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ABSTRACT 

Asynchronous Transfer Mode (A TM) is fast emerging as the preferred information 

transfer technique for future Broadband Integrated Services Digital Networks (BISON), 

offering the advantages of both the simplicity of time division circuit switched techniques 

and the flexibility of packet switched techniques. A TM networks with their inherent rate 

flexibility offer new opportunities for the efficient transmission of real time Variable Bit 

Rate (VBR) services over such networks. Since most services are VBR in nature when 

efficiently coded, this could in turn lead to a more efficient utilisation of network resources 

through statistical multiplexing. Video communication is typical of such a service and could 

benefit significantly if supported with VBR video over A TM networks. 

The primary objective of the research described in this thesis is to address the various 

issues associated with the transmission of VBR video over an ATM network called the 

Orwell Ring. There are two major issues concerned in this work. One relates to the relative 

merits of VBR video, and the other, to the efficient transmission and control of VBR video 

traffic over the ring. 

VBR video signal statistics were collected from a COST211 video-conferencing codec 

which was modified to operate as a VBR video source. The picture material investigated 

were mainly head and shoulders scenes corresponding to videophone and video-conferencing 

type pictures. The statistics collected enabled an assessment of the relative merits of the type 

of VBR video sources concerned. The results indicated a bandwidth saving of about 2-3 over 

constant bit rate video, as well as other advantages such as improved picture quality and 

simpler codec design. The effects of statistical multiplexing the outputs of uncorrelated VBR 

video sources were also investigated. 

The signal statistics collected also provided information on the characteristics of the 

VBR video signals, and enabled a simple VBR video source model to be developed. The 

model exhibited most of the characteristics of the video sources upon which it was modelled, 

but in view of the constraints in computing resources, some of the simplifications made 

suggested that the scope of the model was somewhat limited. It is nevertheless considered to 

be adequate for this study. 

Simulation studies of the transmission of VBR video over the Orwell Ring have shown 

that with correct dimensioning of the ring, proper exercise of the traffic control mechanisms 

provided by the protocol, and a reasonable amount of buffering, a good Quality of Service 

(QOS) can be obtained for all services in a multi-service environment. Cell loss rate and call 

i 



Abstract ii 

blocking rate which satisfy the required performance along with a mean cell delay in the 

order of 10 I1S, can be achieved without sacrificing much of the gain of VBR video. The 

protocol has also been demonstrated to be effective, even under overload conditions. 

Finally, some experimental work in interfacing the modified COST211 codec as a VBR 

video source to a prototype Orwell Ring was carried out, in order to demonstrate the 

inter-working of the two systems and the effectiveness of the protocol. Considerations have 

also been given to the design of an addressing scheme for the video data suitable for the 

A TM environment. 
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LIST OF SYMBOLS AND ACRONYMS 

AR Auto-Reset 

BISDN Broadband Integrated Service Digital Network 

BTRL British Telecom Research Laboratories 

CBO Constant Bitstream Oriented 

CCITT Consultative Committee on International Telephony and Telegraphy 

COST Co-operation in Scientific and Technological Research 

CLR Cell Loss Rate 

EBU European Broadcasting Union 

FD Frame Differences 

LC Layered Coding 

MAC Medium Access Control 

MCL Mean Cluster Length 

PCM, DPCM Pulse Code Modulation, Differential PCM 

PMR Peak-to-Mean Ratio 

PSN Packet Switched Network 

QOS Quality of Service 

RI Reset Interval 

RR Reset Rate 

Ta' T" Tm Call Acceptance, Ceiling and Masking Thresholds 

VBR Variable Bit Rate 

11 Mean 

.-2 Standard Deviation, Variance cr,u 

E Erlang 

kb/s, Mb/s Kilo-bits and Mega-bits per Second 

Il Micro 
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ATM 

'd' 

D 

PDF 

VLC 

Symbols and Acronyms 

Asynchronous Transfer Mode 

Unit in which bandwidth is allocated on the Orwell Ring 

Pixel or sample delay 

Probability Density Function 

Variable Length Code 

Shape parameter (Gamma Distribution); 

Correlation coefficient (Auto-correlation) 



DEFINITIONS AND TERMINOLOGY 

Addressing Scheme 

A scheme whereby unique codes and addressing information are inserted into the video 

data stream, to allow the decoder to reconstruct the picture and to enable the decoder to 

recover synchronisation from error conditions. 

Asynchronous Transfer Mode 

A packet and connection oriented transfer mode using time division multiplexing 

technique where the information flow is organised in fixed size data transport units called 

cells. 

Auto-Reset 

A mechanism which resets the 'd' allocation of the CBO services if no reset is received 

within a pre-defined interval. 

Bridging 

The forming of longer pixel clusters by joining groups of changed pixels which are 

separated by less than a pre-specified distance. 

Call Acceptance Threshold 

The reset rate below which call blocking commences. 

Call Blocking 

Refers to the situation when a new call request is rejected because of insufficient 

bandwidth on the ring to support the new call, without degrading the service performance 

of the existing connections. 

Ceiling Threshold 

The reset rate below which no increase in 'd' allocation for VBR video will be allowed. 

Cell 

Is the data transport unit in A TM technique. It consists of a header field~which contains 

routing and control information, and an information field for carrying user data, both 

fields are of fixed sizes. 

Cell Delay 

Refers to the time elapsed between a cell generation and its launching onto the ring, i.e. 

time spent waiting in the node buffer. 

v 



Definitions and Tenninology vi 

Cell Loss 

Refers to cells discarded from a node either because of excessive cell delay (for 

synchronous service) or buffer overflow. 

Cluster 

A groups of adjoining changed pixels and pixels included by the bridging process to 

increase cluster length. 

Data Rate Smoothing 

Refers to the mechanisms (usually with feedback control) used to smooth a time varying 

data rate to a constant data stream. 

'd' Allocation 

Synonymous with bandwidth allocation; 'd' is the unit in which bandwidth allocation is 

measured. A 'd' of one is equivalent to a minimum allocation of I Mb/s for CBO 

services, but can be less for VBR services because of masked resets. 

Frame Differences 

The proportion of pixels in a video frame which are deemed to have changed significantly 

from the previous frame, as well as pixels included by the bridging process. 

Layered Coding 

A video coding concept whereby video signals are coded into layers of hierarchical 

information of different picture resolution. Layers carrying video related data e.g. voice, 

text, can also be included. 

Load Control 

The mechanisms which decide whether a new call request or a request for more 

bandwidth allocation can be accepted or not. The decision is based upon whether the 

increased load will cause the ring to overload. e.g. call blocking, dynamic 'd' allocation. 

Masked Resets 

An overload control mechanism provided by the Orwell protocol where some resets are 

masked from the VBR services at a rate proportional to the level of overload. This 

effectively removes bandwidth gradually from these services and protects the ring against 

overload. 

Masking Threshold 

The reset rate below which the masking mechanism is activated. 

Monitoring Interval (of the dynamic 'd' allocation scheme) 

The interval over which cell arrival rate is monitored. 
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Movement Detector 

A mechanism used to decide whether a pixel has changed significantly from the 

corresponding pixel in the previous frame. 

Observation Interval 

The interval over which reset rate is monitored and computed. 

Orweli Torus 

A switch where rings are stacked in parallel. The Orwell protocol operates across the 

whole Torus making it appears as a single high capacity ring. 

Overload Control 

The mechanisms which protect the ring against overload conditions due to the statistical 

behaviour of the VBR traffic. e.g. masked resets, auto-resets. 

Packet Video 

The concept where digital video signals are segmented into blocks of data for 

transmission over packet switched networks. 

Peak-to-Mean Ratio 

The peak-to-mean bit rate ratio of a VBR coded video signal. It provides some measure of 

the burstiness of the signal and the VBR video gain over CBO video. 

Quality of Service 

Service performance in terms of call blocking rate and cell loss rate. 

Reset Interval, Maximum 

Time elapsed between two consecutive ring resets. Maximum reset interval is the 

pre-defined interval which should not be exceeded, e.g. 125 J.lS. 

Reset Rate 

The number of resets observed on the ring within a given time interval, e.g. 2 ms. This 

provides a measure of the amount of unused bandwidth on the ring. 

Ring Dimensioning 

Estimating the ring capacity required to support a given level of offered load with a 

pre-specified QOS. 

Traffic Control 

This consists of load control and overload control. 
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VBR Video 

Video signals which are coded such that the data rate is proportional to the spatial and/or 

temporal complexity of the picture at any given moment, thus maintaining a constant 

picture quality 

Video Coding 

The application of digital image processing technique to remove redundancy in the video 

signals, in order to reduce the signal bandwidth for transmission economy. 

Logical Addressing 

Indicates the desired destination without indicating the route to be taken. The route taken 

by the cell may be dynamically altered without any header manipulation. 
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Chapter 1: 

Introduction 

1.1 Broadband ISDN and Video Services 

Broadband integrated services digital networks (BISON) are emerging in response to 

the anticipated demand for new broadband services and the rapid advances in technologies -

particularly in optical transmission, high speed switching and processing. The falling costs of 

implementing these technologies further expedite the process of network evolution towards 

the BISON concept. 

BISON will be developed on the basis of the existing narrowband ISON, and will 

support all existing services as well as any new services that may arise. Besides offering user 

access to a broader bandwidth well in excess of 64 kb/s, BISON should also provide 

flexibility and be service independent. These requirements are essential for the evolution 

towards a single layer, multi-service network. The advantages of such an integrated 

communications network are widely acknowledged!23.",)').!. 

Oynamic rate flexibility has been singled out as a very desirable feature for any future 

network. Such flexibility is required to cope with the uncertainties in future demand for 

network services, most of which will exhibit bursty traffic characteristics and have widely 

differing requirements!"). In order to provide these services economically and efficiently, 

BISON must be able to adapt dynamically to the requirements of the individual services at 

any instant, and thereby provide the basis for the statistical multiplexing of all services, 

leading to a more efficient utilisation of network resources. 

A very promising proposal for the implementation of BISON is the use of the 

Asynchronous Transfer Mode (A TM) technique, where all information is transported and 

switched in packet form using fixed size data transport units called cells, as defined in CCITT 

Recommendation 1.121. The use of cells as the basic transport unit in ATM based networks 

provides a high degree of flexibility, where the rate adaptation capability and the absence of 

1 



Chapter 1 2 

physical channel structures allow for the complete sharing of network resources among all 

the different connections; this enables full service integration and statistical multiplexing to 

be achieved easily. 

Although the exact nature of the broadband services that are to be offered has yet to be 

considered by the CCnT, video-communication is expected to be one of the major services. 

The market potential for services such as videophone, video-conferencing and video 

distribution is widely recognised. Videophone for example, has a potential customer base 

equivalent to that of the present telephony service. 

Video signals are characterised by their high bandwidth requirements and high 

transmission costs. However, the advanced signal processing technologies available today 

enable this visual information to be coded efficiently, thereby optimising the bandwidth 

requirements. The optimised bandwidth requirement may differ from one video source to 

another and may very often fluctuate with time. With an ATM based BISDN, this 'variable 

rate' information can be transported efficiently, thereby making more efficient use of the 

network resources for these services, rendering them more cost effective. 

The transport of these variable information rate services over A TM networks is now a 

subject of worldwide research, and the work presented in this thesis addresses the problems 

associated with the transmission of variable bit rate video over one such network - the Orwell 

Ring. 

1.2 Variable Bit Rate Video 

Video related visual services place large demands on network resources. It is therefore 

important, for a given picture quality, to keep these demands to a minimum in order to reduce 

the transmission costs for such services. This objective can be achieved through the use of 

efficient video coding techniques. Since a video signal contains a varying amount of 

information which is proportional to the instantaneous complexity of the pictures, proper 

coding of the signal for a fixed picture quality will result in a variable bit rate output; hence 

the term Variable bit rate (VBR) video. 

The concept of VBR video has not received much attention in the past primarily 

because there was no broadband VBR carrier available. Instead, the fluctuating bit rate has 

always been smoothed, using a buffer and some feedback mechanism, to yield a constant bit 

rate signal for transmission over a fixed bit rate channel. This is known as constant bitstream 

oriented (CBO) video. This technique inevitably leads to the inefficient use of bandwidth 

when the actual data rate is lower than the allocated bandwidth itself, and conversely, picture 

quality would be degraded when the data rate has to be reduced, in order that no loss of data 
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is incurred. In general, a bandwidth much higher than the expected mean data rate would 

have to be allocated in order to avoid excessive or prolonged degradation to the picture 

quality. 

The advent of ATM based BISDN will offer the potential for VBR video to be 

supported in the future. With VBR video, video services can be provided more efficiently for 

a given picture quality, since only the exact amount of bandwidth will be required from the 

network at any given time. On average, the bandwidth utilised is equal to the mean bit rate of 

VBR video, which is much lower than the peak bit rate. See references [27,37] and Chapter 3 

for some experimental measurements. 

However, this bandwidth saving can only be realised if a large number of uncorrelated 

VBR video sources are available for multiplexing in a pool of shared resources. Since 

simultaneous demand for large bandwidth from several sources rarely occurs, the fluctuating 

bit rates are averaged out through bandwidth sharing. The resultant combined bit rate would 

have a mean equal to the sum of the means of the individual sources, and would have smaller 

peaks with less fluctuations. Therefore, on average, the bandwidth required for each 

connection is only slightly higher than the mean bit rate of a VBR video source. High 

bandwidth demand from a source can be met by the allocated but unused bandwidth from 

other sources which have Iow bandwidth demand, or from the unused resources on the 

network. Research carried out to investigate the statistical multiplexing of VBR video by 

Haskell(Z7] and Koga{>7) suggests that a bandwidth saving of the order of 2 with respect to CBO 

video can be achieved. This represents a significant amount of saving, and hence cost 

reduction in the provision of these services. 

In summary, VBR video offers some very attractive features for supporting video 

services over an A TM network, namely: 

• constant picture quality; 

• less complex codec design since no feedback mechanism is required; 

• bandwidth saving and hence lower transmission charges through statistical 
multiplexing. 

The last-mentioned feature (lower transmission charges), is of particular importance 

insofar as the viability of video services on a widely accessible scale is concerned. 
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1.3 The Orwell Ring 

The Orwell Ring is, in essence, a high speed slotted ring implementing the Orwell 

medium access control protocol. The protocol was developed at British Telecom Research . 

Laboratories (BTRL) as a flexible protocol for carrying mixed services such as voice, data, 

and possibly low bit rate VBR video on a single multi-service network. The ring supports a 

connection-oriented, cell-based transport mechanism which complies with the definition of 

ATM. 

The ring, or more precisely, the Orwell protocol, is unique when compared with other 

slotted ring protocols in that slots are released at the destination nodes rather than the source 

nodes. This feature allows the ring capacity to be increased, or alternatively, the delay to be 

reduced, for the same load. A novel load control mechanism overcomes the potential hogging 

problem arising from the destination release policy, and guarantees an upper bound for cell 

delay. 

The load control mechanism is fully distributed and is at the heart of the Orwell 

protocol, guaranteeing synchronous services small cell delay and high cell security, while 

allowing the remaining bandwidth to be used in a flexible and efficient manner by delay 

tolerant asynchronous services and other low priority services such as VBR video. The load 

control mechanism operates a bandwidth reservation scheme and provides an estimate of the 

unused bandwidth on the ring. By controlling access to the slots from the nodes according to 

their bandwidth reservation, and rejecting call requests that might cause the ring to overload, 

cell delay can be bounded. The protocol further provides overload control on non-priority 

services in order to protect the synchronous services. 

The Orwell Ring has several advantages over other non-ring or non-bus based ATM 

switches. For instance, logical addressing can be used for fast signalling, which then allows 

for a greater distribution of the network processing resources. The ring also provides a more 

elegant way of broadcasting and multicasting information. However, the throughput of the 

ring is ultimately limited by the single path. While a ring speed of 140 Mb/s, achievable with 

today's technology (and possibly 1 Gb/s in the next decade), may be sufficient for private 

network needs, it is inadequate for public network use. 

, To meet the requirements of a public switch, rings can be stacked in parallel and their 

separate capacities made to appear as a single high capacity Orwell, Ring as shown in 

figure 1.1. This multiple ring system is called an Orwell Torus, and besides offering 

increased capacity, the Torus also provides the reliability and the ease of maintenance and 

expansion that is required for a public switch. The throughput of the Torus will still be 

limited by the maximum number of rings that can be stacked together. 

For more details of the Orwell Ring and Torus, see references [1,2,3,22]. 
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Nodes 

Queues 

'N'Rings 

(a) (b) 

Fig. 1.1 (a) Orwell Ring and (b) Orwell Torus. 

1.4 Research Objective 

The primary objective of this research project is to address the various issues associated 

with the transmission of VBR video over an Orwell Ring. The two main issues which this 

work is concerned with, are: 

1. the relative merits of VBR video, and 

2. the efficient transmission and control of VBR video traffic over the ring. 

(1) Earlier work\l1,>7] has suggested that some gains in bandwidth saving and improved 

picture quality can be achieved with VBR video. The work in this thesis attempts to verify 

this claim, and to assess these gains by carrying out measurements on the signal statistics 

using a practical codec. This also provides a better understanding of the characteristics of 

VBR video, which will be important when addressing the second issue. 

(2) Although the Orwell Ring is capable of supporting VBR video connections, the 

actual transmission and control of VBR video presents a major traffic control problem, 

especially in the presence of CBO services. Control must be exercised so-that VBR video 

would only suffer minimal cell loss, with no resultant loss on the CBO connections, and at 

the same time achieve high network utilisation. Cell delay is another factor which needs to be 

controlled. Consideration must also be given to the recovery from, and the concealment of, 

cell loss related errors. 
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The research was conducted along the following lines to achieve the objective set out 

above: 

I. To study the statistical behaviour of VBR video signals in order to gain a better 

understanding of the signal characteristics, and to assess the relative merits of VBR 

video. 

IT. To develop a simple computer model for a VBR video source using the results 

from (1). 

ill. To incorporate the VBR video source model into an Orwell Ring simulation, and 

to study the control and performance of VBR video over the ring. 

IV. To produce and interface a variable bit rate video codec to an experimental Orwell 

Ring to facilitate practical assessment 

1.5 Thesis Organisation 

Chapter 2 discusses the need for efficient coding of digital video signals for 

transmission over a switched network, and the effects that coding has on the output bit rate. 

The advantages and problems associated with the transmission of packetised VBR video over 

A TM networks and some proposed traffic control strategies are also examined in this chapter. 

Chapter 3 describes the experiments carried out on a modified COST211 

video-conferencing codec and a computer model of the codec, to study the statistics of VBR 

video which was coded using some simple compression techniques. Results on the statistics 

of frame differences and output bit rate, and the effect of source multiplexing, are presented. 

The relative advantages of VBR video are assessed. 

Chapter 4 describes the development of a simple VBR video source model, based on 

the statistics obtained in· Chapter 3 and other relevant aspects of the VBR video 

characteristics. The simplifications assumed in the model, and its limitations, are discussed. 

Chapter 5 provides more information on the Orwell protocol, and describes the 

simulation study of VBR video on an Orwell Ring. Specific aspects of interest include ring 

dimensioning, resource allocation, call acceptance thresholds and call blocking, cell loss, cell 

delay, reset rate measurement, buffer size, effects of masked resets, and impacts on other 

CBO services. Simulation results are presented and discussed. 

Chapter 6 describes some of the work carried out on the transmission of VBR video 

over an experimental Orwell Ring: the interfacing between a modified codec and the ring, an 

addressing scheme for video data and the performance of the system. 
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Chapter 7 contains a discussion of the work and the results, and presents the 

conclusions drawn from the research, within the framework of the stated objective. 



Chapter 2 

VBR Video: 

Coding and Transmission 

2.1 The Need for Efficient Video Coding 

If video signals are transmitted with their full bandwidth, they would require channel 

capacity of an enormous magnitude. For instance, a PAL composite video signal requires a 

bandwidth of 5.5 MHz or a digital equivalent of at least 70 Mb/s for its transmission{311, 

compared to the 64 kb/s required for voice transmission. The transmission costs for signals 

with such large bandwidth requirements would be prohibitive for all except a few highly 

specific applications such as cable television. In the public network the problem is even more 

acute where network resources are becoming a scarcity with the ever increasing demand for 

bandwidth from many new and existing telecommunication applications. 

This problem has long been realised and much research has been directed at looking for 

ways of reducing the bandwidth of video signals. As a consequence, many video coding 

algorithms, almost all employing digital signal processing techniques, have been developed 

to exploit the large amount of redundancy that exists within the signals in order to achieve 

bandwidth reduction or compression. Advances in microelectronics have already enabled 

some very complex and efficient coding algorithms to be implemented <;m coder-decoder 

(codec) of practical physical size, while the falling costs of the hardware will eventually bring 

the price of these codecs within the reach of everyone. 

8 
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Table 2.1 gives a comparison of the bandwidth required for the direct digitisation of 

component video signals and the bandwidth compression that can be achieved for the 

different video quality standardsl"l with efficient video coding, using some of the currently 

available algorithms. 

Video Standard Un-compressed Compressed 

Videophonel 64kb/s-
Video-conferencing 2OMb/s" 2Mb/s 

Broadcast 17-
T.V. 216Mb/s 34Mb/s 

High Definition 70-
T.V. 1.2 Gb/s 140Mb/s 

-COS1211 frame data lonnat 

Table 2.1 

As can be seen, the reduction in signal bandwidth that can be attained is very 

significant and a much lower transmission cost would follow. Note however, that the figures 

quoted for the compressed signals are those for CBO video, and are oriented to the European 

transmission hierarchy. With future ATM based BISDN, such restrictions may be waived and 

the more efficient VBR video coding techniques can be used to obtain a lower mean 

bandwidth than those figures quoted above. 

The aim of efficient video coding is, therefore, to reduce to a minimum the required 

transmission bandwidth for a given picture quality, with a reduction in the transmission costs. 

This is imperative if video services, particularly videophone and video-conferencing, are to 

make an impact on future telecommunications demand. 

2.2 Effects of Coding on Output Bit Rate 

Research into bandwidth or bit rate compression for video signals has emerged with a 

multitude of digital video coding techniques. The subject of video coding has been 

comprehensively covered elsewherel41,","I• The objective here is therefore not to review the 

various coding techniques or their perfonnance, but merely to discuss briefly their effects on 

the output bit rate of the coded signal, i.e. whether a constant or a varying output would 

result. 

Most of the coding techniques being used today operate on component video signals 

and follow two basic approaches: Predictive Coding and Transform Coding. More often, the 

two approaches are used together in what is known as a Hybrid Coding approach. As the 
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number of coding techniques that fall within the scope of these two approaches are too 

numerous to be examined individually, only those more commonly used will be considered, 

and generalisations will be made wherever possible. 

2.2.1 Predictive Coding 

In predictive coding, the digital signal samples, or picture elements (pixels), to be 

encoded are predicted from previously transmitted pixels either from the same video frame or 

from the previous frame, or from both. The aim is to make accurate predictions of the pixels 

to be encoded using the high correlation that exists among pixels in the same neighbourhood, 

so as to minimise the prediction errors and their dynamic range. As a result, fewer bits are 

required to code these errors for transmission. The statistical property of these errors also 

lend themselves to variable word length coding, leading to further bit reduction. As such, 

variable word length coding has almost become an integral part of predictive coding 

techniques. 

Several more sophisticated variants to the basic approach described above have been 

developed. The better known are the Conditional Replenishment and Motion Compensation 

techniques, and all these will be examined. 

In the case of the basic predictive coding (more commonly known as differential pulse 

code modulation (DPCM) coding), if the prediction errors are quantised and coded with fixed 

length codes, the output bit rate would remain constant since every pixel would still be 

represented by a fixed number of bits as in the original PCM signals. It is, however, more 

efficient to code the quantised prediction errors with variable length codes (VLC). The use of 

__ VLCimplies_that_the resultant_output bit rate_would now depend on the local_image 

complexity. For instance, the prediction errors in areas of high spatial detail or in frames with 

large amount of motion would be larger than in flat areas or in relatively still frames, and 

hence more bits would be assigned. 

For intra-frame DPCM coding with VLC, the instantaneous bit rate thus varies within a 

frame as the spatial complexity varies from one part of the frame to the next, assuming of 

course that the quantiser remains constant for a given picture quality. The average bit rate per 

frame is unlikely to vary greatly from frame to frame unless it involves moving scenes, 

camera zooming or scene. changes, whereby the image complexity changes significantly 

between frames. Adaptive prediction, which adapts to the local image complexity, can be 

used to ensure that the prediction errors are minimised at all times, and so the resultant bit 

rate will be less varying. Overall, the effect of the application of intra-frame DPCM coding 

with VLC to a video signal is to yield a variable bit rate signal. However, it has been 

suggested that it is possible to smooth this bit rate variation using a buffer of a reasonable 
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size and a simple feedback control mechanism[1'1. On that premise, even though the 

underlying data flow is time-varying in nature, it can be buffered to give a constant bit rate 

signal. 

The use of intra-frame DPCM coding alone is, however, not an efficient coding method 

as it fails to exploit the high correlation that exists between pixels in adjacent frames, 

especially for scenes containing little motion. A simple inter-frame DPCM coder which 

makes use of the corresponding pixels from the previous frame for prediction would be more 

efficient in this case. The number of pixels with large prediction error would clearly depend 

on the amount of motion in the scene, and subsequent coding with VLC would result in a 

very bursty output bit rate which varies within a frame, as well as from frame to frame. 

Buffering alone in this case would not be sufficient to smooth the output(7,%7). Other strategies 

are required and these usually involve varying the picture qUality. 

Intra-frame and inter-frame DPCM codings can also be used together to achieve higher 

coding efficiency; the former performs well with scenes containing large motions while the 

latter is excellent with relatively still scenes!"'. The coder switches between the two modes of 

prediction depending on the amount of motion in the scene to minimise prediction errors. 

This combined approach along with the use of VLC would still result in a variable bit rate 

output comparable to the simple inter-frame DPCM case, but the peak bit rate would be upper 

bounded by the performance of the intra-frame DPCM. Smoothing of this output may not be 

easy. 

The simple DPCM techniques described above can be made more efficient by 

incorporating more sophisticated adaptive functions, for instance, by coding and transmitting 

only those pixels that have prediction errors greater than a given threshold. This is the 

principle of conditional replenishment coding, and normally, inter-frame predictions are used. 

This technique, being basically an inter-frame DPCM technique, would again produce a 

bursty output data rate which is proportional to the amount of motion in the scene: the more 

motion, the more pixels would need to be coded and transmitted. Some very complex buffer 

feedback control mechanisms have been devised to level this bit rate variation. A codec 

employing this coding technique is described in Chapter 3. 

The conditional replenishment technique is a very simple and efficient technique, 

achieving high compression and good picture quality. However, it can be further improved by 

taking into account the motion of objects in its prediction, assuming most motion to be 

translational and therefore estimable - this technique, and the most efficient predictive coding 

technique by far, is known as motion compensation. Predictions are made from the 

appropriately displaced pixels in the previous frame based on some estimated motion vectors. 

The pixels are classified into non-moving and moving pixels as in conditional replenishment. 

The former require no information to be sent, while the latter can be further sub-divided into 

compensable and non-compensable pixels depending on a prediction error criterion!'2). The 
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fIrst type requires only the motion vector information to sent, whereas the second type 

requires the prediction errors to be transmitted as well. The last distinction is however not 

always made, in which case, both motion vectors and prediction errors are transmitted for all 

moving pixels. 

Clearly, the resultant output data rate of a motion compensation coder would be motion 

dependent and therefore irregular. Results presented by many workers!2O,'21 have served to 

illustrate this. Although the burstiness of the bit rate variation could be smaller than in the 

conditional replenishment case, it could still prove to be difficult to smooth, again without 

adjusting some of the coding parameters!·'I. 

2.2.2 Transform Coding 

Transform coding techniques exploit pixel correlation in a different way to the 

predictive coding approach. In transform coding, the statistically dependent pixels are 

linearly transformed into a set of less correlated coefficients which are then quantised and 

coded for transmission. Compression is achieved by coarsely quantising the high order 

coefficients and not sending those that are small. The subject of transform coding has been 

discussed in great detail!"I. Its effect on the output data rate will be discussed as a general 

case here without referring to any specifIc transform methods. 

The picture to be encoded is usually segmented into blocks of sub-picture (blocks of 

8 x 8 pixels for example). Transformation is carried out on the blocks in order to take 

advantage of the two dimensional correlation property of pictures. The transform operation 

results in the compaction of image energy into a few low order coefficients and the spread 

increases with the spatial detail of the blocks (less pixel correlation). Having carried out the 

transformation, the signifIcant coeffIcients need to be selected for quantisation and 

transmission. Two basic schemes are used for this purpose - Zonal Sampling and Threshold 

Sampling. 

Zonal sampling makes use of the statistical averages of the coefficients of a set of test 

pictures and chooses only those coeffIcients that have variances greater than a prescribed 

value; bits are allocated accordingly for coding each of the coeffIcients. In the non-adaptive 

case, this zone would be fIxed, leading to a fIxed bit rate system. This approach is highly 

ineffIcient since blocks with statistics deviating from the average would be poorly coded. 

This scheme can however be made adaptive, for instance, by using different zones for blocks 

with different high order coeffIcient activities as suggested by Chen!'I, where improvement in 

coding performance was reported. These zones may have a different number of selected 

coeffIcients and a different number of bits allocated, the result being a varying output data 

rate as the spatial detail varies from region to region within the frame. 
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Threshold sampling is an adaptive scheme where all coefficients that are greater than a 

preset threshold are selected for transmission. This scheme therefore adapts itself to the local 

image statistics but does require a high addressing overhead. The effect of this scheme is also 

to produce a variable output bit rate as the local image statistics vary. 

With adaptive zonal sampling or threshold sampling (sometimes used in combination), 

the effects on the resultant bit rate could be quite similar to the intra-frame DPCM case, 

where the mean data rate per frame will only vary greatly from frame to frame if there is a 

large change in the spatial image complexity. It is not clear whether this variation can be 

smoothed easily, but being mainly intra-frame variation, it may be possible to do so using a 

buffer and a simple feedback mechanism; although bit allocation adjustment and threshold 

adjustment have been used for this purpose. 

Block transform coding, although very efficient, fails to consider the inter-frame pixel 

correlation. Three dimensional coding has been studiedl'OJ, but being extremely computation 

intensive and requiring immense storage space, is not considered practical for the time being 

despite better performance as reported. However, as inter-frame pixel correlation varies 

greatly with motion in the scene, adaptive three dimensional coding will undoubtedly yield 

large variation in the output bit rate as in the case of inter-frame predictive coding. 

2.2.3 Inter-frame Hybrid Coding 

In view of the difficulties in implementing three dimensional transform coding and the 

desire to extend the two dimensional transform to exploit temporal redundancy, a different 

approach has been adopted in which predictive coding is used for inter-frame coding to 

compensate for the deficiency of the two dimensional transform technique. Such an approach 

is known as Inter-Frame Hybrid Coding. It has very good coding performance and is 

probably the most widely used approach today. 

Although intra-frame hybrid coding is possible, it is not as efficient, and recent work in 

hybrid coding are almost exclusively inter-frame based. This approach is covered in detail 

elsewherell 6[ and will not be discussed here. It is necessary only to point out that studies into 

adaptive intra-frame hybrid coding have revealed the variable nature of the resultant data rate. 

These results are not at all surprising since the underlying coding techniques themselves yield 

variable data flow as discussed in the previous sections. 

Hybrid coding schemes can be put together in a variety of ways. For instance, the 

predictive step could precede the transform operation or vice versa; further, there is a variety 

of techniques under the two approaches to choose from. A scheme which is very popular in 

recent video coding work (for example CCITT Rec. H261, Esprit 925) is the use of block 

motion compensation techniques in the pixel domain, followed by transform coding on the 

prediction errors of the blocks which require transmission. This approach is highly efficient 
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since both component techniques are very efficient. Their effects on the output data flow 

have already been discussed separately; their combined effect can be expected to be of a 

similar nature, i.e. to yield a bursty data rate at the output. 

