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ABSTRACT 

In this thesis, new wavelet-based techniques have been developed for the 

extraction of features from speech signals for the purpose of automatic speech 

recognition (ASR), One of the advantages of the wavelet transform over the short 

time Fourier transform (STFf) is its capability to process non-stationary signals. 

Since speech signals are not strictly stationary the wavelet transform is a better 

choice for time-frequency transformation of these signals. In addition it has 

compactly supported basis functions, thereby reducing the amount of 

computation as opposed to STFf where an overlapping window is needed. 

New features based on the discrete wavelet transform (DWT) and the 

admissible wavelet packet (A WP) have been proposed. These features are not 

only speaker-independent but also overcome the problem of shift variance 

encountered in earlier approaches. To match the human auditory system, which 

has constant relative bandwidth channels, admissible wavelet packets have been 

proposed to obtain a similar 24-band structure. A simple classifier based on the 

Linear Discriminant Analysis (LDA) has been used for classification and the 

recognition performance has been compared with those of the standard Mel scale 

cepstral coefficients (MFCC) based features. An Artificial Neural Network based 

classifier has also been tested to assess the improvement that may be achieved by 

a non-linear classifier. 

In order to establish the robustness of the proposed features, the noise 

performance is also studied at different levels of signal to noise ratios and a new 

technique of robust wavelet-based sub-band features has been proposed. Further 

more, a' new pre-processing stage based on wavelet denoising is proposed to 

enhance the recognition performance under noisy (white Gaussian) conditions. 



Finally, the 24-band admissible wavelet-based features are tested on a 

recogniser using the Hidden Markov Model (HMM) for the task of word 

recognition from continuous speech. The recognition performance was tested for 

clean as well as noisy speech and this was compared with the standard MFCC 

based features. The proposed denoising technique is found to increase the 

recognition performance significantly in the presence of noise for the MFCC as 

well as 24-band admissible wavelet-based features. 
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CHAPTER! 

INTRODUCTION TO SPEECH 

RECOGNITION 

Since the earliest days of computing, speech was considered to be the 

ultimate human/machine interface specifically for interacting with computers. 

This is because speech is the most effective means of communication between 

human beings. To make this interface possible, automatic speech recognition 

(ASR) capabilities are required by a machine. Although current ASR systems 

show great promise in providing this human/machine interface there is still a 

large gap to bridge. The major problems in the implementation of an ASR system 

are the complexity and variability of speech signals. The variations in speech 

signals may be due to the motion and size of the vocal tract articulators and their 

constraints. The variation of the acoustic media can also cause a difference in the 

speech signals. The main cause of variations can be classified into following 

groups: 

l. Acoustic media: This includes noise in the background, interference created 

due to reverberation and changes in the environment, position and 

characteristics of the microphone. In the case of speech recognition over the 

telephone or mobile network, additional factors such as channel distortion 

and fading come into effect and can further distort and band-limit the signill. 

2. Inter-speaker variability: Due to anatomical differences in vocal tracts and 

articulators, speech signals carry information about individual speakers along 

with the phonetic and linguistic information. The geographical origin of the 
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speaker may also add to the variations due to the presence of different 

dialects in various parts of the world. 

3. Intra-speaker variability: Even for the same speaker the motion of the 

articulators is not the same for the same sound. Also there are problems of 

co-articulations in which the same phoneme is pronounced differently 

depending upon the context. Variations in speech can also be caused due to 

psychological state of the speaker, e.g. stress, joy, anger, hesitation, etc. 

In spite of all these variations, speech signals are structured and are 

subject to phonetic and linguistic rules. The ASR tries to extract this structured 

information related to each phoneme for the purpose of recognition. Recently 

there have been efforts to integrate visual information with audio in order to 

enhance the performance of speech recognition [I], [2], [3]. A brief overview of 

an ASR is given in the next section. 

1.1 Overview of automatic speech recognition systems 

An ASR mainly consists of four processing units; the front end, acoustic 

modelling, language modelling and decoding. A general block diagram of an 

ASR system is shown in Figure 1.1. The acoustic processing front-end takes the 

input as analogue speech and in the simplest case may perform the analogue-to­

digital (AID) conversion only. Sometimes digital filters are used for pre­

emphasis and noise removal. The microphone used for inputting speech may 

introduce noise at the line frequency, as well as low and high frequency loss and 

non-linear distortion. The AID conversion itself introduces quantisation noise 

and a fluctuating DC bias. This process can yield sampled data with a signal to 

noise ratio in excess of 30dB. The function of the pre-emphasis filter is to boost 

the signal spectrum at a rate of approximately 20dB per decade. This is carried 

out firstly to boost the voiced section of the speech as it has a natural attenuation 

of about 20dB per decade due to the speech production mechanism itself [4]. 

Secondly, it emphasises the perceptually important band above 1kHz for which 

the ear is more sensitive. 

2 
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Figure 1.1: Block diagram of a simple ASR. 

From the speech samples a duration T w seconds is windowed and is used 

for processing at later stages. The window duration may be from 20ms to 30ms 

and the Hamming window is usually used for this purpose. A frame is formed 

from the windowed data with a typical frame duration (Tr) of about 10 to 20ms. 

Since the frame duration is shorter than window duration there is an overlap of 

data and the percentage overlap is given as: 

% Overlap = «Tw-Tr)*lOO)ffw (1.1) 

As the number of samples in a frame is large, it will be very difficult for a 

classifier to work upon these samples directly for recognition. Furthermore, these 

samples carry information, much of which is redundant. An important unit in the 

acoustic front end is the feature extractor, which tries to extract sufficient and 

relevant information from the input samples thereby reducing the dimension. 

