

This additive noise waveform W(t) has a Gaussian probability density 
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function with zero mean and variance ~2=!NO' as shown in Fig.2.2.7. W(t) 

has a two-sided power spectral denstity of !N
O 

over all positive and 

negative frequencies as shown in Fig.2.2.8 [31-361. In other words, the 

behaviour, of this Gaussian distributed noise waveform w(t) over any length 

of time, however short, is completely unpredictable. Its mean-square 

value or average powe~ level is ~2=!NO' It is unnecessary to consider 

here any power units (in watts) since the noise power is always related to 

the signal power through the signal-to-noise ratio. 

2.2.3 Average Received Signal Strength 

It has been shown [8,9,37,381 that although the short term statistics are 

Rayleigh, in the long term the average received signal strength is not 

constant but varies ,slowly with time as the vehicle moves. This is 

caused by two effects known as shadowing and path loss. 

(1) Shadowing:- Shadowing of the radio signal by buildings and hills 

leads to differences in the mean received signal level for different 

locations of the,mobile. As the moving vehicle changes its location, this 

local mean signal strength fluctuates due to shadowing by typically 6 to 

12 dB. This local mean expressed in decibels is normally distributed 

about its average value. This lognormal distribution has been confirmed 

in a number of propagation surveys [8,16,381. 

The effect of this lognorrnal component on the fading signal is shown 

in Fig.2.2.9 [39-411. A complete cycle of the lognormal component 

typically lasts for several seconds. The local mean therefore changes so 

'slowly that it would be tracked along with the fast Rayleigh fading 

component in the channel, estimation process. But it is unavoidable that 

it would cause a further degradation in tolerance to noise in any system 

compared with pure Rayleigh fading [37,39,42,431. When designing a 

mobile radio system, the transmitter power is increased above that which 

would be required in pure Rayleigh fading to allow for this. 

(2) Path Loss:- The received signal power decreases as the mobile unit 

moves away from the base station. A commonly used approximation 

[9,38,441 is that the received power is inversely proportional to the 

fourth power of this distance separation. The mobile transmitters have 

the ability to switch between different output power levels on request 

from the base station to keep the received power level roughly constant 

at all times [71. 
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No extra signal processing is carried out at the receiver to combat 

either of these long term fading effects. So, throughout this thesis pure 

Rayleigh fading is assumed with a constant mean-square value of unity. 

2.2.4 Co-channel and Adjacent channel Interference 

The discussion so far in this chapter has considered one isolated mobile 

radio link between a mobile unit and a base station. But within a 

cellular radio network there is interference from adjacent channels in the 

frequency spectrum. Also there is co-channel interference from signals 

transmitting on the same carrier frequency that has been re-used in other 

cells. Now, a good overall system capacity is probably the most important 

factor to be taken into account when planning a cellular network. So each 

individual radio link must have good adjacent channel interference 

properties so that more channels can be squeezed into a given frequency 

bandwidth. Also, each radio link must have a good tolerance to co-channel 

interference so that more channels can be fitted into a smaller coverage 

area. 

In this thesis co-channel and adjacent channel interference are not 

actually simulated, but all modems tested ~ be designed to cope well 

with both of these problems. These two types of interference are now 

considered separately. 

(1) Co-channel interference:- In a practical mobile radio network, the 

co-channel re-use distance would be calculated to give the required bit

error-rate performance. The Rayleigh fading, lognormal shadowing and path 

loss of the wanted signal and of the co-channel interferers must be taken 

into account in these calculations [4-61. 

Some steps can be taken in the modem design to combat co-channel 

interference. Firstly, coherent detection of the digital signal is 

considered to have a higher immunity to co-channel interference than any 

non-coherent methods [8,9,451 as long as the coherent reference of the 

wanted signal can be maintained in the presence of the Rayleigh fading. 

Coherent detection is used in the receiver of all systems tested in this 

thesis (Secs.2.3-2.5). 

Secondly, the tolerance of a system to co-channel interference can be 

greatly improved by coherent maximal ratio combining of the signals 

received from spatially separated antennas [43,46,471. This and other 

.well known combining methods are discussed in Sec.3.2. 

Error control coding can also be effective in reducing the number of 
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bit errors caused by co-channel interference [48]. Work is being carried 

out at Manchester University to develop error control codes for use with 

the modems developed in this thesis [49,50]. No error control codes are 

described here. 

(2) Adjacent channel interference:- The channel spacing has been fixed 

at 25kHz. The system performance in relation to the adjacent channel 

interference is then determined by; the frequency ,tolerances of the 

transmitter and receiver local oscillators, and the effective bandwidth of 

the digital data signal together with the method of 'spectral shaping 

employed [6]. 

Economic considerations make it difficult to achieve oscillator 

stabilities better than about 2 parts per million at the mobile [6,7] 

(that is, ±8kHz at 900MHz). In contrast, the base station oscillator may 

be assumed to maintain almost perfect stability (that is, ±lOOHz at 

900MHz). However, in Sec.2.8 a cost effective method is proposed by which 

the mobile units can transmit with a carrier frequency within about 50Hz 

of the base station reference. 

The quadrature amplitude modulated signals used in this thesis always 

have a fully raised-cosine spectral shaping. The out-of-band radiation is 

about 60dB down on the average power in the centre of the passband. 

With this signalling arrangement, all data signals are passed between 

mobile and base station with a total bandwidth of 24kHz, leaving a 1kHz 

guard band between each frequency division mu1tiplexed channel in the 

spectrum. Thus, in the model assumed here, significant levels of adjacent 

channel interference are avoided. 

2.3 Quadrature Amplitude Modulation Schemes (QAM) 

In the cellular land mobile radio system, frequency division multiplexing 

is assumed with a channel spacing of 25kHz in the 900MHz region of the 

spectrum [43,51]. Two different narrowband quadrature amplitude 

modulation (QAM) schemes have been proposed in this investigation for use 

in Systems 1,2 and 3 [52,53J. In every case, signal transmission along 

any path between one transmitting antenna and one receiving antenna is 

either by 4-level QAM or 16-level QAM. The same basic modulator / 

demodulator structure is used in both cases, as shown in Fig.2.3.1 

[32,54,55]. The mathematical development of this model has been described 

in detail in Appendix B. The main points are summarized in this section. 
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2.3.1 4-leve1 QAM (or band1imited QPSK) 

The data signal S(t) transmitted over the flat fading channel is a 

24kbit/s, 4-level QAM signal that has a carrier frequency of 900MHz and an 

element rate of l2kbaud. The bandwidth occupied by this signal is 24kHz, 

thus resulting in a 1kHz frequency guard band between adjacent channels to 

handle Doppler shifts, variations in filter characteristics and local 

oscillator innaccuracies / drift. 

The information to be transmitted is carried by the complex-valued 

data symbol values {s.}. They take the form of impulses {s.~(t-iT)} that 
1 1 

only exist at the input to the transmitter filter (Fig.2.3.1) at the 

discrete instants in time t=iT, for all integers {i}. T here is the 

element duration. The {s.} are statistically independent and equally 
1 

likely to be anyone of their four possible values ±l±j. Therefore at 

time t=iT, 

- + . s. - sI. )sQ. 
1. .1 .1. 

(2.3.1) 

where, j=J:l and sI . ,sQ .=±l. The real and imaginary data streams 
.1. • l. 

{sI.}' {sQ .} are separately filtered through identical root-raised-
.1. .1. . 

cosine lowpass filters and the resulting baseband signal waveforms at 

their outputs are used to modulate their respective carrier waveforms 

42cos2~f t and -~sin2~f t, where f =900MHz. So the resulting QAM signal 
c c c 

is the sum of the in-phase and quadrature components that carry the data 

symbols {s .}, {sQ .} respectively and whose carriers are in phase 
I.1 .1 

quadrature, since 

cos(2~f t + 90 0
) 

c 
This 4-level QAM signal can also be 

= -sin~f t (2.3.2) 
c 

considered as a QPSK signal having a 

considerable envelope ripple caused by bandlimiting (Fig.2.3.2). 

Techniques are now available that enable a high-power amplifier in the 

transmitter to handle the large envelope ripple in this QAM signal 

[56-59J. 

In any practical system a bandpass filter (Fig.2.3.1) is required in 

the transmitter to remove spurious frequency components generated in the 

modulator. In the receiver demodulator, the noisy, fading QAM signal is 

filtered with a wideband filter (several MHz) centered about f to limit 
c 

the noise power without changing the QAM signal characteristics. The 

in-phase and quadrature components of the received baseband signal 

waveform r(t) are formed by multiplying this filtered QAM signal with the 

waveforms J2cos(2~f t + ~) and -J2sin(2~f t + ~) respectively, and 
c c 

filtering as shown in Fig.2.3.L Where ~ is a constant phase difference 
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between the local oscillators in the modulator and demodulator sections. 

All root-raised-cosine lowpass filters in Fig.2.3.1 have the same 

transfer function Ht(f) such that the resultant transfer function of the 

transmitter and receiver lowpass filters in 

H( f) = { tT( 1 

o , 
+ cos1tfT) , 

cascade is 
-1 1 
¥~T 

elsewhere (2.3.3) 

This gives the conventional fully raised-cosine spectral shaping to the 

QAM signal [31J. The filtering is equally divided between transmitter and 

receiver, so the receiver filter is said to be matched to the transmitter 

filter. As such, it is well known that [31,35,36J the transmitter and 

receiver filters in cascade can be assumed to introduce no intersymbol 

interference. And ignoring any propagation delay, the optimum detection 

of the data symbol value s. 
1 

optimum detection of s. from 
1 

other samples of r(t) can be 

from the samp1e·r. (r(it» is also the 
1 

the received baseband waveform r(t). 

used to improve the detection of s .• 
1 

No 

These are still accurate assumptions to make when the flat Rayleigh 

fading is in between the two filters, even though the receiver filter is 

not now matched to the fadinq signal at its input. The results in 

Appendix B suggest that this is because the simulated Doppler frequency 

spread of 2f =160Hz is such a small fraction of the total QAM signal 
m 

bandwidth' of 24kHz. As a rule of thumb, it seems that the effect of the 

Rayleigh fading on these matched filtering assumptions is negligible with 

fully raised-cosine filtering as long as 2f ~1% of the total occupied 
m 

bandwidth of the QAM signal. 

With this arrangement described of matched filtering (Eq.(2.3.3» and 

with the .f2 scaling factors in. all carrier modulating / demodulating ., 

waveforms in Fig.2.3.1, the received baseband sample at time t=iT 

(ignoring any delay in transmission) is given by (see Appendix B.1) 

r. = s.y. + w. (2.3.4) 
1 1.1 1 

where r., S'I y., W, are all samples of the complex envelopes of their 
1 1 1 1 

corresponding' waveforms at time t=iT. 

From the statistics of the {s.} it has been shown (Appendix B) that 
1 

the average transmitted energy per bit in the {si} is 

~ = 1 (2.3.5) 

With this model of the modulator (Fig.2.3.1), Eb is also the average 

transmitted energy per bit of the real-valued QAM signal at the output of 

the modulator. 

Thus, since only these received samples {r.} are used in the detector, 
1 
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the data transmission system of Fig.2.3.l can be simulated at baseband as 

shown in Fig.2.3.3 (according to Eq.(2.3.4» and so saving a considerable 

amount of computer time. The computer simulation method is described in 

Appendix B. All computer simulation tests in this thesis with this 

modulation scheme have assumed this model. The assumptions have been made 

here of perfect carrier frequency synchronization and perfect symbol 

timing recovery at the receiver with ideal sampling of r(t) every T 

seconds (that is, once per symbol). If any of these conditions were not 

satisfied, then the raised-cosine filtering would also have to be 

simulated. 

The timing and synchronization methods built into the prototype modem 

are outlined in Sec.2.8, though no test results showing their 

effectiveness are given in this thesis. Their operation is always assumed 

to be ideal. 

So far in this discussion, the transmitted information has been 

assumed to be contained in the {s.}. In fact, in the transmitter the {s.} 
1 1 

must be encoded from the binary digits {~.} which represent the coded 
1 

speech/data, and in the receiver the detected values of these binary 

digits {~'.} must be found by decoding the detected symbol values {s'.} in 
1 1 

a reverse process. This is depicted in Fig.2.3.4. 

Two different methods of coding the binary digits of this 4-level QAM 

(or bandlimited QPSK) signal are considered in this thesis. The two 

different resulting waveforms are known from now on as QPSK and DQPSK. The 

signal constellation, which is the same in each case is shown in 

Fig.2.3.5. The binary digits that represent the coded speech/data are 

statistically independent and equally likely to be either value 0 or 1. 

Two binary digits~. l' ~. 2 are associated with the data symbol s .• The 
~, 1., 1-

mapping between bits and symbols (Fig.2.3.5) described below, uses an 

arrangement of Gray coding [36,60]. Thus, adjacent points in the signal 

constellation differ by only one binary digit. 

(1) QPSK - Coherent coding of binary digits 

In the coherent system, the data symbol s. is determined from Fig;2.3.5 
1 

where-the binary coded number shown against any signal point 

In the receiver, the detected data symbol s'. determines the 
1 

is ~. 10.· 2' 
1., 1, 

corresponding 

signal point in Fig.2.3.5 and the associated binary coded number gives the 

. detected values of ~ ~ 
i,l i,2' 
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Table 2.3.1 Differential coding of binary digits 

a'1 a, 2 lli_1 1 lli-12 Il '1 1l'2 I, I, , , I, I, 

00 00 00 
01 00 01 
1 1 00 1 1 
1 0 00 10 
00 01 01 
01 01 1 1 
1 1 01 10 
1 0 01 00 
00 1 1 1 1 
01 1 1 10 
1 1 1 1 00 
1 0 1 1 01 
00 10 10 
01 10 00 
1 1 10 01 
1 0 10 1 1 
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(2) DQPSK - Differential coding of binary digits 

The binary digits ~. l' ~. 2 are differentially encoded into the binary 
1., ~, 

digits ~. l' ~. 2 according to Table 2.3;1 [611, using also the given 
1, f'l., 

values ~i-1,1' ~i-1,2 of the previous two differentially encoded bits. (At 

the start of every data packet, ~i-l,l' ~i-l,2 are arbitrarily set to 

zero). The corresponding data symbol s. is then determined from Fig.2.3.5 
1 • 

where the binary coded number shown against any signal point is now 

assumed to be ~. 1~' 2. In the receiver, the detected data symbol s·. 
1, 1, l. 

determines the corresponding signal point in Fig.2.3.5 and the associated 

binary-coded number gives the detected values of ~. l' ~. 2. Finally, the 
1., 1, 

. detected values of ~i,1' ~,2 are determined from Table 2.3.1 using the 

detected values of ~'-l l' ~'-l 2' ~. l' A. 2· 
1., 1., 1, .rl., 

2.3.2 16-level QAM 

This data signal is a 48kbit/s, l6-level QAM signal that has a carrier 

frequency of 900MHz and an element rate of l2kbaud. Again this signal 

occupies a bandwidth of 24kHz with fully raised-cosine spectral shaping, 

thus resulting in a 1kHz frequency guard band between adjacent channels. 

The only difference with this l6-level QAM signal lies in the data symbol 

values {s.}. The {s.} are now statistically independent and equally 
1 1 

likely to be either one of their 16 possible values (±l or ±3) + j(±1 or 

±3). Therefore, at time t=iT 

s. = sI . 
1 .1 

+ . )sQ . 
.1 

(2.3.6) 

where j=~ and sI ., sQ . = ±1 or ±3. In fact, the modulation and 
.1. • l. 

demodulation methods (Fig.2.3.l) are exactly the same as for the 

bandlimited QPSK scheme just discussed. A similar analysis can be carried 

out here to show that the same baseband simulation model of Fig.2.3.3 can 

be used, under the same assumptions of ideal timing and synchronization. 

So the sample of the received baseband waveform at time t=iT is again 

given by 

r. = S.y. + W. 
1. 1. 1. l. 

(2.3.7) , 

where r., s., y., w. are all complex-valued samples. 
1. 1. 1. 1 

It has been shown in Appendix B that 

E = 
b 

2.5 (2.3.8) 

which is the average transmitted energy per bit in the {s.}, and is also 
1 

equal to the average transmitted energy per bit of the real-valued QAM 

signal at the output of the modulator in Fig.2.3.l. 

Again the coding between the binary digits to:) representing the coded 
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speech/data, and ·the {s.} of the 16-1eve1 QAM signal, is achieved either 
1 

coherently or with differential coding. From now on in this thesis, these 

two different methods will be known as 16-QAM and 16-DQAM respectively. 

The signal constellations which are different for each case are shown in 

Fig.2.3.6. Gray coding cannot be achieved with differential coding across 

the whole 16-point constellation but is only satisfied in each individual 

quadrant. Thus, adjacent points in the signal constellation that are in 

different quadrants may differ in their binary codes by more than one 

digit. 

The binary digits that represent the coded speech/data are 

statistically independent and equally likely to be either value 0 or 1. 

Four binary digits~. l' ~. 2' ~.' 3' a· 4 are associated with the data 
1, 1, 1, 1, . 

symbol s .• 
1 

The mapping between binary digits and data symbol values for 

16-QAM and 16-DQAM (Fig.2.3.6) is now described. 

(1) 16-QAM - Coherent coding of binary digits 

In the coherent system, the data symbol s. is determined from Fig.2.3.6(a) 
1 

where the binary coded number against any signal point is 

CX. 10(· 2cx . 3IX· 4· 1, 1., 1., 1., 
In the receiver, the detected data symbol value 

determines the corresponding signal point in Fig.2.3.6(a) and the 

associated' binary coded number gives the detected values of 

ex. 1 C1· 2 IX. 30l 4· 1, 1, 1, 1, 

(2) 16-OQAM - Differential coding of binary digits 

s' . 
1 

With 16-DQAM, the binary digits C1. l' a. 2 are differentially encoded into 
1, 1, 

the binary digits ~. l' ~. 2 according to Table 2.3.1 [61J, but the digits 
1, 1, 

Of., 3' Ol. 4 1, 1, 

determined 

any signal 

symbol s'. 
1 

are left unchanged. The corresponding data symbol s. is then 
1 

from Fig.2.3.6(b) where the binary coded number shown against 

point is ~. 1~' 20(' 3C1· 4· 1, 1., 1, 1, 
In the receiver the detected data 

deter~ines the corresponding signal point in Fig.2.3.6(b) and 

the .associated binary-coded number gives the detected values of ~. l' 
1, 

~. 2' ~. 3' IX· 4· Finally the detected values of IX. 10l. 2 are determined 
1, 1, 1, 1, 1., 

from Table 2.3.1 using the detected values of ~'-1 l' ~'-l 2' ~. l' ~. 2· 
1., 1., 1, 1, 

As for the DQPSK signal, ~i-1,l=~i-1,2=O at the start of every data 

packet. 

2.3.3 Differential Codinq 

It was shown in Sec.2.2.1 that although the in-phase and quadrature 

components of the Rayleigh fading waveform y(t) are changing quite slowly 

and predictably with time, the channel phase is likely to exhibit 



22 

instantaneous and unpredictable phase jumps during deep fades. often 

termed random FM [8.9.11.621. An example of this is shown in Fig.2.3.7. 

Thus. in practice it would be impossible to track the phase effectively. 

which is disasterous for coherent detection. This is why the in-phase and 

quadrature components of the fading are estimated instead. 

However. this does mean that there is likely to be a constant phase 

ambiguity of ±90 0 or 180 0 in the estimated phase of the channel over a 

period of time. accompanied by a corresponding error in the phase of the 

detected data symbols. The differential coding operation described in 

Secs.2.3.1-2.3.2 would give correct detection of the··binary digits in this 

situation. The way this works is best described by example:- Ignoring the 

effects of noise for now. then at time t=iT 

r. = s.y. (2.3.9) 
l. l. l. 

Assume that the channel estimate from t=T to t=10T is +90 0 out of phase. 

That is. 

y\ = jy i 

where j=~. Or 

y'I . = -YQ . 
.~ .1 

AND 

for i=1.2, •••• ,10 (2.3.10) 

y'Q . - YI . , 
.1 - .1 

for i=1,2 ••••• ,10 (2.3.11) 

Then. the detected symbols over the same period of time will be -90 0 out 

of phase. That is, 

s' . = js. 
l. l. 

for i=1,2, •••. ,lO (2.3.12) 

or 
, = -sQ . AND s' sI . sI' , 

.l. .l. Q.i = .l. 
for i=1,2, ... . ,10 (2.3.13) 

since, 

(-js. »)«jy.) = S.y. = r. (2.3.14) 
1. 1. 1. 1. 1 

So if the binary digits ~. l' ~. 2' (~. 3' «. 4) are detected 
1, 1, 1, 1, 

coherently from the value of s'., then they will also be in error for 
l. 

i=1.2, •••• ,10. But, if the differential encoding and decoding operations 

are carried out according to Table 2.3.1, then the information in the two 

binary digits ~. l' «. 2 is contained in 
1. I 1, 

s .. 
l. 

Now, a constant phase error in the 

there is no error in the detected phase 

the phase change between si-1 and 

5'. for i=l,2, .... ,lO means that 
l. 

changes for i=2,3, •••• ,10 and 

therefore no error in the detected binary digits {«. 1}' {«. 2} for 
1, 1, 

i=2,3, .... ,lO. 

However, there is a penalty to be paid for this in tolerance to noise. 

Consider an isolated symbol error. For example, if 

s' = 
5 

and 
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Si. = S, 
1 1 

for all VS (2.3.15) 

The phase changes 

detected in error. 

between s4 and s5 and between s5 

By studying Table 2.3.1 it can 

and s6 are both 

be shown that 

generally, with isolated symbol errors, differential coding always doubles 

the number of errors in the detected binary digits. 

Also, differential coding generally worsens the bit error rate when 

there is a burst of several consecutive random errors in the {s.}, though 
1 

on average, the error rate in this case will be less than doubled. Such a 

burst of errors is common during a deep fade in the channel. 

2.4. System 1 

Up to this point, the characteristics of the QAM signal, Rayleigh fading 

and noise that comprise the bandpass channel have been described 

separately. Now, the first of the complete data transmission systems 

proposed in this thesis can be described in terms of its equivalent 

baseband model (developed in Appendix B). A coherent demodulation 

receiver "i:s' used in this system. It is the development of this receiver 

from its basic form described here [63-68), that is the aim of Chapter 3. 

2.4.1 Model of System 

A four-level QAM signal is transmitted from one mobile to a base station 

as shown in Fig.2·.4.1. By the theorem of reciprocity, this is equally 

applicable to transmission in the reverse direction [8,111. The system is 

tested with both one and two receiving antennas (Systems lA and lB 

respectively) and with both QPSK and DQPSK modulation. 

The baseband equivalent models of Systems lA and IB are given in 

Fig.2.4.2. In the computer simulations the baseband received samples at 

time t=iT, for all {i}, are given by: 

For one receiving antenna, System lA 

r i = siYi + wi 
For two receiving antennas, System lB 

r . = s.y . + w . 
a.1 1. a.1 a.1 

rb . = s'Yb . + 
• 1. 1..1 wb . .1 

(3.2.1) 

(3.2.2) 

Where the letters s, y, w refer to the complex-valued data, channel and 

noise waveforms respectively. The subscript i means that the 

corresponding waveforms have been sampled at time t=iT. The subscripts a 

and b before the dot refer·to receiving antennas a and b. The methods of 
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generating the {s.}, {y.}, {w.} and so forming the {r.} in the computer 
1. 1. 1. 1. 

simulations are described in Appendix B. 

The important assumptions from which these equations have been derived 

in Appendix B were described in detail in Sec.2;3 and are summarized here 

as follows: 

1) Perfect linear modulation and demodulation are assumed, with perfect 

nominal carrier frequency synchronization between transmitter and 

receiver. No assumption need be made about carrier phase 

synchronization. 

2) The baseband received signal is sampled every T seconds (once per 

symbol) with perfect symbol timing recovery assumed at the receiver. 

3) Matched filtering using root-raised-cosine frequency response filters. 

4) Frequency non-selective fading with the frequency spread of the fading 

very small compared with the signal bandwidth (less than 1%). 

5) With two receiving antennas, separate ideal matched filtering and 

sampling is carried out at each antenna. Uncorrelated fading is assumed 

in the signals arriving at these two antennas. 

It has been shown in Appendix B that under these assumptions, the 

relevant statistical properties of the samples {r.}, {s.}, {y.}, {w.} can 
1. 1. 1. 1. 

be summarized as follows: 

Data: {s.} 
-- 1 

With the five assumptions just described, the samples {s.} on the computer 
1 

are simply the data symbol values, {s.}={±l±j}. That is, s. is anyone of 
1 1 

the four points in the constellation shown in Fig.2.4.3 with equal 

. probability. The individual {s.} being statistically independent • 
1 

The 

bit-to-symbol mapping always follows the arrangement of Gray coding shown 

in Fig.2.4.3, where each symbol s. is 
1 

dibits «. la:. 2 as shown. 
1. , 1. , 

These {a:.} 
1 

formed by mapping the two random 

are statistically independent and 

equally likely to be either value 0 or 1. In the coherent "QPSK" system, 

the pseudo-random bit stream is directly encoded as shown. But in the 

differentially coded "DQPSK" system, the random dibits are first 

differentially encoded as in Sec.2.3.1, then these differentially encoded 

bits are mapped into symbols as shown in Fig.2.4.3. 

The transmitted data signal is assumed to be a 12kbaud four-level QAM 

signal, so 12000 {s.} are transmitted every second in the baseband 
1 

simulation model. The transmitted energy E in every data symbol in the 
s 

baseband model is the same. 
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. E = (±1}'+(±j)' = 2 
s 

Since two bits are encoded to give each symbol, 

E =!E = 1 
b s 

(2.4.3) 

This is the same average transmitted energy per bit as in the real-valued 

QAM waveform, when modulation, demodulation and filtering are as described 

in Sec.2.3. It can be shown that both baseband and modulated carrier 

signals have the same tolerance to additive white Gaussian noise [31,55]. 

Channel: {y.} 
~ 

The channel {y.} is represented on the computer as a complex-valued 
~ 

Gaussian random process. The real and imaginary parts of y. are samples 
~ 

of statistically independent baseband Gaussian waveforms, zero mean, 

variance !, each with the power spectral density [8-11] 

IY(f}\' =1 1 

2'!1'f ../1 - (f/f )' 
m m 

o 

for -f :ii;f~+f 
m m 

elsewhere 

Where f is the maximum Doppler frequency shift. 
m 

In the computer 

simulations f =80Hz or 40Hz corresponding 
m 

to a vehicle speeds of 

(2.4.4) 

60miles/hour or 30miles/hour' respectively. The theoretical and simulated 

spectral densities are shown in Fig.2.4.4. The channel simulation method 

is described in Appendix B. 

It now follows [24,25] that the channel amplitude given by 

I y i I = " Re [ y i]2 + Im [ y i ]2' ( 2 • 4 • 5 ) 

is Rayleigh distributed. This amplitude has a mean-square value of 1. 

That is, the average channel power is unity since 
N 

lim Nl ~ IYil' = 1 
N.CI) ~ 

i=l. 

(2.4.6) 

It also follows [24,25] that the channel phase given by 
Iv -1 ~ = tan Im[Yi] (2.4.7) 

Re [y. J 
~ 

is uniformly distributed over all phase angles. 

In all tests with two antennas, both complex-valued transmission paths. 

y ., Yb . in Fig.2.4.2 are modelled exactly as just described. These two a.1 .l. 

fading channels are statistically independent with the same mean-square 

value and the same value of f • 

Noise: {w.} 
~ 

m 

The noise samples {w.} in the computer simulations are complex-valued 
1 



26 

samples of a white Gaussian noise process. The real and imaginary 

compcnents of w. are both zero 
1 

mean, variance a2 • ~, is fixed for any 

given signal-ta-noise ratio ~. But, the real-valued white noise input to 

the receiver filter has a two-sided power spectral density of 1NO over all 

positive and negative frequencies. With the choice of linear modulation 

and demodulation as shown in Sec.2.4 it was shown in Appendix B that 

er' = lN o (2.4.8) 

Since the real and imaginary parts of w. are independent, the average 
1 

power of the complex-valued noise samples {w.} is 
1 

E[lwil'j = 2a' = No 

In all tests with two receiving antennas, the {w
a

•
i
}, {w

b
•

i
} are 

independent of each other and both have the same value of a'. 

Received Samples: {r.} 
1 

The received signal constellation of s .. y. in r. is the four-point 
1 1 1 

constellation of s., simply shifted in 
1 

amplitude and phase by the Rayleigh 

fading, as in Fig.2.4.5. This is true for all {i}. It is impcrtant to 

emphasize that there are no intersy~ol interference components in r., 
1 

only s.y. plus white Gaussian noise (see Eq.(2.4.1) and Fig.2.4.5). with 
. 1 1 

two receiving antennas, the two received signals are separately - but 

identically - demodulated, filtered and sampled to give the {r .} and 
a.1 

{r
b 

.}. The signal constellations are generally shifted in amplitude and 
.1 

phase by different amounts at each antenna due to the uncorrelated fading 

samples Ya.i' Yb.i· 

Signal-to-noise ratio 

The signal-to-noise power ratio per transmitted bit in the received 

samples {r.} at the input to the detector is equal to (Appendix B) 
1 

Therefore, in decibels 

VI = 101oglO Eb dB 

NO 

(2.4.10) 

(2.4.11) 

In all tests with two antennas, the signal-ta-noise ratio at each 

antenna is the same and is given by Eq.(2.4.11). This is also taken to be· 

the system signal-ta-noise ratio in ,every case, no matter how the signals 

are combined. 
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This completes the discussion of the statistical properties of the 

{r.}. {s.}. {y.}. {w.}. The general operation of the receivers for 
l 111 

Systems lA and IB are now described. 

2.4.2 Coherent Demodulation Receiver for System lA 

For ideal coherent detection of a QAM signal. the received carrier phase 

must always be known exactly at the receiver. which usually means that a 

phase-coherent local carrier must be generated at the receiver. However, 

this cannot be achieved here without a certain amount of signal 

processing. even if very stable and costly oscillators are used in both 

transmitter and receiver. This is because the Rayleigh fading introduces 

a time varying random phase rotation into the transmitted signal that 

cannot be controlled (Sec.2.2). This usually changes considerably faster 

than any phase drift caused by the local oscillators. It is for this 

reason that the use of coherent demodulation is usually ruled out for land 

mobile radio (8]. 

It is assumed throughout this thesis that the transmitter and receiver 

local oscillators are synchronized in freguency around 900MHz (Sec. 2.8). no 

attempt is made to adaptively control the phase of the reference carriers 

in the demodulation process. The Rayleigh fading samples {y.} in 
1 

Eq.(2.4.1) can now be assumed to contain any constant phase errors between 

these two local oscillators (~ radians) and any relatively slow drifts in 

carrier frequencies/phases. without significantly affecting the 

statistical properties of the {y.} described in Sec.2.4.1. 
1 

In recent years some quite simple channel estimation processes, have 

been developed at Loughborough Univers·,j.ty (64.65.69-71] that successfully 

track the slower Rayleigh fading encountered in HF radio links. It 

remains to be seen whether the faster Rayleigh fading encountered in land 

mobile radio could be successfully tracked using similar methods. With an 

accurate estimation of the {y.} in the receiver, coherent detection of the 
1 

QAM signal could be achieved. It is important to note that in this thesis 

the {y.} are always estimated in terms of their in-phase and quadrature 
1 

components rather than their correspcnding amplitude and phase because the 

former components are easier to track (Sec.2.2.1) 

This coherent demodulation receiver for System lA is shown in 

Fig.2.4.2(a) as a combined detection and estimation process. A more 

detailed model is shown in Fig.2.4.6. where the channel estimation process 

is shown to perform the two separate functions of estimation and 

, 
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prediction. The general principle of operation for this receiver is now 

described. 

It is required here to recover the information in the transmitted 

speech/data by detecting the data symbols {s.} from the received samples 
1 

{r.}. These samples {r.} are given by Eq.(2.4.l), for all {i}, as 
1 1 

r. = s.y. + w. (2.4.12) 
1. 1.1. 1. 

Ignoring the effects of the noise for now, Eq.(2.4.12) is essentially one 

equation in two unknowns s., y .. 
--- 1 1 

So there is not enough information in 

Eq.(2.4.3) alone to detect s. from r .• However, in Sec.2.2 it was shown 
1 1 

that y(t) is a lowpass random waveform whose quadrature components have a 

maximum frequency of f =80Hz. So the samples {y.}, which are samples of, m 1 

y(t) taken every T seconds (or every 1/12000 seconds), represent gross 

oversampling at 75 times the Nyquist rate (35J. This means that the value 

of y. does not change appreciably from one sample 
1 

to the next so it would 

be quite simple to form an accurate prediction of the value of y. 
1 

from the 

previous set of samples {y }, for n~i-1. 
n 

This knowledge that the samples 

{y.} are slowly changing, used together with Eq.(2.4.12) means that there 
1 

is enough information in the {r.} to detect the {s.} with the arrangement 
1 1 

shown in Fig.2.4.6. 

First of all, at time 

s. is formed in a process 
1 

t=iT the detected value s'. of the 
1 

of coherent detection described in 

data symbol 

Chap.3. In 

detecting s. the detector assumes that the prediction y' . . 1 made at time 
1. . 1,1-

t=(i-1)T is an exact estimate of y.. (In fact the {y~ . 1} are generally 
1. - 1.,1-

noisy estimates of the {y.}). 
1 

Then the detected value s'. is fed back to 

the channel estimator together with r. , 
1 

formed (Chap.3). The channel estimator 

1 

and the channel estimate y'. is 
1 

relies very heavily on the correct 

detection of the data symbols. The channel predictor then predicts along 

the samples {y' }, for n~i, to give y' '+1 . which is held in store ready 
n 1. ,l. 

for the detection of the next data symbol si+1' 

It is important to understand this general principle of operation for 

the combined detection and estimation process because every System tested 

in. this thesis uses an adaption of the same basic receiver structure. 

However, this basic system (used successfully in HF radio links (64,65J) 

is developed in a novel way in this thesis to be more· suited to the fast 

Rayleigh fading environment encountered in land mobile radio. This is 

described in detail in Chapters 3 to 5. 
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2.4.3 Coherent Demodulation Receiver for System lB 

Now, with two receiving antennas, the combined detection and estimation 

process is adapted as shown in Fig.2.4.7. The channel estimation process 

corresponding to the two antennas A and B both work in exactly the same 

way as that described in System lA. It is important to note that these 

two estimation processes work in parallel and both use the same set of 

values {s'.} at their input. However, in this case, s'. is coherently 
1 1 

detected from a combination of the signals from the two antennas (Chap.3). 

A big improvement in the performance is expected over System lA 

[8,9,22,23,29] because the fading sequences at each antenna, {Ya.i}' 

{Yb .} are uncorrelated. It was noted in Sec.2.2 that errors tend to 
.1 

occur during deep fades. With uncorrelated fading sequences it is much 

more unlikely that a deep fade will occur at both antennas at the same 

time than it is for a similar deep fade to occur at either one antenna. 

It therefore follows that detection errors caused by these fades are much 

less likely with two antennas than with one. 

2.5 System 2 

After the successful development of System 1 in Chapter 3, the aim of the 

rest of the thesis is to devolop a mobile radio link with twice the 

bandwidth efficiency of System 1. System 2 described in Chapter 4 is such 

a system that would be used to transmit in the direction from two mobiles 

to the base station. It is the development of the receiver from its basic 

form introduced here that is the aim of Chapter 4. 

2.5.1 Model of System 

A 24 kbit/s four-level QAM signal is transmitted from each of two mobile 

units to the same base station. The two signals transmit on the same 

carrier frequency, so the sum of the two signals is received at the base 

station within a 25kHz portion of the spectrum around 900MHz.The system 

is tested with both one and two receiving antennas (Systems 2A and 2B 

respectively) and with both QPSK and DQPSK modulations (Sec.2.3). The 

baseband equivalent models of Systems 2A and 2B are given in Fig.2.5.2. If 

either of the two mobiles were to stop transmitting, then the model of the 

system (Figs.2.5.1-2.5.2) would reduce to that of System 1 

(Figs.2.4.1-2.4.2) 

In the computer simulations, the basebend received samples at time 
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t=iT, for 'all {i}, are given by: 

For System 2A 

r. = sl 'Y1 . + s2 'Y2 . + W. 
1 .1.1. .1.1 1. 

(2.5.1) 

For System 2B 

r . = Sl 'Y1 . + s2 'Y2 . + w . 
a.l .1.1. .1.1 a.l 

rb . = Sl 'Y3 . + s2 'Y4 . • 1 .1.1 .1.1 
+ Wb . (2.5.2) 

.1 

The signal, channel and noise samples have been represented by the letters 

s, y, w respectively as for System 1. The subscript i after the dot shows 

that samples of the baseband waveforms have been taken at time t=iT. The 

subscripts a and b of rand w refer to receiving antennas A and B. The 

subscripts 1 and 2 of s refer to the data signals from mobiles 1 and 2. To 

be consistent with this notation the four channels in Fig.2.5.1(b) would 

have been labelled Y1a' Y2a' Y1b' Y2b denoting the transmission paths 

between signals 1 and 2 and antennas A and B, but the double subscript 

proved to be too confusing. Hence they have been labelled here as Y1' Y2' 

Y3' Y4 respectively. 

Of course, for these Eqs.(2.5.1)-(2.5.2) to be valid the, same five 

ideallistic assumptions as for System 1 'must be made (see Sec. 2.4.1). But 

now, two additional important assumptions must be made: 

6) The signals originating from the two mobiles must arrive perfectly 

synchronized in time at the receiving antennas, so that the ideal sampling 

instant at the output of the matched filter is exactly the same for both 

signals sl and s2. 

7) The nominal carrier frequency (900MHz) must be the same for both local 

oscillators. 

Neither of these conditions can be met exactly in practice. It is 

assumed in this thesis that the simple timing and synchronization methods 

outlined in Sec.2.B result in a close approximation to these conditions. 

Now, none of the results given in Chap.6 would be adversely affected by 

such timing and synchronization errors. 

Now consider the statistical properties of these data, channel and 

noise samples. The two data streams 

same properties is described for the 

{sl.i}' {s2.i} each have exactly the 

{s.} in System 1. The information 
1 

transmitted from both mobiles are independent of each other, so the two 

data streams are assumed to be uncorrelated. All four sets of channel 

samples {Y1 .}, {Y2 .}, {Y3 .}, {Y4 .} have exactly the same properties as 
.1 .1 .1. .1. 

described for the channels in System l,and are all statistically 

independent of each other. Uncorrelated Rayleigh fading from the two 
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mobiles is assured because the distance separating them need only be 

greater than about 9 inches [8.9.441. In all simulation tests. both 

mobiles are assumed to be travelling at the same speed. (60miles/hour). 

This is the worst case since the two fading data signals are now most 

likely to be confused with each other (Sec.4.4). 

The received signal constellation of sI 'Y1 .+s2 'Y2 . in r. is a 
.~ .~ .1.1. 1 

16-point constellation. Each four point constellation of sI . and s2 . is 
.1. • l. 

shifted in amplitude and phase by their uncorrelated Rayleigh fading 

samples. The sum of these two four-point fading constellations gives the 

required 16-point constellation. This is true for all {i}. The shape of 

this 16-point constellation changes with time as the two constituent 

four-point constellations fade independently of each other. An example of 

this is shown in Fig.2.5.3. It is important to emphasize that there are 

no intersymbol interference components in r .• 
J. 

In Systems 2A and 2B the signal-to-noise ratio is again given by 

l{t = Eb/No (2.5.3) 

or. in decibels 

(2.5.4) 

Where Eb=l is the average transmitted energy per bit of each signal 

(sl.)' (s2.)· Eb=l is also the average transmitted energy per bit of 

the sum of the two independent transmitted signals {sI .+s2 .}. so there 
-- .1. .1 

can be no confusion. Thus the signal-to-noise ratio in the channel is 

unaffected by transmitting a second signal. that is. in going from System 

1 to System 2. 

The general operation of the receivers for Systems 2A and 2B can now 

be described. 

2.5.2 Coherent demodulation receiver for System 2 

The receiver used here achieves coherent detection of the data symbols 

with a similar combined detection and estimation process to that used for 

System 1. The block diagram of this basic system is shown in Fig.2.5.4. 

Again. the real and imaginary parts of the complex-valued channel 

components {Y1 .}. {Y2 .}. {Y3 .}. {Y4 .} are estimated. These estimates 
.1 .1 .1 .l. 

can be used to achieve coherent detection ,of the data symbols {sl.i}' 

{s2 .} without the need to generate a phase-coherent local carrier in the 
.J. 

demodulator. 

The receiver for System 2A (Fig.2.5.4(a» basically works as follows. 

First of all at time t=iT. the detected values s'l .• s'2 . of the 
.1. .1. 
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corresponding data 

coherent detection 

symbols sl ., s2 . are both formed in a process of 
.1 .l. 

described in Chap.4. In detecting the symbols sl ., 
.1 

S2 . from 
.1 

r. the detector assumes that the predictions y' 1 . . l' 
1. .1,1-

y'2 .. 1 .1,1-
made at time t=(i-l)T are. exact estimates of Y1 ., Y2 . 

.1. .1. 

respectively. (In fact, the {y'l .. 1}' {y'2 .. 1} are generally 
. .1.,1- .1,1.-

noisy 

{Y2 .}). Then the detected values 
.1 

estimates of the {Y1 .}, 
.1 

, s' s 1 ., 2· .1. • l. 

are fed back to the channel estimator together with r., and 
1 

the channel 

are formed (see Chap.4). The channel estimator t · t ' I es 1ma es y 1 ., Y 2 . 
• 1. • 1. 

relies very heavily on the correct detection of the data symbols. The 

channel predictors then predict along the samples {y11 }, {y'2 } for 
.n .n 

n~it to give 

detection of 

yl1 ·+1 ., y'2 ·+1 . which are held in 
.1.,1 .1.,1 

the next data symbols sl.i+1' s2.i+1' 

store ready for the 

For System 2B with two receiving antennas, the combined detection and 

estimation process is shown in Fig.2.5.4(b). The channel estimation 

process corresponding to the two antennas A and B both work in exactly the 

same way as just described for System 2A. It is important to note that 

these two estimation processes work in parallel and both use the same sets 

of samples {s'l .}, {s12 .} at their inputs. 
.1 .1. 

However, in this case 5 1

1 
., 

.1 

sl2 . are coherently detected from a combination of the signals from the 
.• 1 

two antennas (Chap.4). Again, a big improvement in performance is 

expected over System 2A [8,9,22,23,29] because of the uncorrelated fading 

at the two receiving antennas. 

Of course, this is only a description of how the information flows 

through the functional blocks of the basic Systems shown in Fig.2.5.4. The 

actual signal processing carried out at each stage, and the development of 

the model from its basic form to the final System, is described in 

Chap.4. 

This System 2 uses a completely new way of multiplexing two digital 

radio signals in the same frequency space. The two data streams {sll .}, 
.1 

{s12 .} can be separated at the receiver without the use of error control 
.1 

coding because these two independent data streams fade independently. So 

this independent fading is itself a form of coding. This is probably the 

most important result in ·this thesis. 

2.6 System 3 

In Chapter 5, System 3 is. described in which a single signal is 

transmitted back from the base station to the two mobiles that are in turn 
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transmitting according to System 2. This system also has twice the 

bandwidth efficiency of System 1. It is the development of the receiver 

from its basic form introduced here that is the aim of Chapter 5. 

2.6.1 Model of System 

A single 48kbit/s l6-level.QAM. signal transmitted from a base station is 

received by two different mobiles in the cell. Half of the bits are 

allocated to each mobile. Again the carrier frequency is about 900MHz 

with a channel spacing of 25kHz. The system is tested with both one and 

two receiving antennas (Systems 3A and 3B respectively) and with both 

16-QAM and 16-DQAM modulations. 

Only the signal received at one of these mobiles need be simulated, 

since it is assumed that the performance of the receiver at the other 

mobile travelling at the same speed would be exactly the same. The 

simulation model is not complicated here by considering how the 

information in the 16-level signal would be allocated to each mobile. 

Instead the bit error rate in the received 16-level QAM signal is measured 

in the simulation tests. This allows more useful comparisons to be made· 

with the other modulation schemes in Systems 1 and 2. 

As for System 1, the same 5 assumptions of ideal timing, 

synchronization, linear modulation I demodulation and raised-cosine 

filtering are made (Sec.2.4.1). Under these assumptions, the baseband 

received samples at the output of the matched filter at time t=iT are 

For System 3A 

r. = siYi + w. 
1 1 

(2.6.1) 

For System 3B 

r = S.y . + w 
a.i ~ a.1. a.i 

r b • i 
= s'Yb . + wb . 1 .1 .1 

(2.6.2) 

These equations are identical to those used to represent System 1, and so 

the basic simulation model (Fig.2.4.2) is used. The only difference 

between Systems 1 and 3 lies in the set of data symbol values {s.} that is 
1 

now used to represent a 16-level QAM signal. Under the five idealistic 

assumptions outlined in Sec.2.4.1, the samples {s.} in Eqs.(2.6.1)-(2.6.2) 
1 

are the data symbol values 

{s.} = {(±1 or ±3) + (±j or ±3j)} 
1 

That is, anyone of the sixteen points in the signal constellation of 

Fig.2.6.2(a) with equal probability. 

statistically independent. 

The individual s. being 
1 
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In Systems 3A and 3B, the signal-to-noise ratio is always given by 

~ = lOl09lO(Eb/NO) = lOl09lO(2.5/(2a 2 » dB (2.6.3) 

where E
b

=2.5 is the average transmitted energy per bit of the l6-level QAM 

signal (Sec.2.3). 

Again, when two receiving antennas are used at the mobile receiver, 

they are assumed to be spaced sufficiently far apart that the fading 

sequences {y .}, {Yb .} are uncorrelated. The sets of fading samples 
a.l. .l. 

{y.}, {y .}, {Yb .} all have a mean-square value of 1. The received 
1. a.l. .1-

signal constellation of s.y. in r. is the l6-point constellation of s. 
1. 1. 1. 1-

that is simply shifted in amplitude and phase by the Rayleigh fading as in 

Fig.2.6.2, with no intersymbol interference. The relative distances 

between the different points of the received signal constellation does not 

change with time, as it did in System 2. 

The coherent demodulation receiver for System 3 has the same basic 

structure of combined detection and estimation as that used in System 1 

(Figs.2.4.4-~.4.5). So the general description of how it works is also 

exactly the same as for System 1. However, the actual signal processing 

carried out in the detector and estimator is different for Systems 1 and 3 

because of the different constellations of the data signal s.. It is the 
1 

detailed development of this combined detection and estimation process in 

a way that is suitable for System 3 that is the aim of Chapter 5. 

2.7 Reasons for using coherent detection of narrowband QAM signals 

It is mentioned in Chapter 1 that nowadays probably the most important 

requirement of a mobile radio link design is that the digital modulation 

scheme used must provide a high bandwidth efficiency in terms of bit/s/Hz 

for a given quality of reception. With this in mind, a narrowband QAM 

scheme with coherent detection in the receiver was chosen (Secs.2.3-2.6). 

This technique is used in all systems tested in this thesis and is 

expected to perform favourably compared with other digital transmission 

techniques that have been reported to be applicable to mobile radio 

reception (43,72,73]. 

Coherent detection is performed at the receiver without the need to 

transmit a pilot carrier, by using a channel estimation process to track 

the Rayleigh fading in the received signal. The in-phase and quadrature 

components of the fading are tracked rather than the corresponding 

amplitude and phase since the latter representation is more rapidly time 
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varying (Sec.2.2). The irreducible error rate normally associated with 

the random FM [8,9,62,74-76] should now be largely avoided. The signal 

processing involved in such an estimation process [63-71] is generally 

much less complicated than that .useQ in the pilot tone, single sideband 

(SSa) schemes using coherent detection [77-83] that have been publicised 

so much in recent years. It is well known that in the presence of 

additive white Gaussian noise, coherent detection results in a lower 

probability of error in the detection of the {s.} than any other data 
1 

recovery scheme. It should also give the best performance in the presence 

of interference from any other signals (Sec.2.2.4). Although differential 

coding of the binary digits (Sec.2.3.3) increases the bit error rate 

compared with ideal coherent detection, it does give correct recovery of 

the binary digits.when there is a constant phase ambiguity of ±90 0 or' 180 0 

in the phase of the channel estimate. Such a phase error is likely to be 

caused by the random FM in the Rayleigh fading. This method of 

differential coding does ~ use differential/differentially-coherent) 

detection at the receiver [31,36,84]. Modems using differential detection 

in fading mobile radio channels often exhibit serious irreducible error 

rates caused by the random FM. This error rate gets worse as the speed of 

the mobile increases [62,74-76]. The differential coding method used here 

should not suffer this limitation, if the channel. estimate performs well. 

The narrowband QAM signals used in this thesis all have a fully 

raised-cosine spectral shape [31] in an arrangement of matched filtering. 

So no intersymbol interference is introduced by this filtering and it is 

well known that the tolerance to noise of these bandlimited QAM signals is 

identical to that for the corresponding signals that have not been 

bandlimited (if ideal coherent detection is assumed at the receiver [31]). 

The out-of-band radiation is expected to be at least 60da below the 

average signal power at the centre of the passband (Appendix a). So with 

this filtering, adjacent channel interference can be kept to a very low 

level. A further very useful consequence of this filtering is that the 

element-timing waveform can be simply extracted at the receiver 

(Sec.2.8). 

It is interesting to note that the use of coherent detection is 

usually ruled out in land mobile radio links because of the difficulty in 

generating a coherent phase reference at the receiver in the presence of 

such fast Rayleigh fading [8]. This rapid amplitude fading is also 

assumed to rule out the use of amplitude modulation (AM) schemes in favour 
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of frequency modulation (FM) techniques which, of course, do not use the 

amplitude information. In recent years, the narrowband digital FM 

transmission techniques of tamed FM (TFM) [85-871 and Gaussian baseband 

filtered minimum shift keying (GMSK) [88,891 have been reported to be 

applicable to mobile radio transmission [43,901. Both of these digital FM 

techniques have a constant envelope which means they suffer a minimum of 

distortion in the equipment's non-linear amplifiers. They are both 

considered to be contained in a sufficiently compact power spectrum for a 

cellular land mobile radio service. However, the QAM signals used here 

that-are not constant envelope signals occupy an even more compact 

spectrum [32,72,721. Techniques are now available that could enable a 

high-power amplifier at a mobile to handle the large envelope ripple in 

the QAM signal [56-591. A further important problem with these constant 

envelope techniques TFM and GMSK is that a very much more complicated 

process is required to extract the element timing waveform [85,87,911 than 

is used with the QAM signals in this thesis (see Appendix C). 

2.8 Timing and Synchronization 

It is assumed in all computer simulation tests carried out in this thesis 

for Systems 1,2 and 3 that ideal timing and synchronization has been 

achieved. Under these ideal conditions the following assumptions are 

made: 

(i) Perfect linear modulation and demodulation is assumed, with perfect 

nominal carrier frequency synchronization between (both) transmitter(s) 

and the receiver. No assumptions need be made about carrier phase 

synchronization. 

(ii) The ideal element and frame-timing waveforms are assumed to have 

been recovered perfectly at the receiver. When the signals from two 

mobiles share the same channel (System 2), the two signals are assumed to 

arrive at the base station exactly synchronized in time. Under this 

condition, the ideal timing waveforms corresponding to the two received 

signals are coincident in time. 

Of course, in practice there will be a small departure from these 

ideal conditions, but this should not greatly affect the results of any 

tests. 

The base station transmits, in addition to the digital signals to the 

mobiles, a single uninterrupted modulated-carrier signal in which the same 
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sequence of data symbols is continually repeated. The carrier frequency 

of this synchronizing signal is used to control the carrier frequency 

transmitted by every mobile in that cell. The signal is also used to 

achieve both element-timing and frame-timing synchronization of the 

signals transmitted by the mobiles in the cell, such that the 

corresponding elements and frames in these signals are coincident in time 

(at least. approximatelY.L .. whe.n ... they reach the base station. 

In the prototype modem being built at Loughborough and Liverpool 

Universities (92,93.], a simple 12kbaud binary FSK (frequency shift keying 

(31]) synchronizing signal was used with a carrier frequency about lOMHz 

apart from that of the mobile transmitter. Initial hardware tests 

indicate very promising synchronization results. The basic methods of 

achieving carrier frequency synchronization and element/frame-timing 

synchronization are now described. 

2.8.1 Carrier Frequency Synchronization 

Economic considerations make it difficult to achieve oscillator 

stabilities better than 2, parts per million (6,7] (i.e. ±2.25kHz at 

900MHz) at the mobile unit. It is feasible to control the base station to 

at least an order better than this. For the purpose of analysis, the base 

station is assumed to maintain perfect stability. 

The synchronizing signal is received by the mobile with a Doppler 

frequency shift, which is determined by the arrival angles of the 

component radio waves relative to the direction of motion of the mobile 

(Appendix A). This received carrier frequency is shifted by several MHz 

in the mobile to give the carrier frequency of the transmitted digital QAM 

signal. The errors in the carrier frequencies received at the base 

station are now confined (at least approximately) to within twice the 

maximum Doppler shift. That is, within about 160Hz of the base station 

reference of 900MHz, for a vehicle speed of 6Omiles/hour. 

Had the 900MHz carrier frequency been generated directly in the 

mobile, the frequency error of ±2.25kHz would have caused some serious 

problems. Firstly, adjacent channel 'interference would be introduced since 

the frequency guard band is only 1kHz. Also, with two signals transmitted 

in the channel (System 2), the best that could be done in the base station 

receiver would be to set the demodulating carrier frequency half-way 

between these two carrier frequencies. Significant distortion would 

almost certainly be introduced into the two received baseband signals by 
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the matched filtering process. It would be extremely difficult to track 

the baseband channel waveforms with such high frequency components. 

2.B.2 Element and Frame Synchronization 

The binary FSK synchronizing signal transmitted by the base station is 

shown in Fig.2.B.l. This signal is continuously repeated. The mobile 

unit locates the unique word (which indicates the start of each frame) and 

extracts the symbol timing from the bit reversals. The mobile then 

transmits its QAM data signal with the same element and frame timing 

waveforms. 

The unique word 

{Ill 1 1
0 

-1 -1 1 1 -1 1 -1 I} 

is the Barker code of length 13 [94,95). Its autocorre1ation function is 

easily distinguished from the autocorrelation function of the bit 

reversals 

{ •••• 1 -1 1 -1 1 -1 1 -1 1 -I •••• } 

as shown in Fig.2.B.2
0

• Hence, the unique word is easily located. The 

symbol timing extraction from the bit reversals is described in Appendix 

c. 
In practice; a synchronizing packet of the form shown in Fig.2.B.3 is 

inserted into the QAM data signal at regular intervals to aid in the 

accurate recovery of element and frame timing at the receiver [92-93). 

Also it has been shown theoretically (Appendix C) that the timing waveform 

can be simply extracted from the received baseband waveform in a novel 

technique, even when two QAM signals are received in the same frequency 

space. So fine adjustments to this timing waveform are made continuously 

from the received data signal. 

System 2 has an extra important requirement for element-timing 

synchronization: The two digital QAM signals transmitted independently 

.from the.two different mobiles must arrive at the base station almost 

perfectly synchronized in time. This could be simply arranged by taking 

advantage of the sophisticated vehicle location system that is in 

operation at the base station (the details of which are beyond the scope 

of this thesis). The base station could instruct each mobile to delay its 

transmission (after receiving the synchronizing signal) so that the 

signals from both mobiles arrive back at the base station with say,_ a 20~s 

total loop delay. As long as the distance between mobile and base station 

is known to within about O.25km, then the signals from the mobiles can be 
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expected to arrive at the base station with no more than about 2~s error 

in time. (i.e. O:1/40th of a symbol duration). 

If the two mobiles simply transmitted a signal element immediately on 

receiving the corresponding synchronizing signal element, then the delays 

in transmission would impose an upper limit on the allowable cell radius. 

For example, consider that a timing error in each received signal of 

±O.lT~±8~s can be tolerated. (The arrangement used here of matched 

raised-cosine filtering is very robust to symbol timing errors). Radio 

waves travelling at the speed of light (3xl0
8

m/s) cover a distance of 

1.Skm in about S~s. However, there is generally no line-of-sight path 

between a mobile and base station 1.Skm apart. So it can be expected to 

take longer, typically up to about 8~s for the signal to pass between 'this 

mobile and base station. This gives a total loop delay of about l6~s. 

Assume the worst case, with the second mobile very close to the base 

station, with practically no delay. Then a loop delay of 8~s is assumed 

at the receiver which give~ a timing error of 8~s in both received signals 

and 1.Skm becomes the maximum cell radius. 

2.9 Swnmary 

The mathematical models of the complete data transmission systems have 

been described. There is enough information here to allow the baseband 

model to be simulated and any subsequent analysis of a system's 

performance to be carried out. 

A narrowband digital signal with a total bandwidth of 24kHz and a 

carrier frequency 900MHz as used throughout this thesis undergoes many 

changes during transmission in the cellular land mobile radio environment. 

In the following chapters, the performances of the various systems are 

measured in the presence of flat Rayleigh fading (no intersymbol 

interference) and additive white Gaussian noise only. Any of the systems 

tested that give a good performance under these conditions can be expected 

to work well in practice. Although interference from other signals is not 

simulated in this thesis, all systems t'ested have been designed to have a 

good tolerance to these effects. 

The rest of this thesis is now devoted to the development and testing 

by computer simulation of Systems 1 to 3. The basic receiver structure 

used in all these systems is a combined detection and estimation process. 

The key to the successful operation of this system lies in the channel 
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estimation. A thorough study of the fading has shown that the best 

estimation process would track the in-phase and quadrature components 

rather than the amplitude and phase of the fading. With state-of-the-art 

estimation processes of the type used in recent years at Loughborough 

University in tests over HF radio links [64-71], it should be possible to 

track the fast Rayleigh fading and achieve coherent demodulation at the 

receiver. Any sudden phase changes that are likely to occur during deep 

fades should not appreciably affect the bit error rate if differential 

encoding and decoding of the binary digits is carried out as described in 

Sec.2.3. 
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CHAPTER THREE 

SYSTEM 1 

3.1 Introduction 

The aim of this chapter is to design System 1; that is, a digital data 

transmission system to transmit one QPSK signal in a 24kHz signal 

bandwidth over the 900MHz land mobile radio channel. By the reciprocity 

theorem [8] this system applies equally well to base station-to-mobile 

(B~M) transmission and mobile-to-base station (M~B) transmission. A total 

of 24kbit/s is transmitted in this 24kHz channel giving a channel 

bandwidth efficiency of 1 bit/s/Hz. With 20% of the bits set aside for 

retraining and synchronization purposes this still leaves 19.2kbit/s, 

which is enough for a coded speech signal with some extra redundancy for 

error control coding. At this time, typically 16kbit/s is used for 

efficiently coded speech [102,103]. 

The key to the successful operation of System 1 lies in the coherent 

demodulation receiver. This receiver has been introduced in Chapter 2, 

and is now developed to its final form in this chapter. In Sec.3.2 the 

model of the system as simulated on the computer is given. Then in 

Sec.3.3 the channel estimation process is assumed to be ideal and the 

optimum detection process is described ,for both one and two receiving 

antennas. This defines the theoretically optimum system performance. 

However, the key to successful data detection lies in achieving a good 

channel estimate. So in Sec.3.4 perfect detection is assumed and many 

different estimation processes are investigated in detail. In Sec.3.5 

methods of regularly retraining the chosen channel estimator are developed 

which should safeguard against a likely total system collapse [68]. 

Now all the component parts of System 1 have been defined. In Sec.3.6 

the performance of the final combined detection and estimation process is 

carefully analysed. Particular note is taken here of the error extension 

effects caused by feeding back incorrectly detected symbols into the 

estimation process. 

3.2 Model of System 

In 'the computer simulations, at time t=iT the baseband received sample at 
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the output of the receiver filter is given by: 

For System lA 

r. = siYi + w. 
l. l. 

(3.2.1) 

For System lB 

r = s.y . + w 
a.i .1 a.l. a.i 

rb . = s. Yb . + wb . ( 3 • 2 • 2 ) 
.1. .1.1 • .1 

The letters s,y,w refer to the data, channel and noise waveforms 

respectively. The subscript i shows that these waveforms have been 

sampled at time t=iT. The subscripts a and b before the dot refer to 

receiving antennas A and B. The computer simulation model is shown in 

Fig.3.2.l and the detailed simulation method is described in Appendix B. ' 

The important assumptions from which these equations are derived have, been 

summarized in Sec.2.4.1. Also the relevant properties of the data, 

channel, noise and received samples have been summarized in this section. 

The general operation of the coherent demodulation receiver has been 

described in Secs.2.4.2-2.4.3. The detailed operation of the data 

detection and channel estimation processes that comprise this receiver are 

investigated in the rest of this chapter. 

3.3 Detection 

The aim of this section is to investigate different methods of detecting 

the data symbols {s.} in Systems lA and IB, assuming perfect channel 
l. 

estimation at the receiver. The best method tested here should still be 

the best detection process when·used with the actual channel estimates. 

3.3.1 Model of Detection Process 

The baseband received received sample(s) at the input to the detector at 

time t=iT are; 

For System lA 

r. = siYi + w. 
l. l. 

(3.3.1) 

For System IB 

r = s.y . + w 
a.i .1 a.l. a.i 

rb . = s'Yb . + wb . 
.l. l. .l. .l. 

(3.3.2) 

It is assumed that the estimates of the channels used in the detector are 

exact, as shown in Fig.3.3.1. So the detector must minimize the 

probability of error in the detection of 

knowledge of the four possible values of 

s.. The detector has full 
l. 

s. (±l±j) as shown in Fig.3.3.2. 
l. 
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3.3.2 Maximum Likelihood Detection 

The samples {r.}, {r .}, {r
b 

.} are the samples of the received signals 
~ a.1 .1 

at the output of the matched filters, with perfect timing and 

synchronization. Since the fading data signal is received in the presence 

of white Gaussian nOise, it is well-known that the sample r. (or samples 
1 

r ., rb .) forms a sufficient statistic 
a.1 .1 

for the optimum detection of s. 
1 

[31,104,1051 even in the presence of the fast· Rayleigh fading considered 

here (Appendix B.l). That is, the detection process for the detection of 

s. cannot be improved by double-sampling or indeed by including any other 
1 

samples of the received waveform in the detection process. So the optimum 

detection of s. from r. (or r . r
b

.) is also the optimum detection of· 

s. from 
1 

optimum 

r(t) 
1 1 

(or r (t), 
a 

a.l., .l. 

rb(t». Maximum likelihood detection is the 

detection process when the channel, and all possible values of s. 
1 

are known exactly at the receiver. No other detection process gives a 

lower probability of error [31,104,1051. 

For System lA, this optimum maximum likelihood detector that has exact 

prior knowledge of Yi' 

value s'. for which 

takes as the detected value of the possible 

1 

d. 2 = \r. - s' .y.12 (3.3.3) 
1. 1. 1. l. 

is minimum'over all four combinations of the possible values of s'., 
1 

(±l±j). .Where 'I x 1 is the absolute value of the complex-valued quantity 

x. 

For System lB, with exact prior knowledge of 

statistically independent w ., wb ., Eq.(3.3.3) 
a.1. .1 

likelihood detection becomes 

Y ., Y
b 

. and 
a.1 .1 

for optimum maximum 

d. 2 = Ir . - s'.y .12 + Irb . - S"Yb .1 2 (3.3.4) 
1 a.l. 1 a.1 . .1 1..1 

Note that d. 2 is the maximum likelihood distance of the two-component 
1 

vector [s' .,y . s' 'Yb .1 from [r . r
b

. 1. In practice, the estimator 
.1. a.1 .1..1 a.1.1 

must use estimates of the channel samples in place of the {Yi}' {y
a

•
i
}, 

{Y
b 

.} themselves. This inevitably degrades the detection process which 
.1 

is therefore no longer optimum. 

It is easier to see the mechanism involved here by considering an 

example for System lA: Suppose that at time t=iT it is known at the 

receiver that y.=0.7/30 o = 0.606+jO.35. The received system constellation 
1 

can be constructed as shown in Fig.3.3.3. Imagine drawing four straight 

lines connecting the 

The lengths of these 

complex-number plane 

received point r. to all four possible points s' .y .• 
1. 1: .1. 

lines gives the distances Ir.-s' .y. 1 in the 
111 

between r. and the corresponding signal points s' .y., 
1 1 1 
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The ma"imum likelihood detector selects as the dete'cted value of s. the 
1 

possible value s'. for which S'.y. is the shortest distance from r .• 
1. 1. 1. 1 

Eq.(3.3.3} actually calculates the squares of these distances, 

Ir.-s l .y. 1 2 • Squaring in no way affects the order of these four distances 
111 

{dil from shortest to longest, since whenever 1"11<1"21 then 1"11 '<1"21 2 • 

With System lB, the corresponding uncorrelated distance variables at 

both antennas are summed to give the optimum decision rule [1041; 

Theoretical Probabilities of Error 

The tolerance to noise of this optimum detection process using Eqs.(3.3.3} 

or (3.3.4) is well-known [8,9,22,231. This has been derived theoretically 

in Appendi" 0 for several cases of interest. It is shown in Appendi" 0 

for QPSK modulation (that is, with no differential coding) that: 

(i) Assuming one receiving antenna and detection according to Eq(3.3.3}. 

For the special case with no fading (that is, where y.=l and r.=s.+w. for 
1. 1. 1. l. 

all {ill. The bit error rate in the detection of the {s.} for any given 
1 

signal-to-noise ratio ~ is given by 

P
b 

= f'" _l_e -h' du = Q(~} 
J b jII .f'Fir 

(3.3.5) 

Where the Q-function Q(} is tabulated in the references [1061. And where 

~=Eb/NO' as defined in Eq.(2.4.l0}. 

(ii) But with flat Rayleigh fading (that 

{y.} are as described in Sec.2.4.2, with a 
1 

P = l[l - /Il 
b 2 "~J 

is, where r.=s.y.+w. 
1. 1. 1. 1. 

mean-square value of 

and the 

unity). 

(3.3.6) 

(iii) Now assuming two receiving antennas and detection according to 

Eq.(3.3.4}. For the special case with no fading (that is, where 

y '=Yb .=1, r .=S.+W . and rb .=s,+w
b 

. for all {ill. The bit error a.l. .1 a.I 1. a.l. .1. 1. .1. 

rate is given by 

J
"" -;z' ~ 

P
b 

= _l_e du = Q( 2 vJI'} 

2iW {'5 

(3.3.7) 

(iv) But for the general case of System 1B with flat Rayleigh fading 

(that is, where r .=s.y .+w ., rb .=s'Yb ,+wb . and the uncorrelated 
a.l. 1. a.l. a.l. .1. 1. .1. .1. 

{y .}, {Yb .} each have a mean-square value of 1 and are as described in a.l. .1. 

Sec.2.4.2}. The bit error rate is given by 

Pb = ~~ - Jl~1f -;iJ1~pJJ (3.3.8) 

These four bit error rate curves are shown in Fig.3.3.4. 
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/ 

This theory in Appendix D gives a good insight into the mechanisms 

that cause these errors to occur. Most importantly it is shown that the 

deeper the fade at any time, the more likely there is to be an error in 

detection. The big difference in tolerance to noise between the fading 

and corresponding non-fading cases is caused entirely by the Rayleigh 

probability density function of the fading. The fading rate has no effect 

on the bit error rate curve. This is because when the fading rate is 

slow, deep fades tend to last a long time resulting in long bursts of 

errors. For fast fading rates, deep fades occur more frequently but last 

a shorter length of time resulting in shorter, but more frequent error 

bursts, with the same average error rate. 

For the non-fading case, there is a constant 3dB improvement in 

tolerance to noise in going from one to two receiving antennas, which is 

hardly worth the extra equipment complexity. However in the fading case, 

typically as much as 12dB can be gained by using a second receiving 

antenna. This big improvement is because with two antennas, most of the 

errors now occur when both antennas are in a deep fade at the same time. 

For uncorrelated fading, the probability of this event happening is very 

much less than the probability of anyone channel being in such a deep 

fade. Hence the marked decrease in the error rate at any given ~. 

The bit error rate curves with differential coding are best obtained 

by computer simulation. Generally, with isolated errors in the detected 

data symbols {s' ,}. the bit error rate at any fixed signal-to-noise ratio 
1 

is doubled with differential coding. So the loss in tolerance to noise 

caused by the differential coding, measured in decibels, depends on the 

slope of the bit error rate curve. For the non-fading channel, this loss 
-4 

would be about !dB at 10 • For the fading channel. this loss would be 

about 3dB with one receiving antenna, and about 1.5dB with two receiving 

antennas. However, with a fading channel there is always a tendency for 

the errors to arrive in bursts, so the losses here would be a little less 

than this (see Sec.2.3.3). 

3.3.3 Threshold Level Detection 

For System lA, the optimum maximum likelihood detection of s, can also be 
1 

achieved by a threshold level detection. This method is computationally 

more efficient than executing Eq.(3.3.3) in full, but gives the identical 

result. The decision rule is given in Table 3.3.1, where 

(3.3.9) 



Table 3.3.1 Threshold level detection for System 1 A 

Condition Decision 

I f Crl.i ~ 0) AND U'a,i > 0) s' = +1 +j 
I 

I f Crl.i > 0) AND (I
a

, .~ 0) s' = +1 -J 
,I i 

I f (rl.i < 0) AND (ra.i ~ 0) s' = -1 +j 
i 

I f (ll.i ~ 0) AND (Ia,i < 0) s' = -1 -j 
I 
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= S.Y,Y*. 
~ ~ ~ 

= silYil' 

and y*. is the complex conjugate of y .• 
~ ~ 

+ w.y*. 
~ ~ 

+ wi
y \ (3.3.10) 

The received sample r. is multiplied by y*. to remove the phase 
~ ~ 

rotation in the received signal constellation caused by the fading. So 

now the real and imaginary axes become the decision boundaries, and the 

value of s'. is determined by the quadrant that r. lies in, according to 
~ ~ 

Table 3.3.1. 

There is no equivalent threshold level detection for signals from two 

receiving antennas. So for System lB, Eq.(3.3.S) must be executed in full 

which requires far more complex equipment. However, if the signals from· 

these two antennas were combined into one signal before detection, then 

simple threshold level detection would be possible. 

3.3.4 Combining Techniques 

Combining is usually done at IF (an intermediate frequency) rather than at 

baseband. But with exact prior knowledge of the channel values, ideal 

combining can be achieved quite simply at baseband, allowing simple 

threshold level detection. 

There are three main pre-detection diversity combining techniques used 

to counteract the fading in mobile radio communications; maximal ratio 

combining, equal gain combining and selection diversity [8,9,23]. Their 

implementations at baseband are now described. 

Maximal Ratio Combining 

At time t=iT, the received samples' at the outputs of the matched filters 

at antennas A and B are respectively 

r . = s.y . + w . 
a.~ 1 a.l a.l 

rb . = s. Yb . + wb . ( 3 • 3 • 11 ) 
.1 1.1 .1 

These received baseband samples are weighted by their. instantaneous 

channel amplitudes IYa.il, IYb.il and these two weighted signals are 

co-phased and summed to give the combined signal r .• When the two 
MR.~ 

signals are combined in this way, the signal-to-noise ratio in the 

combined 

[8,1071. 

sample r R . has been maximized - hence maximal ratio combining 
M .~ 

The signal-to-noise ratio in the combined signal equals the sum 

of the branch signal-to-noise ratios. That is, 

(3.3.12) 

It has also been assumed in these weighting factors [8,107] that the noise 
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power is the same in each branch. 

The two operations of mUltiplying by scaling factors and co-phasing 

are equivalent to the single operation of multiplying the samples r ., 
a.~ 

rb . by the complex conjugates of their channel components, y* ., y* . . ~ a.~ b.~ 

respectively. So, 

r MR . = s. (Iy . 1'+IYb ·1') + y* .w . + Y*b .wb . 
.1 1. a.I. .1 a.l. a.l. .1.1. 

This operation is depicted in Fig.3.3.5. Now s. can be detected 
~ 

r R . by threshold level detection, exactly as for System lA. 
M .1. . 

(3.3.13) 

from 

The formal maximum likelihood detection calculations can be performed 

on r
MR

•
i

• In this case, the Euclidean distance between r
MR

•
i 

and the 

correct data point s. is (from Eqs.(3.3.3) and (3.3.13)) 
~ 

d .' = I r MR . - s. ( I y . I ' + 1 Yb . I' ) I ' 
1. .1. 1. a.l. .l. 

= Iy* .w . + Y*b· w . I' (3.3.14) a.l. a.l. .1 b.l. 
Whereas in the optimum two component maximum likelihood detection (from 

Eqs.(3.3.4) and (3.3.11)) 

d. ' = Ir . - s.y . I' + Ir - s y I' 
1. a.l. 1. a.l. h.i i b.i 

= Iw . I' + Iw . I' 
a.~ b.~ 

(3.3.15) 

Eqs.(3.3.14) and (3.3.15) are slightly different which means that a 

different mechanism is involved with detection from the combined signal 

compared with the optimum detection process. However, it is shown 

theoretically in Appendix D that the bit error rate expressions are· 

identical in both cases. Also computer simulation tests (Chapter 6) have 

shown that identical errors occured in exactly the same place every time, 

whichever of these two methods is used. So with perfect channel 

estimation these two methods are equivalent. 

Equal Gain Combining 

If the baseband received samples r ., rb . from the two antennas are a.1 .l. 

co-phased and added together as before, but with both branch gains set 

equal to a constant value of unity, equal gain combining results. This 

combining method is only very slightly inferior to maximal ratio, so is 

useful when it is inconvenient to provide a variable weighting capability. 

However, in this case, where all the mathematical calculations are done on 

the complex-valued baseband samples r ., rb ., y .. , Yb ., there is no 
a.1 .1 a.l. .1. 

simpler way of co-phasing the two received samples than by multiplying 

them by the complex-conjugates of their channel components - which is 

maximal ratio. 

To combine the signals with an equal gain would actually require 
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further computation which is certainly not worthwhile just to give a worse 

performance. Equal gain combining is really more applicable when 

co-phasing is done at IF/RF with phase comparator circuits [108,109]. 

Therefore it is not considered further for System lB. 

Selection Diversity 

One of the two received baseband samples r ., rb . is chosen for which 
a.~ .1 

the instantaneous channel amplitude/power is the greater. Then maximum 

likelihood detection is carried out on that sample only, preferably by 

threshold level detection. The selection diversity process is depicted in 

Fig.3.3.6 where the selector operates according to the decision rule in 

Table 3.3.2. An example of the reduction in fading experienced with this 

combiner is shown in Fig.3.3.? The signal whose power is reduced most by 

the fading at any time is rejected. It is clear that the deep fades that 

cause most of the detection errors are largely removed. 

So in fact, the two signals are not actually combined here. Instead, 

at any time the strongest signal is selected and only that signal is used 

in the detector. The computational complexity required to calculate the 

channel power for each diversity branch and select between them is not 

much less than is required for maximal ratio combining, when the combining 

is done at baseband. So, since the received carrier phase in each 

diversity branch is known, it would be pointless to discard half of the 

available information in this selection, with the accompanying degradation 

in performace. For this reason selection diversity is not considered 

further in this thesis. 

3.3.4 Detection Conclusions 

This completes the discussion of the different detection methods 

considered for System 1. Computer simulation tests have been carried out 

on Systems lA and 1B to show the performance of the optimum maximum 

likelihood detection process operating with perfect channel estimation. 

The results of these tests are shown in Chapter 6. Simulation tests have 

also been carried out on System 1B with maximal.ratio combining. The 

accuracy of these simulation results has been confirmed by the theoretical 

results in Appendix D. 

It is interesting·to note that·the bit error rate in detection does 

not depend on vehicle speed (fading rate), or on·the shape of the. power 

spectrum of the fading or on the depth or duration of fades. It depends 
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antenna input r a(t) , r b(t) 
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only on the Rayleigh probability density function of the fading. 

In the presence of Rayleigh fading, the times at which errors in 

detection occur mainly correspond to times of deep fades. Because these 

deep fades typically last for several symbols, errors tend to occur in 

short bursts. The tolerance to noise of the optimum maximum likelihood 

detector is greatly improved with space diversity reception. With two 

receiving antennas, most of the errors seem to occur when both signals are 

in a deep 'fade at he same time. With uncorrelated fading in the two 

branches, this event is very much less likely than is a deep fade at 

either one antenna - hence a marked reduction in the error rate. For 

System lB, threshold level detection with pre-detection maximal ratio, 

combining gives identical results to the optimum two-component maximum 

likelihood detection, when perfect channel estimation at the receiver is 

assumed. 

3.4 Channel Estimation 

The aim of this section is to find an estimation process that will result 

in near optimum data detection, with a reasonable level of equipment 

complexity. It is assumed that all detected symbols that are fed back to 

the e'stimator are correct. The best estimation process found in this way 

will almost certainly be the best in the actual system where the estimator 

relies on the input of detected data symbols, some of which are inevitably 

wrong. 

3.4.1 Model of Estimation Process 

For convenience, the estimation processes considered in this Sec.3.4 will 

be confined to estimating {y,} from the {r,} (and {s.}), bearing in mind 
1 1 1 

that when two receiving antennas are used, an exactly similar estimation 

process would be applied to both sets of received samples {r .} and 
a.l 

{r
b 

.} when estimating {y .}, {Yb .} respectively • 
• 1. . a.1 .1 

The estimation process is in fact a combination of estimation and 

prediction (Fig.3.4.l) and operates as follows: 

At time t=iT, the detected data symbol value s·. is fed back to the 
1 

estimator, along with the received baseband sample ri' which is given by 

(see Sec.3.2) 

r. = S.y. + w. (3.4.1) 
1. 1. 1. 1. 

The {s.} are comprised entirely of the random data symbol values (±l±j) 
1 
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Fig.3.4.1 Model of estimation process as simulated 
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since retraining and synchronization are assumed ideal here. The channel 

estimator forms the estimate y',. But the detector requires an, estimate 
~ 

of Y
i

+
l 

ready for the next symbol. This is formed in the predictor as 

y' '+1 ' and held in store until time t=(i+l)T, when it is fed into the 
~ ,~ 

detector. This store is represented in Fig.3.4.1 as introducing a delay 

of T seconds, since if its input signal at time t=iT is y' '+1 " its 
~ ,~ 

output signal 

It is in 

is y', , 1. 
1.,1.-

fact the quality of this one-step prediction that is 

important in reducing the probability of error in detection. So this 

section is concerned with t'inding the estimation process that gives the 

"best" one-step prediction {y"+l ,}. Where the "best" prediction is 
~ ,~ 

defined as that which results in the lowest average bit error rate for the 

optimum detector given in Sec.3.3. However, in evaluating the performance 

of any estimation process it is impractical to generate bit error rate 

curves every time as it would take up far too much computer time. Instead, 

the minimum mean-square error in Y'i,i-l is the main criterion used here 

for comparing the performance of different estimation processes. As seen 

in the previous section on detection, the optimum detector chooses as the 

detected symbol the one from all possible values of s', for which 
~ 

s'iY'i,i-l is the smallest Euclidean distance from the received data 

point. That is, the point which indicates tne smallest possible 

squared-error ,in s', y', '1 So it follows that if the average or 
1. 1,1- ;-

mean-square error in y'. . 1 for a given estimation process is smaller 
1.,1-

than for every other estimation process, then this will almost certainly 

be the best estimation process out of those tested. This mean-square 

error is usually calculated for a typical, fixed fading sequence. 

The baseband channel samples {y,} are complex-valued quantities. In 
~ 

all the following methods the {y,} are estimated in terms of their real 
~ 

and imaginary components rather than their amplitude and phase, since they 

vary a lot more predictably from one sample to the next (see Sec.2.2.1). 

3.4.2 Unbiased Estimator 

This is the simplest possible estimation process. The channel estimate at 

time t=iT is given by 
I t -1 ~,-1 

Y i = S i r i S i siYi 
, -1 

+ s. w, 
~ ~ 

(3.4.2) 

Assuming correct detection,. s',=s., so 
-1 ~ ~ 

As shown in 

y' , 
~ 

Fig.3,4.2, 

= s, r, = y, + 
~ ~ ~ 

-1 
s. w. 
~ ~ 

(3.4.3) 

the reciprocal of s', is formed by taking the 
~ 
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s'. and dividing by the amplitude squared. 
1. 

for all {i}, therefore 
-1 

s' . 
1. 

= 5'. * 
1. 

Is
i l2 

= 's'. * 
1. 

For the 

(3.4.4) 

The mean-square error of this estimate can now be determined 

theoretically as follows. Assuming correct data symbols are fed back from 

the detector (Eq.(3.4.3», then in the absence of noise 
-1 

Y'i = Si r i = Yi (3.4.5) 
-1 

In other words, s. r. gives an exact estimate of the channel for all {i}. 
1. 1. 

The mean-square in estimation is 
(3.4.6) Ae = 0 

This is of course the optimum estimate 

Now, assuming correct data symbols 

of y. in 
1. 

the absence of noise. 

fed back (Eq.(3.4.3». In the 

presence of additive white Gaussian noise 

-1 
Where s. r. is an 

y'. = S 
1. 1. 

unbiased 
1. 1. 

-1 -1 
r. = y. + s. W. 

1 ~ ~ 1 

estimate of y.. This 
1. 

(3.4.7) 

is the optimum raw 

estimate of y .• 
1. 

This means that the only way to improve on this estimate 
-1 

is by smoothing the noise sequence Cs. w.}, to reduce its average power. 
1. 1. 

The mean-square error in the estimate of y. is givenCby the 
-1 l' 

mean-square value of the noise component s. W.. That is 
1. 11. 

= E[ls
i

- WJ2) Ae = lim l ~lsi-lwiI2 
N+'" N . =1 

= E[lsi-II2).E[lwii2) 

(3.4.8) 

(for independent s,w and constant Is
i

-
1

12 

A. = 1.202 

for all {i}). Therefore 

e 
= a 2 ( 3.4.9) 

-1 
Thus, the real and imaginary parts of S. w. are statistically independent 

1. 1. 

Gaussian random variables with zero mean and variance 'a 2 • But, since the 

signal-to-noise ratio is ~ta2, then 

).. = 'j/I-l 
e 

(3.4.10) 

or in decibels . -1 
A.e = 1010glO('P ) = -(1/1 + 3) dB (3.4.11) 

Since there is no prediction in this estimation process, the best 

one-step prediction of y. 1 for use in the detector is 
1. + -1 

Y'i+l,i = Y' i = Yi + Si wi 
(3.4.12) 

The mean-square error in this prediction can now be determined 

theoretically. Assuming correct detection and in the absence of noise 

(EqS.(3.4.5) and (3.4.12» 
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y' . +1 . ~ y. 
1. ,1. 1. 

(3.4.13) 

Therefore, the mean-square error in this prediction over N {y' .. 1} is 
1,1.-

given by 
A. ~ 

p 
_ y'" 12 

1,1-1. 

(3.4.14) 

Thus for a given symbol rate, the mean-square error in prediction with no 

noise depends on the fading 'rate, since Eq Yi-Yi_
1

12) is different for 

each different fading rate. Consequently the prediction error will level' 

off to an irreducible error given by Eq.(3.4.14) as the signal-to-noise 

ratio is increased. Clearly, the faster the fading, the worse this 

irreducible error would be. 

In the presence of noise, the prediction error would be 

A 
p 

N 
~ !. 2:IYi - Yi-1 

N i~l 

-1 I - si-1 Wi _1 2 (3.4.15) 

~ E[I Yi-Yi_
1

12 ) + E[lsi-1wiI2) (for uncorrelated y,s,w) (3.4.16) 

As the signal-to-noise ratio is decreased to the point where E[I Yi-Yi_
1

12 ) 

is negligible compared with E[ls.-
1

w. 1 2), then 
111 

'A ~ E [ 1 s . - W. 12) ~ A ~ - (\11+ 3) dB 
P 1 1 e 

(3.4.17) 

3.4.3 Unbiased Estimator with Least-Squares Fading-Memory Polynomial 

Prediction 

It should be possible to improve the performance of the unbiased estimator 

by incorporating some form of prediction as shown in Fig.3.4.3. 

Least-squares fading memory prediction is tested here using polynomial 

filters. Jhese prediction filters have been used successfully at 

Loughborough University in tests over HF radio links [64,65,68-71). 