The above examination of some of the more common coding techniques, albeit brief, 

indicates that the more efficient coding schemes are those which employ a hybrid approach 

with adaptive inter-frame predictive and transform coding, but these schemes also result in a 

bursty output bit rate if picture quality is to be maintained approximately constant. This result 

is hardly surprising since the information content in video signals varies with both spatial and 

temporal image complexity. 

The unavailability of a broadband VBR carrier hitherto has meant that the bursty data 

rates must be smoothed before transmission. The feedback mechanisms used in some of the 

codecs for this purposel"') are very complex and require continuous adjustments to the coding 

parameters or coding schemes. These adjustments cause picture quality to vary and, in 

general, the output must be smoothed to a bit rate significantly higher than the mean bit rate 

to reduce the probability of buffer overflow and to maintain a minimum picture quality at all 

times. Furthermore, the bit rate must be adjusted to fit in one level of the transmission 

hierarchy. With the proposed ATM based BISDN, the VBR output could be supported in its 

natural form without the aforementioned constraints, and this could potentially lead to a more 

efficient video transmission while maintaining a constant picture quality. 

2.3 Transmission of Packet Video Over ATM Networks 

In the ATM network environment where fixed size cells are the basic transport unit, 

digital video signals are packetised at the transmitter into packets of fixed length. These 

packets are then transported independently in the cells, routed by the cell headers, to the 

appropriate receiver where they are de-packetised and the video signals are retrieved for 

subsequent image reconstruction. Video signals transmitted by this mechanism is known as 

Packet Video, although the term does not necessarily refer to fixed length packets in packet 

switched networks (PSNs) other than A TM. The discussions that follow will be conducted in 

the context of A TM networks but they are equally applicable to other PSNs. 

2.3.1 The Advantages and Problems 

Packet video is attracting a lot of interest, in the light of the recent developments in 

high speed PSNs, as a probable means of providing video communication services over such 

networks. The advantages of transmitting packet video over A TM networks or any other 

PSNs arise from the characteristics of the networks and some of these have already been 

mentioned earlier, for instance, rate flexibility enables VBR video to be supported and allows 
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for source multiplexing, as well as offering a continuous range of transmission rates to which 

the outputs of CBO services can be optimised. All these could potentially lead to more 

efficient video transmissions. 

The concept of packet video on ATM networks also eases the provision of multicasting 

capability. This feature can be implemented easily either by duplicating the packets and 

launching them on separate cells or by using the broadcast facility available on ring or bus 

type networks. For broadcast video applications, the layered coding concept (see section 

2.3.2) can be implemented more efficiently in this framework; the technique offers an 

attractive method for introducing HDTV with downward compatibility with the existing 

television standards, and not least, the integration of video services with other media can be 

achieved more easily. 

However, the cell-based transport mechanism of the ATM networks presents problems 

which are not encountered in the conventional circuit switched networks (CSNs), and these 

must be addressed carefully before packet video can be used to support video services on 

these networks. The problems that need to be considered, in addition to the well known bit 

error, include packetisation delay, cell delay and jitter, cell loss and cell sequence error. 

These will be discussed. 

2.3.1.1 Packetisation Delay 

Packetisation delay arises out of the need to complete the fixed length cell before 

launching, and its magnitude depends on the source output data rate and the cell size. This 

delay contributes to the overall end-to-end delay, and if it becomes excessive for a particular 

service, cells must be transmitted incomplete to avoid violation of the service delay 

constraint, and this leads to inefficiency. Most video services, however, have high output data 

rates, and with the proposed 32 or 64 byte wide cells, the packetisation delay will be very 

small, for example 125 or 250 J.1s respectively for a 2Mb/s video signal. With VBR video, this 

delay is not constant, being dependent on the instantaneous bit rate of the signals; 

packetisation delay can be large during a low bit rate period. 

However, the delay constraints for video services may not be as critical as for services 

like voice, where echo is a major problem. Since video services are nonnally accompanied by 

voice, video delay should therefore be specified in relation to the delay requirements of voice 

service, which are covered in several CCITI Recommendations. If the two services are 

transmitted on separate channels, the relative delay between the two services should 

subscribe to EBU Recommendation R37121), which specifies a maximum video lead of 40 ms 

to a maximum video lag of 120 ms. Delay constraint of such magnitude should not be 

difficult to meet. 
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2.3.1.2 Cell Delay and Jitter 

Cell delay is caused mainly by cells having to wait in the transmit queues for access 

onto the network. Given the asynchronous nature of the ATM network and the variation in 

network load, this waiting time is not constant, and the varying cell delay results in cell jitter. 

In order to make the cell transport mechanism transparent to the services, particularly the 

CBO services, this jitter must be removed and a buffer is usually used at the receiver to 

restore synchronisation of the bit stream. This is a function of the adaptation sub-layer of the 

A TM modell17l• The size of the buffer required will depend on the magnitude of the jitter; it 

will also affect the end-to-end cell delay. 

With VBR video, cell jitter may be less of a problem since decoding of the compressed 

video can be carried out asynchronously and a frame store can be updated as soon as the 

information becomes available. A buffer may still be required at the receiver to absorb 

sudden bursts of cell arrivals, considering that the speed of the network is much higher than 

the peak bit rate that a VBR codec can handle. 

Cell delay constraint has already been discussed previously. The total end-to-end delay 

of a cell will comprise of packetisation delay, cell delay over several switches and the 

buffering delay at the receiver. The total delay should conform to the delay constraint 

suggested. 

2.3.1.3 Cell Loss 

Cell loss is perhaps the biggest problem confronting the feasibility of packet video 

since it may have serious implication on the quality of the video services. Cell loss can be 

caused by either bit error in the cell header or buffer overflow due to network overload. The 

latter is of particular concern in the presence of VBR video, and indeed may cause burst cell 

loss in the VBR video connections. 

A TM networks should have a design goal of a cell loss rate of no greater than the bit 

error rat!,"and effective load control should enable the CBO services to experience cell loss 

rate of the same order. It is unclear what this loss rate should be although figures in the order 

of 1~ - 10-' have been quotedl19,5l!. With VBR video, this figure could be significantly higher 

since the networks do not provide for their peak bandwidth. The relationship between cell 

loss rate and picture quality is also not known, but will obviously depend on the coding 

technique used and the amount of compression applied - the higher the compression, the less 

tolerance to cell loss. If the cell loss rate is deemed to cause unacceptable degradation to the 

picture quality, then counter measures must be employed to alleviate this problem. To this 

end, new coding approaches, such as layered coding, which are more tolerant to cell loss 

should be used. 
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Cell loss has a more severe impact on picture quality than bit error because it introduces 

discontinuity into the data stream and causes loss of synchronisation. This could in turn lead 

to a massive service disruption if no counter measures are taken. The most basic requirements 

are to detect the occurrence of cell loss and to suspend decoding until synchronisation is 

recovered. These measures are necessary to prevent error propagation. Cell loss detection 

may require cells to be numbered in sequence, or other auxiliary information to be forwarded 

to the receiver at regular intervals; while rapid re-synchronisation necessitates the insertion of 

synchronisation information at some known point in the data stream. Error propagation can 

also be confined by packing cells or groups of cells into independent information units so that 

the loss of any cell will not result in error propagation beyond the boundary of the cell or 

group of cells. There are however two problems. First, this method may not be always 

possible. Second, it inevitably leads to inefficiency from the use of extra synchronisation 

information and incomplete cells. 

The above measures, however, only prevent the propagation of errors and do not deal 

with the errors themselves. Consequently, the errors will persist and can be visually irritating. 

Some means of error recovery or error concealment are therefore required. Systematic 

unconditional update transmitted over a more reliable path can. be used to clear up errors due 

to cell loss, but it can be rather slow. Bit scrambling with error correction codes!315] may offer a 

solution against a small number of cell losses at the expense of more complexity in the codec 

and more packetisation delay, but it is unlikely to be adequate for burst cell loss which can be 

common with VBR video. Layered coding may offer a satisfactory solution to error 

concealment and allow for the graceful degradation of picture quality. 

2.3.1.4 Cell Sequence Error 

This refers to the situation where cells arrive at the receiver in the wrong order. This 

problem should not occur in connection-oriented services where cells are transferred over 

fixed path virtual channels. Furthermore, draft recommendation 1.121 requires that cell 

sequence integrity on a virtual channel be preserved by the ATM sub-layer of the ATM 

model. However, if connectionless services are supported, a cell sequence number must be 

inserted in the cells to enable corrective action to be taken at the receiver. 

2.3.2 Layered Coding 

Layered coding (LC) is a coding concept whereby a video signal is coded into a number 

of layers of hierarchical infortnation and combined with layers of audio and perhaps text 

information!S4]. Two approaches to LC are being actively pursued and they differ only in the 

ways of partitioning the signals into the different layers: one involves the direct coding of the 

signals into the different layers]"'], while the other decomposes the signals into different 
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frequency bands using digital filtering techniques before coding the separate sub-bands. The 

latter approach is appropriately called sub-band coding(34). The common objective is to code 

the signals into layers such that lower layers contain low resolution or basic infonnation. 

while higher layers carry high detail or enhancement information. The two approaches are 

illustrated in figure 2.1. 
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Fig.2.1 Two Approaches of Layered Coding - (a) Hierarchical Coding and (b) Sub-Band Coding. 

The advantages of Le have been briefly mentioned earlier and more details can be 

found elsewhere!"). In this work. only its error tolerant capability is relevant. and this will be 

dealt with in detail. 

Le can be made more error resilient to cell loss error by providing better protection for 

the lower layers which contain the basic video information. The correct reception of this 

information will allow for the reconstruction of a picture of basic quality. With the basic 

image quality almost guaranteed. the loss of cells carrying higher layer information should 

only result in reduced image resolution without causing objectionable impairment to the 

picture. Propagation of errors in the higher layers can be reduced using infonnation in the 

more secure lower layers. Le hence provides good error concealment capability and allows 

the graceful degradation of picture quality in case of cell loss. 

Nomura!4S) and Ghanbari(204) have shown that Le can maintain good picture quality even 

at cell loss rate of IQ-I in the upper layer of a two-layer video signal. while errors become 

objectionable at cell loss rate of IQ-' with conditional replenishment coding. However. it must 

be stressed that cell loss was assumed to be random rather that bursty in both cases; burst cell 

loss may result in more impairment to picture quality especially with non-layered coding. 

Hence. Le is probably more suitable for implementing VBR video where burst cell loss is 

likely to be encountered. 
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Still, there are some drawbacks to this coding concept: Coding efficiency may be 

reduced and there may be a higher transmission overhead. These could lead to a higher 

combined output data rate compared to the non-layered coding approach, although this may 

to some extent be compensated by being able to load the network to a higher loading level 

because of the reduced sensitivity to cell loss. A greater codec complexity would also result, 

and there may be difficulties in synchronising the different layers as they may have different 

packetisation delay and cell delay. The above arguments suggest that the number of layers in 

a LC model should be kept to a minimum to avoid inefficiency and to achieve practicality. 

2.3.3 Traffic Control Strategies for VBR Video 

VBR video, while offering some very attractive features for supporting video services 

over A TM networks, also gives rise to serious traffic control problems particularly in a 

multi-service environment, because of the magnitude and the bursty nature of their bandwidth 

requirements. Traffic control is essential not only to maintain a given performance 

requirement to the VBR video both in terms of cell loss and cell delay, but more so, to 

guarantee CBO services a very high service performance - near negligible cell loss and 

minimum cell delay - due to the sensitivity of these services to the two parameters. Classical 

traffic control strategies are inadequate in view of the bursty and non-deterministic nature of 

the load when VBR video and data traffic are present The most important objective in 

devising traffic control mechanisms must be to prevent large bursts of VBR traffic from 

disrupting the CBO services, without inflicting a large cell loss on the VBR services, and at 

the same time maintaining a high network utilisation factor. 

Several control strategies for VBR video have been proposed!l7·,,,,,] and research is 

continuing in this area. The suitability of a strategy, to a large extent, depends on the 

architecture of the A TM network being considered. For instance, the Orwell Ring has some 

control mechanisms embedded in the protocol which enable some sophisticated controls to be 

implemented. 

Traffic control for VBR video can be implemented at two levels: call control level and 

cell transfer level. 

2.3.3.1 Call Control Level 

A call control mechanism accepts or rejects a new call request based on the status of the 

switch (or link) capacity and the bandwidth requirement of the new call. A request would be 

rejected if the acceptance of that call would degrade the performance of any existing 

connections below the specified requirements __ The prin~iple oftltis_ control mechanis!l1 may_ 

be simple, but it is difficult to apply in the presence of bursty traffic such as that generated by 

VBR video. This is because the non-deterministic characteristics of the VBR video sources 

make their bandwidth requirements difficult to estimate. 
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A call request should be accompanied by some indications of the characteristics of the 

call. In the case of VBR video, these may include an estimate of the mean, variance, and 

perhaps some measure of the burstiness, of the source data rate. With these parameters, the 

call control mechanism will have to detennine the bandwidth required to support the new call 

for a specific service perfonnance, taking into account the effects of statistical multiplexing. 

However, it will be difficult for a source to specify in advance the anticipated signal 

characteristics that the network must cater for, since these will be scene dependent Incorrect 

specifications of the call characteristics can result in incorrect call control, and this can lead 

to low network utilisation or overloading. In the latter case, traffic control at the cell transfer 

level is imperative. 

In switches where call control is perfonned on a link-by-link basis and where 

bandwidth allocation is static, the effectiveness of the call control mechanism will rely 

heavily on the accurate estimate of the total bandwidth requirement of the calls in progress on 

each link. Since the total bandwidth allocated on each link cannot be verified with the actual 

load carried, mismatches will result in incorrect call control with the consequences mentioned 

earlier. Call control is more adaptive with the mechanism used on the Orwell Ring, in that the 

unused bandwidth is estimated from some measurements of the ring load, thus alleviating the 

dependency on bandwidth requirement estimates. This mechanism, however, suffers from the 

difficulty in estimating the unused bandwidth on the ring accurately because of the bursty 

nature of the load and the dynamics of call establishments and tenninations. 

It is obvious from the above discussion that call control alone will not be sufficient to 

maintain the required service perfonnance for the different services. Consequently, control on 

the cell transfer level is required to complement the call control mechanism. 

2.3.3.2 Cell Transfer Level 

Control at this level is very important if the perfonnance criteria for some of the more 

critical services are to be met. It was mentioned earlier that CBO services and the lower 

layers of the layered coding model must be guaranteed negligible cell loss; for delay critical 

services, minimum cell delay must also be guaranteed. In a multi-service network, this can be 

achieved partially by allowing the cells from these services to take precedence in network 

access. A priority control mechanism is required where the different services would be 

assigned different priority queues according to their specific requirements. This mechanism 

must be coupled with an efficient priority access control algorithm to prevent low priority 

services from experiencing excessive cell delay and cell loss. With this mechanism, high 

priority services can be guaranteed to some extent, the required service perfonnance. 

However, overloading caused by incorrect estimation during the call set-up stage, or by a 

large burst in the VBR video traffic, could still cause problems. 
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A second control mechanism, known as policing, can be used to alleviate the problem 

of a VBR video connection exceeding its bandwidth allocation as a result of the call not 

conforming to the pre-specified call characteristics''''. This mechanism compares the actual 

cell generating rate of the source against the pre-specified value, and if the latter is exceeded, 

the appropriate corrective action can be taken: the excess cell generated can either be simply 

discarded, or marked with a lower priority and be discarded only when the buffer is full. The 

first method is less efficient as cells will be discarded unnecessarily even when the network is 

not heavily loaded. The second method is more efficient but is more difficult to implement. 

Alternatively, the video source could be forced to reduce its output bit rate to conform to the 

pre-specified characteristics, thus resulting in a reduced picture quality. The problem with the 

policing mechanism lies in the conformance verification of the call characteristics. 

A different mechanism can be used in place of policing, where the video sources are 

allocated bandwidth to cater for the needs as they arise, so long as they do not cause the 

network to overload. This mechanism requires the resource allocation controller to keep track 

of the state of the network and the output cell rate of the sources instant by instant. It can be 

very effective in preventing overload by denying VBR video connections further allocation if 

overload is eminent, while allowing network resources to be utilised efficiently at all times. If 

overload occurs due, for instance, to the loss of some of the network capacity because of 

partial system failure, the resource allocation controllers can remove bandwidth allocation 

from the VBR video, if necessary, in order to protect the high priority services. This 

mechanism is however more complex, and difficult to implement in most networks, but it can 

be implemented quite easily on an Orwell Ring since load monitoring and dynamic resource 

allocation functions are integral parts of the protocol. 

In view of the difficulties in controlling VBR video traffic, particularly in a 

multi-service network, it has been suggested that a hybrid approach be adopted where part of 

the resources are dedicated to CBO services and the rest to VBR services. This simplifies the 

problem as the two classes of services can be controlled separately, but this approach also 

diminishes some of the advantages of A TM networks. 

2.4 Summary 

In this chapter, a number of aspects related to the transmission of video over A TM 

networks have been addressed. The need for the efficient coding of video signals was first 

established as a measure for transmission costs saving, which is crucial for the widespread 

acceptance of video-communication services. The effects of applying coding to video signals 

were then examined in the context of some commonly used coding algorithms, with the 

conclusion that the efficient coding of video signals generally leads to variable bit rate 

outputs, as a consequence of the fact that information rate varies with the spatial and temporal 

detail of the picture; hence VBR video. 
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The advantages and problems of supporting packetised VBR video in an ATM network 

environment were tben discussed. Layered coding, which codes video signals into 

hierarchical information, was examined as a likely solution to error concealment in the event 

of cell loss. Error concealment is particularly important for VBR video where cell loss may 

occur in bursts. Finally some of the proposed traffic control strategies for VBR video were 

outlined. 



Chapter 3: 

VBR Video Signal Statistics 

3.1 Introduction 

VBR video promises a potential for more efficient network resource utilisation with a 

constant picture quality and a less complex codec design. One video-communication service 

that can benefit most from these advantages of VBR video is videophone, where the subject 

material is mainly head and shoulders type pictures, and where all the video sources are 

uncorrelated. This chapter describes the study of some aspects of the signal statistics of such 

a video source. Although source statistics have been looked at by some workers in the 

pastf''''.28,37~ll, the results were neither in a suitable form nor adequate for the purpose of this 

work. The more recent studies in this area have been conducted with the prospect of a 

broadband VBR carrier and the potential gain that can be achieved with VBR video in mind. 

The main objective of this study is to acquire a good understanding of the video source 

behaviour, especially the videophone and video-conferencing type sources; with this, the 

relative merits of VBR video can be assessed and a source model developed to aid in the 

study of the transmission aspects of VBR video. A sound knowledge of the source behaviour 

is also required for the practical implementation of VBR video, for instance, in dimensioning 

network capacity and in formulating load control strategies. 

In this chapter, the experimental arrangement and the codec with its mQdifications will 

first be described along with the picture source used. The results on the statistics of frame 

differences (FD), cluster length and the output data rate of the codec will be presented in 

section 3.3, followed by a conclusion on this study. Most of this work has been published in 

two papers[U.121 and presented at a workshop[lOI recently. 

23 
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3.2 Experimental Arrangement 

Figure 3.1 shows the experimental arrangement used in this study. A commercial CBO 

codec was modified to work as a VBR video codec, and a video disc player was used as the 

picture source input. The codec was connected via an interfacing board to a BBC Master 

computer with an ACORN RlSC second processor (ARM), and Winchester and floppy disc 

drives for data storage. The whole system was linked to a remote mainframe for data 

processing. 

MAINFRAME 

FLOPPYI ........ ~I 
WINCHESTE'" 

BBC 
MASTER 

COSTZll 
CODEC 

Fig. 3.1 Experimental Arrangement. 

3.2.1 The Codec Used in Experiments 

The experimental codec was based on a prototype BT/GEC COST211 

video-conferencing codec[l!·441, which has a resolution of 286 lines in two interlaced fields and 

255 pixels horizontally. Chrominance resolution is reduced in the ratio of 2:1 in the vertical 

direction and 5:1 in the horizontal direction. The full frame rate of 25 frames/s is used in the 

codec and pixeIs are represented using 8 bits (but only 224 levels are used for coding); 

without compression, these will generate a data rate of 17.5 Mb/s. Although the codec is a 

colour system, only the luminance data was used in this study as.it was c.QRsidered that the 

inclusion of the chrominance data would not alter the results significantlyP'I, and preliminary 

investigations confmned this assumption. 

Figure 3.2 shows the functional block diagram of the modified codec. Normally the 

codec operates as a CBO system with a fixed output of 2 Mb/s. A VBR source was obtained 

from this codec by opening the feedback control loop from the buffer, which normally 
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constrains the output to a constant bit stream by varying the coding parameters, performing 

element or field subsampling and even stopping further coding, thus constantly varying the 

picture quality. 

A conditional replenishment coding algorithm is used in the codec to detect moving, or 

'changed', pixels in the incoming video frame with respect to a reference frame. The 

reference frame keeps track of the received frame at the remote codec assuming no loss of 

data. The output of the conditional replenishment coder is then DPCM coded using 

non-adaptive two dimensional intra-frame prediction; the prediction errors are quantised and 

Huffman coded with a maximum word length of 10 bits. In this study, it is not only the 

encoded output that is of interest but also the raw PCM statistics, and hence a further 

modification was made to enable the codec to operate in PCM mode as shown in figure 3.2. 

Before being fed to the movement detector, the input signal is passed through a 

non-linear temporal filter which has the effect of cleaning up very small changes due to noise, 

thus improving the performance of the movement detector as well as reducing source 

entropyI<4l • 

I POd DATA 

!'CM VIDEO DATA owl 
MOVEMENT DPCM HUFFMAN 
DETECTOR CODER CODER ENOlDBDATA 

PREDlcroR I + 

I PCMMODB ENCODED MODE ... REFERENCE 
HupDAlErr FRAME 

MOVEMENT SIGNAL 

MODESELECl'OR 

Fig.3.2 Block Diagram of the Modified Codec Functions. 

A block diagram of the movement detector is shown in figure 3.3". The movement 

detector subtracts the output of the temporal filter from the corresponding pixel in the 

reference frame and makes use of the sum of 5 consecutive absolute pixel differences, 

weighted according to the expression: 

... (3.1) 
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Fig. 3.3 A schematic representation of the COST211 codec movement detector. 
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The sum Si is then compared against a threshold to determine if the current pixel has 

changed. The use of the 5-tap movement detector helps to reduce the detection of false 

movement. The changed pixel is bridged into an adjacent cluster of changed pixels if it is 

separated from the previous changed pixel by an amount less than or equal to a pre-specified 

value (in this study the value used is normally 3), otherwise it forms a new cluster. A cluster 

length of 1 pixel is allowed, provided of course that it is separated sufficiently from its 

neighbours. These clusters constitute moving areas and cause the reference frame to be 

updated accordingly, either directly with PCM data in the PCM mode, or with the decoded 

DPCM data if subsequent coding is employed. 

3.2.2 Threshold Selection 

With the feedback control loop disabled, the threshold value must be held constant, and 

it must be chosen to give a reasonable picture quality. The picture quality will then be fixed 

but the output data will vary according to the amount of movement in the picture. 

Experiments were carried out to investigate the effects of varying the threshold using a 

computer model of the codec developed on the ARM second processor and picture sequences 

captured from the actual codec. The model only operates in PCM mode to reduce processing 

time. Two non-visual tests, namely the mean square error (MS E) between the actual pictures 

and the reconstructed pictures, and the amount of change generated, were carried out on a 

head and shoulders sequence. The results are shown in figures 3.4(a)-(b). Only two results 

were plotted on each graph representing the extreme cases. It can be seen that a good 

compromise in the choice of the threshold would be in the range 80-150. Unfortunately, MSE 

is not a particularly suitable criterion for measuring the quality of pictures, and is used here 

only to measure the amount of error in the reconstructed pictures arising from the movement 

detection process. 

The final choice of the threshold in this study was based on visual inspection of the 

performance of the actual codec while the threshold value was varied over the range 

determined earlier, particularly with scenes involving camera zooming and panning. The 

threshold chosen was the maximum value used, above which edges in the pictures began to 

break up and leave 'dirty windows'. A lower threshold would yield a better picture but also 

more change. The chosen threshold of 110 is a compromise between minimum change and 

acceptable picture quality, and no significant degradation in picture quality was observed. 

However, it should be noted that the choice of 110 is slightly on the high side. In a 

separate experiment, the movement detector was modified to use only a single unweighted 

pixel difference in its movement detection process and a threshold of 7, which is about 3% of 
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the maximum pixel value. It was found to generate roughly the same amount of change as the 

5-tap movement detector with a threshold of 110. In most other worIcm.28.37J, a much lower 

threshold of 1.5% of the maximum pixel value was used to obtain a high quality picture. 
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Figs.3.4 Variation of (a) the mean square error (MSE) of the reconstructed frame and (h) the amount of 

frame-to-frame differences generated, with different thresholds. 

3.2.3 Picture Source 

The picture source used was a Pioneer Laser Disc Player which outputs a 625 lines 

PAL signal. The discs used were recordings of documentary programmes produced by the 

BBOV' ·Vl.V3J. The picture material contained high background detail, and some degree of 

involuntary camera movement was noticed. 

3.3 Experimental Results 

Frame differences and output data rate can be obtained from the codec via an 

interfacing board which taps into the appropriate signal lines on the codec 8!1d perfonns basic 

statistic collection functions; it also enables statistics on cluster characteristics to be obtained. 

The length of the sequences were only limited by the length of suitable picture material. A 

variety of picture material was used, ranging from head and shoulders to waist-up scenes, and 

a combination of these with scene changes and multiple characters. Snapshots for some of the 

sequences are shown in Appendix I. 
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3.3.1 Statistics of Frame Differences 

The tenn 'frame differences (FD)" strictly speaking, refers to the proportion of pixels 

in a frame that are deemed to have changed since the previous frame. However, in this 

experiment, it also includes those pixels that have been bridged into the clusters and which 

otherwise would not have changed. This is not expected to increase the actual FD by much. 

In fact, investigations carried out using the computer model of the codec indicated that the 

increase in the amount of change was no more that 1.5%. Furthennore, in most practical 

inter-frame codecs not using block coding, changed pixels are bridged into clusters to 

improve subsequent coding and transmission efficiencies. It was therefore considered more 

appropriate to examine the bridged FD rather than the actual FD. (Note that in block coding, 

not all pixels within a block must change before the block is deemed changed; this is to some 

extent similar to bridging). 

Frame differences statistics were studied under two different conditions. Firstly, 

without the influence of subsequent coding, i.e. in PCM mode, where the output of the 

movement detector was fed directly back into the reference frame; and secondly, when the 

output of the movement detector was DPCM coded and decoded before being fed back into 

the reference frame as in figure 3.2 (for convenience, this will be referred to as the encoded 

mode). The purpose of studying FD statistics under PCM mode is to obtain some general 

results which are not dependent on any specific coding algorithms other than conditional 

replenishment. The FD obtained under this condition represent the amount of raw 

infonnation that needs to be transmitted; the actual coded bit rate would obviously depend on 

the subsequent coding algorithms used. If some knowledge about the characteristics of the 

coding algorithms used is available, then the coded bit rate can be approximated from the 

FD. However, subsequent coding will introduce more errors into the reference frame and 

result in a higher FD than in the PCM case. The magnitude of this increase will depend on the 

coding algorithms used and the amount of degradation permitted, but the profile of the 

variation of the FD with time is not expected to be affected significantly. 

3.3.1.1 PCM Mode 

The graphs in figure 3.5 show how, for four different sequences, the frame differences 

vary with time (note that the peaks have been cut off at 40% change to give a better scaling). 

It is observed that the variation in FD is very significant, revealing the fundamental VBR 

nature of video in tenns of transmission requirement. It also highlights the difficulties and 

inefficiency in trying to fit this data into a CBO channel. Large changes in FD are usually 

associated with sudden scene changes and generally last for no more than a few frames 

before settling down; those generated by large bursts of motion may have longer durations as 

can be seen in figure 3.5(b). 
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Table 3.1 summarises the measurements on the FD for 7 sequences. If scene changes 

occur in the sequence, as in sequences 2 and 6, the peak-to-mean ratio (PMR) is about 5, but 

if there are no major scene changes as in the other sequences, the ratio is about 2-3. Since 

scene changes would have to be allowed for in normal operation, a PMR of about 5 would be 

a more probable figure. This would represent, in a simplistic view, the possible bandwidth 

gain in VBR video over CBO video, assuming that the peak demand must be catered for by 

the CBO codec. However, in practice, a CBO codec would make use of the reduced 

sensitivity of human eyes to spatial detail during scene changes to reduce the peak drastically, 

without causing any observable degradation in the picture quality[28J. Under such 

circumstances, the gain inferred from the PMR with scene changes would not be valid. A 

gain of 2-3 is then probably more realistic for the sequences used. This gain could be further 

eroded if the network has to be lightly loaded in order to achieve some given performance 

requirements. 

PMR is however not necessarily a good measure, nor should it be the only criterion for 

comparing VBR and CBO video, since it fails to take into account such factors as the 

duration of the peaks and the amount of FD variation. It also fails to consider the limitations 

of CBO video that lead to inefficiency and less superior picture quality. 

An examination of the results shows that peaks caused by large bursts of motion in the 

sequences could last for an appreciable part of a second or even longer, and unless the 

channel can cope with the expected peak output of the codec, such video bursts would cause 

data loss, or picture quality would have to be reduced to constrain the output data rate. The 

duration of the bursts makes the use of a smoothing buffer impractical as this would need to 

be excessively large and could result in unacceptable delay. The large variances of the FD 

illustrate the difficulties in attempting to smooth out the FD variation. While the large FD 

variation suggests the need for a complex feedback control mechanism to adjust the coding 

parameters (and therefore the picture quality) continuously in order to maintain a stable 

output. The different characteristics of the individual video sources also make it difficult and 

inefficient to allocate a fixed bit rate channel to the video sources, since the optimum bit rate 

requirement for each source will be different. As a result, the source characteristics and the 

CBO channel allocated, which normally corresponds to a level of the transmission hierarchy, 

are usually mismatched, and the consequence is gross inefficiency. 

The last column in Table 3.1 and the graph in figure 3.6 show the result.of multiplexing 

the 7 sequences used earlier. This was achieved by adding up the FD of all the sequences on a 

frame by frame basis, and expressing the result on a per source basis. The interesting aspects 

of this graph are that the variance of the FD is very much smaller and the PMR is 

considerably reduced. The peak at the beginning of the multiplexed sequence results from the 

fact that all the individual sequences start with a peak, and this would be the case if large 



Table 3.1 Statistical Measurements on Picture Sequences 

Number of samples I sequence: 395 
Frame Differences are quoted in percentages 
Type : WP - waist up HS - head and shoulders VR - variety 

Sequence Number I 2 3 4 5 6 7 'COM 

Type of Picture Material WP HS HS WP HS VR HS VR 

Maximum Frame Differences 28 54 23 38 31 72 16 21 

Mean Frame Differences 8.67 11.04 8.72 13.43 16.83 14.60 6.89 11.45 

Variance 11.33 36.29 15.35 51.52 27.06 73.13 9.65 6.09 

Standard Deviation 3.36 6.02 3.92 7.18 5.20 8.55 3.11 2.47 

Peak-to-mean Ratio 3.23 4.89 2.64 2.83 1.84 4.93 2.25 1.84 
·COM - a combination of all sequences 
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peaks coincide with one another. This situation is, however, highly unlikely if the sources are 

uncorrelated. The smoother profile of the FD variation of the multiplexed sequence is 

advantageous as this would make traffic control easier on an A TM network. 
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Fig.3.6 Variation of the frame differences with time for the mnltiplexed sequence (25 frames/s). 

It is also worth noting that the mean FD of the multiplexed sequence is simply the 

average of the mean FD of the individual sequences. The resultant variance er.. is 

1 N 
a:=-Ld 

m N i=1 I 
... (3.2) 

where a; are the variances of the FD of the component sources. 