Usually time-frequency analysis is carried out during the frame period of the 

speech samples to extract features. Linear Predictive Coefficients (LPC), 

Perceptual Linear Prediction (PLP) coefficients and Mel Frequency Cepstral 

Coefficients (MFCC) are the most commonly used features for the task of speech 

recognition [4], [5], [6], [7], [8]. In a simple speech recognition system dealing 

with a small vocabulary the features extracted are passed to a classifier, which 

tries to recognise the input from these features. A classifier may be based on the 

Linear Discriminant Analysis (LOA) [9], [10], [11] or on the Artificial Neural 

Networks [12], [13], [14], [15], [16], [17] and classified without the use of a 

language model. In a more complex system the acoustic model may itself have a 

Hidden Markov Model (HMM) to encode the temporal evolution of features [8], 
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[18], [19]. 

The language model provides constraints in the occurrence of particular 

words and word sequences. This plays a very important role in determining the 

search space, which is crucial in making the speech recognition system respond 

in real time. A static language model has been used earlier in which the 

occurrence probability of a word sequence corresponding to the most recent N 

words is used to predict the probability of the current word. A language model 

that uses this approach is known as the N-gram model. Since the statistics of the 

model are developed during the training phase and remain fixed it is therefore a 

static model. In the case of a dynamic or adaptive language model the word 

probability depends on the input text observed until that time. This helps in 

improving the performance of the system in places where a large language source 

has sub-language structures within itself [6], [8], [20]. The last stage is the 

decoder (also known as the search stage). This predicts the most likely word 

sequence, given a language model, acoustic models and a sequence of utterances. 

The Viterbi algorithm is the technique most commonly used for decoding. It is a 

recursive transition network composed of the states of HMM in which each state 

can be reached from any other state. This search is time synchronous but the 

implementation is impractical because of the size of the search space. A Viterbi 

beam search is used in practice, which reduces the search space and a dynamic 

programming technique is used for this purpose [6], [21], [22]. 

An ASR is first trained before it can be used for a speech recognition 

application. The training speech data is first segmented into words and these 

words are further divided into smaller acoustic units called phonemes. These 

phonemes are essentially the building blocks of words irrespective of language. 

Since the content of the training speech is known, a lexicon is used to look into 

the phonetic transcription of each word. The problem of utterance recognition by 

an ASR boils downs to the recognition of these phonemes. The features are 

extracted from the phonemes for each frame duration and are then passed on for 

acoustic modelling. The HMM is first used to build a context-independent 

acoustic model for each phoneme. These acoustic models are refined using the 

entire data given in the training phase. This helps to build a speaker-independent 

phoneme model if many speakers are used during the training phase. To 
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overcome the problems of co-articulation, context-dependent acoustic models of 

these phonemes are also used. This takes into account the effect the previous and 

the next phoneme of the one currently under consideration. The technique 

increases the computational effort and the decoding time, but it results into 

considerable improvement in the performance of an ASR [8]. 

The training process is very important in improving the performance of a 

large vocabulary speaker-independent ASR system. The training data set should 

cover larger speaker distribution; this helps in improving the capabilities of an 

ASR for speaker-independent performance. Since a language model is derived 

during the training phase, the spoken utterance should be large enough in volume 

to generalise the calculation of word probability. During the testing phase the 

speech signal is segmented into phoneme duration, and for each phoneme 

features are extracted. Then a scoring is performed based on the earlier phoneme 

models developed during the training phase. These phonemes are then combined 

to give the formation of a word from a given lexicon with a score associated with 

it. The language model is then used to weight this word score by the probability 

of its occurrence in the context. 

The complexity of an ASR varies in a wide range. It can be as simple as 

speaker-dependent isolated word recognition on a very complex, large 

vocabulary speaker-independent continuous speech recognition in a nOIsy 

environment with channel distortion conditions. Depending upon its application 

the training process is tailored to have optimal recognition performance. 

1.2 Classification of ASR 

Depending upon the complexity, speech recognition systems can be 

classified into the following categories: 

Isolated words/digits recognition: These are the earliest reported 

systems used in speech recognition. Each word/digit is separated by a pause, 

which is used in order to mark the end of the spoken word/digit. These systems 

are essentially based on the template matching technique and the number of 

words recognised is therefore restricted to few tens only. 
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Continuous digit recognition: This is the next phase of development in 

speech recognition where continuous spoken digits are recognised without 

having the inter-digit pause. 

Read speech: This has a vocabulary size of about 100 words, but the 

inter-word pause is still present in this case. The emergence of dynamic time 

warping is an important landmark, which improves the recognition performance 

considerably [23). 

Continuous speech: This is the latest system on which a lot of research is 

continuing. The vocabulary size is around lOOk words. These systems are mostly 

based on the HMM and use language information coupled with acoustic 

information to recognise the speech. 

1.2.1 State of the Art 

The state-of-the-art ASR systems are speaker-independent, have a large 

vocabulary and can recognise continuous speech. The word error rate of these 

complex systems is below 10% in a quiet environment [8). However, it is found 

that in the case of background noise or in the presence of channel distortion the 

recognition performance degrades rapidly. Efforts are now focusing on 

improving the robustness of these ASR systems in the presence of noise and 

channel distortion. The first approach is based on the extraction of features that 

are inherently resistant to noise. The techniques used in this approach are 

RASTA (RelAtive SpecTrA) processing [24], one-sided auto-correlation linear 

predictive coefficient [25) and auditory model processing of speech [26). The 

second approach is based on the compensation model, which tries to recover 

intelligible speech from corrupted speech in the feature parameter domain or at 

the pattern matching stage. Methods using the second approach are cepstral 

normalisation [27), probabilistic optimum filtering [28), [29) and parallel model 

combination [18). 