From Eq.(3.4.2), the unbiased estimate of y. is 
-1 -1 ~1 

y'. ~ s'. r . ~ s'. s . y. + s'. w. ( 3.4.18) 
1. 1. 1. 1. 1. 1. 1. 1 

and assuming correct detection 
-1 -1 

y'. ~ s. r. ~ y. + s. w (3.4.19) 
1. 1. 1. 1. 1. 1 

The predictor now forms the one-step prediction y'i+1,i of Yi+1' First of 

all, the error signal E. is formed as 
1 

E ~ y' - y' ( 3.4.20) 
1. i i,i-l 

Then, for any given degree of the polynomial predictor, the equations in 

Table 3.4.1 are evaluated in the order shown resulting in the one-step 

prediction y'. +1 .• The terms Y'. +1 ., z'. +1 ., z'. 1 . 
1. ,1 1.,1 1.,1 1+,l. 

defined in 

Eq.(3.4.21) are functions of the first, ,second and third derivatives 



Table 3.4.1 

Degree of 
polynomial, p 

o 

1 

2 

3 

Least-squares fading memory prediction using a 
polynomial filter 

•• 
Y i+l,i 

y' i+1,i 

". z. . 
1+1,1 

'. . 
Y i+l,i 

y' i+1,i 

'.', z .. 1+1,1 

". Z. l' 1+ ,I 

.. 
Y i+l,i 

one-step prediction 
at time t=iT 

= Y"' l + (1-6) El 
I,'· 

• • (1-6) 2E = y .. 1 + 
1,1· I 

y' .. 1 •• (1-6 2)E = + Y i+l,i + 
I,'· I 

". 1 3
E = z .. + -(1-6) 

1-1,1 2 I 

•• 2'" + ;(1-6) 2(1 +6) = y .. 1 + Z. . E 1,'- 1+1,1 I 

y' .. 1 •• - ". + (1-6 3)E = + Y i+l,i Z. 1 . 1,1- 1+ ,I I 

"', + .1.(1-6) 4E = z .. 1-1,1 6 I 

", 3···· + (1-6) 3 (1 +6) E = z .. + Z. 1 . 1-1,1 1+ ,I I 

'. 2 z· 3···· = y .. 1 + - z. . 
1,1- i+l,i 1+1,1 

1 
2 (11 + 146+ 11 6 2) E + -(1-6) 

6 I 

y'i+l,i y' .. 1 + 
. . - " . + .." + (1-6 4) E = Y i+l,i Z. 1 . Z. . 

1,1- 1+ ,I 1+1,1 I 
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respectively of y' '+1 . with respect to time •. They are considered in 
1 ,1 

detail elsewhere [110]. 

"1 = 
Z . +1 . 1 ,1 

T.dy' '+1 . _ 1 ,1 

dt 

T2 d 2y' _. __ i+l,i 

2 dt 2 

... , = T3d 3 , 
z '+1 . y . 1 . 1. ,1 _.~ 1+ ,1 

3 dt 

(3.4.21) 

Under the following assumptions the predictor of degree-p minimizes 

the mean-square error in the prediction y'i+1,i of Yi+1 by fitting the 

1 I' I samp es Y i'Y i-l'Y i-2'··· to a polynomial of degree-p; 

Assumption 1:- The sequence of samples y. ,y. l'Y' 2' ••• satisfies a 
1. 1- 1-

polynomial equation in t (time) of degree-po 

Assumption 2:- These samples {y.} satisfy y' .=y.+additive white noise, for 
1 1 1 

all {i}. 

Assumption 3:- e is matched to the channel conditions. 

Assumption 2 is satisfied by the unbiased estimator. Assumption 1 is 

only satisfied for a Rayleigh fading channel over very short periods of 

time. As the degree of .the polynomial is increased, Assumption 1 is 

satisfied over longer periods of time. 

Of course, if the channel {y.} is assumed to fit a polynomial of 
1 th 

degree-p, then all derivatives of Yi greater than the p are by 

definition equal to zero. Hence. as shown in Table 3.4.1. the polynomial 

predictor of degree-p has p+1 equations to evaluate. 

For all the predictors e is a real constant in the range -1 to +1 (but 

nearly always positive). and is in effect an exponential weighting factor. 

All previous estimates y' .• y'. 1 •... are involved in the evaluation of the 
1 1-

prediction y"+l . in these recursive prediction filters. But in 
1 .1 

practice. only the latter estimates are fitted to a polynomial of 

degree-p. There is a gradual departure from this polynomial as the age of 

the estimate increases. The predictor places exponentially decaying 

weighting factors on all previous estimates. The value of e determines 

the rate of decay. Increasing the value of e towards +1 increases the 

number of estimates that are effectively involved in the prediction. This 

gives a better smoothing of the additive noise in the unbiased estimates 

but results in a slowing.down ·of the ability of the predictor to track 

changes in the channel. So generally. as the signal-to-noise ratio 

decreases. 8 tends to increase towards +1. The optimum value of 8 for any 
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given fading rate and signal-to-noise ratio is best evaluated by computer 

simulation. 

3.4.4 Unbiased Estimator with Modified Least-Squares Fading Memory 

Polynomial Filters 

These polynomial filters are not necessarily optimum for this fading 

channel because, as pointed out in Sec.3.4.3, these filters 'have 'been 

defined as optimum where the channel samples {y,} can be assumed to fit 
1. 

exactly to a polynomial of degree-po This is not true here. The 

degree-l polynomial predictor is now slightly modified to see if it can 

be improved for this fading channel. 

The set of equations for this modified degree-l predictor now become 

E = 8 (y', y' ) (3 4 22) i a 1. - i,i-l •• 

y' '+1 ' = 6
b
y', , 1 + (1-6) 2 E , ( 3.4 .23 ) 

.1.,1 1,.1.- .1. 

y'i+l,i = 6c Y'i,i-l + Y'i+l,i + (1-6 2 )Ei (3.4.24) 

6 ,6
b

,6 are all real-valued constants,which can be set to minimize the 
a c 

mean-square error in prediction, A , in an exactly 
p 

done for 6 in the previous section. The values of 

similar way as was 

6 ,6
b

,6 are found 
a c 

experimentally by computer simulation. 

pred'ictor reduces to its standard form 

If 6 =6
b

=6 =1, then this 
a c 

given in Table 3.4.1. 

modified 

6 in the range 0 to +1 has the effect of smoothing the output of the 
a 

predictor. The predictor i's now only updated in the direction of the 

error E, rather than by the whole error. 
1. 

The effect of 6
b 

on the degree-l predictor can be seen by expanding 

out Eq.(3.4.23) into its non-recursive form. Assuming the predictor has 

been running from i~1,2, ••• i-l,i, then 

y', 1 ' = (1-6)2(E, + 6
b

E, 1 + 6
b

2E, 2 + ••••• + 6
b

i
-

l
E

l
) (3.4.25) 

1+ ,1 .1. 1- 1-

With 6
b

=1 in its standard form, the degree-l predictor takes equal notice 

of all {Ei} in the updating of y'. But with 0<8
b
<1, this prediction of 

the slope of the channel now has a fading memory, taking less notice of 

older error measurements. 

Similarly it can be shown 

memory effect on the degree-l 

non-recursive form gives 

that 8 
c 

(where 0<8 <1) has a further fading 
c 

predictor. Expanding Eq.(3.4.24) into its 

y' '+1 ' 1. ,1. 
= . I + e '. 

y i+l,i c Y i,i~l 6 2"' + +6 io • + y, l' '2 •••• Y 1 0 C 1- ,1- C, 

i-I 
+ (1-6 2 )(E, + 6 E, I + 6 2E, 2 + •••• + 6 El) 

.1. C 1- C 1- C 
(3.4.26) 

The prediction of the channel value now takes less notice of older error 

measurements and older predictions of slope. 
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Fig.3.4.4 Block diagram of unbiased estimator with Taylor 
expansion predictor 

Table 3.4.2 p-component Taylor expansion predictors 

p Co C, c
2 

c
3 

c
4 Cs 

2 2 - 1 0 0 0 0 

3 3 - 3 1 0 0 0 

4 4 - 6 4 - 1 0 0 

5 5 -10 10 - 5 1 0 

6 6 -15 20 -1 5 6 - 1 
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3';4.5 Unbiased Estimator with Taylor's Expansion Predictor 

For such a fast fading channel it may be better to predict along only the 

most recent samples of {y'.} rather than to take account of all the 
l. 

previous estimates. After all, the channel is practically uncorrelated 

with itself over distances greater than abcut 100 samples. 

The predictor shown in Fig.3.4.4 is a p-component linear feedforward 

transversal filter. It forms the one-step prediction y'. 1 . from the p 
1+ ,1 

samples Y'i,Y'i-l,Y'i-2, ... ,Y'i-P+l as 

Y ' - c y' + C y' I + c y' 
i+1,i - 0 i 1 i-1 2 i-2 

+ + c y' ••• l' +1 p- l.-p 
(3.4.27) 

It has been shown (111,112) that the coefficients {c
k

} for one-step 

prediction may be determined from the Taylor series expansion of the 

continuous transfer function H(s)=l, given by 

(3.4.28 ) 

c 1 
p-l 

-1 
where T , the inverse 

p 
Taylor matrix, is a pxp square matrix defined in 

Appendix E (111,112). The p-component predictor coefficients so obtained 

for p=2,3,4,5,6 are given in Table 3.4.2. (It is interesting to note that 

the Lagrange predictor (110) uses exactly the same set of predictor 

coefficients, but has been derived in a different way). 

3.4.6 Unbiased Estimator with Sinewave Scheme of Channel Prediction 

It was seen in Sec.2.2.1 that the fading channel has a dominant high 

frequency component at the maximum Doppler frequency shift, f. If this 
m 

high frequency component could be removed, then it should be possible to 

track the fading that remains more accurately. 

The sinewave component and the residual fading component of the fading 

channel y. are now described. At time t=iT, the real part of y. can be 
l. . l. 

represented as 

YI . = x. + v. (3.4.29) 
.1 1. l. 

where x. is the sinewave component and v. is the residual fading 
l. • l. 

component. An example of this is shown in Fig.3.4.5. For convenience 

only the real part of the channel component is considered here, bearing in 

mind that an exactly similar description can be given for the imaginary 

part. 

The sinewave component is generally represented by 

(3.4.30) 
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as shown in Fig.3.4.8(~). 0.+c
k 

is the phase angle of x. in radians. 
~ ~ 

0';;0.<211. 
~ 

c
k 

is assumed to be constant over any half-cycle of the sinewave 

peak and a trough.~~C0T is the duration of time between the kth. between a 

and k+l
th 

peak/trough. where T is the symbol period.4~k is generally NOT 

It is assumed that ~~k+1 and c kzck +1 for all a whole number of symbols. 

{k}. so these small changes in instantaneous frequency with time can be 

tracked. The position of each successive peak/trough is given by 

Tk+Ck • 11<.il+·Ck+i' ••• and generally lies between two adjacent samples of {x). 
,-

In the absence of any phase errors (that is. when ck=O for all {k}). the 

positions of the successive zero crossings are given by 

T ¥ T where T _1 (T +'t: ) The absolute value of the 
~+" 'k+1,' k+2'···· k+t-' k k+1 • 

k h peak/trough is given by ~+bk' so ak+bk~O. It is assumed that 

ak+bkzak+1+bk+1 for all {k}. so these small changes in instantaneous 

amplitude can be tracked. The residual fading component v. in Eq.(3.4.29) 
~ 

is now defined such that Eqs.(3.4.29)-(3.4.30) are satisfied. for all 

{i}. 

The sinewave scheme of channel prediction shown in Fig.3.4;6 consists 

of two separate operations; sinewave prediction followed by residual 

fading prediction. The channel prediction y'. 1 . used in the detector is 
~+ ,1 

given by the sum of these two separate predictions. The method tested in 

Chapter 6 is ·now de'scribed. 

At time t=iT, assuming 8',=8., 
1 ~ 

the real part of the unbiased channel 

estimate y'. is (from Eq.(3.4.3» 
~ 

y' :;:; 
!!i 

Substituting W.=Re[s. w.l 

-1 
YI . + Re[s. w.l 

.1 1. l. 

~ ~ 1 
and Eq.(3.4.29) into 

y'I . = x. . ~ ~ 
+ v. + W . 

~ ~ 

(3.4.31) 

Eq.(3.4.31) 

(3.4.32) 

where the {W.} are statistically 
~ 

independent Gaussian random variables 

with zero mean and variance ,cr2 (given in Sec.2.4.1). 

It is assumed that at any time t=iT 

and the prediction 

xi = (a
k 

+ b
k

)sin(0
i

+c
k

) 

of x, in this sinewave scheme is given by 
~ 

Xl = a sinE> 
i k i 

(3.3.33) 

(3.3.34) 

Hence there is an error of -b
k 

in the prediction of the peak value and an 

error of -c
k 

radians in the prediction of the phase angle of the sinewave 

component. This is shown in Fig.3.4.~(b). In order to predict this 

sinewave component, the {b
k

} and {c
k

} must be tracked as they change with 

time. A further assumption must be made that the residual fading v. 
~ 

remains at a constant value over any half-cycle of the fading. So the 
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estimate, x' . I 
~ 

in EqO.4.34) is 

0,,6.<,./2 and 'tk_!~i<rk 
~ 

x' . = a
k

sin0
i

, where 6. 
~ ~ 

"/2,,6.<1r 
~ 

and Tk~i<lk+! 

x' = a
k

sin0
i

, where 6 
~ ~ 

n,,6i<31r/2 and Tk+!~i<rk+l 

xli = ak+
1
sin0i , where 6. 

~ 

defined as follows: 

= 'It (i-T. ) 
-- k-! 
~-l 

= 'It(i-T+!~) 
- k k 
~ 

= 'It (i - T +!A ) 
- kK 
~. 

(3.4.35) 

(3.4.36) 

(3.4.37) 

Referring to Fig.3.4.7. the best estimate of the peak value ak+b
k 

(at 

6. ='It/2 ) 
~ 

from n measurements {Y'I.i}' regularly spaced over the interval 

0,,6.<1r. is 
~ 

n, . ~ 2 n , "C"'Y .s~n",. - - ,,",y . 
~ I.~ ~ 'It ~ I.~ 
i=l i=l 

(1 - 8/1T2)~Sin2ei 
i=l 

This has been derived in Appendix F. 

a +b' = 10 .55796(>n?, . sine. 
k k I.~ ~ 

n i=l 

So let 

- 0.63662~Y'I.i) 
i=l 

(3.4.39) 

( 3.4.40) 

b'k can now be taken as the raw measurement of b
k

• 

error or discrepancy between the measured value of 

Clearly b'k is the 

ak+b
k 

and its predicted 

value a
k

• The predicted value of the next peak level is a
k

+
l 

and this is 

taken to be 

(3.4.41) 

where e
b 

is an appropriate positive constant a little less than +1, whose 

optimum value needs to be determined experimentally. The above equation 

gives a degree-O least squares fading memory prediction and can be 

extended to degree-l or degree-2 as in Sec.3.4.3 

from 

Similarly, the best estimate of the peak value ak+l+bk+
l 

(at 6
i

=31r/2) 

n measurements {y' .} regularly spaced over the interval 
I.~ 

a k l+b'k 1 = 10.55796G>:y, .sin6. + 0.63662~Y' .) + + I.~ ~ L... I.~ 

n '~l i=l 

1r$.<2'1r is 
~ 

(3.4.42) 
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So the absolute value of all peaks of the sinewave is given by Eq.(3.4.40) 

and all troughs by Eq.(3.4.42). The prediction of the absolute value of 

the next peak or trough is given by Eq.(3.4.40) 

Referring to Fig.3.4.7, the best estimate of c
k

-
1 

from n measurements 

{y'I .} regularly spaced over the interval -~/2'6<~/2 is (see Appendix 
.1 1 

F) 

So, let 

(1 - 8/'Ir') ±y' . sin6 . 
. 1 I.1 1 1= 

tan-ll5.27898~?'I.iCOS6i - O.63662f?'I.i~ 
~ i=l i=l 

n, . 
~y .sln6. 
i=l I.l 1 

n n 
= 5.27898~Y'I .cos6. - O.63662~Y'I . 

~ .1 1 2-.1. 
i=l i=l 

n. . C\ 
~y I .Sln",. 
6 .1 1 

i=l 

(3.4.43) 

(3.4.44) 

Similarly, the best estimate of c
k 

from n measurements {y'I.i} regularly 

spaced over the interval 'Ir/~6.<3~/2 is 
1 

n n 
c' = 5.27898~y' .cose. + O.63662~y' . (3.4.45). 

k ~ I.l 1 ~ I.l 
i=l i=l 

n, . t:\ 

"""y I .Slno. L...J .1 1 

i=l 

A small phase error is assumed here, such that tan(c)zc. c'k-l can now be 

taken as the raw measurement of c
k

-
1

• Now 

C'k_l = -c'k-l~k-l 
1r 

(3.4.46) 

Clearly, C'k_l is the error or discrepancy (as a number of symbols) 

between the measured time .Tk_,+C'k_l of the (k_l)th zero crossing of the 

sinewave and its predicted time T
k
_,. The minus sign in Eq.(3.4.46) is 

necessary because a positive phase value of c
k

-
1 

radians results in a 

negative value of C
k

_
1 

samples. 

T d · f kth he measure t1me 0 the peak/trough is Tk+C~_l' since this phase 

error is assumed constant over the half-cycle of the sinewave in the range 

-~/2~e.<~/2. So, the measured value of the number of samples between 
1 



59 

0.=-n/2 and e.=n/2 
1 1 

The predicted time 

is ~k-l+C'k-l' whereas the predicted 
. th th 
1nterval between the (k-l) and k 

number was L\-l. 

zero crossings as 

a number of symbol periods is 

t-k = ~-l 
now given by 
+ (1-8 )C' 

c k-l 
(3.4.47) 

where e is an appropriate positive constant just less than +1, whose 
c 

optimum value needs to be determined experimentally. Eq(3.4.47) gives a 

degree-O least squares fading memory prediction of the zero crossing 

interval. It can be extended to degree-l or degree-2 as before. 

It is important to observe that the correction is applied to the 

predicted time interval of the next half-cycle rather than to the time 

instants of any of previous predicted zero crossings. This is a 

correction to the frequency of the signal rather than its phase. 

The prediction x'. is now subtracted from the raw measurement y'I . to 
1 .1 

give the residual fading estimate v'., 
1 

v' 
i 

= y' - x' -. 
I.i i-

where 

v. + W. 
1 1 

The simple polynomial filter (degree-l or degree-2) now operates on the 

{v'.}, to track the residual fading. 
1 

The prediction v' '+1 . of v. 1 is 
1.,1. 1+ 

then added to x'i+l to give the resultant prediction x'i+l+v'i+l,i of 

y'I . +1 .• 
• 1. ,1. 

This prediction together with the corresponding prediction 

y'Q . 1 . is used in the appropriate 
• 1.+ ,1 

3.4.7 Equalizer 

detection process • 

It was shown in Sec.3.4.2 that the unbiased estimator gives the optimum 

"raw measurement" of y. 
1 

information gained from 

from s. and r .• 
1 1 

previous channel 

But it does not use any 

t · t ' , es lma es Y . l' Y . 2' •••• 
1- 1-

However, the channel samples {y.} actually change quite slowly from 
1 

one 

sample to the next. So by using this knowledge it should be possible to 

reduce the mean-square error in the estimate of the channel. This should 

in turn lead to a lower probability of error in the detector. The linear 

feedforward equalizer described here is such an estimation process. At 

t=iT it updates the estimate of the inverse of the channel' by an amount 

depending on the samples r., s' .• 
1 1 

Equalizer equations:

After the receipt of r. 
1 

X. = C'. lr. 
1. 1- l. 

Then, after the maximum likelihood detection 

(3.4.48) 

of s. from x. 
1 1 
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e, == S·. - x. (3.4.49) 
111 

C'. = C' + ae. r * . ( 3 .4. 50 ) 
1 i-1 1 1 

Where "a" is a small, positive real-valued quantity whose optimum value is 

determined experimentally. All other quantities are complex-valued. This 

operation is depicted in Fig.3.4.9. The square containing the symbol ~ is 

an accumulator that adds the error signal ae.r*. to the stored· value 
1 1 , 

c . 1 1-
to give the value c'., which is stored ready for the next sample. 

1 

This quantity c'i is an estimate of c
i

' where c
i 

satisfies the 

equation 

c.y. = 1 
1 1 

(3.4.51 ) 

for all {i}. (Because y. is time varying, c. must also be time varying.) 
1 1 

In other words, the equalizer acts as the inverse of the channel. It 

corrects for the multiplicative fading introduced by the channel and 

restores the received signal into a copy of the transmitted signal, 

(neglecting for the moment the effects of noise). 

The optimum value of "a" can be determined experimentally as follows. 

Put Eq.(3.4.49) into Eq.(3.4.50) 

C'. = c'. + a(s·. - x. )r*. 
1. 1-1 1. 1. 1-

Put Eq.(3.4.48) into Eq.(3.4.52) 

= (1 - ar.r*. )e', 1 + as'.r*. 
1. 1. 1- 1. 1-

Put a=l/(r
i
r*i) =l/Iril' into Eq.(3.4.53) 

c· . = s' . 
1 1 

r. 
1 

where r. is given in Eq.(3.4.1) as 
1 

So, for perfect detection 

r. = s.y. + w. 
1. 1. 1. l. 

(s' . =s . ), no 
1 1 

c'. = 1 
1 

But, in the presence of noise 

(3.4.52) 

(3.4.53) 

(3.4.54) 

(3.4.55) 

a=l/l r
i l' 

(3.4.56) 

c'. = s. <.3.4.57) 
1 1 

SiYi + wi 
Clearly, this is the optimum value of "a" in the absence of noise, and 

c'
i 

is independent of all previous values of c'i. But it may well be 

better to use a small constant value for "a ll under noisy conditions. The 

value of c'. would then only change gradually from one sample to the next. 
1 

The equalizer would then change more·predictably, but would rely very 

heavily on the previous estimates {c'.} being accurate. 
1 
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A major problem with this method is that the equalizer is very likely 

to go unstable during deep fades in the channel. Since, as y. tends to 
1 

zero, c. tends to infinity. The equalizer would have to be restarted as 
1 

soon as the signal strength returned. 

3.4.8 Gradient Algorithm Estimator l~J,_(;.5_,.6_7_-n,_q<l,.u_5] 

This linear feedforward estimator forms the estimate y'. by updating the 
1 

previous estimate y'. 1 
1-

by an amount depending on the values of r., s' .• 
1 1 

This is a very similar method to the equalizer of the previous section. 

However, this Gradient algorithm should perform better because it tracks 

the channel rather than its inverse. 

Gradient estimator equations:-

r',=s'y' 
1 i i-l 

(3.4.57) 

e. = r. - r'. (3.4.58) 
1 1 1 

Y '. = y'. + be. s 1*. (3 4 59) 
1 1-1 1 1 •• 

where b is a small, real-valued pcsitive constant whose value is 

determined experimentally. All other quantities are complex-valued. 

is the complex conjugate of s' .• 
1 

s'*, 
1 

After the receipt of r. and the detection of S., the estimator works 
1 1 

by executing Eqs.(3.4.57)-(3.4.59) in numerical order. for all {i}. This 

operation is depicted in Fig.3.4.l0(a). The sample y'. output from this' 
1 

estimator (see Fig.3.4.10(b» is fed into a fading memory polynomial 

filter as described in Sec.3.4.4. The subsequent predicted sample 

y'. 1 . is fed into the detector ready for the detection of the next 
1+ ,1 

symbol si+l. The square containing I is an accumulator that adds the 

error signal be.s'*. to the stored 
1 1 

which is stored ready for the next 

value y'. 1 to give the value 
1-

sample. This accumulator can 

, 
Y it 

alternatively be represented as shown in Fig.3.4.l0(b). The square marked 

T is a store that holds the channel estimate y'. and each time the store 
1 

is triggered on the receipt of a sample ri' the stored value is shifted 

one place to the right. 

This estimator is in fact a recursive digital filter, and the output 

y'. depends on all previous estimates y'. l'y'· 2 ••••• by an amount 
1 . 1- 1-

depending on the value of the constant b. The smaller the value of b, the 

smaller the effect of the additive noise on y'i' but the slower the rate 

of respcnse of y'. to changes in y .• 
1 . 1 

The performance of this estimation process can be analysed 

theoretically. 
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1 
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Put Eq.(3.4.58) into Eq.(3.4.59) 

y',=y', +b(r.-r'.)s'*. 
1 1-1 1 1 1 

But Eq.(3.4.1) shows that 

r i = siYi + 

So putting Eqs.(3.4.57) and (3.4.61) 

W. 
1 

into Eq.(3.4.60) 

y'. = y' + b(s y + w - s'.y'. )s'*, 
1 i-1 i i i 1 1-1 1 

(3.4.60) 

(3.4.61) 

= bs.s'*.y. + (1 - bs'.s'*. )y'. + bs'*.w. (3.4.62) 
1 1 1 1). 1-1 1. 1 

Now put b=l/(s' .s'*,) =l/ls'. I' into Eq.(3.4.62) 
1 1 1 -1 -1 

y'i = sis'i Yi + s'i wi (3.4.63) 

This is identical to Eq.(3.4.2). So the Gradient algorithm with 

b=l/ls'ii' is exactly equivalent to the unbiased estimator (Sec.3.4.2), 

even with incorrect detection. For the QPSK signal used in System 1, b=! 

for all {i}. 

So now, assuming correct detection 
-1 

y'. = y. + s. W. 
1. 1. 1.1. 

(3.4.64) 

and with no noise 

y' . 
1 

= y. 
1 

(3.4.65) 

This estimate is independent of all previous channel estimates and is 

optimum in the absence of noise. However, this may not necessarily be the 

optimum 

noise. 

estimate of y. 
1 

It is possible 

from 

that 

s., r. and y'. 1 in all practical levels on 
1 1 -- 1-

other values of b in this Gradient algorithm 

may give an estimate of y. with a smaller mean-square error. Since, with 
1 

correct detection and b~l/lsil', from Eq.(3.4.62) 

So for 

y'. = bls.I'y, + (1 - bls.I')y'· I + bs*.w. (3.4.66)' 
1. 1. 1. 1. 1.- 1. 1. 

example, consider b=0.8/lsil' 

y'. = 0.8y. + 0.2y'. 1 
1. 1. 1-

-1 
+ 0.8s. w. 

1 1 

The mean-square error in this estimate over N {y',} is 
1 

A = 1:. ~IY' -
e NL... 1 

i=l 

y' . I' 
1 

=ly·-y'·I' 
1 1 

(where x is the average or expected value of x). 

s., W. 
1 1 >.. I::: 0.041 y. - y'. I' + 0.641 s . -lw. 1 ' e 1. 1. 1l. 

So, for independent Y., 
1 

(3.4.67) 

If the estimate is assumed to be good enough and the fading rate slow 

enough so that generally y'. l=Y" then 
1- 1 

7--:-~ 
A = 0.64is,-lw. I' e 1 1 

(3.4.68) 

This represents a 2dB improvement in this channel estimate over the case 

when b=l/ls. I' -or the unbiased estimator. 
1 

The smaller the value of b here, the more this mean-square error 
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-1 
caused by the noise component bs. w. will be reduced. But, as b gets 

1 1 

smaller, so the estimator is slower to respond to the fast fading. This 

in turn degrades the assumption 

mean-square error. The optimum 

that y'. IZY. which tends to increase the 
1- 1 

value of b for any given signal-to-noise 

ratio and fading rate is best evaluated by computer simulation. 

3.4.9 Gradient algorithm estimator incorporating feedback from a fading 

memory polynomial predictor 

This is the standard arrangement of the Gradient algorithm estimation 

process that has been used successfully at Loughborough University over HF 

radio links, where the fading rate is slower [64,65J. 

Gradient estimator equations:-

r'. = s' y' 
1. i i,i-1 (3.4.69 ) 

e. = r. - r'. (3.4.70) 
111 

Y ' = y' + be s' * (3 4 71) i i,i-1 i i •• 
Where again, b is a small, real-valued positive constant whose optimum 

value is determined experimentally. All other quantities are complex

valued. s'*. is the complex conjugate of s' .• 
1 1 

This estimation process operates in an exactly similar way to that of 

the previous Sec.3.4.8, but with the predictor now incorporated into the 

estimator. The only difference being that the estimate y'. 1 stored in 
1-

the estimator of Sec.3.4.8 and used in Eqs.(3.4.57)-(3.4.59) is replaced 

by the prediction y' .. 1. This prediction from the degree-p fading 
1,1-

memory predi.ctor is determined according to the corresponding equations in 

Table 3.4.1. 

The input to the degree-p predictor is 

E. = y' - y'. 
1. i,i~l l. 

(3.4.72) 

which, from Eq.(3.4.71) is equivalent to 

E. = be.s'*. (3.4.73) 
1 1 1 

So, Eq.(3.4.71) need not be executed since the {y'.} are not required. 
1 

Only the {y' .. 1} are used in the detector. Hence the lower diagram of 
1,1.-

Fig.3.4.1l(b) • 

The optimum values of b (in Eq.(3.4.71» and e (in Table 3.4.1) are 

found experimentally by computer simulation for any given fading and noise 

conditions. 

The theoretical analysis of this estimator's performance is exactly 

similar to that for the previous estimator, Eqs.(3.4.60)-(3.4.68), with 

y'1.-1 replaced by y' .. 1. Hence, from Eq.(3.4.62) 
1,1-
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y', = bs,s'·,y, + (1 - bs' ,s'·, )y', , + bs'·.w, (1.4.74) 
~ 1. 1 1 1. 1. 1,1.-1 1. 1. 

and with b=l/(s' ,s'·,) =l/IS', 12 =;, and correct detection (s' ,=s,), 
1. 1. .... 1. 1. 

Eq.(3.4.74) becomes 
-1 

y', = y, + s, w, 
1. 1. 1. 1. 

(3.4.75.) 

Again, with b=l/ls', 1 2 , 
). 

this estimat~on process for y', is identical to 
). 

the unbiased estimator (5ec.3.4.2) even with incorrect detection. 

estimate y', is independent of all previous channel estimates and 
). 

This 

predictions and is optimum in the absence of noise, since when w =0 
i 

yl. = Y 
). i 

(3.4.76) 

This is not necessarily the optimum value of b in the presence of 

noise. With correct detection and b~l/ls, 12 , Eq.(3.4.74) becomes 
). 

y', = bls, 12y, + (1 - bls. 12 )y', , 1 + bs·,w, 
l. 1. 1. 1. 1,1- 1. 1. 

So, for the example where b=0.8/IsiI2 

y', = 0.8y, + 0.2y', , 1 + 0.8s·,w, 
l. 1. 1.,1- 1. 1. 

The mean-square estimate in this estimate is 

\, = 1:. flYi - y'i l2 = 7"IY-i---y-').-:, 1-2 

N i=1 

So for independent S., y" w, 
). ). ). 

(3.4.77) 

~ = 0.041 Yi - y'i,i_1 12 + 0.64\si-1wi\2 (3.4.78) 

Comparing Eq.(3.4.78) with Eq.(3.4.67), one would intuitively expect this 

estimation process to be an improvement over that of 5ec.3.4.8 since 

generally, y'i,i-l is likely to be much closer to Yi than is y'i-1. 

BUT the analysis must be carried one stage further. How does this 

process of 

affect the 

feeding-back the prediction y', , 1 into the Gradient estimator 
1,1.-

subsequent performance of the predictor? The input to the 

predictor is now highly dependent on previous outputs from the predictor, 

and so does not conform to the assumptions made by Morrison (110) (see 

Sec. 3 • 4 • 3) . 

The input to any of the least-squares fading memory polynomial 

predictors is 

E = Y I - y' ( 3.4.79) 
i i i,i-l 

But, using the unbiased estimator (or Gradient algorithm with b=1/IsiI2), 

assuming correct detection 

y', = y, + 
). ). 

-1 
s. w, 

). ). 

Put Eq.(3.4.80) into Eq.(3.4.79). The prediction error is 
-1 

E = 
i 

But for this estimator, 

Eq.13.4.74) 

Yi - Y'i,i-l + si wi 
assuming b~l/ls, I 2 and correct detection. 

). 

(3.4.80) 

(3.4.81) 

From 
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y'. = bls. I'y. + (1 - bls. I')y'·· + bs*.w. 
1 1 1 1 1,1-1 1 1 

(3.4.82) 

Put Eq.(3.4.82) into Eq.(3.4.79). The prediction error now is 

E. = bls. I'(Y. -
111 

-1 
yli,i-l + si wi ) (3.4.83) 

unbiased estimator). which equals bls.I'X(E. for the 
1 1 

Therefore, it can be seen that the prediction obtained from this 

arrangement of the Gradient algorithm (even with incorrect detection) is 

EXACTLY EQUIV~LENT to that obtained by: 

(i) Forming the unbiased estimate (Sec.3.4.2), then 

(ii) Forming the prediction from these unbiased estimates with a slight 

modification to the prediction algorithm that 

Ei = blsi"(Yi - yli,i-l) 

In fact, this has already been tested in Sec.3.4.4, 

(3.4.84) 

with e =bls. 12 and 
a 1 

3.4.10 Double sampling in the Gradient estimator 

In Sec.3.3 it was stated that the {r i } form a sufficient statistic for the 

optimum detection of the {s) given the {y. } • So nothing is gained in the 
1 

detection process by increasing the sampling rate. But it does not follow 

that the same {r.} and {s.} form a sufficient statistic for the optimum 
1 1 

estimation of the {y.}. In fact, sampling the channel yet) more 
1 

frequently reduces the· fading rate in the channer samples. It was shown 

in the previous two sections that the accuracy of the Gradient algorithm 

estimation process improves as the fading rate in these samples is 

reduced. 

The Gradient estimator described in Sec.3.4.9 is modified here to 

allow for double sampling. The sequence of operations are listed as 

follows. They must be performed in the numerical order shown. 

t=(i-,)T 

( i) From I 

si-I' [s \ 14 

(ii) From r i _,' [ s' i_,14' y' i-Li-l 
t=iT 

(iii) From ri' [
yl

i,i-,14 
(iv) From I s' . si_I' 1 

(v) From r. ,. Si. t I y' i-Li-l 1- 1-

(vi) From ri' s'i' Y'i,i-; 

These operations are now described 

calculate [s'i_,14 

predict [ yl i,i-,14 

detect s'. 
1 

calculate s'. ~ 1-, 
predict yli,i-, 

predict y I • +~ . 
1 1,1 

in detail. 

(i) ~t time t=(i-,)T s'. is known but s'. can be one of four possible 
1-1 1 

values (±l±j). The four-component vector of these possible values is 
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denoted here by 

[s'.1 4 = [s'. 1 s'. 2 
~ 1, 1, 

s'. 3 s'. 41 = [-1-j -l+j +1-j +l+jl (3.4.85) 
1., 1, 

The corresponding four possible values of s'i_, are denoted by [s'i_,1
4

, 

where 

s'. ~ = !Is'. 1 + s'. ), for m=1,2,3,A (3.4.86) 
l.-~,m 1.- l.,m 

This is correct because the sampled impulse response of the transmitter 

and receiver lowpass filters in cascade is (Appendix B) 

h i +, = ••• 0,0,0",1",0,0,0, ••• 13.4.87) 

Where ideal timing is assumed with sampling every T/2 seconds. 

(ii) After the arrival of r. ~, the vector of the four preditions 1-, 
[y'i,i-,1 4 can be formed -one for each corresponding [s'i_,1

4
• The one-

step prediction is performed exactly as described in Sec.3.4.9. The best 

value of the constant b is found experimentally. The channel behaviour is 

now predicted over the time interval T/2 rather than T, which should give 

greater accuracy. 

(iii) At time t=iT after the arrival of r., the value of s'. is detected 
1 1 

(see Sec.3.3). Note that each possible value of s'. 
1 

now has a different 

value of y'. . ~ associated 
1,1-" 

with it in the detection process. 

(iv) Now that 5', is known, 
1 

simply given by 

+ s'. ) 
1 

(v) and (vi) The one-step predictions y' .. ~ and y'. ~ . 
l.,l.-'l l.+'l,l. 

as for step (iii). The value of y' .+~ . is held in store 
1. "],1. 

arrival of r. ~. 1+, 

(3.4.87) 

can now be found 

until the 

Only the predictions {y' .. ~}, for all integers {i}, are used in the 
1.,1-, 

detector. The mean-square error in this prediction for a run of N 

transmitted {s.} 
1 

is N 

Ap = l L::IYi - y'i,i-,I' 
N i=l 

(3.4.88) 

The values of b, e that minimize A for any given fading rate and signal
p 

to-noise ratio are best found experimentally. Since these predictions 

have been made over a time interval T/2 they should be more accurate than 

the corresponding {y'i,i-l} taken with single sampling, as in Sec.3.4.9. 

3.4.11 Kalman estimator 

A Kalman estimator [63,71,113-1161 is often used in preference to a 

Gradient algorithm estimator for fast fading channels, because it is 

quicker to respond to changes in the channel conditions so generally gives 
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a more accurate estimate of a fast fading channel. This improved 

performance is gained at the cost of an .increase in the equipment 

complexity. 

Kalman estimator equations:-

rl. = sly' 
1 i i-1 

e. = r. - r' 
~ 1. i 

K - P s' * i - i-1 i 
W+S',P.5',* 
1 1 1-1 1 

Pi = w[Pi - 1 - Ki S'iPi-1] 

Y'.=Y'. +Ke 
1 1-1 i ~ 

Where r. is given by (Eq.(3.4.1» 
1 

r. 
1 

= s.y. 
1 1 

+ w. 
1 

(3.4.89) 

(3.4.90) 

(3.4.91) 

(3.4.92) 

(3.4.93) 

(3.4.94) 

W is a real-valued constant in the ·range o to +1. All the other variables 

are complex-valued quantities. s'.* is the complex conjugate of s' .*. 
1 1 

Note that the Kalman estimator equations have been slightly simplified 

from their standard form [63,114-116·] because there is no intersymbol 

interference in Eq.(3.4.94). 

single component vectors. 

Here, all variables K., P., s'., y'. are 
1.11.1. 

Again, the one-step prediction can be incorporated into these 

equations by replacing y'. 1 in Eqs.(3.4.89) and (3.4.93) by y' .. 1. 
1.- 1,1.-

3.4.12 Conclusions of channel estimation 

A number of different estimation processes that perform coherent 

demodulation have been tested under the assumption that all detected 

symbols {s'.} fed back from the detector into the estimator are correct. 
1 

That is, 

6 give a 

s'.=s. for all {i}. Results obtained from these tests in Chapter 
1 1 

useful measure of the capabilities of these estimation 

processes. 

The best estimation proce~s was seen to be the Gradient algorithm with 

feedback from the fading memory predictor (Sec.3.4.9). This is, in fact, 

equivalent to the unbiased estimator with modified fading memory 

prediction (Sec.3.4.4). The fading memory filters significantly improved 

the performance of the unbiased and Gradient estimators with a modest 

increase in equipment complexity. The degree-1 predictor being the most 

cost-effective of those tested. When this estimator is combined with the 

detector·in Sec.3.3, only about 1dB is lost in tolerance to noise compared. 

with perfect channel estimation. 

Double sampling (Sec.3.4.10) would improve the performance of this 
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estimation process. However, only a small improvement of less than 1dB is 

possible, which would not justify the extra complexity. So double 

sampling is not considered further. 

The sinewave scheme (5ec.3.4.6) did not work because the dominant 

sinewave component in the fading channel has powerful low frequency 

components superimposed on it. This caused almost instantaneous changes 

in the amplitude and frequency of this sinewave component that could not 

be tracked. 

The Taylor predictor is also not considered further because its 

performance is generally worse than any of the fading memory predictors 

and is no simpler to implement. 

The equalizer tracks the inverse of the channel and since the inverse 

of a deep fade is a peak approaching infinity, the equalizer output tends 

to overflow during deep fades. .It is quite useless for this fading 

channel. Also the Kalman estimator gave no improvement over the 

successful estimators mentioned above. Its increased complexity and well 

known instability problems [114,1151 rule out its use here. 

3.5 Retraining of the Channel Estimator 

Tests have shown that, with detection and estimation processes of the 

general type used here, there is likely to be a catastrophic failure in 

the system over the transmission of a message of typical duration [681. 

The failure usually occurs after a deep fade or a prolongued loss of 

signal power such as when the mobile passes under a bridge. This causes a 

long burst of errors in the·detected data symbols, which in turn reduces 

the accuracy of the channel estimate, which further increases the 

probability of error and so on. Thus, regular retraining of the channel 

estimate must be used. 

3.5.1 Model of the retraining process 

The packet structure assumed in the computer simulation tests is shown in 

Fig.3.5.1. Each packet of information consists of N transmitted symbols 

{s.} (numbered i~l,2, ••• ,N), of which the first R are known retraining 
1 . 

symbols (numbered i~l,2, ••• ,R) and the last N-R are data symbols (numbered 

i~R+1,R+2, ••• ,N). 10% retraining is employed so R~O.lN. Different packet 

lengths are tested up to a maximum of N~120, so 1<R~12. This upper limit 

has been imposed to keep the hardware complexity in the prototype modem to 



:::::::~I-R-e-t-ra-i-n-in-g-rl-------------o-a-t-a-----------,;-::::::: 

i= 1,2, ........... ,R, R+1,R+2, ........................................................ ,N 

Fig.3.5.1 Packet structure used in computer simulation tests 

Table 3.5.1 Training signal 

S. 
I 

1 -1 -j 

2 +1 -j 

3 +1 +j 

4 -1 +j 

5 -1 -j 

6 +1 -j 

7 +1 +j 

8 -1 +j 

9 -1 -j 

10 +1 -j 

1 1 +1 +j 

12 -1 +j 
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a manageable level [92). In practice, every tenth packet is used for 

synchronization purposes to give a total redundancy of about 20% in the 

transmitted signal. However, since we are not here concerned with 

synchronizing methods, the latter redundant packets are omitted and the 

system operates with only 10% redundancy. 

Retraining methods are only described here for the channel {y.}. When 
~ 

two receiving antennas are used (System lB), it is understood that an 

exactly similar operation is carried out to retrain the estimators for the 

two channels {y .}, {Yb .}. So, the baseband received samples during the 
a.~ .l. 

retraining period are {r.} for i=1,2, ••• ,R. From Eq.(3.2.l) 
~ 

r
i 

= siYi + wi ,(3.5.1) 

and the {s.} for i=1,2, ••• ,R are known at the receiver. The particular 
~ 

sequence used for the training signal is not critical. The training 

signal in Table 3.5.1 has therefore been chosen to optimize the 

performance of the retraining algorithm for System 2 (see Chapter 4), 

while at the same time enabling effective symbol timing to be achieved 

over the duration of the training signal (see Appendix C), 

It is assumed during retraining (for i=1,2, ••• ,R) that 

Yi+l - Yi 

so that Yi varies linearly 

defined in Eq. (3.4.21), is 

of y. with i. 
~ 

= Yi 

with 

the 

- Yi-l "" 
•• 
Y i,i-l 

i. The quantity •• 
Y i,i-l' 

one-step prediction of the 

(3.5.2) 

previously 

rate of change 

It is very important that the retraining method is reliable because if 

the channel estimators are badly retrained, it is quite probable that the 

whole of the following data packet would be lo·st. The "best" retraining 

method is defined here as that which results in the lowest bit error rate 

in detection for System 1. This best method should also give the minimum 

mean-square error in the estimate of the channel and its slope at the end 

of the retraining burst. That is, at the start of data transmission. 

The methods tested for retraining the channel estimator of Sec.3.4.9 

are now described. Only the degree-l and degree-2 fading memory 

predictors are tested. The results of these tests are shown in Chapter 

6. 

3.5.2 Ideal Retraining 

With ideal retraining and the packet structure shown in Fig.3.5.l 

y' 
R 
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Y'R+l.R = YR+l - YR (3.5.3) 

The Gradient estimator of Sec.3.4.9 is restarted with y'R' Y'R+l,R' 

Y'R+l R given by their ideal values in Eq.(3.5.3). This is used as a , 
benchmark by which actual retraining methods are compared. 

No attempt is made here to estimate the second derivative of the 

channel during retraining. The high level of equipment complexity 

required for a relatively small improvement in system performance make 

such attempts impractical. It is important to note that a degree-l 

predictor is completely initialised by these estimates of channel and 

slope whereas a degree-2 predictor would also require an estimate of the 

second derivative (see Table 3.4.1). Thus the degree-2 predictor is bound 

to be more seriously degraded by the retraining process than is the 

degree-l predictor. This is of course, another reason in favour of using 

a degree-l predictor rather than degree-2 in the estimation process. 

3.5.3 Reset estimator/predictor to zero at the start of retraining 

The simplest possible retraining method is to reset the estimator and 

predictor to zero just before the arrival of the training signal. So. 

just before the arrival of r
l

• set 

y' = y' = o 1,0 
• • .• I 0 
Y 1.0 = z 1,0 = (3.5.4) 

Then the estimation/prediction process described in Sec.3.4.9 is restarted 

from this point, where the data symbols sl's2 ••••• sR are known at the 

receiver. After the arrival of r R, the predictions y'R+l R Y'R+l R' 
• • • 

z'R+l.R are calculated ready for the detection of data symbol sR+l. 

Clearly, if the predictor has reached steady state by the time i=R, 

then this is the best retraining method. The problem here is that the 

maximum number of training symbols is R=12. and the transient response for 

the fading-memory predictors typically lasts several times longer than 

this. So in this case the channel predictions at the end of the 

retraining burst would generally be unsatisfactory, restulting in a 

serious degradation in tolerance to noise of System 1. 

3.5.4 No Retraining if System 1 has not failed 

During normal operation of System 1 when it has not failed. the Channel 

estimator would have reached steady state by the end of the previous 

packet. In this case it would be best to let the estimator continue with 

y' = y' o N 
of the previous packet 

, 
y N+l.N 

00 



71 

• • = •• of the previous packet y 1 0 Y N+l.N • .. . 
z 1.0 = . .. 

Z N+l.N 
.. (3.5.5) 

on the arrival of r l • rather than to reset their values to zero as in 

Eq.(3.5.4) • 

The problem here is that it is, not a trivial operation to decide 

whether the combined detector and estimator has failed. Even during 

correct operation. the channel estimator is likely to have switched 

through ±90 0 or 180 0 after passing through a de~p fade. with a 

corresponding shift in the detected data symbol values (see Sec.3.6). If 

the estimator is allowed to run on unchanged from the previous packet. 

then during the retraining period any such phase change would have to be . 

determined and corrected. A retraining method that does this would either 

be too unreliable or too complicated to be used in the prototype modern 

[92]. So this method is not considered further. 

3.5.5 Least-Squares methods 

From Secs.3.5.3 and 3.5.4 it.is clear that a method must be found which 

accurately retrains the channel estimator from scratch during every 

retraining period. rega.rdless of whether or not the system has failed 

during the previous data packet. The method considered here is a three 

stage process. and operates as follows: 

Stage 1: Firstly. for each retraining symbol. the unbiased channel 

estimate is formed (see Sec.3.4.3). Since 

r. = s.y. + W. 
1. 1. 1. 1 

(3.5.6) 

and the complete training signal ({s.}. for 
1 

i=1.2 ••••• R) is known at the 

receiver. The estimator now obtains R estimates {x.}. for i=1.2 ••••• R. 
1 

Where 
-1 

x. = s. r. 
111 

-1 
= Yl' + S. W. 

1 1 

is an unbiased estimate of Yi. 

(3.5.7) 

Stage 2: Secondly. from these unbiased estimates. the receiver forms a 

least-squares estimate of both the channel and its slope in the centre of 

the retraining packet. 

Two different least-squares estimates of slope are tested. The 

least-squares estimate of the rate of change of Yi with i. as i increases 

from D-l to D is: 

EITHER Method 1 
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(3.5.8) 

OR Method 2, 

(3.5.9) 

Where, in Eqs.(3.5.8) and (3.5.9) R~2 and 0 is an integer corresponding to 

the centre of the retraining packet, given by 

o = f!R + 1, 

i!R + L 

if R is even 

if R is odd 

(3.5.10) 

Eqs.(3.5.8) and (3.5.9) for Methods 1 and 2 are derived from first 

principles in Appendix G. 

It is well known [117,1181 that the least-squares straight line 

through a set of R data points {x.} passes through the centroid. The 
~ 

centroid is positioned at the arithmetic mean of the {i}, and its value is 

given by the arithmetic mean of the {x.}. So the least-squares estimate 
~ 

of the channel at 

y' o 

i=O derived from the complete training 
R ' 

= 1 ~x. + !y' if R is even 
- L....... ~ 0' 
R i=l 

R 
1 ",,",x. , 
- L-.. ~ 
R i=l 

if R is odd 

Where again, 0 is defined by Eq.(3.5.10) 

signal is 

(3.5.11) 

In practice, the number of training symbols R is known beforehand, and 

therefore the terms Li and ri' in Eq.(3.5.8) would also be known. So the 

general equation of slope for Method 1 can be greatly simplified with no 

need for any divisions. For 

y'7 = 0.006993 

example, 
R . 
2:~x. -
i=l ~ 

if R=12 

0.45454 

Similarly, Eq.(3.5.9) for Method 2, if R=12 

y'7 = 0.090909(xI2 - Xl) 

R 
L:: x. 
i=l ~ 

(3.5.12) 

(3.5.13) 

Stage 3: Finally, these estimates of the channel and slope are used to 

initialise the Gradient estimator with degree-1 (or degree-2) fading 

memory predictor (Sec.3.4.9),. which is restarted at this point, i=o. 

The estimator/predictor is initialised with 

y' 0, 0-1' 

Y'O,O~1 = 

y' o . , 
y 0 
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z, = 0 
D.D-l 

(3.S.14) 

The received samples rD.rD+l ••••• r R have been stored so the estimator / 

predictor is run for i=D.D+l.; ••• R according to Eqs.(3.4.69)-(3.4.71) with 

degree-l or -2 prediction (Table 3.4.1). Now. the predictions y'R+l.R' 

z'R+l.R are stored ready for the arrival of the first data symbol 
. , 
Y R+l.R' 

sR+l' 

This three stage retraining process is tested by computer simulation for 

R=2.3 ••••• 12. with different signal-to-noise ratios and a fixed simulated 

vehicle speed of 6Omiles/hour. The results of these tests are given in 

Chapter 6. and are used to determine the best number of training symbols, 

(R) to use in the prototype modem. 

Eqs.(3.S.8)-(3.S.11) used here to estimate the channel and its slope. 

have been derived in Appendix G for a general scenario of fitting a 

straight line to a set of n sample points by the method of least-squares. 

To directly apply these equations to this system. the following 

observations are made: 

The real and imaginary parts of the complex-valued noise components 
-1 

{so w.} in Eq.(3.5.7) are statistically independent Gaussian random 
1 1 

variables with zero mean and a fixed variance ,cr' (Eq.(3.4.9». The R 

{y.} for i=1.2 ••••• R are assumed to lie on a straight line (Eq.(3.S.2». 
1 

as shown in Fig.3.S.2(a). Under these conditions. Method 1 specifies that 

the least-squares straight line {y'.} is fitted to the R unbiased 
1 

estimates {x.}. for i=1.2 ••••• R. such that 
1 

X, 12 is a minimum 
1 

(3.S.1S) 

The estimates of the channel and its slope at i=D that satisfy this 

equation. are given by Eqs.(3.5.11) and (3.S.8) respectively. where D is 

defined in Eq.(3.5.10). 

Method 1 gives a straight line {y'.} that minimizes the mean-square 
1 

error between this line and the R unbiased estimates {x.}. But'a better 
1 

measure of the slope may be given by Method 2. Here the straight line 

{y' .} is found that minimizes the mean-square error between the slope of. 
1 

the straight line and the slope of the unbiased estimates (x.). This 
1 

least-squares straight line {y' .}. for i=1.2 ••••• R satisfies the 
1 

condition 
R . 

"'" I(y'.-y'. ) -(x.-x. )1' is a minimum f;l 1 1-1 1 1-1 
(3.5.16) 
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It is shown in Appendix G that the estimate of the slope of y, that 
~ 

satisfies Eq.(3.5.16) is given by Eq.(3.5.9). 

Thus, the mathematical model of the least-squares methods used here 

has been defined. It is now shown that Method 1 generally gives a better 

estimate of the slope of y, than Method 2. 
~ 

For Method 1, substitute 

Eq.(3.5.7) into Eq.(3.5.S) 
R -1 y' = 1 ~i(y,+s, w,) 

D - ~ ~ ~ ~ 
R i-1 

, . 
noise-error (1) 

Similarly for Method 2, substitute 
-1 Y'D = (YR + sR wR) - (Y1 

Eq. (3.5.7) into 
-1 

+ sl w1 ) 

R - 1 
-1 -1 

= YR - Y1 + sR wR - sl w1 
R - 1 

... '--....:..V' 
noise-error ( 2) 

(3.5.17) 

(3.5.1S) 

(3.5.19) 

(3.5.20) 

Where again, the first term in Eq.(3.5.20) is an exact estimate of the 

slope of the channel, as long as the 

Clearly noise-errors (1) and (2) 

R {y,} lie on a 
~ 

in Eqs.(3.5.1S) 

straight line. 

and (3.5.20) 

respectively, are the errors in the estimates of the slope of y, for the 
~ 

two different methods. In Appendix G it is shown that the noise-errors 

(1) and (2) are complex-valued Gaussian random processes, whose real and 

imaginary parts both have zero mean, and variances 'ill and 'il2 respectively. 

Now, 

and 

\l = 
1 12 .g:' 

(R-1)R(R+1) 2 

\l = 2 • Cf' 

2 (R-1)' '2 

for R~2 (3.5.21) 

for R~2 (3.5.22) 

-1 
where 0'/2 is the variance of both the real and imaginary parts of s, w. 

~ ~ 
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.' •..•.••.•..•. ; .... 

Example of real or imaginary part of {y.} and 
. I 

its estimate 
(b) Actual during retraining. (a) Assumed by Eq.(3.5.2) 

x 

= real or imaginary part of channel 

= unbiased estimate 

= least.squares straight line 



Table 3.5.2 171 and72 for different values of R 

R 171 xl.. 
2 

172 x.£ 
2 1010g 10171 - 1010g 10172 dB 

cr cr 

2 2 2 0 

3 0.5 0.5 0 

4 0.2 0.2222 -0.46 

5 0.1 0.125 -0.97 

6 0.05714 0.08 -1.46 

7 0.03571 0.05555 -1.92 

8 0.02381 0.04082 -2.34 

9 0.01667 0.03125 -2.73 

1 0 0.01212 0.02469 -3.09 

1 1 0.009091 0.02 -3.42 

12 0.006993 0.01653 ~3. 74 
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and R is the number of retraining symbols 2~R~12. 

So the mean-square error in the estimate of the slope caused by 

noise-errors (1) and (2) depends only on the values of Rand 0 2 /2. The 

effect on V
1 

and V
2 

of using different values of R is shown in Table 

3.5.1. Clearly for R=2 or 3, the error in the estimate of slope is the 

same for Methods (1) and (2). As R increases. the measure of slope 

becomes more accurate with.both Methods. Also as R increases. Method (1) 

steadily improves over Method (2). The reduction in the ,mean-square error 

of Method (1) compared with Method (2) is expressed in decibels in the 

last column of Table 3.5.1. In fact 

= 10l0910(6(R-1)\ ~ 
R(R+1)j 

= 10l0910 (12/[(R-1)R(R+1)1\ 
2/(R-1)' ) 

for large R (3.5.23) 

Method (1) gives a better measure of slope because all R samples of 

the retraining signal are used in the calculation. The effects of noise 

are averaged out more than in Method (2) where only two samples are used 

whatever the value of R. 

Clearly, the larger the value of R. the better will be the estimate of 

the slope of the channel, if the R {y,} for i=1,2, •••• R all lie on a 
-- 1 

straight line as assumed in Eq.t3.5.2) (see Fig.3.5.2(a». Of course, if 

the R {y,} did lie on a straight line, the estimate of slope would be 
1 

equally accurate over the entire training packet. But the actual channel 

samples lie on a smooth curve as shown in Fig.3.5.2(b). Here, the least 

squares straight line through the R {x,} runs almost parallel to tne 
1 

tangent of the curve {y,} in the middle of the retraining packet. So the 
1 

estimate of the slope given by Eq.(3.5.8) or (3.5.9) is most accurate at 

i=D. For both Methods 1 and 2. the estimate of slope at i=D can now be 

expressed by . 
= Yo + curvature-error + noise-error (3.5.24) 

where the curvature-error and the noise-error are independent of each 

other. As R increases the noise-error decreases and the ·curvature-error 

increases. So, for any given fading rate and signal-to-noise ratio, there 

is an optimum length R for the estimate of YD. This optimum length R is 

best found experimentally. 

The mean-square error in the least-squares estimate of YD is now found 

theoretically. Assume that R is an odd number, and substitute Eq.(3.5.7) 



into (3.5.11) 

y' 
D 

R 
= 1 ~(Yi 

R i=l 

• 
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-1 + s, W,) 
1 1 

R -1 
+ 1 ~s, w, 

R ~ ~ 1 

i=l 
~ 
noise-error 

(3.5.24) 

(3.5.25) 

YD 
Where the first term in Eq.(3.5.25) 

the R {y,} lie on a straight line. 
1 

is an exact estimate of YD' as long as 

Clearly, the noise-error in 

Eq.(3.5.25) is the error in the estimate of YD. This noise-error is a 

complex-valued Gaussian random process, whose real and imaginary parts 

have zero mean and variance [119] 

= (3.5.26) 

-y 
where a 2 /2 is the variance of both the real and imaginary parts of s, w, 

1 1 

and R is the number of retraining symbols. 

Clearly, the larger the value of R the better is the estimate of YD' 

if the R {y,} for i=1.2 ••••• R all lie on a straight line as assumed in 
1 

Eq.(3.5.2) (see Fig.3.5.2(a». But. the actual channel samples lie on a 

smooth curve as shown in Fig 3.5.2(b). The first term in Eq.(3.5.25) is 

no longer an exact estimate of YD' and as the curvature in the R {Yi} 

increases. so this estimate quickly deteriorates. The estimate of YD can 

now be expressed as 

y' = y + curvature-error + noise-error (3.5.27) 

where the curvature-error and noise-error are independent of each other. 

As R increases, the noise-error decreases and the curvature-error 

increases. So for any given fading rate and signal-to-noise ratio. there 

is an optimum length R for the estimate of YD. This optimum length R is 

best found experimentally. This is likely to be smaller than the optimum 

length R for the estimate of YD' discussed earlier. 

3.5.6 Conclusions for Retraining 

Regular retraining of the channel estimators can be successfully achieved 

using the least-squares methods of Sec.3.5.5. In the final system. 12 

retraining symbols 'are used. least-squares Method 1 is used to estimate 

the slope of the channel and a degree-l predictor is used in the restarted 

channel estimation process. Test results in Chapter 6 indicate that with 

all the correct data symbols fed back. the tolerance to noise of the 

estimator with this retraining"method is only about idB worse than with 
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ideal retraining. Whereas if the estimators are just reset to zero at the 

start of retraining, (Sec.3.5.3), then about 4dB would be lost in 

tolerance to noise at high signal-to-noise ratios. 

3.6 Combined Detection and Estimation 

The maximum likelihood detection described in Sec.3.3.2 is now combined 

with the Gradient estimator described in Sec.3.4.9. The estimator uses a 

degree-l fading memory predictor (Table 3.4.1) and is regularly retrained 

using the method described in Sec.3.5.5. This is the combined detector 

and estimator for System I, that performs coherent detection at the 

receiver. It is shown in Fig.3.6.1. 

Computer simulation tests in Sec.6.3 clearly show that differential 

coding of the binary digits must be used with this combined detector and 

estimator for both Systems 1 and 2. This is because a deep fade often 

causes a phase change of ±900 or 180° to be introduced into the prediction 

of the channel. The following stream of detected data symbols are now all 

rotated in phase by the appropriate multiple of 90°, as described in 

Sec.2.3.3. Correct detection is achieved with differential coding of the 

binary digits (DQPSK), whereas 50% errors are received without it (QPSK). 

The phase error in the estimator is corrected after the next retraining 

burst (or by chance after another deep fade). 

Clearly, any error extension effects caused by feeding incorrectly 

detected data symbols back into the estimator are.negligible, since the 

tolerance to noise of the combined detector and estimator is the same when 

the detected data symbols are fed back into the estimator as when the 

actual {s.} are fed back. In fact, it was noted that the combined 
1 

detector and estimator with differential coding worked as a very stable 

system even without retraining. That is, deep fades in the channel only 

caused short bursts of errors of several symbols duration. The 

combined detector and estimator neVer. completely collapsed so 

retraining was not necessary. This is no doubt helped by the fact that 

the {s.} all have the same amplitude. Thus an error in s'. is always a 
1 1 

phase error of ±900 or 180°, which causes a compensating phase error in 

the channel estimate. The differentially coded binary digits can be 

correctly detected in the presence of a constant phase error of ±90 o or 

180° • 
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3.6.1 Viterbi-type Detection 

A weakness of the estimation process is that it relies on the correct 

detection of the data symbols. A technique is described in this section 

which overcomes this weakness by permitting the estimator to consider 

simultaneously several different possible values of each detected data 

symbol. This technique uses a Viterbi-type detection algorithm [120] in a 

novel way to improve the tolerance to noise of the combined detection and 

estimation process. 

The block diagram of the combined detector and estimator is shown in 

Fig.3.6.2. The received sample at the output of the receiver lowpass 

filter of System lA is 

Similarly for System lB 

r . = s.y . + w . 
a.~ 1 a.l a.l. 

rb . = 
.1 

S'Yb . + wb . 
1..1. .1. 

(3.6.1) 

(3.6.2) 

This final combined detector and estimator for System 1 is now described 

in detail. The Viterbi-type detector holds in store the m most likely 

vectors (or sequences) of detected data symbol values, where m=1,2 or 4. 

(Generally, for an M-level signal, m=1,2, ••• ,or M. For the QPSK signal of 

System 1, M=4). Each vector has its own channel prediction associated 

with it. Detection and estimation is done simultaneously for each of the 

m vectors, hence the thick lines in the feedback loops in Fig.3.6.2. There 

are assumed to be N data symbols in every packet, for i=1,2, ••• ,N. Each 

packet begins with R retraining symbols, i=1,2, ••• ,R, followed by L=N-R 

data symbols, i=R+l,R+2, ••• ,N. 10% redundancy for retraining is assumed 

(Sec.3.5.l), so R=O.lN and is an even number. In practice every tenth 

packet is used for synchronization purposes, to give a total redundancy of 

about 20% in the transmitted signal. However, since we are not concerned 

here with synchronization methods, the latter redundant packets are 

omitted. The combined detector and estimator operates as follows. 

Just prior to the receipt of r., (or r ., rb .) for R<i~N, the 
1. a.l..l. 

detector holds in store m different (i-R-l)-component vectors, Q. 1 where 
1-

Qi-l = [qR+l qR+2 ••••• qi-1] (3.6.3) 

Each vector Q. 1 represents a different possible sequence 
1-

[S'R+l s'R+2 ••••• s'i-l] 

Clearly, every qi has taken up one of the M different possible detected 

values of s.. For the QPSK signal of System I, M=4 and the possible 
1 

values of qi are ±l±j. Associated with each vector Qi-l is stored its 
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cost c
i

-
l 

(to be defined presently) which is a measure of the likelihood 

that the vector is correct, the lower the cost, the higher being the 

likelihood. 

On receipt of the signal r., each vector Q. 1 
1 1-

is expanded into m 

(i-R)-component vectors Q., where 
1 

Qi = [qR+I qR+2 ·····qi 1 (3.6.4) 

In each group of m vectors {Qi} derived from any one vector Q. 1; the 
1-

first i-R-l components are as in the original Q. 1 and the last component 
1-

q. takes on m different values. Each of the resulting m vectors {Q.} has 
1 1 

the cost given by either 

(3.6.5) 

for System lA, or 

c. = c. 1 + Ir . - q.y' .. 11' + Irb . - q·y'b . '_11' (3.6.6) 
1. 1- a.1 1. a.l,l.- .1 1. .1,1 . 

for System lB. The quantities y' .. I' y' .. I' y'b .. 1 are one-step 
1,1.- a.1,1- .1.,1-

predictions of their corresponding Y·, Y ., Yb" . and are considered 
1. a.1. .l. 

later. The quantity c. 1 is the cost of the vector Q. 1 from which Q. was 
1- 1- 1 

derived, such that either, For System lA 

~ Irn c i = ~ - qny' n,n-1 12 (3.6.7) 

n=R+1 

or, for System 1B 

i-I I 
c i - l = 2=: ( r a • n 

(3.6.8) 

n=R+1 

and cR=O. The m {Qi} derived from anyone Qi-1 are the m of the M(=4) 

possible {Q.} with the smallest costs. There are now altogether m' 
1 

selected vectors {Q.} together with their costs ready for the receipt of 
1 

r
i

+
1

• The remaining m'-m {Qi} and their costs are discarded. The process 

continues like this until the receipt of r (or r ,r
b

•
N

) at the end of 
N a.N 

the packet. The vector Q
N 

with the smallest cost now gives the values of 

all detected symbols in that packet. 

This new system uses m different estimation and prediction processes 

to derive the {y' .. I}' {y' .. I}' {y'b .. I} in Eqs.(3.6.5)-(3.6.8). 
1,1- a.1,1- • .1,1.-

Each one is associated with a different one of the m stored vectors 

{Qi-1}' where m=l,2 or 4. Thus together with each Qi-1 and its cost c i - l 
are stored also the one-step channel prediction(s) y'i,i-1' (or y'a.i,i-1' 

y'b .. 1) and also the one-step prediction(s) of their rates of change 
.1,1-

with i, y' ',' -1 (or y' .. I' Y'b .. 1). Of course, in evaluating the 
~ ~ a.1.,1- .1.,1.-

cost c. of any vector Q., the channel predictions(s) y' .. 1 (or 
1. 1. 1.,1-

y' . . ,y 'b . . 1) used in Eq .• (3.6.5) (or Eq. (3.6.6» are those 
a.1,1-1 .1.,1-
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determined for the vector Q. 1 from which Q. was derived • 
. 1- 1. 

Finally, once the m {Q.} have been selected, the one-step 
1 . 

prediction(s) y' '+1 . 
1 ,1 

(or y' . +1 ., y' b . +1 .) must be formed for each 
a.1,1 .1,1 

Q .• This is simply a 
1 

process of updating the Gradient estimator 

(Sec.3.4.9) associated with the Q. 1 from which the Q. was derived, as 
1- 1 

follows. For System lA 

r' = 
i 

e. = 
1 

y' . = 
1 

E. = 
1 

• • = 
y i+1,i 

y' . +1 . = 
1 ,1 

, 
qiY i,i-1 
r. - r'. 

1 1 

Y'i,i-1 + beiq*i 

y' - y' 
i i, i-I 

~'.. + (l-S)'E. 1,1-1 1. 

y' + yl + 
i,i-1 i+1,i 

(l-S')E. 
1 

(3.6.9) 

(3.6.10) 

(3.6.11) 

(3.6.12) 

(3.6.13) 

(3.6.14) 

are used in forming all m predictions {y' . +1 .}. 
1 ,1 

The same values of b,S 

This is the standard form of the Gradient algorithm· estimator. 

However, since y'. is not required in the detection process, a 
1 

simplification to the algorithm can be made as follows. Replace 

Eqs.(3.6.11)-(3.6.12) by 

E. = be.q*. 
111 

(3.6.15) 

Also, this algorithm is equivalent· to the unbiased estimator with a 

modified degree-1 fading memory predictor (see Sec.3.4.5), Therefore, the 

standard algorithm can be simplified as follows. Replace Eqs.(3.6.9)-

(3.6.12) by 
-1 

y'i = qi r i (3.6.16) 

E. = b(y'. - y' .. 1) (3.6.17) 
1. 1. 1,1-

For System 1B, the same algorithm is repeated in exactly the same way for 

the .signals at the two receiving antennas. That is, the samples r. , 
1 

y'i,i-1' Y'i,i-1 input to the algorithm are replaced by their 

corresponding samples r ., y' .. l' y' .. 1 for antenna A and a.1 a.1,1.- a.1.,1- rb ., 
.1 , . , 

Y b .. l' Y b .. 1 for antenna·B • 
• 1,1- .1,1-

So now there are m stored vectors {Q.}. Associated 
1 

stored its cost c. and 
1 

its predictions , ' , 
Y '+1 ., Y '+1 . 1.,1 1.,1 

with each Q. are 
1 

(or y I .' . I 
a.1.+1,1 , , , 

Y . 1 ., Y b . 1 ., a.1+ ,1 .1+ ,1 
, , ) 
Y b '+1 . .1 ,l. 

ready for the next process of detection 

and estimation on the r. (or r ., rb .). At the end of the 
1. a.1.· .1 

receipt of 

packet 

of all 

when i=N, the vector Q
N 

with the smallest cost now gives the values 

detected symbols in that packet. That is 

s' J 
N 

(3.6.18) 

The detection and estimation processes are now terminated, This completes 

the description of the combined detection and estimation process that is 
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in operation during any packet of. information where R<i'N. AlL.that 

remains is to describe the process of retraining the m channel estimators 

at the start of each packet. The operation procedes when l~i~R. as 

follows. 

The receiver has prior knowledge of 

receipt of r .• 
1 

(for l~i~R) the unbiased 
-1 

sl.s2 •••••• sR. So. after the 

estimate of y. is calculated as 
1 

x =- s r 
1
· . . 

1 1 
(3.6.19) 

The R estimates {x.} for i=1.2 •••••• R are obtained in this way. From 
1 

these R estimates a single Gradient estimator with degree-1 predictor is 

restarted. The channel estimator retraining routine of Sec.3.5.5 is used. 

Hence. after the receipt of r
R 

the estimate of the rate of change with i 

of y .• as i increases from ,R to ,R+1 (Eq.(3.5.8» becomes 
1 

y' 'R+1.'R = ~ tiXi - (~ t~x (~ tXi\ 
1=1 1=1) ~ 1=1 J 

(3.6.20) 

Similarly. the estimate of y,R+1 derived from the complete training signal 

becomes 

y"R+1.;R= 

(An even number of training 

R 
l~x. 
- L-.. 1 

R i=l 
symbols 

+ ,y' 'R+1.'R (3.6.21) 

must be used so tpat ;R is an 

integer). The estimator then operates according to Eqs.(3.6.9)-(3.6.14) 

for i='R+1,;R+2, •••• ,R·, setting q.=s. for each i. At the end of this 
1 1 

process the receiver for System lA has formed y'R+1,R' Y'R+1,R. Similarly 

the reciver for System 1B performs the identical process on both the 

{r . }, {r
b 

.} to give y' l' y' , y' , y' . a.1.1 a.R+ ,R a.R+1,R b.R+1,R b.R+1,R 
The detector now uses the y'R+1 R (or y' R+1 ,y'b RI) to select 

I a.,R. + , R 
the m possible' values of qR+1 having the smallest costs {c

R
+

1
} (Eq. (3.6.5) 

or (3.6.6», where it is assumed that cR=O. The m {qR+l} are then stored 

as the corresponding one-component vectors {QR+l}' together with their 

costs. The resulting {QR+1} are next employed in Eqs.(3.6.9)- (3.6.14) 

with i=R+1 to give for every QR+1' a corresponding set of m predictions of 

channel and slope {y'R+2,R+l}' {Y'R+2,R+1} (or {y'a.R+2,R+l}' 

{y" } {y' } {y" }) The process then continues 
a.R+2,R+l' b.R+2,R+1 '. b.R+2,R+1· 

as described. 

Clearly, the additional costs added to c
i

_
1 

in Eqs.(3.6.5) and (3.6.6) 

are an implementation of the maximum likelihood detection process 

described in Sec.3.3.2. Here, s. is detected in the mth Q. as q1" The 
1 1 
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detector is degraded from its optimum performance because it now has to 

use the channel predictions {y' .. -1}' {y' .. -1}' {y'b .. -1} in place 
1,1. a.l,l .1,1 

of the actual channel values {y.}, {y .}, {Yb .} in Eqs.(3.6.5) and 
1 a.l .1. 

(3.6.6). By summing these costs over the whole packet in these equations, 

the Viterbi-type detector is expected to find the maximum likelihood 

seguence of symbols for this packet. Each vector Q. contains a different 
.1. 

sequence of detected data symbol values {q.} and hence the channel 
1 

prediction associated with each Q. is generally different. 
1 

Of course, when m=l there is only one combined detector and estimator 

in operation. The bit-error-rate performance is now identical to that of 

the simple detector of Eqs.(3.4.5) and 

y' b . . 1 in place of y., y ., Yb .• 
. 1,1- 1. a.l .1. 

interference in any of the channels of 

( 3 .4 .6) -us ing y'. . l' y' .. l' 
1,1- a.l,l.-

But since there is no intersyrnbol 

Fig.3.6.2, the Viterbi algorithm 

with m>l is generally considered to give no advantage over the simple 

detector [106]. However, the performance of the combined detector and 

estimator is improved here because of the m different channel predictions. 

A vector Q. containing a burst of errors would tend to have a 
1 

correspondingly degraded prediction and a large cost c i • This Qi is 

likely to be discarded when forming the m {Qi+l}. 

The process of combined detection and estimation with retraining 

described in this section is repeated in exactly the same way for every 

packet of information. The Systems lA and lB are tested by computer 

simulation for m=l,2 and 4. The values of the parameters b,e,N,R have 

been· determined as follows: The packet length is set as N=120. This was 

the longest packet that could be used in the prototype modern [92]. So 

with 10% retraining the number o~ retraining symbols is R=0.lN=12. The 

values of b,e for any given signal-to-noise ratio are given in Table 

6.3.1. These have been found to roughly minimize the mean-square error in 

prediction when correctly detected data symbols are assumed. 

3.6.1 Conclusions for combined detection and estimation 

Computer sirnualation results in Sec.6.3 clearly show that differential 

coding of the binary digits must be used with this combined detector and 

estimator. This is because a deep fade often causes a phase change of 

±900 or 180° to be introduced into the prediction of the channel. Thus 

the following stream of detected data symbols are· now all. rotated in phase 

by the appropriate multiple of 90°. Without differential coding this 

would lead to a long burst of errors. 
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The Viterbi-type detector with m>2 and differential coding was shown 

to give a better tolerance to noise than the single detector and estimator 

with correct data symbols fed back into the estimator. This is because 

this Viterbi algorithm chooses the sequence of detected data symbols that 

gives the best tracking of the channel through a fade. It seems to follow 

that the tolerance to noise is improved because the predictor has the 

freedom to track the channel ±90 0 or 180 0 out of phase rather than in 

spite of this fact. 

With two receiving antennas in System 1B, computer simulation results 

have shown that maximal ratio combining in the detector gives a worse 

tolerance to noise than the method used here, which is two-component 

maximum likelihood detection. This is probably because of the non-ideal 

co-phasing when the channel predictions {y' .. l}' {y'b .. l} are used a.1,l.- .1,1.-

in place of their actual values {y .}, {Yb .}. With perfect prediction, a.l. .1 

these two methods are equivalent and optimum (Sec.3.3). 

A great improvement in tolerance to noise can be achieved by using a 

second receiving antenna, as shown by the improvement of System lB over 

lA. This is due to the better Rayleigh statistics for the sum of two 

independently fading sequences, than for either one sequence. 

3.7 Summary for System 1 

A digital modem employing novel techniques of detection and estimation has 

been developed and tested by computer simulation. Test results suggest 

that this coherent demodulation receiver with 'differential coding of the 

binary digits (DQPSK) can achieve a good tolerance to additive white 

Gaussian noise. It does not require undue equipment complexity at the 

transmitter or receiver so is suitable for transmission in either 

direction between a mobile and a base station. This system would achieve 

a bandwidth efficiency of just under 1bit/s/Hz in. the mobile radio 

network. Two receiving antennas should be used wherever possible - the 

improved performance should justify the extra equipment complexity. 

The key to the successful development of System 1 is a novel technique 

of combined detection and estimation, with regular retraining of the 

channel estimator. The channel estimation process is completely restarted 
th every 1/100 of a second so should be quick to recover from any 

prolongued loss of signal power. This also avoids problems in estimation 

during hand-off as the mobile unit crosses a boundary between one cell to 



84 

another. The combined detection and estimation process is particularly 

robust to error extension effects caused by feeding incorrectly detected 

data symbols back into the channel estimator. Even with the simple 

maximum likelihood detector (m=l), the system showed no sign of giving an 

avalanche of errors. 
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CHAPTER FOUR 

SYSTEM 2 

4.1 Introduction 

It was shown in Chapter 3 that one bandlimited QPSK signal could be 

successfully transmitted in a narrowband, 900MHz mobile radio channel. 

Near optimum coherent demodulation is achieved at the receiver with a 

reasonable level of equipment complexity. The simplicity of both 

transmitter and receiver equipment make it a cost effective method for 

both mobile-to-base station and base station-to-mobile transmission. It 

is particularly interesting to note the stability of the system, which 

works well even without retraining (under the assumed conditions). 

The aim of the rest of this thesis is to try to develop a narrowband 

system with coherent demodulation at the receiver, that acheives double 

the bandwidth efficiency of System 1. System 2 described in this chapter 

is designed to transmit simultaneously two bandlimited QPSK signals from 

two mobiles to the same base station within the same 24kHz signal 

bandwidth at 900MHz. A total of 48kbit/s is transmitted from the two 

mobiles giving a total bandwidth efficiency of about 2 bit/s/Hz. 

A novel multiplexing method is proposed here, where a different 

bandlimited QPSK signal is transmitted from each mobile simultaneously. 

The signals originating from the two mobiles are fading independently, and 

the sum of these two signals is received at the base station. A method is' 

proposed in this chapter by which the two signals can be separated at the 

receiver by simultaneously performing coherent demodulation of both 

signals. 

System 2 is developed in this chapter foll~wing an exactly similar 

procedure as that taken for developing System 1. That is, first of all in 

Sec.4.2 the system model is described. Then the possible detection 

methods (Sec.4.3) and channel estimation methods (Sec.4.4) are considered 

separately, for both one and two receiving antennas. The methods for 

retraining the channel estimator are described in Sec.4.S before finally 

testing the combined detection and estimation process in Sec.4.6 

Each transmitted signal considered separately has exactly the same 

properties as the signal described for System 1 and all of the methods 
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tested are extensions of the successful methods used in System 1. So 

inevitably, there are many points of si~ilarity between these two systems 

and wherever possible in this chapter, reference is made to descriptions . . 
already given in Chapter 3 to avoid needless repetition. The important 

points to note in this chapter are the differences between Systems 1 and 

2. 

4.2 Model of System 

In the computer simulations at time t=iT, the baseband received sample at 

the output of the receiver matched filter is given by: 

For System 2A 

r. = SI 'Y1 . + s2 'Y2 . + w. (4.2.1) 
~ .1 .1 .1 .1 ~ 

For System 2B 

r = sl 'Yl . + s2 'Y2 . + w (4.2.2) 
a.i .1 .1 .1 .1 a.i 

rb . = S1 'Y3 . + s2 'Y4 . + wb . (4.2.3) 
.~ .1 .1 .1 .1 .~ 

The letters s,y,w represent the data, channel and noise waveforms 

respectively. The subscript i shows that these waveforms have 'been 

sampled at time ,t=iT. The data symbols (s) are also given the subscripts 

1 and 2 denoting signals transmitted from mobiles 1 and 2. The received 

samples (r) and noise samples (w) have been given the subscripts a and b 

corresponding to the samples taken at antennas A and B. To be consistent 

with this notation, the channel samples (y) should have been given the 

subscripts la,2a,lb,2b denoting the transmission paths between mobiles 1 

and 2 and receiving antennas A and B. This double subscript proved to be 

too confusing. So the channels have been numbered from 1 to 4 as shown in 

Eq.(4.2.2) and Fig.4.2.1. The important assumptions from which these 

equations are derived have been summarized in Sec.2.5.l. Also, the 

relevant properties of the data, channel, noise and received samples have 

been summarized in that section. 

The general operation of the coherent demodulation receiver has been 

described in Sec.2.5.2. The detailed operation of the data detection and 

channel estimation processes that comprise this receiver are investigated 

in the rest of this chapter. 

4.3 Detection 

The aim of this section is to investigate different methods of detecting 

the data symbols {sl .}, {s ,} in Systems 2A and 2B, assuming perfect 
.~ 2.~ 
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channel estimation at the receiver. The best of the methods tested here 

should still be the best detection process when used with the actual 

channel estimates. 

4.3.1 Model of Detection Process 

The baseband received sample(s) at the input to the detector at time t=iT 

are; 

For System 2A 

For System 

r, = 
1 

2B 

r = 
a.i 

rb ' = .1 

sl 'Yl ' + s2 'Y2 ' + W, 
.1. .. 1- .1. .l. 1 

(4.3.1) 

Sl 'Yl ' + s2 'Y2 ' + w 
.1. .l. .1. .l. a.i 

sl 'Y 3 ' + s2 'Y4 ' + wb ' .1..1 .1..1. .1. 
(4.3.2) 

It is assumed that the estimates of the channels used in the detector are 

exact, as shown in Fig.4.3.1. So the detector must minimize the 

probability of error in the detection of both sl ' and s2 ,. The detector 
.. 1. .1. 

has full knowledge of the 16 possible combinations (±l±j),(±l±j) of the 

data symbols sl " s2 " as shown in Table 4.3.1 • 
.. 1. .. 1. 

4.3.2 Maximum Likelihood Detection 

The optimum detection process of sl " s2 ' 
.. 1. .. 1. 

from r, (or from r "r
b

,), 
1. a.l..1 

when the channel samples Yl • i , Y2 ,i' (Y3 • i , Y4 ,), and all the possible 
.1 

values of sl " s2 . are known at the receiver is again "max imum 
.. 1. .. J. 

likelihood detection". That is, no other detection process gives a lower 

average probability of error in the detection of both sl ' and s2 ' 
.1 .1 

[52,681. So the detector used here is simply an adaption of that used for 

System 1. 

For System 2A the optimum detector that has exact prior knowledge of 

Y
1 

" Y
2

" takes as the detected values of sl " s2 ' the possible values 
.1 1. .1. .1 

S'l " 5'2 . for which 
.. 1. .. 1. 

d i ' = Iri - s'1.iY1.i - s'2.iY2.il' (4.3.3) 

is minimum over all 16 possible combinations (±l±j),(±l±j) of the values 

s'l " s'2' Where Ixl is the 
.1 .1 

absolute value of the complex-valued 

quantity x. 

For System 2B with exact prior knowledge of Y1 " Y
2 

'. Y
3 

" Y4 ' and 
.1. .1 .1 .l. 

statistically independent w "wb" Eq.(4.3.3) for optimum detection 
. a.l .1 

becomes 

d,' = It ,-sl 'Y1 ,-s2 'Y2 ,I' + Irb ,-sl 'Y 3 ,-s2 'Y 4 ,I' 
1. a.1..1.1..1.1. .1.1.1..1..1 

(4.3.4) 

In practice, the detector must use estimates of the channel samples in 
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Table 4.3.1 The 16 possible combinations of 5 ., 5 . 
1.1 2.1 

m 51 ., 52' .I .1 

0 -1-j, -1-j 
1 -1-j, -1 +j 
2 -1-j, +1-j 
3 -1-j, +1 +j 
4 -1 +j, -1-j 

5 -1 +j, -1 +j 
6 -1 +j, +1-j 
7 -1 +j, +1 +j 
8 + 1-j, -1-j 

9 + 1-j, -1 +j 
1 0 + 1-j, + 1-j 
1 1 + 1-j, +1 +j 
12 +1 +j, -1-j 
1 3 +1+j, -1 +j 
14 +1+j, + 1-j 
1 5 +1+j, +1 +j 
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place of the {Y1.)' {Y2.)' {Y3.)' {Y4.) themselves. This inevitably 

degrades the detection process which is therefore no longer optimum. 

It is easier to see the mechanism involved here by considering an 

example for System 2A. Suppose that at time t=iT, the channel values 

Y1 " Y2 ' are known at the receiver. The received signal constellation 
.1 .l. 

can be constructed by calculating s', 'Y1 ,+s'2 'Y2 ' for all possible 
1.1.1 .1.l. 

combinations of s'l "s'2 ' as shown in Fig.4.3.2 • 
• 1. .. l. 

Imagine drawing 16 straight lines correcting the received point r, to 
1. 

all 16 possible points s'l 'Y1 .+s·2 'Y2 .• 
.1..1. .1.l. 