This implies that the resultant variance is reduced by a factor of N. Assuming that the mean 

of the variances of the component sequences stays approximately constant, the resultant 

variance will diminish quickly with an increase in the number of component _sources. 

These explain the smoother sequence in figure 3.6. Variances calculated 

using equation 3.2 with different combinations of the sequences have been found to 

approximate those obtained experimentally. 

Statistically multiplexing the outputs of several uncorrelated VBR video sources results 

in an overall smaller bandwidth per source being required for a given performance criterion, 

since the probability of all sources having their maximum output at the same time is 

extremely remote. On the other hand, the bandwidth required per source for a CBO system 



Chapter 3 34 

does not alter as the number of sources are increased. The ability to share the available 

bandwidth is one of the main advantages of VBR video, and the gain would be better if the 

outputs of more uncorrelated sources were multiplexedl".>4J. 

3.3.1.2 Encoded Mode 

As a result of the DPCM coding process used in this mode, the reference frame of the 

encoder contains not only errors from the movement detection process but also those from the 

coding. However, these additional differences are small, thus the FD generated show almost 

identical patterns of variation to those generated in PCM mode - a difference of no more than 

1 %-1.5% on average. The plots of the variation of FD with time are not shown since they are 

virtually the same as those shown in figure 3.5. 

Table 3.2 compares the FD statistics for the PCM mode with those for the encoded 

mode, and as can be seen, there is not much difference between the two. The slight decrease 

in the PMR in the encoded mode when scene changes were included was due to the increase 

in the sequence means, while the peak FD remained almost unchanged - a consequence of the 

fact that when a peak occurs, almost all the pixels in a frame have changed, and the small 

errors introduced by DPCM coding become insignificant. 

3.3.2 Statistics of the Output Bit Rate 

In this section, the statistics of the data rate at the output of the coding pipeline which 

comprises conditional replenishment, DPCM and Huffman coding algorithms were 

examined. The statistics of the data rate after addressing overhead had been added were also 

obtained. These results will be specific to the COST211 codec and codecs employing a 

similar coding strategy; their implications on codecs using other coding strategies, especially 

those with very different characteristics, need to be interpreted with great care. Data rate was 

measured in bits per frame and was assumed to be constant within a frame. 

The statistics of the output data rate are presented in Table 3.3. It is clear from the table 

that the PMR for the encoded bit rate without addressing information is reduced compared to 

the PMR for the frame differences. This is a direct result of the cluster length characteristics. 

Since the first pixel of every cluster is always transmitted as a PCM pixel, it makes the 

coding of short clusters very inefficient as these PCM overheads form a significant portion of 

the compressed cluster data. The coding efficiency is thus not constant but increases with 

cluster length, and therefore with the amount of change in the frame as can be deduced from 

fignre 3.13 (section 3.3.4). This characteristic results in a proportionally higher mean and 

lower peak, and thus a lower PMR; it is also expected to produce a smaller variance than the 

FD. This is indeed the case if a constant coding performance equivalent to the mean coding 

performance of the sequences is assumed, and this can be deduced from Tables 3.2 and 3.3 to 
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SEQ2 SEQ4 

Encoded PCM Encoded PCM 

Mean 11.78 10.91 15.50 14.11 

Std.Dev. 5.27 5.20 10.63 10.62 

Peak 95.29 95.25 92.79 92.99 

PMR 8.09 8.73 5.99 6.59 

Table 3.2 : Statistical measurements of frame differences for PCM and eneoded data. (figures quoted in 

percentage of frame changed) 

SEQ2 SEQ4 

Data only +Addrs. Data only + Addrs. 

Mean 30.95 53.04 42.34 68.24 

Std.Dev. 10.95 12.88 19.97 23.01 

Peak 202.40 214.30 163.79 177.57 

PMR 6.54 4.04 3.87 2.60 

Table 3.3 : Statistical measurements of data generated per frame for picture data only and with 

addressing added. (figures quoted in kbitslframe) 

SEQ2 SEQ4 

Encoded PCM Encoded PCM 

Mean 11.64 10.83 14.58 13.16 

Std.Dev. 4.33 4.24 7.21 6.97 

Peak 25.79 24.37 48.73 46.14 

PMR 2.21 2.25 3.34 3.50 

Table 3.4 : Statistical measurements of frame differences for PCM and encoded data (without scene 

change). (figures quoted in percentage of frame changed) 

SEQ2 SEQ4 

Data only + Addrs. Data only + Addrs. 

Mean 30.45 52.47 41.12 67.16 

Std. Dev. 8.78 11.13 16.30 20.36 
. 

Peak 58.17 99.70 98.36 129.66 

PMR 1.91 1.90 2.39 1.93 

Table 3.5 : Statistical measurements of data generated per frame for picture data only and with 

addressing added (without scene change). (figures quoted in kbitslframe) 
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be in the range of 3.6-3.75 bits/pixel; the estimated standard deviations for the FD with scene 

changes included were 13.84 and 29.07 kbits respectively for the two sequences, as compared 

to 10.95 and 19.97 kbits of the measured values for the data streams. These results also have 

some implications on the underlying probability distribution of the output bit rate when 

compared with the FD distribution (see section 3.3.3). 

When the addressing information used by the COST211 codec (see Appendix IT for its 

description) is included in the output data rate, the PMR is further reduced (as shown in 

Table 3.3) for a similar reason as above, but with addressing rather than the PCM pixel as the 

overhead. Since the size of the addressing overhead is fixed for every cluster irrespective of 

its length, the addressing efficiency, as with coding efficiency, is not constant but increases 

with the cluster length and hence the amount of FD. The PMR, as can be seen in Tables 3.2 

and 3.3, is halved by the introduction of coding and addressing, but is nevertheless, still 

significant. The standard deviation indicates a fluctuation of about 300-500 kb/s in the 

instantaneous bit rate, which could still cause problems in buffering in a CBO system. 

For completeness, results similar to those obtained above but excluding any scene 

changes are presented in Tables 3.4 and 3.5. These results account for cases where full 

resolution is not considered necessary for scene changes. Similar observations are derived 

from these sets of results, i.e. a continuous reduction in the measured PMR, but less drastic in 

this case. The reason being the relatively smaller peaks resulted in only a small increase in 

the cluster length, and hence only in a marginal improvement in the coding and addressing 

efficiencies. Consequently, the peaks and the means are affected almost equally by the coding 

process and the addition of the addressing information, the PMR therefore remains fairly 

constant. Overall, a gain factor of about 2 can be achieved with this system. However, PMR, 

as has been stressed earlier, is inadequate and should not be the only basis for assessing the 

gain of VBR video. 

Figures 3.7(a)-(d) show how the number of bits per frame for the coded sequences, with 

and without addressing overhead, varies with time. As can be expected, the variation of bits 

per frame follows an almost identical pattern to that of the FD. It is worth noting that the 

burst of data at the end of sequence 4 has lower peaks relative to the rest of the sequence 

when compared to those encountered in its FD counterpart, and this illustrates the high 

coding and addressing efficiencies associated with these large changes. The horizontal line in 

figures 3.7(b) and (d) corresponds approximately to the bandwidth allocated for the 

transmission of luminance data in the COST211 codec, which is about 1.65 Mb/s. It is 

obvious that the allocated bandwidth and the bandwidth required by the two sequences are 

mismatched in different ways; the allocated bandwidth is largely under-utilised in the case of 

sequence 2, which has a smaller mean bit rate than the channel (-:- 0.8 utilisation factor), and 

yet there are occasions when the channel is unable to cope. Therefore, despite the excess 

capacity, some data reduction mechanisms may be required to constrain these peaks. 
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Figure 3.8 indicates that the number of continuous frames exceeding the channel bandwidth, 

or video-spurts, could last up to 7 frames. Simple buffering techniques may be able to reduce 

these video-spurts in this case. On the other hand, the channel is hardly adequate for 

supporting sequence 4, with the channel failing to meet demand for 40% of the time, and 

video-spurts of up to 67 frames are present as shown in figure 3.8 (the large data burst at the 

end of the sequence has been excluded since it is from unsuitable picture material). This will 

necessitate the use of a higher movement detector threshold or subsampling in order to 

comply with the channel bandwidth at the expense of picture quality. 
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Fig.3.8 Video-Spurts (with spurt threshold = 66000 bits/frame). 

These results reveal a very serious weakness of the CBO system. Clearly it is not 

possible to find a single fixed bandwidth channel that could satisfy the widely differing 

requirements of the different video sources shown in Table 3.1. This mismatch between 

source requirement and channel capacity translates 'into inefficiency both in terms of resource 

utilisation and service provision as exemplified by the two cases above. A higher efficiency 

can be achieved with VBR video; this, together with the redundance of a complex feedback 

control mechanism, make VBR video an attractive way of transmitting video information. 
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It is also interesting to note that the addressing information on average occupies 

35%-40% of the total data, but it represents only 6%-8% at the peaks. When the amount of 

change in the frame is very small, the addressing overhead could rise to 50%-60% as a result 

of the presence of a large number of short clusters. Similar observations can be expected on 

the effects of the PCM pixel at the beginning of a cluster. This problem of poor coding and 

addressing performance will be examined later in section 3.3.4 from the perspective of the 

cluster length. 

3.3.3 Probability Density Function (PDF) of Frame Differences and Output Bit Rate 

The data collected on the frame differences and the output bit rate were further 

analysed to study their underlying PDFs . The effects which statistical 

multiplexing, DPCM and Huffman coding as well as addressing have on the I 

were also investigated. 

3.3.3.1 PDF of Frame Differences 

PDFs -, 

Frame differences, as seen in the last section, were almost unaffected by DPCM coding, 

thus only data collected in the PCM mode was studied here. However, the results are equally 

applicable to the FD in encoded mode. Since the PDF . of FD had been studied in detail 

by Seylerl"l, the exact nature of the PDF for each of the sequences used was not 

determined. Instead they will be discussed in the context of the results obtained in the 

reference. 

The, PDFs' of the FD were computed for all the sequences used, four of which are 

shown in figures 3.9(a)-(d). These results resemble closely those i PDFs presented in 

the reference in exhibiting the same general shapes. On inspection, these' PDFs . appear' 

to possess a mixed feature of both the asymmetric Gamma distribution and the symmetric 

Normal distribution: they are generally skewed to the right to a varying extent, which is a 

characteristic of the Gamma distribution, while the sharp peaks present in some sequences are 

a distinct feature of the Normal distribution. Multi-modality is clearly evident in some cases. 

Sometimes a clear distinction between the two distributions for a given sequence can be 

difficult to acertain since the Normal distribution is a special case of the Gamma distribution. 
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Assuming that the' POP 

as suggested by Seyler, then the' 

I of FD can be approximated by the Gamma distribution 

POP of the frame differences/dis given by: 

M/d) = 
/da.-I exp(-/dIP) 

r(a)pa. 
.•. (3.3) 

where a and f3 are given by the computed mean (T'I) and standard deviation (cr) of/d such that 

and for r(a) see Seylert51J• 

As a (the shape parameter) increases, the' PDP' becomes increasingly 

symmetrical i.e. tending to a Normal distribution{3S). The observed FD PDP for a 

particular sequence will therefore depend on the nature of the sequence, which is 

characterised by the mean to standard deviation ratio, IX, of the FD. For a given T'I, the FD 

PDP " of a sequence will become more symmetrical as cr decreases; this corresponds 

roughly to a sequence with small and uniform motion. 

Por a videophone type picture where the motion is bursty, the FD PDP can be 

expected to exhibit a stronglyasymmetric Gamma characteristic. But with sequences which 

contain little motion, the, PDP may tend to be more symmetrical, thus resembling more 
r-···· 

of a Normal distribution. The POPs of the FD are however more often multi-modal -

the occurrence of a superimposing Normal characteristic, in the form of a sharp peak, on a 

Gamma distribution in most sequences is probably due to the motion of the objects in the 

sequences remaining fairly constant over some interval of time; the short-term variances are 

thus correspondingly small and hence a higher a.. With these points established, the results 

presented in figures 3.9(a)-(d) will be examined more closely. 

Sequences 2, 4 and 5 are all head and shoulders or waist-up typ~_ pict~es, with little to 

moderate motion against a stationary background. The resultant POPs 0, as can be 

expected, lie between the Gamma and the Normal distributions. Sequence 2 exhibits a strong 

multi-modal characteristic with a distinct peak near the sequence mean (11 %), which 

resembles a Normal distribution on an otherwise typical Gamma distributed FD. Sequence 4 

also shows similar characteristics but multi-modality is less obvious as the two peaks, more 

or less, overlap. The values of a for the three sequences are 1.83, 1.72 and ~.:24 respectively, 

and sequence 5, with the largest ratio, does appear to resemble more of a Normal distribution. 

When examined closer, the variance of the FD for sequence 5 is found to be relatively small 

for a sequence with a large mean FD as can be seen in Table 3.1. Inspection of its PO 

variation further reveals the small burstiness of the sequence . 

• 
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Sequence 6 consists of four different short sequences concatenated, each with a 

different characteristic, and two of which contain scenes with multiple characters and 

non-stationary background. These large variations in picture content resulted in a much 

variable FD and thus a lower a of 1.6. The resultant PDF . therefore has a more 

pronounced Gamma characteristic with its highly skewed shape. 

Curve fitting for the FD , PDF of sequence 2 with a Gamma curve of 

approximately the same mean and variance as those measured for the sequence is shown in 

figure 3.10. A good fit is obtained if the multi-modality is ignored. 

The observations made in this work are in accord with those made by Seyler, who 
" Distribution 

suggested that the FD PDF converges to Gamma"when the sequence contains a large 

variety of scenes and motion. This is also consistent with the suggestion that the PDF 

becomes more asymmetrical as a decreases (or a increases). The observations of 

multi-modality for head and shoulders scenes are also consistent. 

3.3.3.2 PDF of Multiplexed Frame Differences 

The data computed for the multiplexed sequence per source (shown in figure 3.6) was 

subjected to the same analysis. Figure 3.11 shows the: PDF .. of the FD for this sequence. 

The ,PDF is only slightly skewed and tending towards a Normal distribution. 

This observation is well in accordance with the central limit theorem (CL T)(3~, which 

suggests that as the outputs of a large number of uncorrelated VBR video sources are 

multiplexed together, the resultant output will tend to have a Normal distribution irrespective 

of the underlying distributions of the component sources. There may however be some 

deviation near the tail of the distribution. VerbiestlS41 found that with 16 sources, the 

agreement with the Normal distribution is within 10%, while Haskell(27( suggested a similar 

number of sources to be the minimum for this effect to be observed. The result in figure 3.11 

was obtained with only 7 sequences; it therefore exhibits considerable deviation from the 

Normal distribution, especially at the tail section. 

From a different perspective, the resultant multiplexed sequence in figure 3.6 has a 

much smaller FD variation, and hence a smaller variance (see Table 3.1). The value of a 

measured for this sequence is 4.63, which is significantly higher than the four individual 

sequences above, and from previous discussion, it is clear that the FD 

sequence will tend to be Normal in nature. 

,-
PDF . for such a 
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3.3.3.3 PDF of Output Bit Rate 

The output bit rate, _ PDFs for sequence 2 and sequence 4 were computed from the 

results presented in section 3.3.2. Two: PDFs _, representing the encoded data rate before 

and after addressing overhead had been added, for each of the two sequences are shown in 

figures 3.12(a)-(d). 

The. PDFs are less skew than their PD counterparts, and a computed for the 
----- - --

encoded data rate before and after the addition of addressing information were 2.81 and 4.0 

respectively for sequence 2, and 2.1 and 3.0 for sequence 4. These figures are higher than 

their PD counterparts which were computed at 1.83 and 1.72 for the two sequences 

respectively, and as suggested earlier, a larger a tends to imply a more symmetrical 

distribution. Therefore the effect of DPCM and Huffman coding was to make the. PDF 

of the output bit rate more symmetrical, or to become more 'Normal' like. Ghanbari(25) made a 

similar observation with the same coding strategy. The addition of addressing information to 

the encoded data had a similar effect on the' PDF 

These effects were due to the uneven coding and addressing efficiencies for clusters of 

different length, which in turn relates to the amount of PD in a frame. It was established 

earlier that these efficiencies improved with an increase in PD, the effect of which was 

therefore to reduce the degree of skewness of the PDFs by compressing the data harder 

and adding proportionally less addressing overhead when the PD was large, thus shortening 

the tails of the' PDFs. These deductions are generally true for cluster coding, but they 

may not hold for block-based coding because the block size is fixed irrespective of the PD 

and thus a fairly constant coding and addressing performance could be expected. 

3.3.4 Cluster Length and Addressing Overhead 

One of the more important aspects of picture statistics with cluster-based coding 

strategy is the cluster length, because every cluster will need to be addressed before 

transmission. This overhead usually constitutes a significant proportion of the total data 

generated as shown in section 3.3.2, and will ultimately determine the efficiency of the 

system. This is particularly important for VBR video since it may affect the performance of 

the system when there is little movement present in the frames and where short clusters 

prevail. The net effect is to lower the bandwidth gain of VBR video. This problem is less of a 

concern in CBO video since a fixed amount of data must be transmitted regardless of the PD. 

Figure 3.13 shows the mean cluster length (MCL) per frame plotted against the PD, and as 

can be seen, the relationship is approximately linear for the range of PD plotted. 
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The problem of addressing is even more acute for VBR video in an A TM network 

environmen(!22.541, where a large demand by the source may not be met by the network and 

cells could be lost. Although this should occur only very infrequently, it results in a 

discontinuity in the data stream at the decoder. This type of error could be difficult to detect 

and correct, and thus it requires more redundancy to be introduced into the addressing to aid 

in the detection of cell loss and a rapid recovery without too much degradation to the picture 

qUality. This could funher offset the gain of VBR video. 

Some possible ways of increasing the MCL have been considered, but it was difficult to 

study these proposals on the codec as it would entail undesirable modifications to the 

hardware. As a result, this study was conducted using the computer model of the codec and it 

allowed for greater flexibility. 

One possibility of increasing the MCL considered was to reduce the threshold of the 

movement detector slightly. The threshold was subsequently reduced from 110 to 100, and it 

became apparent that this method would not produce the increase in efficieQcy required. This 

is partly due to the generation of more short clusters; more importantly, the marginal gain in 

the MCL was easily offset by the large increase in extra pixe1s requiring transmission. It is 

therefore not a method to be preferred. 
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A more promising method would be to increase the bridging gap. At present, a bridging 

gap of 3 is used. Simulation studies using bridging gaps of 5 and 7 were carried out 

producing the desired results of slightly longer clusters (on average, about 1 and 2 pixels 

longer respectively) and an overall smaller number of clusters. The increase in pixels 

requiring transmission is small and can be partly or completely offset by the reduction in 

addressing. However, the gain when there was little change was only marginal as the clusters 

were scattered too far apart for bridging to work. A further increase in the bridging gap would 

bring diminishing gain and would be offset by the increase in the extra pixels needed to be 

transmitted. The exact trade-off between reduced addressing overhead and an increased 

number of pixels would depend on the size of the overhead and the compression on the pixel 

data. 

Another possible way to improve efficiency is to increase the minimum cluster length 

to 2. This is not expected to produce any significant visual degradation to the picture 

quality!l8l, as very fme detail is probably not so important in videophone pictures. 

Furthermore, with a large bridging gap, a moving pixel would require a large horizontal 

velocity to escape bridging, and this would only happen for drastic motion. Under such 

circumstances, single isolated changes are few and lie mainly outside the active region as can 

be seen in figure 3.14, which shows the moving areas for a frame with a FD of 20%. Most 

single pixel clusters can therefore be safely regarded as noise, and genuine changes can be 

left to be updated by the background refresh process. 

The methods described here for improving the efficiency of addressing are not specific 

to the A TM networks only, but apply equally to the circuit switched networks. However, with 

the bridging method, the trade-off between reduced addressing overhead and increased pixel 

data may differ in these two types of network since a smaller addressing overhead could be 

used in the circuit switched case. It should be noted that an improvement in the MCL not only 

increases the addressing efficiency, but also increases the coding efficiency. 

With the above two strategies, a small gain in the MCL can be obtained for frames with 

a small amount of change, for instance, an increase of about 2 pixels on average with a 

bridging gap of 7. The characteristic of video which produces isolated short clusters when the 

amount of change is small restricts any further improvement. 
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-. 

Fig.3.14 Moving areas for a frame with a FD of 20%. 

3.4 Conclusions 

Several aspects of a video source with videophone type picture material have been 

investigated, both for PCM data and encoded data. The results show the inherent VBR nature 

of video and highlight the problems and inefficiency thereof in trying to constrain the data 

within a CBO channel. Using a CBO channel invariably means sending unnecessary 

information when the amount of movement in a frame is small, and reducing picture quality 

in order to constrain the output data rate when it is high. The use of a buffer alone to smooth 

out the data rate is not sufficient, as video-spurts could still present problems. A VBR 

network will allow the picture source to use as much bandwidth as it needs instant by instant 

and thus maintain picture quality, provided the peak bandwidth requirement can be met. 

When the outputs of a number of uncorrelated VBR video sources are multiplexed in a 

network, the peak bandwidth requirement of the combined sources is lower than the sum of 
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the peaks of the individual sources. The lower bandwidth requirement results from bandwidth 

sharing among the sources, and leads to a more efficient utilisation of network resources and 

eases the traffic control problems. 

The results also reveal the problems of using peak-to-mean ratio of the data rate 

variation as a measure of VBR gain. Not only does it vary with different types of picture 

material, but it also fails to account for factors such as the duration of the data bursts and the 

amount of data rate variation. Other factors which require consideration are the widely 

differing characteristics of the different sources, codec complexity, traffic control on the 

network, as well as the human visual response. 

PDFs of the frame differences have been found to exhibit mixed 

characteristics of both the Gamma and Normal distributions, and very often, they are 

multi-modal. Their inclination to either distribution depends on the amount of variation in 

picture content in the sequences. When several sequences are multiplexed together, the 

resultant frame differences PDF. tends towards a Normal distribution as suggested by 

the central limit theorem. The coding of the frame differences with DPCM and Huffman 

algorithms, and the addition of addressing overhead, also have the effect of making the 

PDF . of the output data rate more symmetrical. 

The amount of addressing overhead in a VBR video could be unacceptably large when 

the amount of change in a frame is small, or when the pixe1 data are compressed. Some 

techniques have been described which increase the mean cluster length and hence improve 

the efficiency of addressing. Longer clusters will also lead to improved coding efficiency. 
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A Simple VBR Video Source Model 

4.1 Introduction 

Having attained some understanding of the VBR video source characteristics, the next 

phase in this project was to use this understanding to develop a simple source model to be 

incorporated into an Orwell Ring simulation. The source was modelled using a discrete-event 

simulation technique, and the model itself was developed using Simula[47) with Demos[~ 

facilities. 

Detailed modelling of the source was not attempted as source behaviour is very diverse 

and complex: it depends on, among other things, the type of picture material concerned and 

the coding strategies employed. It was also deemed unnecessary for the. purpose of this 

research. Moreover, the model was developed with the constraint of limited computing 

resources, considering that it would have to be incorporated into the ring simulation, which in 

itself is extremely compute-intensive. For instance, a single run of a 34 Mb/s ring simulation 

normally requires about 3 hours of processor time on an ICL 3900 Mainframe! Consequently, 

only a simple source with restricted scope was modelled, based on a videophone type source 

with characteristics similar to those obtained in the preceding chapter, and simplifications 

were made wherever possible. 

The source characteristics studied in the preceding chapter may be sufficient for the 

purpose of assessing the merits of VBR video, but are somewhat lacking in detail for the 

development of a model. Two additional pieces of information were identified as important 

for a basic model, namely, the auto-correlation of the frame differences and the distribution 

of changed pixels within a frame. The former was required to account for the video-spurt 

characteristic and the latter was necessary to account for the instantaneous data burst within a 

frame. Although intra-frame data burst has hitherto been ignored, it is nevertheless an 

important feature since no data smoothing is carried out at any stage in a VBR video source. 

These two aspects of the source behaviour will be considered next. 

50 
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4.2 Auto-Correlation of the Frame Differences 

The successive FD in a picture sequence is highly correlated since the amount of 

motion in successive frames is very similarf'l. This property of the FD is evident from 

figure 3.5, as the variation of the FD would be more haphazard and the long video-spurts less 

probable if this correlation did not exist. 

The FD auto-correlation coefficient functions were computed for the different 

sequences, with different starting points. The results of the two extreme cases are presented in 

figure 4.1. As can be seen, the correlation coefficient functions approximate a first order 

Markov process, with the correlation coefficient falling within the range of 0.7-0.9. These 

results are consistent with those obtained by VerbiestlS31 for videophone and 

video-conferencing type pictures. 

It must be stressed that these results represent the long-term auto-correlations which 

were computed over the entire length of the sequences (in this work, about 400-1000 frames) . 

. The short-term auto-correlations are not expected to deviate significantly from these results 

(except, perhaps over the short periods in which scene changes occur), and they are not likely 

to vary significantly with time. 

4.3 Distribution of Changed Pixels Within a Frame 

In almost all reported work on video signal statistics, the data rate within a video frame 

(or field) has always been assumed to be smooth. However, in a truly VBR video codec, data 

are output almost as soon as they have been coded (a small amount of buffering would 

always be present, for example, for packetisation purposes), and as such, the instantaneous 

output data rate would fluctuate according to the local image complexity, which varies across 

the picture. 

In codecs employing inter-frame coding techniques (such as the COST211), the 

variation of the instantaneous output data rate is related to the concentration of the changed 

pixels and their locations. It must be noted that the term 'instantaneous output data rate' does 

not refer to the actual speed of the bit stream, which is a function of the clock rate of the 

codec and thus representing the upper bound for the output data rate. Instead, the term relates 

to the short-term average data rate, for example, over a video line. This in.:;tantaneous data 

rate is an important aspect of VBR video, especially when the interaction between a VBR 

video source and a network is to be considered. The instantaneous data rate can be much 

higher than the frame data rate, and consequently the model must incorporate this feature. 

Experiments were carried out on the codec to collect the statistics on the distribution of 

changed pixels on a line-by-line basis over the video frames. Figure 4.2 shows the 

distributions for the two video fields of a head and shoulders scene (sequence 2). The results 
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shown were obtained by averaging over the entire sequence. As expected, the changed pixels 

were distributed almost identically in the two fields. The interesting feature of the distribution 

is that three distinct regions of varying degrees of activity can be identified: a low, a medium 

and a high activity regions. 

The distributions of changed pixels for two frames that are widely separated in time, for 

the same sequence, are presented in figure 4.3, along with those from a different sequence 

(sequence 1). Only a single field is shown for each frame. The three regions of different 

levels of activity can still be recognised in figure 4.3(a), and they can also be identified in 

figure 4.3(b). The level of activity of each region tends to vary in proportion to the FD; when 

the FD is very small or very large, the three regions become almost contiguous and 

indistinguishable. 

The three regions can be related directly to the content of the scenes. For instance, 

figure 4.3(a) is a head and shoulders scene where the low activity region corresponds to the 

top of speaker's head; the face area constitutes the high activity region across the middle of 

the screen, while the moderate motion of the shoulders makes up the medium activity region. 

Figure 4.3(b) is a waist-up type picture, and in this case, the medium activity region covers 

the head and chest of the speaker, while his hand motion generate the largest FD and 

consequently fonn the high activity region; the low activity region corresponds to the 

relatively still waist area. In general, the shape of the distributions can be derived intuitively 

from the content of the scenes, and most distributions can be broken down into three activity 

regions, although the level of activity and the number of lines in each region vary for 

different scenes. 

It is clear from these results that the instantaneous· data rate varies quite significantly 

within a frame, especially if the field synchronisation period is to be taken into account The 

data rate could rise from zero to twice that of the mean frame data rate, and the peak could 

last for several milliseconds. The data rate variation within a frame is therefore an important 

factor to be considered when investigating the transportation of VBR video over any ATM 

network. 

4.4 Modelling of the Source Behaviour 

The various aspects of the behaviour of the videophone type source, which were 

considered to be important characteristics of the source and which may have serious impacts 

on the efficient transfer and control of VBR video over an ATM network, have been 

analysed. These features were incorporated in the model, although some simplifications were 

necessary due to the lack of infonnation on some aspects of the source characteristics and the 

constraints in computing resources. The model must however retain those features of the 
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source behaviour which are most testing from the point of view of the networks, so as to 

enable more meaningful results to be derived from the subsequent ring simulation study. 

These features and their modelling will be considered. 

4.4.1 Probability Density Function (PDF) of Frame Differences 

Results from the preceding chapter and from Seyler!5I] have indicated that the 

PDFs '.' of the FD of most picture material (notably the head and shoulders 

type), exhibit mixed characteristics of the Normal and Gamma distributions. Since the actual 

PDF " of the FD is very complex and difficult to generate, and since there is a lack of 

in-depth understanding of the relationship between the two distributions and the picture 

material, it was decided that only the Gamma nature of the, PDF would be modelled. 

Gamma distribution was chosen as the basis for generating the FD because the long tail 

of the distribution is considered an important feature of the signal characteristics, a feature 

which could have a substantial impact on the network loading and cell loss performance. 

Furthermore, as can be seen from figure 3.10, the Gamma distribution is probably the best 

single mode distribution for approximating the experimental results, and the approximation 

improves as the variety of motion in the picture sequence increases. 

However, since Gamma distributed samples are rather difficult to generate, and since 

the underlying PDF ' of the generated samples would eventually be distorted by the 

filter used for correlating successive samples, samples with an Erlang distribution were 

generated instead. The Erlang distribution!'] is a subset of the Gamma distribution (from 

equation 3.3, IX is a real number for Gamma and an integer for Erlang), and it thus retains 

most of the required qualities of the latter. Samples with an Erlang distribution are easier to 

generate and furthermore, a facility already exists in the DEMOS package for this purpose. 

The development of the model was thus greatly simplified. It should be pointed out that the 

curve fitting in figure 3.10 was, in fact, carried out using the Erlang distribution, thus 

validating the use of this distribution for the model, although it does not have the range of the 

Gamma distribution. The scope of the model is thus restricted in this respect. 
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4.4.2 Auto-Correlation of the Frame Differences 

The results obtained in section 4.2 indicate that the auto-correlation function of the FD 

follows a fIrst order Markov process. A fIrst order recursive fIlter, as shown in fIgure 4.4, can 

thus be used to introduce the required auto-correlation into the FD samples drawn from an 

Erlang distribution. The equation of the fIlter is as follow: 

Xl = cul _! + pUl 
where X. and Uk are the kth generated and drawn samples respectively, IX is the correlation 

coeffIcient and ~=-Jl-a'. 

From the results previously obtained, IX was found to be in the range 0.7-0.9, assuming 

there were no scene changes. It is expected to vary within this range with time but the exact 

nature of this variation is not known. However, for simplicity, IX is assumed to be constant 

throughout with the mean correlation coeffIcient of 0.8. 

Uk 
"(I-a.) 

Xk 

D 

Xk-J 

Fig. 4.4 A first order recursive filter. 

The fIlter has a transfer characteristic given by: 

HUro) 
l-a.exp (-jro) 

which gives rise to a D.C. gain of 

-p-
I-a. 

With IX = 0.8, the D.C. gain is 3, which means that the sample mean at the output of the 

fIlter is three times that of the input samples, while the variance remains unaffected. As a 

result, when the output samples are scaled down by the gain factor, their variance is reduced 

by a factor of (3)2. The implication of this is that, for an output sample sequence with a 
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required mean and variance, the input samples must either have a mean of one third of the 

required output mean, or a variance (3)2 times larger. The second approach was adopted in 

this model. 

A further characteristic of this ftIter is that the output samples will have a _ . 

PDF '. which tends to a Normal distribution, i.e. less skew, whatever the PDF : of 

the input samples. This undesirable effect is, to some extent, compensated for by the fact that 

subsequent coding and addressing of the changed pixels on the COST211 codec have a 

similar effect on the output bit rate (see section 3.3.3), and in that respect, this effect of the 

filter is a positive aspect. 