1.3 Research Objectives 

There has been considerable progress in speech recognition technology 

during the last two decades; however, the basic feature extraction process has 
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remained unchanged and is based on the short time Fourier transform. The 

Fourier transform of a signal assumes that the signal is stationary during the time 

of analysis. This assumption only partially holds for some of the rapidly varying 

phonemes such as un voiced stops (e.g. Ip/. It! and /kJ). Hence, the recognition 

performance for some phonemes is found to be poor when Fourier methods are 

applied for feature extraction. 

The work detailed in this thesis explores an alternative time-frequency 

transformation technique based on the wavelet transform, which is suitable for 

stationary as well as non-stationary signal analysis. Recently, there have been 

many attempts to use the wavelet transform for the feature extraction task. The 

discrete wavelet transform [l0], [30], [31], [32] as well as wavelet packets [10], 

[11], [13], [l4], [33] have been tried for this purpose. Earlier works [l0], [11], 

[13] had problems using the wavelet transform because of the shift variance in 

the feature. The goal of this work is to extract new features by using the discrete 

wavelet transform and the wavelet packet that are both shift invariant and 

speaker independent. The thesis will also explore the possibility of using the 

admissible wavelet packets to design a Mel scaled filter similar to the one used 

for the MFCC. Furthermore, the performance of the extracted features will be 

evaluated in the presence of additive white Gaussian noise. 

To reduce the effect of noise on the performance of speech recognition 

system various filtering methods have been proposed [28], [29]. In this thesis, a 

new pre-processing technique based on wavelet denoising [34] is also 

investigated to reduce the effect of white Gaussian noise on the recognition 

performance. 

1.4 Organisation of the thesis 

This thesis is divided into seven chapters. In Chapter 1 a basic overview 

of speech recognition systems is presented. The chapter also discusses some of 

the problems encountered in the speech recognition processes by using the 

conventional techniques. 

In Chapter 2 a study of different types of features used for speech 

recognition is presented. LPC, PLP and MFCC-based feature extraction 
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processes and their relative advantages are examined in detail. Also the features 

for robust speech recognition are described in this chapter. 

Chapter 3 reviews the recently proposed discrete wavelet transform-based 

features and their problems. In this chapter a new set of features for phoneme 

recognition based on the discrete wavelet transform is proposed. The recognition 

performance of these features is tested using a Linear Discriminant Analysis­

based classifier and compared with the MFCC-based features. 

Chapter 4 introduces some of the problems with the technique developed 

in Chapter 3 and proposes the use of the admissible wavelet packets for feature 

extraction. The recognition results obtained by using the admissible wavelet 

packets are discussed in this chapter. Further, a 24-band filter structure based on 

the admissible wavelet packet is also proposed, with a bandwidth closely 

following the Mel scale. 

Chapter 5 begins by introducing the problems of nOIsy speech 

recognition. Modified admissible wavelet packet-based features are suggested for 

additive white Gaussian noise and their performance is evaluated for different 

signal-to-noise ratios. A new pre-processing stage based on wavelet denoising is 

finally proposed for the extraction of robust features. 

Chapter 6 deals with implementation of a continuous speech recognition 

system for words from the TIMIT database, for features derived with a 24-band 

filter structure using the admissible wavelet packets developed in Chapter 4. 

Further, the recognition performance of the above features and MFCC features 

are studied in the presence of different levels of white Gaussian noise of zero 

mean. Finally the improvement achieved by using the proposed wavelet 

denoising before the feature extraction is evaluated. 

Chapter 7 presents the general conclusions of this thesis and proposes possible 

improvements and directions of future research. 

1.5 Original Contributions 

The following novel techniques have been proposed in this thesis. 
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1. New log-energy based feature have been proposed using discrete wavelet 

transform and admissible wavelet packets for the task of speech recognition. 

These features are found to be shift invariant and have little variations with 

the change in speaker. These features are found superior to the wavelet 

coefficient based features. 

2. Further, admissible wavelet packets have been used to design a 24-band filter 

structure that closely follows the Mel scale. First 13 discrete cosine transform 

coefficients obtained from the log-energy in each frequency band have been 

proposed as features. These features gave superior performance as compared 

to the MFCC features when the frame duration was taken as 32ms. 

3. In order to reduce the effect of noise on the features extracted, a new wavelet 

based pre-processing technique has been proposed. This is based on the 

wavelet denoising of the input speech before the feature extraction phase. 

Both hard and soft thresholding have been applied to evaluate the 

improvement in the recognition performance for phoneme as well as word 

recognition task. 
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CHAPTER 2 

FEATURE EXTRACTION 

2.1 Introduction 

In this chapter various existing techniques that have been used for feature 

extraction in speech recognition applications are discussed. The shortcomings of 

the newly proposed wavelet-based techniques are also elaborated at the end of 

this chapter. The acoustic front end as explained in Chapter 1 carries out the 

feature extraction process. To identify features suitable for speech recognition it 

is essential to understand the language phonetics. A language can be described by 

a set of abstract linguistic units called phonemes (basic sounds). The phonemes 

are the smallest meaningful unit in the phonology of a language. These phonemes 

combine together to form different words of the language. There are differences 

between 'phonemes' and phonetic elements. A 'phoneme' is a basic unit as 

linguistically defined. It is difficult to represent them in acoustic space as they 

hardly show one-to-one mapping, i.e. a phoneme may be represented by more 

than in phonetic elements. In this thesis they are all loosely termed as 

'phonemes'. One of the possibilities for a speech recognition system is to identify 

the different phonemes for a given speech input and then later combine them to 

form valid words. Thus to implement a speech recognition system, the phoneme 

boundaries are to be detected. This process is known as segmentation. Recently a 

speech recognition system based on syllable identification has also been reported 

[1), however phoneme based recognisers are still most commonly used. The 

work carried out in this thesis is based on phoneme recognition, therefore to 
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identify phonemes it is necessary to understand about its type and production 

mechanism. The next section gives a brief introduction into the different types of 

phonemes. 