The lengths of these lines 

gives the distances Ir.-s· l 'Y1 .-s·2 'Y2 'I in the complex-number plane 
1. .. 1. .. 1. .. 1. .. l. 

between r. and the corresponding signal points s'l 'Y1 .+s·2 'Y2" The, 
1. .1..1. .1.l. 

maximum likelihood detector selects as the detected value of SI ., s2 . 
.. 1. .. 1 

the possible value s'l . ,s'2 . for which s'l 'Yl ,+s'2 'Y2 ' 
.1..1. .1..1..1 .1 

is the 

shortest distance from r.. Eq.(4.3.4} actually calculates the squares 
1. 

these distances, Ir.-s· 1 'Y1 .-s·2· 'Y2 .1 2 • 
1. .. 1. .. 1. .. 1. .. l. 

Squaring in no way affects 

the order of these 16 distances {d.} from shortest to longest, since 
1. 

whenever IX11<lx21 then IXl12<lx212 

With System 2B, the corresponding independent distance variables at 

both antennas are summed to give the optimum decision rule [104]. 

Theoretical Probability of Error. 

Clearly, the shape of the 16 point constellation of s'l 'Y1 ,+s'2 'Y2 ' 
.1..1. .1.1 

of 

is not fixed, but is changing with time as the fading channels change 

independently in both amplitude and phase (see Fig.4.3.2). As a result, 

the theoretical calculation of the bit error rate curves are much more 

complicated than for System 1. The calculation now depends on both the 

Rayleigh amplitude AND uniform phase distributions of the fading channels 

Y
1 

., Y
2 

'. This theoretical calculation of the bit error rate curves is 
.. 1. .. 1 

beyond the scope of this thesis. Since this System 2 uses a completely 

new multiplexing method, this theoretical derivation is at'this time 

unknown. 

Several example 16 point constellations are now considered to study 

the mechanisms which are likely to cause most of the errors. The 

bit-error-rate curves for each of these examples are found by computer 

simulation and shown later in Chapter 6. 

Example (1): Assume one receiving antenna and no fading. That is, 

where Yl '=Y2 .=1 for all {i}. So at time t=iT the baseband received 
.1. .l. 

sample at, the input to the detector is 
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Table 4.3.2 The received signal constellation 51 'Y 1 .+S2·Y2· .1 .1 .1 .1 
when Y1 ·=y2 ·=1 

.1 .1 

m 51 . 52' S1· Y1·+S2· Y2· .1 .1 .1 .I .1 .1 

0 -1-j -1-j - 2 - 2j -1 -1-j -1 +j -2 
2 -1-j + 1-j - 2 j 
3 -1-j +1 +j 0 
4 -1 +j -1-j - 2 
5 -1 +j -1 +j -2+2j 
6 -1 +j + 1-j 0 
7 -1 +j +1+j +2j 
8 +1-j -1-j - 2 j 
9 +1-j -1 +j 0 

1 0 + 1-j + 1-j +2-2j 
1 1 + 1-j +1 +j +2 
12 +1 +j -1-j 0 
1 3 +1+j -1 +j + 2j 
14 +1+j +1-j +2 
15 +1 +j + 1 +j +2+2j 
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r. = sI . + s2 . + w. 
~ .1 .1 1. 

(4.3.5) 

The received 16 point constellation is the vector addition of the two 

individual 4-point constellations of sI . and s2 . as shown in Fig.4.3.3 • 
• 1 .. 1-

There are in fact only 9 distinct points in this constellation, because 

some of the points coincide with each other in the signal space. For 

example, from Table 4.3.2 it is shown that the four recieved signal points 

for [SI .=-l-j, s2 .=+l+jl,. [SI' .=-l+j, s2 .=+l-jl, [s .=+l-j, s .=-l+jl 
.1 .1 .1 .1. 1.1. 2.1 

[SI .=+l+j, s2 .=-l-jJ all coincide with each other at the origin. The 
.. 1. .. 1. 

bit error rate here, even in the absence of noise, would be little better 

than L 

Example (2): Assume one receiving antenna, with constant but 

different amplitude and phase components in each of the two channels 

{Yl .}, {Y2 .} • 
• 1. .1 

It turns out that the poor performance of Example (1) is not a great 

cause for concern. In the case of interest in this thesis, both channels 

{Yl .}, {Y2 .} would be time varying with independent Rayleigh fading so 
.1. .1. 

the probability of the event Yl . =y
2
' . =1 occuring is practically nil. An 

.. 1. .. 1. 

infinite variety of received signal constellations are possible, 'most of 

which do not· have overlapping/coincident points and yield a much better 

probability of error. A few examples are shown in Fig.4.3.4 to illustrate 

this point. 

In Fig.4.3.4(a) it is interesting to note that this signal 

constellation is exactly the same as that for the l6-point QAM signal of 

System 3 which is the optimum l6-point signal constellation. That is, the 

one'with the best tolerance to additive white Gaussian noise for a given 

In Fig.4.3.4(b) one channel is much smaller in amplitude than the 

other. The bit error rate for this signal would be worse than for the 

larger amplitude signal. 

In Fig.4.3.4(c) and (d), both channels have the same amplitude (1.0), 

but Y2 . is shifted in phase by +45 0 (Fig.c) or +22.5 0 (Fig.d)"giving 16 
.1 

distinct points in both cases. This should give an acceptable bit error 

rate performance in both {sI'} and {s2 .}, though not as good as in 
.1 .1 

Fig.4.3.4(a). 

So for time invariant channel values Yl ., Y
2 

., the probability of 
.1 .1. 

error for any given signal-to-noise ratio depends on the particular 

received signal 

on the relative 

constellation of SI 'Yl .+s2 'Y2 ., 
.1. .1. .1. .l. 

amplitudes and phases of Y
l 

and Y
2

• 

which in turn depends 
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Example 3 : Now assume one receiving antenna and independent flat 

Rayleigh fading in the two channels {Y1 .}, {Y2 .} • 
• 1. .. 1 

To evaluate theoretically the probability of bit error for maximum 

likelihood detection in anyone QPSK signal as a function of its 

signal-to-noise ratio, would require averaging the bit-error-rates over 

all possible signal constellations given by all possible combinations of 

I Y1.il, I Y2.il, /Y1.i' /Y2.i· Where Ixl and ~ are respectively the 

amplitude and phase of the complex-valued quantity x. It is not clear how 

to achieve this theoretically, but it can be readily obtained by computer 

simulation, as indeed is done in Chapter 6. 

It is important at this __ stage to note where the errors are most likely 

to occur. With only one QPSK signal in the channel (System 1) it was 

noted in Sec.3.3 that the detection errors occured mainly during deep 

fades. But, from the previous examples in this section it is clear that 

with two QPSK signals in the channel there are now two types of errorSI 

i) Errors corresponding to deep fades. 

ii)Errors due to different signal points overlapping (see Fig.4.3.3) or 

nearly overlapping. 

Example 4: Assume two receiving antennas and independent flat Rayleigh 

fading in the four channels {Y1 .}, {Y2 .}, {Y3 .}, {Y4 .} • 
• 1 .1. .1 .l. 

The second receiving antenna turns out to be vital to the successful 

operation of System 2. The improvement over System 2A is even more marked 

than the improvement of System 1B over System lA. The reason for this is 

best understood by considering the example in Fig.4.3.5. In this case, if 

the signal from either antenna was used on its own in Eq.(4.3.4) to detect 

si' then errors in detection would by very likely to occur. At both 

antennas the problem is caused by different signal points nearly 

overlapping. However, when the corresponding maximum likelihood distances 

from.both antennas are added together in Eq.(4.3.5) the detector should 

have no difficulty in correctly detecting sl ., s2 .• In fact it is 
.. 1. .1 

generally true for System 2B that errors caused by signal points (nearly) 

overlapping only occur when the same two signal points come "close" 

together (relative to the noise power) at both antennas at the same time. 

That is, when 

AND 

I Y1.i I ::: AIY3.il 

!Y1.i '" !Y3.i+\J 

AND 

AND 

IY2.i l z A1Y4.il 

!Y2.i ::: !Y4.i+\J 

(for constant A) 

(4.3.6) 

So clearly, errors due to signal points overlapping occur much less 

frequently with two receiving antennas than with one. This effectively 
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means that the data symbols {sl .}. {s2 .} can be simultaneously detected 
.~ .~ 

with very little interference from each other. 

4.3.3 Threshold Level Detection 

The shape of the 16 point constellation of s'l 'Y1 .+s'2 'Y2 . is not 
.1.1 .1.1 

fixed but is changing with time as the fading channels change 

independently in both amplitude and phase (see Fig.4.3.2). As a 'result 

there is no simple threshold level detection method for System 2A 

equivalent to the optimum detection of Eq.(4.3.3) 

Additionally for System 2B. the 16 point constellations of 

s'l 'Y1 .+s'2 'Y2 . and s'l 'Y3 .+s'2 'Y4 . generally have different 
.1.1 .1.1 .1.1.1.1 

shapes. They are not simply shifted in amplitude and phase relative to 

each other. It is therefore impossible to coherently combine these two 

signals. Thus maximal ratio combining cannot be used with System 2B. 

4.3.4 Probability of error'with differential coding 

The differential encoding and decoding operations are carried out 

separately for the two signals {sl .} and {s2 .}. in exactly the same way 
.1 .1 

as for System 1. So with perfect channel estimation a simila! degradation 

in performance would be expected in going from QPSK to DQPSK as was 

experienced in System 1. 

It is interesting to note here that the differentially-coherent DQPSK 

method often discussed in the literature [8.9.23.36.1061 that uses 

differential detection cannot be used here. This method involves 

multiplying the received. modulated signal by a delayed version of itself 

to remove the random phase of the fading channel. But since the sum of 

two 4-level QAM signals is received in System 2, unwanted cross-products 

in the two signals would be formed by this multiplication. These would 

swamp the wanted signal rendering this DQPSK system useless. 

4.3.5 Conclusions of Detection 

Computer simulation tests have been carried out on Systems 2A and 2B to 

show the performance of the optimum-maximum likelihood detection process 

operating with perfect channel estimation. The results of these tests are 

shown in Chapter 6. 

The, tolerance to noise of this ogtimum detector for System 2 is now, 

compared with that for System 1. System 2A loses about 5dB in tolerance to 

noise compared with System lA. whereas System 2B only loses about 1.75dB 
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in tolerance to noise compared with System lB. This indicates the 

reduction in the errors caused signal points overlapping obtained with two 

receiving antennas. Of course, if these errors had been completely' 

removed in System 2B, there would have been no interference between the 

two data signals and the tolerance to noise of System 2B would have been 

exactly the same as for System lB. In view of this great improvement in 

performance through the use of two antennas at the receiver of System 2 

rather than one, two antennas should be used if at all possible. 

4.4 Channel Estimation 

The aim of this section is to find an estimation process that will result 

in near-optimum data detection, when used in the maximum likelihood 

detector just described. This must be achieved with a reasonable level of 

equipment complexity. The methods tested here are derived from those 

which gave the most success with System 1. It is assumed in this section 

that all detected symbols that are fed back to the estimator are correct. 

4.4.1 Model of Estimation Process 

For convenience, the estimation process considered in Sec.4.4 will be 

confined to estimating the {Y1 .}, {Y2 .} from the {r.} (and {sl .}, 
• .1 • .1 .1 .1. 

{s2 .}) for System 2A, bearing in mind that an exactly similar process 
.~ 

would be applied to both sets 

estimating {Y1 .}, {Y2 .} and 
• .1 .1. 

of received samples {r .} and {r
b 

.} when 
a.l. .l. 

{Y3 .}, {Y4 .} respectively for System 2B. 
• 1. • .1 

Of course, since all corresponding signal properties at both antennas are 

the same but independent, which ever estimation process gives the best 

performance with one receiving antenna is also likely to be the best with 

two receiving antennas. 

The {sl .}, {s2 .} are comprised entirely of random data symbols with 
.1. • .1 

both sequences independent of each other. Timing and synchronization are 

assumed ideal here. So, at time t=iT, 

r. = sl 'Y1 . + s2 'Y2 . + w. (4.4.1) 
.1 .1.1. .1..1 l. 

The properties of the data, channel and noise samples have been described 

in Sec.2.5. 

The estimation process depicted in Fig.4.4.1 is again a combination of 

estimation and prediction as for System 1. The important difference here 

is that the channel estimator must simultaneously estimate the two fading 

channels. At time t=iT, Y1 . and Y2 . are estimated from r. and the 
• 1. • .1 .1 
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detected data symbols S'1 ., S'2 . fed back from the detector. In this 
.1. .l. 

Sec.4.4, these detected symbols are all assumed to be correct. So, at the 

input to the estimator 

S'1 . = s1 . 
.1. .l. 

AND s' 2 . = s2 . , 
.1. • l. 

for .all {i} (4.4.2) 

Now, the predictions of the two channels are each calculated separately 

from their estimates {y'1 .}, {y'2 .} in exactly the same way as described 
.1. .1. 

'for System 1. 

There are some important points to note when analysing the estimation 

methods. In all tests, the estimator has been allowed enough time to 

start-up so that only the steady-state performance of the estimators is 

measured. The criterion for judging the performance of an estimation 

process is the mean-square error in prediction A (defined later), since 
p 

the best (smallest) A generally results in the best bit error rate 
p 

performance. All channel estimators work by estimating the real and 

imaginary parts of the channel (which represent the in-phase and 

quadrature components respectively) rather than their amplitude and phase. 

Coherent detection is achieved with these estimates. 

The estimation processes considered here are the unbiased and Gradient 

estimators with fading memory polynomial prediction. These were seen to 

give the best results for System 1, so they are adapted (where possible) 

to work with 2 QPSK signals in the channel. All test results are shown in· 

Chapter 6. 

4.4.2 Unbiased Estimator 

The unbiased estimator for System 1 was the simplest possible channel 

esimator. To extend the idea to System 2, the unbiased estimates of Y1 ., 

b 
. b ,-1 ,-1 . 1 ..1 

e gl.ven y s l' r., s 2' r. respectl.ve y, where r, 15 
.1. 1. .1. 1. 1. 

Y2 . would 
.1 

given by Eq(4.4.1). So, 
-1 = ,-1 

s'1' r. Y1' + s l' s2 'Y2 . • 1_1 1 .1 .1_
1

.1.1 

s' r. = Y2 . + s' s1 'Y1 . 2.i 1. .1 2.i .1.l. 

It is immediately seen that it is impossible 

, -1 
+ s l' w . 

.1_
1 

1 

+ s' 
2

. W. 
.1 1. 

to accurately 

(4.4.3) 

(4.4.4) 

estimate either 

quantity Y1 ., Y2 . from Eqs.(4.4.3) and (4.4.4) or from any combination 
.1. .1. 

of these equations. Always in the estimation of Y1 . (or Y2 .) there is 
.1. • 1. 

an unwanted term in Y2 . (or Y1 .) that renders the estimate useless • 
• 1. .1 

Therefore, the unbiased estimator does not exist for two signals in 

the same frequency space because basically, Eq.(4.4.1) is one equation 

with two unknowns Y1 ., Y2 . (assuming s1 ., s2 . are both correctly 
.1.1 .1..l. 

detected and ignoring the effects of noise). Therefore a second linearly 
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independent equation in Y1 " Y2 ' is needed • 
• 1 .. 1. 

4.4.3 Gradient Algorithm Estimator 

The Gradient algorithm was used with System 1 to try to improve on the 

unbiased estimator, by using the additional information that the channel 

samples are slowly time varying. This is an assumption that can be made 

about both channels {Yl ,}, {Y2 ,} here, and this assumption in fact 
.1. .1. 

constitutes the second linearly independent equation that now makes it 

possible to estimate both channels {Yl.i}' {Y2.i} from the {ri }. 

Gradient estimator equations: 

r' , = s' . y' . + s'2 ,y'2 '-1 1 1.1. 1.1-1 .1. .1 

e, = r, - r' , 
1 1 l. 

y\ ' = y'1.i-1 + b ' * e,s 1 ' .1 1 .1 

Y'2 ' = Y'2.i-1 + b ' * e,s 2 ' .1 1 .1 

(4.4.5) 

(4.4.6) 

(4.4.7) 

(4.4.8) 

where b is a small, positive real-valued constant whose optimum value is 

determined experimentally. , * s 1 ' , .1 
s' * are the complex conjugates of, 

2.i 
s'l ., 5'2 . respectively . 

• 1. • l. 

This estimator works in exactly the same way as the Gradient estimator 

in Sec.3.4.8 for System 1, except that Eqs.(3.4.57)-(3.4.59) are replaced 

by Eqs.(4.4.5)-(4.4.8), and Fig.3.4.l0 is replaced by Fig.4.4.2. The 

predictions of Yl ' l' Y2 '+1 are formed by p~ssing Y'l " Y'2 ' through 
.1+ .1. .1 .l. 

separate but identical degree-p fading memory polynomial filters, as 

described in Sec.3.4. The optimum values of the constants band 9 for any 

given signal-to-noise ratio are again found experimentally, and are 

generally different to the optimum value for System 1. 

The performance of this Gradient estimator can be analysed 

theoretically as follows. 

Eq.(4.4.7) 

For the estimate of Y1 , • 
• 1 

Y' - y' + b(r - r',)s' ,* 
l.i 1.i-1 i 1 1.1 

But Eq.(4.4.1) shows that 

r, = sl 'Y1 ' + s2 'Y2 ' + w, 
1. .1..1 .1.1 1 

So, putting, Eqs.(4.4.5) and (4.4.10) into Eq.(4.4.9) 

Y'l.i = Y'l.i-1 + 

Put Eq.(4.4.6) into 

(4.4.9) 

(4.4.10) 

b(sl 'Y l ' + s2 'Y 2 ' + w, 
.l..1 .1..1. 1. 

- s' y' s' y' )' * l ' 1 '-1 - 2' 2 '-1 s 1 ' .1.1. .1..1 .1 

= bS 1 ,s'l '*Y 1 . + (1 - bS'1 ,s'l .*)Y'1 '-1 + 
.1. .1. .1 .1..1.1. 

bS'1 ,*(s2 'Y 2 ' - s'2 ,Y'2 ' 1) + bS'1 ,*w, 
.1 .1..1 .1 .1- .1. 1. 

(4.4.11) 



b 

b 

(a) 

s· • 
'.i 

s· 
,.i 

S'2' 
.1 

r'i 

s·, . 
• 1 

s· 
2.i 

b • • e.s, . 
1 .I 

(b) y', . 
• 1 

Fig.4.4.2 (a) Gradient algorithm estimator with 
(b) an alternative representation of top [I] 



95 

Now put b~l/(s'l ,S'l ,*) ~l/ls'l ,I' into Eq. (4.4.11) • 
• 1 .1 1 .1 

- -1 
y'l ' ~ Y1 ' + s'l' (s2 'Y2 ' - s'2 ,Y'2 ' 1) + s'l ,w, (4.4.12) 

.1. .1. .1. .1.1. .1. .1.- .1 l. 

And assuming correct detection, s'l ,~sl ' and s'2 ,~s2 " gives 
'-1 .1.1 .1 _1 1 

Y'l ' ~ Y1 ' + sl' s2 '(Y2 ' - Y'2 ' 1) + sl' w, (4.4.13) 
.1. .1 .1. .1.1. .1.- .1 1. 

Of course, an exactly similar analysis can be carried out for the estimate 

of Y2 " to give 
.1 

Y'2 ' ~ Y2 ' 
.. 1. .. 1 

(4.4.14) 

Now, the error 

Y1 ' - y' 
.1 1.i 

in the estimate of Y1 ' is 
-1 .1 

= -51' s2 '(Y2 . - Y'2 '-1) 
.1. .1.1. .1. 

-1 
- sl' w, 

.1 1 

and the mean-square error in this estimate, measured over N {y' ,} is 
1 

11. 
e 

N 
~ 1 "'""Iy - y' ,I' - ~ l.i 1.1 

N i~l 
~IY ,-y' ,I' 1.1 1.1 

(4.4.15) 

y'2 '_11' + IS1 ,-lw,I' 
..1. .1. 1. -1 

w,). Therefore, since Is1 , s2' I '~1 
1. .. 1. .. 1. 

(for independent sl " s2 " Y2 " 
.1. .1. .1. 

for all {i}, 
(4.4.16) Ae ~ IY2 •i - Y'2.i-1I' + Is i - 1w

i l' 
So even with no noise (that is, w,~o for all (i}), 

1 
there is an irreducible 

error in the estimate of Y1 • i ' because the channel {Y2 • i } is time 

varying. 

In Chapter 3, it was shown that the optimum value of b in the Gradient 

estimator for System 1 in the absence of noise was 

(i}). However, it is now shown that for System 2, 

b~l/ls'il'(~" for all 

b~O. 5/1 s' 1 ,I' (~t. for 
.1 

all (i}) generally gives the best estimate of {Y
1 

,} in the absence of 
.1 

noise. Since, with correct detection in Eq.(4.4.11) 

Y'l ' ~ bls1, ,I'Y1 ' + (1-b ls1 ,I')Y'l '-1 
.1. .1.1 .1.1 

+ bS1 ,*s2 '(Y2 ' 
.1 .1. .1. 

'Now, for the general case b~B/ls1 ,I' 
.1 

Y'l.i ~ BY1 • i + (l-B)Y'l.i_l 

-1 
+ BS 1 , s2 '(Y2 ' 

.1 .1 .l. 

The error in this estimate is 

Y - y' ~ (1-B)(Y1 ' - Y'1 '-1) 
1.i 1.i .1 -1 .1 

- BS1 , s2 '(Y2 ' - Y'2 '-1) 
.1 .1.1 .1. 

with a mean-square error of, (from Eq.(4.4.15) 

A 
e 

~ (1-B)'ly ,- y' , I' 

-1 
- Bs

1
, w, 

.1 1 

1.1 1.1-1 ~ ________ ~ ____ ~ 
+ B'IY ,- y' , I' + B'ls ,-lw, I' 2.1 2.1-1 1.1 1 

So, when b~0.5/Is1 . I' 
.1 

A ~ 0.251Y1 ' -e .1 Y'1.i-l l ' 
+ O. 25 7"1 Y-

2
-'---Y-"-2-' -1"'1-:-' + O. 251 s 1 ,-1 w, I' 
.1 .1.- .1 1. 

(4.4.17) 

(4.4.18) 

(4.4.19) 

(4.4.20) 

(4.4.21) 
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Clearly, the smaller the value of b, the more the mean-square error 
-1 

caused by the noise component bSI' w, is reduced. In going from 
.1 1. -1 

b=l/lsl ,1 2 down to b=0.5/Is1 '1 2, the mean-square error due to bs
1

, w, 
.1..1 .1. 1. 

is reduced by about 6dB, (since 10l09100.25z-6). But also, as b gets 

smaller, so the error caused by the fading component Y2 '-Y'2 '-I is 
• 1. .1. 

reduced at the expense of an increased error caused by Yl '-Y'l '-I Now 
.1. .1. 

because of the symmetry of this estimator 

IYl ' - Y'l '_1 1' .1. .1. 

and so the minimum possible value 

B21Y2.i Y'2.i-1 1 2 can similarly be shown to occur when B=0.5, or 

b=0.5/Is2.iI2. 

(4.4.22) 

This is clearly the optimum value of b for both channel estimates in 

the ,absence of noise, though at low signal-to-noise ratios smaller value's 

of b may be used. The optimum value of b for any given signal-to-noise 

ratio and fading rate is best evaluated by computer simulation. 

4.4.4 Gradient algorithm estimator incorporating feedback from the fading 

memory polynomial filter 

The estimator of Sec.3.4.9, which was the best estimator tested with 

System 1, is now adapted for use here. 

Gradient'estimator equations: 

r' , = s\ ,y\ ' , 1 + 5' ,y' .. (4.4.23) 
1 .1. .1,1- 2.1 2.1,1-1 

e, = r, - r' , (4.4.24) 
1 1 1 

y\ ' = Y'l ' , 1 + b ' * (4.4.25) e.s 1 . • 1 .1,1- 1 .1 

Y'2 . 
, + be. s' 2 ,* (4.4.26) 

.1 Y 2.i,i-1 1 .1 
where again, b is a small, positive, real-valued constant whose pptimum 

value is determined experimentally. S ' * 1 
. , 

.1 
s'2 .* are the complex 

.1 

conjugates of s'l " s'2' . respectively • 
• 1. .1. 

This estimation process operates in an exactly similar way to that of 

the previous Sec.4.4.3, but with the predictor now incorporated into the 

estimator. The only difference being that the estimates y'l.i-1' Y'2,i-t 

stored in the estimator of Sec.4.4.3 and used in Eqs.(4.4.5)-(4.4.8) are 

replaced by 

predictions 

the predictions Y'l .. I' Y'2 .. 1 respectively. These 
.1.,1- .1,1-

from the degree-p fading memory predictors are determined 

according to the corresponding equations in Table 3.4.1. 

The inputs to the degree-p predictors at time t=iT are 

El . = Y\ .. 1 - Y't . .1 .1.,1- .1 

E2 . = y' 2 ' . 1 - Y'2 . .1 .1,1- .1 

(4.4.27) 

(4.4.28) 
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which, from Eqs.(4.4.25) and (4.4.26) are equivalent to 

E = be s' * (4 4 29) l.i i l.i •• 
E = be s' * (4 4 30) 2.i i 2.i •• 

So Eqs.(4.4.25) and (4.4.26) need not be executed since the {y·l.i}' 

{y'2 .} are not required. Only the {y'l '+1 .}, {y'2 '+1 .} are used in 
.1 .1,1 .1,1-

the detector. Hence the lower diagram of Fig.4.4.3(b). The optimum 

values of b (in Eqs.(4.4.25) and (4.4.26» and e (in Table 3.4.1): are 

found experimentally by computer simulation for any given fading and noise 

conditions. 

The theoretical analysis of this estimator's performance is exactly 

similar to that for the previous estimator in Sec.4.4.3. The only 

difference being that y·1.i-1' y·2.i-1 in Eqs.(4.4.9)-(4.4.22) are 

replaced by y'l .. l' 
,1,1-

Y'2 .. 1 respectively. 
.1.,1-

The mean-square errors in 

the estimates of Y1 ., 
.l. 

Y
2 

. shows an improvement over those of Sec.4.4.3 
.l. 

since generally" y' ., ,y' ,. are likely to be much closer to 
1.1.,1-1 2,1,1-1 

Y1.i' Y2.i than are y·1.i-1' Y·2.i-1· 

But the analysis must be carried one stage further. How does this 

process of feeding back the predictions 

Gradient algorithm estimator affect the 

y' ,. ,y' ., into the 
1.l.,l.-1 2.l.,l.-1 

subsequent performance of the 

predictors? The input to each predictor is now highly dependent on 

previous outputs from that predictor, and so does not conform tO,the 

assumptions made by Morrison [110] given in Sec.3.4.2. A similar analysis 

was carried out for System 1. It was shown in Sec.3.4.9 that the Gradient 

algorithm incorporating feedback from the predictor is not a new Gradient 

algorithm at all. It is exactly equivalent to the Gradient algorithm 

without this feedback, with b=l/Is', I', and with a modified predictor 
l. 

where E.=y· ,-y' .. 1 is replaced by E.=bls·, I'(y' .-y' .. 1). The analysis 
1. 1. 1,1- 1. 1. 1. 1,1-

for System 2 continues as follows. 

The input to any of the least-squares fading memory polynomial 

predictors, for the prediction of Yl.i+l is 

E -y' -y'.. (4431) 1.i - 1.i 1.l.,l.-1 •• 
Where, for this estimator, assuming correct detection (from Eq.(4.4.17) 

with y'l '-1' y'2 '-1 replaced by y'l ' '-1' y'2 ' '-1) .1.1. .1,1 .1.,1-

y'l ' = blS1 ,I'Y1 ' + (1-b ls1 ,I')y'l ' '-1 
.1. .1..1. .1. .1,l. 

+ bS 1 ,*s2 '(Y2 ' - Y' 2 ' , 1) + bS 1 ,*w. (4.4.32) 
.1. .1.1. .1.,1- .1 1 

Put Eq.(4.4.32) into Eq.(4.4.31). The prediction error here is 

El ' = .l. bls 1 ,I'[(Y1 ' - Y' l ' '-1) 
.1 .1. -1 .1,l 

+ sl' s2' (Y 2 . 
.1 .1 .1 

-1 
- Y' 2 ' , 1) + sl' w.] 

.1.,1- .1. 1. 
(4.4.33) 
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But, for the Gradient estimator of the previous Sec.4.3.3 that did not 

incorporate feedback from the predictor. With b=l/ls . I' and correct 
l.~ 

detection (from Eq.(4.4.17» 
-1 

yl1 . = Y1 . + sI' s2 '(Y2 . -
• ~ .1. .1. .1 .1 

So in this case, the prediction error 

Eq.(4.4.31l ) 

El . = (Y1 . 
.1. .1. 

- Y I .• ) 

I ) + -1 
y 2 . . 1 sI' W . .1,1.- .1 l. 

is (put Eq.(4.4.34) into 

1.~,~-1 -1 
+ sI' s2 '(Y2 . 

.1 .1. .1 

-1 
- yl2 . 1) + sI . W. 

.1.- .1. 1. 

It is noted that 

El . of Eq. (4.4.33) ~ bls
1 

.1' X El . of Eq. (4.4.35) 
.1. .1.1 

(4.4.34) 

(4.4.35) 

(4.4.36) 

The resulting prediction 

better than that for the 

yl1 . 1 . with this estimation process will be 
.1+ ,l. 

estimator of the previous Sec.4.4.3, because 

yl2 .. 1 
.1.,1.-

in Eq.(4.4.33) is generally closer to y . than is yl2 . 1 in 
2.1 .1-

Eq.(4.4.35). So the estimator of this Sec.4.4.4 is a new and better 

Gradient estimator for System 2 than the one in Sec.4.4.3 • 

. 
4.4.5 Estimator conclusions 

The Gradient estimators of Secs.4.4.3-4.4.4 have been tested by computer 

simulation under the assumption that all detected symbols {s' l .}, {s12 .} 
• 1. • 1 

fed back from the detector to the estimator are correct. Results of these 

tests shown in Chapter 6 confirm that the estimator of Sec.4.4.4 gives the 

best performance. This estimator is now used exclusively in the rest of 

this chapter. 

A new method has been proposed here by which it should be possible to 

simultaneously estimate two independently fading channels when only the 

sum of the. two fading signals is known at the receiver. It has yet to be 

proved whether an adequate retraining method can be found, and also 

whether this estimator will work effectively with the detected data 

symbols at its input. 

4.5 Retraining .. of the Channel Estimator 

It is shown later in,Sec.4.6 ·that a catastrophic failure often occurs in 

the combined detector and estimator for System 2 after a deep fade, from 

which it does not recover. Thus, regular retraining of the channel 

estimate must be used. The retraining method used for System 1 is 

adapted for use here. 
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4.5.1 Model of Retraining Process 

The packet structure of both signals {SI .}. {s2 .} in the computer 
.1. • l. 

simulation tests is shown in Fig.4.5.1. This is exactly the same as that 

for System 1 in Sec.3.5.1. That is. each frame of N {sI'} or {s2 .} 
• 1. .1. 

consists of N-R random data symbols preceded by R known training symbols. 

10% retraining is assumed so R=O.lN. Also R is an even number and R'12. 

Additionally here. the corresponding packets from the two mobiles arrive 

perfectly synchronized in time at the receiver. 

Retraining methods are only described here for the channels {Yl .} • 
• 1 

{Y2 .}. When two receiving antennas are used (System 2B). it is 
.1 

understood that an exactly similar operation is carried out to retrain the 

estimator for {Y3 .}. {Y4 .}. So. the baseband received samples during 
.1. .l. 

the retraining period are {r.} for i=1.2 ••••• R. From Eq.(4.2.l) 
1 

r. = sI 'Yl . + s2 'Y2 . + w. 
1. .1..1. .1..1. 1. 

(4.5.1) 

and the {sI'}' {s2 .} for i=I.2 ••••• R are known at the receiver. The 
• 1. • l. 

particular sequences used for the two training signals are different. They 

have been chosen to satisfy certain conditions. so are described later. 

It is very important that the retraining method is reliable because if 

the channel estimators are badly retrained, it is quite probable that the 

whole of the following data packet would be lost. The "best" retraining 

method is defined here as that which results in the lowest bit error rate 

in detection for System 2. This best method should also give the minimum 

mean-square error in the estimates of both channels and their slopes at 

the end of the retraining burst. That is. at the start of data 

transmission. 

The methods tested for retraining the channel estimator of Sec.4.4.4 

are now described. Only the degree-l fading memory predictor is tested. 

(The other predictors in Table 3.4.1 were discarded in Chapter 3.) The 

results of these tests are shown in Chapter 6. 

4.5.2 Ideal Retraining 

With ideal retraining and the packet structure shown in Fig.4.5.l 

y'l.R = Yl.R • y'2.R = Y2.R 
y' = Y l.R+l y' = Y 2.R+1 l.R+l.R 2.R+l.R 

y' = Yl.R+l - Yl.R • y' = 
Y2.R+l 

-
Y2.R (4.5.2) l.R+l.R 2.R+l.R 

The Gradient estimator of Sec.4.4.4 is restarted with the ideal values 

shown in Eq.(4.5.2). This is used as a benchmark by which the actual 

retraining method is compared. 



-::::::~I-R-e-t-ra-i-n-in-g~I--------------D-a-t-a------------~::::::: 

i= 1.2 •...........• R. R+l.R+2 .......................................................... N 

Fig.4.5.1 Packet structure used in computer simulation tests 

•• 'i .•.. 

x •••••• ..... 
x ................ •· .... · 

...... 
................ 

..... 
•••••••• x 

.' 
.•.••.••.••••.•.••.• 

•• 11···· 

x 

(b) 

Fig.4.5.2 Example of real or imaginary part of {Yl)or{y 2.i} and its 
estimate during retraining 

x 

= real or imaginary part of channel 

= raw estimate 

= least·squares straight line 
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4.5.3 Least-Squares Retraining 

The method considered here uses the same basic three-stage process as for 

System 1 in Sec.3.5.5. Stages 2 and 3 are very nearly the same as for 

System 1. Again, the channel samples over the duration of the training 

signal lie on a smooth curve as shown in Fig.4.5.2. Here, the 

least-squares straight line through the R raw estimates of the channel, 

(calculated in Stage 2), runs almost parallel to the tangent of the curve 

{y,} in the middle of the retraining packet. The main problem here is in 
1 

Stage 1, because there is no simple unbiased estimator for System 2 that 

will give the initial raw estimates of the channels. Four different 

methods of obtaining these raw measurements are investigated. The first· 

method involves simply switching one transmitter off at a time so the 

received samples reduce to the same form as for System 1. The last three 

methods were originally proposed by A.P.Clark [123] for tracking fast 

fading channels. These four methods are now considered in detail. 

Method (1): Switch off one transmitter to estimate the channel of the 

other signal. 

The training sequences used here are shown in Table 4.5.1. There are an 

even number of retraining symbols, R, where ~12. For all odd numbered 

training symbols i=1,3, ••• ,R-l, s2 ,=0. From Eq. (4.5.1) 
.1 

sl ' is known at the 
.1 

Xl ' .1 

Xl ' is the unbiased 
.1 

measurement of Yl ' 
.1 

r, = Sl 'Yl ' + w, 
1 .1.1 .1 

receiver, so 
-1 

= Sl' r, = Yl ' + 
.1.1 .1 

estimate of Yl ' and 
.1 

-1 
sl' W, 

.1 1 

is taken to be the raw 

(4.5.3) 

(4.5.4) 

Similarly, sl ,=0 for the even numbered training symbols i=2,4, ••• ,R • 
• 1 

So from Eq.(4.5.1) 

r, = s2 'Y2 ' + w, 
.1 .1.1 .1 

(4.5.5) 

s2.i is known at the receiver, so 
-1 

x 2 ' = s2 ' r, = Y2 ' + 
.1 .1 1 .1 

-1 
s2' w, (4.5.6) 

.1 1 

X2 ' is the unbiased estimate of Y2 ' and 
.1 .1 

is taken to be the raw 

measurement of Y
2 

, • 
• 1 

It was shown in Sec.3.4 that the mean-square error in N unbiased 

estimates {x,} is 
1 

A = 
e 

1 
= 

2'/1 

- x ,1 2 

1.1 
N I -1 I 

= !. L S1.i W i 2 

N i=l 

(4.5.7) 



Table 4.5.1 Training signal used in least-squares 
Method (1) 

51 ' ,I 52' ,I 

1 - 1 - j 0 
2 0 -1 + j 
3 +1 +j 0 
4 0 + 1 - j 
5 - 1 - j 0 
6 0 -1 + j 
7 +1 +j 0 
8 0 + 1 - j 
9 - 1 - j 0 

10 0 -1 + j 
1 1 +1 +j 0 
12 0 + 1 - j 

Table 4.5.2 Training signal used in least-squares 
Methods (2) and (3) 

51' .I 52' ,I 

1 - 1 - j - 1 + j 
2 + 1 - j + 1 +j 
3 + 1 +j + 1 - j 
4 -1 + j - 1 - j 
5 - 1 - j - 1 + j 
6 + 1 - j + 1 +j 
7 + 1 +j + 1 - j 
8 -1 + j - 1 - j 
9 - 1 - j - 1 + j 

10 +1 - j + 1 +j 
11 + 1 +j + 1 - j 
12 -1 + j - 1 - j 
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Where ~Eb/NO as defined in Eq.(2.5.3). When fitting a least-squares 

straight line to these points in Stage 2 the mean-square errors in the 

estimates of the quadrature components of the channel and slope are 

approximately given by Eq.(3.5.26) and Table 3.5.2 and respectively. Now 

of course. only R/2 raw measurements of each channel can be formed from 

the R retraining samples. This causes a degradation in these least-squares 

estimates of channel and slope compared with System 1 - where R r'aw 

estimates are obtained from R retraining symbols. 

Method (2): "Slow Fading" Assumption 

The estimator assumes that 

AND Y2 . = Y2 '-1 .1 .1 
(4.5.8) 

To estimate Y1 . it is necessary to remove Y2 . from the received sample 
.1. • 1. 

r .• 
1 

This can be achieved by operating on the two received samples r .• 
1 

r
i

_
l

• It is shown in Appendix G [123) that when Eqs.(4.5.1) and (4.5.8) 

both hold and sl .• sl '-1' s2 .• .1 .1. .1. s2.i-1 are 

given by 
-1 

known at the receiver. a good 

estimate of Y1 . from r .• r. 1 is 
.1 1. 1-

where 

and 

Similarly. a 

where 

and 

Xl . 
.1 = al' P1' .1. .1 

-1 -1 
a 1 • i = s2.i sl.i - s2.i-1 sl.i-1 

-1 -1 
P1 . = s2' r. - s2 . 1 r. 1 .1 .1 1. . .1- 1-

good estimate of Y2 . is given by 
.1 -1 

x 2 . = a 2 · P2' 
.1. .1 .1 

-1 -1 
a 2 • i = sl.i s2.i - sl.i-1 s2.i-1 

-1 
P2 . = sl' r. .1 .1 1. 

-1 
- Sl.i-1 r i - 1 

This retraining estimator obtains R-1 {xl'} and 
.1 

(4.5.9) 

(4.5.10) 

(4.5.11) 

(4.5.12) 

(4.5.13) 

(4.5.14) 

{X
2 

.} (for 
.1 

i=2.3 ••••• R-1). Estimates at i=l cannot be obtained because sl.0 and 

s2.0 are 

Also 

not known. 

in Appendix G. 

X1 • i = 

Where Cl . is the error 
.1 

{Y1 .} (see Fig.4.5.2i~ 
·~1 

al' u1 · is the error 
.1 .1 

u
l 

. = 
.1 

it is shown that 
-1 

Y1 . + al' u1 · + Cl . 
.1 .1 .1 .1 

(4.5.15) 

in Xl . caused by the curvature in the channel 
.1 

Clearly. Cl .=0 if Eq.(4.5.8) holds true. 
.1 

in Xl : caused by the additive noise. where 
_1 1 -1 ' 

s2.i wi - s2.i-l wi - 1 (4.5.16) 

Now. these channel estimates are examined theoretically to see which 
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particular training sequences {sl ,}, {s2 ,} minimize the mean-square 
.1 .1 

errors in the estimates. The complex-valued noise components w., w. are 
1. 1-1 

statistically independent with zero mean and a fixed variance. Thus, the 

mean-square value of u
1 

' is independent of the values (±l±j) of the data 
.1 

symbols sl " sl '-1. So for the minimum mean-square error in Xl " 
.1. .1 .1-

la
1

•
i
l must be maximized which means that 

-1 -1 
s2 ' 1 sl ' 1 = -s2' sl ,(4.5.17) 

.1- .~i .1..1-

The mean-square value of a
1

, u
1

, is shown in Appendix G to be 
• 1. • 1. 

0 2/2=1/41/1, where'l=Eb/NO (or 02/2=-('1+6) dB, where 'P=1010910(E
b

/N
O

) dB). 

In fact, with the training signals chosen to satisfy Eq.(4.5.17), the 
-1 -1 

mean-square values of both a
1

, u
1

, in Xl ' and a
2

, u
2

, in x
2 

' are, 
.1. .1. .1. .1.1. .1. 

minimized. The chosen training signals in Table 4.5.2 satisfy 

Eq.(4.5.17), and at the same time enable effective symbol timing to be 

achieved over the duration of the fading signal. Details of the symbol 

timing are discussed in Appendix C. 

So, the mean-square errors in the {xl'}' {x2 ,} are seen to be 3dB 
.. 1. .. 1. 

better than for Method (1), if the assumption of slow fading (Eq.(4.5.8» 
-1 

one. However, the noise components a
1

, u
1

' and 
.. 1. .. 1. 

is an accurate 
-1 

al. i - 1' ul. i - l 
in adjacent samples Xl . and Xl '-1 are correlated since 

. .1..1. 

two received samples are used to estimate each channel value. So when the 

least-squares straight lines are fitted to the R-1 {xl'}' {x
2 

,} in Stage 
.1. .. 1. 

2, the resulting estimates of the channels are not as accurate as if the 

R-l raw measurements were uncorrelated. 

Method (3): "Fast Fading" Assumption -

The estimator assumes that 

AND (4.5.18) 

To estimate Y1 ' it is necessary to remove Y2 ' from 
.1. .. 1. 

the received sample 

r,. This can be achieved by operating on the 
1 

three received samples r, l' 
1-

r., r'+l. 
1 1, 

It is shown in Appendix G [68,123] that when Eqs.(4.5.1) and 

(4.5.18) both hold and sl '-1' sl " sl '+1' s2 '-1' s2 " s2 '+1 are all .1 .1 .1 .1 .1 .1 

known at the receiver, a good estimate of Y1.i from r i _1 , ri' r i +l is 

given by 
-1 

Xl ' = a l , Pl' 
.1. .1. .1. 

(4.5.19) 

where 
-1 -1 -1 

Pl.i = 2s2.i r i - s2.i-1 r i - l - s2.i+1 r i +1 
(4.5.20) 

and 
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-I' 
a ,,' = 4S

2
, sI' 

l.i .~ .~ 

-1 
s2 ' 1 s, , 1 = 

.~- 1.1-

-1 
s2.i+1 s1.i+1 

-1 
= -8 2 , SI' 

.1. .1. 

Similarly. a good estimate of Y2 ' is given 
.1 -1 

by 

x 2 ,"= a 2 , P2' 
.1. .1. .1. 

where 
,-1 -1 -1 

P2.i = 2s1 • i r i - sl.i-1 r i - 1 - sl.i+1 r i +1 
and 

-1 
a 2 ' = 4s1 , s2' 

.1. .1. .1. 

and 
1 -1 -1 

sl.i-l- s2.i-1 = sl.i+1 s2.i+1 = -sl.i s2.i 
Of course. Eq.(4.5.26) must be true if Eq.(4.5.22) is true. 

(4.5.21) 

(4.5.22) 

(4.5.23) 

(4.5.24) 

(4.5.25) 

(4.5.26) 

This 

retraining estimator obtains R-2 estimates {xl'}' {x
2 

,} for 
.1. .1. 

i=2.3 ••••• R-1. Estimates at i=l and R cannot be obtained because sl.0' 

s2.0' sl.R+1' s2.R+1 are not known. 

Also in Appendix G it is shown that 
-1 

xl ' = Y1 ' + aI' u l ' + Cl ' 
.1 .1. .1. .1. .1. 

(4.5.27) 

Where Cl ' 
.~ 

!ig.4.5.2). 

is the error caused by the curvature in the channel {Y1 ,} (see 
-1 .~ 

Clearly. Cl ,=0 if Eq.(4.5.18) holds true. aI' u 1 ' is the 
.1. .1. .1. 

error in Xl ' caused by the additive noise. where 
• ~ -1 -1 -1 

u 1 ' = 2s2' w, - s2 ' 1 w, 1 - s2 ' 1 w, 1 (4.5.28) 
.1. .1. 1. .1+ 1+ .1.- 1.-

Now. the channel estimates are examined theoretically to see what their 

mean-square errors are likely to be. The mean-square values of both 

-1, d -1, h' d' G b aI' u
I

' ~n Xl ' an a 2 , u 2 ' ~n x 2 ' are s own ~n Appen ~x to e 
.1. .1 .1. .1..1. .1 

302/8=3/16~. where ~Eb/NO=1/202 (or 302/8=-0V+7.3) dB. where 

~=1010g10(Eb/NO) dB). The chosen training signals in'Table 4.5.2 satisfy 

Eq. (4.5.22). and at the same time enable effective symbol timing to be 

achieved over the duration of the fading signal. Details of the symbol 

timing are discussed in Appendix C. 

So, the mean-square error in Xl . and 
.~ 

X
2 

' is seen to be about 4.3dB 
.~ 

better than in Method (1) and about 1.3dB better than in Method (2). This 

assumes of course that the fast fading assumption of Eq.(4.5.18) is an 

accurate one. It is clearly more accurate than the slow fading assumption 
-1 

a1.i-1 u1.i-1' 

x
i

+
1 

are all 

(Eq.(4.5.8» of Method (2). However. the noise components 

-1 -1, d' t t' t aI' u l " a 1 ' 1 u1 ' 1 1n a Jacen es l.ma es x l' x., 
.1. .1. .1.+ .1+ 1- 1. 

correlated, since three received samples are used to estimate each channel 

value. So when the least-squares straight lines are fitted to the R-2 

{xl'}' {x2 ,} in Stage 2., the resulting estimates of the channels are not 
• 1. .1. 
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as accurate as if these R-2 raw estimates were uncorrelated. 

Method (4): "Very Fast Fading" Assumption, 

The estimator assumes that 

(Yl.i+l-Yl.i) - (Yl.i-Yl.i-l) = (Yl.i-Yl.i-l) - (Yl.i-l-Yl.i-2) 

AND 

(Y 2 '+1-Y2 ,) - (Y2 '-Y2 '-I) = (Y2 '-Y2 '-I) - (Y 2 '-1-Y2 '_2)(4.5.29) 
.1 .1 .1..1. .1..1. .1..l. 

It is shown in Appendix G [68,123] that when Eqs.(4.5.1) and (4.5.29) both 

hold true, and sl.i-2' sl.i-l' sl.i' sl.i+l' s2.i-2' s2.i-l' s2.i' s2.i+l 

are all known at the receiver, a good estimate of Y
l

•
i 

from r
i

_
2

, ri-I' 

ri' r i +l is given by 
-1 

xl ' = aI' PI' .1. .1. .1. 
(4.5.30) 

where 
-1 -1 -1 -1 

Pl.i = 3s2 • i r i -s2.i+l r i +l - 3s 2 • i _ l r i - l + s2~i-2 r i - 2 
(4.5.31) 

and 

and 
-1 

s2' sI' .1. .1. 

-1 
a l ' = 8s1 , S2' 

.1 .1. .1 
(4.5.32) 

-1 -1 
= -s2.i-2 sl.i-2 = -s2.i-l sl.i-l 

-1 
= s2.i+l sl.i+l (4.5.33) 

The estimate of Y
2

•
1 

is determined in a similar manner. Also in 

Appendix G it is shown that 
-1 

Xl ' = Yl ' + aI' u l ' + Cl ' 
.1 .1 .1 .1. .l. 

Where Cl ' 
.1 

is the error caused by the curvature in the 

Fig.4.5.2) • Clearly, Cl ,=0 if Eq.(4.5.19) holds true. 
.1 

error in Xl ' caused by the additive 
.1 -1 -1 

noise and 
-1 

u l ' = 3s2 , w, - s2 ' 2 w, 2 -
.1 .1. 1. .1.- -." 1- 3s 2 ' 1 w, 1 .1- 1-

(4.5.34) 

channel {Y
l 

,} (see 
-1 .1 

aI' u l ' is the 
• 1. • 1. 

-1 
- s2 ' 1 w, 1 .1.+ 1+ 

(4.5.35) 

Now, the channel estimates are examined theoretically to see what their 

mean-square errors are likely to be. The mean-square values of both 
-1, -1 

aI" u
l

, 1n Xl ' and a
2

, u
2

, in x
2 

' are shown in Appendix G to be 
• 1. • 1. .1. -- • 1. .~l. • 1 

502/16=5/32~, where ¥=Eb/NO=1/202 (or -(~+8.1) dB, where ~10log10(Eb/NO) 

dB). This is better than for Method (3) by only about 0.7dB. 

So, although the very fast fading assumption (Eq.(4.5.29» is more 

accurate than the "fast fading" assumption (Eq.(4.5.l8», this method is 

very unlikely to give a great improvement in the estimates Xl ' x
2 

' over 
• 1. .l. 

Method (3) that would justify the extra complexity. Another problem with 

this method is that the restriction on the values of {sI'}' {s2 ,} 
.1 .1 

(Eq.(4.5.33» make it impossible to choose a training sequence that 
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satisfies these conditions for two adjacent symbols. Also, by using four 

received samples in every estimate, this complicated estimation process 

now gives highly correlated estimates which would degrade the least-square 

straight line fitting of 'Stage 2. 

symbols apart are uncorrelated. 

Only estimates {xl'} more than four 
.~ 

In view of these above reasons, this 

method is most unlikely to give any improvement over Method (3) so is not 

tested in this investigation. 

The question that still remains is, which of Methods (1), (2) or (3) 

should be used in the retraining process of System 2? Clearly, Method (3) 

will give more accurate raw measurements {xl'}' {x2 .} than Method (2) 
• 1. .1. 

for two reasons. Firstly, the error caused by the additive noise 

component {w
l

} is about 1.3dB lower for Method (3) than for Method (2). 

Secondly, the error caused by the curvature in the channel samples will be 

lower, with the fast fading ' assumption of Method (3), than with the slow 

fading assumption of Method (2). In fact, experience with the unbiased 

estimator of System 1 has shown that a slow fading assumption of 

Eq.(4.5.8) is likely to result in an unacceptable irreducible error rate 

at high signal-to-noise ratios, with the fast fading rates experienced 

here. So no tests are carried out on Method (2). 

Also, Method (1) is discarded in preference to Method (3), for the 

following reasons. Firstly, the error caused by the additive noise 

components {w.} is about 4.3dB lower for Method (3) than for Method (1). 
~ 

Although Method (3) relies on thet accuracy of the fast fading assumption 

(Eq.(4.5.18», the mean-square error in the raw measurements 

still at least 4dB better for Method (3). Secondly, R-2 raw 

xl ., x
2 

. is 
.1. .l. 

measurements 

{xl .},{x
2 

.} can be found using Method (3) against only R/2 for Method 
.1. .1. 

(1). So, although there is some correlation in the raw measurements of 

Method (3), the least-squares straight line fitted to these measurements 

should generally give a much better result than for Method (1). Thirdly, 

the training signals used with Method (3) shown in Table 4.5.2 enable 

effective symbol timing to be achieved over the duration of the fading 

signal, (see Appendix G). Whereas, for Method (1), the insertion of 

alternate zeros in the training signals would certainly cause errors in 

the symbol timing recovery at the receiver. So no tests are carried out 

on Method (1). 

The three-stage retraining process for System 2 now procedes as 

follows. 
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Stage 1: Firstly. the raw measurements of the channels are formed for 

the entire retraining signal. 

That is'. Eqs.(4.5.19)-(4.5.26) are executed for i=2.3 •.. .• R-l to give 

the R-2 {xl .}.{x2 .} • 
. ~ .1 

Stage 2: Secondly. from these raw measurements the receiver forms the 

least-squares estimates of both channels and their slopes in the centre of 

the retraining packet. 

The least squares estimate of the rate of change of Y1 . with i. as i 
.1 

increases from !R to !R+l is 

where 

y' 1.D 
R-l. R-l. R-l 

= _1_2::1x1.i - _1_2::1 X _1_ 2:x1.i 
R-2 i=2 R-2 i=2 R-2 i=2 

D = !R + 1 

and R is an even number. 

The least-squares estimate of the channel at i=D=!R+l is 

, _ ~l + ,', y 1 D - _1_ xl' ,y 1 D 
• R-2.· 1 • 

1=2 

(4.5.36) 

(4.5.37) 

(4.5.38) 

In practice. the number of retraining symbols R is known beforehand. 

and therefore the terms ~i and ~i2 in the denominator of Eq.(4.5.36) would 

also be known. So the general equation of slope in Eq.(4.5.36) can be 

greatly simplified with no need for divisions. For example. if R=12. 

Y'l.7 = 0.01212 ~ixl.i - 0.07879~xl.i (4.5.39) 

i=2 i=2 

Estimate of y" y' are determined in a similar manner. 
2.!R+l· 2.!R+:t 

Stage 3: Finally. these estimates of the two channels and their slopes 

are used to initialize the Gradient estimator with degree-l fading memory 

predictor (Sec.4.4.4). which is restarted at this point i=D=!R+l. 

The estimator/predictor is initialized with 

y' 1.D.D-l 
y' 

1.D.D-l 

y' 2.D.D-l 
y' 

2.D.D-l 

= •• 
Y 2.D 

= y'2.D (4.5.40) 

The received samples rD.rD+l ••••• r
R 

have been stored. so the Gradient 

estimator is run for i=D.D+l ••••• R according to Eqs.(4.4.23)-(4.4.28). 

wi~h degree-1 polynomial prediction (Table 3.4.1). Now the predictions 
, 

Y 1.R+l.R' 
arrival of 

. , , 
y 1.R+l.R· y 2.R+l.R· 
the first data symbol 

y' are stored ready for the 
2.R+l.R 

sR+l' 
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EqS.(4.5.36)-(4.5.39) used here to estimate the channel and its slope 

have been derived in Appendix G. Their performance has been analysed 

theoretically in Sec.3.5.5.· The mean-square errors in these channel and 

slope estimates will not be quite as good here as for System 1. This is 

because there is some correlation in the additive noise components of the 

{xl'}' {x2 ,} • . ~ .~ 

This three-stage retraining process is tested by computer simulation 

for R~12 with different signal-to-noise ratios and a fixed simulated 

vehicle speed of 6Omiles/hour. The results of these tests are given in 

Chapter 6. They indicate the expected degradation' in performance when 

using less than 12 retraining symbols. R=12 retraining symbols was seen. 

to give the best results with System 1. 

4.5.4 Conclusions for Retraining 

Regular retraining of the channel estimators can be successfully achieved 

with R=12 retraining symbols, using the least-squares methods of 

Sec.4.5.3. Test results are given 'in Chapter 6 with all correct data 

symbols fed back into the estimator. These results indicate that the 

estimator with this retraining method- loses about IdB in tolerance to 

noise compared to the estimator with ideal retraining. If more retraining 

symbols could be used, then it should be possible to improve on this 

performance. Unfortunately, the maximum of R=12 was imposed by hardware 

restrictions in the prototype modem [92]. 

4.6 Combined Detection and Estimation 

The maximum likelihood detector described.in Sec.4.3.2 in now combined 

with the Gradient estimator described in Sec.4.4.4. The estimator uses a 

degree-1 fading memory predictor (Table 3.4.1) and is regularly retrained 

using the method described in Sec.4.5.3, with R=12 retraining symbols. 

This is the combined detector and estimator for System 2 that performs 

coherent demodulation at the receiver. It is shown in Fig.4.6.1. 

Computer simulation tests in Chapter 6 have shown that this combined 

detector and estimator is inherently unstable. This is in. marked contrast 

to System 1 which was seen to perform well even without retraining. To 

explain this, consider an eroneous detection of the symbol sl ' in System 
.1 

2A caused by the channel y ,being in a deep fade. This error causes a 
1.1 

large error in the estimate of the channel Y1 " and a corresponding large 
.1 
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error in the prediction y'l '+1 .• This further increases the probability 
.. ~ , l. 

of error in the detection of sl.i+1' and so on. A fading channel in a 

deep fade could cause a burst of errors several symbols long, which would 

result in predicted channel values far removed from the channel's actual 

in-phase and quadrature components. Consequently correct detection is now 

highly improbable, causing an avalanche of erroneous predictions and 

detected symbols. Since the signals from the two mobiles have been added 

in the channel and must therefore be considered as one single 16-point 

signal at the receiver, collapse of one of the signals soon ensures the 

collapse of the second. Random data is output and the channel predictors 

follow completely random paths. Correct operation resumes only after the 

next retraining burst when the channel predictions are correctly reset. 

However, during correct operation of the combined detector and estimator 

of System 2A, shifts in 

180 0 occur quite often 

the channel estimators for Y1 . or Y2 . of ±90 0 

.. 1. .. l. 

(especially just after a deep fade), with the 

corresponding shift in the subsequent detected symbol values {s'l .} or 
.1 

or 

{S'2 .}. This is corrected for automatically by the differential coding • 
• 1 

So correct operation is only possible here with DQPSK modulation. The 

QPSK modula.tion (without differential coding) cannot be used - this was' 

also found to be the case for System 1. 

Computer simulation tests indicate that on average, without 

retraining, total system collapse can be expected to occur in this System 

2A, only after about 400 symbols duration. Clearly, retraining is 

essential for acceptable performance of this system. Effective retraining 

every 120 symbols ensures that very long bursts of errors are avoided 

here. 

However, simulation tests on System 2B indicate that a similar total 

system collapse is expected after about 12000 symbols duration. This 

marked improvement in the stability of the .. system is due to the two facts 

discussed in Sec.4.3.2. That is, firstly, with two receiving antennas 

errors caused by signal points overlapping are very much reduced. 

Secondly, errors caused by deep fades are very much less likely with 

uncorrelated fading at the two receiving antennas than they are with 

fading at one antenna. So, with effective retraining every 120 symbols, 

very long bursts of errors are avoided in this System 2B. 

Clearly, any method which can reduce the error extension effects 

caused by feeding back incorrectly detected symbols into.the channel 

estimator is bound to give a noticeable improvement in performance, 
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especially for System 2A. Hence, the Viterbi-type detector for System 2 

is now inve~tigated. 

4.6.1 Viterbi-type Detection 

The weakness of the estimation process used here is that it relies very 

heavily on the correct detection of the data symbols. The Viterbi~type 

detector described' in Sec.3.6.1 overcomes this weakness by permitting the. 

estimator to consider simultaneously several different possible values of 

each detected data symbol; This technique uses the Viterbi-type detection 

algorithm [120] in a novel way to improve the tolerance to noise of this 

combined detection and estimation process. It is interesting to note that 

this Viterbi algorithm does not improve the performance of the detector or 

the estimator when they are tested separately as in Secs.4.3 and 4.4. 

The block diagram of this final combined Viterbi-type detector and 

estimator is shown in Fig.4.6.2. The way it works for System 1 has been 

described in Sec.3.6.1. Rather than repeat this lengthy description here, 

the reader is referred to Sec.3.6.1 - but the following changes must be 

made to the equations for the description in Sec.3.6.1 to apply to System 

2: 

(i) Eqs. (3 .6.1)- (3.6.2) are replaced by Eqs. (4.6.1 )-( 4 .6.2). Thus, the 

received sample at the output of the receiver lowpass filter of System 2A 

is given by 

r. = sl 'Yl . + s2 'Y2 . + W. 
1 .1.1 .1.1 1 

Similarly, for System 2B 

(ii) q. in 
1 

r . = Sl 'Yl . + s2 'Y2 . + w . 
a.l .1.1 .1.1 a.l 

rb . = 
.1 

Eq.(3.6.3) 
Sl.iY3.i + s2.iY4.i 
is now assumed to be 

+ wb . 
.1 

an (M=16)-level 

symbol, given by the two-component vector 

q. = [ql' q2'] 
1 .1 .1 

(4.6.1) 

(4.6.2) 

composite data 

(4.6.3) 

where ql . and q2·· take on possible values of sl·· and s2 . respectively • 
• 1 .1 .1 .1 

Thus, q. has M=16 different possible values corresponding uniquely to the 
1 

16 different possible combinations of sl . 
.1 

now, the vector Qi-l=[qR+l qR+2 •••• qi-l] 

of sequences. 

and s2 . (see Table 4.3.1). So 
.1 

in Eq.(3.6.3) represents a pair 

[s'l.R+l s'1.R+2 S'l '_1] . ,.1 

and 

[S'2.R+l s'2.R+2 S'2.i-l] (4.6.4) 

(iii) The costs {c.} are determined from their maximum likelihood 
1 
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distances {d,'}. So, for System 2A, Eq.(3.6.5) is replaced by 
~ 

For 

c, 
~ 

System 

= c'_l + Ir, - ql ,y'l ' '-1 - q2 ,y'2 ' '_11' 1. 1. .1. .1.,1. .1 .1.,l. 

28, Eq.(3.6.6) is replaced by 

Ir , 
a.~ 

- ql ,y'l ' , 1 - q2 ,y'2 ' , 1 1' .1. .1.,1.- .1. .1.,1.-

+ Irb ' - ql ,Y'3 ' '-1 - q2 ,Y'4 ' '-1 1 ' .1. .1. .1.,1. .1. .1.,l. 

Thus, for System 2A, 
i-l 

c i - l = ~ 

Eq.(3.6.7) is replaced by 

Ir - q y' - q y' I' 
n l.n l.n,n-l 2.n 2.n,n-l 

n=R+l 

and for System 28, Eq.(3.6.8) is replaced ,by 

'-1 ( c, = ~ Ir - q y' - q y' I' 
~-l n=R+l a.n l.n l.n,n-l 2.n 2.n,n-l ) 

+ Ir - q y' - q y' I' b.n 1.n 3.n,n-l 2.n 4.n,n-l 

(4.6.5) 

(4.6.6) 

(4.6.7) 

(4.6.8) 

(iv) The Gradient estimator for System 2 is as described in Sec.4.4.4. So 

EqS.(3.6.9)-(3.6.14) are replaced by Eqs.(4.6.9)-(4.6.l8) below. 

r', = ql ,y'l ' ' 1 + q2 ,y'2 ' , 1 
1. .1. .1.,1- .1. .1.,1.-

e, = r. - r'. 
~ ~ ~ 

Now, 

y\ ' = y\ ' , 1 + be,ql ' * 
.~ .1.,1.- -1 .l. 

El ' = y\ ' - y'l ' , 1 
.~ .~ • .1,1.-. , 

= . , + (l-8)'E , Y 1 ' 1 ' Y 1 ' , 1 .1.+ ,1 .1.,1.- 1.~ 

y'l ' 1 ' = , + . , + (l-8')E , 
.1.+ ,1 Y 1.i,i-l Y 1.i+l,i 1.~ 

And 

y'2 ' = y' 2 ' , 1 + be,q2 ' * 
.~ • .1,1- ~ .~ 

E2 ' = y'2 ' - y' 2 ' , 1 
.~ .~ .1.,1-. , = . , + (l-8}'E , 

Y 2.i+l,i Y 2 ' ' 1 .1.,1.- 2.~ , = , + . , + (l-8')E , 
Y 2.i+l,i y 2.i,i-l Y 2 ' 1 ' .1.+ ,l. 2.~ 

As for System 1, a s impl if i ca tion can be made to this algorithm 

(4.6.9) 

(4.6.10) 

(4.6.11) 

(4.6.12) 

(4.6.13) 

(4.6.14) 

(4.6.15) 

(4.6.16) 

(4.6.17) 

(4.6.18) 

since 

y'l " y'2 ' are not required in the detector. Replace Eqs.(4.6.ll)-
.1. • l. 

(4.6.12) by 

El ' = be,ql ,* 
.1. 1..1 

(4.6.l9) 

and replace Eqs.(4.6.l5}-(4.6.l6} by 

E2 ' = be, q2 ,* (4.6.20) 
.1 1..l. 

However, unlike System 1, a simple unbiased 'estimator for System 2 does 

not exist so no further simplifications to this algorithm can be made. 

The estimates y'l '+1 " Y'l '+1 " 
.1.,1. .1.,l. 

each vector Q, are stored ready for 
~ 

y'2 '+1 " Y'2 '+1 ' associated,with 
.1.,1 .1.,l. 

the detection of q, l' For System 28, 
~+ 

y'3 '+1 " Y'3 '+1 " y'4 '+' " Y'4 '+1 ' for each vector must also be 
.1.,1. .1.,1 .1 1,1 .1.,1. 

stored. 

(v) The least-squares retraining process is as described in Sec.4.5.3. So 
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Eq.(3.6.19) is replaced by Eqs.(4.6.21)-(4.6.23) below for the estimate of 

Y1 .• 
• 1 -1 

xl . = al' PI' .1. .1 .1. 
(4.6.21) 

where 
-1 -1 -1 

Pl.i = 2s2.i r i - s2.i-1 r i - 1 - s2.i+1 r i + l 
(4.6.22) 

and 
-1 

a 1 . = 452 , 51' 
.1 .1 .1. 

-1 -1 -1 
= 2s2.i sl.i - s2.i-1 sl.i-l - s2.i+1 sl.i+1 (4.6.23) 

Also. for the estimate of Y2 . 
• 1 -1 

x 2 . = a 2 · P2' 
.1 .1. .1. 

(4.6.24) 

where 
-1 -1 -1 

P2.i = 2s1 • i r i - sl.i-1 r i - 1 - sl.i+1 r i +1 
(4.6.25) 

and 
-1 

a 2 . = 45 1 , 52' 
.1. .1. .1 

-1 
= 25 1 , 52' 

• 1. .l. 

-1 -1 
- sl.i-1 s2.i-1 - sl.i+1 s2.i+1 (4.6.26) 

The R-2 estimates {xl .} and {x
2 

.} for i=2.3 ••••• R-1 are obtained in this 
.1 .1 

way. 

Now. for the channel Y1' Eqs.(3.6.20) and (3.6.21) are replaced by 

Eqs.(4.6.27) and (4.6.28) below respectively; 

and 

Y\.'R+l"R = ~ :!eiXl. i - ~ (~tl\~ (>-;Xl.i) 
R 2 i=2 R 2 i=2) R 2 i=2 

~ ~i2 - (~ ~i)' 
R-2 i=2 R-2 i=2 

R-1 
y'l.'R+1"R = R=2 ~x1.i + 'Y'l.'R+1"R 

1=2 

(4.6.27) 

(4.6.28) 

A similar procedure is carried out on the {x2 .}. {x3 .}. {x4 .} for 
.1 .1. .1. 

The Systems 2A and 2B are tested by computer simulation for m=1.2 and 

4. That is. with either 1.2 or 4 vectors in the Viterbi-type detector. 

The packet length is N=120. with R=12 retraining symbols followed by 

N-R=108 random data symbols. The values of b.e used in the estimator for 

any given signal-to-noise ratio are given in Table 6.4.1. These have been 

found to roughly minimize the mean-square error in prediction when 

correctly detected data symbols are fed back into the estimator. 
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4.6.2 Conclusions for Combined Detection and Estimation 

Computer simulation results in Sec.6.4 clearly show that with only one 

vector in the Viterbi-type detector (m=l), System 2 performs exactly as 

described in Sec.4.6.l with the single detector and estimator. That is, 

differential coding must be used, and total system collapse occurs on 

average, once every three or four packets for System 2A and about once 

every 100 packets for System 2B. This collapse is now accompanied by a 

very sharp rise in the 

With more than one 

cost c. of the stored 
1. 

vector in the Viterbi 

vector Q .• 
1. 

detector (m~) differential 

coding must still be used, but such a system collapse was not observed 

once in any of the computer simulation tests for Systems 2A or 2B. Thus, 

the Viterbi-type detector has completely stabilized System 2. In fact, 

the tolerance to noise of this system is even better than for the single 

detector and estimator with correct data symbols fed back into the 

estimator. This is because this Viterbi algorithm chooses the seguence of 

detected data symbols that gives the best tracking of the channel through 

a fade. It seems to follow that the tolerance to noise is improved 

because the predictor has the freedom to track the channel ±90° or 180 0 

out of phase rather than in spite of this fact. A similar observation was 

made for System 1. 

However, when one receiving antenna is used (System 2A) with 

differential coding, long bursts of errors in detection sometimes occur in 

both sets of data symbols {sl .}, {s2 .} at the same time, without a sharp 
.1. • l. 

increase in the cost c.. This is most often the result of an interchange 
1. 

in the channel predictors part-way through a packet. Thus, the channel 

estimator is still tracking the fading signals, but is associating the 

data symbols with the wrong channels. Differential coding in no way 

reduces the risk of this happening, nor does it correct these errors. It 

seems that the only practical way to correct the errors in these bursts is 

to apply different codes to the two data streams so that this interchange 

can be identified when it happens. Work is proceding on this at 

Manchester University. In the real world, both mobiles would generally be 

travelling at different speeds so the fading rates in the two channels 

{Yl .}, {Y2 .} would be different. Under this condition, y'l .. 1 and 
.1. .1 .1,1-

y'2 .. 1 are actually less likely to swap over and'follow the wrong 
.1.,1-

channels. Also, this type 'of error does not seem to occur when there are 

two receiving antennas. So in the real world, this type of error probably 

has very little effect on the performance of System 2B. 
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4.7 Summary for System 2 

System 2, a digital modem employing a completely new multiplexing method, 

has been developed and tested by computer simulation. It uses novel 

techniques of detection and estimation, similar to those used for System 

1. It is possible with this method to transmit simultanously two 

four-level QAM signals in the same frequency band, where the two signals 

originate from different mobiles and fade independently at the base 

station receiver. The independent fading of the signals itself performs a 

process of collaborative coding that enables the signals to be detected 

and separated at the receiver 'without seriously interfering with each 

other. 

Test results indicate that this coherent demodulation receiver with 

differential coding of the binary digits (DQPSK) can achieve a good 

tolerance to additive white. Gaussian noise. Differentially-coherent DQPSK 

which employs differential detection [8,9,23,36,106J could not be used 

with this mUltiplexing method. This System 2 would achieve a bandwidth 

efficiency of just under 2bit/s/Hz in the mobile radio network - which is 

twice that for System 1. Two antennas must be used at the receiver for 

satisfactory operation to be achieved. This is largely because there is a 

dramatic improvement in the Rayleigh fading statistics with two antennas, 

as was the case for System 1. But also because errors caused by signal 

points overlapping and errors caused by an interchange in the estimators 

for channels Y1 . and Y2 . are greatly reduced in System 2 when two 
.1 .1 

receiving antennas are used. 

As for System 1, the key to the successful development of System 2 is 

a novel technique of combined detection and estimation with regular 

retraining of the estimator. As few as two stored vectors in the 

Viterbi-type detector are enough to ensure a stable System. In fact, the 

receiver with two or more stored vectors has a better performance than the 

receiver that has all correct data symbols fed back to the estimator. 

Since the channel estimation process is completely restarted every .1/100 

second, it should be quick to recover from any prolongued loss of signal 

power. This regular retraining also avoids problems in estimation during 

hand-off as the mobile moves from one cell to another. 

A particular virtue of the basic system studied here is that the most 

complex of the processes are involved at the base station, allowing the 

simpler processes to be implemented in the mobiles. Thus, a mobile 

transmits a four-level QAM signal, which is a bandlimited QPSK signal and 
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has only a limited ripple in the envelope. Consequently, a relatively 

simple high power amplifier can be used in the mobile. In contrast, the 

base station must perform all the complex processes in the combined 

detector and estimator. 
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CHAPTER FIVE 

SYSTEM 3 

5.1 Introduction 

In Chapter 3 a combined detection and estimation process was used 

successfully at the receiver to achieve near-optimum coherent demodulation 

of a four-level QAM signal in fast Rayleigh fading. The bandwidth 

efficiency was about 1 bit/s/Hz. It was then shown in Chapter 4 that this 

basic system could be extended to simultaneously receive two four-level 

'Q~ signals in the Same frequency band. These two signals originate from 

two different mobiles and fade independently at the receiver. This is a 

completely new mul tiplexing method, giving a bandwidth 'efficiency of about 

2 bit/s/Hz. 

The aim of this chapter is to develop System 3, which would allow the 

transmission back from the base station to these two mobiles in the same 

frequency band, with a bandwidth efficiency of about 2 bit/s/Hz. The 

coherent modulation scheme is different to that of the previous two , 
chapters. Here, a l6-level QAM signal is transmitted with fully raised 

cosine spectral shaping and differential coding of the binary digits (see 

Sec.2.3). A 48kbit/s (12kbaud), l6-level QAM signal is transmitted with a 

carrier frequency of about 900MHz and with a total signal bandwidth of 

24kHz. The same signal is received by both mobiles, with half of the 

binary digits allocated to each. That is, the same information rate in 

each mobile-base station link as in Systems 1 and 2. 

Four-level QAM modulation was chosen for the mobile transmitters in 

Systems 1 and 2 because it is relatively simple to generate with cheap 

equipment. However, it is generally considered that the base station 

equipment will be more expensive. So it is quite feasible to transmit a 

16-level QAM signal from the base station in System 3, even though an 

expensive linear high-power amplifier is. required to generate it. 

System 3 is developed in this chapter following an exactly similar 

procedure as was taken for Systems 1 and 2. That is, first of all in 

Sec.S.2 the system model is described. Then in Sec.S.3 the best possible 

system performance is evaluated by testing the optimum maximum likelihood 

detector with perfect channel estimation. In Sec.5.4 correct detection is 
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assumed and the various estimation processes are tested. The method of 

retraining the channel estimator is described in Sec.5.5 before finally 

testing the combined detector and estimator in Sec.5.6. 

Many similarities exist between System 3 and System 1. So to avoid 

needless repetition and confusion, only the important differences that 

exist between Systems 3 and 1 are highlighted. Wherever possible, 

references are given to descriptions already given for System 1. 

Throughout this chapter the performance of System 3 is compared with 

that of System 1 from the point of view of the penalty paid in equipment 

complexity and tolerance to noise in going from System 3 to System 1 when 

doubling the spectral efficiency. System 3 is compared with System 2 to 

show the difference in performance between these two 16-point 

constellations which have the same spectral efficiency. The 16-level QAM 

signal used in System 3 has the optimum tolerance to noise of any fixed 

16-point constellation [31,36,104]. 

5.2 Model of System 

In the computer simulations at time t=iT, the baseband received sample at 

the output of the receiver matched filter is given by: 

For System 3A 

For System 3B 

r. = siYi + w. 
1 1 

r = s.y . + w 
a.i 1 a.1 a.i 

rb . = S'Yb . + wb . 
..1 1.1 .1 

The letters s,y,w refer to the data channel and noise waveforms 

(5.2.1) 

(5.2.2) 

respectively. The subscript i shows that these waveforms have been 

sampled at time t=iT. The subscripts a and b before the dot refer to 

receiving antennas A and B. The computer simulation model is shown in 

Fig.5.2.1 and the detailed simulation method is described in Appendix B. 

The important assumptions from which these equations have been derived are 

summarized in Sec.2.4.1. Also the relevant properties of the channel and 

noise samples have been summarized in that section. 

The computer simulation model of System 3 given by Eqs.(5.2.1)

(5.2.2) and Fig.5.2.1 is, in fact, the same as the model for System 1 

(Eqs.(3.2.1)-(3.2.2) and Fig.3.2.1). The only differences between these 

two models are due to the different properties of the data symbols {s.}. 
1 

These differences are discussed in Seo.2.6.1. 
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The general operation of the coherent demodulation receiver has been 

described in Sec.2.6.2. The detailed operation of the data detection and 

channel estimation processes that comprise this receiver are investigated 

in the rest of this chapter. 

5.3 Detection 

The aim of this section is to investigate different methods of detecting 

the data symbols {s.} in Systems 3A and 38, assuming perfect channel 
1 

estimation at the receiver. The best method tested here should still be 

the best detection process when used with the actual channel estimates •. ' 

5.3.1 Model of the Detection Process 

The baseband received samples at the input to the detector at time t=iT, 

are: 

For System 3A 

(5.3.1) 

For System 38 

r . = S.y . + w . 
a.1 1 a.1. a.1 

rb . = S'Yb . + wb' . 
• 1 1..1 .1 

(S.3.2) 

It is assumed that the estimates of the channels used in the detector are 

exact, as shown in Fig.5.3.1. So the detector must minimize the 

probability of error in the detection of s .• 
1 

The detector has full prior 

knowledge of the sixteen possible values 

shown in Fig.S.3.2. 

of S.· (±1 or ±3)+(±j or ±3j) as 
1 

5.3.2 Maximum Likelihood Detection 

For System 3A, the optimum maximum likelihood detector that has exact 

prior knowledge of Yi' 

value 5', for which 

takes as the detected value of the possible 

1 

d.' = Ir. - s' .y. I' 
1. 1. 1. 1. 

is minimum over all sixteen combinations of the possible values 

(±1 or ±3)+(±j or ±3j). Where Ixl is the absolute value of the 

valued quantity x. 

y ., Yb . and 
a.1 .1 

(S.3.3) 

of s'., 
1 

complex 

For System 38, with exact prior knowledge of 

statistically independent w .• wb ., Eq.(S.3.3) 
a .. 1. .1. 

for optimum maximum 

likelihood detection becomes 

d. 2 = Ir . - s'.y .1 2 + Ir . - Sl.y .1 2 
1. a.1 1. a.1, b.l. 1. bool. (5.3.4) 
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In practice, the detector must use estimates of the channel samples in 

place of the {y,}, {y .}, {Yb .} themselves. This inevitably degrades 
1. a.l .l. 

the detection process which is therefore no longer optimum. 

The optimum detector for System 3 requires much more complex equipment 

than for System 1, because d. 2 must be calculated for sixteen rather than 
1 

four possible values of s'.. In contrast, it is much more straightforward 
1 

than for System 2 because the 16-point constellation transmitted from the 

base station is received at the mobile with the same basic shape. That 

is, all sixteen points fade together so at any instant in time, the 

received constellation is simply shifted in amplitude and phase relative 

to the transmitted constellation (see Figs.5.3.2-5.3.3). Thus, System 3 

gives the multiplexing of two signals in the same 24kHz frequency band, 

with only one fading channel to estimate at the receiver. 

Theoretical Probabilities of Error 

The tolerance to additive white Gaussian noise of this optimum detection 

process using Eqs.(5.3.3)-(5.3.4) is well-known [S,9,22,231. This has 

been derived theoretically in Appendix D, for the following four cases: 

(16-QAM signalling is assumed - that is, no differential coding). 

(i) Assuming one receiving antenna and detection according to 

Eq.(5.3.3). For the special case with no fading (that is, where y.=l and 
1 

r.=s,+w. for 
1 1 1 

all {i}). The bit error rate in the detection of the {s.} 
1 

for any given signal-to-noise ratio ~ is given by 

P
b 

= tQ(';O.Si") + !Q(3v'0.Syi) - iQ(5';0.Sj/') 

where ~=Eb/NO' as defined in Eq.(2.6.3). The Q-function 

Q(u)=J~ .~exp(-!z2)dz is tabulated in the references [1061. 
u v~Tr. 

(5.3.5) 

(ii) But with flat Rayleigh fading (that is, where r.=s.y.+w. and the 
11.1.1. 

{y.} are as described in Sec.2.4.2) 
1 

P
b 

= 1. - 3 ~ - 3 ~ + 5 ~ 
2 S~5+2f 4~~ S~5+5ot 

(5.3.6) 

(iii) Now, assuming two receiving antennas and detection according to 

Eq.(S.3.4). For the special case with no fading (that is, where 

y ·=Yb .=1, r .=S.+W . and rb .=s.+w
b 

., for all {i}). The bit error 
a.l .. 1 a.1 1. a.l. .1 1. .l. 

rate is given by 

(5.3.7) 

(iv) But, for the general case for System 3B with flat Rayleigh fading 

(that is, where r .=s.y .+w ., rb .=s'Yb .+wb . and the uncorrelated 
a.l. 1. a.1 a.1. .1 1. .1 .1 

{y .}, {Yb .} are exactly as described in Sec.2.4.2). The bit error rate 
a .. 1. .1 
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is given by 

= 1 - 3J 2'/1 - 3 ~ + 5 ~ 
2 8" 5+2~ 4V~ 8"vl'+'loyi 

_ 15 ( ~)3 _ 15 (.' ~)3 + 25 (.' f2Yl)3 
32~V~ 16~ V~ 32~V~ 

These four bit error rate curves are shown in Fig.5.3.4. 

(5.3.8) 

The mechanisms that cause the errors in these four cases are exactly 

as described for System 1 (in Sec.3.3.1). That is; For the non-fading 

case, there is a 3dB improvement in tolerance to additive white Gaussian 

noise in going from one to two receiving antennas. This is caused by the 

3dB improvement in the signal-to-noise ratio in the received samples by 

using the second antenna. The large degradation in performance in going 

from a non-fading to a fading channel is caused entirely by the Rayleigh 

distribution of the amplitude of the fading. The rate of fading and hence 

the duration of fades has no effect on the tolerance to additive white 

Gaussian noise of the optimum detector. For the fading case, the big 

improvement in going from one to two receiving antennas is caused by the 

improvement in the Rayleigh statistics gained by coherently adding two 

independently fading channels. The corresponding curves with differential 

coding are best obtained by computer simUlation. The degradation caused 

by this differential coding process is not as bad as for Systems 1 and 2 

because here, only the first two binary digits in the {s.} are 
1 

differentially coded. So the only errors in detection affected by the 

differential coding are where the detected symbcl is in the wrong quadrant 

(Fig.5.3.2). 

When theoretically deriving the bit error rate curves for this optimum 

detector for System 3, a simplifying approximation is usually made 

[31,104]. It is usually assumed that when an error in detection occurs at 

high signal-to-noise ratios, the detected data symbol value is adjacent to 

the correct element value. The probability of all other types of error is 

assumed negligible. This is a valid assumption to make in the non-fading 

case. In fact, for signal-to-noise ratios greater than about ~5dB, 

Eq.(5.3.5) approximates closely to 

Pb = iQ(~0.8P) (5.3.9) 

It is important to note that in the presence of Rayleigh fading, errors 

normally occur during deep fades in the channel. As such, they are likely 

to be random symbol errors across the whole constellation. So in fading, 
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it is no longer a good approximation to assume that all errors are 

adjacent symbol errors. 

An extremely important result is obtained by comparing the bit error 

rate curves with Rayleigh fading for Systems 2 and 3, as shown in 

Fig.5.3.5. (The curves for System 2 have been obtained by computer 

simulation). Although it is a fact that the 16-1evel QAM signal of System 

3 has the best tolerance to noise of any 16-point signal in a non-fading 

channel [31,36,104J, it is shown here that in the presence of Rayleigh 

fading and with two receiving antennas, System 2B has a better tolerance 

to noise than System 3B. The independent fading of the two bandlimited 

QPSK signals of System 2, itself performs a process of collaborative 

coding. This enables the two signals to be detected simultaneously 

without seriously interfering with each other when there are two receiving 

antennas. Though with one receiving antenna, System 3A has a better 

tolerance to noise than System 2A. 

5.3.3 Threshold Level Detection and Combining Techniques. 

A threshold level detection method similar to that described .for System lA 

(Sec.3.3.3) can be applied to System 3A. This is equivalent to the 

optimum de.tector (Eq.(5.3.3)) but is computationally more efficient. Also, 

all the combining techniques discussed for System 1B are equally 

applicable for use with System 38 - again allowing a threshold level 

detector to be used. However, none of these methods are tested in this 

thesis. The reason being that the Viterbi detector that will be used in 

the final system, requires that all 16 {d. 2 } in Eq.(5.3.3) be calculated 
1 

in determining the costs of the stored vectors. The threshold level 

detector can only find the possible value s'. with the smallest d. 2 • It 
1 1 

does not actually calculate the individual {d. 2 }, so cannot be used here. 
1 

5.3.4 Conclusions for Detection 

Computer simulation tests have been carried out on Systems 3A and 38 to 

show the performance of the optimum maximum likelihood detection process 

operating with perfect channel estimation. The results of these tests are 

shown in Chapter 6. The accuracy of these simulation results is confirmed 

to be correct by the theoretical results of Appendix D. The mechanisms 

which cause the errors in detection have been described. 