4.4.3 Distribution of Changed PixeIs within a Frame 

The distribution of changed pixels within a frame was modelled according to the 

fmdings of section 4.3, that is, the frame was partitioned in the vertical direction into three 

regions of high, medium and low activity; with the added proviso that the top region should 

not be the high activity region and the middle region not the least active, since scenes with 

these types of pixel distribution were considered highly unlikely, although not impossible. 

The two fields within a frame were assumed to have identical distributions, with the number 

of changed pixels in the frame equally divided between the two fields. Hence, only a single 

field with half the FD needs to be modelled, and a frame can be obtained by repeating the 

same field. The flow chart of a scheme for generating the intra-field distribution of changed 

pixels is given in figure 4.5. 

Since there is no simple relationship linking the number of lines or the number of 

changed pixels per line in the three regions, these were chosen randomly. Only the number of 

lines for two regions needs to be determined and the third is automatically fixed since there is 

a fixed number of video lines in each field. It could, however, be assumed that the top and 

bottom regions are more likely to consist of only a few lines, especiaIIy in the head and 

shoulders scene. As such, the number of lines in these two regions could be assumed to have 

a Negative Exponential or Erlang distribution. 

Having partitioned the field into three regions, the activity levels (number of changed 

pixels per line) for the three regions were then chosen randomly based on a frame with a FD 

of 10%, and subject to the constraint on the relative activity levels of the regions stipulated 

earlier. 

The scheme enables an intra-field distribution of changed pixels of the required general 

shape to be constructed in block form. For detailed modelling, the inter-line variation should 

then be superimposed on the basic model. Some analyses have been carried out on the 

inter-line variation behaviour, but it was decided that such details would not be necessary -

the reasons being that the variation in the number of changed pixels from line to line in a 
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Fig.4.5 Flow chart for generating intra-field changed pixels distribution. 
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region is relatively small, and the bursts are generally of very short duration. As there will 

almost certainly be a small amount of buffering present at the source output, such variation 

can be easily mitigated. For instance, a maximum variation of about 40 pixels from the 

regional mean in the high activity region was observed in figure 4.3(a), and assuming a 2:1 

compression, this would represent a 160 bits fluctuation. When compared to the proposed 

32 byte (256 bits) and 64 byte (512 bits) ATM cell information fields, considerable 

smoothing can be achieved by the packetisation process alone. 

A further reason for not going into such detail is the computing overhead required: a 

sample would have to be drawn for each line and fed through a filter. Considerable 

processing time can be saved since line activity occurs at very short intervals, in this case, 

128 JlS. 

A different intra-field distribution of changed pixels was generated for different 

sequences, and for simplicity, the same distribution was used for the entire duration of a 

sequence. The activity level of the regions were scaled in proportion to the FD of each frame, 

and care was taken to ensure that the level of the high activity region did not exceed the 

maximum number of pixels per line, i.e. 306. The simplification made is justified provided 

no scene change is allowed over the duration of the sequence. 

4.4.4 Coding Performance and Addressing Overhead 

The modelling of the three aspects of the VBR source behaviour discussed above have 

provided sufficient details for a basic source model to be developed. However, there are still 

some minor factors which need consideration: the coding and the addressing of the changed 

pixels. 

Without considering any subsequent coding on the changed pixels, the output bit rate of 

the model would simply be the FD converted into the number of bits per frame, since each 

pixel is PCM coded. It becomes more complicated when subsequent coding is considered, 

because coding performance is not constant for different values of FD as has been deduced in 

section 3.3.4. The coding performance is a function of the mean cluster length, which is in 

turn related to the FD. Unfortunately, the exact relationship between the MCL and the FD is 

picture dependent, although it is generally true that the MCL increases with the FD. 

However, the variation of the coding performance is only significant for very large and very 

small FD; for moderate FD, the coding performance does not vary greatly. Therefore, for 

simpliCity, the coding performance was considered constant. 

The addressing efficiency has a very similar characteristic to the coding performance, 

in that the proportion of the output data which is addressing information varies with the FD. 

Again, for similar reasons as those for coding performance, addressing overhead was 
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considered to be a fixed proportion of the output data. With these two parameters fixed, the 

FD could be scaled according to the amount of compression and addressing required to obtain 

the output bit rate. 

The effects of coding and addressing on the underlying. PDF 

output bit rate have been, to some extent, accounted for by the recursive filter; thus no further 

refinement was attempted. 

4.4.5 Field Synchronisation 

Field synchronisation refers to that part of the video signal which is devoted to 

synchronisation purposes and contains no visual data. In the COST211 codec, the field 

synchronisation period (during which no data is generated) extends over 13 video lines or 

about 2 ms. Field synchronisation is considered an important feature of VBR video as it 

increases the variation of the instantaneous data rate. Furthermore, its duration is significant. 

Consequently, it was recommended that this feature be incorporated into the model. It is 

acknowledged that some codecs may use this period for coding purposes to alleviate the 

processing speed constraint. As a result, a 'blank' period will not appear in the output data 

stream of such codecs. 

4.5 A Simple Source Model 

A simple model was developed based on the source behaviour modelling concepts 

outlined above. A block diagram of the model is shown in figure 4.6. The FD Generator 

consists of a random number generator with an Erlang distribution which has a mean of 10% 

and a variance of 100. The samples were generated at a rate of 25 samples/s on the simulated 

time scale, corresponding to the full frame rate of 25 frames/so 

These samples were fed into the first order recursive fllter described earlier in order to 

induce the auto-correlation required into the samples (first order Markov process with a=O.8). 

The samples were then scaled down to remove the undesirable D.C. gain, and the variance 

was reduced, as a consequence, to 11.1. This value is slightly lower than those shown in 

Table 3.1 for a sequence with a mean FD of 10%, and accounts for the effects of subsequent 

coding and addressing. These samples were then scaled according to the_sequence mean, 

which was drawn from another random number generator with a pre-determined probability 

distribution, and the variance of the samples was also varied accordingly, which is desirable. 

Unfortunately, the nature of the distribution of the sequence mean was not known as there 

was insufficient data available for this to be deduced. In this model, it was proposed that 

either a Normal or a Uniform distribution be adopted. The former is quite probable since 

most random processes are Normal in nature, while the latter was chosen for its simplicity. 
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The sequence mean was taken to lie mainly in the range 8%-22% as an approximation to the 

results in Table 3.1. The scaled output samples then become the generated FD of a VBR 

video source with a given sequence mean. 

. 40ms 
Erlang DIstribution 

mean = 10 ---""""" ~ 1 SI Order Recursive 
1/3 variance = 100 Filter 

Generate New 
SQ 

Sequence mean, SQ 
Uniform Dist. 

8% -22% 
Frame Differences 

Generator Bits /line 
New Call X 

Intra-Field Changed Pixels 
Compression Distribution Generator Sealing for 

Rati2- Addressing and 

No. of Changed 
Compression 

Pixels I line I 
Generate Field 128 f!S 

~ L, Converts to Bit 
Structure with - ~~ Domain 

10%FD 

Fig. 4.6 Block Diagram for the VBR Video Source ModeL 

The Intra-field Changed Pixels Distribution Generator has already been described in the 

preceding section. The distribution generated, based on a frame with a FD of 10%, was 

converted and expressed in number of bits per line. This was then scaled down according to 

the compression specified, and subsequently scaled up by a factor which corresponds to the 

pre-determined proportion of addressing overhead (20% in this case). The <::?mpression ratio 

was left to user specification in order to allow for user control of the required output bit rate. 

The final output bit rate of the model was obtained on a line-by-line basis. Each line 

was taken in order at line intervals (128 Its) from the Distribution Generator, and scaled in 

proportion to the FD generated by the FD Generator. The distribution, which was field-based, 

was repeated to emulate the two fields in a frame before the FD was updated, and 13 blank 

lines were inserted between fields for field synchronisation. 
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Examples of the variation of the generated FD with a sequence mean of 10% are shown 

in figure 4.7. The sequences bear a good resemblance to those shown in figure 3.5, and 

peak-to-mean ratios of 2-3 were observed, which is consistent with the practical results. 

Video-spurts of long duration were clearly visible. The auto-correlation functions of the 

generated FD shown in figure 4.8 is of the appropriate characteristic. The _ 

PDF '. of the generated FD is shown in figure 4.9, and as can be seen, the PDF 

still retains some of the skewness of the Erlang distribution except that the tail has been 

reduced. Thus the effect of the recursive fllter was not as drastic as originally expected. The 

performance of the FD Generator of the model is considered very satisfactory given the 

constraints associated with the simplicity of the model. 

The most probable intra-field distributions of changed pixels generated are illustrated in 

figure 4.10. These, in general, are the type of distributions expected from the generator, and 

they are only as good as the assumptions on which they are modelled. On that premise, the 

performance of this generator is also satisfactory. 

The model can be used to generate VBR video sources exhibiting a range of 

characteristics. Each time a VBR video source is generated from the model, its characteristics 

will be different from others generated from the same model. Each source will be different in 

terms of their sequence means and FD variances, FD variations and intra-field distributions of 

changed pixels. The relationship between the sequence mean and the FD variance is, 

however, fixed, and other aspects such as the auto-correlation of the FD, the proportion of 

addressing overhead and the compression ratio are the same for all sources generated. 

Scene changes can be implemented quite easily. Since they occur randomly in a 

sequence, they can be implemented as different generated sources concatenated to each other, 

intervened only by sharp peak changes. They are, however, not implemented because of 

doubts over whether scene changes should be transmitted in full. 

One other factor which hitherto has not been considered is the way in which the first 

frame of a sequence should be treated. As this corresponds to a scene change situation, it 

would generate the maximum data rate. However, it may not be necessary for this frame to be 

transmitted in real time. Rather, it can be transmitted over a duration of a few frames, thus 

averaging the peak data rate which might otherwise be difficult to handle if every video 

connection is to start with a peak. The slow picture build-up of the first frame need not 

necessarily be noticeable. In this model, the first frame is assumed to be transmitted over a 

pre-specified number of frames at a fixed bit rate. 
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4.6 The Model in the Ring Simulation Environment 

The model developed next had to be incorporated into the ring simulation software, to 

enable the interaction of VBR video and the Orwell Ring to be studied. This section describes 

the integration of the model into the ring simulation. 

Both the ring simulation and the model were developed in Simula with DEMOS 

facilities, which suppons the object-oriented programming paradigm. In this environment, the 

source model simply fonns an 'object' (or 'entity' in DEMOS) in the ring simulation 

program, and a copy of this object can be generated whenever a VBR video source is needed. 

Each of these generated objects represents a different video source with different 

characteristics (as described in the preceding section), and each interacts independently with 

the 'node object' to which it is attached. When a connection is terminated, the object can be 

modified to become a different source with different characteristics and relocated on a 

different node. 

In the model, data are generated on a line-by-line basis, which means that the output 

comes in bursts at the end of each line (128 lIS interval). This time interval is large when 

compared to the critical time interval of 125 J.lS on the ring (see Chapter 5), and will lead to an 

unrealistic and highly variable loading situation of regular large data bursts separated by quiet 

periods. This will not only create a false temporary overload, but will also diston the results 

of the ensuing simulation studies. Data generation must therefore be spread over the line 

rather than being concentrated at the end of each line; to this end, a video line is divided into 

4 phases of equal interval, each 32 J.ls, and data are assumed to be distributed equally over the 

4 phases and are output at the end of each phase. 

This feature can also be used to ease the tracking of the progress of each VBR video 

connection. For this purpose, the simulation time is regarded as consisting of cycles of 4 

phases, where each cycle corresponds to a line interval. Each new connection is assumed to 

start at the beginning of the phase in which it is generated, and its subsequent line and field 

synchronisation are maintained with respect to that phase. This approach avoids the need to 

track each connection separately, and all connections with the same starting phase can be 

processed in groups, thus saving valuable computing time. 

Since the ring is an A TM network, data must be packetised into cells before being 

transferred to the node for subsequent launching onto the ring. Whenever a .. cell is filled, it is 

output at the end of that phase; a cell which is not filled at the end of a phase is carried over 

to the next phase for continued filling. An unfilled cell at the end of a line is carried forward 

to the next line, and a partially. filled cell at the end of a field is transmitted incomplete. No 

buffer is provided on the source such that cells are output at the end of the phase in which 

they are assembled. In practice, at least a buffer of one cell would be needed on the source to 

resolve contention for the node buffer. 
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A further modification to the source model was necessary in view of the short 

simulation time for which the ring simulation was performed - typically in the order of a few 

seconds in real time for economic and practical reasons. This constraint limits the simulated 

mean call holding time of VBR video connections to a small fraction of the simulated time, 

and this means a source will generate, on average, only a few frames of data before being 

terminated. As a result, the effects of data rate variation will not be significant. In order to 

mitigate this short-coming, video frames were considered to consist of only a single field so 

that more frames could be generated over the duration of a call. This modification was carried 

out by not repeating a field and by increasing the FD sample generation rate to 50 samples/so 

Consequently, more data rate variation can be generated and this provides a better basis for 

the simulation study. 

4.7 Summary 

In this chapter, two more aspects of the videophone type signal behaviour, namely, the 

auto-correlation of the frame differences and the distribution of changed pixels within a 

frame, were examined. These, together with the statistics presented in the preceding chapter, 

formed the basis for a simple VBR video source model to be developed for videophone and 

some video-conferencing applications. The source was modelled down to the video line level. 

The scope of the model was, however, limited by the amount of data available on the 

signal characteristics and the type of codec from which they were gathered, although results 

from other workers were also considered. It was further limited by the numerous 

simplifications that were necessary in view of the constraints in computing resources. 

Notwithstanding these limitations, the model was considered to have adequately emulated the 

video source upon which it was modelled, and would enable some valuable insights into the 

interactions of VBR video with the Orwell Ring to be gained in subsequent simulation 

studies. The integration of the model into the ring simulation software necessitated some 

further modifications to the model. 

Although primarily based on videophone applications, results obtained from the ring 

simulation with this model should also provide information about the performance of other 

VBR video services over the ring, since many aspects of the VBR video signal behaviour are 

quite similar for the different video-communication applications. 
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Simulation of VBR Video on an OrweII 

Ring 

5.1 Introduction 

It has been suggested that video services can be better and more efficiently provided, in 

terms of enhanced picture quality and improved network performance, if video signals were 

VBR coded and transmitted over an ATM based BISDN. It has also been suggested that such 

benefits can only be realised if the outputs of a large number of statistically uncorrelated 

VBR video sources are multiplexed in the network, and effective policing or control of these 

bursty traffic· can be exercised to achieve a small cell delay and minimal cell loss, while 

maintaining the stringent performance requirements of the high priority services and attaining 

a high network utilisation factor. 

With the developments in ATM networks still in an early stage and the concept of VBR 

video evolving alongside, there is no practical means of investigating these suggestions as 

there is no large scale working system on which experiments and measurements can be 

conducted; simulation was therefore used for this study. In this chapter, the results obtained 

from the simulation of VBR videophone service on an Orwell Ring, using the VBR video 

source model developed earlier and an Orwell Ring simulation developed at BTRL, are 

presented. 

Before the results are presented, a brief description of the Orwell Ring will be given 

with emphasis on some key parameters which are to be investigated. An account of the 

simulation and the aspects of the system performance which are of interests are also given. 
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5.2 The Orwell Ring - A Brief Description 

An Orwell Ring is basically a high speed slotted ring operating the Orwell Medium 

Access Control (MAC) protocol. Nodes on the ring concentrate traffic from a wide range of 

services, for example video, voice and data, onto the ring. The ring has an integer number of 

slots circulating in it; all information to be exchanged over the ring is organised into fixed 

size data transfer units called cells, which are carried in the slots. The cells contain a header 

field and an information field. The header part contains routing and control information 

which enables the cells to be steered to the correct destinations. 

A cell is launched into an empty slot when the latter arrives at an active node. It is 

retrieved by the node, or group of nodes in the case of multicasting, which recognises the 

address in the cell header. The slot is then converted back to an empty slot which can be used 

by any node downstream. This destination release feature is unique to the Orwell protocol 

when compared to other slotted ring protocolsl'Ol. Cells are delayed at a node while waiting 

for an empty slot, but the protocol limits this cell delay to an upper bound for delay-sensitive 

services. 

With the destination release policy, a slot can deliver more than one cell during a single 

rotation on the ring. As a result, the ring has been reported to be capable of supporting an 

information transfer rate 1.5 times its own speedl6J. This policy may, however, result in 

'hogging', where nodes downstream from a high usage node may be completely depriVed of 

their share of the empty slots or bandwidth. This could lead to an unacceptable cell delay and 

eventual cell loss as a result of buffer overflow. In order to prevent such occurrence, the 

protocol limits the number of cells that a node may launch onto the ring before being 

re-initialised. This number is termed the 'd' value of the node, and it is dynamically adjusted 

to meet the demand of the node subject to bandwidth availability. Whenever all the active 

nodes have exhausted their 'd' allocations such that at least one empty slot successfully 

circulates the ring, a reset slot is generated to re-initialise the nodes, and the whole process 

repeats itself. 

The interval between two consecutive resets is known as the 'reset interval (RI)'. The 

RI is clearly influenced by the load on the ring: it is short when the load is light and vice 

versa. However, when the ring is heavily loaded, the RI is only allowed to increased up to a 

pre-defined maximum value. In order to maintain the RI below this maximum, each node 

uses a load monitor to measure the average RI over a period of time, or alternatively, to keep 

a count of the number of reset occurrences over the same period (reset rate, RR). Based on 

these measurements, call requests are rejected if they may cause the maximum RI to be 

exceeded (or the RR to fall below a minimum). There are therefore, call acceptance 

thresholds associated with the different services, and the threshold levels depend on the 

bandwidth requirements of the services. When the RR falls below any of these thresholds, 
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call requests of the corresponding service will be rejected. With the RI maintained below the 

maximum value, every node gets its 'd' allocation within a specified period, thus its 

guaranteed bandwidth allocation. 

The above summarises the basic operation of the Orwell Ring. For further details on the 

ring see references [1,2,3,22]. However, it is considered necessary that some of the Orwell 

terminologies used in the simulation study should be clarified to facilitate discussion. 

5.2.1 Service Queues With Priority 

In order to meet the different requirements of the various classes of service, cells 

originating from the different classes of service are treated with different priorities at the 

nodes and are assigued separate service queues. Cells from higher priority services are always 

given preference in accessing the empty slots. In order to prevent excessive cell delay to the 

low priority services, each queue has its own 'd' allocation which works in a similar manner 

to the node 'd' allocation. High priority services are not subjected to overload control such 

that their 'd' allocations will always remain intact; this will be explained in more detail later. 

Currently four service queues have been identified which cater for the 2 Mb/s CBO 

video, 64 Kb/s CBO voice, data and VBR video services (in order of priority). The allocation 

of'd' to the queues for the CBO services is deterministic while that for the VBR services is a 

subject of research. 

5.2.2 Masked Resets 

A method of 'd' allocation for the data service was proposed[ll, by which a small fixed 

'd' value would be provided on each node to the data queue, thereby guaranteeing the data 

service a minimum amount of bandwidth at all times. However, this background allocation 

may not always be fully utilised, and this could lead to a false estimate of the unused ring 

bandwidth. As a result, excess calls may be accepted onto the ring with an increased risk of 

ring overload when a data burst occurs. 

Similarly, whatever the 'd' allocation method for the VBR video, the fact that 

bandwidth is allocated in blocks(for instance, with a maximum RI of 12511S and a cell 

information field of 16 bytes, a 'd' of 1 is equivalent to 1 Mb/s of bandwidth) suggests that 

there will always be excess bandwidth being allocated which could cause overload. An 

additional control mechanism is thus required to cope with this overload condition. Such a 

mechanism is also necessary to cope with a ring failure in a Torus system. 

This additional control is achieved with the concept of Masked Resets (MR), where 

some of the resets are masked from the low priority VBR queues in the event of an imminent 

overload, thus effectively removing some of the bandwidth allocated to these services. The 

underlying principle of the method is that, until the RR drops to a certain value of r resets 
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per 125jlS (the current maximum RI), no resets are masked from the VBR queues. Below this 

value, resets are masked at a rate which is adjusted to the observed RR, reaching a maximum 

when there is only one reset every 125 jlS. 

Masked resets operates over a 500 IlS clock cycle. The nodes are organised into four 

groups, each starts at a time which is offset by 125 ~s from the previous one. If r.is the observed 

number of resets in a clock cycle and c~ a counter which contains the difference (4r - r;) at the 

end of a clock cycle, then while c remains positive, the resets are masked from the VBR 

queues in the next clock cycle except for the fIrst reset. For each reset masked, a value (r - 1) 

is deducted from c, and masking ceases when c becomes zero or negative. 

With this mechanism, the ring can reduce the throughput from the VBR queues down to 

25% of that allocated as the system approaches overload, and thus provide the extra 

protection to the high priority services since they are unaffected. 

5.2.3 Auto-Resets 

Auto-reset is designed to protect the high priority services against two critical events: 

corrupted reset slots and sudden large surges in VBR load. Although the masking mechanism 

could guard against the latter occurrence, it could take up to 500 IlS to react, hence auto-resets 

are necessary for the interim period. 

Auto-reset operates as follows: If a node experiences no reset within a certain interval 

T, it automatically resets its own 'd' allocation. Currently, T is set equal to the maximum RI 

of 125 IlS. The node makes no attempt to reset others, instead each node resets itself when its 

own time-out expires. Auto-resets are not included in the reset count by the load monitor and 

thus will not interfere with the normal operation of the system. Only the VBR queues on 

those nodes with a zero c value will receive the auto-resets. 

It must be noted that the Orwell protocol is still undergoing the standardisation process; 

therefore a number of features and parameters described here may be subjected to future 

modifIcation as more is learnt about the protocol. It is hoped that this simulation smdy will 

contribute towards this process by providing information on the ability of the protocol in 

coping with VBR video traffic. 
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5.3 The Orwell Ring Simulation 

The simulation incorporates all the features of the Orwell protocol. Briefly, the 

simulated system may be described as follows: 

A slotted ring with randomly distributed nodes is subjected to a traffic load comprising 

CBO video, CBO voice, data and VBR video cells. The voice and video services are two-way 

calls, each with an inter-call arrival interval and a call holding time which are Negative 

Exponential distributed. The CBO video and voice are 2 Mb/s and 64 kb/s connections 

respectively and generate cells at regular intervals, while the VBR video connections 

generate cells at an irregular rate with a mean data rate which is user specified (see 

section 4.5). All data connections are assumed to have the same channel rate such that cells 

are generated at a regular rate over the duration of a message; the inter-message arrival 

interval on a node and the message length are assumed to have Negative Exponential 

distributions. 

The nodes act as traffic concentrators for the range of traffic described. Access priority 

is in the order of CBO video, voice, data and VBR video. The data service was given a higher 

priority than the VBR video (despite being more delay and loss tolerant) in order to prevent 

its allocation, which is small, from being totally pre-empted by the VBR video service. 

Priority handling is such that if a cell from a low priority service is waiting, its access to the 

ring can be interrupted by the arrival of a cell from a higher priority service. Only when no 

more cells are waiting in the higher priority queues or the queue allocations have been 

exhausted, will a cell from a lower priority queue be launched. 

Only a 34 Mb/s ring with 10 nodes attached was investigated. Two slots, each with a 4 

byte header and a 16 byte information field, circulate in the ring. The maximum RI was 

125I1S and the RR was averaged over an interval of 2 ms. The threshold below which 

masking commences was initially recommended to be 32 resets/2ms (or 2 resets/125I1S). 

The CBO video and voice services were assumed to have mean call holding times of 

0.25 s and 0.1 s respectively~ In· view of the low speed of the ring, the CBO video was 

modified to have a smaller throughput of 1 Mb/s so that more calls could be supponed and 

load arising from this service more evenly distributed. The delay requirements for both 

services were to be less than one cell assembly time, i.e. 125 JlS for video and 2 ms for voice, 

hence only a buffer of a single cell was allocated to each connection. The maximum number 

of each type of calls allowed on a node simultaneously was unrestricted. The allocation of 'd' 

is straight forward for the video service where a 'd' of 1 was allocated for every connection. 

For the voice service, a load smoothing mechanism was built in such that exactly 1/16 of a 

'd' was allocated to each connection. 

'see note on page 11 2 
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The data service was assumed to have a mean message length of 1000 bits, and data 

devices were assumed to have a channel rate of 19.2 kb/s. A buffer of 20 cells was allocated 

on each node for this service. The 'd' allocation method used was simply a fixed allocation of 

one 'd' per node. The VBR video service was assumed to have a mean call holding time of 

0.27 t with the first frame being transmitted at a quarter of the peak bit rate over the first 

20 ms. The VBR video connections were assumed to have a population mean bit rate of 

350 kb/s, with the individual connections having a mean bit rate between 180 kb/s and 

530 kb/s and a possible peak in excess of 1.5 Mb/s (intra-frame variation could cause this to 

be even higher). The population mean approximates the CCITT 384 kb/s video-conferencing 

standard. The maximum number of simultaneous VBR video connections allowed on a node 

was also unrestricted. 

With most of the parameters of the ring and the offered load fixed, the simulation study 

was carried out under different loading conditions by varying the call arrival rates and the 

data message arrival rate. A symmetrical loading of the ring was always assumed. The 

auto-reset mechanism was disabled so that the performance of the protocol couldbe studied in 

the presence of the VBR video traffic without the influence of auto-resets, which in any case 

should only be a contingent measure and should not be activated frequently. Such a study 

could help to determine an optimum expiry time for the activation of the auto-resets. 

5.4 Aspects of Interest 

As the objective of this work was to study the effective transfer and control of VBR 

video over the Orwell Ring, the main emphasis of this simulation study was on the various 

aspects related to this subject. The following aspects of interest were identified for 

investigation. 

Ring Dimensioning In order to provide a pre-specified quality of service (QOS) in 

terms of call blocking and cell loss to the users, the ring must have a certain amount of 

capacity available for a given offered load. Since the ring speed is fixed in this case, the 

offered load must be dimensioned to fit the ring capacity. For CBO services, this can be done 

with the established Erlang Capacity Table!""I, but with VBR video, the Table cannot be used 

directly because each call has a different bandwidth requirement which is time varying. A 

modified dimensioning method is therefore necessary for the VBR video se!"ice in order to 

achieve the required QOS. 

Ring Bandwidth The bandwidth available on the ring is significantly higher than its 

source release counterpart, but the exact gain is not known since it varies depending on the 

distribution of the load. An estimate of the mean bandwidth available will therefore need to 

be made, and it will form the basis for subsequent work. Some possible ways of improving 

the bandwidth gain are considered. 
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Call Acceptance Thresholds An optimum call acceptance threshold for the VBR video 

service must be determined, such that the acceptance of an additional call will not increase 

the risk of ring overload beyond a required level in line with a given cell loss performance, 

and yet achieve high network utilisation. Considerations must be given to the bursty nature of 

the ring load and the non-deterministic nature of the new calls. The thresholds for other 

services should be assigned with respect to that of the VBR video. 

A 'd' Allocation Scheme A satisfactory 'd' allocation scheme is required which will 

allow VBR video to access the unused network bandwidth as the needs arise, and to restrain 

them when excess bandwidth is unavailable, hence reducing the risk of ring overload. This 

would form part of the traffic control strategy to complement reset masking and call 

blocking. 

Masking Threshold This threshold must be correctly set to ensure that resets are not 

masked unnecessarily from the VBR queues, and so avoid unwarranted cell loss due to unfair 

overload control. 

Observation Interval The observation interval over which the RR is measured is 

currently set at 2 ms. This has been based mainly on considerations for CBO services; with 

VBR video, the ring load is highly bursty and a longer observation interval may be necessary 

in order to provide a better estimate of the RR, and hence, the unused bandwidth on the ring. 

Buffer Size The buffer on each node must be sufficiently large to absorb some of the 

irregularity of the VBR video load arriving at the nodes, and to sustain some short-term ring 

overload due to the bursty nature of the load on the ring, thus minimising cell losses. It must 

not, however, lead to an excessive cell delay. 

Cell Loss and Cell Delay These measurements for the VBR video service with 

different levels of offered load and different settings of the traffic control parameters, are 

particularly useful in providing information on the best way of transmitting VBR video over 

the Orwell Ring and on the performance of the system as a whole. Cell delay for the other 

services in the presence of VBR video is also of great interest. There should not be any cell 

loss on the CBO services even under overload conditions if proper control has been 

exercised. 

Auto-resets It has been tentatively decided that auto-resets should be activated if no 

reset is encountered within an interval of 125 I1S (which corresponds .. 10 the proposed 

maximum RI). Considerations must be given to the fact that only an average RI of 125 I1S is 

maintained by the protocol, for instance over a period of 2 ms; the individual RIs could still 

exceed the maximum. The choice of a 125 I1S expiry interval may therefore result in many 

unnecessary auto-resets. 
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S5 Dimensioning of the Ring for VBR Video 

In order to provide a certain QOS on a network both from a cell loss and call blocking 

perspective, sufficient network capacity must be made available to meet the anticipated user 

traffic level. For CBO services such as voice, the network capacity required for a given load 

can be obtained from the well-established Erlang 'B' Capacity Table (Appendix Ill) for the 

desired call blocking performance. Cell loss other than those due to bit error is inhibited by 

the protocol and need not be considered in this case. 

However, with VBR video, the situation is more complex and there is no established 

method of dimensioning the network for a given load and a required QOS. The difficulties 

stem from the non-deterministic nature of the calls and their variable bandwidth 

requirements, and as such, no fIxed channel capacity can be allocated to calls individually. 

The bursty network load complicates the issue further, particularly in the case of the Orwell 

Ring, where call blocking is based on a dynamic bandwidth estimation mechanism. Cell loss 

performance is an extra factor which requires consideration in addition to call blocking, when 

compared to networks carrying only CBO services. With VBR video, the effect of statistical 

multiplexing of the traffIc also has to be considered. 

In view of the probabilistic nature of the traffic and the bandwidth available on the ring, 

a simple relationship linking the offered load, the network capacity and the call blocking and 

cell loss performance is difficult to derive. Hence, only an approximate method for 

dimensioning the ring is suggested, and it is only intended to provide a rough estimate of the 

network capacity required for a given load and for an approximate QOS. The method is as 

follows: 

If C is the anticipated call arrival rate, and T the mean call holding time, then the traffic 

intensity is given by E, where 

E =C xT erlang ••. (5.1) 

Using the Capacity Table, the number of simultaneous two-way connections, N, which 

may be accepted onto the ring before call blocking commences can be obtained. The 

maximum number of calls the ring is required to support is thus 2N for E erlang of traffic. 

However, there will be an overload probability of P in terms of call attempts where the excess 

calls will have be blocked. 

Under static traffic conditions, the maximum VBR video load on the network would 

have a mean, assumes source independence, of 

w 
TIc = L Tli ... (5.2) 

i=1 
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and a variance of 

•.. (5.3) 

where 11, and er; are the mean and variance of the bandwidth requirement of the individual 

calls, and are normally expressed on a frame basis, i.e. bits/frame. An even load is assumed 

within the frames. 

However, 11, and er; are different for different calls, and they are unknown to the 

network. Consequently 11. and cf. cannot be calculated at the time of dimensioning. But if the 

underlying probability distributions of 11, and er; are assumed constant for a particular class of 

VBR video service, then by the sampling theory, 11j2N and cf.12N will approach the population 

means of the two parameters respectively as N increases. 

It is therefore useful to define a standard video source with characteristics 11, and cr., 
which are the population means of the two parameters for a given class of VBR video source, 

and which can be obtained by monitoring real video traffic over a network. 

Then if N is large, which is the case for the VBR video gain to be realised, 11. and cf. can 

be approximated from 11, and cf. respectively. For simplicity, the uncertainties in the values of 

11, and cf., which diminish as N increases, are ignored in the approximation. 