2.2 Phoneme types 

Sound is produced when air from the lungs is pumped out and passes 

though the trachea into the larynx where the vocal cords may vibrate due to the 

airflow. The air is then modulated by the pharynx and passed to the mouth and/or 

nasal cavity. The type of sound radiated depends upon the position of the various 

articulators (such as jaw, tongue, velum, lips etc) and the position of constriction 

in the vocal cord. 

Vowels: The vowels are generally long in duration compared to 

consonant sounds and are especially well defined due to the open vocal tract. 

They can be easily and reliably recognised. Vowels can be classified according to 

the tongue position in three main categories. Front vowels are liyl (as in 'beet'), 

lih! (as in 'it'), lael (as in 'at') and leh! (as in 'met'). Mid-position vowels are laa! 

(as in 'father'), lax! (as in 'all') and lah! (as in 'up'). Back vowels are lux! (as in 

'foot') luwl (as in 'boot') and 101 (as in 'obey'). 

Diphthongs: It is a gliding monosyllabic speech sound that starts at the 

near articulatory position of a vowel and moves to or towards the position of 

another vowel. The diphthongs in English are layl (buy) lawl (down), leyl (bait), 

loyl (boy), 101 (boat) and Iju! (you) but, there is disagreement as to the total 

number of diphthongs. 

Semi-vowels: These have vowel-like characteristics and the sound 

produced depends on the context in which they occur. The examples of the semi­

vowel are Iwl, Ill, Irl and Iy/. 

Nasal Consonants: These are produced by the nasal excitation with the 

vocal tract completely constricted at some part of the oral passage. The velum is 

lowered so that the air flows through the nasal tract and the sound is radiated 
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through the nostrils. The nasal consonants are Imf (lip constriction) 1nl 

(constriction behind the teeth) Ingl (constriction just forward of velum). 

Unvoiced Fricatives: Exciting the vocal tract by a steady airflow that 

becomes turbulent in the region of constriction of the vocal tract produces the 

un voiced fricative. The constriction divides the vocal tract in two cavities and the 

sound is radiated from the lips. The location of the constriction decides the sound 

produced. The unvoiced fricatives are If I (constriction near the lips), Ith! 

(constriction near the teeth), Isl (constriction in the middle of the oral tract) and 

Ish! (constriction at the back of the oral tract). 

Voiced Fricative: The voiced fricative are lvI, Idh!, IzJ and Izh!. These 

have the similar position of constriction with a difference that the vocal cord 

vibrates in this case. 

Voiced and Unvoiced Stops: For the production of a stop or plosive 

sound, there is a complete constriction in the vocal tract allowing the pressure to 

build up, then it is suddenly released. The stop sounds are dynamic in nature and 

their properties are influenced by the vowel that follows. The voiced stops are tbl 

(constriction at the lips), Id! (constriction at the back of the teeth) and IgI 

(constriction near the velum). The corresponding unvoiced stops with the similar 

constriction position are Ipl, It! and 1kI. The only difference is that in this case the 

vocal cords do not vibrate. 

2.3 Overview of feature extraction techniques 

To identify a phoneme some of its characteristics (features) in 

timelfrequency or in some other domain must be known. The basic requirement 

of a feature extraction system is to extract a set of features for each of these 

phonemes. A feature can be defined as a minimal unit, which distinguishes 

maximally close phonemes. The feature vector extracted should possess the 

following properties: 

1. Vary widely from class to class. 

2. Stable over a long period of time. 
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3. Can be easily computed from the input speech samples. 

4. Should be small in dimension. 

5. Should be insensitive to the irrelevant variation in the speech background 

noise and channel distortion. 

6. Should not have correlation with other features . 

.. Filter Bank 

Fourier 
r+ Transform 

.. Cepstrum 

.. Filter Bank 

Perceptual 

Spee weighting ch Cepstrum 
~ .. 

Filter Bank .. 
Linear 4 prediction Cepstrum .. 

Figure 2.1: Block diagram of different feature extraction techniques. 

Figure 2.1 shows the most commonly used techniques for feature 

extraction. The following techniques can be used directly/indirectly for 

extraction of features from speech signal: 

Fourier analysis: - To have a frequency domain description of the speech 

signals, the Fast Fourier Transform (FFT) is used. The FFT coefficients can be 

used to extract the formant frequencies Flo F2, F3 and F4, which can be used as a 

set of features to identify the phonemes. The formant frequencies are the peak 

resonant frequencies of the vocal tract and Fl is the lowest resonant frequency. 

The FFT analysis assumes that the signal is stationary; however, this is not 

strictly true for speech signals. Therefore, to force the above condition, the signal 

is analysed for smaller sub-intervals (called frames). This frame duration can be 

much shorter than the duration of the phoneme and is typically of IO-20ms 

duration. Due to the inertia of the articulators the speech signal is usually 
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stationary during this duration (with some exceptions). To evaluate the FFf 

coefficients in this frame duration a windowed version of the FFf is used, known 

as the Short Time Fourier Transform (STFT), which identifies the frequency 

components of the signal during the frame duration. If the windowed duration is 

small then the frequency resolution is poor (high time resolution), while a longer 

window gives better frequency resolution (poor time resolution). This is due to 

Heisenberg's Uncertainty Principle, which says that LlLM::;1I4n, where Llt and M 

is time and the frequency resolution respectively. Thus by using the STFT, high 

resolution in either frequency or time domain can be achieved for a given 

window size. Figure 2.2 shows the tiling of the time-frequency axis by the STFT. 