A most important result is that the optimum detector for System 38 has 

a worse tolerance to noise than that for System 28, when there is 
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independent Rayleigh fading at the two receiving antennas. This means 

that the 16-point constellation used in System 3 in not always the optimum 

16-point constellation, but .is only optimum in a non-fading channel. With 

independently fading channels at two receiving antennas, the tolerance to 

noise of the 16-point constellation formed in System 2 is better. 

5.4 Channel Estimation 

The aim of this section is to find an estimation process that will result 

in near-optimum data detection, when used in the maximum likelihood 

detector just described. This must be achieved with a reasonable level of 

equipment complexity. The methods tested here are simple adaptions of the 

unbiased and Gradient estimators used with System 1. It is assumed in 

this section that all detected symbols that are fed back to the estimator 

are correct. 

5.4.1 Model of Estimation Process 

At time t=iT, the received baseband sample is given by (from Eq.(5.2.1» 

r i = siYi 

which is the same as for System 1. 

+ w. (5.4.1) 
1 

The model of the estimation process 

for System 3 used in the computer simulation tests is shown in Fig.5.4.1. 

This is also exactly the same .as for System 1 (see Fig.3.4.1). Thus, the 

model of the estimation process for System 3 is exactly the same as for 

System 1 and is therefore as described in Sec.3.4.1. So, the unbiased and 

Gradient estimators that gave the most success with System 1 can be used 

with System 3 in exactly the same way. However, the performance of an 

estimation process will generally be worse when used in System 3 compared 

with its performance in System 1. This is caused by the different 

constellations of s. in the two Systems. This effect is examined more 
1 

closely in the rest of Sec.5.4. 

5.4.2 Unbiased Estimator 

As for System 1, the channel estimate at time t=iT is given by 
-1 

y', = Si. r: 
111 

Assuming correct detection, 
-1 

y'. 
1 

= S, r. 
1 1 

-1 
= y~ + s, w. 

~ 1 1 

(5.4.2) 

(5.4.3) 

As shown in Fig.5.4.2, the reciprocal of s' . 
1 

is formed by taking the 

complex conjugate of s'. and dividing by 
1 

the amplitude-squared. For the 
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Fig.5.4.2 

Table 5.4.1 

r. 
I 

s' 
i 

-1 
S' 

i 

(s'.) • 
I 

y'. 
I 

Model of unbiased channel estimator 

Possible values of Is'.12 with their corresponding s' 
I i 

S' 
i 

- 1 - j 
-1 + j 
+ 1 - j 
+ 1 +j 
- 3 - j 
- 3 + j 

- 1 - 3 j 
-1 + 3j 
+ 1 -3j 
+1 +3j 
+ 3 - j 
+3+j 

- 3 - 3 j 
-3+3j 
+3-3j 
+3+3j 

2 
2 
2 
2 

1 0 
1 0 
1 0 
10 
1 0 
1 0 
1 0 
1 0 
18 
1 8 
18 
1 8 



122 

16-1eve1 QAM signal, this amplitude-squared, IS'i l ', is one of three 

possible values 2, la or 18, as shown in Table 5.4.1, since 

s', = s' + js' , = (±1 or ±3) + (±j or ±3j) 
~ I.i Q.~ 

and 

Is',12=s' ,2+S' " (5.4.4) 
~ I.~ Q.~ 

Thus, the unbiased estimator for System 3 is more complicated than for 

for all {i}. System 1, where IS'i I2=2, 

The mean-square error (A ) of this estimate y', can now be determined 
e ~ 

theoretically. This analysis is very similar to that for System 1 

(EqS.(3.4.5)-(3.4.l7». The only difference being that, for System 3 

Is. 12 
~ 

= 2, for i of the {s) 

Isil' = la, for , of the {Si} 

IS i l2 = 18, for * of the {s.} 
~ 

Eb = 2.5 

'f = Eb = 2.5 

NO 
2cr' 

whereas, for System 1 

1 Si I' = 2, for all {i} 

1 

So, that for System 3, 

Eb = 

'f = Eb = 1 

NO 

Eq.(3.4.9) becomes 
A = (1.1 + !.l- + !.l-)2a' 

e 4 2 2 la 4 18 

-1 
= 0.18889x2.5jV 

:::: - (jV+ 3.26) dB 

The effect this has on the mean-square error curves is shown in 

Fig.5.4.3. 

(5.4.5) 

(5.4.6) 

(5.4.7) 

5.4.3 Unbiased Estimator with least-squares,fadinq memory polynomial 

prediction 

The performance of the unbiased estimator can be improved by incorporating 

a least-squares fading memory polynomial predictor - as was the case for 

System 1. This predictor operates on the {y'.} output from the unbiased 
~ 

estimator in exactly the same way as for System 1. This is described in 

detail in Sec.3.4.3, so is not repeated here. The predictor can also be 

modified as described in Sec.3.4.4. 

The value of 8 that minimizes the mean-square error in the prediction 
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, 
Y i,i-l' 
computer 

for any given signal-to-noise ratio and fading rate, is found by 

simulation. This value of e is generally different for Systems 1 
-1 

and 3 because of .the different properties of the {si w) in Eqs.(3.4.3) 

and (5 .• 4. 3 ) • 

5.4.4 Gradient. algorithm estimator incorporating feedback from a degree-1 

fading memory polynomial predictor 

The Gradient estimator for System 3 is identical to that for System 1, 

though its performance will be different because of the different 

constellations of s. in the two Systems. This effect is examined in this 
1 

section. 

The equations of this Gradient estimator with degree-l prediction are 

as follows 

r' = , , 
S iY i,i-l (5.4.8) 

1 

e. = r - r' . (5.4.9) 
1 1 1 

y' . = , 
Y i,i-1 

+ be.s'. * (5.4.10) 
1 1 1 

E. = , 
Y i,i-l - y' . (5.4.11) 

1 1 . , 
y .+ .. = 

. , 
Y i,i-l 

+ (l-e)'E. (5.4.12) 
]. 1,1 1 

y' . +1 . = 
, . 

Y i,i-l 
+ . , 

Y ·+1 . + (l-e')E. (5.4.13) 
1 ,1 1 ,1 1 

This is depicted in Fig.5.4.4. A simplification to this algorithm can be 

made because the {y'.} are not required, only the {y'. 1 .} 
1 1+ , 1 

are used in 

the detector. So Eqs.(5.4.10)-(5.4.11) can be replaced by 

E. = be. s ' . * (5.4.14 ) 
1 1 1 

Hence, the lower diagram of Fig.5.4.4(b). The optimum values of the real 

valued constants b,e are found experimentally by computer simulation for 

any given fading and noise conditions. These optimum values of b,e 

minimize the mean-square error in the prediction y'. . l' and should 
1,1-

therefore give the best possible bit error rate. 

The estimator is exactly the same as the one described in Sec.3.4.9. 

In Chapter 3 this was shown to be the best arrangement of the Gradient 

algorithm estimator with prediction, for a single fading QAM signal. 

The performance of this estimator is now analysed theoretically. For 

the moment, consider that 

b = c/(s' .s'. *) = cl Is' .1' (5.4.15) 
111 

for all {i}, where c is a small real-valued positive constant. The 

theoretical me~n-square errors in Y'i and Y'i,i-l can now be derived in 

exactly the same way as for System 1 (in Sec.3.4.9). Of course IS'il' is 

not constant for all {i} because the 16-points in the constellation of s. 
1 
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do not have a constant amplitude. The values of Is'. I' for every 
1 

s'. are shown in Table 5.4.1. 
1 

However, b in Eq.(5.4.l0) has been 

poss"ible 

defined 

as a constant, so Eq.(5.4.l5) cannot apply here. (This problem does not 

arise for System 1, where Is. 1'=2, for all {ill. For this reason it seems 
1 

likely that a better estimate y'. may be obtained if Eq.(5.4.10) is 
1 

replaced by 

y'. = y' + 
1 i,i-l 

_--'c'-_e.s'.* 
1 1 

IS'i I' 

Both versions of this estimation process are tested for System 3. 

(5.4.16) 

Clearly, in the absence of noise, the alternative estimator using 

Eq.(5.4.16) is the optimum estimation process because it gives an exact 

estimate of y. for all {i} (see Sec.3.4.9). But in typical levels of 
1 

additive white Gaussian noise, the standard arrangement of the Gradient 

estimator using Eq.(5.4.10), is expected to give a more accurate channel 

estimate for the following reason. If Isil'=18, the signal-to-noise ratio 

in the received s~mple r
i 

is about 2.55dB higher than if Isil'=lO, which 

is in turn about 7dB higher than it would be if Isil'=2. Hence, it 

follows that the higher the value of Isil', the more accurate is e
i 

in 

Eq.(5.4.9) as a measure of the error in y'i' But, the alternative 

estimator using Eq.(5.4.l6) scales the error signal {e.} in such a way 
1 

that it takes least notice of the best error measurements. 

For completeness, this principle can be taken one stage further and a 

second alternative estimator can be proposed in which Eq.(5.4.10) is 

replaced by 

Y' - y' i - i,i-l 
This version of the estimation 

+ d I Si. 12e. st. * 
111 

process is also 

5.4.5 Conclusions of Channel Estimation 

(5.4.17) 

tested for System 3. 

The estimation processes described in Secs.5.4.2-5.4.4 have been tested 

under the assumption that all detected symbols {s'.} fed back from the 
1 

detector into the estimator are correct. That is, s' .=S. for all {i}. 
1 1 

Results obtained from these tests in Chapter 6 indicate which is the best 

estimator to use in the complete System. 

The best estimation process was seen to be the standard form of the 

Gradient algorithm in Sec.5.4.4. The mean-square error of y'i,i-l was 

worse with "the two modified Gradient algorithms considered in Eqs.(5.4.l6) 

and (5.4.17). The improvement of the Gradient estimator over the unbiased 

estimator should be enough to justify the modest increase in equipment 
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complexity. 

The Gradient estimator for System 3 tracks the fading channel with a 

very similar accuracy to the Gradient estimator for System 1. But the 

degradation in tolerance to noise caused by innaccuracies in the channel 

estimate, relative to the case with perfect channel estimation, is 

typically about 3.5dB. Whereas for System I, this degradation was only 

about 1dB. Clearly, the 16-level QAM signal is much more seriously 

affected by fading than the 4-level QAM signal because the 16 points in 

the constellation of s, do not have constant amplitude. 'So for correct 
~ 

detection, a good estimate of the amplitude of the fading channel is 

needed as well as a good estimate of its phase. 

This degradation in performance is marginally better than was seen for 

System 2, so should give an acceptable performance in the combined 

detector and estimator. This is an encouraging result because it is 

widely assumed that constant envelope signals must be used for mobile 

radio [8,43], because of the considerable problems in tracking the fading 

amplitude. The simple Gradient estimator gets round this problem by 

tracking the in-phase and quadrature components of the fading channel 

rather than the more unpredictable amplitude and phase components. 

5.5 Retraining of the Channel Estimator 

It is shown later in Sec.5.6 that a catastrophic failure often occurs in 

the combined detector and estimator for System 3 from which it does not 

recover. Thus, regular retraining of the channel estimator must be used. 

It has already been pointed out in Sec.5.4.1 that, even though a 

16-level QAM signal is used in System 3 instead of the 4-level QAM signal 

in System 1, the channel estimators of these two Systems are exactly the 

same. Now, the training signal that has been chosen here ensures that all 

retraining methods used for System 1 apply equally well to System 3. So no 

further tests on retraining methods need be made. Of course, the best is 

described in detail in Sec.3.5.6. 

The training signal is shown in Table 5.5.1. It is the same as that 

used for System 1 (Table 3.5.1) ,except that all ±1's and ±j's have been 

replaced by ±3's and ±3j's respectively. Thus, the signal-to-noise ratio 

in the received samples has been maximized. 



Table 5.5.1 Training signal 

s. 
I 

1 -3 -3j 

2 +3 -3j 

3 +3 +3j 

4 -3 +3j 

5 -3 -3j 

6 +3 -3j 

7 +3 +3j 

8 -3 +3j 

9 -3 -3j 

1 0 +3 -3j 

1 1 +3 +3j 

12 -3 +3j 
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5.6 Combined Detection and Estimation 

The maximum likelihood detector described in Sec.5.3.2 is now combined 

with the Gradient estimator described in Sec.5.4.4. The estimator is 

regularly retrained using the method described in Sec.3.5.5, with the 

12-symbol training signal given in Table 5.5.1. This is the simple 

combined detector and estimator for System 3. It is shown in Fig.5.6.1. 

Computer simulation tests in Chapter 6 have shown that correct 

operation is only possible with 16-DQAM modulation. The l6-QAM modulation 

(without differential coding) gives 50% errors here, so cannot be used. 

This was also found to be the case for Systems 1 and 2, for the same 

reasons. That is, shifts in the channel estimator of ±90° or 180 0 occur 

quite often just after a deep fade, with the corresponding shift in the 

subsequent detected symbol values {s' ,}. This phase shift in the {s',} is 
1 1 

corrected by the differential coding (see Sec.2.3.3). 

However, this combined detector and estimator is inherently unstable. 

To explain this, consider an erroneous detection of the symbol s, in 
1 

System 3A caused by the channel y, being in a deep fade. This error in 
1 

detection causes a large error in the estimate of the 

corresponding large error in the prediction y' '+1 ,. 
1 ,1 

channel y, and a 
1 

This further 

increases the probability of error in the detection of si+l' and so on. A 

fading channel in a deep fade could cause a burst of errors several 

symbols long, which would result in a channel prediction far removed from 

the channel's correct in-phase and quadrature components. Consequently, 

correct detection is now highly. improbable causing an avalanche of 

erroneous predictions and detected symbols. Random data is output and the 

channel predictor follows a completely random (noise like) path. Correct 

operation resumes only after the next retraining burst when the channel 

predictor is correctly r~set. 

Computer simulation tests indicate that typically, with no retraining, 

total system collapse can be expected to occur in this System 3A after 

only about 800 symbols duration. Clearly, retraining is essential for 

acceptable performance of this system. Effective retraining every 120 

symbols ensures that very long bursts of errors are avoided here. However, 

simulation tests on System 38 indicate that a total system collapse is 

expected after about 12000 symbols duration. This marked improvement in 

the stability of the system is due to the following reason. Errors caused 

by deep fades are much less likely with uncorrelated fading at two 

-receiving antennas than they are with fading at one receiving antenna. So, 
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with effective retraining every 120 symbols. System 38 appears to give a 

quite stable performance. 

This instability problem of System 3 is in marked contrast to the 

simple combined detector and estimator for System 1. which was seen to 

perform well even without retraining. The error extension effects in 

System 1 caused by feeding back incorrectly detected symbols into the 

estimator were negligible. This was because any error in detection was 

simply an error of ±90° of 180° in the detected symbol value s' .• which 
1 

caused a corresponding phase shift in the estimators for y. (y . and 
~ a.~ 

Yb .). Any pro10ngued. constant phase shift was corrected by the 
.1 

differential coding. with no loss in performance. However. tests with 

System 3 have shown that as much as 1.5d8 in tolerance to noise may be 

lost by error extension effects. This is because an incorrectly detected 

symbol fed back to the estimator is generally in error in both amplitude 

and phase. where the phase error is not a multiple of 90°. This causes a 

corresponding error in the channel estimate. Differential coding is no 

help here. An avalanche of errors as described above is always likely. A 

very similar unstable performance was observed with System 2. Though in 

that case it was caused by the two fading QAM signals interfering with 

each other. A bad estimate of one of these fading signals caused the 

collapse of the estimate of the other fading signal. 

Clearly. any method which can reduce the error extension effects 

caused by feeding incorrectly detected symbols into the channel estimator 

is bound to give a noticeable improvement in the performance of System 3. 

Hence the Viterbi-type detector is now investigated. 

5.6.1 Viterbi-Type Detection 

The combined Viterbi-type detector shown in Fig.5.6.2 has been described 

for System 1 in Sec.3.6.1. Rather than repeat this lengthy description 

here, the reader is referred to Sec.3.6.1. Only three changes have to be 

made for this description to apply to System 3. 

(i) It has been stated that every q. in Eq.(3.6.3) has taken on one of the 
1 

M different possible detected values of s.. So. for the 16-level QAM , 
signal of System 3. M=16 and the possible values of q. are (±1 or ±3) + 

1 

(±j or ±3j). 

(ii) The Gradient estimator of System 3 is not equivalent to the unbiased 

estimator. So. the simplification to the standard algorithm given by 

Eqs.(3.6.16)-(3.6.17) does not apply here. 
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(iii) The values of b,e for any given signal-to-noise ratio are different 

to those used for System 1. They are shown in Table 6.5.1. 

5.6.2 Conclusions for Combined Detection and Estimation 

Computer simulation results in Sec.6.5 clearly show that with only one 

vector in the Viterbi-Type detector (m=l), the receiver performs exactly 

as described in Sec.5.6.1, with the single detector and estimator. That 

is, differential coding must be used, and a total system collapse occurs 

typically, about once every five or six packets for System 3A, and about 

once every 100 packets for System 3B (where there are lOB data symbols in 

every packet). This collapse is now accompanied by a very sharp rise in· 

the cost c
i 

of the stored vector Qi' 

With more than one vector in the Vi·terbi detector (m)2), differential 

coding must still be used. But, a system collapse was not observed once 

in any of the computer simulation tests for Systems 3A or 3B. Thus, the 

Viterbi-type detector has completely stabilized System 3. In fact, the 

tolerance to noise of this system is even better than for the single 

detector and estimator with correct data symbols fed back into the 

estimator. This is because the Viterbi algorithm chooses the seguence of 

detected data symbols that gives the best tracking of the channel through 

a fade. It seems to follow that the toler·ance to noise is improved 

because the predictor has the freedom to track the channel ±90° or 180 0 

out of phase rather than in spite of this fact. A similar observation was 

made for Systems 1 and 2. 

5.7 Summary for System 3 

A digital modem, System 3, has been developed in this chapter and tested 

by computer simulation. It is possible with this method to transmit a 

16-level QAM signal from a base station to two mobiles. This System would 

achieve a bandwidth efficiency of just under 2bit/s/Hz in the mobile radio 

network - which is the same as for System 2 and twice that for System 1. 

Two receiving antennas (System 3B) should be used wherever possible with 

four stored vectors (m=4) in the combined detector and estimator. The 

improved performance should justify the extra equipment complexity. 

The receiver uses novel techniques of detection and estimation very 

similar to that of System 1, though its performance is quite different. 

Test results indicate that this coherent demodulation receiver with 
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differential coding of the binary digits (16-DQAM) can achieve a good 

tolerance to additive white Gaussian noise. The degradation in 

performance caused by inaccuracies in the channel estimate (with m=4), 

relative to the case with perfect channel estimation is about 3.5dB for 

System 3A and about 1.5dB for System 3B. As might be expected, this 

degradation in performance when a 16-level QAM signal (System 3) is 

received, is much greater than that for one 4-1evel QAM signal (System I), 

but is slightly less than that when two 4-level QAM signals (System 2) are 

received. A most important result is that with two antennas at the 

receiver, System 2B gives a better performance than System 3B. But, the 

16-level QAM signal used in System 3 gives the best possible performance 

of any fixed, 16-point constellation. So it must follow that the time 

varying 16-point constellation in System 2 formed from the sum of two 

independently fading 4-level QAM sig~als, has a better tolerance to noise, 

with two receiving antennas. 

As for Systems 1 and 2, the key to the successful development of 

System 3 is a novel technique of combined detection and estimation with 

regular retraining of the channel estimator. As few as two stored vectors 

in the Viterbi detector are enough to ensure a system stable against error 

extension effects. In fact, the receiver with m~2 has a better 

performance than the receiver that has all correct data symbols fed back 

to the estimator. Since the channel estimation process is completely 

restarted every 1/100 second, it is quick to recover from any prolongued 

loss of signal power. This regular retraining also avoids problems in 

estimation during hand-off as the mobiles move from one cell to another. 

The base station transmitter requires a truly linear high-power 

amplifier to generate the 16-level QAM signal. A particular virtue of 

System 3 is that this costly equipment. is needed in the base station 

transmitter rather than the mobile. 
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CHAPTER SIX 

Results 

6.1 Introduction 

In the last three chapters, the combined detector and estimator that 

performs coherent detection at the receiver has been described in detail 

for Systems 1, 2 and 3. The results of all computer simulation tests 

carried out on these Systems are given in this chapter. The computer 

programs used to generate these results are given in Appendix H. 

In Sec.6.2, the different ways the results are presented in this 

chapter are described. Then, the results for Systems 1, 2 and 3 are given 

in Secs.6.3, 6.4 and 6.5 respectively. Finally, the relative performances 

of these different Systems are assessed in Sec.6.6. 

6.2 Presentation of computer simulation results 

All the results given in this chapter are presented in one of three ways. 

That is, they are either in the form of bit error rate curves, estimation 

error curves 'or estimator/detector output curves. The bit error rate 

curves convey the most important results. The performances of the final 

Systems 1, 2 and 3 are assessed from these curves. The estimation error 

curves are the most important tool for assessing the relative performances 

of different estimation processes. These curves indicate which estimator 

will give the best performance in the final System and take a great deal 

less computer time to generate than the bit error rate curves. The 

estimator/detector output curves are simply plots of channel estimates or 

errors in detection. These curves can give a useful insight into the 

mechanisms which are causing the errors to occur. 

A three character alphanumeric code is used to label every curve in 

this chapter. The first character is the numeral 1, 2, or 3, whose value 

indicates respectively, one 4-level QAM signal, two 4-level QAM signals or 

one l6-level QAM signal transmitted in the given frequency band. The 

second character in a label is 'the letter A or B which indicates that 

there are either one or two antennas at the receiver respectively. Thus 

the first two characters in the code are the System names that have been 
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used throughout this thesis. The third character is a numeral which gives 

the value of m and therefore the number of stored vectors {Q.} used by the 
1 

combined detector and estimator. So for example, the curve labelled 1B4 

assumes one transmitted 4-level QAM signal, with two antennas at the 

receiver and m=4. When the third character is P it indicates perfect 

channel estimation. When it is C it indicates that all the detected data 

symbol values fed back from the detector to the estimator are correct. 

When the third character is P or C, only a single stored vector Q. is 
1 

employed, no advantage now being gained through the use of more stored 

vectors. 

The methods of generating the three different types of curves from the 

computer simulation results are now described in detail. 

6.2.1 Bit error rate curves 

For each system tested, the error rate in the detected binary digits is 

plotted along the vertical axis, against the signal-to-noise ratio pdB. 

Where 

bit error rate = number of incorrectly detected binary digits 
total number of binary digits transmitted 

and 

1/J = 10l0g10~~) dB 

(6.2.1) 

(6.2.2) 

Every bit error rate curve is drawn as either a solid line or a dashed 

line. A solid line indicates that the binary digits have.been 

differentially coded (DQPSK or 16-DQAM) whereas a dashed line indicates 

that they have been coherently coded (QPSK or l6-QAM) as described in 

Sec.2.3. 

Each run of the computer simulation calculates the bit error rate from 

a total of about 20000 transmitted symbols {s.} at a fixed signal-to-noise 
1 

ratio. The bit error rate is calculated in this run with both coherent 

and differential coding and with m=l,2,4,P and C, to avoid changes in the 

performance caused by changes in the fading sequences. To give the bit 

error rate result for any system at any signal to noise ratio, the bit 

error rate results calculated for several runs of about 20000 transmitted 

{s.} are all averaged. Different sequences of {s.}, {y.}, {w.} are used 
1 1 1 1 

for each run, being called from random seed integers. When it appears 

that further averaging will not appreciably affect the result, this final 

average is plotted on the graph. The curves shown in this chapter have 
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been obtained by drawing the "best" smooth curve between these points. The 

curve does not generally pass through the points, but will most likely 

pass almost straight through all points where the bit error rate is 
-2 

greater than 10 The results become less accurate as the signal-to
-3 

noise ratio increases, particularly for error rates below 10 • This must 

be taken into account when drawing the smooth curve from the results. So 

a certain amount of judgement is required in producing the best curves. 

Where tests were carried out. with no Rayleigh fading, results for each 

curve were obtained by running the System for signal-to-noise ratios 

~=-4,-2-0,2, •••• ,14 dB. 
-2 

error rates above 10 , 

In plotting anyone point on a curve for high bit 

a total of typically about 80000 (so} were 
-2 1 

transmitted, and for low bit error rates below 10 ,typically about 

200000 {so} were transmitted. In plotting anyone curve, a total of about 
6 1 

1.25X10 (So} were transmitted. 
1 

Where tests were carried out with Rayleigh fading and one receiving 

antenna, results for each curve were obtained by running the System for 

signal-to-noise ratios ~=0,5,10, ••• ,60 dB. With two receiving antennas, 

the System was run for signal-to-noise ratios r=-2.5,0,2.5, ••• ,25 dB. In 

plotting anyone point on a curve where the bit error rate is greater than 

10-
2

, a total of typically 120000 {Si} were transmitted, and for bit error 
-2 

rates less than 10 , In plotting typically 300000 (so} were transmitted. 
6 1 

anyone curve, a total of about 2X10 (so} were transmitted. 
1 

A vehicle 

speed of about 60 miles/hour is assumed unless stated otherwise, 

corresponding to a maximum Doppler frequency shift of f =80Hz. 
m 

With these arrangements, the 95% confidence limits for all the bit 

error rate curves are no greater than about ±0.5dB. More {so} must be 
1 

transmitted over fading channels to give results of this accuracy than 

over the non-fading channel. There are two main reasons for this: 

1) In a fading channel, the detection errors largely correspond to deep 

fades. So the results 

especially for low bit 

are highly dependent on 
-3 

error rates below 10 • 

the fading sequence used, 

Many different, long 

fading sequences must be tested before the results start to average out. 

2) A small discrepancy in the error rate measurements at a given 

·signal-to-noise ratio ~ is likely to cause a much greater error when 

plotting the smooth bit error rate curve in a fading channel than it would 

in a non-fading channel. This is because the slope in these curves for a 

fading channel are much shallower. For example see Fig.6.2.1. The same 

vertical error at a given point causes a greater horizontal (dB) error in 
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the curves for a fading channel. 

The results for all these curves are generated using the FORTRAN 

program MREC.FORTRAN, with all t.he relevant subroutines (see Appendix H). 

6.2.2 Estimation error curves 

For each channel estimation process tested, the quantity plotted.along the 

vertical axis is Ae or Ap' which are respectively the mean-square error in 

the estimate or prediction of the channel, expressed in decibels relative 

to unity. Thus, for syste(ms lA7;~~ 3A, ) 

A = 1010g 1 ~. ly.-y'.12 
e 10 6000 ~ 1 1 

i=1201 

dB 

for Systems 1B and 3B 

( 

7200 
A = 1010g 1 ""'"" 1 y -y' . 12 + 

e 10 6000 ~ a a.1 
i=1201 

for System 2A 

A = 1010g
10 (._1_( ~ IY1 .-y'l .1 2 

e , 6000. L...... .1 .1 
i=1201 

and for System 2B 

\ = 1010g10(,._1_( ~ IY1.i-y 'l,i I2 

6000 i=1201 

+ 7200 r_, 12 2:= IY3.i y. 3,i 
i=1201 

IYb .-y'b .1 2\ 
.1 .1.) dB 

7200 ~~ + ""'"" I y . -y , . 1 2 . dB L...... 2.1 2.1 . 
i=1201 

7200 
+ ""'"" 1 y . -y , . 1 2 L..... 2.1 2.1 

i=1201 

+ ~ 1 y . -y' . 12~ dB L..... 4.1 4.1 
i=1201 

(6.2.3) 

(6.2.4) 

(6.2.5) 

(6.2.6) 

where Ixl is the absolute value (modulus) of the complex-valued quantity 

x. The corresponding A 's are obtained by' substituting y'. and y' . in 
p 1. X.I. 

Eqs.(6.2.3)-(6.2.6) with y' . . 1 and y' .. 1 (where x=a,b,l,2,3 or 4). 
1,1- X.l,l-

The first 1200 {y'.} and {y' . . l} are ignored here in order to eliminate 
1. 1,1-

the transient effects that sometimes occur at the start of operation. 

Thus, A and A give a measure of the steady state performance of the 
e p 

channel estimation process. The estimator is always assumed to operate 

with all correctly detected data symbols and with no retraining. 

Since these curves are only used to compare different estimation 

processes to see which is the best, tests are only carried out with one 

receiving antenna, in the presence of Rayleigh fading and with the 

idealized condition that all the detected data symbols are correct. That 

is, all these tests are carried out on Systems lAC, 2AC and 3AC only. 

Whichever estimation process gives the lowest A under these conditions 
p 

should perform best generally. 

Each computer simulation test calculates ,\ 
e 

and'\ (Eqs. (6.2.3)
P 
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(6.2.4» at a fixed signal-to-noise ratio ~ dB (Eq.(6.3.2». When the 

Gradient estimator is tested. a fixed value of b must also be used. When 

a fading memory polynomial predictor is used. .the degree of the predictor 

and the value of 6 must also be f.ixed .(see Table 3.4.1). Several 

different tests are carried out to calculate A and A in this way for 
e p 

different values of either ~. b or 6. Smooth curves showing the 

variations of A and A with either 'VI. b or 9 are then drawn. This· is 
e p 

done by plotting A (or A ) against the different values of either 'VI. b or 
e p 

9 and drawing a smooth curve through all these points. (Only one of these 

variables '/I. b. 9 can be changed with each test.· The remaining two 

variables must remain constant for all tests). In all these tests. the 

same seed integers are used to generate the {s.}. {sI'}' {s2 .}. {y.}. 
1. .1 .1. 1. 

{Yl .}. {Y2 .}. {w.} to avoid changes in the performances of the 
.1. .1 l. 

estimators caused by changes in the channel conditions (see subroutines 

SFADE.FORTRAN and SBBCHAN.FORTRAN in Appendix H). That is. the same 

sequences of {s.}. {sI'}' {s2 .}. {y.}. {Yl .}. {Y2 .} are used in every 
1. .1 .1. 1. .1. .l. 

test. and the same sequence {w.} is used but is suitably scaled depending 
1 

on the signal-to-noise ratio. as described in Appendix B. 

The results for these curves are generated using the FORTRAN program 

MESTIMPRED.FORTRAN. with all the relevant subroutines. except for the 

Kalman estimator where the program KALMEST.FORTRAN is used instead (see 

Appendix H). 

6.2.3 Estimator / detector output curves 

The estimator output curve is simply a plot of y'. on the vertical axis 
1 

against i on the horizontal axis. The {Yi} are always plotted on the same 

axis for comparison purposes. The detector output graph is simply a plot 

of the errors in the detected symbols. Thus for signal si' "Errors in 

{s' .}" is plotted on the vertical axis against i on the horizontal axis 
1 

where 

Error in s'i = {O . 
1 • 

if s' ,=5. 
1 1 

if s· ,=5. 
1 1 

(6.2.5) 

All these curves are output from the FORTRAN programs MREC.FORTRAN or 

MESTIMPRED.FORTRAN (with all the relevant subroutines). 

6.3 System 1 

Detection 

Fig.6.3.l shows results for the maximum likelihood detector described in 
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Sec.3.3.2. Clearly, there is a close agreement between the theoretical 

and simulated curves for QPSK (no differential coding). At high error 

rates (above 10-
2

) all the theoretical and simulated curves are 

practically indistinguishable from each other. As expected (Sec.6.2.l) 

the biggest error in the simulation results is at low error rates in the 

presence of Rayleigh fading. 

The degradation in tolerance to additive 

by the differential coding is just less than 

white Gaussian noise 
-4 

,dB at 10 ,over a 

caused 

non-fading channel. This loss decreases as the error rate decreases 

because the slope of the curve is increasing. At any fixed signal-to

noise ratio at low error rates, the error rate with DQPSK (differential 

coding) is twice that for QPSK, as expected (Sec.3.3.2). 

Now consider the performance at low error rates (below 10-
2

) in the 

presence of Rayleigh fading. At a fixed signal-to-noise ratio, the bit 

error rate with one receiving antenna for DQPSK is about 1.7 times that 

for QPSK, whereas with two receiving antennas the bit error rate for DQPSK 

is about 1.8 times that for QPSK. The greater the tendency for error 

bursts rather than isolated errors, the more this ratio decreases from 2 

towards 1. The slopes of these error rate curves are constant at these low 

error rates, so the degradation in tolerance to noise is about 2.4d8 for 

System lA and about 1.3dB for System lB. 

With maximal ratio combining, the simulation results for System lB are 

exactly the same as described above. Not only are the error rates the 

same, but all the same errors occur at the same times. So these two 

methods are equivalent when the detector operates with perfect channel 

estimation. 

Fig.6.3.2 shows that the detection errors in System lAP described 

above tend to occur during deep fades in the baseband channel {y.}. 
1 

Similarly, in System 1BP, the errors in detection tend to occur when both 

channels y ., Yb . are in a deep fade at the same time. At the slower 
a.1 .1 

vehicle speed (smaller f ), deep fades occur less frequently and tend to 
m 

last longer. Hence, the error bursts are also less frequent and last 

longer such that the bit error rate is not affected 

Estimation 

Fig.6.3.3 shows results for the unbiased estimator described in Sec.3.4.2, 

which operates with all correctly detected symbols {s' .}. As expected 
1 

(Sec.3.4.2), A ~-(~+3) dB. There is no separate prediction here §o 
e 
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Y' -y' ·+1·- .• 
1 ,1 1 

The curves show that at low signal-to-noise ratios 

A ""-(1i'+3) dB, 
p 

whereas at high signal-to-noise ratios ~ levels off to an 
p 

error floor which depends on the fading rate. This confirms the 

theoretical analysis in Sec.3.4.2. The fading rate at a vehicle speed of 

60 miles/hour is effectively twice that for a speed of 30 miles/hour and 

consequently the error floor in A is higher. 
p 

Figs.6.3.4 and 6.4.5 show the improvement in A that can be achieved 
p 

when least-squares fading memory polynomial prediction (described in 

Sec.3.4.3) is used with the unbiased estimator. The estimator operates 

with all· correctly detected symbols {s'.}. 
1 

fading memory prediction filters typically 

10dB •. Generally, the higher the degree of 

Fig.6.3.4 shows that the 

improve A by between 6 and 
p 

the predictor, the better is 

the prediction, particularly at high signal-to-noise ratios~. Clearly, 

the performances of the degree-l,2 and 3 predictors are quite similar. 

Their optimum values of Ap are usually within about 2dB of each other, 

whereas the degree-O predictor is typically 3 to 8dB worse. For this 

reason the degree-O predictor is rejected here. The degree-3 predictor 

never gains more than about !dB in A over the degree-2 predictor. This 
p 

small improvement in performance does not justify the extra complexity in 

the filter, so the degree-3 predictor is also rejected here. 

The value of the constant 6 that minimizes \ decreases as the 
p 

signal-to-noise ratio f increases. Fig.6.3.5 clearly shows that 6 should 

be optimised at each different value of ~ if the degree-l predictor is to 

give a good performance over a wide range of~. A change in the value of 

6 every 10dB should be quite adequate. This would safeguard against an 

error floor at high signal-to-noise ratios. 

The modified degree-l predictors described in Sec.3.4.4 give very 

little improvement in Ap (less than O.ldB) when 6
b 

and 6
c 

are optimized. 

Significant improvements are possible with 6 optimized, though this was 
a 

shown to be equivalent to the Gradient estimator of Sec.3.4.9. These 

results are discussed later. 

Fig.6.3.6 shows that none of the Taylor expansion predictors·described 

in Sec.3.4.5 are as good as the degree-l predictor with 6=0.58. They are 

not considered further. 

Figs.6.3.7 and 6.3.8 show the performance of the sinewave scheme of 

channel prediction described in Sec.3.4.6. Fig.6.3.7 shows that the 

sinewave is successfully extracted from a noisy signal which also 

contains; a constant term,.a ramp or a low frequency sinewave. Fig.6.3.8 



137 

shows that the sinewave scheme can recover from a small error in estimated 

amplitude or phase, within several cycles of the sinewave. However, the 

sinewave cannot be reliably extracted from a typical fading sequence. 

Clearly the amplitude and phase of the sinewave component in the fading 

vary too unpredictably, probably due to the fact that there is too much 

power in the lower frequency components. 

Fig.6.3.9 shows a typical result of tests on the equalizer described 

in Sec.3.4.7. In all tests, the equalizer was seen to go unstable within 

about 3000 symbols. This was the case both 

was a small constant. The equalizer tracks 

when a,=1/\r.12 and when "a ll 

~ ~ 

the inverse of the channel, so 

when the channel goes into a deep fade, the equalizer output tends towards 

Fig.6.3.10 confirms that the Gradient estimator described in Sec.3.4.8 

gives an exact estimate of the channel'in the absence of noise, when 

b=O.S. Though, as the signal-to-noise ratio decreases, the optimum value 

of b decreases, down to about b=0.l2 at ~=SdB. The improvement in A at 
e 

the optimum value of b compared with A at b=O.S is, of course, also the 
e 

improvement of the Gradient estimator over the unbiased estimator (see 

Sec.3.4.8). This improvement is about 6dB at f=SdB, but only about 0.7SdB 

at r=3SdB. The optimum value of b also decreases by about O.OS as the 

vehicle speed decreases from 60 to 30 miles/hour. A small decrease was 

expected from the theoretical analysis. 

Figs.6.3.1l-6.3.l3 show the performance of the Gradient estimator with 

degree-l prediction described in Sec.3.4.9. Now, the values of both band 

e need to be optimized together to minimize A. Generally for both 
p 

Systems lA (Fig.6.3.ll) and 1B (Fig.6.3.12), as the signal-to-noise ratio 

increases, the optimum value of b increases and the optimum value of e 

decreases. band e are roughly optimized every lOdB with the values shown 

in Table 6.3.1. Fig.6.3.l3 shows that if constant values of b,e were used 

over a wide range of ~, 

signal-ta-noise ratios. 

then there would be an error floor in A at high 
p 

·By comparing Fig.6.3.1l with Fig.6.3.4.we can see 

that A is about ; to ldB lower for the Gradient estimator than for the 
p 

unbiased estimator, when band e are optimized. In a similar way it can 

also be shown that the Gradient estimator in Sec.3.4.8 which does not 

include a feedback loop from the degree-1 predictor would lose between * 
and ;dB in A compared with the curves in Fig.6.3.1l. Thus, the 

p 
arrangement of the Gradient estimator described in Sec.3.4.9 is the best 

estimation process tested so far. 
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Fig.6.3.l4 shows the performance of the Gradient estimator with double 

sampling described in Sec.3.4.l0. By comparing these results with 

Fig.6.3.l0 we can see that ~ for can be improved by about S.S to 6dB by 
P 

introducing double sampling into the Gradient estimator. Unfortunately, 

this very significant improvement in A has been achieved at the expense 
p 

of greatly increased equipment complexity. This technique would be well 

worth pursuing in systems where the bit error rate performance is 

unacceptable due to problems in tracking a very fast fading signal. 

However,. it is shown later that the bit error rate performance of System I 

without double sampling in the Gradient estimator is only about ldB worse 

than the best possible performance with perfect channel estimation. Such 

a small improvement in the tolerance to additive white Gaussian noise of 

less than ldB would not justify the extra equipment complexity. For this 

reason the double sampling method is not considered further. 

Fig.6.3.IS shows the performance of the Kalman estimator described in 

Sec.3.4.ll. These results can be compared with Fig.6.3.10 to show that 

A is generally about * to ,dB worse here than for the Gradient estimator. 
e 

A particular advantage of Kalman estimators is that they converge much 

more rapidly to a good channel estimate after start-up than. does the 

Gradient estimator. However, a good steady-state performance is all that 

is needed here because accurate retraining of the channel estimator is 

assumed to be achieved at regular intervals. Since the Kalman estimator 

is also more complex than the Gradient estimator it is not considered 

further. 

Retraining 

Fig.6.3.16 shows the tolerance to additive white Gaussian noise of System 

lA with an unbiased estimator and degree-l and 2 predictors, as described 

in Sec.3.4.3. [jifferential coding of the binary digi'ts is assumed. The 

estimator operates with all correctly detected data symbols {s' .}. With , 
no retraining (Sec.3.S.4), the degree-2 predictor gives a better 

performance than the degree-l predictor at the high signal-ta-noise 

ratios, being about l.SdB better at around 1/'=40dB. However, with "ideal" 

retraining (Sec.3.S.2), this advantage is lost because the term zi,i-l' 

which represents the estimate of the second derivative of y. with i, is , 
simply reset to zero. (Since in practice, no attempt is made to estimate 

this quantity). Thus, information is lost in the retraining process when 

the degree-2 predictor is used. For this reason, the degree-2 predictor 
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is now rejected in favour of, the simpler degree-l predictor'. 

In Fig.6.3.17, the same two estimation processes are tested with the 

reset-to-zero retraining described in Sec.3.5.3. The bit error rate 

performance above about ~=20dB rapidly deteriorates compared with ideal 

retraining (see Fig.6.3.18). System lAC with the degree-1 predictor loses 
-4 

about 2dB at an error rate of 10 • The degree-2 predictor would lose a 

further 3dB. 

In Fig.6.3.18, the degree-1 predictor is tested with the least-squares 

retraining Methods 1 and 2 (Sec.3.5.5). It is seen that with R=12 

retraining symbols, there is no difference in the performances with these 

two methods. Only about i to ,dB is lost in tolerance to noise compared 

with ideal retraining. However, if only R=6 retraining symbols were used 

then the performance with Method 1 at low signal-to-noise ratios would be 

about IdB worse than for R=12 and Method 2 would be a further idB worse. 

There is no noticable difference between the performances of any of the 

retraining methods above ~20dB. Clearly, R=12 retraining symbols should 

be used in the prototype modem. 

Combined, Detection and Estimation 

In Fig.6.3.19 System lA is tested with both an unbiased and Gradient 

estimator with no retraining. The estimator now operates with the 

detected data symbol values {s' .}. Only the results with differential 
1 

coding are shown, since the bit error rate is , for both estimators 

wi thout differential coding. Clearly, without prediction in the' unbiased 

estimator there is an irreducible bit error rate that depends on the 

fading rate. Whereas with the degree-1 predictor, System 1 loses only 

about 1.5dB in tolerance to noise compared with perfect estimation, 

without an irreducible error rate. However, the value of B has been 

roughly optimized for different signal-to-noise ratios (see Fig.6.3.5). 

That is; 6=0.88 (for ~~10dB), 6=0.82 (for 10<W~20dB), 6=0.72 (for 

20<~~30dB) and 6=0.58 (for ~>30). The Gradient estimator (Sec.3.4.9) uses 

the values of b,6 shown in Table 6.3.1, and gains a further * to t dB over 

the previous estimator. 

Fig.6.3.20 shows a typical example of the channel prediction going 

through a phase change of +90 0 after a deep fade at around i=1200. From 

this point onwards, y' .. l~jy., (or 
1,1.- l. 

and similarly s' .=-js.. Thus, a bit 
1 1 

Y' --y 
I .. 1- Q' .1,1- .l. 

error rate of , 

differential coding is not employed (see Sec.2.3.3). 

and y'Q . 1 '-ZYI .) 
.1.-,1 .l. 

results if 

In fact, this kind 
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of phase change is common in all Systems tested in this thesis where the 

estimator operates with the detected data symbol values {s' ,}. It never 
1 

happens when the estimator'operates with the actual {s,}. 
. 1 

Fig.6.3.21 shows the performance of the final Systems lA and lB 

described in Sec.3.6.2. Perhaps the most significant of the results 

obtained is that when four stored vectors are used in the combined 

detector and estimator (m=4), the degradation in performance caused by 

inaccuracies in the channel estimate relative to the case with perfect 

channel estimation is about 0.5dB. This applies for both one and two 

antennas at the receiver. Bearing in mind that the fading rate is up to 

about 160 fades per second, giving perhaps as few as 75 data symbols per' 

fade, very accurate tracking of the fading signal is achieved here by the 

estimator. It is interesting to note that Systems lA4 and lB4 perform 

better than Systems lAC and lBC respectively. This seems to be because 

the Viterbi detector with 4 stored vectors has the freedom to switch 

through any multiple of 90° and so find the channel estimates that best 

fit the sequence of samples through a deep fade. 

Fig.6.3.22 shows the performance of System lB with pre-detection 

maximal ratio combining. Earlier simulation tests have shown that with 

perfect channel estimation, maximal ratio combining is optimum. So it is 

interesting to see that about ,dB is lost in the performance of System lB4 

with maximal ratio combining, when the detector operates with the actual 

channel estimates. Clearly, the ability of the Viterbi detector to choose 

the best sequence of data symbol values has been impaired. This is 

probably due mainly to the non-ideal co-phasing of the signals from the 

two antennas. 

6.4 System 2 

Detection 

Figs.6.4.l-6.4.2 show the performance of the maximum likelihood detector 

described in Sec.4.3.2, when operating with perfect channel estimation. 

The bit error rate curves for several different non-fading channels are 

shown in Fig.6.4.1(a) and the corresponding received signal 

constellations are shown in Fig.6.4.1(b). These curves ~ighlight the 

fact that the tolerance to additive white Gaussian noise of System 2A is 

greatly affected by the relative phases of the channels Yl and Y2. In 

all the examples tested, Yl .=1 for all {i}, and the amplitude level of 
.1 
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Y2 ' is always equal to l. Only the phase of Y2 ' is altered. The best 
.l. .l. 

bit error rate curve in Fig.6.4.l(a) is the one where!y 2. i = /33.75 0
, for 

all {i}. This curve is about 6dB worse than the Curve for System lAP with 

no fading, shown in Fig.6.3.1. So clearly, in the absence of fading, 

System 2A would have a very poor performance. However, in Fig.6.4.2 the 

bit error rate curves for Systems 2AP and 2BP are shown in the presence of 

Rayleigh fading, (where all the channels Y1 " Y2 " Y3 " Y4 ' are fading 
.1. .1. .1 .1 

independntly). Now, comparing these results with Fig.6.3.1, we can see 

that System 2AP only loses about 5dB compared with System lAP and System 

2BP only loses about 2.5dB compared with System lBP. The degradation in 

tolerance to noi,se caused by the differential coding in Systems 2AP and 

2BP is the same as for Systems lAP and lBP respectively. 

Fig.6.4.3 shows that when 'errors in detection in System 2AP occur in 

only one of the detected data streams, this is usually caused by the 

corresponding channel being in a deep fade. When errors occur in both 

detected data streams at the same time, this is usually seen to be when 

both channels have similar amplitudes. This was expected from the 

theoretical analysis in Sec.4.3.2. Two examples of this are shown in 

Fig.6.4.4(a) and (b). In Fig.6.4.4(a) the two channel samples Y1 ' and 
.l. 

Y2 ' have similar amplitudes and their relative phases are such that 
.l. 

several points in the constellation are almost overlapping. This causes 

an error in the detection of s,. In Fig.6.4.4(b), both 
l. 

Y2 ' are in a deep fade, causing an error in detection. 
.l. 

channels Yl ' and 
.l. 

A particularly 

interesting example for System 2AP is shown in Figs.6.4.4(c) and (d). 

Both channel samples Y1 ' and Y2 ' at antenna A are in a deep fade. Both 
.1. • 1. 

channel samples Y3 ' and Y4 ' at antenna B have similar amplitudes and 
.1. • l. 

their relative phases are such that several points in the constellation 

are almost coincident. The data symbol values would not be correctly 

detected here from r ,or rb ,only. However, Fig.6.4.3(b) shows that 
a.l .l. 

sl.1127 and s2.1127 are correctly detected by System 2BP (though there 

are errors at i=1126 and 1131). 

Estimation 

Fig.6.4.5 shows results of tests on the arrangement of the Gradient 

estimator described in Sec.4.4.3. There is no feedback from the degree-1 

predictor to the Gradient estimator so the constants band e can be 

optimized independently. It is not possible to achieve an exact estimate 
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of the channels Yl ' and Y2 "here in the absence of noise. The minimum 
.1 .1 

value of A in the absence of noise is abcut -27dB. 
e 

Fig.6.4.6 shows results for the Gradient estimator described in 

Sec.4.4.4. Now, the values of band e need to be optimized together to 

minimize A 
p 

These results can be compared with Fig.6.4.5 to show a quite 

remarkable improvement in this estimator over the previous one. With b 

and e optimized, A can be improved by about 10dB at ~=40dB. This is 
p 

clearly the best estimator of the two tested. As the sig~al-to-noise 

ratio increases, the optimum value of b increases and the optimum value of 

e decreases, (as for System lA). So again, to achieve a good tolerance to 

noise over a wide range of t, the values of band e must be changed as ~' 

changes. The values of band e have been roughly optimized with the 

values shown in Table 6.4.1. 

Retraining 

Fig.6.4.9 shows the tolerance to additive white Gaussian noise of System 

2A described in Sec.4.6.1. Differential coding of the binary digits is 

assumed and the estimator operates with all correctly detected data 

symbols Cs' ,}. Clearly R=12 retraining symbols should be used in the 
1 

prototype modem since only ,about ,dB in tolerance to noise is lost 

compared with ideal retraining. If only R=6 retraining symbols were used, 

a further ldB would be lost. 

Combined Detection and Estimation . 

When the combined detector and estimator described in Sec.4.6 is tested 

without retraining, there is likely to be a catastrophic failure in the 

system over the transmission of a message of typical duration. This 

failure typically occurs after about 400 symbols in System 2A and after 

abcut 12000 symbcls in System 2B. The failure usually occurs after a deep 

fade that causes a large burst of errors in the detected data symbols. 

These errors in turn reduce the accuracy of the channel estimates, which 

further increases the probability of error, and so on. 

collapse is characterised by a sharp rise in the cost 

cost vector, as the channel estimates go unstable and 

This system 

c, of the lowest 
1 

follow a completely 

random path. The use of differential coding does nothing to prevent the 

failure of the system here. Thus, regular retraining of the channel 

estimate must be used with System 2. 

Fig.6.4.10 illustrates another problem in the combined detector and 
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estimator that has been observed in the computer simulation tests. At 

about i~630, the estimator has ceased to operate correctly, leading to an 

extended burst of errors·in the detected data symbols. This is in fact 

the result of an interchange of y'l ' , 1 and y'2 ' . 1 in the estimator, 
.1,1- .1,1-

such that the {y'l ' , I} are associated with the corresponding {s'2 ,} 
.1.,1- . .1 

and the {y'2 ' '-I} are associated with the corresponding {s'l ,}. Thus 
.1,1 .1 

the channel estimator is in fact still tracking the fading signals and the 

cost c, of the lowest cost vector is still at its typical low level, but 
1. 

the detector is associating the data symbols with the wrong channels. 

Clearly, if the occurrence of this effect can be identified when it 

occurs, the large majority of the errors in the burst can be corrected. 
" 

Work is proceding on this at Manchester University using collaborative 

coding .[49,50J. SO in Fig.6.4.l0, y'l ' , 1",- jY2 ' and y'2 ' ' l""'-Yl ' 
.1,1- .1 .1,1--.1 

for about 630'i<825. At about i~825 the estimator corrects itself (by 

chance) so that Y'l . , 1"'- jYl . and Y'2 ' . 1",jY2 ' for about 825'i<1560 • 
• 1,1- .1 .1.,1.-.1 

Differential coding correct? the constant phase error in the detected data 

symbols over this period. But then, at about i~1560, there is another 

interchange in the channel estimates, and a corresponding extended burst 

of errors in the detected data symbols up to i~2000. 

Fig.6.4.ll shows the performance of the final Systems 2A and 2B 

described in Sec.4.6.2. When four stored vectors (m~4) are used in the 

combined detector and estimator for System 2A, the degradation in 

performance caused by inaccuracies in the channel estimates, relative to 

the case with perfect channel estimation, is about 4dB at the high bit 

error, rates. Though the curve reaches a floor in the bit error rate of 

about 3XIO-
4

• With m~4 in System 2B, the degradation in the performance 

caused by inaccuracies in the channel estimate, increases from about 1.5dB 

to 3.5dB, as the bit error rate increases. Systems 2A4 and 2B4 perform 

better than Systems 2AC and 2BC respectively at bit error rates below 
-3 

about 10 • Again this seems to be because the Viterbi detector with 4 

stored vectors can switch through any multiple of 90 0 and find the channel 

estimates that best fit the sequence of samples through a deep fade. At 
-3 

error rates above 10 ,there must be significant error extension effects 

in the Systems 2A4 and 2B4, because the Systems 2AC and 2BC respectively, 

perform better. 
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Detection 
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Fig.6.S.l shows results for the maximum likelihood detector described in 

Sec.S.3.2. Clearly there is a close agreement between the theoretical and 

simulated curves for l6-QAM (no differential coding). Over a non-fading 

channel, the degradation in tolerance to additive white Gaussian noise 

caused by the differential coding is about ,dB at the bit error rate of 

10-4 , and increases steadily to just under 2dB at 10-
1

• Over a fading 

channel, this degradation in performance caused by the differential coding 

is about 1.6dB for System 3A and about 1.ldB for System 3B. 

Estimation 

Fig.6.S.2 shows results for the unbiased estimator described in Sec.S.4.2, 

which 6perates with all correctly detected symbols {s' ,}. As expected 
l. 

(Sec.S.4.2) A =-(~+3.26) dB. There is no separate prediction here so 
e 

Y ' -y' '+1 ,- '. .1 ,1 1 
At high signal to noise ratios A 

p 
levels off to an error 

floor which depends on the fading rate, as expected. 

Fig.6.S.3 shows that an improvement can be achieved when a degree-l 

predictor is used with the unbiased estimator as described in Sec.S.4.3, 

particularly at high signal-to-noise ratios. About 20dB can be gained in 

A at about lIJ=40dB, if e is optimised. p . . r 

Figs.6.S.4-6.S.6 show that the arrangement of the Gradient estimator 

described is Sec.S.4.4 can improve Ap still further. If band e are 

carefully optimized together, this estimator can gain about 2 to 3dB in 

A , over the curves in Fig.6.S.3. The values of band e have been roughly 
p 

optimized as shown in Table 6.5.1. 

Fig.6.S.? shows the results of the two alternative arrangements of the 

Gradient estimator discussed in Sec.S.4.4. Both alternatives are shown to 

have a worse value of A at ~=20dB than the standard arrangement of the 
p 

Gradient estimator. This is in fact true over all signal-ta-noise ratios 

of interest, so these alternatives are not considered further. 

Combined Detection and Estimation 

Systems 3A and 3B, did not give a stable performance without retraining. A 

total failure in the system typically occurs after about 800 symbols in 

System 3A and about 12000 symbols in System 3B.' Thus regular retraining 

of the channel estimate must be used. With the arrangement as described 

in Sec.S.6.2, System 3 with.m~2 was seen to be completely stable. 



145 

Fig.6.S.S shows the performance of the final Systems 3A and 3B 

described in Sec.S.6.2. The degradation in the performance of Systems 3A4 

and 3B4, relative to the case with perfect channel estimation is about 

3.SdB and 1.SdB respectively. 

6.6 Comparison of Systems 

Fig.6.6.1 shows the performances of the Systems 1,2 and 3 with four stored 

vectors in the Viterbi detector (m=4) and differential coding of the 

binary digits. As might be expected, the degradation in performance of 

System 3 caused by inaccuracies in the channel estimate is much greater 

than for System 1 but is usually less than for System 2. However, it 

might also be expected that the performance of System 3 would always be 

better than System 2, because it is well known that in a non-fading 

channel, no l6-point constellation has a better tolerance to additive 

white Gaussian noise ~han that used in System 3. But it is shown in 

Fig.6.6.1 that System 2BP gains about 1dB in tolerance to noise over 

System 3BP (although, System 2AP loses about 2.7SdB compared with System 

3A). Clearly two antennas should be used at the receiver of System 2 

rather than one, if at all possible. So with one receiving antenna, the 

tolerance to noise of System IA4 is about 4.SdB better than for System 

3A4, which is in turn about 4dB better than for System 2A (at low error 

rates). With two receiving antennas, the tolerance to noise of System lB4 

is about 2.S to 4dB better than for System 2B4, which is in turn about O.S 

to'ldB better than for System 3B4. 
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Flg.6.3.1 Systems 1AP and 1BP, maximum likelihood detector (Sec.3.3.2): 
Performance of detector operating with perfect channel estimates 
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Flg.6.3.3 System lAC, unbiased estimator, no prediction (Sec.3.4.2): 
Variation of Ae or Ap with 1/1, for different vehicle speeds, v 

Ao' v=30milesLhour 

~ v=60mllesLhour 

~. ~=30milesL!lOur 

Ap. v=6_0milesLhour 
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F1g.6.3.5 System lAC, unbiased estimator with least-squares fading memory polynomial prediction (Sec.3.4.3): 
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Flg.6.3.6 System lAC unbiased estimator with Taylor's expansion predictor (Sec.3.4.S): 
Variation of Ap with 1/1 for the different p-tap predictors 
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Flg.6.3.7 System 1AC, sinewave estimation scheme (Sec.3.4.6): 
Estimate of the the sinewave component ~xll in ~Ylll, where ~Y'lll is 
(a) Sinewave + noise (1ft=20dB) (b) sinewave + co·nstant + nOise (1ft=20dB) 
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Flg.6.3.8 System 1AC, sinewave estimation scheme (Sec.3.4.6): 
Estimate of the the sinewave component ~Xl~ in ~YII~' where ~Y'II~ is 
Ca) Sinewave with Pha,se error (b) Sinewave with amplitude error 
(c),Cd) Typical fading components 
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Flg.6.3.9 System 1AC, equalizer (Sec.3.4.7): Typical example of equalizer output lc,~ 
shown against the corresponding lYI~ 
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Flg.6.3.10 System 1AC, Gradient estimator (Sec.3.4.8): Variation of A/\ with b for 
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1f;-5dB 1j;=15dB 
'(ii' -13 

/ 11; • b=O.ll 
-a.i' -21 ///j. "U "U 

0- f I " 
0-

6- , 0 b=O.13 6- /I/;/ 0 .... , -- ... 
0 -14 " ~~ / /~: • b=O.15 0 -22 / / / . .... ... .... - - - ... , 
a> ~~, /1// a> , 

0 b=O.17 
, /z> 0 

Q) a> 

"~ .... ... 
0 

~"'~~/ 
0 

~'S:-> & -15 t:,. b=O.19 ::J -23 :y t:,. 0-
It) ---- It) 

I I 
c c 
0 0 
a> a> 
E -16 E -24 

(0) 0.6 0.7 0.8 0.9 1 (b) 0.5 0.6 0.7 0.8 
e e 

1j;=25dB 1j;=35dB 
~ -30 . , , / CD -34 / / / / m • b=O.12 • "U / !' "U 

/ //-/ D. 0-

6- / / " 0 b=O.14 6- 0 ... -- .... / / // 
o -30.5 / / / ',I • b=O.16 

o -36 //~/ • .... t:: .... 
a> - - - a> 
Q) / /~, 0 b=O.18 a> ,--/ /' ~/ 0 ... .... ----/:. ~ 0 -c;'/ 0 ---- :. :::------- ....... ::J -31 t:,. b=O.20 5- -38 t:,. 0-
It) ---- It) --
I I 
c c 
0 0 
a> Q) 

E -31.5 E -40 

(c) 0.4 0.5 0.6 0.7 0.8 (d) 0.3 0.4 0.5 0.6 
e e 

Flg.6.3.11 System lAC, Gradient estimator incorporatin~ feedback from a 
degree-l fading memory polynomial predictor (Sec.3.4.9): Variation of A with e, 
for different values of b, with (a)1/I=5dB (b)1/I=15dB (c)1/I=25dB (d)1/I=35cft3 
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Flg.6.3.12 System 1BC, Gradient estimator incorporatin~ feedback from a 
degree-1 fading memory polynomial predictor (Sec.3.4.9): Variation of ~\ with e, 
for different values of b, with (a)1f;=5dB (b)1f;=15dB 
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· Table 6.3.1 Values of b,a used in the tests 

System signal-ta-noise b 
ratio ('JI d8) 

1A 'JI~10 0.15 0.72 

10 < 'JI ~ 20 0.16 0.64 

20 < 'JI ~ 30 . 0.16 0.525 

'JI> 30 0.17 0.45 

18 'JI~10 0.14 0.72 

'JI>10. 0.15 0.625 
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Flg.6.3.13 (a)System 1AC and (b)System 1BC, Gradient estimator with feedback from 
a degree-1 predictor (Sec.3.4.9): Variation of A with "/1, with b, () as in Table 6.3.1 p Y . 
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Flg.6.3.14 System 1AC, gradient estimator with double sampling (Sec.3.4.10): 
Variation of Aa with b for different values of '1/1 
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Flg.6.3.15 . System lAC, Kalman estimator (Sec.3.4.ll): 
Variation of Aa with w for different values of 1/1 
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Flg.6.3.16 System lAC, unbiased estimator with degree-l and 2 fading memory polynomial predictors (Sec.3.4.3): 
Performance with no retraining (Sec.3.5.4) and ideal retraining (Sec.3.5.2) . 
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Flg.6.3.17 System lAC. unbiased estimator with degree-l and 2 fading memory polynomial predictors (Sec.3.4.3): 
Performance with reset-to-zero retraining (Sec.3.5.3) . 
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Flg.6.3.18 System lAC. unbiased estimator with degree-l fading memory polynomial prediction (Sec.3.4.3): 
Performance with least-squares retraining methods (Sec.3.5.5) . 
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Flg.6.3.19 System lA 1, simple combined detector and estimator (Sec.3.6.1): 
Performance with no retraining, using different estimation processes 
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Flg.6.3.20 System 1A 1, simple combined detector and estimator (Sec.3.6.1): 
Typical example of channel prediction !y'l r '-1~' with +900 phase shift introduced 
during a deep fade . " 
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Flg.6.3.21 Performance of final Systems lAm and lBm (Sec.3.6.2) 
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Flg.6.3.22 Performance of System 1Bm with maximal ratio combining (Sec.3.3.4) 
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Table· 6.4.1 Values of b,a used in the tests 

System signal-ta-noise 
ratio ('If dB) 

b a 

2A 'If ~ 35 0.155 0.6 

'If> 35 0.21 0.4 

2B 'If~10 0.15 0.75 

10 < 'If~ 20 0.15 0.7 

'If > 20 0.16 0.6 
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Table 6.5.1 Values of b,a used in the tests 

System signal-ta-noise 
ratio (0/ dB) 

b a 

3A 0/ ~ 20 0.025 0.6 

20 < '" ~ 30 0.0325 0.45 

30 < '" ~ 40 0.04 0.275 

'" > 40 0.045 0.1 

3B ",~10 0.0325 0.7 

10<",<20 0.0325 0.58 

'" ~ 20 0.0325 0.4 
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CHAPTER SEVEN 

Conclusions 

Three different transmission systems for narrowband digital modems have 

been developed in this thesis for use in 900MHz cellular land mobile 

radio. Though in fact, these systems can be directly applied to any flat 

Rayleigh fading channel. In each case, near optimum coherent demodulation 

of a rapidly fading QAM signal(s) has been achieved at the receiver using 

novel techniques of combined detection and estimation, with regular 

retraining of the channel estimator. 

Computer simulation results show that a bandwidth efficiency of about 

2 bit/s/Hz could be achieved together with a good tolerance to additive 

white Gaussian noise, as long as the binary digits are differentially 

encoded and decoded as described in Sec.2.3.3. This differential coding 

is essential to all three systems, to correct for phase ambiguities of 

±90 0 or 180 0 that often occur in the channel estimator after a deep fade. 

No other error correcting coding is necessary, though about 20% of the 

data symbols should be set aside for retraining and synchronization 

purposes. A theoretical analysis has been carried out wherever possible 

to confirm the accuracy of the simulation results. Since field trials are 

due shortly to be carried out with a practical model of the modem, the 

computer simulation tests have been confined to the idealised conditions 

described in Chapter 2 and Appendix B. In Sec.2.8 and Appendix C some 

quite simple methods of achieving symbol timing recovery and carrier 

frequency synchronization at the receiver have been described to show that 

in practice it should be possible to achieve results quite close to those 

given in Chapters 3 to 6, where timing and synchronization have been 

assumed to be ideal. The signal processing involved in Systems 1, 2 and 3 

was simple enough that the digital modems could be built with existing 

hardware. A particular virtue of all three systems is that any expensive 

or complex equipment needed is usually situated at the base station rather 

than the mobile •. 

In Chapter 3, that is, System I, one 12kbaud 4-level QAM signal was 

transmitted in this fast fading channel. (This signal may alternatively 

be described as a bandlimited QPSK signal with a considerable envelope 
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ripple caused by raised cosine spectral shaping). It proved quite easy to 

achieve coherent demodulation at the receiver and a stable system was 

achieved without retraining, even with ~he simplest possible unbiased 

estimation process. The best system tested (Sec.3.6) used a Gradient (or 

equivalent unbiased) estimator with. the appropriate arrangement of 

degree-l least squares fading-memory polynomial prediction. Regular 

retraining of the channel and slope estimates are carried out using a 

"least squares straight line" method. Four stored vectors are used in a 

Viterbi type detector. The tolerance of this system to additive white 

Gaussian noise was only about ,dB worse than the theoretical optimum. 

Viterbi detection is used here to give added stability against error 

extension effects. It is important to note that a large improvement in 

tolerance to noise can be obtained by using two spatially separated 

receiving antennas (System 1B) compared with just one receiving 

(System lA). This improvement is about 9dB at a bit error rate 

antenna 

of 10- 2 

-4 
and about 19dB at 10 • This is due to the improvement in the Rayleigh 

statistics achieved by coherently combining two uncorrelated Rayleigh 

fading signals. An optimum maximum likelihood combination of these two 

signals is used in the detector. However, if maximal ratio combining is 

carried out on the signals at the two receiving antennas before Viterbi 

detection, then a further loss in performance of almost tdB would be 

expected. This seems to be due to the accumulation of errors in the 

co-phasing operation, as discussed in Sec.3.6. 

Probably the most important result obtained from this investigation is 

the demonstration that it is possible to transmit simultaneously two such 

4-level QAM signals in the same frequency space, where the two signals 

originate from different sources and fade independently at the receiver. 

Thus, System 2 desc·ribed in Chapter 4 is a new way of multiplexing two 

4-level QAM signals that uses the fact that the fading is independent in 

the two transmission paths to distinguish between these two signals in the 

receiver. In fact, this multiplexing method would not work at all well in 

the absence of fading. It appears that no non-coherent or pilot tone 

scheme could successfully be used with two fading QAM signals in the 

channel, which makes this System 2 so interesting. The best version of 

System 2 tested (Sec.4.6) can be seen as an extension of System 1 

described above. That is, the receiver uses a Gradient algorithm 

estimator with fading memory prediction, a Viterbi type detector and a 

least-squares retraining method. However, because of the way the two 
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independently fading signals add together in the channel, it was shown 

that two antennas must be used at the receiver (System 2B) for 

satisfactory operation to be achieved. In this system, regular retraining 

and Viterbi detection are now essential for a stable operation. 

Differential coding does not achieve stability on its own. The tolerance 

to noise of this System 2B with four vectors in the Viterbi detector is 

about 1.5 to 2dB worse than for perfect channel estimation. With one 

receiving antenna (System 2A) this loss is about 4dB at low signal-to

noise ratios, with an error floor of about 3X10-
4 

at high signal-to-noise 

ratios. 

In Chapter 5, System 3 is described in which one l2kbaud l6-level QAM 

signal is transmitted over this same flat fading channel. Again, the best 

System 3 tested (Sec.5.7) is very similar to that of System 1. That is, 

the receiver uses a Gradient estimator with fading memory prediction, a 

Viterbi type detector and an exactly similar retraining method to that of 

System 1. The Viterbi detector and regular retraining are necessary here 

for stable system operation, as was the case for System 2. This suggests 

that the instability in System 2 was caused by the received l6-point 

constellation as much as by the fact that there are two fading channels to 

track. The tolerance to noise of this System 3 with four stored vectors 

in the Viterbi detector is about 3.5 (1.5) dB worse than for perfect 

channel estimation with one (two) receiving antennas. 

A comparison of the results of Systems 1, 2 and 3 brings out a most 

important point. With two receiving antennas and perfect channel 

estimation, the loss in tolerance to noise of System 3 compared with 

System 1, with the same average transmitted energy per bit is about 3.5dB. 

This is actually worse than for System 2 by about ldB. In contrast, with 

one receiving antenna, System 3 qains about 2.75dB in tolerance to noise 

over System 2. This shows that with two receiving antennas, two 4-level 

QAM signals fading independently can be received simultaneously in the 

same frequency band with such little interference between each other, that 

System 2 is more power efficient than System 3. This is surprising since 

the 16-point constellation of System 3 is the most power efficient fixed 

l6-point constellation there is. This advantage of System 2 over System 3 

is even more marked when considering peak-power limited transmitters, 

which is generally the case for the mobile transmitters. 



149 

Any further work to be done in continuing this investigation should 

really concentrate on System 2, since this is the most novel and 

potentially most useful, bandwidth efficient system of the future. (As 

well as probably having the most scope for improvement). 

One way to improve the system performance would be to improve the 

estimation process. Two possible improvements might be to, adjust the 

estimator parameters b,a according to a measured signal-to-noise ratio, or 

to use double sampling to effectively halve the fading rate. Two obvious 

improvements worth testing would be to increase the number of receiving 

antennas and the number of vectors in the Viterbi detector, if this ever 

became cost effective. It would also be useful to include in the computer 

simulations the error correcting codes that have been specifically 

designed for this system, particularly if they can prevent the two 

messages from interchanging in the receiver. 

System 2 could be simulated under less idealistic conditions, since it 

is important when designing a cellular radio system to know how the 

performance would be degraded by correlated fading at the two receiving 

antennas, or by co-channel or adjacent channel interference. There may 

also be problems when the average received energy of one signal is at a 

much higher level than that of the other. 

It would also be 'worth exploring the possibilities of adapting System 

2 for different applications. In particular, whether it is possible to 

achieve acceptable performance in the presence of intersymbol 

interference, or indeed whether it is possible to transmit 3 or more QAM 

signals in the same channel. 
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Appendix A 

Rayleigh fading in an unmodulated carrier signal 

In a typical full-duplex mobile radio link, radio signals are passed 

between mobile (M) and base station (B). The mobile unit is generally 

surrounded by hills, tall buildings and other mobiles whereas the base 

station is mounted upon a nearby roof top , or any other convenient high 

point. Generally, there is no direct line-of-sight path between mobile 

and base station so the mode of radio wave propagation from transmitter to 

receiver is largely by way of scattering from hills, buildings and other 

mobiles as in Fig.A.l. Since each path in Fig.A.l represents a radio wave 

travelling at the speed of light, different path lengths mean that there 

will be a corresponding time difference in the arrival of the wave along 

each path. 

Consider the case where the signal modulation is removed and only a 

continuous tone (unmodulated carrier) P(t) is transmitted from the base 

station to the mobile (B+M), where 

P(t) = Vcosw t (A.l) 
c 

The signal P(t) is propagated along N different paths (Fig.A.l). The 

signals that are transmitted simultaneously along each path will actually 

arrive at the receiver at different times. But, all are continuous sine 

waves and only the result of their superposition is actually seen. The 

only effect of the differences in path delays will now be to introduce 

relative phase shifts on the component tones. The N different signals may 

add either constructively or destructively according to the values of the 

relative phase shifts to give a single resultant phasor at the mobile 

receiving antenna. When the mobile moves through the scattering medium, 

changes in different path lengths occur continually and randomly and the 

observed resultant carrier will correspondingly change randomly in 

envelope and RF (radio frequency) phase relative to a fixed phase 

reference. 

If the N individual received phasors of random phase are resolved into 

quadrature components, then it can be readily shown that these quadrature 

components are uncorrelated [10]. And, since all" N paths are independent, 

the quadrature components of the resultant carrier independently approach 



Fig.A.1 Scattering model of signal propagation 
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Gaussian variates as the number of phasors increases. This latter result 

follows from the Central Limit Theorem [36]. Actually it has been noted 

that as few as N=6 contributing phasors gives a good approximation to 

Gaussian bahaviour [23]. 

Now, the resultant received carrier phasor at time t can be 

represented mathematically as 

Vy ( t ) = VA ( t ) cos (w t + e( t ) ) 
c 

(A.2 ) 

Where W =2~f is 
c c 

the angular frequency of the carrier in radians/second. 

The carrier frequency is f =900MHz. 
c 

A(t), B(t) are the continuously, 

randomly changing amplitude and phase respectively of the received 

carrier. 

It is shown later that yet) is completely contained within a narrow 

band of frequencies around f • 
c 

So this narrowband process yet) expressed 

by Eq.(A.2) can be expanded from polar to Cartesian coordinates as 

yet) = A(t)cose(t)cosW t - A(t)sinO(t)sinW t 
c c 

= YI(t)cosWct - YQ(t)sinWct (A. 3) 

where, 

yI(t) = A(t)cose(t) , yQ(t) = A(t)sinB(t) (A.4 ) 

and, 

A(t) = ./YI'(t) + YQ'(t)', a(t) = ~an-l(YQ(t)/YI(t)) (A.5) 

So the quadrature components yI(t), yQ(t) are identically distributed, 

statistically independent lowpass Gaussian random variables, each with 

zero mean and variance ~'[18-2l]. The problem here is to determine the 

statistics of the random envelope A(t) and of the random phase e(t). This 

is done by firstly finding the joint statistics of A(t) and S(t). Then 

integrating this over all possible values of A gives the probability 

density function of a, and vice versa. 

From the independence and Gaussian statistics of Y
I 

and Y
Q 

(discarding 

"(t)" here for clarity), the joint probability density function of Y
I 

and 

Y
Q 

is 

fYIYQ(YI'YQ) = fYI(YI)·fYQ(YQ) 

= exp(-Yr 2 /(2cr 2 » x exp(-y'/(2cr')) 
Q 

" 2Trrr' 

= exp(-(y , + Y ')/(2rr') 
I Q (A. 6) 

Where rr' is the variance of both Y
I 

and Y
Q

• Now, substituting Eq.(A.4) 
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fYrYQ(YrYQ) = exp(-A'/2rr') 

2rrrr' 

(A.7) 

The next step is to find the joint probability density function of A and 

e. A well-known formula for transforming differential areas [24,251 is 

given by 

dyr.dYQ 
= A.dA.dS (A.8) 

Now the probability density function for the polar coordinates A,e is 

given from 

fAS(A,S).dA.dS = fYrYQ(Yr'YQ).dYr·dYQ 

Substituting Eqs.(A.7) and (A.8) in Eq.(A.9) 

f
Ae

(A,e).dA.d6 = A.exp(-A'/(2a'».dA.dS 

2na2 

Therefore, 

fAe(A,e) = A.exp(-A'/(2a'» 

2'lra2 

(A.9 ) 

(A .10) 

To find the density function for the phase alone, f e(6), simply average 

Eq.(A.10) over all possible amplitudes. So, 

(And since 

feU;') = [fAe(A,6)dA 

= 1,...J'" A.exp(-A'/(2CT2».dA 

2rrJ o 2 
a 

1 00 = ~[-exp(-A2/(2a'»10 

d --(exp(-A2/(202 )) = 
dA - ~.exp( -A2/ (202 » ) 

(A.ll ) 

(A.12 ) 

This is the uniform phase distribution and is depicted in Fig.A.2. 

Similarly, to find the probability density function f (A) for the 
.A 

amplitude alone, simply average Eq.(A.10) over all possible phases. So, 

= A.exp(-A2/(202 )) r de 

2"'0"2 -TI 
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(A.13 ) 

This is the Rayleigh distribution -hence the term "Rayleigh fading" - and 

is shown in Fig.A.3. 

This completes the discussion of the statistical properties of the 

Rayleigh fading. It has been assumed that yet) is a narrowband random 

process, though the actual frequency content of yet) has not yet been 

defined. This frequency information is now determined by examining the 

mobile radio scattering model more closely, according to the well-known 

Clarke model [101. 

We are still considering the transmission of an unmodulated carrier 

from base station to mobile. Remember, the unmodulated carrier Set) 

(Eq.(A .. l» is received at the mobile as a time varying random phasor VY(t) 

(Eq.A.2». The received carrier component yet) can be represented either 

in polar form (Eq.A.2» with amplitude A(t) and phase e<t) or equivalently 

in Cartesian form (Eq.(A.3» with in-phase and quadrature components 

YI(t), YQ(t) respectively. The signal received by the mobile at any point 

would consist of a large number' (N) of generally horizontally travelling 

uniform plane waves, (Fig.A.l) that are all independent of each other. The 

amplitudes, phases and-angles of arrival of these waves relative to the 

direction of vehicle motion are random. It is shown in Fig.A.4 that the 

vehicle motion in this horizontal plane introduces 
th 

the n wave shift fd in every wave, where for 
v 

fd(n) = ~cosXn = fmcosOn 
f =V/A is the 

m 
maximum Doppler frequency shift (Hz) 

(metres/second) and carrier wavelength A (metres). 

a Doppler frequency 

(A.14) 

at vehicle speed v 

The total field at any received location is given by the superposition 

of the N component waves. The nth wave of amplitude VC arrives at angle 
n 

~n to the direction of motion, with Doppler frequency shift fd(n) and 

random phase en. The transmitted signal is vertically polarized and the 

polarization is assumed to remain unchanged during transmission [9,101. 

The electric field component seen at 
N 

the mobile can be written 

E (t) = V~C cos(W t 
z n=l n c 

where 

W is the angular frequency of the carrier 
c 

in radians per second. 

(A.lS) 

(A.16) 

The 

{c } are normalized so that ~lC 2=1. 
n n= n 

Therefore the received signal 
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velocity, v 
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Fig,A.4 Geometry of mobile unit communication 
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power V2 is assumed constant. 

A vehicle speed v=26.8metres/second =60miles/hour, and a carrier 

frequency f =900MHz (X=0.33metres) are assumed throughout this thesis. So 
c 

the maximum Doppler frequency shift is f =V/A%80Hz. Since f «f the 
m m c 

electric field component at the receiver is a narrowband random process. 

The signal at the terminals of the receiving antenna on the mobile can 

now be considered. The spectrum of the electric field component of this 

signal will consist of a set of spectral lines that occur at random in the 

range ±f about the carrier frequency f. The probability that one of 
m c 

these spectral lines will occur in the range from f +f to f +f+df is given 
c c 

by the probability density function f(f) which may be obtained [10,20) 

from the probability density function f(~) by equating the differential 

probabilities 

f(f)ldfl = V(f(+~) + f(-O)ld~1 (A.17) 

since +~ and -~ give the same Doppler shift. Where f(~) is the 

probability distribution of angular wave arrival. So f(~)d~ is 

proportional to the total power of the plane waves arriving within d3 of 

angle ¥. But from Eq.(A.14), 

f(~) = f + f cos~ 
c m 

Therefore, taking derivatives of both sides with respect to ~ 

So, 

df(lf) 
d~ 

= -f sin~ 
m 

d~ = - dfO) 

f sin ~ 
m 

But from Eq.(A.18) 

Therefore 

cos ~ = f ( ~) - f 
c 

f 
m 

sin~ = ·11 - COS2~ =,h - «f(O - f )If)2 
C m 

Substituting Eq.(A.20) into Eq.(A.19) 

d~ = - 1 df(~) 

f J1 -
m 

«f(o) - f )/f )2 
C m 

Therefore substituting this in to Eq. ( A. 17 ) 

f(f) = V.(f(+~) + f(-O» 

f ./1 - « f (~) - f ) If)': 
m c m 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

In this general mobile radio propagation model, no assumptions are 

made about the actual positions of any local scatterers. The mobile is 



162 

assumed to be surrounded by a uniform ring of scatterers and so the 

distribution of power with arrival angle r is a uniform distribution. 

That is, 

f ( 15 ) = 

So now, Eq(A.21) becomes 

f (fl = 

The power spectrum of 

1 
2 ... 

, for 

V. 1 

!Tf ../1 - « f 
m 

the received 

-". <'6:srr (A.22) 

(A.23) 

-f)/f)' 
c m 

electric field, 

generally the average energy of the electric field in the frequency range 

f to f+df, and is given by 

IEZ(f)I' = f(f).g(l) (A.24) 

Where g(~) is the gain of the antenna in the angular direction o. 
The practical case of most frequent interest is that for a vertical 

monopole antenna, which receives this vertically polarized electric field 

component. All antennas are assumed to be omnidirectional, vertical 

monopole antennas in this thesis with gain pattern 

Thus, 

g(If)=l, for -"<~''Ir 

I Ez (f) I ' = V._-;===l===:==:. 
'lrf ./1 - «f - f )/f )' 

m c m 
So when a unit amplitude (V=l) unmodulated carrier wave is transmitted, 

the signal spectrum at the receiver antenna terminals is 

1 

«f-f)/f)' 
c m 

for f -f ~f"f +f 
c m c m 

elsewhere 

Since the gain, g(If)=l, the mean received power is 

I
f +f 

c m 
f -f I Y (f) I' df 

c m 
= 1 

(A.25) 

(A.26) 

Now, since the in-phase and quadrature components Yr(t), YQ(t)at any time 

t, are independent narrowband Gaussian random variables, their power 

spectra are 

IYr(fll' = IYQ(OI' = ! 1 

2 ... f ~1 - (fif )' m m 
o , 

for -f $; f"+f 
m m 

(A.27) 

elsewhere 

This power spectrum, shown in Fig.A.5 is \Y(f)\' (Eq.(A.25» shifted down 

to baseband, with the mean received power in each quadrature path equal 

to 
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):; 1 y I (f) I' df 
m 

= , 
(A.28) 

The autocorrelation function R (~) 
yy 

of these quadrature components 

gives an indication of how the fading is likely to change in short periods 

of time, T. 

That is, 

R (T) 
yy 

To solve this 

Substitute 

therefore, 

R (~) is given by the inverse Fourier transform of 
yy 

= L~IYI(f) l'exp (j21ffT) df 

= 

= 

1 rfm exp(j2"fT) df 

2wf J-f J1 - (f/f )' 
m m m 

1 rfm r==C=0=S::2::,,:::f::'t'"==d,f + 

2"f J-f ~1 - (f/f )' 
m rn.... m./ 

EVEN function 

= 1 (fm cos2~f~ 
~f)O ~1 - (f/f )' 

df 

m m 
integral, 

f = f sin!; 
m 

(f/f ) , = sin'!; m 

j 1 \fm sin2~f~ 
2rrf -f 11 - (f/f )' 

m m, m ..... 
ODD function 

../1 - (f/f ) , = -./1 - sin'!; = cos~ m 
and, df = f cosl;dl; m 

(A.29) 

df 

(A.30) 

The limits of the integral (Eq. (A.30» in terms of I; are given by 

when 

when 

f=f m' 
f=O, 

f =f sin?;, 
m m 
O=f sine, 

m 

therefore sin~=l, 

therefore sin~=O, 

The integral Eq.(A.30) now becomes 

so I;="lT12 

so ~=O 

R (T) = _1_~"/2 cos(21ff T.sin'Z;)f cos?;" d~ 
yy m m 

1ff 0 cos-; 
m 

= , ~[11"/2 cos(2"f T.sin"!;) d'Z; 
• 'IT JO m 

= ,J 0 (2'7ff
m 

T) 

where J
O

() is the zero-order Bessel function of the first kind. 

shown in Fig.A.6. In a similar way, it may be shown that the 

autocorrelation function of y(t) in Eq.(A.3) is J O(2nf
m
T). 

(A.3l) 

R (T) is 
yy 
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APPENDIX B 

Baseband equivalent model: Mathematical derivation and computer 

simulation 

The general model assumed in this thesis for the digital speech/data 

communication system between ~ transmitting antenna and ~ receiving 

antenna is shown in Fig.B.l. This is a synchronous serial system which 

transmits the information carried in the sequence of binary digits {~.}, 
1 

where 0<. =0 or 
1 

1. The coded signal is a sequence of multilevel complex-

valued symbols {s.} which are uniquely determined by the {~.} (see 
1 1 

Sec.2.3). So, if the transmitted modulated carrier signal S(t) is a 

4-level QAM signal, then s. is a complex-valued symbol with four pcssible 
1 

values ±l±j. Each s. is determined from a corresponding adjacent pair of 
1 

binary digits a, l' ex. 2 as described in Sec.2.3. Alternatively if a 
1, 1, 

l6-level QAM signal S(t) is transmitted, then s. has one of sixteen 
1 

possible values (±l or ±3)+(±j or ±3 j) , determined by a corresponding 

of four binary digits a. l' 
1, 

linear mobile radio channel 

0<. 2' 1, 

shown 

ex. 3' 01.. 4 
1, 1, 

in Fig.B.l 

(see Sec.2.3). However, 

between the {s.} and the 
1 

{r.}, is exactly the same for both of these QAM signals. 
1 

set 

the 

First of all in this Appendix, the detailed mathematical model of the 

linear bandpass channel is given. Then the equivalent linear baseband 

channel is derived. It is shown that a useful simplification to this 

baseband model can be made, but only after carefully analysing the effect 

of the Rayleigh fading on the matched filtering. Finally, the method of 

simulating the linear baseband channel on a digital computer is 

described. 