From the central limit theorem, we know that as the number of sources increases, the 

probability distribution of the total load will become Normal. Thus from the table for areas 

under the Normal curve [Appendix III], we can determine the amount of bandwidth, ka., 

which must be provided on top of 11. in order to achieve a given probability f, that the load 

exceeds the allocated bandwidth. This, however, does not explicitly indicate the actual 

probability of cell loss or cell loss rate. An approximation of the cell loss rate can be made by 

first obtaining the mean amount of excess load (bits/frame-time) by 

-
L.= f p(n)x(n-B)dn 

B 

where p(n) is the probability of the load being n bits/frame-time 

and B = 1'\. + kCJc' 

... (5.4) 

If the cell has an information field of c bits, then the mean load and mean excess load 

expressed in number of cells will be ll)c and L)c, and the cell loss rate r will be 

L)e 
r=--

Die 

L. 
=- • .. (5.5) 
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This is only true for the static case of 2N calls. However, since there is only a probability of P 

that there are 2N calls established on the network, and if cell loss is assumed negligible when 

the number of calls in progress is less than 2N, the cell loss rate ro must be 

r.=Pxr ... (5.6) 

The bandwidth required for E erlang of VBR video with an overload probability of 

(P xf) or a cell loss rate of ro would be approximately 

B = TIc +kcrc ... (5.7) 

and ideally call blocking should commence when the mean network capacity utilisation 

reaches 11,. This mean utilisation is, however, not always possible to determine in practice 

because of the dynamic nature of the system. This problem will be discussed when 

considering call acceptance threshold (section 5.6.3). 

On a per source basis, the capacity required for a single call would be 

(TIc +kcr.)l2N = [2NTI, +k(2Ncr.r}2N 

... (5.8) 

It can be seen that as N increases, the extra capacity required per channel decreases. This is 

consistent with the earlier suggestion that the VBR video gain is improved when a large 

number of sources are multiplexed in a shared resource environment 

An approximate method of dimensioning the network capacity for VBR video traffic 

has been described. It must be noted that many of the assumptions are based on the statistical 

multiplexing effect which only applies exactly for a large number of uncorrelated sources. 

Therefore this method will only work well with a relatively high level of VBR video traffic. 

These assumptions need to be treated with care when the traffic level is moderate or low. 

First of all, the uncertainties of the estimated 11, and cr., which were not accounted for in the 

simple method above, may be significant and may need to be considered. Secondly, the 

assumption that the multiplexed load has a Normal distribution is not strictly true, 

particularly in the tail region if the number of sources is small. Yet this region is important in 

the cell loss estimation. Furthermore, the video load has been assumed to be smoothed within 

frames which is not entirely correct; thus the instantaneous bandwidth may be larger and may 

result in more cell loss. The actual cell loss rate will also depend on other factors such as the 

bandwidth allocation scheme and the traffic control strategy employed, as well as the size of 

the buffer allocated. 
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From the above discussion, it would appear that the method is deficient in many 

respects. This is because of the highly non-deterministic nature of the VBR video traffic and 

the difficulties in accounting for external factors such as buffering. It must be stressed that the 

method was only meant to provide an estimate of the amount of network capacity required 

for a given traffic level and QOS. 

The advantage of this method is that call control is based on some measure of the 

bandwidth utilisation, rather than on the number of established calls and their individual 

characteristics; the latter approach is unsuitable for the Orwell Ring where call control is 

completely distributed. There are, nevertheless, some problems which need to be resolved: 

the most important being the correct determination of the mean bandwidth utilisation in a 

dynamic load environment; with the Orwell Ring, there is a further complication in that the 

ring capacity is non-constant. The accurate dimensioning of the ring is therefore unnecessary. 

5.6 The Simulation Study 

The ring simulation was run with different traffic mix and traffic levels, and with 

different settings of the load control and overload control parameters. The simulation results 

were collected over 2.5 s of simulation time after a warm-up period of 1.25 s. This represents 

the minimum simulation time considered adequate to provide sensible results for the call 

holding times used. 

The results would of course be more reliable with longer runs or with a large number of 

runs, but this is not possible in this work given the computing resources available. Thus when 

investigating the effects of the parameter settings, only a few runs were made; they usually 

included the observed worst cases in terms of cell loss, the use of which was to enable ways 

of reducing the cell loss to be studied. More runs were only made with parameter settings 

which were deemed optimum or where further confirmation was required on the results 

obtained. Some of these results have been published in two recent papers[I3·14J. 

Table 5.1 gives a description of the headers used in the tables of results presented in 

this section. 
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Column Description Unit 
Heading 

T. call acceptance threshold resets/2ms 

Tc ceiling threshold resets/2ms 

Tm masking threshold resets/2ms 

Offered Load offered traffic load: 
(video & voice) calls/s 

(data) Mb/s 

Buffer Size size of the common node buffer cells 
provided for VBR video 

Min./Mean RR minimum and mean observed reset resets/2ms 
rate 

No.ofMR number of masked resets total over 
all nodes 

d A1loc. Denied requests for 'd' allocation increment 
from VBR video which are rejected, 

total over all nodes 

CLR cell loss rate (ratio) 

Call Blocking call blocking rate (ratio in %) 

Monitoring dynamic 'd' allocation monitoring ms 
Interval interval, over which the cell arrival 

rate is measured 

Max./Mean Cell maximum and mean cell delay 
Delay 

Observation interval over which reset rate is ms 
Interval measured 

Table 5.1 Description of the column headings used in the tables of 
results in this chapter. 
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The problem with deriving this bandwidth using analytical methods arises from the 

difficulty in determining the magnitude of the statistical gain obtainable from the destination 

release policy. This gain is not constant but varies with the distribution of the load and the 

traffic pattern; it also depends on the ring confignrations['SJ, notably the number of nodes 

attached. Nevertheless, the lower and upper bounds of the ring bandwidth can be calculated. 

The lower bound corresponds to a unity gain situation where each slot delivers exactly one 

cell per ring revolution. For a two-slot 34 Mb/s ring with a slot structure of 20 bytes of which 

16 form the information field, the usable bandwidth available would be: 

34 Mb/s x 16/20 = 27.2 Mb/s 

But some of this bandwidth is required for the trial and reset operations. Assuming both 

slots are not carrying cells during the trial period, they go to waste. A further slot is required 

for reset. Thus the total number of slots wasted every 125 I1S, i.e. during full load, would be 

three. The maximum proportion of the bandwidth required for these two operations is 

therefore 

D/125 x 100% 

=11% where D is 3 slot-time in J1S 

leaving a net bandwidth available for information transfer of only about 24 Mb/s. This figure 

represents the lower bound of the usable bandwidth. Even if the above assumption is relaxed, 

2 slots would still be wasted, and the bandwidth available would be 25 Mb/s. 

On the other hand, if each slot delivers on average 2 cells per revolution, the upper 

bound of the bandwidth available would be around 50 Mb/s. However, this bandwidth can 

only be achieved if both slots released are reused almost immediately[<O). In practice, this is 

not the case for several reasons. First of all, the ring cannot be loaded to such an extent to 

ensure immediate slot reuse, especially with the 125 I1S maximum RI. Secondly, the nodes are 

not allowed to transmit all the time because of their' d' allocations, as a resnlt, empty slots 

have to hunt for an active node and the time spent is translated into wasted bandwidth. 

Furthermore, there must be a large number of nodes and a well distributed load to e,nsure a 

high degree of slot-reuse such that slots do deliver on average 2 cells per ring revolution. 

In view of the many uncertainties in ascertaining the average bandwidth gain, the ring 

simulation was run with the intended confignration to estimate the average capacity available 

on the 34 Mb/s ring. Only voice traffic was used since a higher loading_factor could be 

achieved, and its constant bit rate characteristic enabled the bandwidth available on the ring 

to be deduced from the Erlang Capacity Table. The results are presented in Table 5.2, and 

from the Capacity Table, an average ring bandwidth of about 30 Mb/s was estimated. This 

fignre represents a gain of 25% above the minimum capacity of 24 Mb/s; it must be pointed 

out that this gain fluctuates with time as the load varies. 
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Original Ring Split-Node Ring 

Number of Offered Call Mean Call Mean 
Nodes Load Blocking RR Blocking RR 

(caIls/s) (%) (%) 

10 2230 1.31 22_7 0.97 23.7 

2250 1.62 22.3 1.37 23.0 

20 2230 - - 0.05 30.9 

2250 - - 0.00 30.0 

2500 - - 0.27 24.0 

Table 5_2 Call blocking performance for voice traffic with different configurations of the ring and a call 

acceptance threshold of 17. 

To next concentrator 

x 

Concentrators 

Ring 

From last concentrator 

Fig. 5.1 The Split - Node Concept. 
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This bandwidth is, however, only strictly applicable to a highly loaded ring with a well 

distributed voice traffic. With wider bandwidth services, this condition does not hold because 

fewer calls can be supported on the ring, with the consequence that the load is less 

well-distributed and an asymmetric loading condition arises. Under this circumstance, the 

gain would be attenuated as the probability of slot-reuse is reduced. 

A split-node concept was proposed to alleviate the problem of asymmetric loading. 

With this concept, a node will have its transmit function located on a downstream node while 

the receive function remains on the original node. The transmit function in the original node 

will be used by an upstream node and so on. All connections are connected to a pair of 

adjacent nodes as shown in figure 5.1. This concept is practical in the backplane version of 

the Orwell Ring where the nodes are very close together, and to some extent, in the 

distributed ring as well since nodes are generally clustered together. 

The principle behind this concept is to overcome the objection of a node using a slot it 

releases. This limitation comes about from an implementation consideration. By removing 

this restriction, improvement in the bandwidth gain can be anticipated since some of the slot 

'hunting time' can be reduced. However, the advantage of this concept will only be apparent 

with a highly asymmetric two-way traffic, where the gain could approach a factor of 2 instead 

of a unity gain with the original configuration. With an even or slightly asymmetric load, the 

gain is not expected to increase significantly, but it may help to maintain the gain when large 

bandwidth services are considered. 

This concept was implemented in the ring simulation but no comprehensive 

comparative study was conducted between the new and the original ring configurations. 

Results obtained with voice load are shown in Table 5.2 and indicate only marginal 

improvement in the gain - possibly in the order of 500 kb/s. The average capacity available 

on the ring remains at about 30-31 Mb/s (25%-30% gain). 

It was suggested earlier that with a larger number of nodes, a greater degree of 

slot-reuse could be achieved with a subsequent improvement in the bandwidth gain. As a 

matter of interest, a simulation was carried out with 20 nodes and the results are shown in 

Table 5.2. A substantial gain in the ring bandwidth was observed, and the magnitude was 

estimated to be in the region of 4 Mb/s, taking the ring capacity up to around 35 Mb/s (46% 

gain). However, the simulation does require more computing power and the gain may not be 

very important for this work. It was therefore decided to work only with a>lO node ring for 

economy in computing resources. 
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5.6.2 The Reset Rate - Ring Load Characteristic 

Since the reset rate assumes a key role in the operation of the protocol, its relationship 

with the amount of load on the ring must be established. This relationship between the RR 

and the ring load is shown in figure 5.2. Four curves are shown which correspond to the 

original and split-node ring with 10 nodes, the split-node ring with 20 nodes, and the 

projected worst case when one slot carries exactly one cell per ring revolution. The variation 

in the bandwidth gain for the different configurations can clearly be seen, and as expected, 

the gain increased with the ring load. But more strikingly, the gain appeared to accelerate 

after a load of about 28 Mb/s (which corresponds to a RR of 22). The curves tend to level off 

after this point, suggesting that more load could be carried on the ring without affecting the 

RR significantly. However, the current setting of a 125 Its maximum RI (a minimum RR of 

16) means that a large proportion of the bandwidth goes to waste compared to the earlier 

recommendation of a maximum RI of 2 ms!22]. 

In figure 5.2 the region between the RR of 32 and 16 is of particular interest. This is the 

critical region where the ring is progressively approaching an overload condition. In this 

region, the curve for the split-node ring with 10 nodes is approximately linear, such that an 

increase in the load of about 1 Mb/s leads to a decrease in the RR by 2. This relationship was 

used extensively when considering threshold settings. The ring characteristic will obviously 

depend on the speed and the configuration of the ring, and will need to be determined per se 
or be approximated by some means. 

5.6.3 Traffic Control and Thresholds Considerations 

Traffic control on the Orwell Ring is achieved with three mechanisms: call blocking, 

'd' allocation and masking. These form the subjects of the current investigations and this 

section deals primarily with VBR video traffic. Traffic control on CBO services is relatively 

straight forward and will be considered in the next section. 

First of all, the VBR video traffic must be dimensioned for the ring. The standard 

source can be estimated in this case since the characteristics of the model is known (assuming 

a Uniform distribution for the mean bandwidth requirements of the calls and a known 

relationship between the means and the variances of the frame differences). The standard 

source has a 11. of 350 kb/s which is the population mean. The relationship between the mean 

and the variance of the FD of a source is given byJ'!: 

... (5.9) 

where 11 is the mean FD expressed in percentage. 
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The mean variance (0:) for a Uniformly distributed mean FD between 8% and 22% is 

therefore 

22 

a! = J P(11) X 112/32 d11 ... (5.10) 
8 

Since the mean FD of the sources are Uniformly distributed, P(l1) is a constant; by 

integrating the expression and converting the FD to bits per second, 0: was calculated to be 

43556 (kb/s)2. 

From equation 5.7, the bandwidth B for a call blocking rate of 1% and an overload 

probability fof 1(}4 (i.e. with k = 3.7) is thus 

B =2Nx11,+kx(2NXa!r ... (5.11) 

Solving for N with B = 30 and 31 Mb/s gives 33 and 35 two-way connections respectively. 

These are equivalent to 23 E and 24 E of VBR video traffic. With a call holding time of 

0.27 s, these represent call rates of 85 and 90 calls per second. The actual cell loss rate (CLR) 

would be in the order of 1(}4 (from equations 5.4-5.7). In view of the many uncertainties 

which were not taken into account in these c:uculations, such as the uncertainties in 11. and 0: 
and the non-constant ring capacity, a more cautious choice would be to work with an offered 

load of 23 E. 

From equation 5.7, the mean bandwidth occupied during full load on the ring is about 

23 Mb/s, while the excess bandwidth required is 6.3 Mb/s - representing a 27% overhead. 

This will only affect the gain of VBR video slightly, and the proportion of this overhead will 

diminish with more VBR video load on a larger system. But with a 34 Mb/s ring, the VBR 

video bandwidth gain is reduced by about 20%. 

5.6.3.1 Call Acceptance Threshold and Call Blocking 

With an offered VBR video load of 23 E, calls should be blocked when the mean load 

on the ring reaches about 23 Mb/s for the cell loss and call blocking performance specified. 

Using the reset rate-load characteristic in figure 5.2, this load corresponds to a RR in the 

region of 40, and hence the call acceptance threshold (T'>. This would be the case if the load 

on the ring can be correctly estimated from the RR, but this is not strictly !tOe. Furthermore, 

the uncertainty in the reset rate-load characteristic can be significant at this loading level. 

The difficulty in estimating the load from the RR arises from finding an optimum 

observation interval over which the RR can be determined. A short interval, such as the 2 ms 

interval used, will provide an estimate of the most current short-term load condition but not 

the mean load; on the other hand, although a long observation interval provides a better mean 

load estimate, it may fail to account for the most current load variation due, for instance, to 
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call establishments or tenninations. This gives rise to a contradicting situation and the search 

for an optimum observation interval will require extensive simulation work. But because of 

the dynamic nature of the ring load, a simple load estimation mechanism using only a single 

RR measurement may never be sufficient to provide an accurate estimate. Figure 5.3 shows 

the variation of the RR with time measured at 2 ms interval, and helps to illustrate this point. 

Thus when working with the 2 ms observation interval, a T. of 40 may result in a 

significantly higher call blocking rate than is expected (> 1 %) because of the bursts in the ring 

load; allowance must also be given to the uncertainty in the reset rate-load characteristic. 

Consequently, it was decided to lower the T. assuming that the observed RR of around 40 is, 

in most cases, an over-estimate of the mean load on the ring - since there is only a small 

probability that the mean load would exceed 23 Mb/s. This, nevertheless, also increases the 

risk of ring overload when excess calls are being accepted by the use of a lower threshold, 

especially when overload in terms of call attempts arises. 

An investigation into the QOS for the VBR video with different T.s for a given load 

was conducted. The 'd' allocation scheme and the other parameter settings used are discussed 

in subsequent sections. The results are tabulated in Table 5.3. These results were obtained 

with 5 sample runs for each threshold. In hindsight, these are probably not the most 

representative of the samples, as they represent some of the worst case situations both in 

terms of cell loss and call blocking. However, the emphasis here is on the relative QOS 

performance with different thresholds, and not on the absolute performance. 

Call No. of dAlloc. 
T. Blocldng(%) CLR MR Denied 

22 0.63 1.3xl04 64 230 
24 0.72 1.3xl04 69 225 
26 0.90 4.8xI0-5 32 152 
28 1.00 4.8xI0-5 32 152 
32 1.25 3.9x10-5 19 85 
40 3.24 0.0 I 0 

Table 5.3 Results for the variation of call acceptance threshold (T.) with a VBR video load of 85 calls/si 

with masking threshold (T .}=16, ceiling threshold (TJ=18 and bulTer=10 cells. 

The thresholds were chosen such that there would be sufficient capacity to support the 

mean bandwidth requirement of the new connection as well as provide room for bursts in the 

ring load. If the thresholds were to be used in a mixed services environment, provision must 

also be given to the background 'd' allocation of the data service, which is also bursty in 

nature. The minimum threshold investigated was 22; at this RR, there is approximately 

3 Mb/s available for the new two-way connection (0.7 Mb/s mean) and any bursts in the ring 

load that may arise. 
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From Table 5.3, it is obvious that a T. of 40 is inappropriate. The QOS is quite similar 

for the threshold range of 22 to 32, with the expected increase in the call blocking rate and 

decrease in the cell loss rate (CLR) as T. was increased, but the differences are small. The 

threshold of 22 is, however, not considered suitable because it leaves very little room for 

bursts in the ring load, especially if data service is also present. A threshold of 24 is regarded 

as being the minimum with at least 4 Mb/s remaining on the ring. Higher thresholds would 

provide a greater margin of safety but attain a proportionally smaller bandwidth utilisation, 

which may not be objectionable. The call blocking performance with a T. of 32 or below was 

within specification, and more runs were considered necessary to enable a final choice of the 

threshold to be made (see section 5.6.5). 

The CLRs appeared to be unexpectedly high in all cases; this could be a consequence 

of the use of low T.s, which would inevitably lead to the occasional acceptance of extra calls 

onto the ring, thus increasing the risk of cell loss. More importantly, because of the short 

simulation time used (2.5 s per run), these CLRs could represent the short-term cell loss 

performance. Since losses tend to occur in bursts, a high CLR can be expected when losses 

occur in a run. Other factors which could contribute to these high CLRs are the instantaneous 

data bursts within the frames, which were ignored in the cell loss estimation, as well as the 

limitations of the 'd' allocation scheme and the small buffer used (10 cells). The high CLR 

was investigated further to determine the actual cause of these losses. 

5.6.3.2 The 'd' Allocation fol' VBR Video 

Since the characteristics of the VBR video sources differ from one source to another 

and their instantaneous bandwidth requirements vary with time, a deterministic way of 

allocating bandwidth is not considered suitable for the Orwell Ring. However, a deterministic 

bandwidth allocation scheme was briefly examined whereby each connection was allocated a 

'd' value which corresponded to half its peak bandwidth requirement. Thus when the ring is 

lightly loaded such that the RR is greater than 32, a connection can obtain bandwidth up to its 

peak requirement. As the ring is gradually loaded, the connection will eventually be limited 

to the bandwidth it was allocated, i.e. half the peak, at the minimum RR of 16. There are 

several problems with this method. First, it is difficult to determine the peak bandwidth 

requirement of a connection at call set-up time if this is not to be the absolute peak. Second, 

the total amount of the ring bandwidth already allocated is not known to "the nodes as call 

control is completely distributed and based only on an estimate of the ring load; the total 

bandwidth allocated across the ring could therefore be far greater than the ring capacity. The 

allocated, yet unused, bandwidth could cause an overload if a surge in the video load occur in 

one or more nodes. Furthermore, connections with a peak-to-mean ratio of less than 2 will 
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suffer heavy losses at full load. The study on this scheme in a mixed services environment 

has also revealed its weakness in failing to protect the CBO services against cell loss under 

overload conditions. 

A better approach, which was adopted in this work, is a dynamic 'd' allocation scheme, 

whereby the bandwidth requirement of the combined VBR video sources on a node is 

continuously being monitored and the VBR video 'd' allocation updated accordingly, subject 

to there being sufficient bandwidth remaining on the ring. This way, the nodes are only given 

the exact amount of bandwidth they require at any instance, thus avoiding the build-up of 

unused bandwidth as in the deterministic bandwidth allocation scheme above. This scheme 

also has an inherent load control capability which denies further 'd' allocation to the nodes 

when the ring is approaching an overload condition. 

The realisation of this scheme was by the use of a counter on each node to count the 

number of cells arriving in a given interval. The 'd' required, which is simply the average 

number of cells arriving every 125 1lS, is then compared with the last 'd' allocation. If the 

current 'd' requirement is greater than the last 'd' allocated and the RR is above a 

pre-specified threshold (called the ceiling threshold, TO>, the 'd' allocation for the VBR video 

queue will be incremented by 1. The 'd' allocation is only allowed to increment in steps of 1 

to avoid overloading the ring and to allow for a better sharing of the available bandwidth with 

other nodes. Conversely, if the current 'd' demand is less than the last 'd' allocation, the 

current 'd' will become the new 'd' allocation of the queue. A minimum 'd' allocation is 

always maintained on each node to avoid a node from being deprived of its VBR video 

bandwidth allocation when its output data rate is temporarily low. This minimum 'd' should 

be related to the expected VBR video load on a node, but in this work it was conveniently set 

to one (I Mb/s), in order to reduce the complexity of the scheme. The flow chart for this 

scheme is shown in figure 5.4. 

The two parameters which could affect the performance of this scheme are the ceiling 

threshold (TO> and the interval during which the node counts the arriving cells. Their effects 

were investigated and the results are presented in Tables 5.4 and 5.5 respectively. 

The setting of the T, should be as low as possible so that the ring capacity can be 

utilised fully. But since one of the main functions of the scheme is load control, the provision 

of more bandwidth to a node must not cause the ring to overload to such an extent as to incur 

cell loss on the CBO services. There must also be sufficient bandwidth -between the call 

acceptance threshold and T, to enable a new call to acquire the bandwidth it needs. The range 

of T,s of interest for a minimum call acceptance threshold of 24 and a counter interval of 

2 ms was 16 to 22. Table 5.4 shows improvement in the cell loss performance with 

decreasing T, as expected. There was however only a small improvement in the cell loss 
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Monitor cell arrival rate for 
125 lIS 
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arrival rate over 2 ms 

yes 

'd' a1loc. = last 'd' + 1 

Fig.5.4 Flow Chart for the Dynamic 'd' Allocation Scheme. 

Call No. of dalloc. Min. 
T, Blocking(%) CLR MR denied RR 

16 0.72 1.26x10-4 85 21 15 
18 0.72 1.30xlO-4 69 225 16 
20 0.72 3.52xl0-4 25 760 15 
22 0.72 3.92xlO-4 31 1614 16 

90 

Table 5.4 Results for the variation of the ceiling threshold (T J with a VBR video load of 85 calls/s; with 

T.=24, T .=16 and buffer=10 cells. 

Monitoring Call No. of dA1loc. 
Interval B1ocking(%) CLR MR Denied 

2ms 1.10 1.9xlO-4 295 74 
1 ms 1.00 8.6xlO-5 476 112 

Table 5.5 Results for the variation of the 'd' allocation monitoring interval "'th T.=18; other settings 

were as Table 5.4. 
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performance by decreasing T. from 18 to 16, which corresponds to an increase in the 

allowance between T. and T. from 3 Mb/s to 4 Mb/s. An interesting point to note is that the 

main traffic control mechanism used in the two cases was different. 

With the T. at 18, the dominant traffic control mechanism used was the 'd' allocation 

scheme which denied the provision of more 'd' to the nodes when the ring was approaching 

overload. Whereas with the T. at 16, 'd' was allocated up to the verge of overload; traffic 

control was mainly by the masking mechanism which was activated when the RR fell below 

16 (note that this is different from the recommended masking threshold of 32). The 

inter-change of the two traffic control mechanisms is evident from Table 5.4. It is also 

obvious from the results that there was still a large demand for more 'd' allocations after a 

RR of 18 but very little after a RR of 16; this suggests that the ring was correctly loaded such 

that the bandwidth was utilised efficiently and the RR rarely fell below 16 as required. RRs 

of 15 were observed but only very rarely, and they occurred in isolation and are thus of no 

particular concern. 

A T.of 18 thus appears to be premature; but there is a higher risk of overload with a T, 

of 16 and rigorous tests are required to verify its suitability in a mixed services environment. 

The advantage of using a T, of 16 is that the nodes get their bandwidth demand most of the 

time and the ring capacity is fully utilised. This could lead to a better cell loss performance. 

T,s greater than 18 are not recommended as they result in high CLRs by stopping 'd' 

allocation prematurely as can be seen in Table 5.4. 

It must also be stressed that because of the minimum RI, bandwidth can only be 

allocated in steps of 1 Mb/s. This implies that the nodes would almost certainly be allocated 

excess bandwidth, for example, a node requiring slightly more than 1 Mb/s would be given 

2 Mb/s. The excess, but unused, bandwidth would have a similar effect as the background 'd' 

allocation of the data service in bringing about ring overload. It also implies that cell delay 

for VBR video will be very small. 

The interval over which the node counts and averages the cell arrivals is another factor 

which could affect the effectiveness of the 'd' allocation scheme. In the previous section, this 

interval was conveniently set to 2 ms to coincide with the observation interval of the RR. It 

should be noted that these intervals are not discrete blocks of 2 ms, but are implemented as a 

window of 2 ms which slides along in steps of 125 I1S. With the 2 ms interval, there will be a 

delay, up to 2 ms, in the counter response to load variation and thus a -delay in the 'd' 

allocation update. As a result, a small buffer (10 cells in this case) may not be sufficient to 

absorb the excess cells when the load is rising quickly. This becomes worse if the incoming 

load shows a sudden large increase while the 'd' allocation is limited to step increments of 1. 

There are two ways to alleviate this problem: one is to use a smaller counter interval, another 

is to use a larger buffer. 
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The fIrst option is considered here. Table 5.5 shows the comparison of using a 2 ms and 

alms counter intervals for the 3 worst case runs in terms of cell loss. The results show a 

signifIcant improvement in cell loss performance without affecting the call blocking 

performance. This indicates that node overload (in contrast to ring overload) caused most of 

the cell losses that were observed in all the previous runs, and resulted in the high CLRs. 

Even with alms interval, node overload could still occur. An interval of this duration, or 

shoner, although very responsive could result in a very fast changing 'd' allocation - being 

extremely sensitive to even small spikes in the load variation. This can lead to a highly 

variable load on the ring. 

A better approach is perhaps to increase the buffer size in view of the cheap memory 

available nowadays. This has the added advantage in that the load on the ring can be panially 

smoothed by using a longer counter interval, i.e. a slower 'd' adjustment, and the use of the 

buffer to absorb small load variations on the node. This smoother ring load will in turn enable 

a better estimate of the load on the ring and reduce the risk of overload. This approach is 

examined in section 5.6.4. 

5.6.3.3 Masking Threshold 

Masked resets (described in section 5.2.2) is a concept used for overload control on the 

ring. It works by masking some of the resets from the queues of low priority bursty services 

in groups of nodes in turn, thus reducing the frequency of their 'd' allocations during 

overload. The number of resets to be masked is adjusted to the ring loading condition such 

that a suffIcient amount of bursty load can be blocked from the ring to avoid serious 

overloading which could affect the CBO services. The ring loading level above which this 

mechanism commences operation is referred to as the masking threshold (Tm)' and it is 

expressed in terms of the RR as this is the unit by which the ring load is measured. 

Since the masking mechanism requires T m to be given as an integer number of resets per 

125 J.ls, means that Tm can only be specified in steps of 16 when expressed on a 2 ms basis. 

Furthermore, the mechanism as detailed in section 5.2.2 does not provide for a T m of 16. The 

reason being: If r is the masking threshold on a 125 J.lS basis, then for every reset masked, the 

mechanism will subtract from c - the number of resets to be masked - a quantity equal to 

(r - 1). But with a Tm of 16, r is 1, which suggests that once masking is activa~ed, all the resets 

within the masking interval except the first, will be masked irrespective of the state of the 

ring load, i.e. maximum masking whenever overload occurs. This is rather undesirable as 

masking should be adjusted in accordance to the degree of overload, otherwise it could result 

in drastic changes in the ring load and cause other complications. 
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Since a Tm of 16 is of great interest, a slight modification to the masking mechanism 

was necessary. With the modification, the masking mechanism subtracts 1 from c for every 

reset masked if r is unity, otherwise it operates as normal. This results in a more gradual 

reduction in the bursty load on the ring when masking begins at a RR of 16 - a mechanism 

which is now adaptive to the loading conditions. 

The initial proposal was for a Tm of 32 to be used. It was considered that at such a 

loading level, the ring would quickly approach an overload condition, and some 

precautionary actions would be required; although no bandwidth allocation would actually be 

removed from the bursty services until the RR has fallen below 24. However, masking at 

such an early stage (at a RR of 24, there is still about 4 Mb/s of unused bandwidth) could 

result in unnecessary cell loss to the bursty services. Furthermore, with a T. of 24 for VBR 

video, and a generally lower T. for voice, the effect is that bandwidth would gradually be 

removed from the existing bursty connections in order to support new connections -

especially voice calls. A new VBR video connection may not get the bandwidth it requires 

since a 'd' in this case does not necessarily represent 1 Mb/s; this could lead to a high CLR to 

the bursty connections. The ring is therefore an unfair system in this respect, unless the T.s for 

all the services are raised well above the 24 resets/2ms mark. A Tm of 32 could also lead to 

inefficiency since the ring bandwidth may not be fully utilised. For instance, the observed RR 

never fell below 21 as a result of masking, leaving about 2 Mb/s of bandwidth unused. 

It is therefore suggested that a lower Tmof 16 should be used. This implies that masking 

will only begin when overload has actually occurred; the bursty connections would be able to 

obtain all their allocated bandwidth up to this point. Beyond this, the masking mechanism 

would quickly damp down the surplus bandwidth allocated as explained earlier. Temporary 

overloads due to the delay in the response of the masking mechanism is not expected to 

disrupt the high priority CBO services. Admittedly, this threshold is a little low - a Tm of 20 

may be a better choice, but the present implementation of the masking mechanism excludes 

this option. It can however be achieved with some modifications to the present 

implementation. This option would only be explored if the T m of 16 proved unsuitable. 

Simulation runs were carried out with VBR video traffic as well as with mixed traffic 

with a Tm of 16 and 32 respectively. Table 5.6 shows the results for the runs under normal 

load and overload conditions (in terms of call attempts). The results are in accord with the 

suggestions on the effects of the use of the two threshold values. With a 1: .. of 32, the call 

blocking performance of all the services was improved at the expense of the cell loss 

performance. There was no cell loss on the CBO services, while all the cell losses on the 

VBR video were due to the masking mechanism as no 'd' allocation request was denied since 

the RR never fell below 21. Cell delay was increased but the difference was negligible. With 

a Tmof 16, the cell loss performance was greatly improved but the call blocking performance 
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was degraded; no cell loss was obseIVed on the CBO connections even under extreme loading 

conditions. The effectiveness of this overload control mechanism and the suitability of the Tm 

setting of 16 were thus demonstrated. 

Offered Load VBR video=85 callsls 

16 32 

Call CBOvideo 

Blocking Voice 

(%) VBR video 1.19 0.46 

VBR video CLR 2.2x 1 0-4 6.8x 104 

No.ofMR 64 867' 

Min.RR 16 21 

Voice=2oo calls/s; 

Data=5 Mb/s; 
VBR video=50 calls/s 

16 32 

0.41 0.00 

0.62 0.42 

0.00 2.8xl04 

25 644' 

16 22 

• only resets masKOO when me KK tell oelow :l4 were mCluaoo. 