The FFT has also been used to calculate power at the output of a filter bank, 

which is then used as a feature [2]. It has also been used for the calculation of 

Mel frequency cepstral coefficients to be discussed in this section later. 

t 

Frequency 
t;.1 ~t;.t __ 

Time 

Figure 2.2: Uniform tiling of time-frequency plane by the STFT. 

There are a number of window functions possible such as rectangular, 

triangular, Hanning, Hamming, Blackman etc. Hamming window is a good 

choice because it has the smallest side lobe magnitude for a given main lobe 

width [3]. This is because the STFT does not have compact support. The process 

of frame-based analysis of phonemes is shown in Figure 2.3. Although the 

introduction of the window reduces the effects of side-lobes, it increases the 

computation because the data in the overlapping region is processed twice. 
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Figure 2.3: Window and frame structure used for analysing phonemes by using 

short time Fourier transform. 

Another concept of time frequency analysis is Wigner-Ville Distribution 

(WVD) which has been borrowed from physics. It was originally invented by E. 

P. Wigner and later adopted in signal processing by J. Ville. The WVD of a 

signal x(t) is given by 

(2.1) 

It is the Fourier transform of the signal's autocorrelation function with 

respect to the delay variable [4]. It can also be thought of as a short-time Fourier 

transform (STFT) where the windowing function is a time-scaled, time-reversed 

copy of the original signal. The WVD is a tool for time-frequency analysis 

because it generally has much better resolution than the short-time Fourier 

transform (STFT) method. 

The WVD has two notable limitations: 

• Cross-term calculations may give rise to negative energy. 

• Aliasing effect may distort the spectrum such that a high frequency 

component may be mis-identified as a low frequency component. 

These problems have been extensively studied; however, people are still 

on the lookout for better smoothing functions and alias-free distributions. Due to 

the above reasons WVD has not been tried since energy is an important feature 

for speech recognition task. 

Linear predictive analysis: - The vocal tract can be modelled as a time 

varying all-pole filter with its excitation coming from the glottal pulses. The time 
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varying nature of the filter is essentially because different sounds have different 

constriction and articulatory positions. Thus, this model is used to extract 

features that could help in the classification of the speech. The linear prediction 

technique is used to derive the filter coefficients by minimising the mean square 

error between the input and the estimated samples of speech. 12 coefficients are 

usually sufficient to predict the speech. For a signal So with linear predictive 

coefficients aj using p taps in the prediction filter the estimated signal So is 

given by: 

p 
So = ~s ·a· L.J n-l I 

i=l 
(2.2) 

These coefficients are extracted using the auto-correlation method or the 

co variance method [5]. The auto-correlation method is computationally efficient 

and gives a stable filter that is very important in the analysis-by-synthesis method 

of speech coding. 

After linear predictive analysis the cepstral coefficients can be extracted 

or further filtering can be applied to calculate the power in each band to be used 

as features. Perceptual weighting has also been applied after the linear predictive 

analysis to shape the spectrum similar to that of human ear response. 

Cepstral coefficients: - These coefficients are derived from the linear 

predictive coefficients and have an advantage of being independent 

(uncorrelated). Cepstral coefficients Cj can be calculated by the following 

equations: 

i-l 
Cj =aj+ L(1-kli).ak,Cj_k I :::;i:::;p 

k=l 

(2.3) 

The cepstral coefficients extracted can be used as such (unifonn 

weighting) or can be weighted by using some weighting function W j [5]. A few 

examples of the weighting function are: 
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Uniform weighting (2.4) 

Wj = 1 + 0.5.p.sin(n.ilp) I :S;i:S;p (2.5) 

and the weighted cepstral coefficients are given as: 

(2.6) 

The cepstral coefficients can also be extracted by first taking the FFT of 

the speech samples and then taking the log magnitude of these samples. 

Psychophysical studies have shown that the human perception of the frequency 

contents of the sound does not follow a linear scale. For each tone with a 

frequency of f Hz a subjective pitch is measured on a scale called the "Mel" scale 

[6]. Mathematically the Mel scale is given by: 

Mel(f) = 2595log10 (1 + f 1700) where f is in Hz (2.7) 

It has been found that the subjective pitch is linear on the logarithmic 

frequency beyond 1000Hz. To have a similar response to that of human ear, 

filters have been designed to follow the Mel scale. For speech sampled at 16kHz 

a bank of 24 filters, each having a constant bandwidth of 100Hz below 1000Hz 

and then having a logarithmic increase up to 8000Hz, has been designed. The 

central frequency and the bandwidth of these filters are shown in Table 2.1. 

The Mel filters have triangular profiles with overlapping bands, as shown 

in Figure 2.4. These filters must be normalised so that they do not increase 

energy in the higher frequency bands. The log of energy at the output of each 

filter is calculated and a Discrete Cosine Transform (DCT) is applied to give the 

Mel-frequency cepstral coefficients (MFCC). The MFCC is defined as the short­

term spectral envelope of a speech signal after filtering. The lower order terms of 

the cepstral coefficients give the idea of smoothness of the spectrum and 

correspond mainly to the vocal tract response rather than to the fine spectral 

structures. These fine structures produce the artefacts that reduce the spectral 

matching. These artefacts can be minimised by truncating the infinite series to a 

finite value. Various techniques have been used to achieve this, such as linear 

predictive modelling, using raised sine liftering, Gaussian liftering and 

perceptually based linear predictive (PLP) analysis [7]. A PLP based root power 

sum (RPS) front end is reported to have better recognition rate [8]. 
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Table 2.1: 24-band Mel scaled filters and their corresponding frequency bands 

Filter number Central frequency (Hz) Bandwidth (Hz) 

I lOO 100 

2 200 lOO 

3 300 lOO 

4 400 lOO 

5 500 100 

6 600 100 

7 700 100 

8 800 100 

9 900 100 

10 1000 124 

11 1149 160 

12 1320 184 . 