B.l Bandpass and baseband eguivalent models 

The linear bandpass channel is shown in Fig.B.2. The important details of 

this bandpass channel have been described in Sec.2.2-2.3. The 

mathematical representation and statistical properties of the signals at 

each point in Fig.B.2 are now described. 

The signals at the outputs of 

transmitter are ~sI .a(t-iT) and 
1 .1 

signal 

the two lowpass filters in the 

~s .a(t-iT). Where, for a 4-level QAM 
1 Q.1 
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s. = sI . + jSQ . = ±l±j 
~ .1. .1. 

(B.1 ) 

or for a 16-level QAM signal 

s. sI' + jSQ . = (±1 or ±3)+(±j or ±3j) (B.2) 
1. • 1. • 1. 

And a(t) is the real-valued impulse response of the lowpass filter. 

For all integer values {i}, sI . and sQ . are statistically 
.1. • 1. 

independent and equally likely to be anyone of their possible values. So 

it follows that for a 4-level QAM signal, the mean-square value of the 

complex-valued quantity s. is 
1 

ES ISil' = 2 (B.3) 

and in fact E =2 
s.i 

for all {i}. The mean-square value of the {s.} per 
1 

transmitted bit of information is 

E =!E = 1 
b s 

(B.4 ) 

For a 16-level QAM signal, the corresponding mean-square values are 

Es = Isil' = :(1' + 1') + !(1' + 3') + :(3' + 3') = 10 (B.5 ) 

and 

E = 'E = 2 5 b "s • (B.6) 

The lowpass filter with impulse response a(t) has a root-raised-cosine 

frequency response given by 

A (f) = H' (f) = {,Jr.-'T-(-:-:l:--+-CO-S-"I!'~f::::T-:-) , 

o , 

-1 1 
for T~f~T 

elsewhere 

(B.7 ) 

and is shown in Fig.B.3(a). H(f)=A'(f) is the transfer function of the 

transmitter and receiver filters in cascade. In this filter it is assumed 

that T=1/12000 sec, so the transmitted QAM signal fiS(t) occupies a 

bandwidth of 24kHz. The impulse response a(t) is the inverse Fourier 

transform of A(f). That is, 

a(t) = J~~A(f)ej2~ftdf 

= ~f1/T..J1+ 
2 J-1/T 

cos~fT'.exp( j2'llft) df 

2cos'~fT - 1 .exp(j2nft) df 
2 

= ~l/T cos~fT.exp(j2nft) df 

J-1/T 2 

= ./I\l/T [exp ( jltfT) :,. exp( -jnfT) ]exp ( J2nft) df 

2t1/T 2 2 

(B.8 ) 
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(see (31] for the solution to a similar problem). Therefore, 

a(t) = 1 sintt(2t/T + !) + 1 sin~(2t/T - !) 

-IT '11 (2t/T + !) H '1r( 2t/T - !) 

(B.9 ) 

This is shown in Fig.B.3(b). Theoretically a(t) is of infinite duration, 

so in practice it is limited to d seconds duration. This impulse response 

must then be delayed in time by d/2 seconds to make it physically 

realisable (causal). This in fact changes the frequency response from 

zero phase to linear phase, as shown in Fig.B.4, without affecting the 

amplitude response. 

Now in every case a single transmitted signal element at the input to 

the multipliers has the waveform s.a(t-iT), with s .a(t-iT) in the 
1. I.l. 

in-phase channel and s .a(t-iT) in the quadrature channel. The Fourier 
Q.l. 

transform (frequency spectrum) of the signal element is 

s.exp(-j2'1lfiT)A(f). Thus, its energy density spectrum is 
l. 

Is
i
exp(-j2'1rfiT)A(f) I' = ISi l'IA(f) I' (B.IO) 

and its energy is 

E . = Is. I ' r'" I A ( f ) I' d f 
S.1 1. J-co (B.11) 

Since the signal elements are statistically independent and have zero 

means, making them statistically orthogonal (E(s .• s.]=O, i~j), the average 
l. J 

transmitted energy per signal element at the output of the lowpass filter 

in the transmitter (Fig.B.2) is the average or expected value of E ., and 
S.l. 

so is 

ES = Isil' r .. IA(f)I'df 

where x is the average or expected value of x. But (31], 
S~ .. IA(f)I'df = S:ilT !T(1 + costtfT)df = 1 . 

so 

ES = Isil' 

(B.12) 

(B.13 ) 

Thus the lowpass filtering introduces no change in signal level. 

Therefore, the average energy per bit in the signal at the input to the 

multipliers in the transmitter (Fig.B.2) is 

!E = 
s 

:E = 
s 

!Isil' = 1 

:Isil' = 2.5 

for 4-level QAM 

for 16-level QAM (B.14 ) 

Now, after multiplying by the quadrature carrier components {2cos2~f t 
c 

V2sin2'1rf t, the 4 (or 16)-level QAM signal at the input to the 
c 

and 

transmitter bandpass filter (Fig.B.2) is 

{2S(t) = ..f2~sI .a(t-iT)cos2~f t - fi2.s
Q 

.a(t-iT)sin2'ITf t 
1. .1. C 1..1. C 

( B .15 ) 

Where 

S(t) = s (t)cos2ttf t - s (t)sin2'1rf t 
I . c Q c 

(B.16) 
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with complex envelope 

s(t) = sr(t) + jSQ(t) (B.17) 

and where sr(t)=l;:sr .a(t-iT) and sQ(t)=l;:sQ .a(t-iT) are the in-phase and 
1 .1 1 .1-

quadrature components respectively of S(t). 

The factor {2 in {2cos2~f t and -{2sin2~f t gives each of these 
c c 

signals a mean-square value (average power level) of unity [31,36,55]. 

Thus the modulation (/ mixing / multiplying) process introduces no change 

in signal level, since f »l/T [31,36,55]. 
c 

The bandpass filter in the transmitter has no effect on the signal 

S(t), which passes through unchanged. However, this bandpass filter is 

required in a practical modem to remove the spurious frequency components 

that would be generated in the modulator. 

So, the average transmitted energy per element of the real-valued 

modulated-carrier signal I2S(t) is 

ES = Is
i

l2 = 2 , 

10 , 

for 4-level QAM 

for l6-level QAM 

and the average transmitted energy per bit is 

for 4-level QAM 

for 16-level QAM 

(B.18 ) 

(B.19) 

Now the transmitted QAM signal expressed by Eqs.(B.15)-(B.17) 

undergoes flat Rayleigh fading, The"Rayleigh fading is represented by its 

complex envelope 

( B. 20) 

where Yr(t) and YQ(t) are statistically independent lowpass Gaussian 

random processes whose properties have been discussed in detail in 

Sec.2.2. Since the mean-square value of y(t) is unity, there is no change 

in average signal energy level caused by the fading. 

The 

So 

fading QAM 

flQ(t) = 

signal is given by (see Sec.2.2) 

{2(sr(t)Yr(t) - s (t)y (t»coS2~f t 
Q Q c 

-{2(sr(t)YQ(t) + sQ(t)Yr(t»sin2~fct 

Q(t) = q (t)cos2~f t - q (t)sin2trf t 
I c Q . c 

with complex envelope 

q(t) = qr(t) + jqQ(t) 

= s(t) .y(t) 

(B.21) 

(B" 22) 

(B.23) 

rn this bandpass model of the channel (Fig.B.2), stationary white 

Gaussian noise is now added to the fading QAM signal. This random noise 

waveform has a two-sided power spectral density of tNO over all positive 



168 

and negative frequencies, as shown in Fig.B.5(a). It has a Gaussian 

probability density function, with zero mean and variance 

o· = lim l-JT ,NOdf = 'NO 
ToO.. 2T 

-T 

( B. 24 ) 

The mean-square value or average power level of this real-valued noise 

waveform is also a'=,N
O 

[31,35,551. 

This noisy and fading modulated-carrier signal now passes through the 

receiver bandpass filter (Fig.B.2) which limits the noise power going into 

the modulator. This filter has a passband f -B~f~f +B that includes the 
c c 

data signal but is much wider, so the fading data signal is assumed to 

pass through unchanged. The bandlimited noise waveform V(t) has the power 

spectral density IV(f)I' shown in Fig.B.5(b). The bandwidth of the 

bandpass noise, 2B, is now assumed to be small compared with its centre 

frequency f. It is narrowband bandpass noise and can be represented as 
c 

V(t) = v (t)cos2wf t - v (t)sin2~f t 
I c Q c 

(B.25) 

with complex envelope 

v(t) = vI(t) + jvQ(t) (B.26) 

where V(t), vI(t), vQ(t) are all real-valued Gaussian random processes 

with zero mean and variance 2N
O

B. vI(t), vQ(t) are independent lowpass 

waveforms with a power spectral density of NO over their bandwidth as 

shown in Fig.B.5(c). So v(t) is complex-valued with zero mean and a 

mean-square value of 4N
O

B. 

The output from the multiplier (linear demodulator) in the in-phase 

channel of Fig.B.2 is ({2Q(t) + V(t) )(2cos(2~f t+~). This unknown 
c 

constant phase offset ~ only complicates the mathematics here while having 

no important effect on the signal properties. It can be ignored in the 

subsequent analysis [311. So 

(.(2Q( t) 

= ( 

+ V(t)).~cos2Wf t 
c 

{2q (t)cos2wf t - {2q (t)sin2~f t + vI(t)cos2nfct 
I c Q c 

- v (t)sin2~f t ).~cos2nf t 
Q c c. 

(qI(t) + ~I(t)COS4Wfct + (qI(t) + ~I(t) 

- (qQ(t) + ~Q(t)sin4nfct 

(B.27) 

(B.28) 

The high frequency components of Eq.(B.28) are subsequently removed in 

the lowpass filter. So the received demodulated waveform in the in-phase 
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channel is 

(B.29) 

where * indicates convolution and a(t) is the real-valued impulse response 

of the lowpass filter (Eq.(B.5». Similarly it can be shown that the 

received demodulated waveform in the quadrature channel is 

rQ(t) = (~(t) + ~'vQ(t» * a(t) 

So the complex-valued received demodulated waveform is 

So, 

r(t) = rr(t) + jrQ(t) 

= qr(t)*a(t) + jqQ(t)*a(t) 
1 

= q(t)*a(t) + J2v(t)*a(t) 

= ( ~sia(t-iT).y(t»)*a(t) + ~v(t)*a(t) 

Now, let the complex-valued noise component in r(t) be 
1 

w(t) = ~v(t)*a(t) 

where 

( B. 30) 

( B. 31 ) 

(B.32) 

( B. 33 ) 

The noise waveforms wr(t), wQ(t) are independent, real-valued Gaussian 

random processes. Each has zero mean and power spectral density 

IWr(f)I' = IWQ(f)I' = (~)2IVI(f)I'.IA(f)12 = tNoIA(f)I' (B.34) 

as shown in Fig.B.6. A(f) is the transfer function of the receiver 

lowpass filter (Eq.(B.3». The factor t arises in Eq.(B.34) because half 

of the noise power is lost in the high frequency components during 

demodulation. Thus, the va)r~~~ce of both noise waveforms 

a' = tN ... IA(f)I' df = tN 
o -liT 0 

Since wI(t), wQ(t) are statistically independent processes, the average 

power or mean-square value of the complex-valued noise waveform w(t) is 

2a'=N O· 
A·further important property of the noise waveform w(t) can be 

obtained from the Wiener-Kinchine theorem [31,35]. It can be shown [31] 

that with the matched root-raised-cosine filtering at the transmitter and 

receiver, any two samples of w(t) separated by integer multiples of T 

seconds, are uncorrelated and therefore statistically independent Gaussian 

random variables. 

It is well known that the signal-to-noise ratio in r(t) has been 
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maximized by this arrangement of matched filtering [31,35). The 

signal-to- noise power ratio in this thesis is always taken to be 

where 

= ,~ = 
1 

= *l s
i l 2 

= 

and where 

1 , 

2.5 

for 4-level QAM 

for 16-level QAM 

(B.36) 

(B.37) 

(B.38) 

With this passband model, Eb is also the average transmitted energy per 

bit in the real-valued modulated carrier signal J2S(t). Eb is also the 

average received signal energy per bit in r(t) (and in the (r.}), averaged 
1 

over the fading. 

With this passband model, 'NO is the two-sided power spectral density 

of the real-valued white Gaussian noise at the input to the receiver. 

NO=2a 2 is also the mean-square value of the complex-valued noise component 

w(t) in r(t), (and of the {w.} in (r.}). 
1 1 

Now, perfect linear modulation and demodulation is assumed throughout 

this thesis, so all simulation tests can be carried out at baseband. The 

baseband equivalent model is shown in Fig.B.7. The signal s(t) shown in 

Fig.B.7 at the output of the transmitter lowpass filter is exactly the 

same as the corresponding signal in the passband model of Fig.B.2 

(Eqs.(B.17) and (B.18». The real-valued white Gaussian noise in this 

baseband model has a two-sided power spectral density of tN
O

' as in the 

passband model. Thus, the signal r(t) at the output of the receiver 

lowpass filter is given by Eq.(B.31), being exactly the same as r(t) in 

Fig.B.2. The mobile radio transmission system (Fig.B.2) is described in 

terms of its baseband equivalent model (Fig.B.7) from now on. 

The baseband equivalent model of the channel (Fig.B.7) is simulated on 

a digital computer according to Fig.B.8. It is shown later (Sec.B.2) that 

Fig.B.8 is the sampled equivalent model of the corresponding continuous 

model Fig.B.7. Of course, the {r.} in Fig.B.8 are now exactly the same as 
1 

the {r.} in Fig.B.7. Perfect symbol timing is assumed in these samples. 
1 

The subscript k in sk' Yk' w
k

' r
k 

denotes samples of the signal waveforms 

taken at time t=kT (for all integers (k}), where T =1/48000 is the 
s s 

sampling period in seconds. 

Strictly speaking, with a time-varying transmission path, the baseband 
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channel should be modelled as in Fig.B.B. Thus, the Rayleigh fading is' 

applied to the signal at the output of the transmitter filter, and the 

resulting fading signal is then fed through the receiver filter. However, 

it will now be shown that, to a very close approximation, the baseband 

channel in this thesis can alternatively be modelled by combining the 

transmitter and receiver lowpass filters into a single filter with the 

transfer function H(f) in Eq.(B.3), and applying the fading to the signal 

at the output of the combined filter. This leads to the very much simpler 

computer simulation model shown in Fig.B.9. This second model (Fig.B.9) 

requires only a small fraction of the computer time needed by the first 

(Fig.B.B), and so makes it possible to carry out many more tests. The 

second model has therefore been used in all tests. The accuracy of this 

second model is seen to depend on two factors: 

i) The fading rate and thus the frequency spread (2f ) of the Rayleigh 
m 

fading, which depends on the vehicle speed. 

ii) The number of taps (g+l) in the root-raised cosine digital lowpass 

filters A(n/T ). 
s 

The received samples {r.} in Fig.B.B are now carefully analysed. 
1 

Consider for a moment that y(t)=l for -~<t<~, so that the Rayleigh fading 

channel in the mobile radio transmission path (Fig.B.7) is replaced by 

this ideal channel. The received signal component in r(t) is (from 

Eq.(B.3l) 

(~s,a(t-iT) .y(t» 
1 1 

* aCt) = 2: s ,a(t-iT)*a(t-iT) 
1 1 

= L::s,h(t-iT) 
1 1 

, 
(B. 36) 

where h(t)=a(t)*a(t) is the real-yalued impulse response of the 

transmitter and receiver lowpass filters in cascade. With this ideal 

non-fading channel, the receiver filter is said to be "matched" to the 

signal at its input [31,35J. These two filters in cascade do not cause 

any intersymbol interference [31,36J. Perfect symbol timing recovery is 

assumed at the receiver throughout this thesis. Thus, with ideal 

filtering 

for all integers {i}, 

transmission has been 

r. = s, + W. 
111 

where r,=r(iT), s,=s(iT) and w,=w(iT). 
1 1 1 

ignored for clarity. The {s,} are the 
1 

(B.37) 

The delay in 

data symbol 

values given by Eq.(B.1) or (B.2). This is exactly the same as would be 

observed if the transmitter and receiver lowpass filters were combined 

into one composite filter. Since the sampled impulse response of this 

composite filter is [31J 
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h(iT) = {1 . 
o • 

for i=g/2 

for i= ••• ,-2,-1,1,2, ... ( B. 3S) 

for all integers {i}. As a consequence of the Wiener-Kinchine theorem 

[31.351. the noise samples {w.} are uncorrelated samples of a 
1 

complex-valued Gaussian random variable. whose real and imaginary parts 

both have zero mean and variance a 2 =!NO' 

Since the Rayleigh fading does not introduce any inter symbol 

,interference. it would seem to follow that Eqs.(B.36)-(B.37) can be 

extended to the general fading case 

(rs.a(t-iT).y(t»)*a(t) 
i 1 

and 

to give 

= Ls, h( t-iT) .y(t) 
i 1 

r i = SiYi + wi (B.39) 

This is in fact correct. to a very close approximation. for the fading 

conditions assumed in this thesis combined with this particular choice of 

matched filtering. But this cannot be assumed to be true generally. It 

is extremely important in the general case to realise that although the 

fading alone or the matched filtering alone do not cause any intersymbol 

interference. when put together there is generally intersymbol 

interference introduced. This is because the receiver filter is no longer 

matched to the fading signal at its input. The faster the fading. the 

more the samples {r.} will differ from Eq.(B.39). Obviously. as the 
1 

fading rate is reduced to the limit where there is no fading. y.=l for all 
1 

{i}. and Eq.(B.37) applies. In fact. it can be shown [961 that if the 

{Yk} vary linearly over the duration of one transmitted pulse ({a
k
}. for 

k=O.l •••• g). then all the lowpass filtering can be performed at the 

transmitter. with exactly the same results as are observed when the 

channel is simulated strictly correctly according to Fig.B.S. So to show 

that this condition holds in this thesis. computer simulation tests are 

performed in a way now described. (The detailed computer simulation 

techniques are discussed later in Sec.B.2). 

The baseband equivalent model is simulated "correctly" in the absence 

of noise according to Fig.B.S. Perfect symbol timing is assumed in the 

samples {r.}. Then. the system is simulated according to the'simplified 
1 

baseband model shown in Fig.B.9. where Eq.(B.39) is formed directly 

without filtering. Again no noise is added. that is w.=O for all {i}. The 
1 

same fading sequence {y.} is used in both cases. The squared-error in the 
1 

"simplified" r. is taken to be 
1 

( B. 39) 
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and the mean-square error for a run of 6000 transmitted {s.} is calculated 
1 

as 

e = 1010giO( ~ ~ e i) 
\6000 i=l 

dB (B.40) 

Under these conditions, the 95% confidence interval for these results is 

±l. 5dB. 

This test was repeated for the different fading frequency spreads 

2f =0 (no fading), 160, 640, 12S0 Hz with T=1/12000 seconds throughout. 
m 

The effect on e of using different numbers of taps g+1=51, 101, 201 in the 

root-raised-cosine filters of Fig.B.7 was noted. The results of these 

tests are shown in Tables B.l-B.3. 

In the real world, and in the "correct" simulation model of Fig.B.S, 

intersymbol interference can be introduced into the {r.} in two ways: 
1 

i) Multiplication in the time domain of the transmitted QAM signal by the 

fading y(t), results in convolution in the frequency domain (see Figs.B.3, 

B.4 and B.10). Thus, the fading causes a frequency spread in the 

transmitted QAM signal of 2f Hz (see Table B.l). 
m 

For example, a vehicle 

speed of v=60miles/hour =26.8metres/second and carrier wavelength 

h=0.33metres (for f =900MHz). 
c 

2f = 2V/A = 160 Hz 
m 

(B.42) 

This represents a frequency spreading of only 0.66% in the transmitted QAM 

signal bandwidth, since 

160 X 100 = 0.66 (B.43) 
24000 

ii) Truncating the sampled impulse response of the root-raised cosine 

filters causes a widening by 2~f Hz of the QAM signal bandwidth [97] 

(Table B.2). For example, with g+1=51 taps in the filter, 2~f~520HZ, as 

shown in Fig.B.10. This represents a frequency widening in the QAM signal 

of about 2.16%. 

Generally, the bigger the total frequency spread 2fm+2~f' the more 

intersymbol interference will be introduced, and hence, the bigger the 

value of e in Eq.(B.40) will become, (as shown in Table B.3). Whether or 

not this presents a serious problem depends on the effect it has on the 

performances of Systems 1 to 3. Tests have shown that with 

51 taps used in the root-raised cosine filters, there is no 

2f =160Hz and 
m 

significant 

difference· in the bit error rate curves obtained with either simulation 

model, Fig.B.S or B.9. In fact, simulation results suggest that Fig.B.9 

is probably a valid simulation model as long as 2f ~1.5% of the QAM signal 
m 



Table B.1 Frequency spread in the transmitted QAM signal 
caused by the fading 

Simulated vehicle Frequency spread Percentage of 
speed (miles/hour) 2f (Hz) 

m 
signal bandwidth 

0 0 0 
60 160 0.66 

240 640 2.66 
480 1280 5.32 

Table· B.2 Frequency. spread in the transmitted QAM signal 
caused by truncating the impulse response of the 
root-raised cosine filter to (g+ 1 )-taps 

Number of Frequency spread Percentage of 
taps (g+1 ) 2d f (Hz) signal bandwidth 

31 880 3.66 
51 520 2.16 

101 260 1.08 
201 130 0.54 



Table B.3 Variation of e dB with (g+ 1 )-taps and 2f Hz 
m 

frequency spread 

Number of Fading frequency e dB 
taps (g+1 ) spread 2f m (Hz) 

31 0 -47.38 
51 0 -58.54 

101 0 -68.81 
201 0 -81.57 

31 160 -46.95 
51 160 -58.17 

101 160 -68.41 
201 160 -79.46 

31 640 -47.10 
51 640 -57.41 

101 640 -61.28 
201 640 -61.90 

31 1280 -46.16 
51 1280 -50.32 

101 1280 -50.70 
201 1280 -50.68 
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bandwidth and at least 51 taps are used in the root-raised-cosine filters. 

(Other filter shapes would generally give quite different restrictions). 

B.2 Computer simulation of the linear baseband channel 

The linear baseband channel can be simulated on the digital computer 

according to the models in Fig.B.8 or B.9. Throughout this thesis all 

computer simulation tests are carried out in standard FORTRAN 77, using 

the NAG GOS routines [98] for random number generation. Basically, the 

simulation method involves generating the random sequences {s.}, {y.}, 
1 1 

{w.} such that they conform to the statistical and spectral properties 
1 . 

outlined in the previous section, and then calculating the {r.}. The 
1 

simulation method used in this thesis is now described. (The FORTRAN 

programs are given in Appendix F). 

1) Call random number generator routine. 

This routine is called once only, ·before any random numbers are generated. 

The FORTRAN command CALL G05CBF(I) sets the basic generator routine to a 

repeatable initial state, with seed integer I. Or, the command CALL 

G05CCF sets the basic generator routine to a non-repeatable initial 

state. 

2) Generate pseudorandom binary digits: {ex. } 
1 

The FORTRAN command W=G05DAF(-1.0, +1.0) returns a pseudorandom real 

number taken from a uniform distribution between -1 and +1. If this 

number w is negative then a.=O, otherwise a,=l. 
1 1 

3) Form data symbol values: {s.} 
1 

The {s.} are encoded from the {a.} in one of four different ways depending 
1 1 

on whe·ther the modulation scheme is QPSK, DQPSK, 16-QAM, 16-DQAM. This is 

described in detail in Sec.2.3. 

4) Lowpass filter the data symbols 

The more complicated baseband model of Fig.B.7 requires that the baseband 

modulating waveform s(t) be generated by lowpass filtering the {s.}. The 
1 

root-raised-cosine lowpass filter must be simulated as a digital filter on 

the digital computer. The tap gains of this digital filter are obtained 

from the ideal continuous impulse response a(t) given in Eq.(B.5). a(t) 
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is delayed in time byigT seconds and sampled every kT seconds to give 
s s 

the sampled impulse response 

+ 1 .sin~(2kT /T -
- s 

for k=O.l •••• g 

-IT ~(2kT /T -
s 

= {C~L.Sin"(2kT/T + !) 
-IT n(2kT /T + !) 

s 
o • elsewhere (B.43) 

where, T=1/12000 seconds. The taps are all scaled by the constant c so 

that 

t a i 2 = 1 

i=O 

In fact. c=~. In the limit when g=~. c=~ exactly. 
s s 

(B.44) 

The number of taps g+l. and the sampling frequency l/T in Eq.(B.43) 
s 

are carefully chosen to give a good representation of the frequency 

response with negligible aliasing and an acceptable level of equipment 

complexity. A good choice was seen to be 

g+1=51. T =tT = 1/48000 seconds 
s 

for the reasons discussed previously (see Fig.B.10). 

( B. 45 ) 

The transmitted samples input to this filter every Ts seconds are. 

{SIN.k} = •••• 0.0.s(iT).0.0.0.s«i+1)T).0.O.0.s«i+2)T).0.0 •••• (B.46) 

; ... ,O,O'Si,O,O,O,si+l,O,O,O,si+2'O,O, ... 

and the output samples are given by 

{Sk} = {sIN.k}*{ak} 

Where * means convolution. So 

s = 
k 

5) Generate the fading: {y.} 
1 

~ 
m=O 

s k .a IN. -m m 

(8.47) 

(B. 48 ) 

It is well known [11.26.64l that the samples of the Rayleigh fading. {y.}. 
1 

can be simulated by passing white Gaussian noise through a digital filter 

with a suitable spectral shape. Two independent white Gaussian noise 

sequences, each with zero mean and variance " must be separately filtered 

to give the real and imaginary sequences of {Y'}={YI .+jYQ .}. The two 
1. .1 .1-

noise shaping filters ideally have the frequency ,response 

C(f) =\_1. 1 

~4Jl - (f/f)2 
m m 

o • elsewhere (B.49) 

as shown in Fig.B.4(a). 

The first problem is to find the corresponding impulse response of 

this filter. c(t). The impulse response of a filter is given by the 
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inverse Fourier transform of its frequency response. So, 

c(t) = J~~C(f)eXp(j2~ft) df 

= ~~~C(f)COS2~ft d~ + j1~~C(f)Sin2~ft df (B.50) 

and since C(f) and cos2wft are even functions and sin2wft is an odd 

function, Eq.(B.50) reduces to 

Therefore, 

c(t) = 2J~ C(f)cos2~ft df 

c(t) = _2_(fm cos2'1rft 

J'lrf)O 4~1 - (f/fm),' 

df 

Now, substitute f=f sin~ into Eq.(B.52). Therefore, 
m 

and, 

4/ ' 4, ' 4/ r--7 yl-(f/f
m

)2 = Vi - sin2~ = vcos 20 = ycos~ 

df = f cos6 d'6 
m 

Wi th limits, 

when f=f 
m' 

f =f sin~, sin~=l, therefore 
m m 

'II='I!/2 

~=O when f=O, O=f sin~, sin6=0, therefore 
m 

Substituting Eqs.(B.53)-(B.55) into Eq.(B.52) 

c(t) = 2 }'Ir/2 cos(2'1rf t.sin~).f cos~ do 
______ ~m~==~----~m~--_ 

.[.;f 0 .j cos ~ 
m 

cos(2'1ff t.sin~) ..Jcost dl! 
m 

(B. 51 ) 

(B.52) 

(B. 53) 

(B.54) 

(B.55) 

(B. 56 ) 

Eq.(B.52) cannot be integrated in the normal way by substitution with 

elementary functions. Also Eq.(B.52) cannot be solved using Simpsons rule 

numerical integration because the function ('vl-(f/f ),)-1=00 at f=f. But 
m m 

the integral must exist because the area under the curve is finite 

(Fig.B.U) • 

Eq.(B.56) however, is finite at its boundaries and it can be shown 

that numerical integration by Simpsons rule gives a quick convergence to 

the required result. (That is, about six decimal places accuracy with 

5000 strips). So, the sampled impulse response of the noise shaping 

filter {c } can be found by applying Simpsons rule (99] to Eq.(B.56) for 
n 

each value of t required. 

Throughout this thesis, the noise shaping filter used is a 401-tap 

linear feedforward transversal filter, where the taps {c } are samples of 
n 

the impulse response taken every 1/600 seconds. The impulse response and 
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frequency response of this filter are shown in Fig.B.12 and Fig.B.11 

respectively. The tap gains of this filter are obtained by applying 

Simpsons rule to Eq.(B.56) with 

tap n (where n=200.201 ••••• 400). 

f =BO 
m 

The 

for every tap and t=(n-200)/600 for 

impulse response has been sampled 

every 1/600 seconds and has been delayed by 200/600 seconds to make it 

physically realiseable (causal). It is now symmetrical about tap n=200. 
'00 

so cn=c400-n for n=0.1 ••••• 199. The taps are scaled so that n~O c n
2=1. 

The sampled impulse response {c } can alternatively be obtained from 
n 

Eq.(B.52) via the conventional inverse-DFT filter design method 

[97.100.101]. It has been shown that the Simpsons rule method described 

here gives a better stopband attenuation by about 3dB (Fig.B.13). This 

degradation in the inverse-DFT method may be caused by unsatisfactory 

sampling near the discontinuities at f=±f in Eq.(B.52). m 

Finally. the sampling period in the fading samples must be matched to 

that of the data signal at the input to the Rayleigh fading channel in 

Fig.B.B or Fig.B.9. This is done by interpolating the fading sequences at 

the outputs of the noise shaping filters. For example. if the baseband 

simulation model of Fig.B.B is used with Ts=1/4BOOO seconds. then the 

fading must be interpolated to give BO equally spaced samples for each 

sample output from the noise shaping filters (since BOX600=4BOOO). 

However. if the simplified simulation model of Fig.B.9 is used. T=1/12000 

seconds. so the interpolation rate is only 20 times per sample (since 

(20X600=12000). A cosine roll-off interpolating filter proposed by 

Wesolowski [27] has been used in this thesis. A roll-off factor of 0.6 

was used in the interpolating filter so that the frequency response is 

flat only over the passband of the fading filter. as shown in Fig.B.14. 

6) Generate the additive white Gaussian noise: {w.} 
1 

The FORTRAN command w=G05DDF(O,cr) returns a pseudorandom real number w 

taken from a Gaussian distribution with zero mean and standard deviation 

o. Successive samples from this routine are used to represent the real 

and imaginary parts of the complex-valued white Gaussian noise in 

Figs.B.B. and B.9. The two-sided power spectral density of this white 

noise is tNO=cr2. 

7) Form the received samples: {r.} 
1 

If the simplified baseband simulation model Fig.B.9 is used. then the 



10FT 

Slmpson's rule 

80 160 

frequency, Hz 

F1g.B.13 Comparison of noise shaping filters obtained by two different methods 

o 

interpolating filter !G(f)12 

(noise shaping filter) 

• 
80 160 240 320 400 

frequency, Hz 
480 560 

Flg.B.14 Amplitude responses of fading filter ·and interpolating filter 



178 

received samples are simply 

r. 
~ 

= siYi + wi 
{r.} represent 

~ 

(B.57) 

for all {i}. These samples samples of the baseband 

received signal r(t) taken every T seconds (once per symbol) with perfect 

symbol timing. The {s.} are the data symbol values defined in Eqs.(B.1)
~ 

(B.2). The {y.} and {w.} are samples of the fading and white Gaussian 
~ ~ 

noise respectively taken every T=1/12000 second. 

If the computer simulation model includes the matched filtering 

(Fig.B.8) then the received samples {r
k

} are given by 

r = 
k 

(B.58) 

for all {k}. where r k • sk' Yk' v
k 

are all complex-valued and a k is real

valued. These samples {r
k

} represent samples of the baseband received 

signal r(t) taken every 

Eqs. (B.46) - (B. 48). The 

T =1/48000 seconds. 
s 

{Yk} are samples of 

The {sk} have been defined in 

the fading taken every T 
s 

seconds. The {a
k

}. for k=O.l ••••• g is the sampled impulse response of the 

receiver matched filter (Eq.(B.5)). The {v
k

} are samples of the white 

Gaussian noise taken every T seconds. where the real and imaginary parts 
s 

of the {v
k

} have zero mean and variance cr'. 
Perfect symbol timing can now be assumed and the samples {r.} taken 

~ 

every T=4T seconds. Now. to a very close approximation 
s 

r(iT+gT ) Z s(iT)y(iT+!gT ) + w(iT) ( B. 59) 
s s 

The delays of !gT seconds through the transmitter and receiver lowpass 
s 

filters can be corrected for in the receiver so that 

r. Z s.y. + w. (B. 60) 
~ 11. 1. 

FinallY'in this Appendix. the signal and noise components in the 

must be shown to be the same in both the computer simulation model 

(Fig.B.8) and the continuous model that it represents (Fig.B.7) 

{r. } 
~ 

In the computer simulation model. the sampled impulse response of the 

transmitter and receiver filters in cascade is 

where, 

h = 
k 

g 
::E 

m=O 
a,' a 

m k-m 

(B. 61) 

(B.62) 

The {a
k

} are defined in Eqs.(B.43)-(B.44). The sampling period here is 

Ts=1/48000 seconds. So. if the {h
k

} are themselves sampled to give the 

{h.} with a sampling period of T=1/12000 seconds and ideal sampling once 
~ 

per symbol. then 



and 

h(gT ) = 1 
s 

h(iT) <:: 0 , 
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for all iT;OgT 
s 

(B. 63) 

So in a slow fading channel (which is the case here) and in the absence of 

noise 

as would be the 

Since i: 
m=O 

r(iT+gTS) ::::: s.y(iT+!gT ) 
1. S 

(B.64) 

case in the continuous system (see Eq.(B.39» 

a ' = 1, the mean-square value of the complex-valued noise 
m 

samples is the same at the input and output of this filter, 20'. It is 

assumed that 20'=N
O 

in this simulation model, as in the continuous model. 



180 

APPENDIX C 

Symbol Timing Recovery 

C.l Introduction 

The procedure for symbol timing recovery at the receiver falls into two 

categories. Firstly, the symbol timing algorithm must be started up 

during the synchronizing packet (see Fig.C.l). A sequence of phase 

reversals is transmitted (Fig.C.2) which is used in a fast acquisition 

procedure. Secondly, symbol timi"ng must be maintained throughout a frame 

of transmitted data. To achieve this, fine adjustments are made to the 

timing waveform every symbol, from measurements taken of the received 

demodulated waveform r(t). No knowledge is required of the actual data 

symbol values. 

It is shown in this appendix that the same simple procedure for 

achieving symbol timing recovery can be used in all Systems 1, 2 and 3. 

That is, "the equations for symbol timing recovery are independent of 

whether one 4-level QAM signal, two 4-level QAM signals or one 16-level 

QAM is received. With two receiving antennas, the same procedure would be 

carried out on both received signals {r .}, {r
b 

.} and the measurements 
a.1. .1-

from the two antennas would simply be averaged. No computer simulation 

tests have been carried out on this symbol timing method, though initial 

hardware tests have shown promising results [92]. 

C.2 Basic Assumptions 

The chief strategy for both types of symbol timing recovery is based on 

the use of 100% raised cosine filtering in Systems 1, 2 and 3. In 

Appendix B it was shown that the signal component in the baseband received 

waveform r(t) is given by (Eq.(B.31)) 

(~s.a(t-iT).y(t))*a(t) 
1 1 

Which, because of the narrow fading frequency spread 2f =160Hz, 
m 

(C.1 ) 

can 

alternatively be represented by (Eq.(B.39)) 
4s.h(t-iT) .y(t) (C.2) 
1 1 

Where h(t)=a(t)*a(t) is the impulse response of the transmitter and 

receiver lowpass filters in cascade. h(t) has a 100% raised cosine 

frequency response H(f) (Eqs.(B.7) and (2.3.3)). This impulse response 
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h(t) is shown in Fig.C.4. The important point to note here is that 

h(O) = 1 

h(-!T) = h(+!T) = ! 

h(!iT) = 0 • for all integers i#O or ±1 (C.3) 

So that the sample value of ~s.h(t-iT) at time t=(i+!)T is the arithmetic 
1 1 

mean of the sample values at times t=iT and t=(i+1)T. There are no 

components from any {s.} other than s. and s'+l' 
111 

Thus. after the receiver has demodulated the received signal into two 

quadrature components rr(t) and rQ(t). it uses filtered samples of each 

component twice per symbol for symbol timing recovery. That is. it uses 

the samples 

••• 1 [ ... , r I • i - 1 , r I • i _" r I • i , r I . i + t , r I ,i+l' 

[ •••• r Q• i - 1 • r Q• i _!· r Q• i • r Q• i +!· r Q• i +1 • 

where r .=rr(iT). rr ._,=rr«i-!)T) and so on. From 

••• 1 (C.4) 

. 1.1 .1 2 

Appendix. the samples {r.}. for all integers {i}. are 
1 

now on in this 

called the 

"integer-samples". whereas the remaining samples {r
i
+!}. for all integers 

{i}. are called the "!-samples" (where r.=rr .+jr
Q 

,). Now. the receiver 
.1 .1 .1 

assumes that the integer-samples coincide with the optimum sampling points 

for no intersymbol interference. So. 100% raised cosine filtering should 

give. for every !-sample 

rQ '+' = !(rQ ' + rQ '+1) .1 ~ .1 .1 
AND (C. 5) 

if no noise is present. rf symbol timing is slightly early or late. then 

the value of the !-sample will be biased towards the value of the prior or 

subsequent integer-sample respectively. Thus. a value may be accumulated 

over a large number of symbols. which averages to zero for correct timing 

and which will have a near linear relationship with timing offset for 

small timing errors. So for fast start up. a block averaging is carried 

out over the packet of phase reversals. whereas during data transmission 

the value is used to continuously adjust the sampling instances by small 

increments. 

Unfortunately. as shown by the Wiener-Kinchine theorem [31.35]. there 

is some correlation between the adjacent noise samples w, ,.w, .w, , 
.1-'2" .1 1+". 

will degrade the performance of the timing recovery algorithm. 

To simplify the subsequent analysis. the complex-valued base band 

received waveform is represented by 

r(t) = p(t)y(t) + w(t) 

where 

p(t) = L:s,h(t-iT) 
1 1 

which 

(C.6 ) 

(C. 7) 
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So 'that 

r, = p.y. + W. 
1 1 1 1 

r i +! = Pi+!Yi+! + wi +! 

And indeed, with a timing error of a.lT, 

r i +a • l = Pi+a.lYi+a.l + wi +a • l 
Assuming noise is absent. From Eq.(C.6) 

That is 

where 

and j=R. 

r(t) = p(t)y(t) 

rr(t) = Pr(t)yr(t) - PQ(t)~Q(t) 

rQ(t) = Pr(t)yQ(t) +.PQ(t)yr(t) 

r(t) = rr(t) + jrQ(t) 

p(t) = Pr(t) + jpQ(t) 

y(t) = Yr(t) + jyQ(t) 

(C.S) 

(C.9) 

(C.la) 

(C.ll) 

(C.12) 

(C.l3) 

(C.14) 

(C.15) 

Some specific examples are now studied to see how the symbol timing 

recovery scheme works. 

C.3 One QAM signal received in the channel. Fast acquisition of symbol 

timing from a packet of phase reversals 

N phase reversals are transmitted so that 

The in-phase and 

s. = +l+j 
1 

s. = -l-j 
1 

for i=1,3,S, ... ,N-l 

for i=2,4,6, ... ,N 

quadrature components of p(t) resulting 

(C.16) 

from these {s.} 
1 

are, to a very close approximation, pure sinewaves as shown in Fig.C.S. 

(They would be exactly sinewaves if h(t) was a fully raised cosine impulse 

response). Clearly, with ideal timing and no noise (from Eqs.(C.3), (C.7) 

and (C .16) ) 

{Pr.k}={PQ.k} = +1 a -1 a +1 a 

for k = 1 U 2 21 3 3! (C.17) 

So that (from (Eqs • (C.1 7 ) and (C.12) ) 

{rI.k} = YI.l-YQ.l a -YI.2+YQ.2 a Yr. 3 -Y Q. 3 a 

{rQ•k } = YI.l+YQ.l a -YI.2- YQ.2 a Yr • 3+Y9·3 
a 

for k = 1 U 2 2t 3 3! (C.1S) 

The timing error at the receiver is generally +0(. radians (or +aT/" 

seconds) as shown in Fig.C.5(b) • That is, the receiver uses the samples 

r i + a/-rr' r 1 1 +ct/'l1' , r 2+0./'" •••• , rN+CX/'lr for symbol timing recovery. So in 
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the absence of noise (see Fig.C.S). 

{PI.k}={PQ.k} = cos~ 

for k = 1 +a/'lr 

-sinex. -COSel 

1 ;+0(/" 2+0/" 

So that (from (Eqs.(C.19) and (C.12}) 

sino. coso. -sino. 

2;+cyir 3+c</". 

{rLk} = cosa(YLk -YQ
•k ) -sinCl(YI •k -YQ•k } -cosa(Y

Lk 
-Y

Q
•k } 

= 

(C.19) 

{rQ•k} COSCL( Y I .k +y Q.k} -sinOOYI.k+YQ.k} -cosa( Y Lk +y Q.k} .... 
for k = 1 +C</" 1!+0/'Jr 2+a/'Jr (C.20) 

Clearly. with perfect symbol timing. ~=O and Eqs.(C.19}-(C.20} reduce to 

Eqs. (C .17) - (C.1S). Thus. 

{rLk+rQ•k} = 

{rQ•k -rLk} = 

for k = 

2cosCly r.k 

2COS ClYQ
•k 

l+a/". 

-2sinCly r.k 

-2sina:YQ
•k 

l!+CI/'lr 

-2cOSClYr •k 
-2COSCl.YQ•k 

2+0/'lr 

2sinCly Lk 

2sinClYQ•k 
2;+ Cl/1I" (C. 21 ) 

The fading is assumed to remain constant over any length of time T/2 

seconds. such that yk=yk-;. So the best estimate of ~ from rl+~~ and 

:Q.H+CI/",) 
Q.l+a/Tr 

-l( + tan rQ.l;+~/~ ~ rI.l;+aI'lr\] 

r Q• l +a/ n rI.l~/" / 
In fact generally. the best estimate of ~ from rk+c</'lr and rk+;+Ot/'Jr 

for k=i,~,~,4: .••• /N, where 

CL\ =-; ~.' [ tan -l( rLk+t.+O</Jr + rQ.k+t+<x/.\ 

rI.k+rj'/lr·· + r Q•k +O</7r --) 

(C. 22) 

+ tan -l(r rQ.k+!.+o</lC ~ r r I .k+t+O(/".\] (C .23) 

Q.k+'!'/".· Lktix/7r) 
For N transmitted phase reversed symbols {si}' the {et'k} in Eq.(C.23} are 

averaged for k=l. 2 .3 ••••• N to give the best estimate of Cl. which is 

assumed to be constant over this time interval O~t~NT. The timing 

waveform is now adjusted. Clearly. a positive value of Cl( radians 

indicates that the timing waveform is late by aT/tr seconds, whereas a 

negative value of CL radians indicates that the timing waveform is early by 

a.T/'It seconds. 

C.4 One QAM signal received in the channel. Maintaining symbol timing 

throughout a frame of transmitted data 

Assume that a 4-level QAM signal is transmitted. There'are four possible 

values of each (±l±j). Therefore there are sixteen possible values of 
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[so 1 s. l. [(±l±j) (±l±j»). Now. assuming perfect symbol timing 
~- ~ 

recovery at the receiver when a 4 or 16-level QAM signal is transmitted 

(from Eq. (C.S» 

r '; - HrI.i_l + r r .) = 0 
1.~- .~ 

r Q• i _! - Hr
Q

• i _ l 
+ rQ .) = ° (C.24) 

.~ 

for all possible combinations of [ si-l s.1. This is shown in Table C .1. 
~ 

for the case where 

(C. 2S ) 

Generally. the fading needs to change linearly over the duration of one 

symbol «i-l)T(t(iT). for Eq.(C.24) to give an exact result. 

However. it is assumed here that there is a small timing error of ~ 

radians (or QT/~ seconds) during data transmission •. (The fast acquisition 

procedure (Sec.C.3) is assumed to have obtained a good initial estimate of 

the timing waveform during the synchronization packet). So for example. 

if the sequence 

[sl s2 

was transmitted, then in 

{Pr.k} = {PQ.k} z 

for k z 

s3 l 

the 

1 

1 

= [+l+j -l-j +l+jl 

absence of noise (from Eq.(C.19» 

-0. -1 

2 

Cl 1 

2; 3 

So that (from Eq. (C.20» 

{r1.k} "" (YI.k -YQ.k) 

{rQ• k} ~ (Y1.k +YQ• k ) 

-C1(Y1.k-YQ.k) ·-(Y1.k-YQ.k) 

-Cl(YI.k +YQ•k ) -(Yr.k+YQ• k ) 

CI.(YI.k-YQ.k) 

et( Y 1. k +y Q. k ) 

(C.26) 

for k '" 1 11 2 2; •••• (C.27) 

Since, for a....-o. 
cosa. ~ 1 

sinct z Cl 

k + CI./"Ir :::: k (C.28) 

This example has highlighted the important principle here. 'With fully 

raised cosine filtering. a small timing error generally causes a 

negligible error in the integer-samples ... ,Pi,Pi+l,Pi+2' ... , whereas it 

causes an error proportional to ~ in the ;-samples •••• p. ".p. 1" ••• 
. 1+~ 1+~, 

Thus. the timing error at time t=iT (or strictly speaking t=(i+a.jtr)T) can 

be estimated by (see Eq.(C.24) 

Ol'r.i = sgn(rr.i - rr.i-l)·(rr.i-! 

d Q • i sgn(rQ • i - r
Q

• i _l ) .(r
Q

• i _; 

where 

sgn(x) = { +1 

-1 • 

- Hr1.i_l 

- Hr
Q

• i _l 

if x;,O 

if x<O 

+ r .» 
1.~ 

+ r .» 
Q.~ 

radians 

radians (C.29) 

(C.30) 



Table C.1 All 16 possible combinations of [so s.1 with the corresponding received samples 
1-1 I 

[r'
I
_
1 

r r.1. Assuming perfect timing and y. =y =y.=X+jY 
. 1 I 1-1 . 1 I 
1-- 1--

2 2 

s p r 
p 1 P 1 

li- - Oi-- r r . 
r 
O' 1 r SI.i_1 s. sa· s . PI.i-1 _. 2 Pl.i PO'-1 . 2 PO' r . I' 1 r I' 1.1 .1-1 Q.I 1.1-1 .1- - .I 0.1-1 .1-- O.i .1 .I 

2 2 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -X+Y -X+Y -X+Y -X-Y -X-Y -X-Y 
-1 +1 -1 0 +1 -X+Y -X -X-Y -X-Y -Y +X-Y 
+1 -1 +1 0 -1 -X-Y -X -X+Y +X-Y -Y -X-Y 
+1 +1 +1 +1 +1 -X-Y -X-Y -X-Y +X-Y +X-Y +X-Y 

-1 +1 -1 -1 -1 . 0 +1 -1 -1 -1 -X+Y +Y +X+Y -X-Y -X -X+Y 
-1 +1 -1 0 +1 -X+Y 0 +X-Y -X-Y 0 +X+Y 
+1 -1 +1 0 -1 -X-Y 0 +X+Y +X-Y ·0 -X+Y 
+1 +1 +1 +1 +1 -X-Y -Y +X-Y +X-Y +X +X+Y 

+1 -1 -1 -1 +1 0 -1 -1 -1 -1 +X+Y +Y -X+Y -X+Y -X -X-Y 
-1 +1 -1 0 +1 +X+Y 0 -X-Y -X+Y 0 +X-Y 
+1 -1 +1 0 -1 +X-Y 0 -X+Y +X+Y 0 -X-Y 
+1 +1 +1 +1 +1 +X-Y -Y -X-Y +X+Y +X +X-Y 

+1 +1 -1 -1 +1 +1 +1 -1 -1 -1 +X+Y +X+Y +X+Y -X+Y' -X+Y -X+Y 
-1 +1 -1 0 +1 +X+Y +X +X-Y -X+Y +Y +X+Y 
+1 -1 +1 0 -1 +X-Y +X +X+Y +X+Y +Y . -X+Y 
+1 +1 +1 +1 +1 +X-Y +X-Y +X-Y +X+Y +X+Y +X+Y 



Table C.2 All 16 possible combinations of [so s.l with the corresponding received samples fr. 
1-1 I 1-1 

and with a'.. Assuming symbol timing error of a radians and Yj-1 =Y 1 =yj=X+jY 
I ~_ 

2 

• 
S P r a 

p 
I' 1 

P 
o. 1 r r 

sa· 
.1-- 1--

r
o

' r
o

' 
, , 

SI' SI' sa· PI.i-1 2 PI' PO'-1 . 2 Po' r I' I' 1 r I' o. 1 al' a o ' .1-1 .1 .1-1 .1 .1 .I .1 .1-1 .1-- .I .1-1 .1-- .I .1 .I 2 2 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -X+Y -X+Y -X+Y -X-Y -X-Y -X-Y 0 0 
-1 +1 -1 +a +1 -X+Y -X- dI -X-Y -X-Y +aX-Y +X-Y - aY +aX 
+1 -1 +1 -a -1 -X-Y -X+aY -X+Y +X-Y - aX-Y -X-Y +aY - ax 
+1 +1 +1 +1 +1 -X-Y -X-Y -X-Y +X-Y +X-Y +X-Y 0 0 

-1 +1 -1 -1 -1 +a +1 -1 -1 -1 -X+Y +aX+Y +X+Y -X-Y -X+aY -X+Y +riX +aY 
-1 +1 -1 +a +1 -X+Y +oX-aY +X-Y -X-Y +aX+aY +X+Y +a X-aY +oX+aY 
+1 -1 +1 -a -1 -X-Y +aX+aY +X+Y +X-Y -dX+aY -X+Y +UX+aY -aX+aY 
+1 +1 +1 +1 +1 -X-Y +aX-Y +X-Y +X-Y +X-taY +X+Y +riX +aY 

+1 -1 -1 -1 +1 -a -1 -1 -1 -1 +X+Y +dX+Y -X+Y -X+Y -X- aY -X-Y -aX -et{ 

-1 +1 -1 +a +1 +X+Y -oX-aY -X-Y -X+Y +aX-aY +X-Y -oX-et{ +aX- et{ 

+1 -1 +1 -u -1 +x-y - ciX+uY -X+Y +X+Y - aX- et{ -X-Y - dt..+aY - dt..- et{ 

+1 +1 +1 +1 +1 +X-Y - aX-Y -X-Y +X+Y +X-aY +X-Y -oX -aY 
+1 +1 -1 -1 +1 +1 +1 -1 -1 -1 +X+Y +X+Y +X+Y -X+Y -X+Y -X+Y 0 0 

-1 +1 -1 +a +1 +X+Y +X-aY +X-Y -X+Y +UX+Y +X+Y - aY +dt.. 
+1 -1 +1 -a -1 +X-Y +X+aY +X+Y +X+Y -dX+Y -X+Y +aY -aX 
+1 +1 +1 +1 +1 +X-Y +X-Y +X-Y +X+Y +X+Y +X+Y 0 0 

. 
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Again it is assumed that y(t) varies linearly over the time interval 

(i-l)T~t~iT. It is shown in Table C.2 that 
, , 

Cl<. I . or 0< Q . 
.1 .1 

if s.=s. 1 
1 1-

elsewhere 

(C.31) 

(Clearly, no timing information can be extracted if s.=s. 1)' Now, the 
1 1-

measured timing error at time t=iT is 

o,'i = K(a.'I.i
2
: O/..'Q.i)T 

seconds (C. 32 ) 

Where K is a constant. The optimum value of K is best found by computer 

simulation. In fact, some form of (fading memory) averaging should be 

applied to the {a.'i} to smooth out the scaling components lyII, IYQI, 

l±yI±yQI, O. The best averaging process needs to be found by computer 

simulation. 

C.S Two 4-level QAM siqnals received in the channel 

It will be shown here that the methods described in Secs.C.3-C.4 for fast 

acquisition and maintaining symbol timing recovery with one QAM signal, 

give the required result with two 4-level QAM signals in the channel. 

It is assumed here that the symbol timing waveform at the receiver is 

lagging by d radians for signal sl (t) and by ~ radians for signal s2(t). tt 

and ~ are assumed to differ by no more than rr/5 radians, which is T/S=16~s 

(see Sec.2.8.2). The timing algorithms should adjust the timing waveform 

to its correct position half-way between the two. That is, with an error 

of +,(a+~) radians for sl (t) and -,(d+~) for s2(t). 

The same sequence of N phase reversals is transmitted in both (sl .} 
.1 

and.(s2.i} for fast acquisition, such that 

sl . = 
.1 s2.i = ! +l+j , 

l -l-j , 

for i=1,3, ... ,N-l 

for i=2,4, ... ,N (C.33) 

So, to a very close approximation, the two waveforms Pl(t)Yl (t) and 

P2(t)Y2(t) from the two mobiles are pure sinewaves of the same frequency, 

with different amplitude and phase components. Thus, in the absence of 

noise, the received signal waveform r(t) is a pure sinewave with the same 

frequency but different amplitude and phase to the two constituent 

waveforms. The fast acquisition, symbol timing recovery algorithm will 

lock onto this third sinewave. The phase of this sinewave is now 

investigated. 

Assuming noise is absent, from Eq.(C.6) 



186 

That is, 

rI(t) = P1.I(t)y1.I(t) - P1.Q(t)Y1.Q(t) 

+ P2 . I (t)y2 • I (t) - P2 •
Q

(t)y2 •
Q

(t) 

rQ(t) = P1.r(t)y1.Q(t) + P1.Q(t)y1.I(t) 

(C.34) 

+ P 2 • I (t)y2 •
Q

(t) + P2 •
Q

(t)y 2 .
I
(t) (C.35) 

Where 

r(t) = rI(t) + jrQ(t) 

P1(t) = Pr.I(t) + jPl.Q(t) 

P
2
(t) = P 2 • r (t) + jp

2
•
Q

(t) 

y1(t) = y1.I(t) + jYl.Q(t) 

y
2
(t) = y 2 • I (t) + jy 2 •

Q
(t) 

j =Fl (c. 36 ) 

The waveforms from the two signals arrive at the receiver such that 

P1(t+aT/n) coincides with P2(t+~T/~), for all t. So, the samples of r(t) 

are late by ~T/~ seconds for P
1 

(t) and by ~T/~ seconds for P
2
(t). From 

Fig.C.6. 

P2 • I (t) = P 2 •
Q

(t) = COS(;t + ~) 
So, from Eqs.(C.35) and (C.37) 

= "t rI(t) (Y1.1(t) - Yl.Q(t) )cos(.:r + OL) 

+ (Y
2 

r(t) 
"t . 

rQ(t) = (y1.I(t) + y1.Q(t»cos(.:r + OL) 

Expanding 

rr(t) = 

Now, let 

+ (y 2 • I (t) 

the cos terms in c1(t) 
~t 

(y1.I(t) - Y1.Q(t»(cosacos.:r-

= v ~t R. Y . ~t RcosocosT - s1n.s1n
T 

Equating coefficients in Eqs.(C.39) and (C.40) 

Rcosl = (y1.r(t) - Y1.Q(t»COSOL + (y 2 • I (t) - Y2.Q(t»)cos~ 

Rsin~ = (y1.I(t) - y1.Q(t»sinOL + (y2 • r (t) - Y2.Q(t»)sin~ 

Eq.(C.42)/Eq.(C.41) gives 

tan~ = (Yl.r(t)-Yl.Q(t) )sinCi. + (y 2 . I (t)-y 2 .
Q

(t) )sinp 

(Yl. I (t) -Y1 •
Q

( t) ) cos"'" + (y 2. r (t) -Y2 •
Q 

(t) )cos~ 

(C.37) 

(C. 38) 

(C.40) 

(C.41) 

(C.42) 

(C.43) 
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Fig.C.6 (a) P1 (t) and (b) P2(t) with phase reversals 
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Now, consider the case where 

YI.r(t) - YI.Q(t) = Y2 • r (t) - Y2 •Q(t) 

The Yl.r(t), Yl.Q(t)" Y2 ,r(t), y 2 •
Q

(t) all have identical statistical 

properties, so in fact, this would be the average or expected case. Here 

But, [99] 

Giving 

and 

tan ~ = sin C( + sin~ 

cosex. + cos~ 

sin'" + sin~ =2.sin(!(C(+Il».cos(!(Q.-~» 

cosO; + cos~ =Zcos(!(Q.+~» .cosO(O!-II» 

tan~ = sin(!(<<+~» = tan(!(Q.+~» 

cos (! (a.+~) ) 

(C. 44) 

(C. 45 ) 

So on average the resultant signal waveform PI(t)Y
l

(t)+P2(t)y
2
(t) with 

phase reversals transmitted, is a sinewave ~ith phase !(~+~). The fast 

acquisition procedure in Eq.(C.23) would give an estimate of this angle. 

and 

However, when Y
I 
(t) is in a deep fade 

yl.r(t) ~ Y1.Q(t) ~ 0 (C.46) 

(C.47) 

The recovered symbol timing wave,form would tend to drift towards the ideal 

timing waveform for P2(t), and tend to ignore PI (t). Similarly, if Y
2
(t) 

was in a deep fade, the recovered symbol timing waveform would tend to 

drift towards the ideal timing waveform for PI(t) and tend to ignore 

P2(t). Clearly, if a good estimate of !(ClI.+~) is to be made during the 

fast acquisition procedure, that is not biased towards IX or ~ by the 

fading, the individual estimates ~'k (see Eqs.(C.23) and (C.45» must be 

averaged over many symbols. 

A similar analysis would show that during random data transmission, 

symbol timing recovery can be maintained half way between the two 

constituent waveforms using Eq.(C.29), where 0.', is now replaced by 
1 ' 

~',=!(~,+A, )'. Again, the phase of the recovered timing waveform would 
1. 1 t"l. 

average out to !(cx.+p), though it would tend to drift between a and p 
depending on the fading, if the individual estimates of the timing error 

were not averaged OVer enough symbols. The length of time over which this 

averaging should be performed is best evaluated by computer simulation or 

by hardware tests. 
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APPENDIX 0 

Theoretical probabilities of errors in detection 

The bit error rate versus signal-to-noise ratio curves Pb(t) are derived 

theoretically in this appendix, for several cases of interest. Coherent 

coding of the binary digits is assumed throughout. 

0.1 Mathematical Background 

Some useful mathematical formulae are defined in this section. 

The Q-function of x is given by [31,104,106J 

Q(x) = ~: ~exp(-~') dz = ~~: ~exp(-~,) 
Q( 0) = t , Q (-00) = 1 , 

Q(-x) = 1 - Q(x) 

Q(oo) = 0 

Q(x) is tabulated in [106J for different values of x. 

dz 

The Gaussian probability density function of 

1 exp (- (x-x) ') 

x is given by [34J 

f( x) = 
,J2Trr:r' 20" 

where x has mean x and variance a 2 

): f(x) dx = ~: ~exp(-(~:~),) 
= Q(a~x) 

dx =)~ ___ 1 exp(-~') dz 
_ .f2Ti 2 

a-x 

" 
Proof of Eg.(D.5): 

Substituting (x-x)/a = z in f(x) 

dx = cdz 

Limits: when x=a, z=(a-x)/a 

" x=oo, z=OO 

Therefore, 

[ 1 exp(-(x-X)') dx 
-I2Tr02 20' 

=)'" __ l_exp(-:=. 2)" dz 
";2'1",2 2 

a~x 

= r'" _ ."kexPCf) dz 
ja-x 

cr 

Q.E.D 

(0.1 ) 

(D. 2) 

(D. 3) 

(D.4) 

(D.5 ) 
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The integral of a Q-function of x times a chi-square distribution of x 

with two degrees of freedom is given by 

l[l-~J 
2 2+ax 

where x is the average or expected value of the random variable x, 

(i-E(xJ). "a" is a constant. 

Proof of Eg.(0.6): 

From Eqs.(0.1) and (0.2) 

): Q(.JaX)~exp(-;) dx - ): [~ -~:x -A;exPCf) dzl~exp(-~) dx 

~--------~~----------/ ~ u dv 

Now, integrate by parts 

ludv.dx 
J dx 

- (uvJ - fvdu.dx 
J dx 

Thus, 

du 
dx 

-~ rl - (..rax _1 exp(-~ 2) dzl 
dxL2 Jo ~ 2 J 

Iw 
- -1.~ exp(-~2) dz 
~ dx 0 2 

~ 

dx 

Now, use the identity (122J 

dF(x) _ (c ~f(z,x) dx - f(z-b,x)db + f(z-c,x)dc 

where 

So that 

And 

du 
dx 

dx Jb lIx dx dx 

F(x) - [c(X) f(z,x) dz 

Jb(X) 

exp(O).O + exp( -tax) .tJax -t\, 

-t 
- -~x exp(-tax) 

'lis,; 

Substitute Eqs(0.9) and (0.10) into Eq.(D.8) 

(0.6) 
.~-

(0.7) 

(0.8 ) 

(0.9) 

(0.10) 
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But if 

substituting x = y2 in I 

dx = 2ydy 

Limits: when x=O, y=O 

" x=co, y=CQ 

Now, substituting by2 = ;Z2 

dy = 1 dz 
..f2b 

Limits: when y=O, z=O 

" 
I = 2['" exp(-~2)._1_ dz 

Jo 2.f2b 

= fI:m('" _1 eXp(-~2) dz 
-.J b Jo ..['h 2 

(from Eq. (0.1) ) 

=Jf 
substituting Eq.(0.12) into Eq.(O.ll) 

~: Q(vax) .~exp(~) dx = 10. - ~'J"Ir.2X 
2 -.JBi ax+2 

(0.11) 

(0.12) 

Q.E.O 
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Similarly, it can be shown that the integral of a Q-function times a 

chi-square distribution with four degrees of freedom is given by 

(CO Q(JaX) .:X"XP(-2~) dx = 1:.[1 _ ~ _ ~(.:g)3] JO x, x 2 ~~ ax 4+ax 
(0.13) 

0.2 Bit error rate curves for System 1, with no differential coding and 

perfect channel estimation 

One 4-level QAM signal is transmitted in the channel. Assume one 

receiving antenna and maximum likelihood detection according to 

Eq. (3.3.3). Consider the special case with no fading, that is where y.=l 
1 

and r.=s.+w. for all {i}. 
111 

The transmitted data symbol v.alue at time t=iT is s.=±l±j. 
1 

It is 

useful to consider here that s.=±k±jk (where k=l), as shown in Table 0.1 
1 

and Fig.O.l. Thus (see Appendix B) 

E = k 2 
b 

At time t=iT, tne baseband received sample at the input to the 

detector is 

r. = s, + w, 
1 1 1 

where ri' Si' wi are all complex-valued 

r. =·r + jr
Q 

. 
1. r.i .1. 

s. = SI . + jSQ . 
1. • 1. • 1. 

W. = 
1 

w
I 

. + jW
Q 

. 
.1. • 1. 

(0.14) 

(0.15) 

'(0.16) 

w
I 

. and w
Q 

. are independent Gaussian random variables with zero mean and 
• 1 .1 

variance (see Appendix B) 

(]' = iN o (0.17) 

The probability density function of each quadrature noise component is 

(from Eq. (0.4» 

f(w) = 1 exP (-w 2
) 

,j2-,;a' 2a2 

(0.18) 

If the symbol s.=+k+jk is transmitted, then the quadrature components 
1 

of r. are independent Gaussian random variables, mean +k, variance C2 • 
1 

That is, 

Let P denote 
M-N 

f(r ) = f(r ) = 1 exp(-(r -k)2) 
Q I ~2"1fa2 _I_ 

20'2 

the probability that s. with point number M is transmitted 
1 

and is detected as s'. 
1 

with point number N (Table 0.1). Then the 

probability of correct detection of s.=+k+jk is 
1 



Fig.O.1 

Table 0.1 

Imaginary 
Part 

- k 

• o 

+k 

-k 

• :3 

+k 

• 1 

Constellation of s, for System 1 
I 

Real 
Part 

Constellation of s for System 1 
i 

point number s, binary digits 
I 

0 -k -jk 00 

1 +k -jk 01 

2 -k +jk 10 

3 +k +jk 11 
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3-3 _I_ I' Q Q P = ~CO 1 exp(r -k)2) dr )'" 1 exp(-(r -k)2)dr 

o ·hltlJ2 20"2 0 .J2.,.0"2 2a2 

which is the probability that both r
I 

and rQ are positive. Thus, from 

Eq. (D.5) 

P
3

-
3 

= [Q(-k/a)]2. 

= [1 - Q(k/a)]2 (from Eq.(D.3» 

= 1 - 2Q(k/a) + [Q(k/O)]2 (D.19) 

The probability that the symbol s' .=-k-jk is detected with s.=+k+jk 
1 1 

transmitted is 

3-0 I I' Q Q P = ~O 1 exp(-(r -k)2)dr )0 1 exp(-(r -k)2)dr 

. _00"/2 .. a 2 20'2 _<»~2"rrG2 2172 

which is the probability that both r
I 

and rQ are negative. Thus, from 

Eq.(D.5) 

P
3

-
0 

= [Q(k/cr)]2 

Now, by symmetry P
3

- 1=P3- 2 • So 

Therefore 

P3- 0 + P3 - 1 + P3- 2 + P 3 - 3 
= 1 

P3- 1 = P3- 2 = ;(1 - P3 - 0 - P3- 3 ) 

= Q(k/a) - [Q(k/a)]2 

Therefore, the bit error rate with s.=+k+jk transmitted is 
1 

+ lP 3- 2 + QP3 - 3 
2 2 

(D.20) 

(D.21) 

(since P
3

-
0 

gives 2 bit errors, P
3

-
1 

and P
3

-
2 

give 1 bit error and P
3

-
3 

gives no bit errors, with 2 bits per symbol). 

Pb = P3 - 0 + P3- 1 

= Q(k/a) 

However, from Eqs.(D.14) and (D.17) 

~ = J Eb ' =M 
;N

O 
. 

where 

Therefore 

From the symmetry of the constellation, and since the {s.} are 
1 

(D.22) 

(D. 23) 

(D.24) 

(D.25) 

statistically independent and equally likely to have any value !±k±jk), 

this is also the overall bit error rate for System lA, with perfect 

estimation and no differential coding. 
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Now, consider the general case for flat Rayleigh fading, with 

r.=s.y.+w., for all {i}. Eq.(0.25) can be considered to be the bit error 
1. .1 l. 1. 

rate for a time-invarient channel with fixed attenuation 

Jl'i = ly i l 2E
b 

NO 

ly.12=l, 
l 

where 
(0.26) 

Eq.(0.26) is now taken to be the equation defining instantaneous 

signal-to-noise ratio. If IYi 12=1 for all {i} as defined previously, then 

~i reduces to the original form in Eq.(0.24). So Eq.(0.25) is the 

conditional bit error rate, where the condition is that ly.1 2 
l 

To obtain the bit error rate when IYil2 is random, Pb(~) must 

over the probability density function of ~, (f(¥». That is 

Pb qV) = ~: P b (1f') f (It') d JI' 

is constant. 

be averaged 

(0.27) 

Where JP is the average signal-to-noise ratio (averaged over the fading) 

defined mathematically as 

1/1= Eb·El\YiI2J 

NO 

(0.28) 

The term E[ 1 y i 12 J is simply the avera'ge value of I y i 12 , and has been set 

to 1 throughout this thesis. So 

1/1 = Eb 

NO 

(0.29) 

It is important to note that in a fading channel, the bit error rate 

can only be defined against the average signal-to-noise ratio W. Also, it 

is interesting to note that the bit error rate Pb(~) does not depend on; 

vehicle speed, the rate of fading, the average depth / duration of fades 

or the shape of the power spectrum of y(t), IY(f)12. It only depends on 

the Rayleigh probability density function of the fading. 

It can be shown [8,22,23J that f(JP) is a chi-square distribution with 

two degrees of freedom such that 

f (JP) = ~exp(~) , 
¥' ¥' 

for ~O (0.30) 

Therefore, in flat Rayleigh fading, the bit error rate for System lA with 

no differential coding and perfect channel estimation is (substitute 

Eqs.(0.25) and (0.30) into Eq.(D.27» 

(0.31 ) 

Which is, from Eq.(0.6) 
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- f2§'] 
.J~ 

-M;] (D. 32 ) 

Now consider the corresponding bit error rate curves with two 

receiving antennas. The bit error rate curve in Eq.(D.25), for no fading, 

has been derived by comparing r
I 

and rQ with simple threshold levels. 

There is no simple threshold level detection that can be used with two 

receiving antennas. Alternatively, Eq.(D.25) could be derived by 

considering 

[104] • The 

the distance d between s, and the nearest decision boundary 
1 

decision boundary always 1"ies half way between two possible 

data points in the received signal constellation. Clearly (see Fig.D.l), 

d = k , for all s,=±k±jk 
1 

since y,=l, for all {i} here. This is shown mathematically as 
1 

d = t\so - sl\ = t!(-k-jk) - (+k-jk)! = t!-2kl = k 

(D.33) 

(D. 34) 

for the decision boundary between the two possible points sO=-k-jk and 

sl=+k-jk (Table D.l). Where Ixl is the absolute value of the complex 

valued quantity x. Thus, substituting Eq.(D.34) into Eq.(D.22), the bit 

error rate in the absence of fading with one receiving antenna is 

P
b 

= Q(d/a) (D.35) 

It is shown in [104] that Eq.(D.35) is in fact true generally for optimum 

maximum likelihood detection with N receiving antennas. However, the 

value of d increases as the number of receiving antennas increases. So 

with two receiving, antennas and optimum detection according to Eq.(3.3.4) 

(D.36) d = t! So - SI! 

where 

So = [s sb.O] = [ -k-jk -k-jk] 
a.O 

SI = [s sb.l] = [+k-jk +k-jk] 
a.l 

( s 
a.O 

is point So at antenna A, and so on for s a.I' sb.O' sb.l) • So 

d t~!sa.O s I' + Isb.O-sb.ll' a.l 
= t.,J4k' + 4k' 

= ..{ik (D.37) 

Thus, the bit error rate for System lB with perfect estimation and no 

differential coding is (from Eqs.(D.35) and (D.37» 

P
b 

= Q(/2k/a) (D. 38 ) 

So, 

(D.39) 

Where 
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is the signal-ta-noise ratio in the signal at each antenna, 

The same bit error rate results (Eq.(D.39) if the received signals 

from the two antennas are coherently combined (as in maximal ratio 

combining) and a maximum likelihood detection is carried out on the single 

combined signal according to Eq.(3.3.3). This is because the 

signal-ta-noise ratio out of the combiner, ~MR' equals the sum of the 

branch signal-ta-noise ratios [8,1071. That is 

~MR = 21/' = 2Eb/No (D.40) 

Clearly, in this case (from Eq.(D.25» 

P
b

(¥') = Q(hPMR ) = Q(2/if) (D. 41 ) 

which is the same as Eq.(D.39) for the optimum detection process. 

Now, consider the case where there is independent flat Rayleigh fading 

of the signals at the two receiving antennas. It can be shown that with 

two receiving antennas [8,9,22,231 f(W) is a chi-square distribution with , 
four degrees of freedom, such that 

f<)n = :Yexp(-~) 
If' \I' 

(D.42) 

Where again, y and r are defined by Eqs.(D.24) and (D.29) respectively. 

(The same distribution is true for maximal ratio combining, so it must 

have the same bit error rate). 

So with independent, flat Rayleigh fading at antennas A and B, the bit 

error rate for System lB with no differential coding and perfect channel 

estimation is (substitute Eqs.(D.41) and (D.42) into Eq.(D.27» 

Pb(jV) =r'" Q(2J'j) .~Viexp(-?;!.) djP 
Jo ]11' 1fJ 

(D.43) 

(D.44) 

D.3 Bit error rate curves for System 3 with no differential coding and 

perfect channel estimation 

One 16-level QAM signal is transmitted in the channel. Assume one 

receiving antenna and maximum likelihood detection according to 
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Eq.(S.3.3). Consider first the special case with no fading, that is where 

y.=l and r.=s.+w. for all {i}. 
1. 1. 1. l. 

The transmitted data symbol value is s.=(±l or ±3)+(±j or ±3j). 
1 

It is 

useful to consider that s.=(±k or ±3k)+(±j or ±j3k), (where k=l), as 
1 . 

shown 

in Table 0.2 and Fig.0.2. Thus, (see Appendix B) 

Eb = 2.Sk2 

At time t=iT, the baseband received sample at the input to the 

detector is 

r. = s, + W. 
111 

where ri' si' w
i 

are all complex-valued 

r. = 
1 

S. = 
1 

W. = 
1 

r
I 

. + jr
Q 

. 
.1 .1 

SI . + jSQ . 
.1 .1 

+ . w. JW
Q

. 
1.1 .1 

(0.45) 

(0.46) 

(0.47) 

W
I 

. and w
Q 

. are independent Gaussian random variables with zero mean and 
• 1 .1 

variance (see Appendix B) 

cr2 = tN o (0.48) 

The probability density function of each quadrature noise'component is 

(from Eq. (0.4» 

f(w) = 1 eXP(-w 2 ) 
../2'7<0'2 2cr2 

(0.49) 

If· the symbol s.=+k+jk is transmitted, then the quadrature components 
1 

of r, are independent Gaussian random variables, mean +k, variance 0 2 • 
1 

That is, 

1 exp(-(r -k)2) 
-12,,,,2 ~ 0'2 

(0.50) 

Let P denote the probability that s. with point number M is transmitted 
M-N 1 

and is detected as s'. 
1 

probability of correct 

with point number N (Table 0.1). Then the 

detection of s.=+k+jk is 
1 

(D. 51 ) 

which is the probability that both r
I 

and rQ are in the range 0 to +2k. 

Thus, from Eq.(0.5) 

P
1S

-
15 

= [Q(-k/O') - Q(k/~)]2 

= (1 - 2Q ( k/ a) ] 2 ( from Eq. ( 0 . 3 ) ) 

= 1 - 4Q(k/u) + 4[Q(k/a)]2 (0.52) 

An exactly similar procedure can be carried out to give the probability 

of all 15 possible incorrectly detected symbols to give 



• 8 

• 
10 

-3k 

• 
2 

• o 

Fig.O.2 

Imaginary 
Part 

• +3k 
9 

• +k 
1 1 

-k 

• -k 
3 

• -3k 
1 

• 
13 

• 
15 

+k 

• 
7 

• 5 

• 
12 

• 
14 

+3k 

• 
6 

• 
4 

Constellation of s. for System 3 
I 

Table 0.2 Constellation of s. for System 3 
I 

Real 
Part 

point number s. binary digits 
I 

0 -3k - j3k 0000 
1 -k - j3k 0001 
2 -3k - jk 0010 
3 -k - jk 0011 
4 3k - j3k 0100 
5 k - j3k 0101 
6 3k - jk 0110 
7 k - jk 0111 
8 -3k + j3k 1000 
9 -k + j3k 1001 

10 -3k + jk 1010 
1 1 -k + jk 1 011 
1 2 3k + j3k 1100 
13 k + j3k 1101 
14 3k + jk 1110 
15 - . k + jk 1111 
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P
15

-
0 

= (Q(3k/cr»)2 

P
15

-
l 

= Q(k/cr)Q(3k/cr) - (Q(3k/cr»)2 

P15 - 2 = P15 - l 
P

15
-

3 
= (Q(k/~»)2 - 2Q(k/~)Q(3k/a) + [Q(3k/a»)2 

P
15

-
4 

= Q(k/cr)Q(3k/a) 

P
15

-
5 

= -2Q(k/a)Q(3k/cr) + Q(3k/a) 

P
15

-
6 

= (Q(k/a»)2 - Q(k/cr)Q(3k/o) 

= Q(k/o) - 2[Q(k/a»)2 + 2Q(k/cr)Q(3k/o) - Q(3k/O ) 

P 
15-4 

P15 - 9 = P 15 - 6 

P15 - l0 = P15 - 5 
P15 - 11 = P 15 - 7 
P

15
-
l2 

= (Q(k/O»)2 

P
15

-
l3 

= Q(k/o) - 2(Q(k/o»)2 

P15 - l4 = P15 - 13 
A useful check here is that 

+ P15 - l5 = 1 

Therefore, the bit error rate when s.=+k+jk 
1 

is transmitted is 

+ l P
15 - 2 

4 

+ ~P15-5 + ~P15-6 +'lP15 - 7 + l P
15- 8 + ~P15-9 

44· 4 4 4 

+ ~P15-l0+ lP15 - ll+ ~P15-12+ lP15 - l3+ lP15 - l4 
44444 

+ QP15- l5 
4 

(D.53 ) 

(D. 54 ) 

(D.55) 

Where, the fraction multiplying each P
15

-
N 

is the ratio of the number of 

binary digits detected in error if s'. is detected as point number N 
1 

(Table D.2), divided by 4 (the total number of binary digits in s.). So 
1 

(substituting Eq.(D.53) into Eq.(D.55» 

P
b 

(with si=+k+jk) = Q(k/O') + lQ(3k/O ) 

In an exactly similar way it can be shown that 

iQ(k/O) + lQ(3k/cr) - iQ(5k/cr) 

P
b 

(with si=+3k+jk) = P
b 

(with si=+k+j3k) 

P
b 

(with.s
i

=+3k+j3k) = lQ(k/cr) + ,Q(3k/cr) - ,Q(5k/a) 

(D.56) 

(0.57) 

(D.58) 

(D.59) 

Now, because of the symmetry of the constellation and the Gray coded 

bit mapping, the overall bit error rate for System 3A in the absence of 

fading with no differential coding and perfect channel estimation is 
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P
b 

= i-Pb (with s.=+k+jk) 
16 1. 

+ 8 P (with s.=+k+j3k) 
16 b 1. 

+ 4 P
b 

(with s.=+3k+j3k) 
16 1. 

(0.60) 

Where the fraction multiplying each P
b 

is the ratio of the number of 

points in the constellation with this bit error rate divided by 16 (the 

total number of points in the constellation). So, substituting 

Eqs.(0.56)-(0.59) into Eq.(0.60) gives 

P
b 

= iQ(k/O') + lQ(3k/a) - tQ(5k/cr') 

But, from Eqs.(0.45) and (0.48), 

= ..Jo .81 

where 

Therefore, 

Pb(jP) = iQ(.J0.8]11) + lQ(3JO.8jV) - tQ(5.J0.8)11) 

So,.for System 3A in the presence of flat Rayleigh fading (see 

Eq.(D.27) ) 

(0.61) 

(0.62) 

(0.63) 

(0.64) 

(0.65) 

where Pb(~) and f(1) are defined by Eqs.(O.64) and (0.30) respectively, 

and 

So, using Eq.(O.6), 

Pb{'JII) = 3[1 - I 0.8Y] + 1 Fl - I7":"2Tl - -81 [1 
8 ~ 2+0.8r 4 L ~~J 

= 1 - 3J 2'W' - 312'j7'+ 5 I2P 
2 8 5+2Y 4~5+l8y 8~ 

(0.66) 

(0.67) 

It was shown in Sec.0.2 that when going from one to two receiving 

antennas, the distance between each point and the nearest decision 

boundary is effectively doubled. So, with two receiving antennas (System 

3B), with optimum detection according to Eq.(5.3.4) in the absence of 

fading and no differential coding 

P
b

(¥') = tQ(,h.6,,) + lQ(3..J1.6';') - tQ(Sh.6yiJ 

That is, .JP is replaced by V27j in Eq. (0.64) • 

(0.68) 

So, for System 3B in the presence of Rayleigh fading (see Eq.(O.27» 
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Pb(~} = rco 
Pb (¥'} .f(VI} dJi' 

10 
(D.69) 

Where Pb(r} and f(Ji'} are defined by Eqs.(D.68} and (D.42) respectively 

and 

NO 

So, using Eq.(D.13} 

Pb <if} = i[l -J 1.6 iii_ -
8 4+1.6]11 

-J 40¥' -
4+409 

1.~fi0 4~i~ :1' YJ 
+ !. [1 -Jr

-14-:-.-4-=V="'> 
4 4+14.41" 

4~ji 04!~ly YJ 

= 12 - -83J5+22~;j - 3 ~ + 5 ~ ~ 4V~ 8~ 

(J 'J] 2 14.4 V 
14.4Y; 4+14.4"", 

- ;;~(J5:f9) - ~~~lJ5+~:~Y + 25 (r-:iT)3 
32ii\~ 

The theoretical bit error .rate curves are shown in Fig.D.3. 

·(D.70) 

(D.71) 
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Inverse Taylor Matrices 
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APPENDIX F 

Sinewave Scheme: Measuring amplitude and phase of a sinewave in noise 

In this appendix, Eqs.(3.4.40), (3.4.42), (3.4.44) and (3.4.45) are 

derived, which are used to estimate the amplitude and phase of a sinewave 

in additive white Gaussian noise. The equations automatically correct for 

any dc bias superimposed on this sinewave. 

F.1 Basic Assumptions 

The unbiased channel estimate at time t=iT, with s'i=si' is given by 

(Eq.(3.4.3)) 
-1 

y'. = s, r. 
111 

The real part of this estimate is 

-1 
= y. + s. W. 
111 

(from Sec.3.4.2) 

(F.I) 

y'I . = YI . + W. (F. 2) 
.1 .1 1-

where, the {w.} are statistically independent Gaussian random variables 
1 

with zero mean and variance '0 2 • 

Let the general expression for YI~i be 

YI . = x. + V . 
• 1. 1. 1. 

Where 

x, = 
1 

(a+b)sin(0·+c) 
1 

(F.3 ) 

(F.4) 

is the sinewave component of Y
I 

. and v. is the residual fading component 
.1 1 

of YI .• 
.1 

In the subsequent analysis, v, is assumed to remain constant 
1 

over any half cycle of the sinewave 

The estimate of x. is given by 
1 

{x.}. 
1 

x ' 
i 

= a sin0. 
1 

(F.5) 

Hence, there is an error of -b in the estimate of the peak value and an 

error of -c radians in the estimate of the phase angle of the sinewave 

conporient x,, as shown in Fig.F.l. 
1 

any half cycle of the sinewave for 

a+b is assumed to remain constant over 

O~e.<'!t or 'n~e. <2... c is a ssumed to 
1 1 

remain constant over any half cycle of the sinewave for -'ll/2~e.<1l /2 or 
1 

It/2~e.< 3,./2. c is small such that cos c '" 1 and sin c :::: tan c :::: c. 
1 

The chief strategy for estimating the amplitude (a+b) and phase (c) of 

Cx) from the {Y'Li} depends on a block sequential summation 

(integration) of the sinewave over different half-cycles. The error in an 



Fig.F.1 

'. 
\ , 

\ , , , 
\ , , , , , , , 

, , , 
j 
i 
i 
i 
i , 

i , , 
! 

: 
f 

" 

- C 

-11 -11/2 o 1112 

e 
i 

X. 
I 

11 

x' 
i 

, , , 
i 
i , 

/ , , 
i , , 

: 
.f 

.: 

311/2 

Sinewave component {x.} in {y' I'} and its estimate {x'.} 
1.1 I 



202 

individual x'. contains components of both a+b and c. When averaged over 
1 

a half cycle of the sinewave, all errors caused by a+b cancel out leaving 

an estimate of c, or vice versa. 

The following integrals are well-known. 