CBO video=10 calls/s; 

Voice=loo calls/s; 

Data=2 Mb/s; 
VBR vide0=85 calls/s 

16 32 

0.79 0.00 

4.35 0.00 

3.36 1.68 

0.00 5.5xl04 

2 725' 

16 21 

Table 5.6 Results for the variation of the masking threshold (T J with different loading conditions (T.=18 

and Cor T.s see section 5.6.5.2). 

The necessity of the masking mechanism was also tested by removing it. Under normal 

loading conditions, no CBO services were affected and the cell loss performance of the VBR 

video was improved. However, under overload conditions, cell losses on the CBO seIVices 

were obseIVed, thus underlining the importance of this overload control mechanism in 

safeguarding CBO seIVices against unforeseen ring overload. 

This section on traffic control and threshold considerations may be summarised thus: A 

dynamic' d' allocation scheme was outlined and the various threshold settings investigated. It 

was found that a call acceptance threshold in the range of 24-32 would be satisfactory from a 

call blocking performance perspective for the two-way VBR video connections with a mean 

bandwidth requirement of 0.7 Mb/s. But the cell loss performance was worst than expected. 

This could, however, be just the short-term CLR, which can be high since cell loss tends to 

occur in bursts. Some of the losses were attributable to the limitation of the 'd' allocation 

scheme and the size of the buffer used, as well as to the difficulty in estimating the ring load 

and thus in the correct setting of T •. Cell loss can be minimised with a 'd' allocation ceiling 

threshold of 16-18 and a masking threshold of 16. Due to the delay in response in the 'd' 

allocation scheme, improvement to the cell loss performance can be achieved with a shorter 

counter inteIVal, for instance, 1 ms; this may however lead to a very bursty ring load and is 
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thus not preferred. An alternative is to use a larger buffer, which helps to absorb the 

intra-frame data bursts as well as the asynchronism between the incoming load and the 'd' 

allocation on a node. 

5.6.4 Buffer Size 

As mentioned in the previous section, most of the cell losses were actually due to 

insufficient buffering in the nodes to accommodate the delayed response of the 'd' allocation 

scheme and the subsequent node overload. The initial choice of a buffer of 10 cells per node 

was based on the number of simultaneous connections expected on a node and the 

assumption of an instantaneous response from the 'd' allocation scheme. With an offered load 

of 23 E, the number of connections on a node could vary up to about 12; ideally, if the 'd' 

allocation matches the instantaneous cell arrival rate, a buffer of no more than 12 cells in size 

would be needed, but this is not the case. Furthermore, the ring dimensioning method 

assumed constant output within a field (Le field buffering was assumed). A buffer of 10 cells 

is thus insufficient to meet the cell loss performance predicted. 

Table 5.7 shows the results for buffer size variation with a given load, and figure 5.5 

shows the graphs of CLR versus buffer size. The results were obtained from an aggregate of 

4 runs, most of which were known to suffer cell loss. The call blocking performance is 

identical in almost all cases, indicating the same loading on the ring in terms of the number of 

calls and load build-up. Call blocking was slightly higher for the worst case run with a buffer 

larger than 55 cells; this is because the large number of cells which were originally lost were 

gaining access onto the ring, resulting in a higher load and therefore more calls being 

rejected. 

With a T, of 18, no cell loss was observed with a buffer of 75 cells or larger; with a T, 

of 16, all cells gained access onto the ring with a buffer of 55 cells. Thus a buffer of about 

100 cells would be more than adequate to achieve a CLR lower than 10-6. Even a buffer of 

this size is considered small in practice. A much larger buffer can be implemented without 

heavy cost since memory chips are relatively cheap nowadays. A buffer of 100 cells only 

corresponds roughly to 30% of a field worth of video data (a complete field generates 

340 cells) and it is shared by up to 12 connections, whereas a much larger buffer will be 

required to smooth a VBR video into a constant bitstream output if at all possible. It has been 

suggested that a buffer of 1000 cells in size is practical. The cell loss performance with a 

buffer of this size will be negligible such that the call blocking performance becomes the only 

service criterion which is of concern. 

There was an increase in the number of resets masked and 'd' allocation requests 

denied since more cells could now gain access onto the ring. The mean cell delay was 

virtually unaffected while the maximum cell delay increased from about 400 J.lS to 1.50 ms. 
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Buffer Call No. of dA1loc. Mean Max. 
Size(cells) Blocking(%) CLR MR Denied Cell Cell 

Delay/us Delay/us 

10 1.10 1.8xl04 74 295 11 480 
20 1.10 7.8XI0-5 103 330 12 630 
30 1.10 3.7xl0-5 97 342 12 908 
55 1.22 9.5x1(k) 74 331 12 1420 
75 1.22 0.0 74 330 12 1570 

Table 5.7(a) ResuUs for buffer size variation with V8R video call rate=85 calls/s, T .=24, T,=18 and 
T.=16_ 

Buffer Call No. of dA1loc. Mean Max. 
Size(cells) Blocking(%) CLR MR Denied Cell Cell 

Delay/us Delay/us 

10 1.10 1.6x104 101 21 11 418 
20 1.10 6.1xlO-5 136 16 12 580 
30 1.10 2.2x10-5 134 18 12 740 
55 1.22 0.0 106 7 12 1420 

Table 5.7(b) Results for buffer size variation for V8R video with call rate=85 cans/s, T.=24, and 

T,=T.=16. 
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Fig. 5.5 Cell Loss performance with varying buffer size. 
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This delay is still small when compared to the 20 ms video field time, and is far from the 

120 ms video lag mentioned in Chapter 2. This small delay is a consequence of the way in 

which the 'd' allocation scheme operates: It provides surplus bandwidth to the VBR video 

connections most of the time. Another contributing factor is the spare capacity provided on 

the ring to cater for the occasional bursts in call attempts or in the ring load. 

A further point which requires consideration is that when a very large buffer, for 

example 1000 cells, is used, one must ensure that cells are not held up in the buffer for a 

prolonged period. It may therefore be necessary to make a slight modification to the 'd' 

allocation scheme such that the 'd' allocation on a node will only be decremented if the 

buffer is filled below a given level. This would ensure that the buffer is cleared sufficiently 

quickly to avoid any prolonged cell delay. With a larger buffer, a longer counter interval can 

be used in the 'd' allocation scheme, which could then lead to a smoother load on the ring. 

Preliminary investigations with a buffer size of 100 cells and a counter interval of 4 ms 

revealed that a small amount of smoothing was indeed possible, but this requires further 

study. 

5.6.5 Service Performance on the Ring 

5.6.5.1 VBR Video Traffic 

I. With Varying Offered Load 

The first aspect of interest in this section is the performance of the system under 

varying VBR video load conditions. The varying load can also be interpreted as the varying 

amount of capacity provided on top of, or short of, the mean bandwidth requirement of each 

VBR video connection. The T. was set at 24 - the minimum recommended value, and a Tm of 

16 was used. The study was conducted with the two different T,s of 16 and 18, and with 

buffers of 10 cells and 100 cells. Only 3 runs each were made because of the large number of 

runs required for the different combinations. 

The results are presented in Tables 5.8 and 5.9, and in figure 5.6. From figure 5.6, it can 

be seen that with a buffer of 10 cells, which has been established to be inadequate, the CLR 

increases exponentially; with a T, of 16, cell loss performance was significantly better 

especially in heavy loading conditions. The results indicate that load control-by call blocking 

is only partially effective from a cell loss perspective - primarily because of the low T. used, 

which inevitably led to excess calls being admitted by error when the call attempts were high. 

It must be stressed that with such a small buffer, some of the losses were due to factors other 

than actual ring overload. 
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Call Rate Extra Call No. of d Alloc. Min. 
(calIs/s) Capacity(%) Blocking(%) CLR MR Denied RR 

75 43 0.36 0.0 2 0 18 

85 30 1.19 2.2x1(}-4 69 225 16 

90 22 1.98 6.7x10' 67 267 16 

100 13 3.90 1.8x1(}-4 71 650 15 

125 4 (OL) 9.68 5.5x1(}-4 383 2730 15 

150 20 (OL) 17.94 1.6x10' 849 6139 15 

Table 5.8 Service performance and ring behaviour with varying VBR video load and T.=18. 

Call Rate Extra Call No. of dAlloc. Min. 
(calls/s) Capacity(%) Blocking(%) CLR MR Denied RR 

75 43 0.36 0.0 2 0 18 

85 30 1.19 2.1xl(}-4 85 21 15 

90 22 2.13 5.4xl0' 89 14 15 

100 13 3.90 6.6xl0' 114 14 15 

125 4 (OL) 9.13 2.0xl(}-4 455 48 15 

150 20 (OL) 15.54 6.7xl(}-4 1210 333 15 

Table 5.9 Service performance and ring behaviour with varying VBR video load and T.=16. 
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When a buffer of 100 cells was used, no cell loss was obselVed even under extreme 

overload conditions, hence the results are not shown. This suggests that an overload is 

generally of a short duration and small magnitude, and can be easily contained with a buffer 

of a reasonable size. Furthermore, with a T, of 16, the predominant load control was the 

masking mechanism, which tends to spread the burden of a ring overload over all the nodes 

so that each node only needs to bear a fraction of the excess load; this effect is evident when 

comparing Tables 5.8 with 5.9. The ring is thus a fully distributed system with the excess 

load being shared over all the nodes. This effectively provides, with 10 nodes, a total buffer 

capacity of 1000 cells! This should be more than sufficient to cope with any overload, which 

should have been, to some extent, limited by the call blocking mechanism. 

Extreme load such as those investigated should not happen in practice, unless there has 

been a partial system failure or poor traffic forecast. The results again suggest that the cell 

loss performance is less of a concern than the call blocking performance. In order to meet the 

required call blocking performance of 1 %, a reasonable offered load would be in the range of 

80-90 call/s (23-24 E), which corresponds with the earlier estimate. And provided a 

reasonably large buffer is used, the CLR should be well below 10". Even if extreme loads do 

occur, the CLR would still be very small as was the case with a buffer of 100 cells. 

IT. With Normal Offered Load 

In all the previous simulations, the number of runs had been limited to 3-5 in each case 

in order to minimise the computing resources required; in each case, the obselVed worst cases 

were included in order to study the cell loss performance with a minimum number of runs. 

Although this may be desirable in some studies, it also resulted in a distorted view of the 

average selVice performance, especially with such short simulation time used per run. 

It was therefore necessary to study the selVice performance with a larger number of 

sample runs. Twenty runs were made with an offered load of 23 E; T. and T m were set to 24 

and 16 respectively. The results are presented in Table 5.10 for the T,settings of 16 and 18, 

and with buffers of 10 and 100 cells. Figure 5.7 shows the negative cumulative distribution of 

the number of runs with different cell loss performance; only one result is shown because the 

results for the two T, settings with a buffer of 10 cells are almost identical while no cell loss 

was obselVed with the larger buffer. 

Most of the runs had zero or very small call blocking rates and CLRs;1ind load control 

of any form was rarely exercised. Figure 5.7 also shows that the probability of encountering a 

run with a high CLR is very small, indicating that the high CLRs obselVed in the earlier runs 

were indeed the short-term performance, where cell loss occurred in bursts during the rare 

video surges. The long-term results indicate a call blocking rate of about 0.4%, which is just 

under half the specified rate of 1 %. The CLR is 4.39x1Q-' and 4.67x10-' for the T,s of 16 and 

18 respectively with a buffer of 10 cells. With a larger buffer of 100 cells, these cell losses 
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Buffer Call No. of dAlloc. 
Tc Size(cells) Blocking(%) CLR MR Denied 

18 10 0.38 3.5x10·' 98 333 
16 10 0.38 3.3xl0' 122 21 

16 100 0040 0.0 98 369 

Table 5.10 Service performance of VBR video with a call rate of 85 callsls • 

•• 

Fig.S.7 Distribution of the simulation runs with a cell loss rate (CLR) >= c. 
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can be completely avoided and the CLR could be well below HP, which is near the cell loss 

performance expected (10") or better. Unfortunately to verify the results with the prediction 

would require in excess of 100 runs! 

It is noted that the call blocking performance is very much better than that specified. 

This suggests that the T. of 24 is indeed too low; a higher T. of 28-32 may be more 

appropriate and could help to prevent ring overload by reducing the risk of admitting excess 

calls onto the ring. A threshold of 32 would bring it into the range of the threshold values 

suggested in section 5.6.3, i.e. around 40. Alternatively, with a large buffer, the offered load 

may be increased to 90 calls/s while maintaining the T. at 24. The results for these two 

alternatives are tabulated in Table 5.11. As expected, the CLR was reduced with a T. of 32, 

while the call blocking performance was still within specification. By increasing the offered 

load to 90 calls/s and by providing a buffer of 100 cells, no cell loss was observed and the 

call blocking rate was also acceptable. Any further increase in the offered load would quickly 

degrade the call blocking performance, although the buffer may be able to sustain the cell 

loss performance for some further increase in the offered load (see Tables 5.8 and 5.9). 

Offered Buffer Call No.of dAIloc. Min. 
Load T. Size Blocking CLR MR Denied RR 

(calls/s) (cells) (%) 

85 32 10 1.08 1.3x10·' 33 0 16 

90 24 100 0.86 0.0 127 24 15 

Table S.11 Service performance of VBR video with i) a higher T. and ii) a higher offered load, T.=T .=16 

in hoth cases. 

5.6.5.2 Mixed Traffic 

So far, the performance study has been confined to mainly one type of traffic, namely, 

VBR video, without considering the co-existence of other traffic. This simplifies the problem 

as the interaction between the different traffic can be ignored. However, the Orwell protocol 

was specifically designed to carry traffic from a mix of services, with emphasis on its 

capability to gnarantee cell security and bounded cell delay for the CBO services even in 

overload conditions. Hence it is most important that the performance study be conducted in a 

multi-service environment. Thus, the 1 Mb/s CBO video, the 64 kb/s CBO voice and the data 

services were included in this part of the study. 

The 'd' allocation for the CBO video and voice services were deterministic such that a 

'd' of 1 was allocated to every video connection, while each voice call was allocated 1/16 of 

a 'd'. Data service was given a background 'd' allocation of 1 per node, and because the data 

. service was not considered to be connection-oriented, there was no call control associated 
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with this service. Since a two-way VBR video connection requires 2 Mb/s of bandwidth. it 

would cause the RR to decrease by about 4 resets/2ms when accepted onto the ring near the 

full load condition. If at least 2 Mb/s were to be allowed for VBR video and data bursts. this 

would require that the T. for the CBO video to be set at 24 or higher values. Using the same 

argument. the voice service would then be given a threshold of 21. The T.s for all three 

services should not be set too far apart otherwise those with a lower T. would effectively be 

given priority in call acceptance. thus achieve a better call blocking performance at the 

expense of other services. In this work. the thresholds were fIxed at 24 for both the video 

services and 21 for the voice service; the thresholds could be raised en-bloc if more reserved 

bandwidth is required to cater for bursts in the ring load. A slightly higher T. for the CBO 

video may also be appropriate since it occupies a relatively larger amount of bandwidth per 

connection. 

A simple approach was adopted in estimating the various traffic for the ring: the ring 

capacity was partitioned into blocks of bandwidth which were dimensioned for the different 

classes of service. Dimensioning of the bandwidth for the VBR video was as before; for the 

CBO services. the Erlang Capacity Table was used. while the mean bandwidth requirement 

was used for the data service - although this is not strictly correct as some extra capacity 

should be provided to cater for data bursts. All the services were dimensioned for a call 

blocking performance of 1 %. No account was provided for the fact that there could be some 

statistical gain in multiplexing the various services in a single network. especially when there 

is a large number of different services at low traffic levels(3'). The simple approach used 

ignores this gain and the total extra capacity provided for each class of service to meet its 

service requirement could be substantial; this could be shared by all the services and may 

lead to a better overall performance than that specified. 

L Normal Loading 

The results for a range of traffic mix with correct bandwidth dimensioning are 

presented in Table 5.12. The buffer used was 10 cells since a larger buffer was not considered 

necessary in this case. The performance of all the services were good with very little load 

control or overload control being necessary. and virtually no cell loss was observed on any 

services. The results appear to indicate that some bandwidth sharing among the various 

services had taken place. especially when CBO video was included; bearing in mind that no 

provision was given to the bursts in the data service when the ring capacity was dimensioned. 

Cell delay for all the services. except voice. was very small: The mean cell delay was 

well under 20 I1S and the observed maximum was about 200 IlS. The large variation in the cell 

delay for voice was caused by the load smoothing mechanism implemented on the voice 

queue in the original ring model. It suffices to say here that this mechanism introduces large 

delay when the voice traffic level is low; this can be deduced from Table 5.12. The results on 



Offered Load Call Blocking VBR Video Mean Cell Delaylns 

CBO Voice Data VBR CBO Voice VBR CLR Min. CBO Voice Data VBRVideo 
Video (calls/s) (Mb/s) Video Video Video RR Video 

(calls/s) (calls/s) 

10 100 3 20 0.00 0.00 0.00 0.0 34 7 119 7 7 

- 200 5 50 - 0.32 0.49 0.0 16 - 124 12 10 

- 460 1 50 - 0.00 0.49 0.0 16 - 52 8 9 

- 460 - 55 - 0.21 0.61 0.0 16 - 55 - 10 

- 186 - 70 - 0.27 0.71 1.2x10-6 17 - 114 - 10 

- 1080 2 20 - 0.01 0.00 0.0 30 - 29 11 11 

Table 5.12 Service performances in a multi·service environment with normal loading. 

Offered Load Call Blocking VBRVideo Mean Cell Delaylns 

CBO Voice Data VBR CBO Voice VBR Min. CBO Voice Data VBR Video 
Video (calls/s) (Mb/s) Video Video Video CLR RR Video 

(calls/s) (calls/s) 

10 100 2 100 8.70 4.72 14.23 8.2xIO' 15 13 266 15 17 

20 150 5 25 2.18 3.70 10.00 0.0 16 13 178 16 12 

- 150 2 150 . 16.93 25.35 1.0xlO' 14 - 281 17 22 

- 500 2 125 - 14.33 25.23 2.4xlO< 15 - 136 17 19 

- 1000 2 100 - 21.06 31.37 1.3xlO·' 14 - 85 19 26 

- 2000 - 100 - 29.67 45.93 2.0xl0·' 14 - 80 - 33 

Table 5.13 Service performances in a multi-service environment under overload conditions. 
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the cell delay for voice at a low voice traffic level are therefore misleading. It would be most 

likely that there will be a large voice traffic on a practical system, as a result, the cell delay 

with a high voice traffic level is probably more representative. Furthermore, with the 

presence of VBR video on the ring, the load smoothing mechanism is unnecessary. It can be 

expected that with this mechanism removed, the cell delay for voice should be in the same 

order as the other services. 

IT. Overload Conditions 

One of the most important features stipulated for the Orwell Ring is its capability to 

guarantee cell security for the CBO services under all loading conditions. The results above 

demonstrated this capability under normal loading conditions. However, the effectiveness of 

the mechanisms which are used to provide this capability cannot be fully tested under normal 

loading conditions. They must also be able to protect the CBO services even when the ring is 

heavily overloaded. 

The ring was put to test by subjecting it to a wide range of traffic mix under extreme 

overload conditions. All the threshold and parameter settings were as before and the node 

buffer remained at 10 cells. The results are tabulated in Table 5.13. No cell loss was observed 

on any other service besides the VBR video. The CLRs for the VBR video were in the same 

order as those shown in Tables 5.8 and 5.9 for overload conditions with VBR video traffic 

only; it has also been shown that these losses can easily be prevented by the use of a larger 

buffer. Thus even under overload conditions, the cell loss performance of the system can still 

be maintained with minimal cell loss to the VBR video and no cell loss to the CBO services. 

The results on the number of masked resets and 'd' allocation requests denied are not 

presented since the figures vary greatly and do not convey much information. It suffices to 

say that the two control mechanisms were active for most of the time and were effective in 

maintaining the RR such that it rarely fell below 16. Although the RR did fall to 14 in some 

instances, these occurrences were however rare, and were thus inconsequential. Furthermore, 

the CBO services were also to some extent protected by the priority scheme. Hence no cell 

loss was observed on these services. 

The cell delay for all traffic types was affected, but only by a small amount. With the 

cell delay for the voice service, a similar problem is encountered as described previously with 

regard to the load smoothing mechanism. With the CBO video, the mean celldelay was about 

10 llS, with more than 95% of the cells experiencing a delay less than 30 llS. The data service 

experienced mean cell delays of no more than 20 IlS with more than 95% of the cells getting 

through under 80 llS; these results would, nevertheless, depend on the amount of data load 

offered since the 'd' allocation for this service is fixed. With VBR video, the mean delay 

remained very small at less than 35 IlS with 95% of the cells delayed by less than 80 IlS. These 

results, when compared with those obtained with the ring under normal loading conditions, 
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show little difference. This suggests that the call blocking mechanism was sufficiently 

effective in not allowing too many excess connections onto the ring, and this is illustrated by 

the large number of call attempts of all types being rejected. Attention must be drawn to the 

fact that the T.s for all the services were set at relatively low values, and it has been shown 

earlier that higher thresholds may be more suitable. With higher thresholds, the performance 

of the services will be better with more excess calls being rejected and more bandwidth being 

reserved to absorb the bursts arising from both the VBR video and the data traffic. 

It has thus been demonstrated that the load control and overload control mechanisms 

provided by the Orwell protocol and the 'd' allocation scheme are adequate, not only in 

protecting the CB 0 services against cell loss under extreme overload conditions, but they can 

also protect the VBR video service against excessive cell loss provided a reasonably large 

buffer is available on each node. 

5.6.6 Reset Rate Observation Interval 

One of the ring parameters which has hitherto not been investigated is the observation 

interval over which the RR is measured. In all the previous studies, this was fixed at 2 ms 

which is the current recommended setting. This may be an acceptable interval when VBR 

video is excluded and the ring load is not so bursty, but in the presence of VBR video, a 

longer interval may be more appropriate. The reasoning behind this is that a longer interval 

could provide a better measure of the ring load by averaging the number of resets over a 

longer period, especially when the load is very bursty. However, a long interval may fail to 

recognise the latest ring loading condition. There appears to be no satisfactory solution to this 

dilemma, unless a more sophisticated load monitor is used. A compromised observation 

interval can be sought which could give a reasonably accurate load measurement as a 

sub-optimum solution. 

The task of searching for an optimum interval will inevitably involve a very large 

number of test runs, and is beyond the capability of the computing resources available. 

Nevertheless, a number of runs were made with an observation interval of 4 ms to investigate 

the stipulation that a longer interval could provide a better measure of the ring load. The 

results are shown in Table 5.14. There appears to be a slight improvement in the cell loss 

performance with more excess calls being rejected, which would otherv:ise cause more 

overloading. The results, although not conclusive, seem to be in accord with the stipulation, 

that is, a better load estimate hence a better load control. 
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Observation Call Blocking No.of dAlloc. Min. 
Interval (%) CLR MR Denied RR 

2ms 0.89 1.25x10-4 77 298 16 

4ms 1.18 1.42xl0-5 97 200 16.5 

Table 5.14 Results for the variation of the reset rate observation interval with VBR video=85 calls/s, 

T.=24, T,=16, T .=16 and buffer=10 cells. 

5.6.7 Cell Delay and Cell Loss 

The cell delay and cell loss performance for the various services on the ring were 

investigated under different loading conditions and the results have been presented under the 

corresponding sections. This section summarises the results. 

The cell delay for the various services, except voice, was shown to be of a very small 

magnitude, and this was true even under heavy overload conditions (in terms of call 

attempts). The overall cell delay had a mean less than 30 1lS, and in many cases the mean 

delays were well below this; 95% of the cells gained access onto the ring within 80 I1S. This 

cell delay performance should meet any delay requirements that may arise for these services. 

On the other hand, the study on the cell delay for the voice service was complicated by the 

load smoothing mechanism. Although primarily designed to smooth the voice load under 

light voice traffic, it has the effect of introducing large cell delay, especially when the ring is 

heavily loaded with other types of traffic, although such traffic mix is not considered 

probable. As a result, the cell delay observed on the voice service showed a large variation, 

and could be unacceptably large under the loading situation just described: with a mean of 

300 I1S and a maximum delay bordering the maximum allowable delay of 2 ms. This 

mechanism could lead to the possibility of cell loss on this service. However, such a 

smoothing mechanism is redundant and will not be implemented on a practical system; the 

cell delay for voice is thus expected to be in the same order as those for the other services 

under the same loading conditions. 

Cell loss on the ring was limited to the VBR video service when a small buffer was 

used. No cell loss on the CBO services was observed although there was a small risk of 

losing voice cells, but this was entirely due to the load smoothing mechanism rather than the 

deficiency of the ring protocol. For the data service, data load was offered at less than the 

maximum bandwidth allocated, hence no cell loss was expected and none was observed. But 

should the load offered be equal or more than the allocated bandwidth, cell loss can be 

expected. 
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The cell loss perfonnance for the VBR video was expected to be in the order of l(}-l if 

sufficient buffering is provided; but with the limited number of results available, it can only 

be deduced that the cell loss rate is at least below 10-7 with a buffer of 100 cells. The cell loss 

perfonnance was further enhanced in a multi-service environment where the spare capacity 

allocated for each of the services provide further scope for resource sharing. 

With a buffer of 10 cells, the CLR for the VBR video was quite high (in the order of 

10-,), and cell loss occurred in bursts as can be deduced from the results in Table 5.10 where 

only a few runs suffered large losses. Further analysis showed that, for the worst case, all the 

cell losses occurred within a period of 400 ms, and this corresponds to a CLR of 10-' as 

compared to l~ over the entire run. Under nonnal loading conditions, the losses tend to 

concentrate mostly on a single node rather than being spread evenly over all the nodes. With 

this taken into account, a node could actually suffer a CLR of 10-' over the short period. Cell 

losses, however, did not occur contiguously but intermittently. Furthennore, because of cell 

mUltiplexing in the node buffer, the maximum burst of cell loss contiguously for a connection 

was usually very small, and the longest burst observed under overload conditions was 

13 cells (3.8% of a field). 

It has also been demonstrated that with a small buffer, cell loss was bounded to about 

10-' under overload conditions. This can be attributed to the the call blocking mechanism and 

to some extent, buffer sharing induced by the masking mechanism. Cell loss of this order can 

easily be prevented with the use of a reasonably large buffer, or it can be reduced with the use 

of higher call acceptance thresholds, since low thresholds were used in this study. 

5.6.8 Auto-Resets 

Auto-reset is designed as the ultimate overload control when all other means fail. It is 

only meant for very short-term overload control while the other control mechanisms are 

being brought into effect. It is also designed as a safeguard against corrupted reset slots. 

Auto-reset is simply a timer which re-initialises a node's CBO services bandwidth allocation 

when the timer expires before a reset is received. This expiry time is currently 125 J.lS 

although it requires further investigation. Auto-reset was not used in this work in order to 

allow for the determination of an optimum expiry time for this mechanism. 

It is clear from the results obtained that the protocol is capable of-maintaining the 

service requirements it is designed to meet under all loading conditions, even on occasions 

when the RR fell below the 16 resets!2ms minimum. But this by no means suggests that 

auto-reset is redundant; it is still required to guard against unforeseen overload, and most of 

all, against corrupted reset slots. The question is what should the expiry time be in order not 

to cause undesirable auto-resets. 
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Although the average RR was maintained at or above the 16 resets!2ms target most of 

the time, detailed analysis of the individual RIs revealed that a small but significant number 

of RIs exceeded the 125 IlS maximum specified, even under normal loading conditions. The 

maximum RI observed was 200 JlS in overload conditions. This is unavoidable due to the 

statistical nature of the load and the fact that the protocol works with the average RI and not 

the absolute value. In general, when the RIs were averaged over 2 ms, the average RI did not 

usually exceed 125 IlS even though some of the individual RIs were well over the limit. 

Figure 5.8 shows the distribution of the RIs for 3 different loading conditions with no 

cell loss. It is apparent from these results that if the expiry time for the activation of the 

auto-reset is 125 IlS, a large number of unnecessary auto-resets would be triggered when the 

ring is still capable of sustaining the service requirements. This may upset the normal 

operation of the ring. A better expiry time, taking advantage of the insensitivity of the ring to 

temporary ring overload, is perhaps 150 IlS. Although this may lead to problems in the event 

of a prolonged ring overload when the masking mechanism fails to damp down the excess 

load, the situation is considered highly unlikely. 

With an expiry time of 150 IlS, most of the unnecessary auto-resets can be avoided, 

although under overload conditions, there may still be a significant number of auto-resets. 

These are, however, justified and could help to improve the cell security of the CBO services 

under these conditions. The number of auto-resets can be further reduced with the use of 

higher call acceptance thresholds. 

'0 

•• 
00 

Norml.l Load 

Ih%. RI 
\ O.erload 

\ 

Voioe Lo .. d 

10 

• 

I •• 17. 

Fig.S.8 Distribution or the Reset Interval (RI) ror dirrerent loading conditions. 



Chapter 5 110 

5.7 Discussion and Conclusions 

In this chapter, the results from the simulation study on the transmission of VBR video 

over an Orwell Ring were presented and discussed. The results indicated the feasibility of 

using VBR video as a means of providing video services on such a network. With the correct 

dimensioning of the network, and the proper exercise of the load control and overload control 

mechanisms, a good QOS can be provided for all the services without having to provide 

excessive spare capacity for the VBR video traffic. This is, however, only true with a high 

VBR video traffic level. For instance, with 23 E, only about 20%-30% extra capacity was 

required for a call blocking rate of 1 % and a cell loss rate in the order of 10-8; and less if a 

lower QOS is acceptable. This suggests that the bandwidth gain over CBO video quoted in 

Chapter 3 of about 2-3 can be more or less maintained. Furthermore, in a multi-service 

environment, particularly when there are wide bandwidth services present at low traffic 

levels, the accumulated spare bandwidth can be used to reduce the extra capacity required for 

the VBR video services. 

The feasibility of VBR video services is further enhanced by the fact that most 

networks are planned for the future and may very often be replaced well before the end of 

their planned life span, thus leaving some spare capacity which bursty services can make use 

of. Overall, only a very small amount of extra capacity will actually be required for the VBR 

video services for a given QOS, thus greatly improving the viability of VBR video. 

The Orwell protocol was shown to possess adequate traffic control capabilities to meet 

a variety of loading conditions without any loss of cells on the CBO services. Although the 

results obtained were those for a 34 Mb/s ring, they could equally be applied to a larger ring 

or a Torus. However, the call acceptance thresholds will need to be adjusted according to the 

expected traffic load and the characteristics of the system concerned. The bandwidth gain of 

the larger system may be higher and the reset rate may fall more slowly in near full load 

conditions, otherwise the behaviour of the larger systems are similar to the 34 Mb/s ring; the 

deductions from this work are therefore equally applicable. The results can also be extended 

to the inter-networking of a number of rings or Tori. If no long distance link is involved, the 

performance of the system should be similar since the bridges would act just as any ring 

node, with perhaps higher throughputs. Since the Orwell protocol operates on the bridges, 

each bridge can simply be regarded as a concentrator for traffic from one ring to an adjacent 

ring. The concept is thus not too dissimilar from the single ring system· with nodes 

concentrating traffic onto the ring. 

Where a link is necessary, an Orwelllink multiplexor - which operates the Orwell 

protocol on a link - can be used so that uniformity can be maintained throughout the system. 

In this case, the characteristic of the link multiplexor must be determined, and since it would 

be different from the characteristic of the ring, some of the control parameters may need to be 

set differently to allow for a greater safety margin; hence, lower link efficiency. But this may 
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not be important with the immense capacity available on fibre optic links. A different control 

strategy can be formulated but all the control mechanisms of the protocol are available, and 

the proper exercise of these controls could result in a similar system performance as the 

34 Mb/s ring. The results thus have a wide implication. 

One of the most important issues concerning the use of VBR video has been the 

concealment of cell loss related errors due to the highly compressed nature of the data. Two 

methods are available: background update - where errors are corrected by a high priority 

background refresh data stream; and layered coding - where video information is coded into 

high priority basic information which is protected against cell loss, and low priority 

enhancement information. The first method is simpler but slower, and can only tolerate a 

small amount of cell loss, while the latter is more complex but very efficient even where the 

CLR is high. 