13 1516 211 

14 1741 242 

15 2000 278 

16 2297 320 

17 2639 367 

18 3031 422 

19 3482 484 

20 4000 556 

21 4595 639 

22 5278 734 

23 6063 843 

24 6954 969 
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Figure 2.4: Frequency response of the Mel scale filter bank (not normalised). 

2.4 Temporal Features 

With the availability of FFT and linear predictive analysis, spectral 

measures of the overlapped windowed frames were used as features. Mostly the 

features extracted were based on the LPC or the cepstral coefficients. These 

analyses assume that the signal is stationary during the windowed duration. 

However, the temporal changes in the spectrum of the speech signal also play an 

important role in its perception. To have a robust speech recogniser these 

temporal changes must also be included in the set of feature vectors. Delta 

coefficients or the difference coefficients that measure the changes in the 

coefficients over time have been proposed for this purpose [9], [10]. 

Harte [11] proposed the calculation of the dynamic features from the 

cepstral coefficients by using the OCT. He first calculated the cepstral 

coefficients by passing the signal through a bank of 21 Mel scale band-pass 

filters, squaring, averaging, taking the log and then taking the DCT of the stacked 

values. The RASTA (relgtive ~pec!rllJ) method adds an extra pole to a finite 

impulse response band-pass filter used in delta processing based on knowledge of 

human hearing perception, in which further improvement in the recognition 

performance under noisy environment can be achieved [12]. Shen [10] has 

shown that by using a post-processing unit after the RASTA the recognition 

performance can be further improved in a noisy environment; however, the 

performance degrades in the absence of noise. The post-processing unit actually 

minimises the classification error by using a minimum classification error 

algorithm. 
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2.5 Features for noisy speech 

Some of the speech recognition application areas may have to contend 

with a noisy environment. for example in factories. cars or aeroplanes. This calls 

for processing techniques that should be little affected by background noise and 

therefore on the performance of the recogniser. The human auditory system is 

robust to background noise. so to have a speech recogniser with robust 

performance. the human auditory system has been studied and many models have 

been proposed. Kim [13] proposed a simple zero crossing with peak amplitude 

(ZCPA) model as a robust front end for a speech recognition system in a noisy 

environment [13]. It consists of a bank of band-pass cochlear filters and a non­

linear stage at the output of each cochlear filter. Kim [14] has studied the 

performance of the ZCPA model and suggested the cepstral measures based on 

this model. The results of linear predictive coefficient cepstrum, MFCC. ZCPA 

spectrum and ZCPA cepstrum (ZCPAC) under noisy conditions have been 

studied and higher recognition with ZCPAC is reported with a MLP as well as 

discrete HMM classifier. 

RASTA [12] processing Improves the performance of a speech 

recognition system in the presence of additive noise and different channel 

distortion conditions. However. RASTA processing may not always give an 

optimal solution for noisy speech recognition [15]. A cepstral mean subtraction 

has been used to remove a constant bias produced by the channel or background 

noise. This is achieved by subtracting the short-time average of the cepstral 

vector from the current cepstral vector [16]. A subtraction based on the power 

spectrum has also been applied for robust speech recognition [17]. 

The Cepstral normalisation has been carried out by various techniques in 

order to reduce the effect of noise and channel distortion on the extracted features 

[18]. The Probabilistic Optimum Filtering (POF) [19]. [20] approach is based on 

the assumption that the clean speech cepstrum can be deri ved from the noisy 

cepstrum by using a linear transformation. In order to train the POF filter. stereo 

pairs of noisy and clean cepstral vectors are used at different levels of signal-to­

noise ratio (SNR). One side of the auto-correlation [21] of the signal is selected 

and high pass filtering is also applied. which removes the slowly varying 
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component. This causes the nOise to be removed. since it is assumed to be 

stationary. leaving the clean one-sided auto-correlation of the speech. 

2.6 Wavelet transform for feature extraction 

The STFf is at the heart of all the most commonly used feature extraction 

techniques. However. as explained earlier this transform assumes the signal to be 

stationary during the frame duration. In general this assumption is true except for 

the stop phonemes. Furthermore. it has a fixed time-frequency resolution. as 

shown in Figure 2.2. All these limitations arise because although the basis 

functions of the STFf are localised in frequency they are not localised in time. 

The wavelet transform is a time-frequency transform that can analyse non­

stationary signals as well as stationary signals with multi-resolution capability. It 

uses basis functions called 'wavelets'. which are localised both in time as well as 

frequency [22]. Due to these capabilities there has been growing interest in the 

use of wavelet for signal and image processing. The detail theory of the wavelet 

will be discussed in Chapter 3 and Chapter 4. 

A discrete wavelet transform has been used earlier for feature extraction, 

[23]. [24]. [25]. In [23] the wavelet coefficients were used as features by first 

ranking them in terms of their energy. The top few wavelet coefficients having 

high energy were selected as features. However. as the discrete wavelet 

transform is shift variant. these features are not very reliable. With a small shift 

in the signal the wavelet coefficients would change. thereby resulting in a change 

in the feature vector. The problem becomes non-existent if the shift is an integral 

multiple of the sampling time; however. this cannot be guaranteed in a practical 

situation. In order to reduce the problem due to shift. the signal can be over­

sampled or a different shifted version of the same signal can be given for feature 

extraction. Both of these solutions increase the computation load. 