= (1</2 cos f) de 
J- ~/2 

. (1</2 sin0 de 
J-,,/2 
l:sin20 de 

~: sin(:) de 

t sinG d0 = r 3'1r/2 cose de 
) 71'/2 

= (3"/2 sinB de 
h/2 

= ~~ cos0 de 

= \:n sin20 de = rlt/2sin20df) 
J -1</2 

= ("/2 cos26 del 
J -11/2 

~: sinGcosf) de = ~:.,. sin6cos0 de 

= 2 

=-2 

= )~1t cose de = 

= 13n
/

2 
sin 2e de 

"/2 

= )3"/2 cos 26 de 
'1</2 

= ~"'/2 sin0cosG d0 
-11/2 

= \31</2 sin~cos0 de = 0 
J~/2 

~~ v 
de = ~:~ v df) = ~"'/2 v dG 

-1</2 
= \3"/2 v dG = vlr 

J -It/2 

(F.6 ) 

(F.7) 

0 (F.8 ) 

= l!. (F.9) 
2 

(F .10) 

(F.ll) 

The sampled equivalents of Eqs.(F.6)-(F.ll) are useful in the subsequent 

analysis. Here, the integrals are replaced by a summation of n samples, 

where the n {0.} are equally spaced over the corresponding intervals of 1t 
1 

radians.' Now, the result of the integral (Eq. (F. 6) - (F.ll)) is multiplied 

by n/lr to give the result of the corresponding summation of samples. For 

example 

and 

sinG. , 
1 

for 0,.(:).<11' 'V 2n 
1 -"'it 

for 0~0. <'!t ~ n 
1 ....... 2 

(F.12) 

(F.U) 

For large values of n, these are very close apprOXimations. 

F.2 Estimate of a+b 

Consider n measurements {y'r .} regularly spaced over the interval O~e.<1r . 
• 1 1 

From Eqs.(F.2)-(F.4) 

y'r . = x. + v. + W . 
. 1 1 1 1 



. Therefore, 

= (a+b)sin(0.+c) + 
1 

= (a+b)sin(c)cosO. 
1 
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v. + W. 
1 1 

+ (a+b)cos(c)sin0. 
1 

+ v. 
1 

+ W. 
1 

(F.14) 

, . e y I .S1n . 
.1 1 

= (a+b)sin(c)cosG. + (a+b)cos(c)sin'0. + v.sine. + W.sinG. 
~ 1 1 1. 1. 1. 

So, from Eqs.(F.6), 

interval and Lw.~O 
1 

(F.9) and (F.lO), with v::::v 
1 

(constant) over this 

n, . f) 
2::Y I .S1n . ~ 
i=l .1 1 

(a+b)cos(c).~ + v.2n (F.15)· 
2 11' 

(In fact, v. only needs to vary linearly over this interval, with an 
1 

average value of v, for this equation to hold true). Also, from Eq.(F.14) 

with Eqs.(F.6), (F.8) and (F.ll) 

t: y' . ~ (a +b ) cos (cl .2n + vn 
i=l 1.1 1f 

Therefore, from Eqs.(F.9), (F.15) and (F.16) 

t:: 
i=l 

(1-8/1r')~sin'f)i 
i=l 

(a+b)COS(C)(% - ~) 

(1-8/l.') .~ 

= (a+b)cos(c) 

= (a+b) 

2 

for small c. Thus, the estimate of (a+b) 

(a+b)' = 10.55796(:t:>'1 .sine. -
n i=l .1 1. 

is given by 

0.63662~?'I.~ 

where 

1/;(1-8/~') ~ 10.55796 

and 

2/1r :::: 0.63662 

(F.16) 

(F.17) 

(F.18) 

Similarly, it can be shown that if the n {y'1 .} are equally spaced over 
.1 

the interval ~~0.<2'1r, then 

(a+b) , =1l0.55796(f:;y, .sine. + 0.63662t:;y' .) (F.19) 
n i=l 1.1 1 i=l 1.1 

The different sign in Eq.(F.19) compared with Eq.(F.18) is due to the fact 

that 

~~ sine dO +2 AND 

as shown in Eqs.(F.6) and (F.7) 
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F.3 Estimate of c radians 

Consider n measurements {Y'
r 

.} regularly spaced over the interval 
.~ 

-IT/2,,,e.<'lr/2, where Y' . is given by Eq.(F.14). Then 
~ r.~ 

Y' . case. ~ (a+b)sin(c)cos'0. + (a+b)cos(c)sinf).cos0. 
1.1 1 . .1 .1 1 

+ v. cos€). + W. case. 
111. 1 

So, from Eqs.(F.6), (F.9) and (F.10), with v.~v over this interval, and 
~ 

n. A 
EY I . cos.;:,. ::: 
i~l .~ ~ 

(a+b)sin(c).~ + v.2n 
2 1r 

(F.20) 

Similarly, 

Y • . e 
I 

. s~n . 
.~ ~ 

= (a+b)sin(c)cos0.sinO. + (a+b)cos(c)sin'0. 
~ ~ 1 

+ v.sinG. + W.sin0. 
1 1 1 1 

So, from Eqs.(F.8)-(F.10) 

n. . G Ey I . s~n . 
i=l .1 1 

~ (a+b)cos(c).~ 

2 

Also, from Eq.(F.14) with Eqs.(F.6), (F.18) and (F.ll) 
n 

Ey' . ~ 
i~l I.~ 

(a+b)sin(c).2n + vn 
11' 

Therefore, from Eqs.(F.20)-(F.22), for small c 

n. (3 EY r . cos·. -
i=l .~ ~ 

2.t::,y' . 
it i=l 1.1 Z 

(a+b)Sin(c)(% - ~) 

(1-8/1I")(a+b)cos(c).~ 

2 

~ tan(c) Z c 

Thus, the estimate of c is given by 

c' ~ S.27898~Y'r .cosG. -
i=l .~ ~ 

n 
0.63662L:Y' . 

i~l I.~ 

where 

and 

n. . (3 
,"",y I . s~n . 
~ .• 1 1 

i~l 

1/(1-8/lT') ~ S.27898 

2/lT ~ 0.63662 

(F.21) 

(F.22) 

(F.23) 

(F. 24) 

Similarly it can be shown that if the n {Y'
r 

.} are regularly spaced 
.~ 

over the interval 1T/2~().<3')r/2, then 
~ 

c' ~ S.27898f::Y'
r 

.cose. 
i=1 .1 1 

+ 0.63662f::y· . 
i~l I.~ 

~Y'r .sine. 
~ .1 l. 

i=l' 

(F.2S) 
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The different sign in Eq. (F.24) compared with Eq. (F.2S) is due to the fact 

that 

r "Ir/2 cose dO = 2 
)-11"/2 

as shown in Eqs.(F.6) and (F.7) 

AND ~ 
3,./2 

cose de = -2 
"n/2 
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APPENDIX G 

Retraining Algorithms 

G.1 Least-squares fitting of a straight line to a set. of n data points 

It is required to fit a straight line to a set of n sampled data points to 

give the "best" estimate of the slope of the line at any point. The best 

estimate here is the one with the lowest mean-square error. Two methods 

are considered theoretically in'this Sec.G.l. The first method minimizes 

the mean-square error between the· straight line and the data at the n 

sample points by the method of least squares. The second method attempts 

to minimize the mean-square error between the slope of the straight line 

and the slope of the data at the n sample points by the method of least 

squares. In both 'methods. the general exp~ession for the slope of the 

straight line can be simplified if the n points are equally spaced in 

time. 

Method 1 

The n sampled data points can be represented using Cartesian coordinates 

as 

(G.1 ) 

Where x, is the independent variable (which is time 
1 

in the retraining 

algor i thms) • Y .• for i=1.2 ••••• n is the measurement of y .• All the n 
1 1 

{y.} are assumed to lie on a straight line. Y. and y. are real-valued. 
1 1 1 

The principle of least-squares states that the best straight line 

approximation {y'.} to the n {y.} is that for which the sum of the squares 
1 1 

of the differences between the {Y.} and the {y'.} of the approximating 
1 1 

function is a minimum. That is, it is necessary to fit the straight line 

to the data such that 

~(Y'. 
i=l 1 

Y.)2 is a minimum 
1 

(G.2 ) 

(G. 3) 

The slope of the line y'(x) is al. a
1 

now defines the estimate of the 

slope of y(x). Now let 

R. = y'. - Y 
1. 1. i 

for i=1,2, ... ,n (G.4 ) 
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Therefore, 

t:(y' . 
i=l ~ 

(G.5 ) 

The aO' a
1 

must be chosen to make this equation [Ri' a minimum. From the 

methods of calculus, this is a mimimum (or maximum) when all the partial 

derivatives of LR.' with respect to both of the a.'s are zero. That is, 
~ J 

when 

i:R . • i=l ~ 
:::; 0 , for j=O,l 

= 2 [R1 ()R1 + R2~R2 + .... + R oR J = 0 for j=O,l (G. 6) 
n n 

oa
j 

oa j 
CIa. 

J 
But, from Eq. (G.4) 

oR. = 1 oR. = x. for i=1,2, ... /n (G.7 ) 
--~ ~ ~ 

CIaO oa 1 
So there are j=2 equations of partial derivatives (from Eqs.(G.6) and 

(G. 7) ) 

•• " + R = 0 
n 

+ •••• R x = 0 
n n 

n = ""x.Y. 
L.... ~ ~ 

i=l 

n • n y + a 1 L:x. = LX .. 
i=l.1 i=l.1.1 

(G. 8) 

(G. 9) 

So, Eq.(G.9) reduces to two simultaneous equations in the two unknowns aO' 

al' But it is only a
1

, the slope of the straight line that minimizes 

L(y' .-Y. )', that is required here. Therefore, solving Eq.(G.9) for a
1 ~ ~ 

gives 

~x.Y ( n )( n ) (G.10) a
1 

= 1 - 1 2::::Y. 1 ::C::X. 
i=l .1 l. -. .1 -. 1. 

n n ~=1 . n ~=1 

1 
n • -(If=xi)' L:;x. 

n i=l ~ n ~=1 

In practice, the {x.} would be known beforehand, so the terms Lx., Lx.' 
~ ~ ~ 

would not have to be calculated. For example, for the most likely case of 

equally spaced samples, the n values {x.} (for i=1,2, •••• n) can be 
. ~ 

arbitrarily be set to 1,2, •.. ,n giving 
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1 
n , (l BYi) (l a

1 
= L:1Y, -

n i=1 1 n i=l . n 

1 n '2 -(It>r L:;1 
n i=1 n 1=1 

a 1 = 0.0121212 fiYi 

i=1 

n ') f;i1 (G.l1) 

Eq.(G.I0) applies equally well when the n samples {x"y,} are not equally 
1 1 

spaced apart in x, • 
1 

Method 2 

Method 1 has given a straight line that minimizes the mean-square error 

between that line and the n sampled points. But a better measure of slope 

may be found from the straight line that miminizes the mean-square error 

between the slope of the line and the slope of the n sample points. 

Applying the principle of least squares, the straight line that satisfies 

this condition is the one for which the sum of the squares of the 

differences between the {Yi-Y
i

- l } and the {y'i-y 'i-l} is a minimum. That 

is" it is necessary to fit the straight line 

(G.l2) 

to the data such that 

n 
""'(y',-y', ) - (Y,-y, )]2 is a minimum t;2 1 1-1 1 1-1 

(G.l3) 

The slope of this line y', now defines the estimate of the slope of y,. 
1 1 

Note that i goes from 2 to n in the summation because Y
O 

does not exist. 

Now, let 

R, = (y', -y' , ) 
1. 1. 1.-1 (y, -Y, 'I) 

1 1-

= al(x,-x, 1) - (Y,-y, 1) 
1. 1- 1. 1-

for i=2, 3, ... ,n 

Therefore, 

n 
"'" ( (y' , -y , , ) 
~ l' 1-1 
1=2 

- (Y,-y, »2 = R12 + R22 + •••• + R 2 
1. 1-1 n 

n 
= L:::R, 2 

i=2 1 

(G.14) 

(G .15 ) 

This is a minimum (or maximum) when all the partial derivatives of LR,2 
1 

with respect to each of 

L 
ca, 

J 

i:R ,2 = 
i=2 1 

o [R 2 - 2 
<la , 

J 

the a .IS is zero. That is, 
J 

+ R3' + •••• + Rn'] = 0 , 

when 

for j=O,1 

= 2[R20R2 + 
(la, 

o , for j=O,1 

J 

(G.16) 



But, from Eq.(G.14) 

oR. = 0 
1 

oao 
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for i=2,3, .... ,n (G.1?) 

So now there is only one equation of partial derivatives (from (Eqs.(G.16) 

and (G.1?» 

(G.18) 

a o is undefined because only the slope is optimized. 

a
1

(x.-x. 1)-(Y.-Y. 1) (Eq.(G.14» gives 

Now, replacing R. by 
1 

~ 1.- 1. 1-

(G.19) 

Thus, the slope of the straight line that minimizes Eq.(G.13) is given by 

n 
a

1 
= ,"",(x.-x. 1)(Y.-Y. 1) 
~ 1. 1- 1. 1.-
1=2 

n 
'"' (x. -x. 1) 
~ 1. 1-

i=1 

(G.20) 

This is the general equation for any set of n sampled data points {x.,Y.}. 
1 1 

However, for the most common case of samples equally spaced in 

difference function 

Xi - x i - 1 
is constant for all i=2,3, ... ,n. In 

a l = d~(Y.-Y. 1) 
i=2 1. 1.-

(n-l)d 

n-1 

Therefore 

= d 

this case 

x. , 
1 

the 

(G.2l) 

(0.22) 

So, given a set of n sampled points {x.,Y.} equally spaced in the x 
1 1 

variable, Methods 1 and 2 (Eqs.(G.11) and (G.22) respectively) minimize 

the mean-square errors in the estimates of {Y.} and slope of {Y.} 
1 1 

respectively. Where Y. is a measure of y .• . But the important question 
1 1 

that still remains to be answered is:- Which method gives the lowest 

mean-square error in the estimate of the slope of {y.}? 
1 
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In the retraining algorithms in this thesis, the n samples are 

complex-valued and are generally assumed to be given by 

Where y. 
1 

Y. = 
1 

here is the 

y. + W. I 
1 1 

complex-valued 

for i=l,2, ... . ,n (G. 23) 

sample of the channel at time t=iT. 

The real and imaginary parts of the {y.} are independent of each other. 
1 

The real parts of the n samples 

as are the n imaginary parts. 

{y.} are assumed to vary linearly with i, 
1 

W, is 
1 

white Gaussian noise at time t=iT. 

a complex-valued sample of additive 

The real and imaginary parts of the 

{w.} are independent Gaussian random variables, each with zero mean and 
1 

variance cr' (see Appendix B). a
l 

in Eqs.(G.11) and (G.22) is now complex 

valued. 

In the absence of noise (that is, when Y.=y. for all {i}), both 
1 1 

measurements of slope would be the same and exact, when the n {y.} vary 
1 

linearly with i. However, in the presence of noise, Method 1 (Eq.(G.11» 

should surely give a better measure of the slope of {y.} than Method 2 
1 

(Eq.(G.22» because all n samples {Y.} are used in the calculation. Thus, 
1 

the effects of noise are averaged out more than in Method 2 where only the 

first and last samples are used, whatever the value of n. This is shown 

to be true below. 

For Method 1, the measure of slope is (from Eqs.(G.11) and (G.23» 

(G.24) a = 
1 

1 Zi<y.+w.) 
n i=l 1. 1. 

!. t:;i2 - (!. :t;i)' 
n i=l n i=l 

'~---------v----____ ~~ 
Exact slope of {Yi} 

- (!. i: (y i +wi ») (!. i» 
n1=1 .n1=1· 

+ 1 f:iY - (!. f:Y.)(!. Bi) 
n i=l 1 n i=l 1, n i=l 

(G.25) 

noise-error (1) 

For Method 2, the measure of slope is (from Eqs.(G.22) and (G.23» 

a 1 = (Yn+wn) - (Y1+w1) 

n - 1 

. 
Yn- Y1 

n-1 

Exact slope of {Yi} 

+ w -w 
n 1 
n-1 

noi se-er ror (2) 

(G.26) 

(G. 27 ) 
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The variances of the noise-errors (1) and (2) will show which method 

gives the best estimate of slope. The denominator of noise-error (2) is 

1 ti' 
n 

i=l 
Since [99] 

(n+1)( 2n+1) 

6 

= (n+1) (n-1) 

12 . 

1:. f::;i = n+1 (arithmetic progression) 
n i=l 2 

1 f:i 2 

n i=l 
= (0+1) (20+1) 

6 
(sum of a power series) 

Therefore, (from Eqs.(G.2S) and (G.28» 

noise-error (1) = 1 f:iw. -
n i=l l. 

(n+1)(n-1) 

12 

= 12~iWi - 6(n+1)~wi 
i=l i=l 

n(n+1} (n-1) 

(n+1 ) )w. 
l. 

n(n+1 )(n-1) 

(G.28) 

(G.29) 

(G.30) 

Thus, noise-error (1) is a complex-valued Gaussian random variable, whose 

real and imaginary parts have zero mean and variance [119] 

But, 

'V = 
1 

( 
6 )" n (2' - (n+1»"0" 

n(n+1) (n-1) ~ 1 

- (n+1»" = f:(4i' - 4i(n+1) '+(n+1)") 
i=l 

- 4(0+1)~i + (n+1)"~1 
i=l i=l 

(G.31) 

4n(n+1)(2n+1) - 4(n+1)n(n+1) + n(n+1)2 (from Eq.(G.29) 
6 2 

= n(n+1)(n-1) 
3 

Therefore, (from Eqs.(G.31) and (G.32» 

(G. 32) 
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Y'1 ~ (n(n+1~ (n 1))2 

~ 12 (1'2 

n(n+1)(n-1) 

n(n+1) (n-1) .(12 
3 

(G.33) 

Noise-error" (2) is a complex-valued Gaussian random process, whose 

real and imaginary parts have 
Y'. ~ 

2 

~ 

zero mean and 
(1' + 12) .0'2 

(n-l)2 

_.!:.2 __ .a2 

(n-1)2 

variance [l19J 

(G.34) 

Thus, the mean-square error in tne estimate of the slope of both the 

real and imaginary parts of· {Yi}' is Y'.1 for Method 1 and ~2 for Method 2. 

It is shown in Table G.1 that the greater the value of n, the greater the 

accuracy of both Methods and the greater the advantage of Method lover 

Method 2. (Though for n~2 or 3, the accuracy "of both methods is the 

same). The reduction of the mean-square error of Method 1 compared with 

Method 2 is expressed in decibels in the last column of Table G.1. In 

fact 

= 1010910 12/[n(n-1)(n+1)] 
2/(n-1)2 

= 1010910 6(n-1) 
n(n+1) 

for large n (G. 35) 

For the fading rate assumed in this thesis (Sec.2.2), the channel 

samples over the duration of the 12-symbol training signal lie on a smooth 

curve as shown in Fig.G.1(b). In this analysis they have been assumed to 

lie on a straight line as shown in Fig.G.1(a). Of course, if all the {Yi} 

did lie on a straight line, the estimate of slope would be equally 

accurate over the entire training signal. However, with the curved 

channel, the least squares straight line through the n~l2 raw estimates 

{y.}, runs almost parallel to the tangent to the curve in the middle of 
~ 

the retraining packet. So the estimate of the slope given by Eq.(G.11) or 

(G.22) is most accurate at the central point of the training sequence. 



Table G.1 Variation of "1 1 andV2 with n 

n 'V 1 x.1... 
2 

'V 2 x.1. 
2 

1010g 10"11 - 1010g 10 "12 dB 
(J (J 

2 2 2 0 

3 0.5 . 0.5 0 

4 0.2 0.2222 -0.46 

5 0.1 0.125 -0.97 

6 0.05714 0.08 -1.46 

7 0.03571 0.05555 -1.92 

8 0.02381 0.04082 -2.34 

9 0.01667 0.03125 -2.73 

1 0 0.01212 0.02469 -3.09 

1 1 0.009091 0.02 -3.42 

1 2 0.006993 0.01653 -3.74 

1 5 0.003571 0.01020 -4.56 

25 7.692x10 
-4 

0.003472 -6.55 
-5 -4 

50 9.604x10 8.33x10 -9.38 
-5 -4 

100 1.2x10 2.04x10 -12.30 
-8 -6 

500 9.6x10 8.032x10 -19.23 
-8 -6 

1000 1 .2x1 0 2.004x10 -22.23 



(b) 

Fig.G.1 Example of real or imaginary part of {y.j and its estimate 
I 

during retraining; (a) Assuming {y.j varies linearly with i 
I 

(b) Actual 

x 

= real or imaginary part of channel 

= raw estimate 

= least-squares straight line 
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G.2 Retraining Algorithms for System 2 

Methods (2), (3), and (4) described in Sec.4.5.3 for calculating the raw 

estimates of the two channels are considered here. They are based on 

methods first proposed by A.P.Clark for tracking fast fading channels 

[68,1231. For each Method, the equations are derived from first 

principles and the mean-square error in these raw estimates is derived. 

The baseband received sample at the input to the estimator during 

retraining is 

r, = sl 'Y1 ' + s2 'Y2 ' + w, , 
1. .1.1 .1..1. 1. 

for i=1,2, .... ,R (G.35) 

Where the R training symbols {sl ,}, {s2 ,} are kn'own at the receiver .. 
.. 1. .. 1. 

Here, the raw estimates of the complex-valued channel samples Yl " Y2 ' 
.. 1. .. 1. 

are denoted xl" x 2 ' respectively. Where, the samples {Yl ,}, {Y2 ,} 
.1. .1 .1 .1. 

are equally spaced in time, every T seconds. 

Method (2): aSlow Fading- Assumption 

The estimator assumes that 

AND Y2 ' = Y2 '-1 .1 .1 
(G.36) 

To estimate Y
l 

' it is necessary to remove Y
2 

' from the received sample 
.. ]. .. l. 

r,. This can be achieved by ,operating on the two received samples r" 
~ ~ 

r, 1. From Eq.(G.35) 
1.- -1 -1 

s2' r, = s2' sl 'Y1 ' + Y2 ' 
.1. 1. .1. .1..1. .l. 

-1 -1 
s2.i-1 r i - 1 = s2.i-1 sl.i-1Y1.i-l 

From which it follows that 

-1 
+ s2' w, 

.~ ~ 

-1 
+ Y2 • i - 1 + s2.i-1 wi _1 

-1 -1 -1 -1 
s2' r, - s2 ' 1 r, 1 = s2' sl 'Y1 ' - s2 '-1 sl '-lY1 '-1 .1 1. .1.- 1.- .1. .1.1. .1 .1 .1. 

+ Y2 ' - Y2 '-1 
.. 1. .. 1. 

-1 -1 
+ S2' w, - s2 ' 1 w, 1 

.1. 1. .1- 1-

Now, substituting Eq.(G.36) into (G.38) 
-1 -1 -1 

s2' r, - s2 ' 1 r, l' = (s2' sl'-
-1 

s2.i-1 sl.i-1)Y1 • i - 1 .1. 1. .1.- 1- .1.1. 

-1 -1 
+ s2' w, - s2 ' 1 w, 1 

.1 1. .1.- 1-

An unbiased estimate of Y
1 

' is now given 
• ~ -1 

by 

Xl ' = a 1 , P1' 
.1 .1. .1. 

where 
-1 -1 

a 1 • i = s2.i sl.i - s2.i-1 sl.i-1 
and 

P1 ' 
.~ 

From Eqs.(G.39)-(G.42) 

-1 
a

1
, u

1
, is the 

.. 1. .. 1. 

-1 
Xl ' = Y1 ' + a 1 , u1 , 

.1 .1. .1 .1 

error in x, caused by the additive noise, where 
~ 

-1 
u . = s . w. - s . -1 
1.~ 2.~'~ :2.~-1 wi - 1 

(G. 37) 

(G.38) 

(G. 39) 

(G.40) 

(G.41) 

(G.42) 

(G.43) 
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For the minimum mean-square error in x I •
i

' la1.il must be maximized, which 

means that 
-1 -1 

s2.i-l sl.i-l = -s2· sl· 
• ~ .1. 

so that 

-1 -1 

-1 
a l . = 2s2· sl· 

.1. .1. .1. 
(G.44) 

Since sl· and s2 . are t(±l±j), the maximum value of occurs 
.1. .1 

when 

a
1 

. = ±2 or ±2j (G.45) 
.1 

The real and imaginary parts of the complex-valued noise components 

{w.}={Wr .+jw
Q 

.} are statistically independent Gaussian random variables 
1. • 1. • l. 

with zero mean and variance 0 2 (Eq.(2.4.8». SO 

S2 .-lw. = t(±wr .±w
Q 

.) + jt(±wr .±w
Q 

.) (G.46) 
.1 1. .1.1. _1.1..l. 

The real and imaginary parts of the {s2. w.} are statistically 
.1 1 

independent Gaussian random variables with zero mean ·and variance (l19J, 

(G.47) 

(independent of the values (±l±j) of the data symbols s2.i-l' s2.i). So, 
-1 

the mean-square value of al. u
l

. is (l19J 
.1. • 1. 

2(t 2 + t2)(t02) = t02 (G.48) 
-1 

which is twice the variance of the real or imaginary parts of al· u
1 

.• 
• 1. .1. 

Now, because Eq.(G.36) is only approximately true, the general 

expression for x, is 
1 -1 

xl . = Yl . + al· u l · +·C l . 
• 1. .1. .1. .1. .1. 

Where Cl . is the error in Xl . caused by the curvature in the channel 
.1. .1. 

Yl . (see Fig.G.l(b». Clearly, Cl .=0 if Eq.(G.36) holds true • 
• 1. • l. 

The estimate of Y2 . is determined in a similar manner • 
• 1 

Method (3):"Fast Fading" Assumption 

The estimator assumes that 

Yl.i+l - Yl.i = Yl.i - Y1 • i - 1 
so that 

AND 

AND 

= Y2 . - Y2 ·-1 
.1. .1. 

2Y 2 . = Y2 ·-1 + Y2 ·+1 
.1. .1. .1 

(G.49) 

(G. 50) 

To estimate Y
l 

. 
.1 

it is necessary to remove Y2 . from the received sample 
.1 

r .• 
1 

This can be achieved by operating on the three received samples r
i

-
l

, 

ri' r i +1 • From Eq.(G.35) 
-1 -1 

2s2' r. = 25 2 . SI .Yl . + 2Y2 . 
.1. 1. .1. .1..1 .l. 

-1 
+.2s2. w . 

• 1 1 

-1 -1 
s2.i-l r i - l = 2s2.i_l sl.i-lYl.i-l + 2Y2.i~1 

-1 
+ 2s2.i_l wi - 1 

-1 -1 
s2.i+l r i +l = 2s2.i+l sl.i+1Yl.i+l + 2Y 2 • i +l 

from ·which it follows that 

-1 
+ 2s2.i+l wi + l 

(G. 51 ) 
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-1 -1 -1 
2s2' r, - s2 '-1 r'_l - s2 '+1 r'+l 

.1 1 _11 1 .1 -1 1 -1 
= 2s 2 , sl 'Yl ' - s2 '-1 sl '-lYl' '-1 .1 .1.1 .1 .. 1 .1 - s2.i+l sl.i+1Yl.i+l 

+ 2Y 2 ' - Y2 '-1 - Y2 '+1 
.1_1 .1 _1 1 -1 

+ 2s 2 • i wi - s2.i-l wi - 1 - s2.i+l wi +1 (G.52) 

Now, substituting Eq.(G.50) into Eq.(G.52), under the additional condition 

that 

gives 

-1 
s2.i-l sl.i-l 

-1 
= s2.i+l sl.i+l 

-1 -1 -1 
2s2 • i r i - s2.i-l r i - 1 - s2.i+l ri+l 

-1 
= s2' Sl' .1 .1 

-1 -1 -1 -1 
= 4s2 • i sl.iYl.i + 2s 2 • i wi - s2.i-l wi - l - s2.i+l wi +1 

An unbiased estimate of Y
l 

' is now given by 
.1 -1 

where 

and 

xl ' = a 1 , Pl' 
.1 .1 .1 

-1 
a l ' = 2s2' Sl' 

.1 .1 .1 

-1 -1 
- s2.i-l sl.i-l - s2.i+l sl.i+l 

-1 
= 45 2 , Sl' 

.1 .1 

-1 
Pl ' = 2s2' r, 

.1 .1. l. 

-1 
- s2.i-l 

From Eqs.(G.54)-(G.57) 

(G.53) 

(G.54) 

(G.55) 

(G.56) 

(G. 57) 

-1 
x 1 •

1
' = Y1 ' + aI' u 1 ' (G.5B) 

-1 .1 .1 .1 

a
l

, u
1

' is the error in Xl ' caused by the additive noise, where 
.1.1 _1.1 -1 -1 

u l ' = 2s 2 , w, - s2 ' 1 w, 1 - s2 ' 1 w, 1 (G.59) .1 .1.1 .1- 1- .1+ 1+ 

Now, because Eq. (G.49) is only approximately true, the general ,expression 

for Xl ' is 
.1 

-1 
Xl ' = Y1 ' + aI' u 1 ' + Cl ' 

.1 .1 .1 .1 .1 
(G.60) 

Where Cl ' is the error 
.1 

in Xl ' caused by the curvature in the channel 
.1 

Y
l 

' (see Fig.G.l(b» • 
• 1 

Clearly, Cl ,=0 if Eq.(G.36) holds true. 
.1 

NOW, 

a
1 

' = ±4 or ±4j 
.1 -1 

and (from Eq.(G.47», the mean-square value of a
l

, u
l

' is 
.. 1 .. 1 

2(!' + i' + i')(to') = 20' 
B 

[119 J 

which is twice the variance of the real and imaginary parts of 
-1 

aI' Ul '· .1 .1 

The estimate of Y2 . is determined in a similar manner . 
• 1 

Method (4): "Very Fast Fading" Assumption 

The estimator assumes that 

(Yl '+l-Yl ,) - (Y 1 '-Y1 '-I) 
.1 .1 .1.1 

(G .61) 

(G. 62) 
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AND 

(Y2.i+l-Y2.i) - (Y2.i-Y2.i-l) = (Y2.i-Y2.i-l) - (Y2.i-l-Y2.i-2) (G.63) 

so that 

AND 

3Yl • i = Yl • i +l + 3Yl • i - l - Yl • i - 2 

3Y2 • i = Y2 • i +l + 3Y2 • i - l - Y2 • i - 2 
The estimator now operates with four received samples. From 

(G.64) 

Eq.(G.35) 
-1 -1 -1 

3s 2 · r. = 3s
2

. sI 'Y
l 

. + 3Y
2 

. + 3s 2 . W . 
• 1 1. .1. .1.1. .1. .1. l. 

. -1 = -1 + + 
s2.i+l r i +l s2.i+l sl.i+lYl.i+l Y2 • i + l 

-1 -1 
3s 2 • i _l r i - l = 3s 2 • i _ l sl.i-lYl.i-l + 3Y2 . i - l 

-1 -1 
s2.i-2 r i - 2 = s2.i-2 sl.i-2Yl.i-2 + Y2 • i - 2 + 

So that, from Eqs.(G.64), (G.65) and the 

-1 
s2 . 1 w . . ~+ ~+l 

-1 
+ 3s 2 . 1 w. 1 .1.- 1-

-1 
s2.i-2 wi _2 

(G.65) 

-1 -1 
s2.i-2 sl.i-2 = s2.i-1 sl.i-l = 

It follows that 

additional 
-1 

-s2. i +1 sI. i +1 

assumption that 
-1 

= -s2' sI' (G.66) 
.. 1. .. 1. 

-1 -1 
3s 2 • i r i - s2.i+l r i +l -

-1 -1 
3s 2 • i _l r i _l + s2.i-2 r i - 2 

-1 
= 85 2 , SI 'Yl . + 

.1. .1..1 

-1 -1 
3s 2 · w. - s2 . l: w. 1 

.1 1. .l.~ 1+ -1 
- 3S 2 . 1 w. 1 - s2 . 2 w. 2 .1- 1.- .1.- 1-

An unbiased estimate of Y
l 

. . ~ is now given by 
-1 

where 

Xl . = 
.~ al' PI' .1. .1. 

(G.67) 

(G.68) 

a
1 

. 
.1 

-1 
= 3s 2 · Sl'-

.1 .l. 

-1 • -1 -1 
s2.i+l s1.·i+l - 3s 2 • i _l s1.i-1 + s2.i-2 s1.i-2 

= 

and 

-1 
8s 2 · sI' .. 1. .. 1. 

-1 -1 -1 -1 
P1.i = 3s 2 • i r i - s2.i+l r i +1 - 3s 2 • i _l r i - l + s2.i-2 sl.i-2 

Now, the general expression for 

Xl . = Yl . + 
.. 1. .. 1 

Xl . is 
.1_

1 
al' ul · .. 1 .. 1. 

+ Cl . 
.1 

(G.69) 

(G.70) 

(G.71) 

Where Cl . is 
.1 

Fig.G.lCb». 

the error in Xl . 
.1 

caused by the curvature in {y } (see _l:.i 
Clearly, Cl .=0 if Eq.(G.63) holds true. al' u l · is the 

.~ .1 .1 

error in Xl . caused 
.~ -1 

by the additive noise, where 
-1 -1 -1 

u
l 

. 
.~ 

= 3s
2

. W. 
.1 ~ 

- S2.i+l wi + l - 3s 2 • i _l wi - l + s2 . 2 w. 2 .1- 1-

Now, 

and (from 

- +8 +8 . 
-1 

Eq.(G.47», the mean-square value of a
l

•
i 

u
l

•
i 

is 

2~~y + (~y + (~y + (~yy!cr2) = i6cr2 

a
l 

. - - or - J 
.1 

[119 J 

which is' twice the variance of the real and imaginary parts of 
-1 

al' u l ·• .. 1. .. l. 

The estimate of Y
2 

. is determined in a similar manner . 
• 1 

(G.72) 

(G.73) 

(G.74) 
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However, if the data values si-2' si_1' si' si+1 are chosen to satisfy 

Eq.(G.61) for the estimate xl.' then Eq.(G.61) cannot be satisfied by 
.1 

Si_I' si' si+l' si+2 for the next estimate x1 • i + 1 • 

impossible to get a good estimate of both Y1 . and 
.1 

method. This was not the case for Methods (2) and 

Therefore, it is 

Y1.i+1 
( 3) • 

with this 
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APPENDIX H 

Computer, Programs 

MREC.FORTRAN:- Program:to set up the main parameters for the subroutine 

SREC.FORTRAN. (The other relevant ,subroutines are SFADE.FORTRAN, 

SBBCHAN. FORTRAN , SBEQP.FORTRAN and SBEQA.FORTRAN. 

SREC.FORTRAN:- Subroutine to perform all the receiver functions 

SFADE. FORTRAN: - Subroutine to generate the flat Rayleigh fading, {y. } • 
1 

SBBCHAN.FORTRAN:- Subroutine to generate the {s.}, {w.}, interpolate 
1 1 

the {y.} and calculate the '{r.}. 
1 1 

SBEQP.FORTRAN:- Subroutine to calculate the bit error rate in the QPSK 

signal. 

SBEQA.FORTRAN:- Subroutine to calculate the bit error rate in the 

16-point QAM signal. 

RC_SAMP2.FORTRAN:- Program to generate the tap gains of the root

raised cosine filters and output them to the files rc_s4/rc_s8. These 

tap gains are used in the subroutine SBBCHAN.FORTRAN. 

INTERPOLATE_RC.FORTRAN:- Program to generate the interpolating matrix 

"a", which is output to the files interalO/intera20/intera40. This 

matrix is used in the subroutine SBBCHAN.FORTRAN. 

SIM2.FORTRAN:- Program to generate the noise shaping filter and output 

it to the file omvermon80. This filter is used in the subroutine 

SFADE.FORTRAN. 

MESTIMPRED.FORTRAN:- Program to generate all the estimation / prediction 

error curves, except for the Kalman estimator. (The relevant subroutines 

are SFADE.FORTRAN and SBBCHAN.FORTRAN). 

KALMEST.FORTRAN:- Program to generate the estimation error curves for the 

Kalman estimator. (The relevant subroutines are SFADE.FORTRAN and 

SBBCHAN.FORTRAN). 

SINEWAVE.FORTRAN:- Program to test the sinewave estimation scheme. 

EQUALIZER2.FORTRAN:- Program to test the equalizer. 



•••••••••••••••• 
• MREC.FORTRAN • 
•••••••••••••••• 

c ..•. ~ 1 ............ 20 ........ 30 ..•..... 40 ........ 50 ........ 60 ..•..... 10. 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 

proeram mrec 
init.ialise 
•••••••••• 

character.9 modsch 
integer islnum,ianum, isampl,ipacl,lmetes,imetb,iordp 
double precision snrdb, btemp, theta 
••• modulation scheme 1s modsch=QPSK or 16-pt QAM 
••• no. of sianalts) is islnum=1 or 2 
".no. or ant.enne(el is ianum=l or 2 
"'packet lenath Is ipac}:??? symbols 
"'no. of samples (symbolsl is isampJ-???2.ivlen 
",SNR ia anrdb=???? dB 
"'ESTIMATlON tr imetes=-O unbiased estimator 
... ir Imetes=1 Gradient. Ale. ",it-hout reedback 
... tr imetes=2 Gradient Ale:. ",tt.h feedback 
••• ir imetb=1 variable b In Gradient Ale. btemp/(sl •• 2J 
••• else imetb=O constant b In Gradient AIQ. b=btemp 
••• In Gradient estimator, bt.emp=??? 
••• PREDICTION :- if iordp=-1 no prediction 
••• else deeree or predictor:: iordp 
••• in fad. memo poly. predictor, theta=??? 
modsch='QPSK' 
isinum"1 
{anum= 1 
ipacl=120 
isampl=24000.2.ipacl 
snrdb=20.0dO 

imetes a2 
lmetb=O 

btemp=0.2dO 
lordp"1 

theta=0.7dO 

Print','modsch=' ,modsch,' isinum=' ,isinum,' lanum:' ,ianum 
Print." lsamp}::' ,leampl,' ipacl=' ,ipsc} 
Pr 1 nt •• 'snrdb"" ,snrdb 
Print','imetes::' ,imetes,' imetb'" ,imetb,' btemp"" ,btemp 
Print.,'iordpE',iordp;' theta'",theta 
Print','SUBROUTINE erec' 
call sreC(mOdsch,isinum,ianum,isampl,ipacl,snrdb. 

• imetes,imetb,bt.emp,iordp,thetal 
Print','RETURNED srec' 

stop 
end 

••••••••••••••••• 
• Sf(EC. FORTRAN ' • 
~.* ••••••••••••• 

c ...•. 1 •........... 20 •..•.... 30 ......•• 40 ........ 50 ........ 60 ..... '.' .70. 

c 
c 

8ubrout.ine sreclmodsch,isinum.ianum,isampl,ipacl ,snrdb, 
• Imet.es.imet.b.btemp,iordp,thetal 

initial ise 
•••••••••• 

rx(O:60000,2I, rytO:60000,21 
sxtO:60000,2), sy10:60000,21 
xtO:60000,2,21, y(O:60000.2,21 

double precision 
double precision 
double precision 
inteller imetrt 
Inteeer timfn 
double precision 
double precision 
double precision 
double precision 
double precision 
double precision 
double precision 
inteQer ishift 
inteller mm, mddmin 

ssy(2l, srx{2l, sry(21 
xrtOIO.:l1,2,2I, yrtOtO:11,2,2) 
absavet21, acorab(2) 
xrtave(2,2l, yrtavet2,21 
xrtcort2,2', yrtcor(2,2) 
xrtmO(2,2l, yrtmOt2,21 
mldO, mld9. mld27, mld16, mlmint21 

double precision rxposI0:15,2), rypos{0:lS,2) 
double precision dd10:1SI, ddmin 
double precision SXPOBIO:15.2), syposI0:15,2) 
integer i meteD 
double precision 
double precision 
double precision 
inteller iperre 

mrx, mry, ymaa, sdymae, ied 
sxdet10:60000,21, 5ydet.tO:60000,21 
cq{4l,cq1tot. CPI~.~I, cpmin 

double precision qxl~,-120:-1,2I, qYI~,-120:-1,2) 
double precision qxold(~,-120:-2,2), qyold(4,-120:-2,2) 
inteeer ist.or, iqrrom(4,-120:-1) 
double precision px14,4,2), py(4,4,2) 
inteQer isampl. ispsym. kddmin, ibitelO:21, ihit.clO:21 
inteeer i. J, k. I, m 
inteeer 11, jj. iicmin, jcmin, jjmin{~l, jmin(41 
inteeer ivnum, lvlen. istart 
int.eeer ipacl. irtsym 
double precision rxest, ryest 
double precision ex. ey 
double precision b, btemp 
double precision xestI4,2.21. yest(4,2,21 
double precision xet.em(4,-120:-1,2,2I, yetemt4,-120:-1,2,21 
double precision xeoldt4,-120:-1.2,2', yeoldltl,-120:-1,2,21 
double precision xeplol-120:60000,2,2I, yeplot-120:60000,2,2) 
fnteeer iperfd. imetes, imetb 
double precision theta, th" th2, th3, th4, th5 
double precision ezx, ezy 
double precision z2x14,2.21, z2yt4,2,21 
double precision zlxt4,2,2l, Zly14,2,2) 
double precision zlxol t4.2.2I,Zlyol(4,2,21 
double precision z2xolt4,2,2l,z2yol (4,2,21 
double precision xpred(4,2,2l, ypred(4,2,21 
double precision xptemI4,-11~:O,2,2), yptem(4,-119:0,2,21 
double precision ·xpoldI4,-119:0,2,2I, ypold(4,-119:0,2,21 
double precision xpplot-119:60000,2,2I, ypplot-119:60000.2,2) 
i nteller iordp 
i nteeer j ef 
i nt.eaer i met.de 



c 
c 

c 
c 
c 

c 

c 
c 

c 
c 
c 
c 

c 

c 
c 

c 
c 

c 
c 

double precision snrdb 
I nteller Inter 
int.eeer lant, lanum 
{nteller iabbe 
character*9 modsch 
double precision avar 

••• print parameters read in from main proeram 
Print*,'modsch'" ,modsch,' Isinum~' ,isinum,' 
Print.,' isampl:' ,isampl,' ipae1:' ,ipael 
Pr lot •• ' snrdb=' • snrdb 
Pr 10t-.· i metes'" • 1 metes •• 
Print.,' lordp:' ,iordp,' 

imet.b=',imetb,' 
theta'" • thet.a 

lanum'" ,ianum 

btemp=' • btemp 

••• svar is the averaee transmitted energy per bit, 
••• needed In calen. of noise variance 
if Imodsch.eq.' QPSK') then 

9var=1.0dO 
elseiflrnodsch.eq.' 16-pt. QAM') then 

svar=2.SdO 
else 

PRINT*,'HODULATION SCHEME NOT AVAILABLE' 
stop 
endif 

••• set b::btemp, (thoueh if lmetb=1 then b=btemp/(si ).*21 
b=btemp , 
ivlen=l*lpacl 
if (lvlen.eq. 1 I then 

iatart.=120 
Pr i nt*,' Gl ve pred i ct.ors ',i st.art,' symbol s to start.-up· 
else 

istart"ivlen 
Print •• •· Give predictors one packet to start.-up' 
endif 
* •• if iobbc=O then read in s.r.y 
"'else run subrout.ine sbbchan 
iobbc=1 
••• for no retraining set Imetrt=O 
"'for ideal retraining set imetrt=1 

arrays from stored files 

••• for slope ret.rainine:- by best. straight line ·set. imet.rt=3 
',.for slope ret.ralnlna:- subt.ractlng one from other set. imetrt=2 
imet.rt=3 
••• Assume 101. rctraininc. unless no retraining 
if timet.rt.eq.O) t.hen 

irt.sym"O 
else 

irtsym = tpacl/IO 
endif 
••• isampl must. be a whole number of packets for more correct. 
••• bit error measurement.s 
if Imodlisampl,ipacl).ne. 0) then 

PRINT.,' tsampl Is NOT a whole number of packet.s' 
stop 
endif 

••• assume fading is generated at 600 sampleB per sec. 
••• this must be interpolat.ed t.o give inter'600 samples per sec. 
inter=20 
i spaym= 1 
•• -if fixed delay In detection t.hen imetde c l 
••• else if ~etect each paCket as a block I.e. stRrt from 

c 
c 
c 
c 
c 
c 

c 

c 
c 

c 

'" one vect.or after retraining then imetde=2 
' •• If imetsv=1 then store/swap q vectors around according to 
••• ·Adrian's method. 
••• elsel" imetsv=2 then trace back alone vectors to detect each 
••• packet in one go during retraining. 
' •• IIf no retraining then imetsv HUST E 1. and imet.de MlIST=l) 
if (imetrt.eq. 01 then 

imetsv=1 
Print.., 'store/swap vectors around according to ceneral method' 
imetde=1 
Prin~ •• 'rixed delay tn det.ection· 
else 

imetsv=2 
Print*,'trace back along vectors durine ret.raining for detection' 
imet.de=2 
Print','detect each packet aa a block, starting from one vector' 
Print.,' after retraining' 
endif 

' •• if output.lng error flIes then lef=1 (else lef=OI 
ief=O 
.*.if plotting channel est l pred ~aveforms t.hen iiplot:ivlen 
••• else set liplot=2 
iiplot.=2 
' •• PRINT system constants for t.his run 
PRINT', lanum.' ANTENNAE' 
PRINTII-,tsinum,' ',modsch,' SIGNALtS)' 
if timet.es.eq. 01 then 

PRINT*,'Unbiased estimator' 
if lisinum.gt.. 1 I t.hen 

PRINT_, 'CANNOT do unbiased estimation for 2 signals in channeJ' 
st.op 

endif 
elseiflimetes.eq.11 t.hen 

PRINT','NO feedback from predictor to estimator' 
elseiflimet.es.eq.21 then 

PRINT','USE feedback from predictor to est.imat.or' 
endif 

If limetes.ee. 1) then 
if (imetb.eq. 11 then 

PRINT*,' Gradient Estimator variable b= ',b,'![sj •• 21· 
else 

PRINT',' Gradient Estimator constant b= ',b 
endif 
endif 

if tiordp.eq. -11 t.hen 
PRINT','No Prediction' 
else 

PRINT','LSFH Predictor .... order= ',iordp,' t.heta:' ,t.heta 
endif 

PRINT*,'vector length" ',ivlen 
PRINT',' Packet Leneth" ',ipacl 
if (imet.rt.eq.O) then 

PRINT',' NO retraining' 
eIselfllmetrt.eq.1) t.hen 

PRINT-,' IDEAL retraining' 
PRl NT',' 107. retra i nine t.herefore '.1 rtsym,' ret.ra 1 n i nR symbol s' 
else 

PRINT-,' Retraining met.hod ',imetrt 
PRINT',' 107. retraining therefore ',irtsym,' ret.rainine symbols' 

endil' 



c 
c 

c 

PRINT*,' Isampl= ',isampl 
PRINTIt,'lnter:',inter 
Printlt,ispsym,' samplets) per symbol' 
PIHNTIt,'SNR: ',snrdb,' dB' 

if tiiplot.eq.ivlenl then 
Prlntlt,'channel est and pred flies are output' 
else 

Printlt,'channel est and pred files are not output' 
endir 

If lief.eq. 1) Printlt,'error files are output' 
if tlmetde.eq.,) then 

Printlt,' imetdee ',Imetde,' i.e. fixed delay In detection' 
elseiftimetde.eq.2) then 

Printlt,' Imetde= ',imetde,' Le. block detection' 
endif 
If limetsv.eq. 1) then 

Printlt,' Update vectors ",ith each symbol' 
elseiftimetsv.eq. 2) then 

Printlt,' Detect symbols by traclne hack alone full vector' 
else 

PRINTIt,' Imetsv .. error' 
stop 
endlf 

Itltltread In files of signal, channel, received sienal 
If tlobbc .eq. 0) then 

Print.,'READ IN FILES' 
openlunit=?, flle:'sxlo', form-'formatted' 
openlunit=8, file='sylo', form='formatted' 
openlunlt-9, rlle"'xio', rorm~'rormatted' 1 
openlunlt=10. rile='yio'. form='rormatted') 
read{?,.) I (sxll,isle), i:O,isampl ,I I, Isle-1,lslnum,1 
read(B,.) (lsYII,isle), i=O,isampl,l), isi~=I,isinum,l) 
readl9,1t) II (Xli,isle,iantl, i=O,isampl,1 I, isle:l ,isinum,l), 

It iant=I,lanum,11 
readIlO,') IIIYIi,isie,ia'ntJ, i:O,isampl,II, islQ'=1,isinum,l l, 

• iant:l,ianum,l) 
closet?) 
close(8) 
close(9) 
close I 10) 
opentunlt:l" flle:'rxio', form='formatted') 
openCunit=12, file='ry!o', form='rormatted') 
read{l',.) ICrxCi ,ianLl, i:O,isampl ,1 I, {antel ,lanum,l I 
readI12,.) (tryl! ,ianL), i=O,isampl,1 1, iant~1 ,ianum,l) 
closet11 ) 
close(12) 

eJse 
Prlnt.,'SUBROUTINE sbbchan' 
call sbbchanlisampl ,ipacl ,irtsym,inter,snrdb, 

• modsch,svar. isinum,ianum,rx ,ry,sx .sy,x,y J 
Printlt, 'RETURNED sbbchan' 

endif 
do 9991 iant:1, ianum,l 
Print 
ifliant.eq.ll then 
Printlt,'ANTENNA a' 
end1f 
1'"liant.eQ.2) then 

c 
c 
c 

c 

c 

c 
c 

c 
c 

c 
c 

c 

9001 
9995 

9002 
9993 
9991 

Print., 'ANTENNA b' 
endif 
Print.,' i rx ry sx sy 

do 9993 1~1 ,isampl ,I 
If tt.eq. 3) i=isampl-1 
do 9995 isls:=1,isinum,1 

Prlnt.,'SIGNAL ',isle 
Print 9001 ,i,sxli,isi~),9yti ,isie), 
formatl16, 12x, 2f9.1, 2fI2.q) 

continue 
Print 9002, rxti ,iantl, ryli,lant) 
format(10x. 2f9.q) 
continue 

continue 

x y' 

x t i, isle, iant) ,yt i, isill. iant) 

••• do for feedine "Detected" data symbols and "correct" data 
••• symbols into estimator 
do 4 iperfd=O,O,1 
Print 
Print.,'--------------------------------------------' 

if tiperfd.eq. 01 then 
PRINT*, 'DETECTED data symbols fed back into estimator' 
else 

PRINT.,'CORRECT data symbols fed back into eSLimator 
endif 

.**do for actual estimation and perfect est. 
do 1 iperfe=O,I,1 
Print 
Prlnt*,'-------------------------------------------' 
If (iperfe.eq. 01 then 

PRINT.,' Actual estimation' 
else 

PRINT*,' assume perfect estimation' 
endlf 

.*.do for 2 and 3 vectors 
do 2 tVRum=1,4,3 
Print 
Print.,'-----------------------------------' 
if livnum.eq. 3) ivnum"4 
if (iperfd.eq. 11 ivnum=1 
* •• i.e. cannot have more than one vector If all detected 
**. symbols are assumed correct 
if tiperfe.eq. 1) ivnum=1 
••• i.e. no advantaQ'e of Viterbl detector over Maxm. Like. 
••• for perfect estimation. 
PRINT*,ivnum,' vectors in the Vlterbi detector' 
••• do for actual combining(1) or maximal ratio comblninCl21 
••• or selection diversity combininel3) 
do 3 imetco:I,I,1 
Print 
Print.,'--------------------------' 

If Illmetco.ge. 21.and.lislnum.ne. 1) then 
PRINT., 'CANNOT do this combininQ' with' ,iHinum,' sianals' 
stop 

endif 
If limetco.eq. 1) PRINT.,'ACTUAL combinina method' ,Imetco 
If tlmetco.eq. 2) PRINT.,'Haximal Ratio combinin~ • 
If timetco.eq. 3) PRINT*,'Selectton diversity combininQ" 
••• do for 2 different retrainine methods 
do 3 imetrt"I.3,2 



c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 
c 
c 
c 

if tiperfe.eq. 1) imetrt:J 
if lianum.eq. 1} then 

if (snrdb.le. 35.0dO).and.liordp.eq. 1 I) then 
bt.empEQ .155dO 
thet.a::.O.6dO 

elseif((snrdb.Rt. lO.OdDl,and. isnrdb.le. 20.0dO) 
.C c . and. I i ordp. eq. 1) I then 

bt.emp",Q.,6dO 
theta=O.6qdO 

elseifllsnrdb.Kt. 20.0dDI.and.lsnrdb.le. 3D.OdOI 
*C c .and.liordp.eq.l»)t.hen 

bternp:O.16dO 
theta"O.525dO 

elseifC(snrdb.et. )5.0dOl.and.(iordp.eq. 1) then 
btemp=O.21dO 
theta=O.l.fdO 

elseif(lsnrdb.le. lO.OdDI.and.liordp.eq. 21) then 
theta"O.92dO 

elseif((snrdb.~t. lD.OdDI.and.lsnrdb.le. 20.0dO) 
• .and.ltordp.eq. 21) then 

theta=O.BBdO 
elseif( (snrdb.Qt. 20.0dDI.and. (snrdb.le. 3D.OdO) 

• .and.(iordp.eq. 21) then 
theta"O.8I.fdO 

elseif(lsnrdb.e~. 30.0dOI.and. tiordp.eq. 211 ~hen 
~he~a"'O.BOdO 

else 
PRINT_. I EH! ~: I 

stop 
endir 

else 
••• I.e. lanum=2 

if I~mrdb.le. lO.OdO) then 
btemp=O.lqdO 
the~a=0.72dO 

else 
b~emp=O.lSdO 

theta-0.62SdO 
endif 

endif 
••• ianum endif!! 
b"btemp 

Print.,'---------------' 
PRINT','lordp"'.iordp,' the~a=',~heta.' b:obtemp",'.b 
PRINT',' Ime~r~"', ime~r~ 
if limetrt.eq. I) ~hen 

PRINT',' ideal re~ralninu' 
elself(lmetr~.eq. 3) then 

PRINT','slope re~rainlnQ, least-squ. st. line fit' 
endif 

••• SHOULD NOT NEED TO ALTER ANY PARAMETERS PAST THIS POINT 

••• set up all the possible sienal points 
••• dependinu on modulation scheme AND no. of siunals 
if IImodsch.eq.'QPSK'l.and.lisinum.eq. III then 
kmax"3 

m=O 
no 202 1=-I,tl,2 

do 202 J"'-1,+I,2 
sxposlm.l) dbleli) 
sypostm.1) " dbleljl 

ma m .. 1 
202 con~lnue 

eiseir «modsch.eq. 'QPSK' I.and. lisinum.eq.2 I I ~hen 
kmax"15 

moO 
do 203 1=-1.+1.2 
do 203 j,.-1,+l,2 
do 203 k=-I,"',2 
do 203 1=-1.+1.2 

sxpostm,11 dblelil 
syposlm,l I dbletjl 
sxposlm,21 dblelk) 
syposlm,21 dblell I 

m"rn+l 
203 con~inue 

elseir(lmodsch.eq.'16-p~ QAM' ).and.liBinum.eq.11) then 
kmax=IS 

moO 
do 206 i=-3,+3,2 
do 206 j=-3,+3,2 

sxpos{m.l )",dbleCl) 
syposlm,l )=dbleIJ) 

m=mtl 
206 continue 

else 
PRINT',' NOT POSSIBLE' 
s~op 

endif 
c ••• AII ~h~~nel est/predns at ~:O are assumed unknown 

do 199 ian~=I,lanum.l 
do 199 isig:l,isinum,1 
do 199 i1=I,ivnum,1 
xe9~tii,isiR.1an~1 = O.OdO 
yestlli,isiil.ian~1 " O.OdO 
zlxlii,lsie,iant)=O.OdO 
Zlylii ,isig,iantl=O.OdO 
z2xlii,islg.1an~)=0.OdO 
z2yll1 ,lsig,ian~)=O.OdO 
xpredtii ,islg,ian~)=O.OdO 
ypredlli,lsia,iantl=O.OdO 

199 con~inue 
c "'calcula~e ~he~a cons~an~s once and for all 

c 

c 

c 
c 

~hl 1'.0dO - theta)'(1.0dO theta) 
th2 1.0dO - theta.theta 
th3 O.5dO'll.0dO - ~heta).-3 

th~ 1.5dO_(1.0dO - the~al.tl.0dO - the~al'II.OdO ... ~het.al 

~h5 1 .0dO - the~a •• 3 

Prlnt_.'OETECTOR - ESTIMATOR - PREDICTOR - (RETRAININGI' 
do 111 1=1, I sampl ,1 

If (1 .It. is~art) ~hen 
.•. DETECTOR 
••• assume perfect detection at beginnlne of packet 
do 29B Islg=1,isinum,l 
sxde~(t.i91el sxll,isie) 
sydetli,lsta) '" syli ,Isie} 



298 continue 
If (ivlen.ne. 1) then 

c ••• set up q vectors 
do 293 isie::1,istnum,1 
do 293 il=I,lvnum,1 
qx<ii,i-ivlen,isilzl = sxdetli,isig) 
qylii ,i-ivien.isie) = sydetli .Isle) 
iqfromlii,i-ivlen) : it 

293 continue 
endif 

c ••• set up vector components qCil ,-I ,ialQ) 
'c ••• for use In the estimator 
c .uSlnce sdet(i) used in the estimator is qlii,-I,isiQ'1 

do 215 Isle:1,fsinum.l 
.do 215 ii=l,lvnum,1 

qx{ii,-I,isliiP sxdet!i,isig) 
qy(ii ,-I ,isie> :: sydet(i,lsie) 

215 continue 
c ••• set up costs of q vectors 

if (I .eq."(istart-l)) then 
cq(I);O.OdO 
do 216 11::2,ivnum,1 
cq I I i) " I. OdS 

216 continue 
endif 

if (ivlen.ne. 1) then 
c ... ESTIMATOR and PREDICTOR vector Initlalizations 

do 217 lant=1,ianum.' 

217 

c 

c 
C 

C 

C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

do 217 isig:=I,isinum,1 
do 217 ii:l ,ivnum,l 

xeo 1 d ( i i , 1-( i v 1 en.' I , is i g:, I ant) xest I i i , i B i ~ , i a nt ) 
yeo 1 d ( i 1 , i - t i v 1 en t 1 ). is i g , i ant I yes t( i i , is i g: , i an t ) 
xeoldlii ,i-tivlen.' l,isig:,iant) xestlii ,isie,iant) 
yeoldlil,i-livlen+l ),isli,iant) yest{ii,isia,iant) 
xpold(ii,i.,-tivlen.'),isi2,iant) xpredlii.isie.iant) 
ypoldlli,i.,-Ilvlentl ),isie,iant) ypredlii ,isi2,lant) 
xpoldlil ,l.,-livlen.' ),isii,iant) xpredlii,isig.iant) 
ypoldlii,t.,-ttvlen.' ),1si2,lant) ypredl1i ,is12,laot) 

continue 
end if 

eiseifllmodll ,ipacl ).eq. 0) .and. 
• Ilrtsym.ne. 0) .and. (ti.irtsym-l I.le.isampl,)) then 
... RETRAINING 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
'.'FOR EACH RETRAINING SYMBOL 
••• 00 detection of symbols at time i-Ivlen. 
••• (or do block detection of previous packet). 
••• Also shift p vectors alone to make q vectors 
••• ready for the next sample. (Shift the corresponding 
••• est and pred vectors alon2). 
••• ALSO TO RETRAIN CHANNEL EST AND PRED 
••• Form raw measurements of:- the channels yll1. ) and y2{i. 
••• and their first derivatives 
••• from rei 1, rli.,), r(I.2) •..... , rti.irtsym-l I 
••• knowinQ' sll), sll.,), sll.2), ...•. , sli.irtsym-l) 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
••• must store and reset after loop 252 
••• for use in est and pred retrainlnc 

do 2 119 iant::l,lanllrn,1 

do 2~9 isie~l ,iBinum,1 
xetem(I,-I,isie,iant) ,. xestll,isie,iant) 
yetem(I,-I,isiQ,iant) " yestll,isie:,iant) 
xPtemtl.0,isig.iant) " xpred(l.isia,iant) 
YPtemll.0.isie,iant) " ypred(l.isle.iant) 

2~9 continue 
c ".The training bits are known therefore perfect detection 

do 251 isiliFI.tsinum,1 
do 251 k::i.l.irtsym-l.1 
sxdetlk,isial=sxlk,istg) 
sydetlk, isie )::sy (k, iAle) 

251 continue 
If (Imetsv.eq. 2) then 

C .'.if method of storinglswappingl vectors :2, then now must 
c ••• do block detection of previous packet 

iimln:l 
do 240 j=l,ivlen,1 
do 2~OI isiQ'=I.lsinum,l 

sxdet(i-J,isi~) qx(iimin,-j,isiel 
sydet(i-J,isi~) :: qy(limin,-J,isiil 

2401 continue 
llmln :: iqfrom{llmln,-j) 

2~0 continue 
end if 

do 252 k=i,l.irtsym-l,1 
if limetsv.eq. 1) t.hen 

c ' •• do detection i.e. 
c ••• sdetli-ivlenl Is taken to be qli-ivlen)of t.he l_o\.lest cost 
c ••• vector p 

do 2521 isie=1,isinum,1 
sXdetlk-lvlen,isiQ) qx(I.-ivlen,isigl 
Bydetlk-lvlen,isiQ) :: qyll,-Ivlen,isie) 

2521 cont I nue 
endif 

c ••• shift all p vectors alone to make q vectors ready for 
c ••• the next sample. 
c ••• Also shift all corresponding estimate and prediction 
c ••• vectors along ready for the next sample. 
c ••• The data point q{1 ,-ivlen,isi2) has now been detected so is 
c ••• shifted out, and the points q(ii,-I.isiel have yet to 
c ••• be calculated so are set to zero for now 

do 253 ii=I,lvnum,1 
if' (i metsv. eq. 1) then 

do 25~ isig"",isinum" 
do 25~ j=-ivlen,-2,1 

qxlii,j,isig) qxlii,J.',isil;P 
qylii,j,isiel" qY{ii,j+l,isigl 

25~ continue 
endir 
do 25 111 iant;I, ianum, I 
do 25~1 isle:I,isinum,' 

do 25q2 j=-iiplot,-2.1 
xeoldtli,j,isig,iant) :: xeoldtil,j.' ,isie.lant) 
yeoldtl1.J,lsie,iant) : yeoldlil,J., ,isie,iant) 
xpoldlii,J.',Isle,lant) xpoldltl.j.2.isig,iantl 
ypoldlii,J.',isia,iantl" ypoldlii,j.2,isie,IBntl 

2542 continue 
qx{ii,-I,isie)::O.OdO 
qy(li ,-I,isie)=O.OdO 

xeoldlil,-I.tslC,lantl xestfii,isl(f,iant) 



c 

c 
c 
c 

c 

c 

c 

2541. 

yeold(ii,-l,isle,lant) ::I Yest{ii,isie,iant> 
xpoldtii,O,isie,iantl " xpredtii,isie,iant) 
ypoldlii,O,isig,iant) ::I Ypredlii,isig,iantl 

Kest{i! ,isig,iantl:O.OdO 
yest (i i, isle, tant I =0. OdO 
xpred{li,isiQ,iantl:O.OdO 
ypredlii,isie,lant):O.OdO 

continue 
253 continue 

2532 

I 

256 

do 2532 iant==l. ianum,l 
do 25)2 isig"l,islnum,1 

xeplo{k-iiplot,isill,iant) :: xeold(I,-iiplot,isie,iant) 
yeplo(k-iiplot,isig,iant) ~ yeold(I,-tipiot,isie.iant) 
xpplo{k-ltplot+l. isla. iant I xpoId{ 1,-1 tplot+1, isie, tant) 
ypplotk-i Iplot+l, isla, lant) = ypoldl 1,-1 tplot." isle, tant) 

continue 
••• set up q(ii,-1 I points 
do 256 isia=l,isinum,1 
do 256 i i" 1 ,i vnum.1 
qxlii.-l,isi(P sxdetlk,isigl 
qylii,-l,isigl ::I sydettk,isigl 

continue 
if (imetsv.eq. 21 then 

••• if Imetsv"2 then restart build-up of q vectors 
••• (old INcorrect Info in vectors Is over~ritten ~ith each 
••• symbol) 
istor = modlk,lvIen) - ivlen 
do 2540 il:I,tvnum,1 

iqfroml i i, istor 1 : I I 
do 254b IsIg=I,isinum,1 

qxlli,istor,isigl qx(ii,-l,isia) 
qy( I i, istor, isia I : qyl i i ,-1, isigl 

2540 continue 
endif 

do 261 isle:1 ,isin~m,1 
do 261 I i = 1 ,1 vnum, 1 

261 cont i nue 
252 continue 

••• reset est and pred as before loop 252 
do 2491 iant:l,ianum,l 
do 2491 isie=1,isinum,1 

xestll,isiQ,iantl " xetem(l,-I,isIQ,iant) 
yest(l,isie,iantl : yetem(l,-I,isig,iant) 
xpred(1,lsie.iant.) " xpt.emtl,O,lsia,iant.) 
ypredl1,isig,iant) " yptern(l,O,isill,iantl 

2491 . continue 
... TO RETRAIN CHANNEL EST AND PRED 

if timetrt.eq.1 J then 
••• ideal retraining 

do 2501 iant=I,lanum,l 
do 2501 isle=1.isinurn,1 

do 250 t i ==1, ivnum,l 
xestlli,isiQ,iant) ::I xll.irtsym-2,isie,iantJ 
yestlii,isie,iantl == yli+irtsym-2,ieig,iant) 
7.1 X (i i. isie, lant I"x I i .lrtsym-l ,Isie, iant I-x (i +1 rtsyrn-2, isiQ, lant 1 
zly(ii.isie.lantl=yli.irtsym-l.isig,iantl-yli+irtsym-2,isie,iantl 
z2xlit,isig,iant):0.OdO 
z2y(ii,isig,iantl=O.OdO 
xpredl.ii,isig,iantl xll+irtsyrn-l,isig.iant) 
ypred(ii ,isic,iant) " y(i+irtsym-l,isie,iantl 

c 
c 

c 

c 

c 

c 

250 
2501 

2601 

267 

• 
• 

• 
• 

• 
• 

continue 
continue 

elseiflimetrt.ge. 21 t.hen 
••• Assume all points lie on a straight line and apply met.hod 
.*. of least squares 
do 2601 iant==1.lanurn,1 
absaveliantl " O.OdO 
acorabliantl:O.OdO 

do 2601 Isig=1,isinum.1 
xrtavelisie,iantl=O.OdO 
yrtave(isiQ,iant)=O.OdO 
xrtcorlisig,iantl=O.OdO 
yrtcorlisig,iant)::IO.OdO 

continue 
If lisinum.eq. 11 then 
.*.Retraining est and pred for 
do 267 k=i ,i+irtsym-l,1 

signal 

do 267 iant=l, ianurn,1 . 
xrtOtk-i,I,iantl = Isxlk,1l.rx(k,lantl + sylk,ll.rylk,iant)) I 

(sxlk,1 ).sxlk,11 + sylk,1 J.sytk,ll) 
yrtO{k-i,I,iantl: (sx(k,1J.rytk,iant) - sylk,lH-rx(k,iantl) I 

(sx(k.l >*sxlk,l) + sytk,ll.sy(k.l) 
absaveliant) " absaveliantl + dble(k-i) 
acorab(iant) = acorabliant) + dblelk-il.dbletk-i) 
xrtavetl,iantl 
yrtave (I, lant l 
xrtcorll,lant) 
yrtcor(l.iantl 
continue 

xrtave(l,iantl + xrtOlk-i,l,iant) 
yrtave{l,idnt) + yrtO(k-i ,I ,iaot) 
xrtcorl1,iantl + dble(k-i l*xrtO(k-i,1.iant) 
yrtcorll.iantl + dblelk-il.yrtO(k-i,l,iantl 

do 260 iant= 1, ianum.l 
absavefiant) ::I absaveliantl/dblelirtsyml 
acorab(iantl = acorab(lant)/dble(lrtsYml 
xrtave (1, iant 1 xrtave (1, iant )/dble I irtsyml 
yrtave (1, lant) yrtave 11 ,tant I/dble (irtsyml 
xrtcor (1, iant) xrtcor I 1, iant I/dble (irtsym) 
yrtcor (1, iant I yrtcor (I, lant l/dble (I rtsym) 

xrtmO (1, tant 1 

yrtmO I, ,lant) 

if (imetrt.eq. 21 then 
(xrtO<irtsym-l,I,iantl 
dblelirtsym-1 l 
(yrtO(irtsyrn-l ,1 ,1antl 
dble (i rtsym-1 ) 

elseiflimetrt.eq. 3) then 

xrtOIO,l,iantll I 

yrtO(O.1 .lantl 1 I 

••• slope 
xrtmO(l,tantl 

yrtmOll.iantl 

(xrtcor I 1 ,tant I - absave I iant ).xrtave (1, i ant I) I 
lacorab(iant) - absave(iant'*absaveliant» 
lyrtcor(I,iant) - absaveliant,*yrtavel1,iantll I 
lacorabliant) - absave(iantl.absave{iantll 

endif 
if (modlirtsym,21.eq. 0) then 

••• i.e. if number of retrainini symbols is EVEN 
xrtO{irtsym/2,I,tant) = xrtave(l.iantl .0.!::idO.xrtmOll,iantl 
yrtO I Irtsym/2 ,1. iant) " yrtave I 1, tant) + O.5dO.yrtmO t 1, iant l 
xrtOlirtsym/2-1,I.iantl xrtave(I,iantl 0.5dO.xrtmO(1,iantl 
yrtOfirtsym/2-1,l,iantl = yrtave(l,iant) 0.5dO.yrtmO(l,iantl 

else 
••• i.e. if number of retrainine symbols 
xrtO{irtsym/2,1,iant) == xrtave(l,iant) 
yrtOlirtsym/2,1,iantl '" yrtave(l,iantl 
xrtO(irtsym/2-1,1.iantl xrtavetl,iantl 
yrt.O (irtsym/2-1 ,1 ,iant I ::I yrtave i 1, iant 1 

is ODD 

xrtmOll,iant) 
yrt.mO (1, tant I 



260 
c 

c 

257 

c 

c 

endir 
cont.lnue 
••• j .e. iant loop 
elseir CCmodsch.eq.'QPSK') .and. tislnum.eq. 211 t.hen 
••• Ret.ralnlne est and pred for 2 QPSK sienals 

do 257 k:it2.itlrtsym-l;' 
do 257 iant."', ianum,l 

ssy<11 = sxlk-l,ll.sylk-1,21 - sylk-l,ll.sxCk-l,21 
srxCl I =2.0dO.CsxCk-l,2).rxlk-l,iant.J -t sylk-I,2).ryCk-l,iant» -

• sxtk-2,21.rxlk-2,iantl - sytk-2.21.rylk-2.iant) -
• sXlk,2)*rxtk,iantl - sytk,21*rylk,iant) 
sryt1 :2.0dO*lsxlk-l,2'.rylk-l.iantl sylk-l,21.rxlk-l,iantl)-

• sxlk-2,21.rylk-2,iantl t sylk-2,21.rxlk-2,iantl 
• 5x(k,21.rylk,lantl t sylk.21.rxlk.iant) 
59y(2) =-9xlk-l,l ).9ytk-l,2J t sylk-l,l ).sxlk-l,2) 
srx(2) =2.0dO.{sxlk-l ,I }.rxlk-l,iantl + sylk-l,l J.rylk-l,iantll 

• sxlk-2,ll.rxlk-2,ianlJ sylk-2,11.rylk-2,iantl-
sxlk,ll.rx{k,iant) Sylk,ll.rytk,iantJ 

sry(2) =2.0dO.(sxlk-l,l ).rylk-l.iantl - sylk-l ,11.rxlk-l.iantl) -
• sxlk-2,ll.rylk-2,iantl + sylk-2.11.rxtk-2,iant} 
• sxtk,ll.rylk,iantl sylk,l ).rxtk,iant) 
xrtOlk-i-l.1,iantl -O.0625dO.ssylll.sryl') 
yrtOlk-i-',I,iant) O.0625dO.ssytll.srxCll 
xrtOlk-i-l,2,iantl -O.0625dO.ssyI21.sry(2) 
yrtOtk-i-l,2,iant) O.Ob25dO.ssyt21.srxI21 
absBveliantl ,. absaveCiantl + dblelk-i I 
acorabliant) • acorabliantl .. dbleCk-i I.dbletk-i I 
xrtavetl,iant) xrtavell,iantl t xrtOtk-i,I,iant) 
yrtavetl,lant.1 yrtavell,iantl + yrtOlk-i,I.lant) 
xrtcor{I,ient} xrtcorll,iant) + dbJelk-i l.xrtOlk-i,l ,iant) 
yrtcorll,ient) yrtcorll,lantl .. dblelk-i l.yrtOlk-i " ,iantl 
xrtavel2,iant) xrtavel2,iantl t xrtOlk-i,2,iant) 
yrtavel2,iant) yrtavel2,iantl + yrtOlk-i,2.iantl 
xrtcorI2.iant) xrtcort2,iantl + dblelk-il.xrtOlk-t,2,iant) 
yrtcorl2,iant) yrtcorl2,Iantl + dblelk-i 1.yrtOtk-i,2,iant) 

continue 
do 2571 tant: 1 ,lanum.l 
do 2571 isle:1,19inum,1 
absavetiant) ~ absave(iantl/dbletlrtsym-2l 
acorab(iantl = acorabliantlfdblelirtsYm-2) 
xrtave(lsle.iantl xrtavelisie,iantl/dblelirtsym-2l 
yrtavetistR,iantl yrtavelisie.iantl/dblelirtsym-21 
xrtcorlisia,tantl xrtcorlisie,iantl/dblellrtsym-21 
yrtcorlisie,iantl yrtcorlisie,iantl/dblelirtsym-2) 

if timetrt.eq. 2) then 
xrtmOlisle.iant)=txrtOtirtsym-2,isie,lantl-xrtOll ,isiQ.iant» 

• Idblelirtsym-J) 
yrtmO I islg, iant J .. tyrtO I irtsym-2, isle, tant l-yrtO I' ,isl e, lant) I 

• Idblellrtsym-31 
el~eif{imetrt.eq. 31 then 

••• slope 
xrtmOtisiC,iant) Ixrtcorlisie,iantl-

• absaveliant).xrtavelisie,lantll I 
• lacorabliantl - absavetiant).absaveliant») 
yrtmOlisie,lant) Iyrtcorliste.iant)-

absavellantl.yrtavelisie,iant) I 
• lacorabliant) - absavellant).absaveliant» 

endlf 
if Imodllrtsym,21.eq. 0) then 

••• I.e. if nllmber of retraln!nl! symbols is EVEN 

c 

c 

c 
c 
c 

c 

c 

2571 

2579 

• 
• 
• 

• 
• 
• 

xrtOlirtsym/2,isie,iant) xrtavetisie,iantl t 
O.5dO.xrtmOlisie,iantl 

yrtOlirtsym/2,isia,iantl yrtavelisie.lantl t 

O.5dO.yrtmOlisie.iantl 
xrtOlirtsym/2-1,isie.iantl :: xrtavetisie.iantJ -

O.5dO.xrtmOllslg,iant) 
yrtOlirtsym/2-1,isig.lant) : yrtavelisie,iantl -

O.5dO.yrtmOlisie.iantl 
else 

••• i .e. if number of retraining symbols is Don 
xrtOlirtsym/2,isii,iant) " xrtavelisle,iantl 
yrtO{Irtsym/2,isie,iantl : yrtavelisie,iantl 
xrtOtirtsyml2-1.lsig,iant) xrtavelisle,iant} 
yrtOlirtsym/2-1.lsie,iant) :: yrtavellsie,iant) 

continue 
else 

endif 

xrtmOlisie.iant) 
yrtmO (I s le, i ant I 

PRINT.,'RETRAINING not available for this modsch and isinum' 
stop 
endif 
••• initlalise estimator/predictor 
do 2579 iant= " lanum, 1 
do 2579 isie=' .isinum.l 
do 2579 II:l,tvnum,1 
xestlil,isig,iantl " xrtO(irtsym/2-1 .isl~,iantl 
yesttll,isls.iantl " yrtOllrtsym/2-1,isle.iantl 
z2xtii,isie.iant) O.OdO 
z2ylii,isie.iantl O.OdO 
zlxtii,isig.iantl xrtmO(isl~,iant) 
z1ylii,lsie,iant) yrtmOtisie.iant) 
xpredlil.isie.iant) xrtOlirtsym/2,isie,iantl 
ypredltl,isiQ.iant) " yrtOlirtsym/2,isie.iant) 

continue 
••• Run lsfm estimator/predictor from i .. irtsym/2+1 to irt~ym 
••• to eive predictions of channel alld g}npe for Lhe 
••• first symbol after retrainine. 
do 2572 k=itirtsym/2.itirtsym-2,l 

do 2320 iant:l,ianum.l 
do 2321 il::l,ivnum,1 
if (Imetes.eq. 0) then 
••• unbiased estimator for 1 slenal 

If (modsch.eq.'16-pt QAM') then 
b" 1.0dOltsxtk,1 ).sxlk,l) t sy(k,1 ).sylk,l)l 
else 

b"0.5dO 
endif 

xesttii,I,iant) 
yesttil,l,iantl 
else 

b.(SXlk,l ).rxlk.lant) sytk,1 ).rylk,iant)) 
b.lsxlk,l ).rytk.iantl - sy{k,1 1.I'xtk, iant) 1 

••• gradient estimator 
rxest=O.OdO 
ryest::O.OdO 

do 2322 isle=I,lslnum,1 
if (imetes.eq.l) then 

rxest " rxest t 
sxlk.isig).xest(ii.isiQ,iant) 
sylk,isiQI.yestlii ,isle,lant) 

ryest ryest t 

sx(k,isiQl.yest(ii,lsie.iant) t 
sy I k, is i r.)" x~st I It , is i r.. i ant 1 



• 

• 
• 

rxest 

ryest 

elselflimetes.eq.21 then 
rxest .. 
sxlk,isiC1,xpredlii,isic,iantl 
sylk,isial'ypredlii,isic,iant) 
ryest t 
sxlk,lsiQ)'ypredlii,isie,iant) t 
Sylk,isie1,xpredlii, isie, iantl 

endif 
2322 continue 

ex " rxlk,iant) - rxest 
ey = rylk,iant) - ryest 

do 2323 isig=l,isinum,l 
if limetb.eq. 1 I then 

b btemp/lsxtk,isigl"2 + sylk,islg)"2) 
endif 

if limetes.eq.11 then 
xestlii ,isl~,lantl : xestlil,isie,iant) t" 

• b'( eX'SXlk,isig) t eyltsylk,isieJ) 
yestlli,isl~,lant) = yestlii,isig,iantl + 

It bltl-ex'sytk.isie) t ey.sx(k,isigl) 
elselflimetes.eq.2) then 

xestlii,isie.iant) : xpredlii ,isig,iant) 
• bltl ex'sxlk,isla) t eY'sylk,isie11 

yestlii,isle.lantJ = ypredlii,isi~,iantl t 
.. b.(-ex.sylk.isllZ) + eY'sxlk.isig) 

endif 
2323 continue 

endif 
c .... imetes endlf!!! 

do 232 11 Isle:1,lslnum,1 
ezx xest(tl,lsie,iant) xpredlii,lsig,iant) 
ezy : yestlii ,isie,lantl ypredlii ,Isle,lant) 

if (iordp.eq. -1 J then 
c ... no prediction 

xpredlii,isle,iantl " xestlii,isig,iantl 
ypredlli,isig,iant) " yestlii,isie,lantl 

elseil·llordp.eq.l I then 
c ... deeree 1 

z1x(U,isie,tant) " zlxlii,islg,iantl t thl.ezx 
zly{ii ,isie,iant) " zly(ti.lsia,iant) t th1.ezy 
xpredlii ,isie.ian~) xpredtti ,isie,lant) t z1x(ii ,isi~,iant) t 

• th2'ezx 
ypred<ii,isie,ian~) ypredlli,isic:,iant) t Zlylii,isie.iant) + 

,. ~h2 .. ezy 
elseifliordp.eq.2) then 

c ... dearee 2 

• 

z2xtii ,isig,iantl 
z2ylii ,isia,lant) 
zlxlii ,isie,iant) 

Zlylii,lsie,iantl 

xpred(ii .isie,iant) 

ypredlii ,isle.lant) 

else 
endlf 

232~ continue 

z2x(ii,isig,lant) + th3'ezx 
z2ylii,isie,iant) + th3.ezy 
zlxlii,isig,iant) • 2.0dO'z2xlii ,isig,iant) t 
th1f.ezx 
Zlylii,isi~,iant) t 2.0dO'z2ylii,isl~,iant) 

th4'ezy 
xpr~dli i,isie,tant) + zlxtii,isle,iant) 
z2xlii,IsiR,iantl t thS'ezx 
ypred(ii ,isie,lant) t z1ylii,isie,iant) 
z2ylii,isle,iant) t thS.ezy 

c 

c 
c 

c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

2325 
2320 
2572 

255 
2551 

280 

do 2325 islR:1,isinum.1 
xeplotk-iiplot,isle,iant) 
yeplo(k-i Iplot, lsie,iantl 
xpplOlk-ilplottl,isie,iantl 
ypplo Ik-i iplottl, isle, lant) 

continue 
continue 

continue 
endif 

xeoldll ,-iiplot,isie.ian~) 
yeoldI1,-ilplot,isig,iant) 

x po Id t 1 ,- i I plot t 1 , Is i g , i ant) 
::: ypOldtl,-iiplot+l,isig,iantl 

••• I.e. retraining method endlf 
do 2551 iant:::l,ianum,l 
do 2551 isie:::I,isinum,l 

do 255 It:l,ivnum,1 
xeoldlii,-I,isie,lant) ::: xestlli,isiQ,iant) 
yeold(ft,-1,isie,iantJ :: yesttii,isie,lant) 
xpold(ii ,0,lsle, iant) xpredll i ,iste, iant) 
ypoldtii ,O,isle,lent) ~ ypredtii ,isie,ient) 

continue " 
continue 

l:citlrtsym-1 
••• if imetde"l then fixed delay in detection 
... else if imetde=2 then do block detection (equivalent!!) 
if timetde.eq. 2) then 
do 280 il~2,lvnum,1 

cq( i i) :: cq( i j.) t lOOO.OdO 
continue 

endif 
.... set cq I 1) tota 1 for packet :cO 
cq1tot lO 0.OdO 

else 
· .. VITERBI TYPE DETECTION 
••••••••••••••••••••••••••••••••••••••••••••••••••••• 
••• Maximum likelyhood detection. 
'.'expand each of the 4 q vectors ~ ways 
••• i.e. the ~ lowest cost vectors are expanded and 
••• their ~ lowest cost vectors are stored. 
"'i.e. 16 p vectors in all. 
•••••••••••••••••••••••••••••••••••••••••••••••••• 
do 221 11=I,lvnum,1 
.... expand each q vector in all 16 possible directions 
••• and calculate additional costs 
do 2212 k:::O,kmax,l 

ddlk):O.OdO 
2212 continue 

If (imetco.eq. 1) then 
c "'I.e. actual combinina method 

do 222 k:O,kmax,t 
do 2221 iant:::l.ianum.1 

rxposlk,iant):O.OdO 
rypos(k,iant)=O.OdO 

do 2221 isie:::l,isinum,1 
ifliperfe.eq. 1) then 

c ••• I.e. assume perfect estimation 
rxpos{k,iant) " rxpostk,lant) • 

• sxposlk.isiel*x(i,isie,iant) - 9YPoSlk,isie).ytl,isle.iant) 
ryposlk,iant) 10 rYPostk,lant) t 

• sxpoSlk,isiil'y{i ,isle,lant) t sypos(k,isle).x(1 ,isi~,iant) 
clseifliperfe.eq. 01 then 



c 

c 
c 
c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

2221 

••• I.e. Actual system runnine. 
rxpostk,iantl : rxposlk,iantJ t 

.. 9xposlk • .isla)·xpredlll,isia,iantl 

.. sypos(k,isiel*ypredlii,isig,iant) 
ryposlk,iantJ " ryposlk,iantl .. 