Since a cellloss rate of less than 10-7 can be achieved efficiently on the ring, and the 

simultaneous overload over a network of rings is considered highly unlikely, the background 

update is probably sufficient for error concealment purposes. LC is not a necessity but it does 

offer better error concealment capability as well as other added advantages. With LC, no 

noticeable degradation would be observed even with a CLR much higher than 10-7 on the low 

priority data stream, and it is more effective against burst error. This suggests that even lesser 

extra capacity would need to be reserved for the video bursts, thus increasing the gain of 

VBR video. 

Although both methods are feasible, Le would have a better performance in terms of 

better picture quality and higher bandwidth efficiency. It can also be used to overcome 

problems associated with scene changes, simply by not sending the low priority video data, 

thus reducing the peak bit rate. These are of course achieved at the expense of more hardware 

complexity in the codec and some control complexity since both data streams are VBR in 

nature. The small cell delay on the ring however relieves the problem of synchronising the 

two data streams. If necessary, the low priority data can be given a smaller buffer to prevent 

excessive delay. 

Scene changes were not considered in this simulation study because it was suggested 

that full resolution at scene changes may be unnecessary. Even if full resolution is required, it 

is possible to absorb these scene changes with a sufficiently large buffer because they occur 

very infrequently with videophone type pictures and normally last for only a single frame. 

Nevertheless, video bursts with a maximum bit rate of up to 70% of the peak bit rate were 

generated. This corresponds to some very violent motion and is of more importance in this 

work. 



Chapter 5 112 

To conclude, the simulation results indicate that with the correct dimensioning of the 

ring, the proper control of the VBR video traffic using the control mechanisms provided by 

the protocol and the 'd' allocation scheme, along with a suitable error concealment technique 

to overcome the rare but inevitable occurrence of cell loss, VBR video can be supported on 

the ring in a multi-service environment, while meeting the required QOS for all the services 

without sacrificing the gain of VBR video. VBR video thus appears to be a promising means 

to provide future video-communication services. However, these results will need to be 

validated and verified with a practical system which is presently unavailable. 

note :- ( from page 72 ) 

Although these call holding times are unrealistically short, they are considered adequate 

for this simulation study and are extensively used at BTRL, in order to reduce the amount of 

computing resources required. The objective is to achieve a state of equilibrium in the 

shortest possible time so that the QOS, in terms of call blocking and cell loss, can be studied. 

On this premise, the short holding times are justified for the CBO connections. However, 

they are only barely adequate to bring out the VBR nature of the sources. As such, only 

single-field frames were used to increase the data rate variation, and under a state of 

equilibrium, the short holding time used should be justified. Longer call holding times will 

obviously be more appropriate if computing resources pennit. 
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Experimental Work on a Prototype Orwell 

Ring 

6.1 Introduction 

This chapter briefly describes the work carried out in this research project that deals 

with the practical aspects of the transmission of VBR video over an experimental Orwell 

Ring. This work was not intended as a means to verify the results obtained in Chapter 5 

because neither a ring of that speed nor VBR video codecs similar to those simulated are 

available. Instead, the objective of this exercise is to demonstrate the inter-working of an 

experimental 15 Mb/s Orwell Ring and a simple VBR video source in the form of a modified 

COST211 codec. From this, insight into the performance of the protocol and of the system as 

a whole can be acquired, and experience in the interfacing of the two systems can be gained. 

One important issue which will be dealt with is the design of an addressing scheme suitable 

for transporting VBR video data in an A TM environment. For details of the hardware 

implementation see [26]. 

6.2 The Experimental Orwell Ring 

The experimental Orwell Ring was developed at BTRL as a demonstrator for 

demonstrating the working of the Orwell protocol. The ring operates at 15 Mb/s with a single 

slot and a single node. The cell structure used conforms to the latest specifications for the 

protocol, i.e. a 21 byte cell with a 5 byte header. 

On this experimental ring, not all the functions specified in the Orwell protocol have 

been implemented on the node. The functions not implemented are call control, masking and 

auto-reset. These are not necessary because the number of connections on the single node has 

been restricted to a one-way 2 Mb/s CBO video, a two-way 64 kb/s voice, a one-way VBR 

113 
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video (to be implemented) and a data connections. The node 'd' allocation has been fixed 

such that the reset interval never exceeds 125 118. The VBR video and data connections can 

utilise all the bandwidth not required by the two CBO services. 

A block diagram of the node layout is shown in figure 6.1. The use of a microprocessor 

as the controller provides the flexibility for those functions not implemented to be added as 

and when required. As illustrated, four service queues were provided for CBO video, CBO 

voice, VBR video and data, in the order of priority as enumerated. This is slightly different 

from the simulation exercise where the priority order of the two bursty services were reversed 

according to the latest proposal. 

Node 1 

I Voice I I Video I I Data I I VBR I CAD CAD CAD CAD 

1 r I t I T I r 
1 .~ ~ 

I 
'f I 

Transmit CPU I Receive 
Queue I I Queue 

~ T 

I Media Access Conlroller I 
I I Node4 Ring Clock and Synchronisation Circuit Node2 I 

I I 
CAD- cell assembly and I Node3 I 

disassembly 

Fig.6.1 mock Diagram of the Ring Node. 

The single node ring has a very low effective bandwidth capacity. This is because the 

destination release policy of the protocol will not result in any gain in a ql}e node ring, and 

the bandwidth required for the trial and reset processes will be excessive. On this ring, a node 

'd' of 4 has been determined to be the ceiling value, which implies that 60% of the bandwidth 

is taken up by the two control processes since the node is unable to reuse a slot which it 

releases. This, together with 23.8% for the cell overhead, drastically reduces the information 
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transfer capability of the ring to just 4.57 Mb/s. This presents a major problem when an 

attempt is made to interface the modified COST211 codec, which has a much higher data 

rate, to the ring. 

The ring has been tested by simultaneously connecting a CBO video, a two-way voice, 

a cell generator which allows the cell generating rate to be varied on line, and a teletext data 

connections. It has been shown that with the reset interval maintained at or below 125 I1S with 

the fixed node 'd' allocation, no cell loss arising from excessive delay was inflicted on the 

two CBO services as the ring load was increased with the cell generator to overload level. 

The teletext update rate was, however, reduced and eventually stopped, indicating that its 

allocation was being pre-empted. Although the Orwell protocol is not fully implemented 

here, the observation does demonstrate the effectiveness of the protocol provided the 125 ILS 

maximum reset interval can be maintained by those functions not implemented. 

6.3 The VBR Video Codec 

The COST211 codec and the modifications made to convert it into a VBR video codec 

have already been described in detail in Chapter 3. However, no consideration has been given 

to the transmission aspect of the codec in an A TM network environment. This section and the 

next will address this issue and describe any further modifications necessary to ensure the 

correct transfer of video data over the network, and to maintain synchronisation between the 

received data and the decoder. 

As the codec was not designed to cope with the type of errors expected in ATM 

networks, such as burst cell loss and cell jitter, simply packetising the output of the coding 

loop for transmission will not provide the error recovery capability required. Synchronisation 

of the received data to the decoder will also present problems because of the irregularity of 

the data rate and cell delay; these problems will be dealt with here. The issue of error 

recovery will be discussed in the next section. 

In the COST211 codec, frame stores are organised as closed loops of delay stages. Each 

stage represents one pixel data. Pixel data circulate within the loops which have only a single 

access point, thus making the timing of updating the frame stores critical. This does not 

represent a major problem in CBO video over a circuit switched network since transmission 

delay is constant throughout; but with VBR video in an A TM network, the irregular data rate 

and large cell jitter make the synchronisation of the received data to the decoder frame store 

very difficult. Inability to achieve synchronisation would result in the loss of video data. This 

problem would not be present if a random access frame store had been used instead. 

It was decided that a secondary random access frame store would be used at the 

decoder in addition to its own frame store. The two frame stores were synchronised so that 

the frame store in the codec was continuously updated in its entirety with data from the 
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secondary frame store. With this arrangement, the received data were decoded as soon as they 

were received and the secondary frame store was updated accordingly without any timing 

constraint. The problem of synchronisation was thus avoided. The decoder frame store was 

effectively replaced from the main decoding loop by the secondary frame store. 

This approach, however, meant that the secondary frame store had to be integrated into 

the decoding loop, a very difficult task in itself. Therefore, for simplicity and ease of 

implementation, it was decided that only the conditional replenishment coding with bridging 

would be considered in the initial work. As a result, only PCM video data were used, giving a 

peak throughput of 17.5 Mb/s. The mean throughput is picture dependent and 2.6 Mb/s is 

expected for a mean frame differences of around 15%. It is clear that while the experimental 

ring is capable of coping with the mean codec throughput, a moderate increase in the 

throughput would lead to cell loss. This problem was not envisaged at the early stage because 

a ring with a larger effective bandwidth was anticipated. 

6.4 An Addressing Scheme for the Video Data 

Simply adopting the addressing scheme used in the COST211 codec to address the 

video data would not provide adequate error recovery capability to counteract the burst cell 

loss problem encountered in an A TM network. Error recovery is taken to mean, in this 

context, the ability of a codec to recover synchronisation from an error condition quickly and 

with minimal degradation to the picture quality, and is different from error concealment. For 

this purpose, sufficient auxiliary information must be carried in the data stream to enable the 

codec to fulfil this requirement. 

Cell loss, either singly or in bursts, introduces discontinuity in the data stream whereby 

synchronisation will be lost. An addressing scheme for the VBR video data in an A TM 

environment must therefore be designed to enable the detection of cell loss and the rapid 

re-synchronisation of the incoming data. Failure to do so will result in a significant 

degradation to the picture quality. 

Most addressing schemes for transporting video data are designed for CBO video over 

a circuit switched network, and are not suited to the transport of VBR video over an ATM 

network. 

The COST211 codec uses a scheme whereby field, line and cluster synchronisation are 

provided by different unique codes, with the cluster code being the shortest since it is the 

most frequently used (see Appendix 11). A field code identifies the start of an odd or even 

field, and a line code is transmitted at the beginning of every line without specific reference 

to the line number and irrespective of whether the line contains any video data; only a 
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modulo 8 line sequence counter is used to enable line continuity to be checked. Cluster codes 

separate clusters from one another; luminance clusters are separated from the chrominance 

clusters using a colour escape code, and each cluster is addressed within a line. 

The adoption of this scheme to transport VBR video over an A TM network would 

present several problems: the loss of several line codes in a row could make 

re-synchronisation very difficult since the exact line number is not known; the loss of the 

colour escape code could result in data being fed to the wrong picture area; and the loss of the 

field code could cause data to be placed in the wrong line, or even the wrong field. Some of 

these error conditions could result in a large degradation to the observed picture quality since 

recovery may take a long time. 

A prototype addressing scheme based on the above scheme has been designed for the 

modified COST211 codec for transporting PCM video data over an Orwell Ring. The scheme 

remedies some of the shortfalls of the original scheme at the expense of a higher addressing 

overhead. It was decided that only 256 video lines (Le. the flrst 128 lines of each fleld) would 

be used since they can be conveniently addressed with just one byte, and the maximum 

throughput of the codec can be reduced. This also has the advantage that the most signiflcant 

bit of the line address will always indicate which field the line belongs to, and the fleld code 

can be made redundant, thus removing one source of error. 

Each active line, that is a line that contains video data, is addressed with its line number 

following the line unique code; line code and line address for non-active lines are not sent. 

An additional piece of information indicating the number of cells associated with a line is 

also sent with the line code. The nibble allocated for this purpose would normally be 

adequate, but in the case of a whole line requiring updating, the number of cells generated 

would exceed 16. In this circumstance, the line code and line address - known alternatively as 

the continuation code - would be regenerated at the end of the sixteenth cell to cope with the 

extra data. Experiments have shown that continuation codes are rarely required. The line code 

and line address allows the decoder to re-synchronise quickly to the next active line in the 

case of cell loss and also provides for the detection of cell loss. In the event of mass cell loss, 

corrective action can be initiated, for instance, a complete frame update can be requested. 

However, in order to acquire and retrieve the information on the number of cells associated 

with a particular line, a line store would be required at both ends of the codec. 

Each cluster starts with a unique code which indicates whether it carries luminance or 

chrominance data, followed by the cluster address within a line; so avoiding the 

misinterpretation of the data in the event of the loss of the colour escape code in the original 

scheme. In order to avoid excessive delay to the last cell generated in a fleld, a cell flller code 

is used to top up any incomplete cell for immediate dispatch rather than waiting for data from 

the following field. 
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This addressing scheme was designed for PCM data, and as a result, all codes are 

byte-oriented to ease implementation. The unique codes were selected from data values 

which are not used for coding pixel; pixel data use only levels 16 to 239, the rest are available 

for this purpose. The details of these codes are presented in Appendix 11. The byte-oriented 

approach, however, requires redundant bits to be included to preserve the byte boundary, thus 

causing inefficiency, especially the use of a byte wide cluster code. Investigation into the 

efficiency of this addressing scheme has revealed that with very small frame differences, the 

addressing information could constitute up to 50% of the frame data, but with higher frame 

differences, for example 15%, efficiency of 70%-80% can be achieved. With this addressing 

scheme, the codec would have a peak throughput of about 16 Mb/s and a mean of about 

3.5 Mb/s, which leaves very little room on the experimental ring for data bursts. 

Admittedly, the prototype addressing scheme is not error proof. There are occasions 

when errors may slip through. One problem is that the unique codes, while unique with 

respect to the pixel data, overlap with the address space; this could lead to the occasional 

misinterpretation of the received data when part of the addressing information is lost. 

Nevertheless, the scheme is considered to have provided sufficient synchronisation 

information to enable the codec to recover quickly from this error condition. 

The capability of the codec to make use of the synchronisation information to detect 

and recover from cell loss errors will depend upon the intelligence incorporated in the codec 

to analyse the received data. In the present implementation, only some very basic error 

detection logic was employed (extra circuitry was built for this purpose). These included: 

1. checking for discrepancy between the actual number of cells received in a line and that 

stipulated in the line code; 

2. checking for the relative positions of unique codes, for instance, a line code must be 

followed by a line address and cluster code; luminance cluster codes must precede 

chrominance cluster codes and so on; 

3. checking the order of the line and cluster addresses. They must be received in 

ascending order unless intervened by a field change or a line change respectively; 

4. checking for valid chrominance cluster address which must not exceed 51; 

5. checking for valid pixel data value which must lie in the range 16-239~ 

When an error is detected, all subsequent cells will be discarded until the detection of a 

new line code. Error recovery is thus line-based with error propagation being limited to a 

single line unless cell losses are spread over several consecutive lines. 
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If the pixel data are to be DPCM and Huffman coded later, unique codes similar to 

those used by the COST211 can be adopted with the necessary modifications outlined above, 

together with a new cluster code for the chrominance data. The overall effect is an increase in 

the addressing overhead, the price to pay for better error recovery. 

6.5 Codec to Ring Interfacing 

The experimental 15 Mb/s Orwell Ring and the VBR codec have been described. The 

next step comprised of the linking up of the two systems, which required additional 

interfacing hardware. 

It was recommended that the interface should access the transmit queue board on the 

ring node directly, with the priority three buffer as the service access point since higher level 

access points were not provided on the node for this service. This implies that the interface 

must provide the higher layer services, which include the assembly and disassembly of cells 

and the provision of cell headers. 

Video data were packetised into blocks of 16 bytes as they arrived at the transmit 

interface, and a 5 byte cell header, the content of which was fixed in this case, was attached 

to the beginning of each block to form a complete cell. Cell filler codes were generated to 

complete the last data block in a field when indicated by the codec for immediate forwarding 

to the node buffer. Cell transfer between the interface and the node buffer was by way of 

hand-shaking depending on the state of the buffer, and cells were stored in the buffer 

awaiting transfer to the MAC board for launching onto the ring. 

On the receiver side, the node provided an extra level of service to the VBR video 

connection in that cell headers were stripped off before the blocks of data were stored in the 

buffer. The interface would be alerted of the presence of received data in the node buffer, and 

data transfer between the buffer and the interface was again by hand-shaking. The data were 

then forwarded to the codec. Figure 6.2 illustrates the interfaced experimental system. 

6.6 The Experimental Work 

The ring and the codec were interfaced as in figure 6.2. Only a single codec was used 

with the encoder and decoder functioning as the transmitter and receiver respectively. They 

were configured to work independently over the ring with no other coriiinunication path 

between them; this is thus only a one-way connection. Two other services, namely the 

two-way voice and the teletext were also supported on the ring when required. The CBO 

video was excluded because of the limited node throughput. 
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Fig. 6.2 Experimental System Configuration. 

In view of the large throughput of the codec compared to the transmission capacity 

available on the node, initial tests were limited to using test signals generated by additional 

circuitry on the interface board and picture sequences which were known to generate Iow data 

rates. Many hardware and noise-related problems were ironed out to allow the test signals 

and the selected sequences to be transferred correctly over the ring, thus demonstrating the 

successful inter-working of the two systems. 

Data corruptions were, however, clearly visible in the decoded picture at the receiver in 

the form of streaks scattered randomly over the frame. This is believed to be due to noise on 

the data bus linking the interface and the ring. Bit-errors in the addressing information could 

have caused the decoder to abandon decoding until the receipt of a line synchronisation code, 

which would have meant the loss of a sizeable amount of video data. Bit-errors in the pixel 

data that can be detected would also have a similar effect. Errors could also have arisen from 

corrupted addressing which was not detected, leading to incorrect placement of the pixel data. 

This problem of noise on the data bus is now being rectified. 

The combined system has also been shown to work satisfactorily in a multi-service 

environment, with the ring supporting the voice and teletext connections as well. The voice 
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has been shown to be unaffected by data bursts in the VBR video while the teletext update 

rate was reduced, thus demonstrating the effectiveness of the protocol in meeting its design 

target. 

A full demonstration of VBR video over the ring has not yet been achieved because of 

the limited throughput of the node in comparison to the peak data rate of the codec. At 

present, data bursts result in an unrecognisable picture at the receiver due to loss of cells 

arising from buffer overflow, and corruption in the picture background persists even after the 

data rate has fallen back to normal. This problem needs to be resolved urgently for 

demonstration purposes. Several proposals have been suggested: one would be to reduce the 

size of the picture but not the resolution, in order that the data rate can be contained within 

the capacity of the node most of the time; this could, however, involve quite a drastic 

reduction in the picture size and much effort in hardware modifications. A second approach 

would be to restrict the amount of movement in a picture, for instance, by using a camera or a 

higher movement detection threshold. This however defeats the purpose of VBR video. Both 

solutions are considered unsatisfactory, and other alternatives are being sought. 

In the mean time, the codec has been demonstrated to work in a back-to-back mode, i.e. 

with the ring being replaced by a data bus, but with data transfer still being conducted at the 

cell level. This experiment has helped to demonstrate the correct working of the codec as well 

as the performance of VBR video, which has been found to be very impressive under 

error-free conditions. 

6.7 Discussion 

The modified COST211 codec used in Chapter 3 for signal statistics study was further 

modified with extra circuitries added to manage the transmission aspects of the codec in the 

ATM environment. These included the synchronisation of the received data to the decoder 

frame store and the implementation of an addressing scheme which allows for rapid error 

recovery. 

For ease of implementation of the above requirements, the codec was configured to 

work in PCM mode using conditional replenishment coding with bridging as the only 

compression technique. This may be acceptable for the first implementation, but further 

compression with DPCM and Huffman coding should be included as s~n as possible, 

because the transmission of video data in PCM format is not a likely supposition and it is 

inherently more error-resilient as a result of the well-defmed byte boundary. The 

implementation of more compression would have a two-fold effect: Firstly, the peak data rate 

can be lowered, thus reducing the risk of overloading the node; secondly, the extent of the 

cell loss error can be assessed in a more realistic manner, since error detection will be more 

difficult and error propagation more serious in the absence of the byte boundary. With further 

compression, modification to the proposed addressing scheme is necessary insofar as the 
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unique codes are concerned. The effectiveness of the concept of the addressing scheme can 

then be assessed under a more rigorous and realistic environment. The addressing scheme can 

also be made more efficient without the restriction of byte boundary, by using shorter cluster 

codes and smaller chrominance addressing. 

The addressing scheme is by no means error proof, and its effectiveness will largely 

depend upon the intelligence of the error detection and recovery logic in the codec. This logic 

can be complicated and will be more so in the absence of a byte boundary in the data stream. 

In the present implementation, only a minimum error detection and recovery intelligence was 

built in to allow recovery to the next valid video line; more logic could be provided to allow 

recovery to the next valid cluster, but the added complexity must be justified in terms of 

improved picture quality. 

The 15 Mb/s ring used in this experimental study is a very basic model, with only the 

kernel of the Orwell protocol being implemented, i.e. the 'd' counter-based access 

mechanism with different priority queues. The objectives of this exercise at the present stage 

are to demonstrate the inter-working of the VBR video codec with the ring and the 

effectiveness of the protocol. It can be extended later to investigate the effect of cell loss. The 

experimental study was, however, hampered by noise problems on the combined system. 

The goals of this part of the project have been largely achieved insofar as a VBR video 

codec has been successfully produced and shown to function correctly in a back-to-back 

mode. The inter-working of the codec and the ring has been successfully demonstrated even 

though some noise problems in the data stream have yet to be solved. The combined system 

was also tested in a multi-service environment and the Orwell protocol was shown to function 

as designed. The concept of VBR video over an Orwell Ring has thus been illustrated. 

An urgent problem which requires immediate attention is the much higher output of the 

codec in comparison to the node throughput. This problem hampers the demonstration of 

VBR video over the ring and a satisfactory solution must be sought quickly. In the longer 

term, error concealment must also be considered. Preliminary studies have indicated that 

background update is the logical choice of error concealment for the COST211 based VBR 

video codec because of the coding strategy used. Furthermore, background update is required 

anyway to remove coding errors. It is envisaged that the background update data will be 

transferred on a more secure high priority channel as a low bandwidth CBO data stream. 
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Discussion and Conclusions 

7.1 Discussion 

A number of issues associated with the transmission of VBR video over an Orwell Ring 

have been considered and investigated in some detail in this research. There are two aspects 

which are of special interest in this work. The first relates to the assessment of the relative 

merits of VBR video, and the second to the efficient transfer and control of VBR video over 

an Orwell Ring. Other related issues such as error conditions, error concealment and video 

coding in an A TM environment have not been specifically dealt with, but have been 

discussed generally in Chapter 2. 

The research was conducted along the lines set out in Chapter 1. The work and results 

were reponed in detail in Chapters 3 to 6. A general discussion of each of the main parts of 

the research is given here along with suggestions for any possible extension to the present 

work. 

I: The study of signal statistics and assessment of the relative merits ofVBR video. The 

merits of VBR video were assessed in relation to CBO video using the signal statistics that 

were collected. This, however, proved to be difficult as there was no single basis upon which 

a consistent assessment could be carried out. Assessments were therefore based on a number 

of aspects of the signal characteristics, and not all assessments could be quantified. 

The bandwidth gain of 2-3 over CBO video has been based solely en peak-to-mean 

bandwidth ratio measurements without considering the absolute peaks caused by scene 

changes. Full resolution for scene changes may be regarded as unnecessary due to the low 

sensitivity of the eyes to spatial detail during abrupt changes, and some simple mechanism 

was assumed available to reduce the picture resolution. It was also assumed that the data rate 

is smoothed within frames. A higher gain figure can be obtained if the absolute peaks or the 

intra-frame data burst are taken into account. 

123 
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However, it must be noted that the bandwidth allocated to a particular class of CBO 

video is not usually optimised to the requirements of the individual sources, i.e. the peak 

bandwidth requirements used in the PMR measurements are not usually the bandwidth 

allocated to the CBO video. Instead, the allocation is usually chosen to fit the transmission 

hierarchy and is therefore sub-optimum. This factor must be considered when interpreting the 

gain figure quoted above. Comparatively, VBR video is undoubtedly more efficient. 

There is also little doubt that VBR video would provide a better picture quality than 

CBO video under error-free conditions. However, the assessment of picture quality is very 

subjective, and the improvement in the observed picture quality may not be apparent, 

especially to the untrained eyes of the majority of viewers, except perhaps in scenes with very 

large movement. Therefore, this is perhaps not a particularly strong point in favour of VBR 

video, but nevertheless an advantage in maintaining constant picture quality. 

A third advantage of VBR video is that it does not require a complex feedback 

mechanism, which would otherwise be required to smooth the highly variable data rate and 

the video-spurts. This can lead to considerable reduction in the hardware complexity of the 

codec, and to some extent it reduces a source of error since no signalling information will be 

required for control purposes. Critics may argue that the extra hardware required in the codec 

to implement error resilience to cope with cell loss could offset this advantage, but in an 

A TM network, this is necessary even for CBO video (note although CBO services are 

guaranteed an almost loss-free path on the Orwell Ring, this is not necessarily true on A TM 

networks of different architectures), especially for those cells carrying synchronisation and 

control information. Furthennore, the highly error-resilient layered coding technique, which 

is particularly suitable for video coding in the A TM environment, can be more efficiently 

implemented with VBR video; the technique also offers other advantages such as user 

selectable picture quality. There is thus an overall reduction in hardware complexity. 

One concerning feature brought out in this study is the low coding and addressing 

efficiency when the amount of frame differences in a picture is small. This is, however, a 

direct consequence of the cluster-based coding strategy used in the COST211 codec and not a 

general coding feature. It can be alleviated if block-based coding is employed, since the block 

size (unlike the cluster size) is fixed and does not vary with the amount of frame differences. 

Block coding already forms the basis of many modern codec standards such as CCITT 

Rec. H261 and ESPRIT Project 925, and the problems identified here need not cause any 

undue concern unless cluster coding is preferred. 

As regards the PDF, _-,::< of the frame differences, the nature of the 

PDF '. has not been analysed in any great depth, rather, it was only studied in relation to 

already established work'S!). The nature of the observed PDFs -' - was largely in line with 

those shown in the reference, as well as in other recently published work. The reason for not 

conducting an in-depth study in this area is that the required information has already been 
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provided in the reference; thus this exercise only serves to collate the findings. Moreover, no 

definite conclusion on the nature of the i PDF ';; is possible since it varies with different 
, 

pictures, each exhibiting some of their own characteristics. The result is thus a general 

conclusion on the generic shape of the PDF I'., which is very often a Normal distribution 
..... ", 

superimposed on a Gamma distribution. The, PDFs were clearly affected to some 

extent when coding was applied. 

The study on the statistical multiplexing of the outputs of uncorrelated VBR video 

sources has confirmed many of the expected effects: a smoother variation of frame 

differences, a smaller spread of the frame differences around the mean, and a combined 

PDF : approaching the Normal distribution. Peaks occurring due to scene changes were 

effectively absorbed, making flow control on these peaks less critical. The result has been 

achieved with only seven sources. It is thus expected that with a larger number of sources, the 

resultant data flow would be even less varying and thus more manageable. Most of the YBR 

video bandwidth gain can be obtained since little extra capacity would really be necessary for 

data bursts. 

This study has been confined mainly to one specific but important class of video 

services, namely the videophone/video-conferencing services. These services stand to gain 

significantly from YBR video because of the economy in bandwidth requirement (and hence 

lower charges), and this is important for the widespread acceptance of these services. The 

large base of uncorrelated sources from these services lend themselves well to benefit from 

statistical multiplexing. A video-conferencing type picture of the 'split screen' nature was 

briefly examined, but due to the lack of such picture material, no conclusion was drawn. The 

frame differences generated were however unmistakably bursty. 

Overall, it is felt that the coding strategy used in the COST211 codec is becoming 

increasingly obsolete. The statistics generated with the codec undoubtedly provide a good 

foundation for the understanding of YBR video characteristics, but an in-depth understanding 

of the characteristics of the signals when advanced coding strategies are used, is of pressing 

importance. A common feature of the new codec standards is the use of hybrid block coding, 

involving motion estimation and transform coding. Further investigation into video signal 

statistics should be based on such coding techniques. Another area of equal importance is the 

study of the signal characteristics when layered coding techniques are used, since these 

techniques are growing in importance in anticipation of the arrival of future A TM networks. 

II : Developing a simple VBR video source model. A simple source model was 

developed based on the statistics collected in (1). The term 'simple' must be emphasised since 

detailed modelling of a YBR video source is both extremely complex and unnecessary for 

this work. Given the constraint in computing resources, the aim was to develop a model 
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which is economical to generate and yet exhibits the characteristics of the video sources 

which are most testing to the ring, without being unduly excessive and unrealistic. These 

include video-spurts and intra-field data burst 

These requirements have led to some simplifications being necessary, thereby limiting 

the scope of the mode1. The Erlang distribution was chosen for the data rate PDF 
-

instead of the hybrid Gamma - Normal distribution since the former is much simpler to 

generate. The Erlang distribution is a subset of the Gamma distribution which means that the 

range of the PDF i' that can be generated is restricted. This is not considered to be an 

important set-back and should not have much bearing on the purpose of the mode1. The 'tail' 

characteristic of the frame data rate PDF :., which is more important, is emulated to 

some extent. The auto-correlation of the data rate between adjacent frames is fixed for this 

model; this simplification is necessary because the exact nature of the variation of the 

correlation is not known. This correlation introduces the video-spurt characteristic required, 

and by fixing the correlation coefficient at a relatively high value of 0.8 (which corresponds 

to the observed mean value), the desired video-spurts of varying duration can be generated, 

thereby satisfying one of the design objectives. The actual variation of the correlation may 

not be important and the range of variation itself is small (0.7-0.9). 

The segmentation of frames into three regions of different activities, where the data rate 

within each region is assumed constant, is acceptable for videophone type sources. Data rate 

variation within a region is relatively small around the regional mean, and can easily be 

absorbed by the packetisation process. A cell information field of 32 or 64 bytes provides the 

equivalent of a small buffer for smoothing these variations. In the present model, the method 

of segmenting the three regions may sometimes lead to unproportionally high data rates for 

the middle region for video sources with a large mean data rate, although this is probably 

unimportant The model can be refined, if required, to take into account the fact that the three 

regions tend to become less distinguishable when the mean data rate of the source is high. 

The other simplifications that have been made are the assumption of a fixed coding 

efficiency and a fixed proportion of addressing overhead. This again is not crucial in this 

work and their variations have already been partially accounted for in the generation of the 

frame differences. 

The transfer of the first frame of a video sequence has been greatly simplified in the 

model, based on the assumption that it is not necessary to transfer this fram~ in real time or 

with full resolution, in order to relieve the demand placed on the network. The slow build-up 

of a picture at the beginning of a connection is considered acceptable. Furthermore, since it is 

effectively a scene change, the human visual system will have a delayed response to such a 

change. The assumption is thus valid so long as the full frame rate or frame resolution is 

restored quickly. The model assumed a picture build-up time over four frames, which should 

be more than acceptable. It is worth noting that with layered coding, this problem can be 
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easily solved by not transmitting the higher layer infonnation, thus resulting in a reduced 

resolution picture transferred in real time. Full resolution can be resumed immediately after 

the fIrst frame. 

Notwithstanding the many simplifIcations made, the model is considered adequate for 

the purpose of this work. It possesses most of the characteristics of those sources upon which 

it is modelled, and most of all, those features of VBR video which are most demanding from 

the network point of view. Undoubtedly more can be done to refIne the present model, but it 

is regarded as unnecessary and may not yield extra infonnation in the context of this research, 

while only serving to increase the complexity of the model. The simplicity of the model will 

be appreciated more in a large network where a large number of sources may have to be 

generated. This simplicity could save considerable computing resources. However, where a 

very large number of sources are required, it might be better to develop a multi-source model 

which generates a multiplexed video output rather than a single source output. In this case, 

only a single model is required on each node and this can potentially yield a greater economy 

in computing resources, due to the fact that signifIcantly fewer sources need to be generated 

and a simpler video data generating mechanism may be possible by virtue of the statistical 

multiplexing effect. 