The discrete wavelet transform has also been used in the place of DCT for 

the MFCC features and has shown improved performance both in the case of 

clean and noisy speech recognition [26]. [27]. Wavelet packets. which are more 

general form of the wavelet transform. have also been used for the feature 

extraction for speech recognition purpose [23]. [28]. [29]. [30]. [31]. The wavelet 
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packet approach is usually based on the best basis selection criterion, which 

suffers from the problem of shift variance [22]. In this work new sets of features 

based on the discrete wavelet transform and the wavelet packet have been 

proposed that are shift invariant and speaker independent. The next chapter gives 

a brief introduction to the wavelet transform and proposes new features for the 

phoneme recognition task. 
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CHAPTER 3 

DISCRETE WAVELET 

TRANSFORM FOR PHONEME 

RECOGNITION 

In the previous chapter the limitations of using the STFf were discussed 

and the wavelet transform was proposed to overcome these limitations. In this 

chapter, first an introduction to the discrete wavelet transform (OWT) is given, 

then new features for speech recognition are proposed. Experimental results 

obtained by using these features for the phoneme recognition task are also 

presented in this chapter. Finally, the results of the proposed novel features using 

OWT are compared with the results of earlier studies. 

3.1 Introduction to Wavelet Transform 

The assumption in the STFf calculations, that the signal is stationary, is 

not strictly valid for the speech signal. Therefore, it is not an ideal choice for the 

time-frequency analysis of a signal. The obvious solution to this problem is to 

use an adaptive window size, which allocates more time to the lowerfrequencies 

and less time for the higher frequencies. Figure 3.1 shows the tiling of the time­

frequency axis by the wavelet transform using variable window sizes and the 

STFf using a fixed window size. It shows that the time and frequency resolution 

is fixed for the case of the STFf while it is variable for the wavelet transform. 
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Thus, the filter must have a higher time resolution the higher the central 

frequency of the filter (i.e. Mlf = fixed or a constant 'Q' filter). By using this 

filter, two very short bursts can be separated in time by going up to the higher 

frequencies in the time-frequency plane. Therefore, this analysis can be used for 

signals that have short duration high frequency components and long duration, 

low frequency components (e.g. speech signal). All the filters are a scaled 

version of a prototype filter. 

Frequency 

Frequency 

Time 

V'v WM WNt/M . ~ .. 

Time 

(a) 

(b) 

Figure 3.1: Tiling of the time frequency axis using (a) wavelet transform (b) short 

time Fourier transform. 
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The prototype filter or the wavelet function '11 (t) IS given by the following 

relation: 

(3.1) 

where 'a' is the scaling factor and' 1:' is the translation factor. The term a-l12 is 

used for energy normalisation. WE L2(1R) (L2(1R) is finite energy space and IR is 

a set of real numbers) [l], [2]. The continuous wavelet transform (CWT) of a 

signal x(t) (where x E L2 (IR» is given by: 

CWT(a,1:) = a-1I2 f x(t).W*«t -1:)/a)dt (3.2) 

where '*' denotes a complex conjugate. The scaling parameter 'a' gives the 

width of the wavelet and '1:' gives the position. The function of the scaling 

parameter is similar to that of the scale used in maps. The higher values of 'a' 

give a global picture of the signal. The scale changes in the continuous time 

signal do not alter the resolution because it can be reversed, which is not the case 

for a digital signal. In the discrete time signal, increasing the scale means down­

sampling, thereby reducing the resolution while decreasing the scale will result in 

the up-sampling with no increase in resolution [2]. 

Another way of looking at the wavelet is as a basis function, and it can be 

seen as an inner product of the signal x(t) and '11 a,T(t). Thus, it is a measure of 

similarity between the signal and a basis function called a wavelet. The 

difference between the Fourier transform and the wavelet transform (WT) is that 

the b,!sis functions of the WT are localised in time while that of Fourier 

transform is not. Further, the WT does not have a single set of basis functions 

like the Fourier transform, which utilises just the Sine and Cosine functions. 

Instead, it has an infinite set of possible basis functions. The different wavelet 

families have different trade-offs between the compactness of the basis functions 

in space and their smoothness. 

If '11 has a compact support of size K, there are K wavelets IJI j,n at each 

scale 2j (which may have high amplitudes) whose support includes the isolated 
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singularity at to. To minimise the number of high amplitude coefficients the 

support size of 'If must be reduced. Higher vanishing moments produce large 

numbers of coefficients with smaller magnitudes. The support size of a function 

and the number of vanishing moments are a priori independent. However, a 

constraint is imposed on orthogonal wavelets, implying that if 'If has p vanishing 

moments then its support is at least of size 2p-I. Daubechies wavelets are 

optimal in the sense that they have the minimum support size for a given 

vanishing moment [I]. 

These two considerations are very important when wavelets are applied 

for signal compression. If the signal has few isolated singularities and the signal 

is very regular between singularities, a higher vanishing moment wavelet is 

desirable. If the density of the singularities increases, it is better to decrease the 

size of support to achieve higher compression. 

Figure 3.2 shows some examples of the wavelet basis functions and their 

corresponding order (vanishing moments). It can be seen that the smoothness of 

the 'Daubechies' wavelet basis increases with the increase in the order (number 

of vanishing moments), thereby making it for processing smooth signals with 

fewer singularities. However, the Daubechies wavelets are not symmetric, as 

seen in the Figure 3.2. 
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Figure 3.2: Some examples of basic wavelets (a) Haar wavelet (b) Coiflet of 

order 1 (c) Symmlet of order 4 Cd) Meyer (e) Daubechies of order 2 

(f) Daubechies of order 6. 
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10 

Wavelet analysis provides immediate access to information that may not 

be available by Fourier analysis. The wavelet coefficients obtained give an idea 

of how close the signal is to a particular basis function. To recover the signal 

from the wavelet coefficients the function must satisfy the following condition: 

+00 

f I/f(t)dt = 0 (3.3) 