.. 9xposlk,isigl*ypredlii,isie.iantJ t 

9yposlk,islg).xpredtii ,isie,tant) 
endif 

continue 
do 2222 iant=',ianum,1 

ddtkl " ddtkl .. 
.. Irxll,iantl-rxposlk,iant) •• 2 .. tryti,iant.l-ryposlk,iantl)··2 

2222 continue 
222 continue 

elseiflimetco.eq. 2) then 
••• i.e. Maximal Ratio Combtnin~ 

••• Multiply by ampltude. co-phase and add. 
••• i.e. multiply by complex conJueate and add. 
mrx=O.OdO 
mry"O.OdO 
ymall"O.OdO 
do 2213 iant=I,ianum,1 

if (iperfe.eq. 1 J then 
••• t .e. assume perrect estimation 

mrx " mrx t xli ,I ,iant)*rxli ,iantl • Yli,l ,iant).rYli,iantl 
mry ~ mry • xli,l ,iantl.ryli,lantl - ylt ,I ,iantJ.rxII ,lant) 
ymac • ymaR • xii ,I .lantl*'2 • yli,l ,iantll.2 

elseifliperfe.eq. 01 then 
1111.e. Actual estimation 

mrx~mrx +xpredlil ,1 ,iantl.rxli,iant) .ypredlil,l,iantl'ryli,iant) 
mry"'mry +xpredlil,1,iant)lryll,iant) -ypredlii,l,iantl l rxli,iantl 
ymaa : ymaQ + xpredlti ,1 ,lantl**2 • YPredlii,1 ,lant)I.2 

endir 
221::3 continue 

1 •• Calculate Haxm. Likelyhood costs 
do 2214 k~O,kmax,1 
ddlkl : Imrx - ymag.sxpoSlk,1 )11.2 • Imry - ymae.sypoSlk,1).12 

2214 continue 

••• Use the antenna 
Ymae~O.OdO 

eIself(lmetco.eq. 3) then 
•••. i.e. Selection diversity 
sienal ~ith the least fadine 

do 2216 iant"',lanum,1 
if (iperfe.eq. 1) then 
*.*I.e. assume perfect estimation 

sdymae: xll,I,lantl.12 • yti,I,iantl.*2 
elseifliperfe.eq. 01 then 
•• II.e. Actual estimation 

combining 
at time t.=iT 

sdymae : xpredtii ,I ,iantll.2 • ypredlli.l ,lant)*.2 
endif 

if Isdymag.ge. ymagl then 
ymaQ=sdymaa 
Isd : lant 

endif 
2216 continue 

.I.calculat.e maximum likelihood costs 
do 2217 k:O,kmax,1 

if liperfe.eq. 1) then 
••• I.e. assume pel·fect. estimation 

rxpostk.isdl : sxposlk.llfxti .1.iflrll - sypostk.l )IVIl.l,isdl 

c 

c 
c 

c 

c 

c 
c 

c 
c 

rypostk.isd) = sxposlk,l).yll,I,lsd). sypos(k,ll.xli,1.isdl 
eiself(iperfe.eq. 01 then 
.*.1.p.. Actual estimation 

rxposlk,isd) sxpostk,l hxpredlii,l,isdl 
I sypos(k,l).ypredlii,1,isd) 

rypostk.lsd) sxPos(k,11lypredlii,l,isdl t 

* sypos(k,ll.xpredlii.l.isdl 
endif 

ddtk) !: trxti,isdl-rxpostk,isdlll12 + try(i,isdl-rYPoslk,isdl) .. ·2 
2217 continue 

2211 

2231 

223 
221 

226 
225 

226 
227 

2281 

endif 
••• i.e. imetco endif 

*.*store ~ lowest cost p vectors for each q vector 
do 223 j;l,ivnum,l 
cplii,j) : 1.0dti 
do 224 k=O.kmax,l 
if (ddlkl .It. cptii,j» then 
cpili,jl = ddtkl 
kpmin = k 

end if 
continue 

do 2231 Isia"l,islnum,1 
pxlii,J,isie) sxpostkpmin,isial 
py I I i ,J, isle I = sypostkpmin, isial 
continue 

ddtkpmln) 1.0dl0 
continue 
continue 
.I.add q and p cost.s to elve 16 total costs 
do 225 II=l,lvnum,1 
do 226 j=l,ivnum.1 

cpl1l,jl = cqlil) + cptii,j) 
continue 
continue 
._.find smallest cost vector of the 16 p vectors 
cpmln = 1.0d8 
do 227 11=I,ivnum,l 
do 228 j:1,ivnuI"D,l 

if Icptji,jl .It. cpminl then 
cpmln " cplii,JI 
itcm!n" ii 
Jcmln " J 

else 
endif 

continue 
continue 

ir timet.de.eq. 1 I then 
••• sdet.(l-ivlen) is taken to be xll-lvlenl or the lowest cost 
.*. vector p 
do 2281 islg:1.islnum,1 

sxdetli-ivlen,lsiel qxCiicmin,-ivlen,isigl 
sydetli-tvlen,lsig) " qylitcmin,-lvlen,isigl 

continue 
endtr 
if timetsv.eq. 11 then 

•• *Ialmost) discard all p vectors for which 
•• 1 xli-Ivlenl .ne. sdetli-ivlenl 
do 229 isig:1,islnum,1 
do 229 li"',ivnum.l 

if (Iqxlll ,-lvIen,lalnl .ne. qx(ilcmln.-ivlen,l~iR» .or. 



• IqY!ii .-lvlen,isiQJ" .ne. qx(iicmin.-ivlen,isigIJI then 
do 2291 j=I,ivnum.l 
cplii.jl = cpCii.jl + LOdS 

2291' continue 
end ir 

229 continue 
endjf 

c ••• shlft all p vectors along to make 4 possible q vectors 
c ••• to choose rrom ready ror the next sample. 
c ... AND STORE UITH THEM THEIR CORRESPONDING ESTIMATOR AND 
c ••• PREDICTOR VALUES. 
c ••• the data points q(ii ,-321 have now been detected so are 
c ••• shirted out, and the points qlii ,-11 have yet to 
c _.* be decided so are set to zero ror now. 

do 2'-11 ii=I,ivnum.1 
ir limetsv.eq. 11 then 

do 2'-12 isle=I.lsinum,l 
do 2'-12 j:-ivlen.-2.1 

qxoldlii,J,lsial qxlll.j"',isie) 
qyoldlli,J.lslgl = qytii,Jt1.lsigl 

2'-12 cont.inue 
endir 

c .*.ir plottina estimator output set last ivlen values 
c ••• else only need to store last 2 
c •• -Thls variable is iipiot 

do 2421 iant",.ianum.1 
do 2421 isl"=1,isinum.l 

do 2'-122 J=-liplot.-2,l 
xeteml!! ,J,lsie,iant) : xeoldlii ,j .. , ,isle.lant) 
yetemlii,J,isle.iantl = yeoldtll.j+l ,isle.lant) 
x pt em ( 11 • j .. 1 • is i g , I ant 1 xpo.! d ( i i , j .. 2, Is ill, I an t 1 
YPtemlii,j+',lslil,iant) = ypoldlit,J+2,isie,lantl 

2422 continue 
qxtii.-l,ls1el '" O.OdO 
qylii,-l,islgl ~ O.OdO 

xetemlli.-I,lsie,iant) :1 xestlit,isie,lflntl 
yetemlii,-1 ,isle.lant) : yestlll.isie,lant) 
xptemtii.O.isill,iantl = xpredlii,isIEl.iantl 
yptemllt,O,isiQ',lantl = ypredlll,isle.iantl 
zlxollii,isiQ",iantl Zlxiii.isig,iant) 
z 1 yo 1 1 I i , is i e . i ant I z 1 Y I i i • Is i e:. I ant) 
z2xol til ,isle,lant) z2xlll,isle.iantl 
z2yol (ii,lslu.lant) z2ylll.isia,lant) 

2421 continue 
2111 cant i nue 

c ••• store the 4 lowest cost p vectors as the 4 next q vectors 
c ._.i.e. set qlll,-I) in order of costs. 111=1 corr.to lowest) 
c ,., and store correspondine costs 

do 230 Ij:1 ,Ivnum.l 

232 
231 

cqti I I = 1.0d6 
do 231 jj:11,ivnum,1 
do 232 j:l,ivnum.1 
If (cpljj.j) .It. cqlil 1I then 
cqlii) " cpljj,j) 
jjminllil • jj 
jminlii I: j 

endtr 
continue 
continue 
do 2]11 isir.=l.lflinum,1 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 

c 
c 

2311 

230 

2302 

235 

2350 

2352 

2351 
234 

233 

qx{li .-1 ,Isia) pXfjjminlll ).jmintii J,isieJ 
qy ( i i , -1 , 18 i e J py t j J m in { 1 1 I • j m i n ( i i ) , Is i e: I 

continue 
cp(jjminllll,jminlii)l = 1.0d10 
continue 

do 2302 il:1 ,ivnum,l 
continue 

'_'match the rest or the q vectors wi th these q I i i ,-1) rrom 
,., the q possible qoldlil ,j I vectors 
.** AND MATCH THE CORRESPONDING ESTIMATORS AND PREDICTORS 
do 2311 li=l,ivnum.l 

if (i metsv. eq. 1 1 then 
do 235 isiQ"1,isinum,1 
do 235 j=-ivlen,-2.1 

qxtil,j,isiel qxoldljjminlii I,j.lsiel 
qylii,J,isiel = qYold{jjminlli I,j.islg) 

continue 
elseiftimetsv.eq. 21 then 

Istor = mod(i,ivlenl - ivlen 
iqfromtil,lstorl : jjmlntii I 
do 2350 isilPl ,Islnum, 1 
qxlii ,istor,isie) qxlil .-1 .isle) 
qy(ii,istor,isiel : qylii,-1, isi IO 

continue 
endif 

.,.ir plottine estimator output then store last ivlen 
1.1 else store only the last 2 
•• 'This variable Is iipiot 

do 2351 lant:1,ianum,1 
do 2351 isie"',isinum.1 

values 

do 2352 j:-iipJot.-l.1 
xeoldtii.J,isie.iantl = 

'yeoldtil,j,lsie,iant) = 
xpold t i I,J .. , ,isie. lant) 
ypo 1 d I i I ,j + 1 • Is i" , i ant) 

xetemIJjminfill,j.isle,iant) 
yetemtjjminlii I,J,isie,iant) 

xptem I j jmi n I i i I , j + 1 , Is i e • i a nt ) 
" yptemtjjminlii).jtl.i"sie. iant ) 

continue 
xestlii,isig,lantl = xetemljjmin(ii ),-1 ,Isill,iantl 
yestlii,isie,iantl = yetemtjjmin(tl ).-1 .isle,iantl 
xpredlii.isie.iantl = xptemljjmintii),O.lsie,iantl 
ypredlli.iste,iantl = yptemljjmintii l,O,isie.iantl 
zlxtii.isig,lant) zlxol tjjminli I 1,1sie, iant) 
zlytii,lsie.iant) " z1yolljjmlntiil,isie,iantJ 
z2xtli.isig,iantl = z2xoJIJjmintii),Jsie.iantl 
z2ytll.isie.lant) ;. z2yoltJjminttll.islll,iant.l 

continue 
continue 
•• Ithe 4 lowest cost q vectors and their costs have now been 
.1' stored ready ror the next sample. 
-.'subtract the smallest cost from all costs so that the lowest 
, •• cost is always zero. 
cqltot = cqltot + cql1 1 
do 233 ii=2,ivnum,l 
cqliil : Cqlli) - cqlll 

continue 
cq(l) " O.OdO 

endir 

, •• CHANNEL ESTIMATOR 
do 3~O tant=l,ianum,l 



c 

c 

• 

• 
• 

• 
• 
• 
• 

• 

• 
• 

• 
• 

3211 

do 321 llel.ivnum,1 
if timetes.eq. 01 then 
1.lunbiased estimator for sicnal 

If Imodsch.eq.'16-pt QAM') then 
ir liperfd.eq. 0) then 

b 1 .0dO/(qxlii,-1 ,I I-qxlii ,-I ,lit qylii ,-1 ,I )Iqylii ,-I ,I I) 
elseif(iperfd.eq. 1 I then 

b 1.0dO/(sx(i,1 IlsxlLl I + syll,l )'syli,l)) 
endi!' 

else 
b:0.5dO 
endif 

if Ilperfd.eq. 0) then 
xest(ii ,l,iant)eb'lqx(ii,-l,1 ).rxli,iantltqylii,-1 ,1 )'ryll,lant)1 
yestl!i ,I ,iant)=b.tqxlii,-l ,I l_ryli,iantl_qylii,_I,1 )Irxlt ,lant» 

el~eifliperfd.eq. 1) then 
xestlii,l,lantl b'(sxl! ,I )'rxli.lantl t sylt ,1 ),ryti ,iantlJ 
yestlii ,I ,iant) = bllsxli,l )'ryl! ,iant) - Sylt ,I }Irx{i ,Iant» 

endif 
else 
._.gradient estimator 

rxest=O.OdO 
ryest"O.OdO 

do 3211 iste~l ,{sioum,1 
if liperfd.eq. 0) then 

if timetes.eq.l) then 
rxest · rxest • 

qx I i i , - 1 , I sill J • xest 1 i i , Is i e , i ant) 
qylll ,-I .isiel'yestlii.isig,iant} 

ryest ryest • 
qxlli ,-1 ,islg)'yest!!i ,isie.iantl 
qylii,-l ,Isilll,xestlii, isiQ,iant) 

elseiflimetes.eq.2) then 
rxest rxest • 

qx t i i ,-1 , is hP Ixpred 1 i i ,i s i e, i ant I 
qylii ,-I ,isie)lypredllt,isig,iant) 

ryest ryest • 
qx ( i i , -1 • is i E ) • ypred tl I , is I it, I ant) 
qytii.-l ,isl~).xpred(il,isie,iant) 

endir 
elseiftiperrd.eq. , ) then 

if limetes.eq.l ) then 
rxest rxest • 

sxli .isiCI'xestlii,isiQ,iant) 
sy I t ,islg )Iye::rt I t I. isie, lant 1 

ryest · ryest • 
sXii,isig)lyesttti,isiQ,iantl • 
syti ,isle)'xesttll .isie,iantJ 

elseifllmetes.eq.2) then 
rxest rxest • 

sxlt ,Islel'xpredl! i, Isia. iant) 
sy(i,isl~llypredllt,isie.tant) 

ryest · ryest • 
sxli,isiellypredlii,isii.iant) • 
sy li, isie I'xpred It I, isla, lant) 

endif 
end if 

contInue 
ex rxll,lant) 
ev :: rvlLlant) 

rxest 
r.vcst 

• 

-

• 

do 3212 iste:1,isinum,1 
if (iperfd.eq. 0) then 
If limetb.eq. 1) then 

b btemp/(qxlil,-l .isl~J**2 ... qylii ,-1 ,isigJ**21 
end 11' 

if (imet.es.eq.l1 then 
xest(lt.isie.iantl = xest.lii,isiQ,iant.1 ... 

• bIt ex.qxtli,-l.ishP +- ey*qytii.-l.isie») 
yest(ii,isie.iant) = yesttil,isiEl,iantl + 

• b*(-ex*qylil.-l.islgl ... ey*qxlii.-l,isig» 
elseiflimetes.eq.2) then 

xesttil,iste,tant) " xpredlii ,isle,iant) t 

• b*' ex*qx(ii,-l ,tsie) ... ey.qylil,-l ,isle») 
yestlil,isia.iantJ " ypred(ti ,isle,tant) t 

• b*(-ex*qylli.-l.lsiel t ey*qxIU.-l,isigll 
endi!' 

elseirliperfd.eq. 1) then 
if (imetb.eq. 1) then 

b btemp/(sx(i,isiQ)112 + syCi ,isie)"2} 
endif 

if (j metes. eq. 1) then 
xestlii,isig,iantJ ., xestlii,isie,iantl + 

I bit eXIsxll.isie) t eylsyli,isiQ11 
yesttii,isie,iant) ., yest(ii,isie,iantl + 

I bl(-ex1syli,isle) f eylsxti,isigll 
elseiftimetes.eq.21 then 

xest(Ji,isie,iantl = xpredtii,isig,iant) 
_ ble eX1sxli.isiR) + ey_syli.isie») 

yesUlt,iste.tant) : ypredlit,isiil,iant) + 
_ blt-ex'syll,iaie) t eY'sxli,isie» 

end it' 
endif 

3212 continue 
endif 

c _ •• imetes endif!!! 
c ..• PREDI CTOR 

do 3213 Isla;l,isinum,l 
czx xesttii,isig,iant) xpredlli,isle,iantl 
ezy " yestlii,isie:.iant) - ypredtll,isie,iantl 

if linrdp.eq. -1) then 
c •.• no prediction 

xpredlii,isie:.iant) = xestlii,isie,iant) 
ypredtii,isie:,iant) = yestlii,isie,iant) 

elseifliordp.eq.l J then 
c ••. deeree 1 

c 

zlxlii,isle.iant) :: Zlxlii,isic,iantl t thllezx 
zlytii,isig,iantJ : Zlyti1,isie,iant) t thl'ezy 
xpred 1 i I. isie, iant) xpredli 1, isill, iant> t zl x 1 I i, isi Il, lant 1 

, th21ezx 
ypredlll,isie,iant) ypredlll,lsill,iantl t zlylil,isill,iant) f 

• th2 1 ezy 
eJseifliordp.eq.2) then 

· .. dearee 2 
z2xtii,isie,Iantl 
z2ylli ,isle,lantl 
zlxlii ,isie,lant) 

• 
zlytii ,isig,iantl 

• 
xpredll i ,isic,iant) 

z2xlli ,lsle,iantl f th~'ezx 

z2ylii ,Isle,iantl t th3'ezy 
Zlxlil,isie,lant) + 2.0dOlz2xlii ,isie,tent) t 

th4*'ezx 
zlylii ,i9i~,ian~J 2.0dOlz2ytii .isill,iantJ 
th4'ezy 
: xpredll i ,15i~,iant) f z1xli i,isic,iant) -



c 
c 

3213 
321 

323 
320 
111 

• 
• 
ypredlii.isic,iantl 

continue 
continue 

else 
endir 

z2x{ii.isi~.lant) + thS*czx 
ypredlii.isi~.iant) t z1ytll ,isle •. lent) 
z2ylli,isig,iant) • thS;ezy 

.. 'xeoldl 1,-1 iplot. isie. lant ) 
yeoldl' .-iiplot.,isie.iantl 

do 323 isii!:=1,{slnum,l 
xeplOli-iiplot,isi2.iantl 
yeploli-iiplot,isia.iantl 
xpploli-iiplot+l,isie,iantl 
ypplOll-liplottl.isiil.iantl 

x pol d t 1 • - i i pi at + 1 • Is i e • i a nU 
" ypOldll.-iiplot+l,isil;!.iantl 

continue 
continue 

cont.inue 

· .. COUNT NUf1BE~ OF BIT ERRORS 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcc 
c Count t.he numher of bi t errors for :-
c signalls) with Gray codinil only 
c AND --" -- Differential and Gray codine. 
c lAnd output error riles --(if ler:l) 
c and output soft decision Info files 
c --if (ier:! Land.Ciiplot=ivlenl 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccc 
C ••• Set yplotll"y, if iperfe"l and ief:l and iiplot:ivlen 

if 1{lperfe.eq. l).and.lief.cq. l).and.lilplot..eq.ivlen» t.hen 
PRINT.,'Set ypploCi I=yti I, for perfect. estimation' 
do 49B9 iant"I,ianum.l 
do 4969 191221,lsinum.l 
do 4989 i:O,isampl,1 
xpplo(i,isig,lant.1 xli,isig,iantl 

I ypplo(i,isic,iant) yli.isic,iantl 
4989 continue 

endif 
c ••• check transfer of Inro t.o subroutine 

do 11991 Isie=! ,isinum,l 
pri nt 
Print.,' SIGNAL' ,islg 
Prlnt..,' i sx sy 9xdet sydet xpplo ypplo' 

do 4993 i=1,isampl,1 
if Ii.eq. 31 i"isampI-l 

Print 9491 ,i,sxtl .islgl.sytt,isigl, sxdetti ,isig),eydetli ,isig) 
9491 format.(16, 12x, 21'9.1. 4x, 21'9.1) 

do 4995 iant:l,ianum,1 
iftlant.eq.1 I then 
Prlnt.,'ANTENNA a' 
endlf 
Ifliant.eq.21 then 
Print.,'ANTENNA b' 
endlf 
Print 9002, xpploli ,isie,lant), ypploli,lsie,iant) 

4995 cont.inue 
4993 continue 
lj991 continue 

i I' I modsch. eq .• OPSK') then 
Print.,' SUBROUTINE sbeqp' 
call sbeqplislnum,lanum.lsampl,ivlen.lpacl ,lrtsym,ief,iiplot, 

• sX,sy,sxdet,sydet,xpplo,YPplo) 
Prlnt.._' RFTIIRNFn ."Ihr·on' 

c 
3 

c 
c 

2 

c 
c 

c 

c 

c 
c 

1 
4 

elseiflmodsch.eq.'16-pt QAH') then 
Print..,' SUBtWUTINE sbeqa' 
call sbeqa I ist num, ianum, isampl, j vlen, i pacI ,irtsym. ier, i iplot, 

• sX,sy,sxdet,sydet.,xpplo,ypplol 
Print..,' RETURNED sbeqa' 
endif 

cont.inue 
if (lperfe.eq. I) ivnum=l? 
if Ijperfd.eq. 1) tvnum=1? 

••• i .e. for perfect. est.imat.lon In detector and for perfect 
••• detection In estimator, run only for ivnum=1 
continue 
if liperfd.eq. 1) iperfe:l2 

••• i.e. for perfect detected symbols in estimator, want act.ual 
*.* estimat.or fed into detector 
continue 
cont.inue 

if (liplot .eq. ivlen) then 
... OUTPUT RESULTS TO FILES 
Print.,' OUTPUT F1LES' 
openlunit:?, rlle='xpredo', form"'format.t.ed') 
openlunlt=6, rile""ypredo', rorm='formatted') 
write!?,.) I Ilxpploli ,iste,iant.), 1=1 ,isampl ,I), igi~=1 ,isinum.l I, 

• iant=I,ianum,11 

• 
,",riteI8,.) (1Iypplo(i,isiQ.iant), l=l.lsampl,I'. isi~:I,lsinum,l', 

close!?) 
close(8) 

iant.=I,ianum,1 ). 

openlunit:l?, flle:'xo', form='formatted' 
openlunit:8, file='yo', form:::'rormatted'I 
writel?,.) II (xli ,isis,iantl, iDl ,isampl ,I I, isle:1 ,islnum,1 I, 

• lant." 1 , ianum, 1 ) 
writeI8,.' Illylj ,isie,iantl, i=1 ,isampl ,I I, isle=1 .isinum,1 I, 

• iant=!,ianum,l) 
closet71 
close{B) 
openlunit.,,?, file='sxo'. form='formatted' I 
openlunlt=8, flle"'syo', form='format.ted') 
write(?,.) ((sxli ,isle), 1=1 ,isampl,l J, isle:! ,isinum,l 
writeI8,.) «(sylt,islg), 1=1 ,isampl ,1 I, islg:l ,lsinul1I,') 
close(7) 
closel81 
openlunlt=?, filec'rxo', f'orm='formatted', 
openlunit:8, file='ryo', form"'formatted'l 
,",ritel?,.) (Irx{i ,Iant), i=1 ,isampl,I), iant"1 ,ianum,l) 
writeI8,.) Ilryli,iant), i=1 ,isampl ,I), iant:! ,lanum,l) 
close(7) 
closel6} 
endif 

return 
end 



••••••••••• *~* ••• 
• SFAOE.FORTRAN • 
••••••••••••••••• 

c ..... 7 ............ 20 ..•..... 30 ........ 110 ........ 50 ........ 60 ••...... 70. 
subrout. i ne sfade (i sampl, jspsym, inter, Is i num, i anum, 

• xfad,yfad) 
c initialise 
c •••••••••• 

c 
c 

c 

c 
c 
c 

c 
c 

double precision e05ddf, YYx, yxl-400:7000), dceain 
double precision yyy, wy(-400:?OOOI 
double precision xfad(-400:6050,2,21 
double precision Yfadl-~OO:60S0,2,2) 

double precision t.(0:400I, fm 
inteeer isampl,jspsym,inter,iterms, lanum,lant, isinum,isie 
integer losbl t, i t.aps 

••• it.erms of 600 corresponds t.o 1 sec. 
iterms:(isampl/interl + 50 
Print., iterms,' samples BEFORE interpolat.ion' 
Print., isinum,' sIenals in the same channel with' 
Print., lanum,' receiving antennae' 
dceain=dsqrt(O.5dO) 
••• if 10sbli=1 then output. fadin~ files, else iosbli=O 
iosbli=O 
••• Random no. generat.or cbf-gauss 
PRINT',' random seed inteller for fadin",' 
call (l05ccf 
PRINT.,' seed int.eeer 63 for fading' 
call 1l05cbf(63l 
-- use seed 63 for estimation curves 

c ... FORM IN-PHASE AND QUADRATURE COMPONENTS OF THE FADING 
c BEFORE INTERPOLATION. 

Ic ... J .E. ONE FADING CHANNEL BETWEEN EACH MOBILE 
c AND EACH ANTENNA. (Le. ianum.lsinum fading channels I 

do 1 isle=I,lslnum,1 
do 2 lant=l,ianum,1 

c 
c .. TO FEED YGN THROUGH THIS FIR-FILTER .......• 
c ••• read I n tap aa i ns (i f requ i red) 

99 
c 

if I(isig.eq. 1 I.and. Ilant.eq. 1 II then 
openlunlt=?, file='omvermon80', form='formatted') 
readt7," fm. Itaps 
read(., ... ) (t.ll), {",O,itaps-l,ll 
close (7) 

PRINT','cut.-off freq. " ',fm,' Hz.' 
endif 

do 99 i=-(it.aps-l l,tterms,l 
wxtl )=O.OdO 
xfad(i ,isiQ,iantl=O.OdO 
wy (I )"O.OdO 
yfadli,lsle,iantl=O.OdO 

continue 

c ... PASS NOISE THROUGH FILTERS ... 
do 110 i~-(it.aps-l 1,Iterms,1 

wyx=e05ddfIO.OdO,+1.0dOI 
YWY=QOSddfIO.OdO,+1.0dOI 
wxli I:wwx'dceain 
wvli I=w,",v'dcaain 

c 

c 

c 

c 

c 
c 

110 

112 
111 

2 

8001 
8685 
6863 
8661 

continue 
do 111 l"O,iterms,1 
do 112 m=O,ltaps-l,1 
xfadli,isie,iantl 
yfad(i,isill,iant) 

continue 
continue 

xfadli,isie,iant) + t.(m)'wxli-m) 
yfadli,isill,iant) + tlml.wy(i-ml 

if liosbli.eq. 11 then 
... OUTPUT FADING COEFFS TO FILES ... 
Print..,' OUTPUT '" stena! ',isie,' ant.enna' ,iant 

if t liant.eq. 1 ).and. (isIQ.eq. 1 I) then 
openlunlt=?, file='xfadal', form='formatted' I 
openlunit"6, file;'yfadal', form='formatted') 

elseiflliant..eq. 1 I.and. Ilslg.eq. 211 then 
openlunit=?, file"'xfada2', form='formatted') 
openlunit:8, riJe='yfada2', form='formatt.ed'l 

elself«(iant.eq. 2).and. (isie.eq. 1) I then 
openlunitz:7, file='xfadb1', form='formattcd' I 
openlunit:8, flle"'yfadb". form='formatted'l 

elself(liant.eq. 2J.and.(isle.eq. 2)) then 
opentunit=7, file='xfadb2', form-'formatted') 
openlunit"8. flle;'yfadb2', form;'format.ted') 

endlf 
write!?,') (xfad'ci,isie,iant), i;I,iterms,11 
writet8,.) lyfadli,lsie,iantl~ 1:1 ,iterms,l) 
closet71 
close(8) 
end if' 

continue 
continue 

do 8661 tant: 1, ianum,l 
Ir (iant.eq. 1 I Printlt,'Antenna a' 
ir liant..eq. 21 Print','Ant.enna b ' 
Print.,' i xfad yfad' 

do 8683 i =, ,i t.erms, 1 
if li.eq. 3) i=iterms-I 
do 6885 Isie:l,isinum.1 

Printlt,'SIGNAL ',isle 
Print 6001, i, xfad(i,isie,iantl,lIfadli,lsie,iantl 
format(i6, 2fI2.~) 

cont.inue 
continue 

continue 

ret.urn 
end 



••••••••••••••••••• 
• S8HCHAN.FORTRAN • 
••••••••••••••••••• 

c ..... 7 ............ 20 ........ 30 ........ 40 ........ 50 ....•... 60 ........ 70. 
subroutine sbbchanlisampI ,ipacl,irtsym,inter,snrdb, 

• modsch,svar,isinum,ianum,rxi,ryl,sxi,syi,xi,yi I 
c INITiALISE 
c 

c 

•••••••••• 
double preciaion sxi (0:60000,2I, syi (0:60000,2) 
double precision xi 10:60000,2,2), yiI0:60000,2.2) 
double precision rxi 10:60000,21, ryi 10:60000,21 
inteuer ibps,ibpsym, sa(4), ab(2), sboldl2l,sbostl2,2) 
double precision qa16x 10: 1,0: 1,0: 1,0: 11, qa16y 10: 1,0: 1,0: 1,0:1) 
double precision sxl-402:50900,2I, Syl-Q02:50900,2) 
double precision bSXI-402:50900,21, bsyl-402:50900,21 
double precision w, Q05daf, g05ddf 
double precision t10:2001 

,double precision blsxl-402:50900,2I, blsy{-402:50900,2) 
double precision xfadl-QOO:b050,2,2I, yfadl- 1100:6050,2.2) 
integer ifadst(2,21. iystl2,2) 
double precision xl-1160:50900,2,2), yl-1160:50900,2,2) 
double precision al6,3201 
intelZer num, kmax, inter, konst. isubs 

'double precisi~n fblsx(-Q02:50900,2). fblsyl-402:50900.2) 
double precision wxl-402:50900,2J, wyl-402:50YOO,2) 
double precision rpowx(2), rpowyl21, wpowx, wpowy 
double precision spowx{2',spowy(2), ypowx(2),ypowyl21 

'double precision snrdb, ws~, snrsnr 
double precision nfblsxl-402:S0900,2), nfblsY{-~02:50900,2) 
double precision rxt-Q02:50900,21, ryl-402:50900,21 
Integer 1, j. k, n, isampl,ispsym, itaps 
integer jsampl,jspsym 
Integer tpacl, irtsym, irt 
Integer iant,ianum, isia,lsinum 

'character.9 modsch 
double precision svar 
I nteRer i obl! 
Integer Idenc 
dOllble precision checkx10:60000,21, checkyIO:60000,21 

c ••• must set Ibpsym=no. of bi~s per symbol 
if Imodsch.eq.'QPSK') then 

ibpsym '" 2 
elseiflmodsch.eq.'16-pt CAM') then 

ibpsym ~ 4 
else 
PRINT.,' CANNOT GENERATE DATA FOR THIS MOl). SCH.' 
stop 
endif 

c ' ••• if idenc=l then differentially encode random data bits 
idenc=l 

if tidenc.eq. 01 then 
PRINT* , 'COHERENT ENCODING' 

elseiflidenc.eq. 1) then 
PRINT.,'DIFFERENTIAL ENCODING' 

else 
PRINT*,' idenc" ERROR' 
stop 

end I r 
I spsym= 1 

c 
c 

c 
c 
c 
c 

c 

c 

c 
c 
c 
c 
c 

c 

c 
c 

Istart=Q 
ltaps:.l 

".If jpsfil=l 
••• at rate of 
jpsfilcl 
if {jpsfll.eq. 

jspsym=l1 
else 

jspsym=l 
endif 
irt=O 

then do pulseshapine fllterlne (root-raised-cos) . 
jspsym. 

I then 

*-_if iobll=O then read in fadinQ arrays from stored files 
* •• eIseif lobl!:1 then generate fading in subroutine srade 
_ •• elsetf iobli:2 then set up I'ading files manually (constant) 
iobli=2 
if (iobll.eq. 0 I then 

PRINT.,'Read in fading arrays from stored files' 
elselfliobli .eq. 1) then 

PRINT.,'Cenerate fading in subroutine sfade' 
elseifliobll.eq. 2) then 

PRINT.,'Set up fadinQ files manually tconstanL)' 
elseif(liobll.lt. OI.or.lioblt.Bt, 2» then 

PRINT •• ' INVALID iobIt' 
stop 
endif 

* •• store output files if iosbbc=l 
iosbbc=O 
*-.only vorks for no retralnin; or 11 to 12 retraining symbols 
if Illirtsym.ee.l ).and.lirtsym.le.31).or. lirtsym.Qe.13IJ then 

PRINT.,' NOT ENOUGH RETRAINING SYMBOLS (or too many)' 
stop 
endif 

if Ijpsfil.eq. 1 I then 
••• read In Tx/Rx filter tap gains 
••••••• FIR root-raised-cos fitter 
••• Also must allow for delay throuah these filters, 
••• i.e. centre of first symbol must arrive a!'ter receiver filter .Il-. at time t=O listart: istart - total delay) 
if Ijspsym.eq. 21 then 

openlunit=7, file='rc_s2', form='formatted' 
elseifljspsym.eq. 4) then 

opentunit=7, file='rc_s4', form='formatted' 
elseil'ljspSym.eq. 81 then 

open(unlt=?, file='rc_s8', form='formatted' 
elseif{jspsym.eq.16) then 

open{unit:7, file='rc_s16', form='rormatted' J 

else 
PRINT*,'Root-Raised-Cos filter coeffs not available' 
stop 
endlf 

read 17,. I i taps 
readl?,.) Itlt I, i=O.itaps-l ,1) 
close(7) 
••• total Tx Rx filterin~ delay ls itaps-l 
i start= t start- (i tapS-I I 
Prlnt.,itaps,' taps In Tx (and Rxl filter' 

endif 
Le. read tn Tx/Rx filter taps endif 

••• initiallse all differential codina bits to zero 



c 
c 

c 

c 

c 

c 

73 

do ?3 isiQ=I,isinum,1 
sbostll,isilll=O 
sbost (2, isic: ),,0 

continue 
".set up bit mappine for 
••• Gray coded 16-pt QAM 
qaI6xIO.O.O,OI -3.0dO 
qa16ytO,O,O,O) -3.0dO 
qaI6xtO.O,O.I) -1.0dO 
qa16ytO.O,O,1J -3.0dO 
qa16xIO.O,I.01 -3.0dO 
qa16y10,O,I,O) -1.OdO 
qaI6xIO,0,I,l) -1.OdO 
qaI6yIO,O,I,I) -1.OdO 
qaI6x!0.',O.0) 3.0dO 
qaI6yIO,I,O,O) -3.0dO 

if lidenc.eq. 0) then 
••• coherent 

qaI6xtO,l.0.1) 
qaI6yIO.l,O, I) 
qaI6xIO,I.I,O) 
qaI6yIO,I,I.0) 

else 
••• differentIal 

qal6x(O,I,O,11 
qa16ylO,I,O,II 
qaI6xIO.l,I.0) 
qaI6ytO.I.l,O) 

endif 

1.0dO 
-3.0dO 

3.0dO 
-1.OdO 

3.0dO 
-1.0dO 

1.0dO 
-3.0dO 

qa16xtO,I,I,I) I.OdO 
qal6y 10,1.1. 1) -1.OdO 
qaI6xll.0~O,O) -3.0dO 
qalbyl',O,O,O) 3.0dO 

if (i denc. eq. 0) then 
.'.coherent 

qa16x(I,O,O,11 
qalbyl1,O,O,1 , 
qal6xtl,O,1.01 
qa16yll,O,l.01 

else 
••• dlfferential 

-1.0dO 
J.OdO 

-3.0dO 
1.0dO 

qaI6xI',O,O,I) -3.0dO 
qal6ytl,O,O.11 1.0dO 
qaI6xll.0.1.0) -1.OdO 
qa16yl',0,I,OI 3.0dO 

end if ' 
qaI6x(I,O,I,I) 
qal6yl',O,I,1 ) 
qaI6x(I,I.0,O) 
qal6yll,1,O,O) 
qaI6xll.1.0,1 ) 
qal6yll,I,O,I) 
qa16x 11,1,1,0) 
qaI6y(I,I.1,O) 
qal6x 11,1,1,1) 
qa16y 11,1,1,1 I 
do 198 1:::0.1,1· 
do 198 j=O,I.1 
do 19B k=O,1 ,I 
no l rJH 1=0,1,1 

-1.0dO 
I.OdO 
3.0dO 
3.0dO 
1.0dO 
3.0dO 
3.0dO 
1.0dO 
1.0dO 
1.0dO 

coherent/difrerentially and 
signal 

c 

c 

c 
c 

196 

199 

99 

6665 
8883 
8881 

continue 
••• initialise all data symbols to zero 
do 199 isig=I,lsinum,1 
do 199 i=-12.litaps-I )I,isampl,l 
sxli ,lsiQ)=O.OdO 
syli,isigl=O.OdO 

continue 
••• calculate stand. dev. for noise to give required 
wad ~ dsqrtlsvar*O.5dO*10 •• I-O.ldO.snrdbll 

if liobl1.eq. 0) then 
••• read in Rayleiih fadine components 
••••• sampled every 1/600 secs ••••• 
Print.,'READ In fadine arrays from ftles' 
do 99 lant:::I,ianum,1 
do 99 Isie:::I,lsinum,1 

If I liant.eq.l I.and.lisig.eq. 1 I) then 
openlunit:::7, I"ile='xfadal', form='formatted' 
openlunit=a, file:'yfactal'. form:'formatted') 

elselflliant.eq. 1 I.and. Ilsig.eq. 2)) then 
open(unit:7, file:'xfada2'. form='formatted') 
openlunlt=H, file:'yfada2'. form='formatted" 

eIseiflliant.eq. 2).and. !isig.eq. 1 I I then 
openlunit=7, flle1:'xfadbl'. form='formatt.ed" 
openCunit:::a, flle='Yfadbl', form='formatted') 
• elaeiflliant.eq. 2I.and.lisilll.eq. 211 then 
openlunit=7, file:::'xfadb2', form='formatted" 
openlunit=8, flle:'yfadb2', form='formatted' 

else 
PRINT*,'FADING ARRAYs NOT AVAILABLE' 
stop 

endif 
read!?,.) Ixfadll,isig,iant), i=I,isampl/intcr+20,l) 
readI8 •• ) Iyfadlt .isia.tant), i=I,isampl/inter+20,1) 
close I?) 
close CO) 
continue 

elseiftiobll.eq. 1) then 
Print., ' SUBROUTINE sfade' 
call sfadelisampl,jspsym,inter,isinum,ianum, 

• xfad,yfadl 
Print','RETURNED sfade' 
do 8681 iant:l.ianum,1 
if I iant.eq. 1) Print.,' Antenna a' 
If {iant.eq. 21 Print. •• ·Ant.enna b' 
Print.,' i xfad yrad' 

do 8683 1"1. (isampl/inter)+50.1 
if li.eq. 3) i=lisampl/interl+50-1 
do 8885 iste:1.isinum,l 

Print.,'SJGNAL ',isle: 
Print 8001, 1, xfadli,tsie,iantl,yfadli,isig,iantl 

continue 
continue 

continue 
eJseifliobll.eq. 21 then 

Prinu.'sET UP FADING FILES MANUALLY (CONSTANT!!)' 
do 991 iant:::l,ianum.1 
do 991 lslg=1,!stnum,1 
do 991 1=I,lisampl/int.er .201,1 

if tiaig.eq. 1) then 
xft'lc1II.I~ip..It'lntl = 1.0c10 

snrdb 



Yfadli. lsle,iant) = O.OdD 
elseiflisie.eq. 2) then 

xfadli,isie.iant) 2.0dO 
Yfad(i.isic.iant} " O.OdO 

endir 
991 cant i nue 

endif 
c --.must set ifadst=O. tfadst is the number of the fad array 
c .*. that is read in next into the channel arrays 

do 98 iant=l.ianum.l 
do 96 i::lie=1,isinum,1 
tfadatt isie, lent )=0 

96 continue 
c **'read in array a for interpolation 
c *-*INTERPOLATION 
c '*.Data sienal 12000 5ymbols per sec 
c •• * therefore, if sampl ing once per symbol. 
c ••• must interpolate each sample 20 times 
C H. i.e. 20*600" 12000 

kmax=inter*jspsym 
PRINT*.'600 fADING SAMPLES PER SEC, INTERPOLATED ',kmax,' TIMES' 
PRINT',' i.e.' ,600*lnter.' symbols per sec \lith' 
PRINT*,' ',jspsym,' samples per symbol' 

c .'.read in matrix a 
if Ikmax .eq. 10) then 

openlunlt m7, file~' interal0'. forrn='formatted' 
elseiflkmax .eq. 20) then 

openlunlt='7, file:' Intera20', form"'formatted' 
elseiflkmax.eq. qO) then 

open(unit=7. file='!ntera40', form='formatted' 
elseiflkmax.eq. 80) then 

openlunlt=7, fl1e='lntera60'. form='formatted' 
elseiflkmax.eq. 160) then 

openlunlt=7. rile'" Intera160', form:::'formatted') 
elseiflkmax.eq. 320} then 

openlunit=7. [ile"'Intera320'. form='[ormatted' J 
else 

.PRINT',' INTERPOLATING matrix not available' 
st.op 
endif 

readt?,*} num 
readt"!,') (Ialn,k), n=I,n\lm,I). k c l,kmax,ll 
close(7) 

c "'seed inteeer for data and noise is 6, Ifor fading 9) 
c PRINT',' random seed inteeer for data and noise' 
c call ~05ccf 

PRINT.,' seed inteeer 89 for data and noise' 
call g05cbrl891 

c -- use seed 89 for estimation curves 
c 
c 

c 
c 

c 

... RECE I VED SAMPLES ARE CALCULATED 1Nl bl nurn BLOCKS 
Iblnum~jspsyrn/ispsym 

do 21 iblock=l,iblnum,1 

... GENERATE THE RANDOM. BANDLIMJl'ED SIGNAL FOR EACH USER 
do 11 isle;l.isinum,l 
"*reset sbold's [or each sIenal in each block 
sboldll) sbostll,isia) 
sboldl21 " sbost(2,isiC) 

c 

c 
c 

c 
. c 

c 
c 
c 
c 

... GENERATE RANDOM SIGNAL 

• 

Print. •• ·GENERATE RANDOM' ,modsch.' ~IGNAL ',isle 
if (idenc.eq. 1) then 

Print-,' with DIFFERENTIAL ENCODING and GHAV CODED BIT MAPPING' 
else 

PrJnt •• ' with COHERENT ENCODING and GRAY CODED BIT HAPPING' 
endlf 

irt=O 
do 100 i::istart.isampl.jspsym 
1r ({iblock.ne. 1I.and.(1.1e. 0» aoto 100 
Either set up fixed sequences for retrainine. 
or eenerate a random pair of symbols 

iconst.=lsampl*(iblock-l I 
If ((modliconst+i+titaps-l 1,lpacl.jspsym).eq. 0) .and. 

<lrtsym .ne. 0) .or. (irt .ne. 0)) t.hen 
***retralnine symbol no. irt 
*** irt = 0.1.2 ...... lrtsym-1 
••• sl rotates anticlockwise st.artlne from ... 
*_*52 rotates ... clockwise startlnll from 

if (lsiQ.eq. 1) then 

-1-j ror QPSK 
-3-j3 for 1 b-pt 
-I +J for QPSK 
-3tj3 for 16-pt 

if ((Irt.eq.Ol.or.ltrt.eq.4).or. Ilrt.eq.tll) then 
SXti,15ig) :: -1.0dO 
syli.i:lill) " -1.0dO 

eisei[( (irt.eq.l J.or.(lrt.eq.51.or.(irt.eq.9») then 
sxlt.isig) " +1.0dO 
syii,lsie) = -!.OdO 

elseIf(IIrt..eq.2).or. (Irt.eq.6).or. (irt.eq.IO») then 
sx(i,isie) = .1.0dO 
syli,isie) :: +1.0dO 

elseifl IIrt.eq.31.or.(lrt.eq.7).or.(irt.eq.11)) then 
9xli,isIel -1.0dD 
syli,isl(O:: +1.0dO 

endif 
elseiftisie.eq. 21 then 

if «irt.eq.Ol.or.(lrt.eq.4I.or.(irt.eq.8l) then 
sx(i,ishP :: -1.0dO 
syli,isIQ) " .'.0dO 

elseII"1 lirt.eq.l i.or. lirt..eq.SI.or.lirt.eq.91) then 
sxti,isie) " .1.0dO 
Bylt.isle) " .'.0dO 

elseifl lirt.eq.21.or. Ilrt..eq.6}.or. (Irt..eq.10)} then 
sXli,islip:: .1.0dO 
syli.isie) = -1.0dO 

elselfllirt.eq.3I.or. (irt.eq.7).or. lirt..eq.11 J I then 
sxll.lsig) -1.0dD 
syli,isiC) " -1.0dO 

endif 
endir 

If Imodsch.eq.'16-Pt QAM') then 
sxli,isiel sxli,tsiQ}*3.0dO 
syli,lsle) " sy(i,isi~J*3.0dO 

endif 
if lirt .eq.lirt.sym-1») then 

irt"'O 
sboJd (1 )=0 
sboldl21"O 

else 
irt::trt+l 

QAH 

QAH 



endif 
else 

c _"Random symbols, NOT retrai~inc 
.do 112 lbps=I,ibpsym,1 

\,!=O.OdO 
w=~05darC-I .OdO,'! .OdO) 
if (w .it. O.OdO) then 
sa I1 bps) () 

else 
sa t i bps) 

endlr 
112 continue 

if (idenc.eq. 1) then 
c "'DIFFERENTIALLY ENCODE RANDOM DATA BITS 

If ICsboIdll ).eq. O).and.lsboldC21.eq. 0) then 
sb Cl) = sa 11 1 
sb(2l = sa(2J 

elseifICsbold(ll.eq'. 01.and.lshold(2l.eq. I») then 
If IIsa(1 Leq. Ol.and. taal2l.eq. 0)) then 
sbll)":>0 
sb (2) " 1 

elseil'lIsa(I).eq. OJ.and.!sa(2I.eq. I» then 
ab I 1) " 1 
sb(2) ,. 1 

elselftlsalll.eq. 1 ).and. (saI2).eq. I11 then 
sb 11 J 1 
ab (2) 0 

else 
ab (1 1 0 
sb 121 0 

end! f 
eiseifllsboldll ).eq. 1 ).and.(sboldI2l.eq. 1) 
if IIsalll.eq. O).and.lsa(2I.eq. 011 then 
sb(1)=1 
sb (2) :; 1 

elseif(!aa(lJ.eq. Ol.and.lsat21.eq. Il) then 
sbt 1) " I 
sbl21 = 0 

elseiftlsalll.eq. ll.and.laaI2I.eq. I)) then 
sb 11 ) 0 
sb(2) 0 

else 
ab t 1 I 0 
sb!2l 

endif 
else 

if l{sa{ll.eq. 0l.and.tsaI2I.eq. 0)1 then 
sb t I l = 1 
sbl21 :: 0 

elseifllsall).eq. 01.and.lsat21.eq. 1)1 t.hen 
sb 11 I • 0 
ab(2) ,. 0 

elself!lsaf1l.eq. II.and.lsa(2l.eq. 1)) then 
sbC I) 0 
sb 121 1 

else 
sb 11 I 
sb (21 

endif 
endif 

then 

c 

c 
c 

c 

c 
c 

c 

c 

c 

120 
100 

161 

299 

212 
211 

else 
, .. COHERENT ENCODI NG OF RANDOM DATA B I 1'5 
sb I I) sa (I' 
sb!:?) " sa(2) 

endif 
'''i.e. idenc endif! 

' .. do bit mappine DIFFERENTIAL ANn GRAY COOED 
if Imodsch.eq.'QPSK' I then 
if (shI2l.eq. 0) then 
sxll,isie' -1.OdO 

else 
sxll,isiel 1.0dO 

endif 
if (sbll ).eq. 0) then 
Syll,lsiel -1.OdO 

else 
Syli,lsie:l 1.0dO 

endif 
elseif tmodsch.eq. '16-pt QAt1') then 
sxll,islel qaI6xlsblll;sb(21,sal3l,sa(4)1 
sy(i,isie):: qaI6ylsbll),sbI2I,sal3l,sallll) 

else 
PRINT. ,'CANNOT BIT HAP this mod. sch.' 
stop 
endif 
••• set up sbold's for next sample 
sbold(ll abC1' 
sbold(2) = sb(2) 
endif 
."i.e. retraining or random endif 
' •• allow for jspsym samples per symbol 
do 120 j:::l ,{jspsym-l 1,1 
sxli.j,isig) O.OdO 
syll.J,isig) ::: O.OdO 

continue 
continue 
' •• save sbold 
sbost(l,isig' 
sbostl2,isie) 

of this sirlnal 
sboldll ) 

for next block 

= sbold (2) 

if IJpsfil .ne. 1) then 
do 181 i:::i~tart,isampl ,I 
blaxli,isial sxli,isie) 
blsyli,isiel syli,isig) 
bsxli ,isie) sxli ,Islg) 
bsyll,isiel syct,isiel 

continue 
else 

... CONVOLUTION OF DATA SIGNAL UITH 
Pr i nt., 'CONVOLUTION OF " modsch, ' 
do 299 1:-(2.litaps-l l',isampl,1 
blsxll,iBi~1 O.OdO 
blsyli.isiel :: O.OdO 

continue 
do 211 i:::istart,isampl,1 
do 212 m=O,itaps-l,1 

blsxli ,isie) blsx(i ,islel 
blsyli,isig) = blsYli,isigl 

continue 
continue 

Tx FILTER 
SIGNAL \.11TH Tx fiLTER' 



endif 
'1 ,c,ontinue 

C 'lIB·i.e. aenerate ranaOl,i !--l'Indlimit.ed sit) for each Isl!: 
c 
c ... REPEAT fOR 2 SIGNAl.S TIiEN FOR 2 ANTENNAE 

do 1 iant=l, ianum,1 
do 2 isie=1,isinum,' 
Print 8010 
Print.,' antenna 1.lant,' sienal • ,isle 

c · .. RAYLEIGH FADING 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Do Rayleigh fadine. noise and receiver filterin~ on this SAME 
c siuna1 twice. i.e. Once for each antenna channel 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ••• important to initialise fading arrays to zero 

kons t= (nuroJ2 j*kmax 

c 

c 

c 

c 

c 
c 

do 391 i=istart-konst,isampJ+konst,1 
xti,isie,iantl O.OdO 
yli,isie,iant) = O.OdO 

391 cont.inue 
do )92 I=istart-konst,isampl+konst,kmax 
i fadst lis Ill, tant):; 1 fadst I isia, iant I tl 
iystllsiEl,iantl::i 

x 1 I, Isle, lant I xfad I il'ad9tt isle, lant I, Isie, lant I 
ylt,isle,lantl :: yfadllfadsttisia,iant),isill,iantl 

392 contInue 

>1J 

>12 
Jll 

J21 

2 

••• set up ifadstl •. , .. 1 ready for next block 
tradst 1 tsill, lant 1= ifadst.t isie, lant I-Inumt' ) 
••• INTERPOLATE each noise sample 11/600 sec) kmax times 
do 311 12Istarttlnum/2).kmax,isarnpltlnum/21.kmax,kmax 

do 312 k:2,kmax,1 
isubs :; l-(num/21'kmax tk-, 
do 313 n:l,num,1 
xlisubs,isia,iantl xlisUbs,isie,iantl t 

• xli-In-l )'kmax,lsia,iant)'aln,k) 
ylisubs,isle,lantl ylisUbs,isie,iantl t 

• Yli-In-l )Ikmax,isig,iant)'aln,kl 
continue 

if (iobli.eq. 2) then 
xllsubs,lsia,iant) 
ylisubs,isia,iant) 

endlf 
continue 

continue 

x I I - tnum/2 I.kmax ,Iste, lant) 
Y(i-(num/21 ' kmax,isig,iantl 

... form quadrature compts. of faded bandl lmi ted Data signal 
do 321 l:istart,isaJ'Dpl,l 
fblsxli,istal blsxli ,isiel.xll .isle,iantl 

• blsyll,isiel'yli,isig,lantJ 
fblsyll,isia) blsxti ,isiglly!1 ,isla,lantl t 

• blsy(i,isicllxll,isia,iantl 
continue 

continue 
i.e. do for all sienals in this antenna channel 

do 1191 i=istart,isampl,1 
wx(i,iantJ O.OdO 
wyll,lant} " O.OdO 

continue 
if Isnrdb .f!C. lOOO.OdO) then 

Prlntl,'NO noise' 
else 

c ... ADDITIVE \oIIIlTE GAUSSIAN NOISE 
Printll,'A\lGN SNR" ',snrdb,' dH' 

c •• _generate isampl random noise compts wx 1 wy 
do 1111 i:istart,isampl,1 

w : e05ddfIO.OdO,wsd) 
wx(l,lantl " W 

'01 " e05ddf(O.OdO,wsdl 
wyll,iantJ " W 

I.Jl1 continue 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Now, received sienal is fblsx{l,) and fblsyti, ) and 
c received noise Is ux(l, } and wy(I, J 
c Calculate averaae sianal power and average noise pouer 
c for EACH sienal in this antenna channel 
c for samples 1 to isampl 
c REMEMBER!!! calculate average slenal power per BIT 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ••• total noise power 

wpoux =0. OdO 
upouy=O.OdO 

c 
c 

c 
c 
c 
c 

do ~2' i:ltistart/2,lsampltistart/2,1 
wpowx " wpowx t wxll,iantl.wxli,lantJ 
wpowy : upowy t wyll ,iantl.wyll ,iant) 

q21 cont i nue 

JI22 

_'Itotal signal pOWer, channel power and received signal 
••• power for EACH sienal 
do q22 isie:! ,lslnum,l 
spowx(fsial O.OdO 
spowyllsieJ O.OdO 
ypowxllsiel O.OdO 
ypowylisigl O.OdO 
rpowxlIsiel O.OdO 
rpowytisial O. OdO 
do 1122 1;1 tlstart/2,isampltistart/2,1 
spowx(isie) spowxlisieJ t blsxli,isiel'bisxli ,islel 
spowylisieJ spowylisigl t blsy(i,isiel'blsy(i ,isiElI 
ypowXlisigJ ypowxlisigl xli,isiIZ,iantJ.xli.lsill,iantJ 
ypowyllsie) ypowytisie) t yli,isle,iantl'yti .isi~,lant) 
rpowxlisig) rpowxllsiel t fbJsxli ,isigJ'fblsx(i ,isle. 
rpowylislel rpowy(isiel t fblsy(i,isiel'fblsy(i,isiel 

continue 
••• averaee transmitted 9i~nal energy per bit for each user, Eb .1. mean-square value of channel amplitude 
••• average received sienal energy per bit for each \Iser 
••• Measured SNH as 10loel0lEb/NOI 
do q2 '1 isie"'l.isinum,1 
spoux(isiel (9pOwxlisiel.dbleljspsyrnll/dblelisarnpJlIlbpsym) 
spowylisia) (spowy{isig)'dbleIJspsym)l/dblellsampl,ibpsyrn) 
ypowx(isia) YPowxlisie)/dbielisampl I 
ypowy(isia) ypowytlsigl/dble(isampl) 
rpowx (i 5 I e I I rpowx I i si e I/dbl e (jspsym) ) Idbl e 1 i sampl. i bpsym) 
rpowylislgl Irpowylisia)/dble(jspsymll/dblelisampl'ibpsyml 

Print.,'Antenna:' ,iant,' Signal=' ,Islg 
Prlnt •• modsch,' Bits per symbol:' ,ibpsym 
Print.,' Jspsym:' ,jspsym,' isampi:', isampl 
Print.,'Averaae Tx enerQ'y per bit .... real ", ,spowxlisiQ'1 
Print','Averaee Tx enerC'y per bit .... Imag:' ,spowylisigl 
Printl,' Eh ", ,spowxlisia1tspowylisiaJ 



c 
c 

c 

c 

c 

c 
c 

425 

1/61 

581 

599 

512 
511 

1 

averace channel power real =' ,ypolJxCisial 
averaee channel power Imae =' .YPowylisiel 
averalle channel power =' ,ypowxllsi~l+ypowylisifl) 

Print. •• • 
Print •• ' 
Print.,' 
Pr I nt., ' 
Pr I nt •• ' 
Print.,' 
continue 

averaee Rx energy per bit, ... real =' ,rpowxlisia) 
averace Rx enerQY per 
averaae Rx energy per 

bit .... imaa =' .rpowyCishP 
bit,,' ,rpowxlisig)+rpowylisial. 

WPOIJX = wpowx/dblelisampl I 
IJPowy m wpowy/dblellsampl) 
Prlnt •• 'ave'raee noise power 
Print.·.· 

real s' ,IJPOWX 
i mtlll "', wpowy 

Print..,'average noise power measured ',wPOWXtWpolJY 
Pri nt..,' theoretical = • ,2.0dO.wsd.wsd 

do 1125 isle=l.isinum,l 
snrsnr = 10.0dO.dloe10«(spowxtisiel +spowylisie»/twpowx 
Print.,' MEASURED SNR: 101oe10lEb/NOI' 

+wpowy) ) 

Print.,'sianal ',isie,' antenna' ,lant,' SNR=' ,s!,!rsnr.' dB' 
continue 

endif 

... ADD TOGETHER: RECEIVED FADING SIGNALS AND A\.IGN 
Print •• ' ADD TOCETHER SIGNALStNOISE IN CHANNEL' 
do JI61 1=-(2.lit.aps-1 »,isampl ,1 
nfblsxli,iantJ=O.qdO 
nfblsyll.lant)=O.OdO 
do 1162 isia=I,isintlm,l 
.nfbl!txll,iantl nfbl!txll,iantl t fblsxli,isiiI) 
nfblsylt.lant) : nfblsyCi,tant) I fblsy(i.isiel 

continue 
nfblsxtl,lantl 
nfblsyCi,iantJ 
continue 

nfblsxli,iantl wxll,iantl 
nfblsyli,iantl + wyli ,Iant) 

if (jpsftl .ne. 1 I t.hen 
do 561 l-istart.isampl,l 
rxli .iantl nfblsx(i,iant) 
ryCi.iant) = nfblsy(i,iant) 

continue 
else 

..• CONVOLUTION OF NOISY fAlliNG SIGNAL I,lJTH Rx FILTER 
Prlnt.,'Rx FILTER' 
do 599 i=-12.(jtaps-1 ».isampl ,1 
rxti,iant) O.OdO 
ryli .iantl : O.OdO 

continue 
do 511 i m ist.art,isampl,l 
do 512 m=O,itaps-1,1 
rxtl,iantl rxfi,iant) .. t.tmH1nfblsx(i-m.iant) 
ryli,iant) = ryli,iant) + tCm)'nfblsyli-m,iant) 

continue 
continue 

endif 

continue 
.'.I.e. for antennae 1 ~ 2 

c .. OUTPUT RESULTS FOR SAHPLJNG RATE ispsym 
ccCCCCCCCCCCCCCCccccccccccccccccccccccccccccccccccccccccccccccc 
c Must out.put results. i.e. samples Cri 1, fsl J, {yl] as required 
c in the rp.ceiver. 

c REMEMBER:- Only samples Cri] are actualJy available, but t.he 
c corresponding [sil,[yil are required for' comparison PlJrposes. 
c Samples [si] are delayed throuQh 2 filters i.e. delay of 50 
c Samples [yi) are delayed throuah 1 filter i.e. delay of 25. 
c So, the samples must be picked out at the rate. jspsym/ispsym 
c IJith their delays normalised to correspond with (r'il. 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccCccc 

ji~jspsym/ispsym 

llast=isampl/ji 
iconst= i last. , i block-l ) 

ifllji*ilast.),ne.isampl I t.hen 
PRINT •• ' INVALID isampl--- isampl/ljspsym/lspsyml MUST BE INTEGER' 
st.op 

endif 
do 611 lant=1.ianum.1 
do 611 i=O.ilast.l 

rxi (iconst+i .iant.1 
ryi (iconst+i.iant) 

611 continue 
do 612 isia=I,lslnum,l 
do 612 I=O.ilast,l 

sxi liconst.+i,isig) 
syi liconst+i .isig) 

612 continue 
do 613 iant=I,ianum.l 
do 613 isie"'.isinum,1 
do 613 I~O,llast.l 

rx II.ji. lant) 
ryll.ji ,iant) 

sxCi.jl-(itaps-l ).isial 
sy{i.ji-litaps-l',lslel 

xi liconst+i .isIU,lant.) 
yl (iconst+1 ,Isia,iant) 

XII.jl-0.5.litaps-1 ),isle.lantl 
yli.jl-O.5'lltaps-l,.isie,lant) 

613 cont.inue 
ctt.tttt.t.tttttt.t.ttt.tt.ttt.ttttttttt.ttt.ttttttttt.ttttttttt 
c PRINT.,'checko loop 651 workine. ADD c ..... for flnal run!!' 
c do 651 iant=l,ianum,l 
c do 651 t=iconst,iconst+llast.1 
c checkxli.iant.I=O.OdO 
c checky I 1. lant) =0 .OdO 
c do 651 isig=l,isinum,1 
C checkxti,lant.J "checkxli,iantlt sxilJ,isigl.xiti.isic,iant) -
c .c c c sylli,1silZ).yi(i,isie.lantl 
c checkyli,iant) =checkyli,iantlt sxili,isig)'yili,isie,iant} + 
c .c c c syili,isilll.xi(i,isilZ.iantl 

651 continue 
·c 
c c if I({osbbc .eQ. ll.and.liblock.eq. iblnum)) t,hen 
c PRINT','OUTPUT CHECK FILES' 
c openlunit:7, file='checkxo') 
c openlunit=8. file='checkyo'l 
c writet7 •• ) IIcheckx(i,iant). i::ll.isampl,l', iant.=l.lanum.lI 
c writeI8,.) (tcheckyli.iant). i=l,isampl.l', iant=l,ianum,l) 
c close(71 
c closetS) 
c c endif 
cttttt.tttttttttttt.ttttttttttttt.tt.ttttttttttt.ttttttttttt 

if liblock.ne. iblnuml then 
c ... RE-INITIALISE ARRAYS fOIt NEXT lH.OCK OF RECEIVED SAMPLES 
c 
c 

••• Only need to store 5, y. W arrays. All other arrays can be 
••• recovered from these vaJues 

do 712 isiQ=l.isinum,l 
do 7120 i,,-C2*llt.aps-l )1.0,1 
sxCi,isigl : sxllsampId,i::Jicn 



,syll,isie) = sytisampld,isieJ 
7120 continue 

do 112 i-I ,isampl ,I 
sxli,isig)=O.OdO 
syli ,isi~J=O.OdO 

712 continue 
do 114 iant=I,ianum,' 
do 71110 !=-t2.titaps-1J),O,' 

wxll,iant) wxlisampl.I,tant) 
wy (i ,tant I '" wy (isampl.i, iant) 

7140 continue 
do 714 i"',isampl,' 
. wx I i, iant I=O.OdO 
wyll,iant)~O.OdO 

7111 continue 
endif 

c ••• I.e. re-initialise ready for next block endif 
21 continue 

c ••• i .e. do next block 
if lispsym.eq. 2) then 

c •• -OOURLc SAMPLING, SET [5i-1/2J POINTS 
do 821 isle:l,lsinum,' 

c 
c 

do 821 1=1 .isampl " 
irlsxili,isiel.eq.O.OdO) 

_ sxi (I ,isie)=0.5dO-lsxl li-l, isilZ)+sxi It.'.isigJ) 
lflsyitl,islg).eq. O.OdO) 

_ sylti,isiQ'1=O.5dO.tsyili-I,isie)+syitl.l.isie 11 

621 continue 
endif 
•• _ Ispsym endif! 

If tiosbbc .eq. 1 I then 
c ... OUTPUT RESULTS 

openlunit=1. file='sxio' 
openlunit=8, filc""syio' 1 
.writeI1,-) I Isxl tl,isiel, i=1 ,isampl ,I I. isie=! ,isinum,l) 
writelB,.1 I (syl li,isle), i=1 ,isampl ,I I, isle:l ,lsinum,l I 
closet71 
closel81 
opentunit=7. file='xio') 
open(unit=B, fJle='yio') 
writeI7,-) (I(xi (i,lsie,iant), le1 ,isampl ,I I, isle=1 ,isinum,l l, 

_ iant=l,ianum,l) 
writetB,.) II Iyi li,isie,iant), 1:1 ,isampl ,I I, isia=1 ,isinum,l l, 

• iant"',ia.num,l) 
close171 
close(6) 
open(unit:7, rile='rxio') 
openlunit:8, fJle:'rylo') 
writet7,.) t (rxi li ,iantl, 1=1 ,isampl ,I), iant=l ,ianum,l) 
writelB,I) Ilryi II,iant), 1=1 ,lsampl,l), iant:! ,lanum,l) 
closel?) 
close(8) 
opentunit=7, rile='rxo', form;'formatted') 
open(unlt=8, rile='ryo', rorm:'formatted'l 
wrlteI7,.)I(rxti ,iant), 1=1 ,isampl ,I " iant=1 ,ianum,l) 
writetB,I) Itrytl,iantl, 1=1 ,isampl,I), tant:1 ,lanum,l) 
close(7) 
closel81 

c 

c 
c 

9001 
999,5 

9002 
9993 
9991 

endlf 

do 9991 tant=!,ianum,1 
ir(iant.eq.l) Print.,'ANTENNA a' 
If(lant.eq.2) Print_,'ANTENNA b' 
Print-,' i rxi ryi sxi ayi xl yi' 

do 9993 1=1, isampl,l 
ir 11.eq. 3) i=iaampl-l 

do 9995 isie=I,isinum,1 
Print_,'SIGNAL ',isle 
Print.,! 
Print 9001 ,sxi II ,islgJ,syt li,isial,xi li ,tsig,iant),yi (i,isie,iant) 
rormat(12x, 2f9.1. 2fI2.1.l) 

continue 
Print 9002, rxi II ,tant), ryili ,iant) 
rormattlOx, 2f9.1.l) 
continue 

continue. 

return 
end 



••••••••••••••••• 
* SBEQP.FORTRAN • 
••••••••••••••••• 

c ..... 7 .........•.. 20 .....•.. 30 ........ 40 ..•..... 50 ........ 60 •....... 70. 

c 
c 

c 
c 

c 

subroutine sbeqptisinum,ianum,isampl,lvlen,ipacl ,irtsym, 
ief,iiplot, sx,sy,sxdet,sydet,xpplo,ypplo) 

1nl tiaJ ise ........... 
double precision sx10:60000,21, sy10:60000,21 
double precision sXdetI0:60000,2), sydetIO:60000,2) 
double precision xppJol-119:60000,2,2), ypplOI-119:60000,2,2) 
inteeer isinum,ianum,isampl,tvlen,istart,ief,iiplot 
inteeer lbitctO:2),ibiteI0:2) 
inteeer 1, isie, ibps, ibpsym 
integer sa(2), sbl21, sboJdt2) 
integer sadet(2), sbdet(2), sbdold(2) 
inteeer iefdI0:120000) 
double precision sdi 10:60000,2) 
inteeer iers, rn, mmax 
double precision acfslO:201 

.... if iefs=l then form autocorrelation fn. of symbol errors 
lefs:O 
mmax"20 
•.. CHECK TRANSFER OF INFO FROM MAIN PROG 
Print .. ,' isinum: " lslnum,' ianum::', ianum,' isampl" , .isampl 
Print.,' ivlen:: ',ivlen,' ipacl::' .ipacl,' irtsym=' .irt.sym 
Print ... • lef:: • ,ief,' liplot=' ,liplot 
do 4991 tsie=1,{slnum,' 
Print." SIGNAL' .isia 
Print." i sx sy 

do 4993 1=I,lsampl,1 
sxdet 

, if 11.eq. 3) l=isampl-l 

sydet xpplo ypplo' 

Print 9q91 ,"I,sXII .isig).syli.isiel, sxdetli,isie),sydetli ,isiel 
9491 "formatli6, 12x, 2f9.1, 4x, 2f9.11 

do 4995 tant=I,ianum,1 
If(iant.eq.l) t.hen 
Print','ANTENNA a' 
endlr 
ifliant.eq.2) t.hen 
Print'.'ANTENNA b' 
endif 
Print 9002, xpplo(i,isig,lant), ypplo(i.isie,iant) 

9002 formatllOx, 2f9.41 
'1995, cont i nue 
1.J99J cont.inue 
11991 continue 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Count. the number of bit. errors for :-
c sil1nalls) with Gray codin~ only 
c AND --" -- Different.ial and Gray codine. 
c lAnd output error riles --(if lef;1) 
c and output 90ft decision Info files 
c --if (lef~l I.and.(iiplot::ivlenl 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ibpsym=2 
c ' •• i .e. QPSK has 2 bits per symbol 

If Ilvlen.eq. 1) then 
ist.art.~120 

Print. •• ' Give predictors' ,istart,' symhol~ to start-up' 

c 

c 

c 
c 
c 

c 

c 
c 
c 
c 

c 
c 
c 

22 

21 

11 

else 
istart;ivlen 

Print.,' Uive predictors one packet to start-up' 
endlf 
Print.,' BERs FOR QPSK SIGNALIS)' 
Print','COHERENT AND GRAY CODING' 

do 11 isie=I,isinum,1 
Print','COUNT NUMBER OF BIT ERRORS ... signal' ,isle 
••• init.ialise for each signal 
Ibitc!isili) = 0 
Ibitetisiel = 0 
••• QPSK slunal -- Coherent and Gray Coding 
do 21 i=istart., lisampl-ivlen-l 1,1 
••• Do decoding on actual sli I and on detected sll) 
••• By LOOK-UP TABLES 
•• -actual 
if layt! ,fstal.lt. a.OdO) then 

sa I 1 ) 0 
else 

sa I 1 ) 
endif 
if tax(1,ls:lg).lt. O.OdO) then 

sa (2) a 
else 

sa 121 
endi!' 
••• detected 
if tsydetti,isie).lt. O.OdOI then 

sadet 11 ) 0 
else 

sadet (1 ) 
endif 
if Isxdet(i,isia).lt. O.OdO) then 

sadet.121 0 
else 

sadetl21 
endif 
••• Keep running total of bit. errors for this 
••• coherent. and Gray coded QPSK signal. 
•• _00 not count bit. errors/correct for retralnlne symbols, 
••• skip past them. 

if Imodli,ipacl).ee.lrt.syml then 
do 22 ibps::l,ibpsym,1 

If (sallbps).eq.sadetlibpa)l then 
Ibitclislg) Ibitcliaig) t 1 

else 
Ibitellsigl ibitellsta) t 

endif 
continue 

endif 
continue 
••• i.e. loop 
••• alt error total of this sienal haa now been calculated 
••• Now print result.s 
PRINT','No. of BIT errors is ',iblt.e(isigl 
Print.,'No. of BITS correct Is ',ibitclisie) 
Print*,'c::====m:::===::===cc===::::::====::===::==::======' 
ber • dblelibiteliaig))/Idblelibite{isig)) • dble{ibitc(isia)) 
Prlnt.,'BIT ERROR HATE:: ',ber 

continue 



c 

2'1 

c 

.*.i .e. i9i~ loop 

ibit.CIQI·= 0 
ibitelO) " 0 

if lisinum .ne. 1 J then 

do 2q isle=1, isinum.l 
ibitclOI ibitcIO). Ibitcllsig) 
ibitelO) " iblte(QJ + ibitellsie) 

continue 
Print. 6010 
PRINT*, 'TOTAL No. of BIT errors is • ,JbitelQJ 
Print_, 'TOTAL No. of BITS correct is • ,ibitc(Q) 
Print •• ·========:================~=========:=======· 
her = dblelibiteIO»)/(dblelibitelO)) • dblelibitclQI)J 
Prlnt.,'BIT ERROR RATE FOH ALL' ,iainum,' SIGNALS = • ,ber 

endir 

c ..• count. bit errors with DIFFERENTIAL DECODING 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccccccc 
c 00 decoding of actual sI!) and detected sit) by LOOK-UP TABLES 
c do differential decodinll on actual 5(1) and on detect.ed sli) 
c accumulate bit errors as eoing along. 
c (form error file array as eoine along). 
c (form soft decision array as «oine alone) 
c ei ve BER resul ts 
r.ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

Print*,'DIFFERENTIAL AND GRAY CODING' 
do 51 isle=I, isinum,l' 

Print*,'COUNT NUMBER OF DIFFERENTIALLY CODED BIT ERRORS' 
Print.,' 
... initialise 
ibitc(lsigl=O 
ibitelisl!l)=O 
sho}dlll=O 
sbold(2);O 
sbdold(1 )=0 
sbdold(2)=0 

sianal • ,Isig 
for each signal 

c ••• QPSK sienal -- Differential and Gray Coding 
do 61 i=istart,lisampl-ivlen-l ),1 

c •• *00 decoding on actual sll) and on detected sli) 
c ••• ·By LOOK-UP TABLES 
c 

c 

••• actual 
if (syti.isiel.lt. a.OdO) then 

abll) 0 
else 

sb I I I 
endi!' 
if' tsxtl,lsiel.lt. O.OdOI then 
, sb 121 0 
else 

sbl21 
endif 
.'.detected 
if (sydctll,lsial.lt. O.OdOI then 
, sbdetll)" 0 
else 

sbdet (1 I 
endif 
if Isxdetli,isiC)'lt. a.OdOI then 

sbdetl21 = 0 
eJse 

c 
c 

c 

c 

sbdet(2) = 1 
endiC 
."00 differential decodine on actual slil and on detected sill 
··'actual 

11' «sb(1I.eq.sboldI1l1 .and. tsb(2I.eq.sbOld!2111 then 
sa (I 1=0 
sa121=0 

elsc!f ((sb(1l.ne.sbold{1)1 .and. Isb(2).ne.sbold(2») then 
sa 11 l = 1 
sa (2): 1 

else!f t (sbold(l l.eq. 01.and.lsbold(2'.eq. DI.and. 
• Isb!l) .eq.0).and.lsbI21 .eq.ll) then 

• 

• 

• 

aal1l"O 
sa (2 I: 1 

elseif' I(sboldll I.eq. Ol.and.lsbold(2).eq. 
Isb(1l .eq. 1l.and. (sb(2) .eq. 

sa 11 )=0 
sa 12 I =1 

I.and. 
)) 

elseif (lsbold(ll.eq. 1).and.lsboldI21.eq. I).and. 

then 

(sbl1l .eq. Il.and.lsb(2) .eq. Oil then 
sa (1 );0 

sa (21 = 1 
elseif (Isboldll).eq. 1).and.lsboldI21.Cq. O).and. 

Isbll) .eq.01.and.lsb(21 .eq.O)1 then 
sa 11 )=0 
sa (2) = 1 

else 
sa 1 I 1=1 
sa(2):0 

endif 
··.detected 
if 1 Isbdet (1 I. eq.sbdold (1» .and. (sbdet (2) .eq. sbdold (21 1 )then 

sadetlll=O 
sadet(2);O 

elseif( (sbdet(1 ).ne.sbdold(1 I).and. 
• (sbdett21.ne.sbdold(21)) then 

sadet(1)=1 
sadet(2)=1 

elseif (lsbdoldlll.eq. 0).and.(sbdoldI21.eq. Ol.and. 
• Isbdetlll .eq. 0I.and.lsbdet(21 .eq. III then 

sadet(1 )=0 
sadet(2)=1 

elseif (sbdold(I).eq. 0).and.(sbdoldI21.eq. II.and. 
(sbdet.(l1 .eq. 1>'and.(sbdet.12) .eq. 1») then 

sadetl1l"O 
sadet(2):1 

elseif l{sbdold(ll.eq. 1).and.(sbdold(21.eq. II.and. 
• Isbdet(l) .eq. 1).and.lsbdetI2) .eq. 0)1 then 

sadetll )"0 
sadetl21=1 

elseif (sbdoldI1).eq. 1'.and.lsbdoldI21.eq. Ol.and. 
• (sbdet(lI .eq. 0J.and.{sbdet(2) .eq. 0)1 then 

sadetl1l=O 
sadetl21:1 

else 
sadetl! )=1 
sadet(2)=O 

end!f 
•• 'set up sbold's for next symbol 
if Imodll,ipacll.r.q.(lrtsym-l») then 



c 
c 
c 
c 

sbold(1) " 0 
sbold(2) " 0 
sbdoldtl) 0 
sbdold(2) " 0 
else 

sholdll1 '" sbl1l 
sbold(2) ~ sb(2) 
sbdold(l) sbdet(ll 
sbdold{21 " sbdet(2) 
endif 

* •• Keep runnina total of bit errors I'or this 
•• '. differential and Gray coded QPSK signal. 
••• 00 not count bit errors/Correct for ret.raining symbols, 
.,. skip past them. 

if Imodll,ipacl ).ge.lrtsYIII) then 
do 62 ibpscl.1bpsym.l 

if (satihpsl.eq.sadetlibpsl) then 
ibitclisiQI lbitclisie1 1 
else 

IbitelisiCI ibitelisiel 
,end i r 

62 continue 
endl!' 

if lief.eq. ,) then 
c ... FORM ERROR FILE' (IF lEF:l) 

do 65 ihps=l,ibpsym.l 
i r (sadet (i bps J • eq. sa ( i bps ) J t.hen 
iefdli*ibpsym-ibpsymtibps) 0 

else 
iefdl!*ibpsym-ibpsymtibps) 

endif 
if (modli ,ipacl I.lt.irtsym) lefdfi.ibpsym-ibpsym+ibps)=9 

65 continue 
c ... FORM SOFT DECISION INFO (IF JEF=l AND I1PLOT=IVLENI 

If (iiplot.eQ. ivlen) then 
sdl(l,isiQI=O.OdO 
do 66 iant=l,ianum,' 
sdili,isiel " sdlli,isiel • xpploll,lsia,lanth.2 t 

" ypploll,isie.ianth'2 
66 continue 

C "'stop log of zero 

c 
61 

c 
c 

c 

if Isdili.isllP .It. 1.0d-91 then 
sdi (i,lsle) -99.0dO 

else 
. sdi(! ,isigl 10.0dO.rlloe10tsdi (i,lsie!) 
endif 

continue 

endif 
endif 
"Iief endif! 

'I'i.e. loop for I 
... OUTPUT ERROR FILES IIF IEF=1) 

II' lief.eq. 11 then 
'I 'output error files 
Pr I nt. I' output error f 1 J es' 

if (isia .eQ. 11 then 
openlunit"?, filez'efdlo', form:'formatted' 

elseifClsia .eQ. 21 then 
openCunlt=?, file='efd2o', rorm::'formatted' 

p I'~f> 

PRINT.,'Output Error file not. available' 
stop 

endlf 
writel?,') isampl.ibpsym 
writel?,') Ite,'dll), I:: tist.art.12-1 I, tisampl-ivlen-l )12,1) 
close(7) 

c ... OUTPUT SOFT DECISION INFO tlF JEF::l AN" IIPLOT=JVI.ENI 

c 

c 
c 
c 

c 
c 
c 

c 

c 
c 

c 

c 

if liiplot. .eq. Ivlen) then 
Print." output soft decision Inro files' 

if lisia .eQ. 11 then 
openlunit:r.7, file='sdidb10', form='formatt.ed' 

elseiflisia .eQ. 21 then 
openlunit=7. flle='sdidb20'. form"'l'ormatt.ed' 

else 
PRINT_,'Out.put soft decision fiie not available' 
stop 

endif 
writ.e(?,'} (sdi (I .isie). i=1 ,isampl-lvlen-1.1 l 

9522 formatI10f?3) 

60 

62 

81 

63 

closet?) 
endif 
.'.i.e. ilplot endif! 

endif 
•• _Ief endif 

· ••• Bit. error tot.al of this sienal has now been calculated 
".Now print results 
Print. •• • sienal '.isil! 
PRINT','No. of DIFFERENTIALLY CODED BIT errors is '.ibitelisilll 
-'_the only bit.s .detected are in samples 33 to isampl-32 
••• since the first 32 symbols assume perfect detection 
•• , and t.he last det.ected symbol is isampJ-32 
Print','No. of DIFFERENTIALLY COOED BITS correct is '.ibltc(isigl 
Print •• ·~:===================:=========:===========· 
ber : dblelibiteClsigl}/(dble(iblteCisIKJI t dble(ibitcllslgl) 
Printll,'HIT EHROH RATE with DIFPEnENTJAL COOING = ',her 

If {iefs.eq. 1 I then 
' •• Calculat.e autocorrelation function of errors in sdetll J 
••• to show burst.tness of symbol errors 
Print •• 'Form ACF of symbol errors up to lag '.mmax 
do 80 i=istart., lisampl-ivlen-1 ),1 

if {Csxdetli,isial.eq. sx(l,isillll.and. 
• (sydetCi,isigl.eq. syti,isigll) then 

iefdti)·O 
else 

iefdli)=l 
endif 

continue 
"'Calculate aut.ocorrelat.ion fn. of iefdl) 
do 81 m::O.mmax,1 
acfslml=O.OdO 
do 82 i=ist.art..(lsampl-ivlen-l-m),l 
acfstml = acl's{m) • tefdti ).iefdti.ml 

continue 
acl's(m) = acfslmJ/dblelisampI-ivlen-m-iBtartl 
continue 
._.Normalise ACF 
do 83 m=l,mmax.l 

Bcfslm) : acfsCml/acfslOI 
continue 



acfsIO)=1.0dO 
PR I NT •• 'Normal I sed ACF of sdet I) errors. lae: 0 to ',mmax 
Pf<INT 9083, lacfs(m), m=O,mmax,ll 

9063 formatI5f13.6) 
endif 

c ••• i.e. lefs endif! 
51 cont.inue 

c ••• I.e. loop for IslQ 

c 
c 

ibItclO) ~ 0 
tbit.e(O) = 0 

if Ilslnum .ne. 1 1 then 

,do 711 isiliz=l,islnum,l 
ibitclO) ibit.cIO) .. ibitc(lsiQ) 
IbitelO) ~ ibitelO) • ibit.elisla) 

711 ,cant i nue 
'Print. 6010 
PRINT.,'TOTAL No. of BIT errors with OIFF. CODING is ',ibite(O) 
PrInt.,'TOTAL No. of SITS correct. with DIFF. CODING is ',ibitclO) 

, Print.,'=:~================================c======='· 
ber = dblelibiteIO)/ldblelibiteIO) .. dbielibitcIO)) 
Print. •• ·SER with DlfFEJ<ENTIAL CODING .. ' 
Print.,' .. FOR ALL' ,isinum,' SIGNALS = ',her 

endif 
PRINT.,'===================~=============:=="=====· 

I PRINT 

return 
end 

••••••••••••••••• 
• SHEQA.FORTRAN • 
••••••••••••••••• 

c ..... 7 ............ 20 ........ 30 ........ 110 ........ 50 ........ 60 ........ 70. 
subroutine sbeqalisinum,ianum,isampl,lvJen,ipacl ,irtsym. 

• ief,iiplot, sX,sy,sxdet,sydet,xppIo,ypplo) 
c initialise 
c •••••••••• 

c 
c 

9002 
11995 
11993 
11991 

double precision sxI0:60000,2), 9yI0:60000,2) 
double precision sxdetI0:60000,2), sydet(0:60000.2J 
double precision xpplol-l1Y:60000,2,2I, ypplOI-119:60000,2,21 
inteier isinum,ianum.isampl,lvlen,istart,ief,iiplot 
InteQer IbltcIO:2l,ibiteIO:21 
inteeer 1, isie, ibps, ibpsym 
inteeer sal1l1, sb(2), sboldl21 
inteQer sadetl1l1. sbdet(2), sbdoldl2J 
inteeer iefdtO:21100001 
double precision sdi 10:60000,2) 

... CHECK TRANSFER OF INFO FROM MAIN PROG 
Print.,' isinum= ',isinum,' ianum:' ,lanum.' isampl"', isampl 
Print.,' ivlen= ',ivlen,' ipac}:' ,ipacl,' Irtsym=' ,Irtsym 
Print.,' tef= • ,ief,' liplot:' ,iipIot 
do 11991 isie=1,isinum,l 
Print.,' SIGNAL', isie 
Print.,' i sx sy sxdet sydet xpp]o ypplo' 

do 11993 1=I,isampl,l 
if ti.eq. J) i::isampl-l 

Print 9491 ,i,sxli ,lsigl,sy(i,isigl, Bxdetli ,isicJ,sydetl1 ,isiCI 
formatli6, 12x, 2f9.I, 1Ix, 2f9.1) 

do 4995 lant:l,ianum,l 
if t iant .eq.l J then 

Print*,'ANTENNA a' 
elsetftiant.eq.2) then 

Print.,'ANTENNA b' 
endif 

Print 9002, xpploti,isia,iantl, ypploli,isig,Iant) 
formattl0x, 2f9.4) 

continue 
cont.inue 

continue 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Count the number of bi t errors for :-
c sienalls) wit.h Gray coding only 
c AND --" -- Dirrerentlal and Gray coding. 
c (And output error riles --llf ier=11 
c and output soft decision info files 
c --if tief:l).and.tiiplot=ivlen) 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

i bpsym: 11 
c ••• I.e. 16-pt QAM has 11 bits per symbol 

if (ivlen.eq. 1) then 
Istart=120 

Print.,' Give predictors' ,iatart,' symbols to start-up' 
else 

istart"'ivlen 
Print.,' Give predictors one packet to start-up' 
endif 
Print.,' HERs' FOR 16-pt QAH SIGNAL(S)' 
Pri ntt, 'COHERENT AND GRAY COOl NG' 



c 

c 

c 
c 
c 

c 

, do 11 isie=l,isinum.l 
Prlnt',teOUNT NUMBER OF BIT ERRORS . " sienal • ,isle 
"'initialise for each sienal 
iblt.clislgl ~ 0 
Ibitelisie:1 : 0 
"'lb-pt. QAM sienal -- Coherent and Gray Codine 
do 21 i=istart,lisampl-lvlen-l I.' 
'''Do decodinll on actual sli I and on detected sll) 
••• By LOOK-UP TABLES 
"'act.ual 
if (syli,isiUl.lt. a.OdOI then 

sa 11 I 0 
else 

sa (1 ) 

end! f 
if (sxll,isiel.lt. Q.OdO) then 

::>d (~I 0 
else 

sa (2) 

endif 
if {(dabslsx{i,isig)'lt. 2.0dOl.and. 