Ill: Simulation study ofVBR video on an Orwell Ring. This part of the work has been 

greatly restricted by the limited computing resources available. As a result, only a 10 node, 

34 Mb/s ring has been investigated. This is, admittedly, a sub-optimum confIguration as it has 

been shown that a larger number of nodes could result in a signifIcant improvement in the 

gain in the effective ring bandwidth. For instance, a gain of 45% can be achieved with 

20 nodes as compared to 30% with 10 nodes, but this is still low when compared with, say, a 

25 node, 140 Mb/s ring, which has been reported to have a gain of about 60%. A high 

capacity ring would be more appropriate where video connections are concerned due to their 

large throughput. In order to obtain more usable bandwidth on the ring, the cell header has 

been reduced to 4 bytes, a factor which would not affect the simulation objective. The mean 

VBR video bandwidth has also been reduced to 350 kb/s to allow for more connections on 

the ring in order to achieve a good multiplexing effect. This order of compression is highly 

unlikely with the COST211 codec for a reasonable picture quality. 

With larger rings, or simply with more nodes on a ring, the reset rates tend to decrease 

much more slowly near the fun load condition. This characteristic can be used to advantage 

in supporting VBR video as it helps to absorb some of the irregularity of the data flow and 

ease the traffIc control problem. This is because the traffic control mechanisms on the ring 

rely on the reset rate measurement, and as it is less sensitive to load variation, it would appear 

relatively stable even though the actual load is bursty. This would enable a better measure of 

the ring loading condition and more effective traffic control. Consequently, the risk of ring 
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overload can be reduced. With the 10 node, 34 Mb/s ring, the drop in the reset rate with 

increasing load is steeper because the gain from the destination release policy is limited. In 
this case, traffic control is more critical. 

An approximate ring capacity dimensioning method for VBR video traffic has been 

suggested, and it has been shown to work reasonably well in the simulation study. The 

pre-specified call blocking performance can be approximately attained with the call 

acceptance threshold derived from this method with appropriate allowance for the uncertainty 

in load estimation and variation in ring capacity. The cell loss performance has been shown to 

conform, to some extent, to the tatget requirement. There were, however, an insufficient 

number of runs to verify its accuracy. The prediction of the cell loss rate is only an 

approximation due to the many assumptions made in the dimensioning method, which have 

been greatly simplified. For instance, the data rate is not smooth within a frame; the effect of 

the common node buffer and the 'd' allocation scheme on cell loss is difficult to establish; 

conformity of the multiplexed video load to the central limit theorem is not strictly correct in 

the crucial tail region; and the system is dynamic, thus making accurate load measurement 

difficult. However, the method was from its inception devised to provide only an estimate of 

the amount of VBR video load that the ring can support with a certain QOS. Accurate 

dimensioning is not possible in view of the non-deterministic nature of the characteristics of 

the ring and the VBR video. 

Load estimation on the ring was based on a single measurement of the reset rate over a 

short interval of 2 ms. However, measurement over such an interval could only provide a 

measure of the instantaneous load condition on the ring rather than the mean loading state. 

Long intervals are equally unsatisfactory because of the dynamic nature of the system. This 

problem in accurate load estimation makes load control by call blocking difficult since the 

success of the mechanism relies on an accurate measure of the load on the ring. A 

compromised reset rate measurement interval which could provide the best load estimate is 

highly desirable. For more accurate load estimation, more intelligence would inevitably be 

required in the load monitoring scheme and hence more complexity. Both options are venues 

for further investigation. 

The dynamic 'd' allocation scheme tested in the simulation has proved to be very 

effective in controlling the VBR video traffic. It also provides the capability to carry out 

some load smoothing on the ring by adapting the 'd' allocation to a longer_term cell arrival 

rate, i.e. a slower response, but sufficient buffering must be made available to absorb the 

irregular load on the node. Insufficient buffering has been the main cause of many of the cell 

losses observed when a small node buffer was used. It is, however, not known what the 

performance of the scheme would be, had higher bit rate sources been used, since the step 

increment of 'd' in the scheme may not be able to cope with a sudden large increase in the 

load on a node. This situation may require the use of a larger buffer to sustain the temporary 
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discrepancy between the bandwidth required and the bandwidth provided, or else the scheme 

would have to be based on a short-term cell arrival rate, which may not be very satisfactory 

since it introduces large load variations on the ring. This is also an area for further work. 

The exact relationship between the node buffer size and the cell loss rate is relatively 

unknown. With the dynamic 'd' allocation scheme, only a moderate amount of buffer should 

be required to cope with the delay in the 'd' adjustment and the simultaneous arrival of cells 

from several connections. With a reasonably large buffer, some of the temporary overload 

can also be absorbed. Thus the actual cell loss rate could be lower than that estimated from 

the ring dimensioning. There is also an added dimension to this : the masking mechanism 

activated during overload tends to distribute the excess load over all the nodes; the overload 

burden and all the buffers on the ring are thus effectively shared among all the nodes, and this 

could further reduce the risk of cell loss. As a result, with a reasonably large node buffer, the 

cell loss performance remains excellent even under heavy load, while the call blocking 

performance degrades below the specification, making the latter a more critical criterion in 

service provision. 

The simulation study has shown that with proper dimensioning of the ring and proper 

exercise of the load control and overload control mechanisms, VBR video can be efficiently 

transferred over the ring, even in a multi-service environment, while still retaining its gain 

and achieving the required QOS for all services. Layered coding mayor may not be 

necessary depending on the cell loss performance on the ring and the amount of picture 

quality degradation acceptable to the viewer. A better cell loss performance is of course 

achieved at the expense of lower network utilisation. It has also been shown that the ring is 

more tolerant to overload than was expected. Temporary overloads were easily sustainable 

without incurring cell loss on the CBO services, and with sufficient buffering, on the VBR 

video as well. 

The results obtained from the simulation work have wide implications. Similar 

conclusions can be drawn from these results about larger rings or Tori systems. However, in 

order to assess the performance of a wide area Orwell network, the performance of another 

component of the network, namely, the link multiplexor, must be studied. Although the link 

multiplexor operates a similar protocol to the ring, the different architecture of the 

multiplexor would mean different system characteristics and would require a different setting 

of the traffic control parameters, or a different control philosophy since the node will have 

complete control over the link resources. There is, however, more leeway in traffic control on 

the multiplexor since a modern day point-to-point optical link has a vast capacity, and 

therefore bandwidth utilisation efficiency may not be an important issue. In addition, the ring 

should be studied with a cell structure conforming to the emerging ATM standard of a 32 or 

64 byte information field. 
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Other venues for further exploration in this work would inevitably require the use of 

more computing resources which are not presently available. However, when they are 

available, the simulation should extend over a longer period. This will enable more consistent 

results to be obtained, and will also enable a longer call holding time to be used for the VBR 

video connections, and therefore a more realistic simulation that brings out the true 

characteristics of VBR video. Higher speed rings and higher bit rate VBR video connections 

should also be a topic for future investigation. Another area of interest would be to model a 

layered codec in order to study the transfer of two-layer VBR video traffic over the ring. This 

represents an important area of research. 

W : Experimental studies on a prototype ring. The objectives of this part of the 

research have been largely achieved. A VBR video codec has been successfully derived from 

a CBO video codec and the inter-working of the modified codec with the experimental ring 

has been successfully demonstrated, although some noise problems on the data bus have yet 

to be solved. The concept of VBR video over an Orwell Ring has also been demonstrated in a 

multi-service environment, with the high priority service fully protected by the protocol as 

desired. 

The VBR codec, which is developed from a COST211 codec with ATM networks as 

the target carriers, uses only conditional replenishment coding with bridging in its present 

stage. Video data are therefore byte-oriented; this enables the ease of testing new addressing 

schemes and provides the codec with some error-resilient properties. The codec should be 

upgraded to include the full COST211 coding strategy as soon as possible, in order to enable 

the study of the full extent of the cell loss problem with highly compressed video and in the 

absence of a byte boundary in the data stream. 

There are other pressing problems to be solved as well, mainly that of the much higher 

codec output in relation to the node throughput This problem may be solved later when the 

full coding strategy is implemented, but it quick solution is required for the present 

demonstration of the inter-working of the two systems. Another problem is the 

implementation of a second channel for background refresh to clear errors in the receiver 

frame store. 

7.2 Conclusions 

A number of aspects related to the transmission of VBR video over an Orwell Ring 

have been examined in this research. Most importantly, the study of the relative merits of 

VBR video and the simulation study of the efficient transfer of such bursty traffic over an 

Orwell Ring have shown a strong favour in using VBR video as the basis for supporting 

future video services on the Orwell networks, particularly the videophone/video-conferencing 

services where bandwidth, or cost economy is a major factor for their widespread acceptance. 
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This thesis presents the research work in a progressive manner, by first providing a 

general background to the effect of efficient video coding on the underlying nature of the 

output signal bit rate, and then looking at the problems of transmitting and controlling this 

bursty traffic on A TM networks. 

The study began with an investigation into the signal statistics of VBR video signals 

and an assessment of the relative merits of VBR video based on these results. The 

investigation was conducted mainly on head and shoulders videophone type pictures using a 

modified COST211 codec. The results indicated a possible bandwidth gain of 2-3 over CBO 

video based on the peak-to-mean bandwidth ratio measurements, but not including peaks due 

to scene changes since full resolution is not considered necessary under this condition. This 

is, however, not the only basis upon which the merits of VBR video were assessed. The 

highly variable nature of the signals means that a very sophisticated feedback mechanism 

would be required to smooth the signals, and adjustments of the picture quality are inevitable 

in the process. VBR video obviates the need for such a complex mechanism and therefore 

results in a potentially simpler codec design and a constant picture quality. Other limiting 

factors of the CBO video were also considered, for instance, the fact that bandwidth 

allocation for CBO video is not adaptive to the optimum bandwidth requirements of the 

individual video sources inevitably leads to inefficiency. There is, therefore, much to be 

gained from the use of VBR video for supporting video services. 

The benefit of VBR video cannot, however, be realised unless a large number of 

uncorrelated sources are available for statistical multiplexing to be effective, thereby 

smoothing out the large data rate variation. The effects of statistical multiplexing were 

investigated, and the results demonstrated that data rate smoothing was achieved and peaks 

were effectively subdued with only seven sources. It is thus concluded that the VBR video 

gain can be realised with a reasonably large number of uncorrelated sources on an ATM 

network. 

The study of the VBR video signal behaviour has also enabled a simple VBR video 

source model to be developed for the simulation of the transfer of VBR video over an Orwell 

Ring. For reasons of economy in computing resources and insufficient data on some aspects 

of the source behaviour, many simplifIcations were necessary in the model, thereby limiting 

its scope. Nevertheless, the model exhibits many of the desired properties of a VBR video 

source, such as the inter-frame correlation, frame data rate with an Erlang distribution and the 

intra-frame data burst. The model is considered to be adequate for the purpose of this work, 

where exact modelling of the source was not the objective. 

Simulation of the transmission of VBR video over an Orwell Ring has shown that the 

Orwell protocol together with the dynamic 'd' allocation scheme provide sufficient traffic 

control mechanisms to allow for the effective control of the bursty VBR video traffic and the 

safe transfer of CBO traffic over the ring. 
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With correct dimensioning of the ring capacity and proper exercise of the control 

mechanisms provided in the protocol and the 'd' allocation scheme, the required call blocking 

performance can be achieved for all the services on the ring. The cell loss rate on VBR video 

can be kept negligible with only a relatively small buffer, and cell security for the CBO 

services can be maintained. The above can be achieved with little loss in the bandwidth gain 

of VBR video, and the gain approaches the expected value with a high VBR video traffic 

level. With 23 E, only 20%-30% of extra capacity was required for an estimated cell loss rate 

in the order of 10" on a 10 node, 34 Mb/s ring. Cell delay was minimal for all the services, 

with a mean delay of no greater than 30 I!S under normal ring loading conditions. The overall 

performance is expected to be even better with many different services on a network, 

especially in the presence of some wide bandwidth services at low traffic levels, because of 

the large amount of accumulated spare capacity reserved for each service to enable it to meet 

its service requirement 

The use of the dynamic 'd' allocation scheme for the VBR video enables a small node 

buffer to be employed. As a result, the use of a moderately large buffer was sufficient to cope 

with temporary overloads and helped to reduce the risk of cell loss. The ring was thus able to 

support a very small cell loss rate for VBR video without any further complexity in control, 

or the need for a very large buffer. 

Even under overload conditions in terms of call attempts, the control mechanisms were 

most effective in protecting the high priority services such that no cell loss was incurred upon 

them. With sufficiently large buffers, losses on VBR video can also be minimised. This was 

due, in part, to the distribution of the excess load over all the nodes by the masking 

mechanism during ring overload, thereby avoiding any single node, or group of nodes, having 

to bear the full effect of the overload, and effectively making all the buffers on the ring 

available to absorb the excess load. 

The ring has also been shown to be tolerant to temporary overloads. Cell security on the 

high priority services was maintained even though the maximum reset interval was exceeded 

quite frequently. The minimum reset rate of 16 resets/2ms was, however, only rarely violated. 

This has led to the conclusion that the activation of the auto-reset within 125 I!S when no reset 

is received, is inappropriate. The suitability of the use of 2 ms as the basis for the reset rate 

(or load) measurement is also doubtful. 

The COST211 codec has been successfully modified to operate as a VBR video codec. 

The transmission aspects of the codec in an ATM network environment have been accounted 

for. These include the use of a random access frame store for data-decoder synchronisation 

and an addressing scheme which provides for rapid error recovery. The codec has been 

shown to work satisfactorily in a back-to-back mode and the performance of VBR video is 

impressive. The inter-working of the codec with the ring has been successfully demonstrated 
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and the effectiveness of the protocol in a multi-service environment (which includes VBR 

video) has been verified. The concept of VBR video over an Orwell Ring has thus been 

demonstrated. 

In closing, this research has shown the benefits and feasibility of using VBR video as 

the basis for supporting future personal video communications over an Orwell-based BISDN. 

In particular, the more efficient utilisation of network resources achieved with VBR video 

transmission could reduce the cost of providing these services and help to gain their 

widespread acceptance by the user base. VBR video should therefore be seriously considered 

for applications in future video-communication services. 
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Sequence 2 
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Sequence 4 
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Sequence 6: 

Frame 0 (0 sec.) Frame 250 (10 sec.) 

Frame 500 (20 sec.) Frame 750 (30 sec.) 

Frame 1000 (40 sec.) Frame 1250 (50 sec.) 
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A. Synchronisation and Addressing Scheme for the GEC/BT 2 Mh/s 

Video-conferencing Codec 

1 Video Synchronisation 

The transmission of video synchronisation is by means of Line Start and Field Start 

Codes ( LSe and FSe ). 

1.1 Line Start eode 

The LSe includes a synchronisation word, a 3-bit line number code and a sub-sampling 

bit to signal the presence of element sub-sampling. The LSe is 20 bits in length and has the 

form 

unique code word 

(16 bits) 

s 3-bit line no. code 

's' is used to indicate the presence of horizontal sub-sampling on the video line that follows. 

The line number code comprises the 3 least significant bits of the line number. Lines 143 and 

287 are non-coded lines used for field synchronisation and line number continuity. 

1.2 Field Start Code 

The FSe indicates the start of a video field. Each FSe comprises the last LSe of a 

field, followed by an 8-bit code and then followed by the LSe of the first line of the next 

field. A FSe is as follows: 

unique code word I Filii 

LSe for lines 143 & 287 

OOOOFIIF unique code word I S I 000 

unique code LSe for lines 0 & 144 

'F' indicates the field in which the following video data belongs, i.e. odd or even field. 

142 
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2 Addressing of Pixel Clusters 

2.1 Luminance Clusters 

The positions of the clusters along each line are addressed by means of an address of 

the start of the cluster and 'End of Cluster' code (EOC). 

The form of coding is : 

LSC PCM value 8-bit addr. of the PCM pixel 

... I EOC I PCM value I 8-bit addr. of the PCM pixel 

Variable length DPCM coded 

cluster 

etc ... 

The PCM value is the amplitude of the flrst pixel of the cluster. When there is no 

chrominance data, the EOC is omitted from the last luminance cluster of every line, i.e. both 

the LSC and FSC also signify end of cluster. 

The EOC code is a 4-bit unique code. 

The address indicates the sample number along the line of the flrst pixel of the cluster. 

2.2 Chrominance Clusters 

A colour escape code (CEC) is defined to allow extra space in the addressing range 

defined by 8 bits. This escape code is signalled by transmitting the EOC code followed by a 

unique code, and then the PCM value of the first colour moving pixel. 

The form of addressing of chrominance clusters is shown below: 

VLC lum. EOC CEC PCM value of first 

pixels 

VLC 

Chrom.pixels 

moving Chrom. pixel 

.... EOC PCM Addr. of cluster 

pixel 

Addr. of first Chrom. cluster 

LSC ... 

On video line where there is no chrominance cluster, the CEC is not transmitted. Where 

there is no luminance cluster, the CEC will appear directly after the LSC and precedes the 

PCM value of the first pixel of the first chrominance cluster. 
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B. Addressing Scheme for the VBR Video Server 

In order to preserve the byte boundary of the PCM video data stream, this addressing 

scheme has been designed to be byte oriented. The following details the individual feature of 

the addressing scheme. Each byte is identified with one of the three possible field types: 

i) control 

ii) addressing 

iii) data 

Unique codes are derived for various control functions in the scheme. 

1.1 Line start I Continuation Code (LSCC) 

0000 XXXX 

4 bits 

unique code 

4 bits XXXX : Number of Packets 

The upper nibble of this control byte is a 'unique' code and has a dual (mutually 

exclusive) role. When cluster data associated with a particular line is required to be 

transmitted, a LSCC is sent as the first in a sequence of control, addressing and data 

information. The lower nibble indicates the number of addition packets required to send the 

complete cluster information for a given line. If the total line cluster data can be 

accommodated within a single packet, this value is set to zero. Where the situation arises that 

more than 16 packets are required to send the line data, a Continuation Code (second role) is 

generated. Such is the case when a whole line is to be transmitted. Experiments have shown 

that Continuation Codes arise infrequently. Indeed, this code is only generated in the case 

where complete frame update or excessive picture movement occurs. In the absence of line 

cluster data, no LSCC codes are transmitted. 

1.2 Line Address (LA) 

FXXXXXXX F=O : odd field 

8 bits F=1 : even field 

This byte directly follows the LSCC code, and simply indicates with which line the 

cluster data is associated. The most significant bit is used as a field indicator, and obviates the 

need for field start code. 
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1.3 Start of Cluster Code (SLCC, SCCC) 

1111 XXXX 1010 for luminance clusters 

4 bits 4 bits XXXX: 0101 for chrominance clusters 

unique code 

This control byte precedes the cluster data by one byte and in the case of the first 

cluster in a line, directly follows the Line Address. A 4-bit unique code is again used for the 

upper nibble; the lower one being used to differentiate between a luminance or chrominance 

cluster. 

1.4 Cluster Address (CA) 

AAAAAAAA 

8 bits 

In order to locate precisely where in a line the cluster begins, a Cluster Address 

precedes the pixel data. In the case of the luminance data, address values lie within the range 

1 - 255 and for chrominance addresses 1 - 51. 

1.5 Pixel Data (PD) 

DDDDDDDD 
8 bits 

Conditional update data is transported as 8-bit PCM for both luminance and 

cbrominance pixels. 

1.6 Packet Filler (PF) 

11111111 

8 bits 

This byte is used to fill up an otherwise incomplete packet arising at the end of a field, 

ensuring immediate dispatch. This avoids waiting for the next field's conditional update data 

to begin. 
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The following example illustrates how the octets would be assembled for a new line: 

LSCC LA SLCC CA 

OOOOPPPP FAAAAAAA 11111010 AAAAAAAA 
UC NP F UC 

where - byte boundary 

UC - unique code 

NP - number of packets 

F - field indicator 

For a new chrominance cluster, this would be assembled as: 

PD SCCC CA PD 

DDDD DDDD 11110101 AAAA AAAA DDDD DDDD 

PO 
ODDDDDOD 
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Table for areas under the normalised Normal curve: 

.00 .01 .02 .03 .04 .05 .06 .01 .08 .o? 
------._-_._--_ ... _---------------------------_._-----------------------------------------------------------_ ...... 
0.0 .50000 .49601 .49202 .48803 .48405 .48006 .41608 .41210 .46812 .46414 
0.1 .46011 .45640 .45224 .44828 .44432 .44038 .43644 .43251 .42858 .42465 
0.2 .42014 .41683 .41294 .40905 .40511 .40129 .39143 .39358 .38914 .38591 
0.3 .38209 .31828 .31448 .31070 .36693 .36311 .35942 .35569 .35191 .34817 
0.4 .34458 .34090 .33124 .33360 .32991 .32636 .32216 .31918 .31561 .31207 
0.5 .30854 .30503 .30153 .29806 .29460 .29116 .28114 .28434 .28096 .27760 
0.6 .21425 .21093 .26163 .26435 .26109 .25185 .25463 .25143 .24825 .24510 
0.1 .24196 .23885 .23516 .23269 .22965 .22663 .22363 .22065 .21110 .21476 
0.8 .21186 .20891 .20611 .20321 .20045 .19166 .19489 .19215 .18943 .18671 
0.9 .18406 .18141 .11819 .17619 .11361 .11106 .16853 .16602 .16354 .16109 
1.0 .15866 .15625 .15386 .15150 .14911 .14686 .14451 .14231 .14001 .13186 
1.1 .\3567 .\3350 .13136 .12924 .12114 .12507 .12302 .12100 .11900 .11702 
1.2 .11501 .11314 .11123 .10935 .10149 .10565 .10383 .\0204 .10021 .09853 
1.3 .09680 .09510 .09342 .09116 .09012 .08851 .08692 .08534 .08319 .08226 
1.4 .08016 .01921 .01180 .07636 .01493 .01353 .01215 .07018 .06944 .06811 
1.5 .06681 .06552 .06426 .06301 .06118 .06057 .05938 .05821 .05105 .05592 
1.6 .05480 .05310 .05262 .05155 .OS050 .04941 .04846 .04146 .04648 .04551 
1.1 .04451 .04363 .04212 .04182 .04093 .04006 .03920 .03836 .03154 .03613 
1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03014 .03005 .02938 
1.9 .Q2812 .02801 .02143 .02680 .02619 .02559 .02500 .02442 .02385 .02330 
2.0 .02275 .02222 .02169 .02118 .02068 .02018 .01910 .01923 .01816 .01831 
2.1 .01186 .01743 .01100 .01659 .01618 .01518 .01539 .otl00 .01463 .01426 
2.2 .01390 .01355 .0\321 .01281 .0125S .01222 .01191 .01160 .01130 .01101 
2.3 .0\012 .01044 .010\1 .00990 .00964 .00939 .00914 .00889 .00866 .00842 
2.4 .00820 .00798 .00116 .00155 .00134 .00114 .00695 .00616 .00651 .00639 
2.5 .00621 .00604 .00581 .00510 .00554 .00539 .00523 .00508 .00494 .00480 
2.6 .00466 .00453 .00440 .00421 .00415 .00402 .00391 .00319 .00368 .00351 
2.1 .00341 .00336 .00326 .00311 .00301 .00298 .00289 .00280 .00212 .00264 
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193 
2.9 .00181 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139 
3.0 1.35E-3 1.31E·3 1.26E-3 1.22E-3 1.18E-3 1.14E·3 1.I1E-3 1.01E-3 I.04E·3 I.00E-3 
3.1 9.68E-4 9.36E-4 9.04E-4 8.14E-4 8.4SE-4 8.16E-4 1.89E-4 1.62E-4 1.36E-4 7.IIE-4 
3.2 6.81E-4 6.64&4 6.4IE-4 6.19E-4 5.98E-4 5.11&4 5.51E-4 5.38E-4 5.19E-4 S.OI&4 
3.3 4.83E-4 4.61E-4 4.50E-4 4.34E-4 4.19&4 4.04E-4 3.9OE-4 3.76&4 3.62E-4 3.50E-4 
3.4 3.31&4 3.25E-4 3.13E-4 3.02E-4 2.9IE-4 2.80&4 2.70E-4 2.60E·4 2.5IE-4 2.42E-4 
3.5 2.33E-4 2.24E-4 2.16E-4 2.08E-4 2.00&4 1.93&4 1.85E-4 1.19E-4 I.12E-4 1.65E-4 
3.6 1.59E-4 1.53&4 1.41E-4 1.42E-4 1.36E-4 1.31&4 1.26E-4 1.21&4 1.17E-4 1.12E-4 
3.1 1.08E-4 1.04&4 9.96E-5 9.58E-5 9.20E-5 8.84E-5 8.50E-5 8.16E-5 1.84E-5 1.53E-S 
3.8 1.24E-5 6.95E-5 6.61E-S 6.4IE-5 6.15E-5 5.91E-5 S.61E-S S.44E-S 5.22E-S S.01E-5 
3.9 4.8IE-5 4.62E-5 4.43E-5 4.25E-5 4.08E-S 3.91E-5 3.1SE-5 3.60E-5 3.45E-5 3.31E-S 
4.0 3.11E·S 3.04&S 2.91E-S 2.79E·5 2.67E·S 2.56&5 2.45&S 2.35&5 2.25E·S 2.16E-S 
4.1 2.01E-5 1.98E-S I.90E-5 1.81E-S 1.74E-S 1.66E-S 1.59E·S I.S2E-5 1.46E-5 1.40E-S 
4.2 1.34E-5 1.28E-5 1.22E-5 1.I1E-5 1.12E-5 1.07E-5 1.02E-5 9.78E-6 9.35E-6 8.94E-6 
4.3 8.S5E-6 8.11E-6 7.8IE-6 1.46E-6 1.\3&6 6.81E-6 6.SIE-6 6.22E-6 5.94E-6 S.61E-6 
4.4 5.42&6 S.11E-6 4.94E-6 4.72E'6 4.S0E-4 4.30E-6 4.IOE-6 3.91E-6 3.74E-6 3.56E-6 
4.5 3.40E-6 3.24E-6 3.09E-6 2.95E-6 2.82E-6 2.68E-6 2.56E-6 2.44E-6 2.33E·6 2.22E-6 
4.6 2.IIE-6 2.02E-6 1.92E-6 1.83E-6 1.14E-6 l.66E-6 1.58E-6 1.51&6 I.44E·6 1.31E-6 
4.1 1.30E-6 1.24E-6 1.18E-6 1.12E-6 1.01E-6 1.02E-6 9.69E·1 9.22E-1 8.18E·1 8.35E-7 
4.8 7.94E-7 7.S6E-7 7.19E-1 6.84E-1 6.50E-7 6.18E-1 5.88E-1 S.S9E-1 5.3IE-1 S.05E-7 
4.9 4.80E·1 4.56E·1 4.33E-1 4.12E-1 3.9IE·7 3.72E-1 3.53E-1 3.35E·1 3.18E-1 3.02E-1 
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The Erlang 'B' Capacity Table 

Number Number 
of 1 lost call in of 1 lost call in 
trunks 50 100 200 1000 trunks 50 100 200 1000 

(0.02) (0'01) (0,005) (0,001) (0·02) (0·01) (0,005)(0'001) 

E E E E E E E E 

1 0'020 0'010 0'005 0·001 24 16'6 15·3 14·2 12'2 
2 0·22 0·15 0'105 0·046 25 17'5 16'1 15·0 13'0 
3 0'60 0'45 0·35 0·19 26 18·4 16·9 15·8 13·7 
4 1-1 0·9 0'7 0'44 27 19'3 17·7 16'6 14'4 
5 1-7 1-4 1-1 0·8 28 20'2 18'6 17·4 15·2 
6 2'3 1·9 1·6 H 29 21·1 19·5 18'2 15·9 
7 2·9 2'5 2·2 1-6 30 22'0 20·4 19'0 16'7 
8 3·6 3·2 2-7 2'1 31 22·9 21·2 19'8 17'4 
9 4'3 3·8 3'3 2'6 32 23·8 22'1 20'6 18·2 

10 5'1 4'5 4·0 3'1 33 24'7 23'0 21-4 18'9 
11 5·8 5'2 4'6 3·6 34 25'6 23·8 22'3 19'7 
12 6'6 5·9 5·3 4'2 35 26'5 24'6 23'1 20'5 
13 7'4 6·6 6·0 4·8 36 27'4 25'5 23'9 21'3 
14 8·2 7'4 6'6 5·4 37 28·3 26'4 24·8 22'1 
15 9'0 8·1 N 6·1 38 29'3 27'3 25'6 22'9 
16 9·8 8·9 8'1 6·7 39 30'1 28·2 26·5 23'7 
17 10.7 9'6 8'8 7·4 40 31·0 29'0 27'3 24'5 
18 11'5 10·4 9·6 8·0 41 32'0 29·9 28·2 25'3 
19 12'3 11'2 10'3 8·7 42 32·9 30·8 29'0 26'1 
20 13·2 12·0 11-1 9·4 43 33·8 31·7 29·9 26·9 
21 14'0 12·8 11·9 10·1 44 34·7 32'6 30·8 27'7 
22 14·9 13·7 12·6 10·8 45 35·6 33·4 31·6 28·5 
23 15·7 14·5 13·4 11·5 46 36'6 34'3 32·5 29·3 
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Number Number 
of 1 lost call in of 1 lost call in 
trunks 50 100 200 1000 trunks 50 100 200 1000 

(0,02) (0,01) (0,005) (0'001) (0,02) (0'01) (0'005) (0,001) 

E E E E E E E E 

47 37·5 35'2 33'3 30·1 74 62·9 59·8 57'3 52'6 
48 38·4 36'1 34·2 30·9 75 63'9 60'7 58·2 53'5 
49 39·4 37'0 35·1 31-7 76 64·8 61·7 59·1 54·3 
50 40·3 37'9 35·9 32·5 77 65'8 62'6 60·0 55·2 
51 41·2 38'8 36·8 33·4 78 66'7 63'6 60·9 56'1 
52 42·1 39·7 37·6 34·2 79 67·7 64-5 61-8 56-9 
53 43·1 40'6 38·5 35-0 80 68'6 65'4 62·7 57'8 
54 44·0 41'5 39'4 35·8 81 69-6 66·3 63·6 60·3 
55 45·0 42'4 40'3 36'7 82 70·5 67·2 64'5 59'5 
56 45·9 43'3 41'2 37-5 83 71·5 68·1 65'4 60'4 
57 46-9 44'2 42·1 38·3 84 12·4 69·1 66'3 61'3 
58 47·8 45'1 43·0 39·1 85 73'4 70'1 67·2 62'1 

59 48'7 46'0 43'9 40-0 86 74'4 71'0 68'1 63·0 

60 49·7 46'9 44'7 40-8 87 75'4 71·9 69·0 63'9 
61 50'6 47'9 45·6 41'6 88 76'3 12'8 69·9 64·8 
62 51'6 48'8 46'5 42·5 89 77·2 73'7 70-8 65'6 
63 52'5 49'7 47·4 43'4 90 78'2 74·7 71'8 66'6 
64 53'4 50'6 48'3 44'1 91 79·2 75'6 72·7 67'4 
65 54·4 51'5 49·2 45'0 92 80'1 76'6 73'6 68'3 
66 55'3 52-4 50'1 45'8 93 81'0 77'5 74'3 69·1 
67 56'3 53'3 51·0 46'6 94 81'9 78'4 75'4 70'0 
68 57·2 54'2 51'9 47'5 95 82'9 79'3 76'3 70·9 
69 58'2 55'1 52·8 48'3 96 83'8 80'3 77'2 71'8 
70 59'1 56'0 53·7 49'2 97 84'8 81·2 78'2 72'6 
71 60·1 57'0 54'6 50·1 98 85'7 82·2 79'1 73·5 
72 61-0 58'0 55'5 50·9 99 86'7 83·2 80'0 74'4 
73 62'0 58'9 56·4 51·8 100 87'6 84·0 80-9 75'3 
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