{dabs(syli,islel).it. 2.0dOll then 
sa (31 = 1 
sa (4) = , 

elseifl(dabs(sxli ,isie».ee. 2.0dO).and. 
• (dabs(sy(I,isillll.ee. 2.0dO) t.hen 

sa (3 J '" 0 
sa(41 '" 0 

elseift {sxll .faIUI.Qe. 2.0dO).and. 
• (syll,iaiQI.ge. a.OdOI.and. (Syli,isIUI.lt. 2.DdO» then 

sa 131 '" , 
sa (4) ::: 0 

elseifllsxti.isie).lt.-2.0dOl.and. 
• tsyli,isigl.ee. O.OdOI.and. Isyli,isie1.1t. 2.0dO)I then 

sa t3 J ::: , 
sa (4) ::: 0 

elseif((sxli,isigl.lt.-2.0dOJ.and. 
• Isyll,isig).ee.-2.0dO).and.(syli,isleJ.lt. O.OdO)) then 

sa 131 :::: 1 
sa (ill ::: 0 

elseift{sxli ,isial.ge. 2.adOJ.and. 
• (syti,lslgl.ee.-2.0dOLand.tsyli,isie).lt. O.OdO» then 

sa 13 I 1 
Sa ('11 a 

else 
sa (3 J 0 
sa Ill) 

endif 
···detected 
if (sydetti ,isie).lt. a.OdO) then 

sadetll) 0 
else 

sadet(l) 
endif 
if Isxdetl! ,lsigJ.lt. O.OdO) then 

sadet (2) 0 
else 

sadet(2) 
endi!' 
; ,. I I ......... I ...... l. ... t I I i., In I lIt ') fldCiL;anlL 

c 
c 
c 
c 

c 
c 
c 

c 

22 

2, 

11 

20 

• (dabslsydetti,isig) I.lt. 2.0dO») then 
sadet(3) ::: 1 
sadet (4) ::: 1 

elseif(idabslsxdetli ,isle) I.ce. 2.0dOl.and. 
• Idabslsydetli,islQ).ge. 2.0dO» then 

sadet(3) ; 0 
sadet I 4 l :: 0 

elseifllsxdetli,isiel.ge. 2.0dO).and. 
• (sydetll,isigl.ee. O.OdOl.and.lsydetll,isiel.lt. 2.0dO)) then 

sadet (:3) " 1 
sadet(4) ::: 0 

elseifllsxdetli,isig).lt.-2.0dO).and. 
• Isydetli,isigJ.ge. O.OdOl.and.(sydetli,isieJ.lt. 2.0dO)1 then 

sadet(3) :; 1 
sadet(4) ::: 0 

elseiftlsxdetti. isigl.lt.-2.0dO).and. 
• tsydetli,isigl.ee.-2.0dO).and.(sydetti,isig).it. O.OdOII then 

sadetl31 '" 1 
sadetl4 I ::: 0 

elseift(sxdetti,isigl.ge. 2.0dOl.and. 
• Isydetti,isiel.e:e.-2.0dO).and.(sydetli,isieJ.lt. O.OdO)) then 

sadet<j) 1 
sadet I If) 0 

else 
sadet(3) 
sadet.lll) 

endif 

o 

••• Keep runiine t.otal of bit errors for this 
••• coherent and Gray coded 16-pt QAM sienal. 
••• 00 not count bit. errors/correct. for retraininQ symbols. 
••• skip past them. 

if Imodll,ipacl ).~e.irt.sym) t.hen 
do 22 ibps::::l,ibpsym,1 
if Isatibps).eq.sadet.(ibps» then 

ibltctislgl ibitclisia). 1 
else 

IbitelislB) 
endif 

continue 
endlr 

cont.inue 

ibitelisle) • 

• •• I.e. Joop 
••• Bit error tot.al of this sienal has now been calculated 
••• Now print results 
PRINT.,'No. of BIT errors is ',ibite(isig) 
Print.,'No. of BITS correct is ',ibitc(istal 
Print. •• ·"'~=::c;::::"'::::=::::::::::==:::=:::=::;::::;=::::::~c=:::=="'=~=r:c=. 
ber ::: dblelibitelisigl)/Idblelibitelisig) t dblelibitclisie») 
Print.,'BIT ERROR RATE::: ',ber 

continue 
••• i . e. isig loop 

ibttclO) = 0 
ibitetO) ::: 0 

if (isinum .ne. 1 I then 

do 24 iSig;I, isinum.1 
ibitcto) Ibitc(O). ibltctislg) 
ibite(O) = ibitelO) • ibite(isig) 

continue 
PRINT.,'TOTAl No. of BIT errors is ',ibitelOI 
Print.,'TOTAL No. or lIlTS correct is ',lbitc(O) 



c 

Print.,·~=:,,==~:c=c:::c====================;c==:===' 
'ber = dblelibite(OJII(dblelibiteW)) t dblelibltc(QI)) 
'Prlnt.,'BIT ERIWIt RATE FOR ALL' .isinum,' SIGNALS = ',ber 

endtr 

c ... count bit errors \11th DIFFERENTIAL DECOIJING 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Do decoding of actual sll J and detected sli) by LUOK-UP TABLES 
c do differential decodina on actual sli) and on detected sli I 
c accumulate bit errors as eoine along. 
c Iform error file array as aotne alongl. 
c tl'orm soft decision array as eolne along) 
c give BER results 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

:Prlnt*,'OIFFERENTIAL AND GRAY COOING' 
do 51 isie=l,islnum.l 

.Print.,'COUNT NUMBER OF DIFFERENTIALLY COOED BIT EHRORS' 
Print.,' signal' ,isilil 

c ••• initialise for each sienal 
tbttclisigl=O 
ibite(isiRI=O 
sboldlll=O 
sboldl2l=O 
sbdold I 1 )=0 
sbdoldl21"0 

c ••• ,6-pt OAM sienal -- DDlfferential and Gray Coding 
do 61 i=istart.llsampl~lvlen-l1,l 

c ... 00 decodinc on actual sIt I and on detected sIt 1 
c ... By LOOK-UP TABLES 
c ••• actual 

if (sy<1,isiCl.lt. O.OdOI t~en 
sb (I) 0 

. else 
sb 1I I 

endif 
. if (sxlt,lsle).It. O.OdO) then 

sb (21 0 
else 

sbl2J 
endtr 
if Ildabslsxli,isie»).It. 2.0dOI.and. 

• Idabslsyli,isiell.lt. 2.0dOIJ then 
sa (3) " 1 
sa 1 lJ) = 1 

elseif(ldabslsxll,isiel'.ee.2.0dOI.and. 
* (dabs(sy(i,isie)).ce. 2.0dO» then 

sa 13 I .. 0 
sa 141 :: 0 

elseifl Isxli,isicl.ge. 2.0dO).and. 
* Isyll,isiel.ee. O.OdO).and.lsy{f,isiel.lt. 2.0dO)) then 

sa (3) " 1 
sa (4) : 0 

elseif(lsx(i,isi~l.ee.-2.0dOI.and. (sxlt,isle).lt. O.OdOI.and. 
(syli,isigl.ee. 2.0dOII then 

sa (31 = 1 
sa(4) " 0 

elseifllsxli ,isie).lt.-2.0dOI.and. 
Isytl,isiQl.ee.-2.0dOl.and.lsyli,isilll.lt. O.OdOll then 

sa (3) :: 1 

c 

c 
c 

elseifl (sxll,isie).ge. O.OdO).and.lsxli ,isie).lt. 2.0dOl.and. 
• Isyll,isiel.lt.-2.0dOl) then 

sa 131 1 
sa (4) 0 

else 
sa (3) 0 
sa 14 I 1 

endif 
*.*detected 
if Isydetli,isie).lt. O.OdO) then 

sbdet I I ) 0 
else 

sbdetll ) 
endif 
if (sxdetli,:isie).lt. O.OdO) then 

sbdet (2) 0 
else 

sbdet(2) 
endif 
if (Idabslsxdetll,isle».lt. 2.0dO).and. 

* Idabslsydetlt ,islel).lt. 2.0dO») then 
sadet 13 I " 1 
sadet(4) a 1 

eIseif(ldabslsxdetli,islgl).ee. 2.0dOI.and. 
•. IdabsISydetli,isie)l.ge. 2.0dOll then 

sadet IJ) : 0 
sadett4 I '" 0 

elseifllsxdettl,isiel.ge. 2.0dOI.and. 
• (sydet(i,lsieJ.ee. O.OdO).and.tsydetti,isigl.lt: 

sadet (3) " 1 
sadet (4 I " 0 

elseif(lsydet(t,isig).ge. 2.0dOl.and. 
• Isxdett i.isiil .ee.~2 .OdO I.and. Isxdet (i. isill 1.1 t . 

sadet 13 1 = 1 
sadet.llJ) " 0 

elseif((sxdet(i.isiel.lt.-2.0dO).and. 
* Isydetll,isiel.ee.-2.0dOI.and.lsydetli ,isie).lt. 

sadet (3) " 1 
sadet (4) ,. 0 

elseif(lsydetll.isie l .l t .-2.0dO).and. 
• Isxdetl 1. isiel.ee. O.OdO I .and. Isxdet 1 i, isle I.lt. 

sadet(3) 1 
sadet (If) 0 

else 
Badet (3) 0 
Badetl41 1 

endlf 

2.0dO) then 

O.OdO I I then 

O.OdO I) then 

2.0dO» then 

***00 differential decodine on actual sli I and on detected sll i 
• •• actual 
if Itsbtll.eq.sboldll I) .and. (sb(2I.eq.sbolct(2))) then 

sa 1 1 1:0 
sa121=0 

elseif ((sblll.ne.sboldll)) .and. Isb{21.ne.sbold(2)11 then 
sa 1 1 )= 1 
sa 121= 1 

elseif (lsboldlll.eq. Ol.and.lsboldI2I.eq. Ol.and. 
* IsbCl) .eq.OLand.(abln .eq. III then 

sa (1 1=0 
sa 12 I: 1 

I ; 1 _ 



c 

c 

c 
c 
c 
c 

• 

• 

(sb( 1) 

sa (11"0 
sa (2)" 1 

.eq. 1 I.and. (sb(21 .eq. 1 I) 

elseif (isboldlll.eq. 1 Land. (sbold(2I.eq. 1 Land. 

then 

Isb(1) .eq. !I.and. (sb121 .eq.O)1 then 
5a(1):0 

sa (2 I" 1 
elseif (tsbold(1 l.eq. 1 Land. (sboldI21.eq. al,and. 

• (sbl,) .eq.OJ,and.(sbI21 .eq.O)1 then 

• 

• 

• 

sa (1 1=0 
sa (2)" 1 

else 
sa (1 I=-I 
5a(2)=-0 

endif 
·*·detected 
if«(sbdettl1.eq.sbdold(1 J I.and. isbdct(2).eq.sbdoJdI2)I)then 

sadetlll:Q 
sadett21=O 

eiseifllsbdettl J.nc.sbdoldll) I.and. 
(sbdetI21.ne.sbdoldI2))) then 

sadet (1 )=: 1 
sadet(2):1 

elseif (lsbdold(1 Leq. ~Land. isbdoldI2J.eq. al,and. 
Isbdet(11 .eq. OI.and.isbdet(2) .eq. 111 then 

sadet(II=O 
sadett21=1 

elseif IlsbdoldllJ.eq. OI.and.lsbdoldI21.eq. 
(sbdetll) .eq. 1 Land. (sbdet(2) .eq. 

sadetlll=O 
sadetl2l=1 

) .and. 
» then 

elseif Ilsbdoldll).eq. 1).and.lsbdoldI2).eq. I).and. 
(sbdetll) .eq. , J.and.lsbdet(2) .eq. 0» then 

sadetlll"O 
sadet(2)=1 

elseif I (sbdOldlll.eq. I Land. (sbdoldI2"eq. OLand. 
• Isbdetlll .eq. 0I.and.lsbdet(2) .eq. 0)1 then 

sadetll1=O 
sadet(2)::1 

else 
sadetll )=1 
sadet(2)=0 

endif 
••• set up sbold's for next symbol 
if Imodll ,ipacl J.eq. lirtsym-l) then 

sbold(1 )=0 
sbold(2)=0 
sbdoldll)"O 
sbdold(2)=O 
else 

sboldtl) " gbtl) 
sbold(2) " sb(2) 
sbdoldtll sbdetll) 
sbdold(2) : sbdett21 
endif 

••• Keep running total of bit errors for this 
••• differential and Gray coded 16-pt QAM siQnal. 
••• 00 not count bit errors/correct for retrainina symbols, 
••• skip' past them. 

if (mndfl,ipac}).ee.irtsyml t.hen 

c 

c 

c 
c 

c 

62 

65 

66 

c 
61 

c 
c 

do 62 Ibps=I,ibpsym.l 
If Isalibps).eq.sadettlbps» 

ibltc I Isie) tbi tc t ista' ~ 1 
else 

tbltetlsiel IbItelisie) + 
endif 

continue 
endif 

then 

if (Ief.eq. I I then 
.•• FORM ERROR fILE (IF IEF=1 I 
do 65 i bps= 1,1 bpsym,l 

If (sadettibpsJ .eq. satlbpsll then 
lefd(i.lbpsym-ibpsym+ibps) 0 

else 
iefdt!.ibpsym-ibpsymfibps) 

endif 
if tmod(t,ipacl J.lt.irtsyml lefdti.ibpsym-ibpsymtibpsJ=9 

continue 

• •• FORM SOFT OEe) S ION I NFO (J F I EF= 1 AND I I PLOT: J VLEN I 
if (iiplot.eq. ivlenl then 

sdi(l,isiel=O.OdO 
clo 66 iant"I.lanum,l 
sditi,lsiel = sdill,isil!l t xppioli,isie,iantl •• 2 + 

• ypploli,isia,iantl •• 2 
continue 
• •• stop log of zero 
if Isdill,isia) .It. 1.0d-91 then 
sdi (i,lslal -99.0dO 

else 
sdi (1, isle) 

endlf 

continue 

10.0dO.dlogl0Isdl 1I ,Isiel) 

endlf 
endif 
• •• ier endif! 

••• l.e.loopfor 

c .•. OUTPUT ERROR FILES IIF IEF=l) 
if (ief.eq. 1 I then 

c ••• output error flIes 

c 
c 

c 
c 

Print.,' output error files' 
if tiaiQ .eq. 1 I then 

open(unit=7, file""efdlo', form"'formatted'l 
elseiftisle .eq. 21 then 

open(unit"7, rile~'efd20', form"'formatted' 
else 

PRINT.,'Output Error fIle not available' 
stop 

endif 
wrlteI7.9521) (iefdli), ic(istart.2-1 1. Ilsampl-ivlen-l '.2,1) 

9521 format(20i2) 
cJose171 

• •• OUTPUT SOFT DECI SION I NFO (I F 1 EF= 1 AND 11 PLOT: I VLEN I 
If Ctiplot .eq. ivlen) then 

_ •• output soft decision Info 
Print.,' output soft decision info files' 



c 

c 
c 
c 

c 

c 
c 

if (isie .eq. 1) then 
opentunlt~7. file='sdidblo'. form='formatted' 

elseifllsie .eq. 2) then 
openlunlt=?, file"'sdidb20', form:'formatted' 

else 
PRINT','Output soft decision file not available' 
stop 

endif 
writel?,9522) Isdili ,isie), i=istart,isampl-ivlen-l ,I) 

9522 formatll0f?3) 

5' 

1" 

closel?) 
endif 
••• i.e. iiplot endif~ 

endif 
... ief endif 

••• Bit error total of this sienal has now been calculated 
"'Now print results 
Print.,' signal' ,isie 
PRINT','No. of DIFFERENTIALLY CODED BIT errors is • ,lbitelIsie) 
Print •• 'No. of OIFFEHENTIALLY COUED HITS correct is ',Ibitctisle) 
Pr i n t ••• " = " "" = " " " : : ,,= " "",, " ,,= " " ,,:1 a " = = = " " =" =,,:: :: " ,,:1 '" " " ' 

ber " dbletibltetisilil»)/ldblelibitelisiCI) ... dblellbltclisig») 
Print-,'BIT ERROR I<ATE with DIFfERENTIAL CODING" • ,ber 
continue 
~ •• i.e. loop for islg 

ibltclO) ~ 0 
ibitelO) " 0 

if lisinum .ne. I} then 

do 74 isia e 1 , 1sinum,1 
ibitclO) ibitcIO} ... Ibltcllsie} 
ibitelO) : ibitelO) ... ibitellsie) 

continue 
Print 8010 
PRINT','TOTAL No. of BIT errors Is ',lbite(Q) 
Print','TOTAL No. of BITS correct Is ',lbitclO) 
Prjnt.,,==:=====,,============~=,,====,,==,,=:==:=,,=:::, 

ber = dbll!llbiteIO»/(dbletlblteIO» ... dblelibltcIOl) 
Print','UER with DIFFERENTIAL COIliNG .. ' 
Print.,' .. FOH ALL' ,Isinum,' SIGNALS ~ ',ber 

endif 
PRINT',':=:=~=:=====~=================="======"===' 

return 
end 

•••••••••••••••••••• 
• RC_SAMP2.FORTRAN • ..... , ...... _ ...... . 

c ..•.. 7 ••••••.•.•.• 20 ........ 30 .•.••••• 110 •.•.•.•. 50 ........ bO ........ ?O. 

c 
c 

c 
c 
c 
c 
c 

c 
c 

2 

proeram rc_samp2 
initial ise 

double precision 
double precision 
integer " 

., .•...•..•. 
hl-IOO:l00), fe, fs, LS, pi 
ahl-200:200) 

ASSUME symbol rate throu~h filter 
sampllnQ: rate 
sampline period 
impulse response has 

re=12000 
fs=I.J.OdO'fe 
ts=I.0dO/fs 
g~25 

pi=3.1 11159265I.JdO 

.. SAMPLE THE IMPULSE RESPONSE 
do 1 1"0,",1 

fe=12000 symbols/sec 
fs=l.Jtl'e 
ts::1/fs 

2«+' components 

h(i) : dsqrtlfe).ldsinlpl.12.0dO.i.ts.fe + 0.5dOll 
O.5dO)) _ /(pl'(2.0dO.i t ts'fe + 

• ... dsin(pi.t2.0dO.i.ts'fe 
• /lpi'(2.0dOtl.ts.fe 
continue 
do 2 i:-i,-I,1 

!'J(I) .. ht-i) 
continue 

o .5dO») 
- 0.5dO)) 

c "'scale all tap ~atns so that mean-square power ahIO):! 

c 

5 ahIOI~O.OdO 

do 991 t=-e,+e,l 
ah(O) : ahlO) ... hli)'hlt) 

991 continue 
do 993 l=-e,+e,1 
hIll .. hlilldsqrtlah(O» 

993 continue 

c ... output sampled tr to f1 le 

c 
c 

if Ifs.eq. 12.0dO.fe}) then 
open(unit c 7, file='rc~2', form:'formatted') 
elseiflfs.eq.lq.OdO-fe)) then 

open(unlt=7, file='rC~II', form""formatted') 
elseiflfs.eq. 18.0dO_fe» then 

open{unit:7, file='rc.-s8', form='formatted') 
elseiflfs.eq. 116.0dO-fe» then 

opentunit.=7, file='rc_sI6', form='formatted') 
endif 

writel?'} 2'e+' 
writet?,') Ihlll, i::-i .... e.11 
closel?) 

stop 
end 



•••••••••••••••••••••••••• 
• INTERPOLATE_Re.FORTRAN • 
•••••••••••••••••••••••••• 

e ..... 7 .•.•.. ; ....• 20 ........ ]0 ........• ,0 ........ 50 ........ 60 ........ 70. 

c 
c 

double precision 
double precision 
double precision 
inteeer isampl, 

INITIALISE 
•••••••••• 

xt-500:5000J, y(-500:5000) 
el-960:960), a1320,6) 
pi, alpha 

inter, num, i, k, n 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
e "'Program to generate the tap-gains of a cosine roll-ofr 
c H. interpolatlne filter, with roll-off factor alpha (see 
c ••• paper by Yesolowski) 
c ••• The interpolatine ,,'ilter impulse response is sampled 
C'" to aive the coefficients of the "inter' num" matrix 
c ••• "an. Matrix multiplication uives the interpolated 
c ••• samples. 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 

pi=J.14159265'ldO 
aipha=O'.60dO 
isampl=2 
inter=20 
num=6 
do 991 i=O,isampl,1 
xli) .. O.OdO 
y (1) = O.OdO 

991 co'ntinue 

c "'sample the interpolating filter impulse response 
c .... from times .. - I num/2 )1's to t (num/2 )Ts" 
e ••• Le. from samples "-lnum/2hinter to tlnum/21.inter" 
c ••• Note that this impulse response 19:-
e'" symmetrical about time=O 
c ••• equal to zero at times=-3Ts, -2Ts, -Ts, Ts, 2Ts, etc. 
c ••• equal to 1 at time:O 
e •••••••••••••••••••••••••••••••••••••••••••••••••••••• •••• i 

do 111 i=I,lnum/2).inter,1 
elil:> Idsinlpi'dbleli)/dblelinterJ) I Ipiltdblelilldblelinterl)' 

• Idcoslalpha*pi*dble(i )/dblelinterl) I 
• (1.0dO - '1.0dO*laJpha*dbleli I/dble(inter»u2) 

111 continue 
e(O):1.0dO 

'do 112 1=inter,lnum/2)'inter,inter 
ill i 1 : O.OdO 

112 . continue ' 
do 1122 1=1,lnum/2J.lnter,1 
e 1- i) = Cl i ) 

1122 continue 
c ••• form the matrix a 

do 121 k:l,inter,! 

c 

,do 122 n:I,num,1 
alk,n) : el(k-l) - (Inum/2)tl-n).interJ 

122 continue 
121 continue 

c •••• output to file 
if 1 inter. eq. 10) then 

'nnpnfllnit.=10, fi tf>='lnt.l"rfll0'. fnrm='formattecl' J 

c 
c 

elselrlinter.eq.20) then 
openlunit:l0, file:' intera20' form:'formatted' 
elseiflinter.eq.qO) then 

open(unit=10, file:' intera"O' form='formatt,ed' 
e1geif(inter.eq.80) then 

open(unit=10, file:' interaBO', form"'formatted' 
elseiftinter.eq.160) then 

openlunit=10, file:'lntera160', form='formatted') 
else 

PRINT','ERROR IN inter' 
stop 
endif 

writetl0,.) num 
writell0,') Ilalk,n), n"l ,num,' J, k:1 ,inter,!) 
elose{10J 

stop 
end 



*****.***** ••••• 
• 5IM2.FORTRAN • 

•••••••••••••••• 
c ..... 1. , .•.... , • , .20 .... , ••• 30 ....•.• ,110, ••••••• 50 •• , . , • , .60 ........ 10, 

c 
c 

c 

program sim2 
Initial ise 

tt, fm. s, pi, prodlO:l00DOI, e, r. h(0:200) 
t10:4001, atIO:400) 

..... , ... 
inteeer n,k,i.a 
double precision 
double precision 
pi:3.1 11159265 1IdO 
tt:1/600.0dO 
fmeaD.OdD 
EP200 
Prlnt*,'Maxrn. Doppler freq=' .fm,'Hz, '.2*e.'.·-tap filter' 
Print.,' with sampllnQ period of ',tt,' seconds' 

c .•. COMPUTE AREA (I NTEGRAL I fOR n STRIPS 
do 1 n=10000,10000,5000 
s=3.14159265

'
ldO/2.0dO/dble(nl 

c ••• loop to calc each hlk) 
do 11 k:O,e,l 

where htkJ=h(kT) 

c ' •• calc. fn. value at edges of each strip 
do III i=O,n-l,1 

prod t i ) dcos 12 .0dO'pi 'fm.dbl e (k ).t t.ds i n Idble (i ).s I ) 
• 'dsqrtldcos(dblell "5) I 

111 continue 
prodlnl=O.OdO 

c "'find area 

c 

e"O.OdO 
do 112 i=I,n-l,2 

e " e .. prod ( I J 
112 continue 

r=O,OdO 
do 113 i"2.n-2,2 

r = r • prod I i ) 
113 continue 

hlk) " s/3.0dO.tprod(01 .. prodtn) • 4.0dD'e + 2.0dO'rl 
11 continue 
1 continue 

c ., .• TIME DELAY IMPULSE RESPONSE TO MAKE IT PHYSICALLY REALISAHLE 
do 58 i=0,1l-1,1 

c 

tlil=hle-il 
58 continue 

t la) " h (0 1 
do 581 i=e.',I:!+Il,1 
tit) " hli-CI 

581 continue 

c , , ,OUTPUT F I L TER COEFFS TO F I LE 

c 
c 

openlunlt=7, rile='omverrnonBO', form 2 'formatted') 
writel?,') fm, 2.g+1 
wr i te (? , .) t 

closel71 

stop 
end 

• •••••• *.******.**.** • 
• !'lEST} MPllEO. FORTRAN • 
• •• ** ••• * •••••••••• **. 

c ..... 7 ... , ...... , .20 ........ 30. , .... , .40, .... , .. 50 ....... ,60. , ...... 70. 

c 

c 

c 
c 

c 

c 

proeram mestimpred 
initial {se 

integer isettl.isampl 
parametertisettl=1200. isarnpl=6000tlsettl) 
double precision sx10:60000,21, SYIO:60000.2) 
double precision xtO:60000,2.2I, yIO:60000,2,2) 
double precision rxIO:60000,2), ryIO:60000,2) 
I nteller i obbc 
integer ispsym, Ipacl, imetrt, irtsym, inter 
inteQer isinum,isla, lanum,iant 
double precision snrdb, svar 
character'9 modsch 
double precision sxdettO:60000,2), sydettO:60000,2) 
inteller imetes 
dOUble precision 
double precision 
double precision 
i nteQer iordp 

xest(O:bOOOO,2,2), yesttO:60000.2.2) 
rxest, ryest 
ex, ey, b,btemp 

dOUble preciSion xpred(O:60000,2,21, ypredlO:60000.2,21 
double precision theta, thl, th2, thl, th4. th5. thb. th'l 
double precision thB, th9 
double preciSion th91 
dOUble precision ezx, ezy 
dOUble precision zOxt2,2), 
dOUble precision zlxt2,2), 
double precision z2xt2,2), 
double precision z3x12,2), 
dOUble precision c10:51 
integer imete, imetp 

zOyt2,2) 
zl y (2,2) 
z2y12,2) 
z3y12,2) 

dOUble precision sqerr(lsampl I, msqertO:21 
double precision sebtisampl I, msebI0:2) 
dOUble precision tempt, temp2 
integer i b, i bmax, ithet, i thmax, isnr, i snmax 
double precision plotpt21,20,71, plotel2' ,20,71 
I nteeer imetb 
inteller ioflle 
mOdsch='16-pt QA!'I' 
'.'svar is the average transmitted energy per bit, 

I f I modsch. eq. 'QPSK' I then 
svar"l.DdO 
elseiftmodsch.eq.'16-pt QAM' I then 

svar=2.5dO 
else 

Print., 'MODULATION SCHEME NOT AVAILABLE' 
stop 
endif 

isinum=1 
ianum"l 
ipacl=' 
."11' iobbc=O then read in s,r,y arrays from stored files 
'.'else run subroutine sbbchan 
lobbc" 1 
* •• retralnine method Imetrt 
Imetrt"O 
."Assume 107, retraining, unless no retraining 
II' (imetrt.eq.OI then 



c 
c 
c 

c 

c 

c 

c 
c 

c 

irtsym::O 
else 

irtsym ,. ipael/lO 
endif 
inter:20 
ispsym=l 
••• if imetes=l then do NOT usc 
•• -if imetes=2 then use predn. 
•••• calculate estimation error 
imete=O 

predn. fed back in the estimator 
fed back in the estimator 
If imet.e=l 

••• calculate prediction error if imetp=l 
imetp=-l 
"'output files if tafilc=1 
ioflle=O 
"'PRINT system constants for this run 
Print*, ianum,' ANTENNAE' 
Print',isinum,' • ,rnodsch,' SIGNAL(SI' 
Print.,' Packet. Leneth: • ,ipael 

if (imetrt.eq,OI then 
Print-,' NO retrainina' 
elseifCimetrt..eq.l) then 

Print--,' IDEAL ret.rainine' 
Print.,' 107. retraininc therefore • ,irtsym,' retraining symbols' 
else 

Print.,' Retrainine method' ,lmetrt 
Print.,' 101, retrainine therefore • ,irtsym.' retralnlne symbols' 
: end if 
Printll,' Run for' .lsampl/ispsym,' symbols' 
Print •• ' Includin'l: '. isettl.' samples for transient to settle down' 
Print*.' and ',ispsym,' samples per symbol' 

if tlmete.~q~ D) then 
Printll,'DO NOT calculate estimation error' 
else 

Print'.'Calculate estimation error' 
endif 
if timetP.eq. 1 I then 

Print*,'Calculate prediction error' 
else 

Print.,'DO NOT calculate prediction error' 
endif 

... DO FOR DIFFERENT SNRs 
Isnr;O 

do 5 snrdb=20.0dO,26.DdO,10.DdD 
If «(snrdb.et. 75.0dD).and.(snrdb.lt. 1999.0dO) goto 5 
isnr=isnr.' 

Printll,' SNR= ',snrdb,' d8' 
••• read in files of slenal, channel, received sienal 

if (iobbc .eq. 0) then 
opentunit.=?, file""sxio', form='f'ormat.ted') 
opentunit=8, file='syio.', form"'formatted') 
openlunlt=9, file:'xio', form='formatted') 
open{unit=10, flle"'yio', form='formatted') 
readt?.) (lsx{i,isiC), i=O,lsampl,1), isiQ:"I,islnum,l) 
read (8,.) I (sy (i .Isle), I =D. Isampl,l', islQ"1 ,isinum,l ) 
read{9,.) (((x(i,isle,lantl. i=O,isampl,1 " isle=1 ,isioum,1 I, 

11 iant=I,ianum,11 
readIIO,.) «(y{i,isle.lant), i=O.isampl ,I I, isle:1 .islnum,1 I, 

• iant=l.ianum.l1 
cJose171 

c 

c 
c 

c 
c 
c 
c 

c 

c 
c 
c 

c 

9001 
9995 

9002 
9993 
9991 

99 

close (8) 
close(9) 
close(IO) 
open{unit=II, file='rxio', form"'formatted') 
open(unit=12. file:'rylo', form='formatted') 
read(1',.) «(rxli.iant), i::O,isampl.l), iant=I,ianum,1 
read(12 •• 1 ((ryli,iantl. i=O,isampl.l I, lant=1 .Ianum.l) 
close(11) 
closel121 

else 
Print.,·SU8ROUTINE sbbchan' 
call sbbchanlisampl,ipacl ,irtsym,inter,snrdb, 

• modsch,svar, isinum,ianum,rX,rY.9x.sy,x.yl 
Print •• ' RETURNED sbbchan' 

endil" 
do 9991 iant:1. ianum,l 
Ifliant.eq.l) Print •• 'ANTENNA a' 
if(iant.eq.2) Print.,'ANTENNA b' 
Print.,' i rx ry sx sy x y' 

do 9993 I: 1 • i sampl .1 
if li.eq. 31 i=isampl-I 
do 9995 isie"'I,isinum,l 

Prlnt •• 'SIGNAL ',Isig 
Print 9001 ,i,sx(i ,isiCI.sy(i.isiel. x(i.isie,iant),yti .isle,iant) 
format(i6, 12x, 2f9.1, 2fI2.Q) 

continue 
Print 9002, rxli,iantl, ryli.iantl 
formatllOx, 2f9.~) 

continue 
continue 
••• assume perfect detection i.e. detected s actual s 
do 99 isia:I,isinum.1 
do 99 i:I,isampl.1 

9xdetli.isie) sx(i ,isiel 
sydetli ,isle) " sy(l.isig) 

continue 
... REPEAT RUN FOR:- 0 "UNBIASED ESTIMATE", I "NO FEEDUACK" AND 
... 2 "fEEU8ACK" (FROM PRED.TO EST.) 
do 4 imetes=2.2.1 

If I(imetes.eq. D).and. (isinum.ne. I» then 
Print.,'CANNOT DO UNBIASED ESTIMATES FOR' .islnum,' SIGNALS' 
stop 
endif 

ib1l!tb .. O 
... REPEAT RUN FOR EACH ORDER PREDICTOR IN TURN 
••• tif iordp:-l NO prediction 
••• elself lordp=0.I,2,3 least-squares fad-mem polynomial pred 
••• elsetf iordp:t2.13 .... 16 Taylor predictors. p=2.3 .... 6 respec . 
do I iordp=I.I,1 

... REPEAT RUN fOR EACH DIFFERENT VALUE OF b 
ib=O 

do 2 btemp=0.025dO,O.01~5IdO,O.DD5dO 
i b: I b.1 

••• ir imetb::l : variable b:b/btemp/[si •• 21 
••• i.e. for 16-pt QAM, constellation Is not constant envelope 
••• else imetb:O: constant b::btemp 
lmetb=O 
b=btemp 

... REPEAT RUN FOR EACH DIFFERENT VALUE OF THETA 
i thet=O 



do 3 theta:0.25dO , 0.901dO,O.OSdO 
ithet.:ithet..' 

if (imetes.eq.O) then 
Print.,'Unbiased estimat.es' 
elseif(imet.es.eq.l I then 

Print..,'NO feedback rrom predict.or to Gradient estimator' 
elseif(imetes.eq.21 then 

Print. •• ·USE feedback rrom predictor to Gradient estimator' 
endif 

if limetes.ne. 0) then 
,if Ilmetb.eq. 1I then 

czzzzzPrlnt.,' ... VAIHABl,E b:: •• btemp,·/[si**2]· 
Print •• ' CAREFUL ... VARIABLE b: '.btemp,·*(sl**21' 
Print.,' Note: multiply NOT divide' 
else 

Pr i nt*, I ••• CONSTANT b: I, b 
endif 

endif 
"if liordp.eq. -11 then 
Prlnt.,'NO PkEDICTION' 
. else i f (( iordp.!iZc.O ) .and. (iordp. le . .3 I) then 
Print*,'LSFf1 Predictor .... order: ',iordp,' 
else 

Print*,'Tay!or predictor, order"p: ',iordp-l0 
endif 

theta= ',theta 

c ••• Channel est.imat.e at t.:0 is assumed to be unknown. 
c ••• Initiallse predIctor similarlY 

do 199 iant:l,ianum,1 

c 

do 199 isig"I,isinum,1 
xestIO.isie.iantl:O.OdO 
yest(O,isie,lant):O.OdO 
xpred I I .Isle, tant ':0 .0dO 
ypred (I, isia.iant '''0. OdD 
zOxlisle,iantl:O.OdO 
ZOyllsie.iant)"O.OdO 
zlxCisie,iant'~O.OdO 
zlyCisie.iantl:O.OdO 
z2xlisie,iantl=O.OdO 
z2y t isle, iant )'OO.OdO 
z.3xlisle,iantl=O.OdO 
z3ylisig,iant.)'OO.OdO 

199 continue 

c ... CHANNEL ESTIMATOR 

• 

thO 1 .OdO - theta 
<hI 
th2 
<h3 
th l • 

<h5 
<h6 
<h7 
<h8 

<h9 

(I.OdO - thet.a)*(1 .OdO thet.a) 
1.0dO - t.heta.theta 
O.5dO.ll.0dO - theta)"'.3 
I.SdO.ll.0dO - th'eta).(1.0dO - theta).II.OdO • theta) 
1.0dO - theta •• ] 
1(I.OdO - theta)**~1/6.0dO 

((1.0dO - thet.al ... 3,*t1.0dO • thet.al 
1'.0dO - theta).11 .OdO - theta).111 .OdO • l~.OdO.theta 

.,1.0dO.theta.thet.al/6.0dO 
I.OdO - theta •• 4 

c ••• Set-up cIO,I, ... 5) for Taylor predictor 
If (iordp.le.3) then 
e1geifliordp.eq.12) then 

c(O)=2.0dO 
'cl1 '=-1.0rlO 

c 

c 

c 

c 

c(2)~O.OdO 

c(.3)::O.OdO 
cI41~O.OdU 

ctS)::O.OdO 
elseifliordp.eq.l.31 then 

ctO)::3.0dO 
cll ):-.3.0dO 
c 121=1 .OdO 
c(.3):O.OdO 
cl~I:O.OdO 

cIS):O.OdO 
elseifliordp.eq.l I11 then 

CIO):II.OdO 
ctl)"'-6.0dO 
c(2I'O~.OdO 

cl)1:-1.0dO 
c (I11=O.OdO 
cIS)=O.OdO 

elseif(lordp.eq.1S) t.hen 
c(0)=5.0dO 
cll ):-IO.OdO 
c(2)=10.OdO 
ct.3):-S.OdO 
cl~):I.OdO 

c(Sl:O.OdO 
elselfliordp.eq.161 then 
cIOl:6.0dO 
cll )=-IS.0dO 
c(2):20.0dO 
c t.3 ):-15.0dO 
cl~)=6.0dO 
cISI=-I.OdO 

endif 
if tiordp.ee. 12) Print..,c 

do 111 i::5,isampl,1 
••• CHANNEL EST1I'1ATOR 

do ]20 lant:I,ianum,1 
If limet.es.eq. 0) then 
••• unbiased estimator for I sienal 
if Imodsch.eq.'16-pt QAM'1 then 

b 'O 1.0dO/{sxdetli ,I '.sxdetlj ,I) • 
else 

sydetli ,I ).sydetli ,1) 

b~0.5dO 

endif 
xestli,l,lantl 
yestCi,1,iant) 
else 

b* (sxdet ( i , 1 ,. rx ( i , i an t" ) 
b.lsxdetli,1 ).ry(i ,lantl 

• •• gradlent est.imator 
rXest"O.OdO 
ryest=O.OdO 

do 3211 isie=I,isinum,l 
if. timet.es.eq.1l then 

rxest :: rxe!Jt • 
• sxdetll,isiehxestli-I,isie,iant) 
• sydetll,istehyestli-I,isie,iant) 

ryest ryest. 
• 9xdet(i.isilZ,*yestti-l,isla.iant.) 
• sydetll,ish:hxest(i-1,isie,iant) 

eJgeifllmetes.eq.21 t.hen 

sydctti,l ).ryli ,iant)) 
sydetli,ll.rxll,iant)) 



rxest rxest. 
• sxdet(i,lsle)·xpredli,isi[!,iant) 
* sydetti,lsig)*ypredlt,isia,iant) 

ryest '" ryest • 
sxdet (i ,lslR )*ypred (i ,isle, lant I 
sydetli,isia)*xpredli ,Isia,iantl 

endif 
3211 continue 

ex = rxli ,Iant) - rxest 
ey:; ryll,lant) - ryest 

do 3212 Isle=1,lsinum,l 
If <imetb.eq. 1) then 

czzzzz b = btempllsxdetli,isig)"2. sydetli,isiIP.*2) 
b = btemp.(sxdet(i,isig) •• 2 + sydetli,isigl •• 21 

endif 

c 
c 

c 

c 

c 

c 

if limetes.eq.l I then 
xestll,lsie.iantl :; xestti-l,isie,iantl ~ 

* b.' ex.sxdetli ,isle) • ey*sydet(i ,isig)1 
yesttl,isie,iant) ::I yestli-',isie.iantl + 

b.'-ex.sydetli,tsi~) • ey.sxdet(i,isigll 
elseifllmetes.eq.21 then 

xestll,lsie,iant) = xpredli,isie:.iantl ~ 
* b.1 ex.sxdetli,isiel • ey.sydetli ,Isig») 

yestll ,isie,iantl ~ ypred(i ,isie.iantl • 
• b*l-ex*sydetli,isiQ) + ey.sxdetli,isia») 

3212' continue 
endif 

, endif 

••• {metes endir 
· .. PREDI C'fOR 

do 3213 isie=I,lslnum,1 
.ezx xestli,isle,iant) - xpredli ,isle,lantl 
ezy = yestti,iste,lant) - Ypredti,isie,iant) 

if I iordp.eq. -1) then 
· .. no prediction 
xpredli+l ,isle,iant) = xestli ,isie,iant) 
ypredli+l.isie,iant) = yestti,isie.iantl 

elseifliordp.eq.Ol then 
· .. deQree 0 
xpredli., ,isle,iant) " xpredli ,isie,lant) + thO.ezx 
ypredti+l ,isie,lant) = ypredli ,isie.iant) + thO.ezy 

elseirttordp.eq.ll then 
· .. degree 1 
zlxlisilZ,iantJ ~ zlx(lsie,lan~l + Lhl.ezx 
zly{isia,iantl :z Zlylisifl,iantl + thllezy 
xpredli+l ,isie.lant) = xpredli ,isie,iant) zlxtisie,iant) + 

• th2·ezx 
ypredtit1.isie,iant) = ypred{i,isie,iant) + z1ytisie,iantl ~ 

• th2.ezy 
elseifliordp.eq.2) then 

· .. deeree 2 

• 
• 

• 

z2x (isiC, iant) 
z2ytisill.iantl 
zlxtisia,iant) 

z1y(isie.iantl 

z2x{isie,ianL) + th3.ezx 
z2ylisie,iant) + th~.ezy 
z1x{isiQ,iantl ~ 2.0dO*z2x(isi~,iantl + 

thl'·ezx 
zlytisiQ,iant) + 2.0d04z2ytisie,iant) + 

th4.ezy 
xpredli+l,isle,iant.) ':" xpred{i,isic,iant) + zlXlisie,iantJ 

z2xlisia,iantl + thS*ezx 
vcred(if1.isil:!.iantJ :: Ynredtl.i9i£!,i<1ntl + zlYli.sie,iantl 

c 

c 

c 

3213 
320 

z2ylisle,iant) ~ thS*ezy 
elseifliordp.eq.3) then 

· .. deeree 3 
zJx(isie,iant) 
z3ytlslg,iantl 
z2x I isle, iant) 
z2ylisie,iant) 
z1xtisig,iant) 

• 

z3XlistC,iantl + th6*ezx 
z3Y!lsilil, iant) thb*ezy 
z2xlisig,iantl ~ 3.0dO.z3xlisig,iantl + th7.ezx 
z2ylisie.iantl + 3.0dO.z)ytisig,iant) t th7.ezy 
zlx(isic,iantl + 2.0dO.z2xlisig,iantl 
3.0dO.z3xlisie,iant) + thB.ezx 

zlylisie,iantl zlylisie,iantl + 2.0dO.z2ytisig,iantl 
• 3.0dO.z3ytisilZ,ianL) + th6.ezy 

• 

• 

xpredti+1.isie,iantl xpredli,isie,iantl + z1Xlisie,ianU 

ypredlitl,isig,iant) 
z2xtisie,iantl + z3xtisig.iantJ t th9_ezx 
ypredti,isiQ',iant) • z1ylisie,iantl -
z2ylisie,iantl + z3ytisi~.ianL) t Lh91ezy 

elseiftiordp.ee,12) then 
... Taylor 
xpredli+l,isiB,iantl :::: ctO).xestli,isie,iant) 

• cll).xestli-l.isie,iantl + c(2l'xestti-2,isig,iant) + 
• c(J).xest(i-3,isie,iant) + c{4).xestti-4.isie,iant) ~ 

• c(5).xestI1-5,isie,iant) 
Ypredl1+1,isle.iantl " cIO).yestli.isie,iantl + 

• cll1*yestli-l,isie,iant) c(2)*yestti-2.isie,ianL) 
* c(3)*yestti-3,isie,iant) + c(4)*yestti-4.isiC,iant) ~ 
* c(5).yestli-5,isia,iantl 

end if' 
continue 

continue 
111 continue 

if limete.eq. 1) then 
c ... 0BTAiN SQUARE-ERROR CURVE & MEAN-SQUARE-ERROR VALUE 
c ... ESTIMATION ERROR 

Print.,' ESTIMATiON ERROR' 
Print*,'HSEle) over', tisampl-Isettll/ispsym,' silmples is' 

c print.,' land l1SE as a fraction of the actual vallle)' 
c ••• initialise 

msqerIO)=O.OdO 
msebIO)"O.OdO 
do 210 isiu:1,isinum,1 
Print.,' sienal • ,isie 
do 211 i=isettl +1, isampl, ispsym 
sqerr (i 1"0 .OdO 
::Jabti )~O.OdO 

do 212 lant:l,Janum.l 
sqerr I i l '" sqerr I i) + 

• Ixli,isig,iantl xest(i,isie.iant))"2 + 
• Iyll,isia.iant) yestli,isia,iant»)'.2 

c sebli I sebti) + 
c *c c tlxli.isie,iantl - xestli,isie,iant.),l •• 2 + 
c *c c c (yli,lsie,iantl - yestli,isie.iant»"21 I 
c • Ix{i,isie,iant).xtt,lsiQ,iant) + yli,isia,iant).y{i.isie.iant» 

212 continue 
211 continue 

msqer{isie) ., O.OdO 
mseb{isiel " O.OdO 

do 222 i=isettl.',isampl,ispsym 
msqerlisi~) ., msqerlisiQJ ~ sqerr{i) 
mseb(lsia) :0 mseblisie1 + sebti) 

222 continue 



msqertlsial ; msqerlisiel/dblelisampl-isettl l/dblelispsym) 
msqerllsicl ~ 10.0dO*dloQl0ImsqerlisiQ» 
mseblisiel " msebtisia)/dblelisampl-isettllldbleIIspsym) 

c mseblisie) : 10.0dO.dloQl0Imseblisig) 
msqerlO) = msqertOI t msqerlisi~) 

msebtOI z msebtOI t msebtisiel 
c pRINT 9031, isie, msqertisiCI 
c pRINT 9032, msebllsiQI 

9031 format. I , SIGNAL" ',i3,' HSE=' ,f15.IO,' dB'1 
9032 format.(l16x,'IMSEB= '.f1S.10.' dBI' 
210 continue 

msqerlOI = mSqerlOl/dblelisinum) 
msebtOI = msebtOJ/dble{lsinuml 
Print 9033, isinum, msqerCO) 

c print. 9034, msebtO) 
9033 formatl' Averaee MSE over ',i3,' sicnals c • ,f15.10,' dB'1 
9034 formatlS2x. '1= ',f1S.10,' dBI' I 

c "'st.ore HSEe in array 
plot.etithet.ib,isnrl = msqerlOI 
endif 

c 
if I i metp. eq. 1 I then 

c ... PREDICTION ERROR 
:Print..,' PREDICTION ERROR' 
Print'.'mean square error over ',isampl-iset.tl,· samples is' 

c print. •• ·land MSE as a fraction of the actual value)' 
C "'initialise 

c 
c 
c 
c 

c 

c 
c 

412 
411 

msqerIOI=O.OdO 
mseblOl=O.OdO 
do 410 isle:I,islnum.l 
Prlnt. •• • siinsl '.isia 
do 1111 1=lsett}tl.lsampl.l 
sqerrli )=O.OdO 
sebti l"O.OdO 

do 1112 isnt."l,ianum,l 
sqerr{i) " sqerr{j I + 

• (xli,iaia.lant) 
• lyti,isia.iant.1 

seblil seblil t 

_ xpred(1,islc,lant.)I"2 t 
ypredli.isia,iantl)'.2 

.c c ((xli,isie,iant.) - xpredtl,lsie.iantl)"2 + 
• c c c lyli,isie,lant) - ypredll,isie.lantll"21 I 
• Ixlt,isiQ.lant.)*x(i .isie,lant) t yli ,isie.iant)'yli,lslg.iantll 
cont.inue 
cont.inue 
msqerlisia) " O.OdO 
rnseblisial " O.OdO 

do 422 i3iset.t.ltl,isampl.l 
msqerlisie) : rnsqer(isie) t sqerrli) 
mseblislal mseblisiel t sebti) 

continue 
rnsqerlisiQI msqerlisielldblelisampl-iset.tl) 

11' tmsqerlisiel.eq. O.OdOI msqerllsigl"1.0d-l0 
mSqerllsial = 10.0dO'dloa10l msqerlisig») 
msebllsill) : mseblisigl/dblellsampl-isettll 
mseblisie1 " 10.0dO'dloelO lmseblisie 1) 
msqerlO) = msqerlO) t msqerllsig) 
mseblO) " msebtOI t mseblisiel 
pRINT 9031. lsia, msqerlisiel 
pHINT 9032, msebtisiCI 

Jlln t'nnt In" .. 

c 
c 

c 
c 

c 

c 

c 
c 

3 

2 

4 
5 

msqer(O) = msqerlO)/dblelisinuml 
mseb{O) a msebtO)/dbletlsinum) 
Print 9033, isinum, msqertOJ 
print 9034, mseblO) 
••• store MSEp in array 
plotpllthet.,ib.isnrl msqertO) 
endlf 
cont.inue 
it.hmax:it.het. 
continue 
ibmaxcib 
continue 
cont.inue 
continue 
isnmax:isnr 

· .. OUTPUT MSE RESULTS TO FILES 
if (imete.eq. 1) then 

Print. •• • OUTPUT HSEe RESULTS TO FILE ... plot.eo' 
openlunit:? file"'plot.eo'l 
writel?') ithmax,lbmax,isnmax 
writel?,.) Illplot.elithet.ib.isnrl. ithet=' ,ithmax,l), 

• Ib:l,ibmax.l1, isnr"1 ,isnmax.l) 
closel?) 

endif 
11' limet.p.eq. 11 then 

Print..,' OUTPUT MSEp RESULTS TO FILE ... plotpo' 
openlunlt.c7, file:'plotpo') 
writel?,') ithmax,ibmax,isnrnax 
writ.et?,') Itlplot.plit.het.ib,isnr). ithet.:l .ithmax.l " 

• ib:1.ibmax,ll, isnr'"',isnmax,ll 
closel?) 

endif 

if liofile.eq. ,) then 
... OUTPUT RESULTS TO FILES 
open(unit"7. file""xesto', form"'format.ted') 
openlunit=B. rlle:::'yesto'. form"'format.ted') 
writet7,.) II(xestlt,isie,iant). i=O,isampl ,1 I, isle'" .isinum,l I. 

• lant.=l, ianum,l) 
writelB,.) ((lyest.ll.isie.iant), i=O,lsampl,ll, isie=l.isinum.lI • 

• lant.:l. ianum,') 
c1ose(7) 
clo~e(61 

openlunit.:::7. file:'xpred30·. form='formatt.ed') 
opentunit=8, rlle='ypred30', form='formatt.ed·) 
writeI7,.) (I(xpredll .isia.iantl. i=O.isampl ,I', isia~l ,isinum,l). 

• iant<:1.ianum,11 
writeI8 •• , Iltypredli,isie,iantl. i=O.isampl.ll, isie=l.isinum,l). 

• iant,=I,ianum.l1 
closet?) 
closel81 
endif 

stop 
end 



••••••••••••••••••• 
• KALMEST.FORTRAN • 
••• *.*.* •••••• ** ••• 

c ..... 7 ••.••.•..•.. 20 ••••.••• JO .•..••• '-la ........ 50 .....•.. 60 .....•.. 70. 

c 
c 

c 

program ka 1 mest 
initialise 
•••••••••• 

integer isettl, isampi 
parametertisettl=1200, isampl=isettl~60001 
double precision rx(O:60QOO.2I, ry(0:60000.21 
double precision sx(O:60000,2I, sy(O:60000,2) 
double precision x(O:isampl,2,2I, ytO:isampl,2,2) 
doub! e prec i s I on sxdet (a; i sampl ,2 I, sydet (0: isampl ,2 I 
double precision xesttO:isampI,2,2), yest(O:isampl ,2,21 
double precision xpred(O:isampl,2,2I, ypredtO:isampl,2,2) 
double precision rxest,ryest,. eX,ey 
double precision px, py, kx, ky, omeea, spsx, spsy 
double precision sqerrtlsampll, msqer(0:2) 
double precision sebtisampl), mseblO:21 
double precision plotp{1,IIO,7), plotet1,IIO,7) 
integer j ,ispsym, inter, isie,isinum, iant,ianum 
c~aracter.9 'modsch 
integer ipacl, i metrt, i rtsym 
inteeer Imete,lmetp 
integer i obbe. i of i le 
double precision svar, snrdb 
i ~teaer i snr, i snmax, lame, i ommax 

modsch='QPSK' 
c ••• svar is the average transmitted enerEY per bit, 
c ••• needed in calcn. of noise variance 

c 
c 

c 
c 
c 
c 

c 

lflmodsch.eq.'QPSK') then 
svar:1.0dO 
elseif(modsch.eq.'16-pt QAM') then 

svar""2.5dO 
tdse 

Print.,' MODUl.ATION SCHEME NOT AVAILABLE' 
stop 

endif 
lslnum=1 
I anum= 1 
if ({isinum.ne.l .or. (ianum.ne.1» then 
PRINT.,'NO! .et up for 2 sienals or two antennas' 
stop 
endif 
ipacl=1 
••• if iobbc:O then read in S,r,y arrays from stored files 
••• else run subroutine sbbchan 
iobbc=1 
••• for no retraining set imetrt=O 
••• for ideal retrainina set imetrt=1 
••• for slope retrainine:- by best straight line set imetrt:) 
••• for slope retraining:- subtracting one from other set imetrt~2 

imetrt=O 
••• Assume 10% retraining, unless no retraining 
if (imetrt.eq.O) then 

irtsym=O 
else 

i rtsym 
..... .<llf' 

ipael/10 

c 
c 
c 
c 

c 

c 

c 

c 

c 
c 

c 

._.assume unknown initial channel conditions, and allow 
• •• isettl symbols for the estimators to settle down 
_ •• assume fading Is aenerated at 600 samples per sec . 
••• this must be interpolated to give inter.600 samples per sec. 
inter: 20 
ispsym=1 
••• calculate estimation error if' imete:l 
imete::: 1 
_ •• calculate prediction error 
imetp"O 
••• output files if iofile:l 
iofile=O 

if imetp:' 

._.PRINT system constants for this run 
Print., ianum,' ANTENNAE' 
Print., isinum,' ',modsch,' SIGNALIS)' 
Print.,' Packet Length~ ',ipacl 

if (imetrt.eq.O) then 
Print.,' NO retraining' 
elseiflimetrt.eq.l) then 

Print.,' IDEAL retrainine' 
Print.,' 101. retraining therefore • irtsym,' 
else . 

Pr i nt •• ' Retra i n i ng method " i metrt 
Print_,' 101. retraining therefore ,irtsym,' 
endif 

Print 
Print_,'Run for' ,isampl.ispsym,' symhols' 
Print.,ispsym,' samples per symbol' 

if (imete.eq. 01 then 
Prlnt.,'DO NOT calculate estimation error' 
else 

Print*,'Calculate estimation error' 
endif 
if (imetp.eq. 1) then 

Print.,'Calculate prediction error' 
else 

Print*,'DO NOT calculate prediction error' 
endif 

••• 00 FOR DIFFERENT SNRs 
isnr:O 

do 5 snrdb=5.0dO,36.0dO,10.0dO 

re~raining Symbols' 

retraininc symbols' 

lr I(snrdb.gt. 75.0dO).and.lsnrdb.lt. 1999,OdO» gato 5 
isnr=isnr ... l 

Print. 
Print_,'--------------------------------------------··-------, 
Print.,' SNR= ',snrdb,' dB' 
••• read In flIes of sienal, channel. received sienal 

if liobbc .eq. 0) then 
Print.,'READ IN FILES' 
open{unit:7, file;'sxio', form:'formatted' 
openlunit=6. file:'syio', rorm='formatted' 
openlunlt;9, rile:'xio', form='rormatted') 
openlunit;10. flle='yio', form;'formatted') 
readI7,.) {(sxti,isilll, i=O,isampl,1l, isig=1,isinum,1) 
readt8,.) (syll,isie), i:O,isampl,1), isig;1 ,islnum,1) 
readI9,.) (I(x{l,tsie,lantl, i:O,lsampl,I), isie=1,isinum,II, 

• iant=1,ianum,lJ 
read(10,.} II(yll,isig,iant), i=0,isampl,1), isig~1 ,isinum,1 I, 

• iant.=1,i1'lnum,1) 



c 

c 
c 

c 
c 

c 
c 

9001 
9995 

9002 
9993 
9991 

99 

closet?) 
closel81 
cl'ose 191 
closel,OI 
openlunit'''11, file"'rxio', form='formatted') 
openlunlt.=12, file"'ryio', I'orm,,'rormat.t.ed' l 
rriadll1 ,«) (Irx!i ,lant.I, i=O,isampl ,I I, lant'" ,iAnum,1 
read(12,.) (Iryli,iantl, i:O,isampl,' I, iant:l,ianum,l 
close I 11 ) 
ciosel12) 

else 
Printl,'5UBROUTINE sbbchan' 
call sbbchan I I sampl , 1 pac I , i rtsym, t nt.er, snrdb, 

I modsch,svar,islnum,ianum,rx,ry,sx,sy,X,y) 
Printl,'KETUKNED sbbchan' 

end!f 
do 999,. lant~' ,lanum,l 
Pr! nt 
iftiant.eq.l) Printl,'ANTENNA a' 
tfliant.eq.2) Printl,'ANTENNA b' 
Printl,' i rx ry sx sy x y' 

do 9993 1:: 1 ,i sampl ,1 
if li.eq. 3) i::isampl-l 
do 9995 isla::l,lslnum,1 

Printl,'SIGNAI. ',isle 
Print 9001,1 ,sxl1 ,isiel,5yli ,isie), xii ,isia,iant),yll ,Isie,iantl 
formatli6, 12x, 21'9.1, 2f12.QI 

continue 
Print 9002, rxlj ,lant), ryll,iantl 
formatll0x, 2f9.Q) 
continue 

cont.inue 
II*assume perfect detection i.e. detected 5 

do 99 islg::l,lsinum,1 
do 99 lel ,isampl " 

sxdetlt,isial sxlt ,Isie) 
sydetti,isie) :: sylt,isiel 

continue 

actual s 

... REPEAT RUN fOR DIFFERENT VALUES OF CONSTANT w 
lome::O 

do 1 omeea~0.05dO,0.951dO,O.05dO 
iome~iornetl 

px : 1.0dO/omega 
py " O.OdO 
Print l ,' -------------------------------------------, 

... REPEAT RUN FOR EACH ORDER ·PREflICTOR IN TURN 
1IIIif lordpc-l NO prediction 
do 2 lordp=-I,-I,1 
Printl,' -------------------------------------------, 

... KALHAN ESTIMATOR 
Print.I,'Kalman Estimator, omeca'" ,omeea 
do 111 lant:1,ianum,1 
do 111 isie"',isinum,1 
do 111 lel,isampl,l 
rxest sxdetti,tste1IxestCt-l,lste,lant) 

I sydetli.isie)lyestli-l,isiQ·,iant) 
ryest sxdetli,isigllyest{i-l,iaie,lant) t 

* svdC!tli.lsir!)u:est{i-l.isli!.iantl 

ex " rxli,iantl - rxest 
ey " ryli ,1antl - ryest 

c **.for Kalman constant 

c 

spsx e tsxdet(i,isigl*.2 + sydet.li,ishP**2I1px t omega 
spsy" (sxdetll,isiQI**2 + sydet.li,isiel**2).py 
kx I(px*sxdetli ,islg) + py.sydetli ,isiel)'sPsx t 

* I-px*sydetti,isia) + py.sxdet.li,islg»)*spsy) / 
* Ispsx*spsx + spsYISPSY) 

ky 1-lpx*sxdetli,isiQ) + pylsydetli,islg»)lspsy 
* I-px.sydet.li,isigl + py*sxdet.li,Isle»).spsx) / 
* Ispsx*spsx + spsy*spsyl 

px (px Ikx*sxdetli,isie) ky*sydetli,'isiel).px + 
* Ikx1sydetll,islQl t kylsxdet.li,isleI11py lIomeaa 

py (py - IkxIsxdet{l,isill) kylsydetli,isig)llpy t 
* Ikx*sydet.Ii,isiel kYlsxdet.ti,isiel)ltpx Jlomega 
xestli,isie,iantl xest.li-l,isig,iant) + kXlex kY1ey 
yest.{i ,lstU,iant.) " yestll-l,lsle,lant) t kXley t kYlex 

,,, continue 

if limete.eq. 1) then 
c ... OBTAIN SQUARE-ERROR CURVE &- MEAN-SQUARE-ERROR VALUE 
c ..• ESTIMATION ERROR 

Print.*,' ESTIMATION ERROR' 
Printl,'mean square error over ',isampl-isettl,' samples is' 

c print*,'land MSE as a fraction of the actual value)' 
c 11_lnitialise 

msqerIO)-O.OdO 
mseb{O)::O.OdO 
do 210 Isie::l,istnum,1 
Printl,' sienal '.ista 
do 211 l"isettltl,isampl,1 
sqerr (i ) =0 .0clO 
sebli l"O.OdO 

do 212 iant::l,ianum,1 
sqerrli) :: sqerrli) + 

* (xll,isle,hnt) xestli,isill,iantJI1I2 t 
I tyli,isia,iantl yesLli,isia,iantl,II2 

c seb(j) seblil t 
c *c c ((xli,isle,iant) - xestli,isic:.iant.I)112 t 
c _c C c Iyli,isie,iant) - yesLll,isia,iant»1*21 / 
c _ Ixli,lsig,iantllxll,isie,iantl t yfi,isie,iant)lyli,isle,iantl) 
c 

212 continue 
c print. ~212. t, sqerrltl, nebli) 

9212 formatti'l, 2f12.71 
211 continue 

msqerlisig:) :: O.OdO 
mseb(isig) " O.OdO 

do 222 l::isettlt',isampl,1 
m~qer(isigl :: msqertisia) + sqerrli I 
tnsebtisig) msebilsig) t seblil 

222 continue 
msqerlislel msqer(lslg)/dble{isampI-isettJ I 
msqerlisig:l 10.0dO_dlog10ImsqerlisiQ)1 
mseb(fsllil) '" msebtisi/lJldblelisampl-isett}I 

c mseblisiel " 10.0dOldloe10tmsebtisig)1 
msqerlOI :I msqerlOI + msqerlisi~) 
mseb(O) : mseblO) t mSebllsiel 

c pRINT 9031, isie, msqerlisic) 
c pRINT 9032, msebtisla) 



9031 
9032 
210 

c 
9033 
9034 

c 

c 
c 

c 
c 

2 

5 

formatl' SIGNAL: ',i3,' I1SE"" ,flS.l0,' dB') 
format(46x,' IMSEB= ',fI5.10,' dB)' 
continue 
m~qerlOl = msqerlO)/dbletisinuml 
mseblOI :: msebtO)/dble(lsinum) 
Print 9033, isinum, msqerlO) 
print 9034, mseblO) 
formatl' Avera(l'e I1SE over ',13,' sianals'" ',fI5.IO,' dB') 
formatl52x, '(; ',fI5.10,' dB)' I 
••• store MSEe in array 
plotel',iome,isnrl " msqerlO) 
endif 
continue 
continue 
iommax= lome 
continue 
isnmax=isnr 

... OUTPUT MSE RESULTS TO FILES 
if limete.eq. 1 I then 

Print.,' .OUTPUT MSEe RESULTS TO fILE ... ploteo' 
openlunit=7, fUe:lploteo') 
writeI7,.) 'I' ,iommax,isnmax 
writeI7,.) (Ipiotell,iome,isnr), 

• iome::l,iommax,l), isnr=1,isnmax , 1 
close(7) 

stop 
end 

endif 

• SINE\lAVE.FORTRAN • 
•••••••••••••••••••• 

c ..... 7 •.••.••.•••. 2U •••••••• 30 •..•.... 110 ........ 50 ........ 6U ....•.•• 70. 

c 
c 

c 

c 

c 

c 

c 

proeram sinewave 
initialise 
••••••••••• 

double precision xl (0:7001 I, xestllO:7001) 
double precision x10:7001 I, dc(0:7001) 
double precision xpredl 10:7001 I 
double precl~lun the~sO, ~hets1 

double precision a90, a270 
double precision b, kb, aslpre, thlla, th12a, thetaa 
double precision as2pre, th21a, th22a , th23a 
I nteeer i ordas 
double precision dcO, dc90, dc160, dc270 
double precision dcOp, dc90p, dc160p, dc270p 
double precision sumO, 5um90, sum160, sum270 
inteeer nO, n90, nl80, n270 
douti}e precision d, th21dc, th22dc, th23dc, thetdc 
double precision ds90, ds270, ds90p, ds270p 
double precision c, kc, kc2, kc3, thetad, dslpre, thl1d , th12d 
double precision errd5, ds2pre, th21d, th22d, th23d 
I nteller i ordds 
double precision aspred, dspred. dcpred 
double precision deeD, dee90, de2160, dee270 
double precision deaOp, dee9p, deel6p. de(l'27p 
double precision pi 
double precision e, errpe, e2pred, elpred, epredtO:'lOOI 
double precision thetae, thlle,th12e, th21e,th22e,th23e 
double precision kx. kdc 
1 nteeer i orde 
double precision totb, totp, totc, totq 
double precision totb2, totc2, totc3, totc4 
double precision plotll-100:6001 I, plot2tO:8001) 
integer j 
double precision sepred(0:7001), msepre 
i nteller i, i start. i salOp) I i quad 
integer i metho 
istart::15 
Isampl:2200tlatart 
pl=3.1qI59265~dO 

thetaa:O.765dO 
t.het.dcz 1 .OOdO 
thetad::O.995dO 
thetae"O.845dO 
lorde=2 
lordas=2 
iordds=2 
imetho=2 
••• subtract kx.sine wave 
kx"O.7 110dO 
···subtract kdc-dc eatn 
kdc"2.0dO 
••• scale the value of h 
kb: 1 .0OOdO 
···scale the value of c 
kc: 1 .OQOdO 
••• scale the value of c samples 
kc3=1.0dO 



c 

c 

c 

c 

.,.read in this radlne sequence and its estimate 
Prlnt','READ IN fADING SEQUENCE AND ITS ESTIMATE' 
openlunit:1. file"'sino'. form='t'ormatted' 
read!?,') (xliiI, 1=1.1sampl,ll 
close 171 
open(unit=7. fiJe='!';inesto', form='formatt.ed' 
readl?,') "(xestl (i I, i:l ,isampl,l) 
closel?) 
"'do for different. values of theta? AND k? 
do 2 thetad=1 .025dO,l .202dO,O.500dO 
do 3 kx"l .OOOdO,I.003dO,O.050dO 
••• initialise predictor canstats 
as2pre=D.OdO 
aslpre=O.OdO 
aspred",O.OdO 
thl,la (1.0dO thetaa)'!1.0dO thetaa) 
th12a 1.0dO - thetaa.thetaa 
th21a O.5dO.(1.0dO - thetaa)"] 
th22a 1 • 5dO* (I . OdO- t.hetaa ) .. (1 .OdO- thetaa I' (1 • OdD .thetaa) 
th23a 1.0dO thetaa •• J 
dc2pre=D.OdO 
dclpre=O.OdO 
dcpred=O.OdO 
th21dc 0.5dO'{1.0dO - thetdc).*3 
th22dc " I .5dO'{1 .0dO-thetdcl.tl .0dO-thetdcl.{1 .OdO+thetdc) 
th~3dc '" 1 .OdO·- thetdc .. j 
e2pred=0.OdO 
elpred=O.OdO 
epred{lstartl=O.OdO 
thl1e (1.0dO - thetae)'{1.0dO thetae) 
thl2e 1.0dO - thetae.thetae 
th21e O.5dO'{I.OdO - thetae) •• 3 
th22e 1.5dO'{1.0dO-thetae)'ll.0dO-thetae)·tl.0dOtthetae) 
th23e 1.0dO - thetae •• 3 
ds2pre:0.OdO 
ds,lpre"'O.OdO 
dspred-O.OdO 
ds90p=0.OrtO 
ds270p=0.OdO 
th 11 d {I .0dO - thetad Ht (1 .0dO - t.het.ad) 
th12d 1.0dO - thetadHhetad 
t.h2ld 
th22d 
th23d 

0.5dO.'t .0dO - thet.ad)") 
1 . 5dO. t 1 . OdO-thetad)* t 1 . OdO-t.het.ad ). 11 . OdO+thetad) 
1.0dO - thetad.*) 

••• start up 
iquad::270 
decr270=-30.0dO 
degOp"15.0dO 
dec9p""55.0dO 
a270=1.0dO 
a90cl.OdO 
aslpre=O.OdO 
aspred=O.9dO 
dcpred=0.3dO 
dspred=BO.OdO 
ds90pcBO.OdO 
ds270p2BO.OdO 
totb=20.72dO 
totb2"-21.B4dO 
tntp,,110.0elO 

c 

t.otc:-7.93dO 
totc2=-18.113dO 
totc3 = 16. 25dO 
totc4=+HO.OdO/pi 
totq=20.0dO 
sumOr 37. 116 
sum90=37.116dO 
suml BO" -13 .116dO 
sum270=-13.46dO 
nO::I,O 
n90=40 
n180::110 
n270:40 
dcOp=0.3dO 
dc90p=0.3dO 
dclBOp .. 0.3dO 
dc270p=0.3dO 

c ... FADING PREDICTOR INC. SINE WAVE PREDICTOR 
Print','FADING PREDICTOR INC. SINE WAVE PREDICTOR' 
do 1 i=istart,isampl.l 

c ... TAKE APPROPRIATE PATH IN PROGRAM DEPENDlNC ON THE ANGLE 
c ... OF THE SINE WAVE COMPONENT 
c •• *Ir i is .ge. t.he predicted Odecree point 

if ((lquad.eq.270) .and. (i.ge.degOp» then 
C *"ESTIMATE the peak at the PREVIOUS 270degrees 

8270 : kb.5.21898dO .(totb tl2.0dO/pi )*totb2)/totp 
b = a270 - aspred 

c ••• PREDICT the peak at the NEXT 90degrees 
if tiordas.eq.l) then 

C ••• deeree 1 
aslpre aslpre + thlla.b 
aspred " aspred + aslpre + thl2a.b 
else 

c ..• deHree 2 
as2pre as2pre + th21a.b 
aslpre aslpre + 2.0dO.as2pre + th22a.b 
aspred aspred t aslpre - as2pre t t.h23a.b 
end tr 

C ••• reset totals, sum. sum count and quadrant 
totb=O.OdO 
totb2::0.0dO 
totp"O.OdO 
sumO=O.OdO 
nO=O 
iquad"O 

do 1001 j c deelBO.deg270.1 
plotl (j) " a270. dsinlpi/ds270 .(j-deR180tds270) 

I 001 cant i nue 
c ... if i is .ge. the predicted 90deQree point 

elsetr(tiquad.eq.O) .and. 1i.lle.deIl9p» then 
c ••• ESTIMATE dB between PREVIOUS 270deerees and HERE 90degrees 
c ••• Therefore estimate deg90 land degO) 
c ••• rirstly find c in rad. Then SUBTRACT c in samples rrom dspred 

c :: datan(kc.5.2789BdO .(totc -12.0dO/pi ).totc2l/totc)) 
c " -c'dspred/pi 
dell90 = deg9p + c 
ds90 = dee90 - deC270 
deeO " dee270 + 0.5dO'ds90 

c ... PREDICT ds between UERE 90der.rees and NEXT 7'10dcp,rccs 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 
c 

1002 

1003 

•• 1 Therefore predict deU27p (and dec16p) 
errds '" ds90 - ds90p 
if (iordds.eq.l) then 

... decree 1 
dslpre '" dslpre + thl1d*crrds 
ds270p ::: ds90p • dslpre + lh12d.errds 
elseifliordds.eq.21 then 

~ .. decree 2 
ds2pre ds2pre + th21d*errds 
dslpre dslpre + 2.0dO'ds2pre t th22d*errds 
ds270p ds90p + dslpre - ds2pre + th23d*errds 
endif 
dspred:ds270ptkc3 l c 
dea27p = dee9p + dspred 
deglHp = dee9p t O.5d01dspred 
"'reset totals, sum, sum count and quadrant 

't,otc=O.OdO 
tolc2=O.OdO 
totc3=O.OdO 
totc4=O.OdO 
totq=O.OdO 
sum90=O.OdO 
n90:0 
!quad=90 

do 1002 jcdec270.degO.l 
plot 1 (J) " a270. ds i n (p l/ds90 • (j -de1l270 t 1 . 5dO'ds90) I 

continue 
••• 11' I is .ge. the pred'icted 180degree point 
elself(tiquad.eq.90) .and. (i.Qe.degltlp» then 
.--ESTIMATE the peak at the PREVIOUS 90degrees 
a90 = kb_S.27698dO I(totb -12.0dO/pi )ltotb2)/totp 
b c a90 - a5pred 
I.IPREDICT the peak at the NEXT 270dearees 
if !iordas.eq.l) then 

... deQ:ree 1 
aslpre aslpre + thllalb 
aspred = aspred • aslpre + th12alb 
else 

... deeree 2 
as2pre 
aslpre 
8spred 
endif 

as2pre 
aslpre 
aspred 

+ th21a.b 
+ 2.0dOlas2pre • th22alb 
+ aslpre - as2pre + th23alb 

Illreset totals, sum, sum count and quadrant 
totb=D.OdO 
totb2==O.OdO 
totp=O.OdO 
sum180=O,OdO 
n180=0 
iquad=180 

do 1003 j=deeO,dee90,l 
plotl!jl = a90. dsin!pllds90 Itj-dee011 

continue 
... It· i is .ee. the predicted 270dellree poln,t 
elsetrIClquad.eq.1801 .and. 1i.l1e.deIl27p» then 
I •• ESTIMATE ds between PREVIOUS YOdearees and HERE 27Qdegrees 
.... Therefore estimate dee2?O (and dee180) 
, •• firstly find c In rad. Then SUBTRACT c In samples from dspred 
c datanlkc*5.27898dO .Itotc +12.0dO/pi 1.totc21/totc3) 
~ ~ -~'ll~nr~rl/pl 

c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

10014 

dea270 :: dee27p • c 
ds270 :: dec270 - dec90 
deQ180 :: dee90 • 0.5dO'ds270 
luPREDICT dB between HERE 270degrees and NEXT 90deerees 
III Threrfore predict dee9p land deaOp 1 
errds == ds270 - ds270p 
if I iordds .eq.l) then 

... degree 1 
dslpre :: dslpre + thl1d l errds 
ds90p :: ds270p + dslpre • th12dlerrds 
elseif{iordds.eq.21 then 

... deeree 2 
ds2pre :: ds2pre + th21dlerrds 
dslpre = dslpre • 2.0dOlds2pre • th22d l errds 
ds90p = ds270p + dslpre - ds2pre + th23d*errds 
end!f 
dspred=ds90p.kc3 I c 
dee9p : dea2?p + dspred 
deeOp : dea2?p • O.5dO*dspred 
I"reset totals, sum, sum count and quadrant 
totc=O.OdO 
totc2=0.OdO 
totc3=0.OdO 
totc4:0.0dO 
totq"O.OdO 
sum270"'0.OdO 
n270=0 
iquad==270 

do 1004 jEdee90,deglBO,l 
plot1 (j) " a901 dsinlpt/ds270 .lj-dee90tO.5dO.ds270») 

continue 
else 
endif 

THETAS I i + 1 ) ... CALCULATE THETASCI) AND 
if liquad.eq.OI t.hen 

thetsO ~ pi/dspred 
thetsl " pi/dspred 

elseif! liquad.eq.901 

I (i - deaOp) 
IIl.l - deeOp) 

thetsO pi/dspred 
thetsl pi/dspred 

.or. (iq\lad.eq.180) I then 
1(1 - deKYp .O.5dOldspredl 
111+1 - dee9p + 0.5dO l dspredl 

else 
thetsO 
thetsl 

endif 

pi/dspred 1(1 - dee2'lp • 1.5dO l dspred) 
pi/dspred .(i.l - dee2'/p + 1.~do.dspredl 

••. SiNE UAVE PREDICTION 
xli) = (aspred)ldsinlthetsOl 
xti.l) " (aspred)'dsinlthetsl 

•.. RESIDUAI. FAD1NG PREDICTOR 
if (imetho.eq.l) then 

e = xest.l (1 I - kXlxti) - kdcldcli) 
elseif(im~tho.eq.2) then 

e = xestl (i) '- kXlx(i I 
else 
endif 

I •• predictor 
errpe = e - epred(t) 
if liorde.eq.l) then 

... de~ree 1 
elpred :: elpred + thl1elerrpe 
epredli., I " epred(i I • elprel1 • th12e'errpe 



else 
c ... degree 2 

e~pred ~ e2pred + th21e.errpe 
elpred ~ c1pred + 2.0dO.e~pred + th~2e*errpe 
epredli+1) '" epredliJ t elpred e2pred + th23e.errpe 
endif 

c ... PFlEDICTJON OF CHANNEL COMPONENT AT TIME li+1)T, PREDICTED 
c FROM TIME iT 

if limetho.eq.l) then 
xpredl li+1 I : kx.xlitlJ t epredtitl) t kdcJdcli+l) 

elseiflimetho.eq.21 then 
xpredl li+l) = kx.xlitl) + epredlitl) 

else 
endlf 

c ... SINE WAVE ESTIMATOR "UPDATE" 
c ••• for amplitude update 

totb:tatb t xestl li )'dslnlthetsOI 
totb2:toth2 + xestHi I 
totp:toLp t dsinlthetsOI.dsinlthetsOI 

c ••• for phase update 
totc:totc t xestl 11 ).dcoslthetsOI 

·totc2=totc2 + xestl li I 

totc3=totc3 + xestllil.dsinlthetsOl 
totc~=totc~ + dcoslthetsO) 
totq=totq + dcoslthetsO).dcoslthetsO) 
continue 

c ... CALCULATE PREDICTION SQUARED ERRORS 
Print.,'PREDICTION SQUARED ERRORS' 
do 321 i=istart,isampl,l 
sepredlil ~ (x1liJ - xpred1Ii)u2 

321 conti nue 
c ••• calculate mean error 

c 

c 

msepre=O.OdO . 
.do 331 i=!start,lsampl,1 

msepre = msepre t sepredli) 
331 continue 

3 
2 

msepre '" msepre/dhlelisampl-istart) 
Print.,'kx= ',kx,' kdc~ ',kdc 
Print.,'kb= ',kb,' kc= ',kc 
Print.,' thetaa=' .thetaa,' thetdc=' ,thetdc,' thetad= ',thetad 
Print.,'thetae= ',thetae 
Print. ,'Mean-squared-error over' ,isampl-istart,' samples Is' 
Print •• ' msepre " " rnsep,'e 
continue 
continue 

, .. OUTPUT RESULTS 
openlunit=7, file='xo', form:o'rormatted') 
openlunlt~B, file='xpred1o', form:'formatted' 
writel7,.) Ixli), i~1.i3ampl,11 

writeIB,.) Ixpredl (1), 1:1 ,isamp} ,1) 
close('/) 
close (8) 
opentunit",7, file:'plotlo', form"'formatted' 
write!?,.) Iplot1 li I. i-' ,isampI ,I) 
ciose('/) 

•••••••••••••••••••••• 
• EQUALIZER2.FORTRAN • 
•••••••••••••••••••••• 

c. , •.. 7 ....... , ... ,20 ...... , .30 ....... ,'(0 ........ 50 ........ 60 ..... , .. 70. 

c 
c 

proeram equalizer2 

double precision 
double precision 
double precision 
double precision 
double precision 
double precision 
double precision 
double precision 
double precision 
Isampl=1000 
a=O.5dO 

Initialise 
•••••••••• 

sxI0:3000), sy{0:3000) 
sXesttO:3000), syestI0:3000) 
rxI0:3000), ryIO:3000) 
xI0:3000), yI0:3000) 
cxI0:3000), CyIO:3000) 
cXestI0:3000), cyentI0:3000) 
exl3000l, eyl30001 
xx(3000), xy(3000) 
a, sqerr(3000), msqerr 

c ••• read in files of sienal, channel, received sienat 
openlunit=7, file;'sxo', form:'l'ormatted') 

c 

c 

c 

c 
c 

96 

99 

openlunit=tJ. file='syo', form='forlllatted') 
openlunlt=Y, flle='xo', form='formatted') 
openlunit=IO, f'lle='yo', form='formatted' I 
open(unit=I" file"'rxo'. rorm~'formatted') 

openlunlt=12. file:'ryo'. form"'formatted' 
read(7,.) Isxlil, j:O,isampl,l) 
readlB,.) Isyli), i=O,isampl,l) 
readI9,.) Ixli). i=O,isampI.I) 
readll0,.) Iyll), ieO,isampJ,l) 
readlll,.) Irxll), i~O,lsampl,l) 
readI12,.) Iry!! I, i=O,isampl,l) 
close (7) 

closelB) 
closef9) 
closell0) 
close I 11 ) 
close I 12) 
••• form inverse-channel coefficients ex I cy 
do 98 i=O,isampl.l 
cx(i)" xlil/l(xlihxll» t (y(ihylilll 
cyll) '" -y(il/llx(i).xll» t (yli).yll)) 

continue 
••• inverse-channel estimate at t~O is assumed to be exact 
cxestlOI " CxlDI 
cyestlO) ~ cylO) 
••• assume perfect detection 
do 99 l:l,isampl,1 
sxest!i) sxli) 
syest( i) = syl!) 

continue 

... CHANNEL EQUALIZER 
do III i:l,isampl,1 

i.e. estimates of s 

xxIi) rxlj ).cxest(i-II ryli ).cyestli-Il 
xyll) rxli )Jcyestli-l) t ryli )*cxestli-I) 
exli) xxii I - sXestli) 
eyli) xyll) - syestli) 

act.ual s 

cxestliJ cxestli-l a.1 ex{i).rxli t eyti)lryti») 
cyest!il" CYl!stli-l} - a11-exljl1ryti ey(j)lrxtil) 

111 r:11nt. i nOln 



c 
c ... OBTAIN SQUARE-ERROR CURVE & MEAN-SQUARE-ERROR VALUE 

do 211 i=1.isampl.l 

c 
c 

c 
c 

sqerrlil = texti » .. 2 + ley(j ) .. 2 
211 continue 

'msqerr = a.OdO 
do 212 i=I,isampl,1 

msqerr ." msqcrr + sqerr(i) 
212 continue 

rnsqerr ." msqerr/dblelisampll 
:print*,'mean square error over ',isampl,' samples is ',msqerr 

... OUTPUT RESULTS TO FILES 
iope ntunit:7, file='cxo'. form='formatted' 
opentunit"6. fl1e:'cyo·. form"'formatted') 
open(unit=9. file"'cxest.o', form:'rormatted') 
openlunlt=10. flle='cyesto'. form='formatted' 
write!?,.) (exUlt i"'.isampl,l) 
write(8.-' (cyti I. i=1 .isampl.l) 
writeI9,.) (cxestli 1, 1=1 .isampl ,I 
writcll0 •• ) (cyestti), i.o:l,isampl,1' 
closet?) 
close(Bl 
c}ose(91 
close(10) 

stop 
end 

- 2.6 0_ 

. I 



· , .' 