The recovered signal is the same as the original signal xCt) and is given by: 
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-------- --------

x(t) = c if a-2 .CWT(a,-r)·\lfa,,(t)dad-r 
a>O 

(3.4) 

where 'c' is a constant and depends upon \If (t). The derivation of the equation 

3.4 is discussed in APPENDIX A. The CWT has orthogonal decomposition as 

well as being isometric (i.e. preserves energy). Typically, CWT is over-complete 

and appropriate sampling is required to eliminate the redundancy. Discrete time 

scaling can be obtained by choosing the sampling grid as: 

(3.5) 

where j and k are integers. Thus the resulting filter is given by: 

(3.6) 

and the wavelet coefficients can be obtained from the following relationship: 

(3.7) 

If the value of a o is close to unity and T is small then the wavelet 

function is over-complete. The reconstructed signal is the same as the one 

obtained by the CWT and there is no restriction on the filter \If (t). However, if 

the samples are sparse (e.g. ao = 2) then true orthonormal basis will be obtained 

for only very special values of \If (t) [IJ. In other words, if the redundancy in the 

signal is large then there is not much restriction on the basis function \If (t), but if 

the sampling is critical then the basis function is highly constrained. If the energy 

of the wavelet coefficients relative to the signal energy lies within two positive 

frame bounds, A and B, then the family of wavelet coefficients constitutes a 

frame. 

(3.8) 

where ( ) is an inner product operator. If A=B then the frames formed are tight 

and if their value is equal to unity then it results in an orthonormal basis. A frame 
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of this type guarantees the unique representation of a signal in the L2 (IR) space. 

The ratio of B/A is a measure of the transformation redundancy; its value closer 

to unity gives faster convergence. There are some well-behaved functions that 

can be used as prototype orthonormal wavelets, but in the case of the STFf it is 

impossible to have an orthonormal basis function well localised in time and 

frequency. 

For the problem of pattern recognition, the features extracted should have 

the shift invariance property. This means that the features extracted for the signal 

x(t) and x(t-u) should be the same. The STFf and the CWT preserve the features 

in the case of signal translation, but convolution and down-sampling present in 

the DWT destroys it unless u is an integer multiple of the sampling interval kT 

(Equation 3.5). In order to overcome the problem of translation variance, the 

dyadic wavelet transform or adaptive sampling is carried out. In the case of the 

dyadic wavelet the translation parameter' 't' is not sampled. This transform gives 

a highly redundant representation of the signal. 

An important property of the wavelet transform is its multi-resolution 

capabilities. The DWT with ao = 2 of the signal x[m] is given by: 

(3.9) 

where 2 j is the dilation of the orthogonal wavelet with information about the 

signal at r j resolution. As the signal is analysed by a constant Q filter it 

provides a multi-resolution analysis of the signal over L2 (IR). In other words the 

space L2 (IR) is decomposed into a chain of nested subs paces, Vj . 

Resolution increases -+ .... C V2 C VI C Vo C V.I c ••• 

Hrn Vj = n Vj = [0] 
j-->_ jEZ 

Hrn Vj = U Vj = L2(1R) 
j-->_ jEZ 

x(n) E Vj <=? x(n/2) E Vj+1 , jE Z 
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where Z is a set of integers. The intersection of all the Vj is empty (Uniqueness), 

i.e. all the Vj are unique and at zero resolution (2.j j -t =) all the information of 

the signal is lost. On the other hand at infinite resolution (2.j j -t ~) the signal 

approximation converges to the original signal or the union of all the subspaces 

yields the L2 (IR). Dilating functions in Vj by 2 enlarges the details by 2 and 

guarantees that it defines an approximation at a coarser resolution Tj·l. The space 

Vj can be decomposed into a sub-space Vj+1 and another detailed space Wj+1 that 

is orthogonal to Vj+l. Thus 

(3.10) 

Hence Wj+1 contains all the details necessary to go from one resolution to the 

next or 

(3.lI) 

The principle of the multi-resolution analysis (MRA) states that if there 

exists a scaling function which satisfies certain requirements, i.e. smoothness, 

continuity and orthonormality, such that: 

(j>j,k(t) = rj/2(j>(t.rL k) j = 0, 1,2 ..... k = 1,2,3 .... (3.12) 

forms an orthonormal basis for Vj, then W j , its orthonorrnal complement, is 

similarly spanned by the orthonormal basis. 

Wj,k(t) = r j / 2W(t.rj -k) j = 0,1,2 ..... k = 1,2,3 .... (3.13) 

The approximate sub-space Vo c V. I can be created by integer translation 

of the scaling function. Using the scaling property there exists a sequence g[o] 

such that: 

-(j>(t) =.J2 Lg[n](j>(2.t -0) (3.14) 
0=--00 

The detailed sub-space Wo c V. I also satisfies the similar equation: 
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~ 

w(t) = Fz Lh[n)j>(2.t -n) (3.15) 
0=--00 

where g[n] is known as the smoothing or scaling filter and is low-pass in nature, 

while h[n] is known as the detail or wavelet filter and has a high-pass filter 

characteristics/response. Both of these filters satisfy the perfect reconstruction 

property. Thus in MRA, the signal in the space Vj is decomposed into an 

approximation sub-space Vj+1 and a detailed sub-space Wj+l. To reconstruct the 

signal in space V j , the approximate sub-space Vj+1 and detailed sub-space Wj+1 is 

added. A two-level of decomposition is shown in Figure 3.3. For the first level of 

decomposition the signal in the space Vj is first passed through a low pass 

(smoothing) filter and a high pass (wavelet) filter and then down sampled by a 

factor of 2. The second level of decomposition is applied on the signal in the 

approximation sub-space (Vj +l ) obtained by the previous decomposition. The 

corresponding binary tree structure is also shown in Figure 3.4 where the left 

child represents the lower frequency and the right child represents the higher 

frequency band. It is important to note here that this decomposing results into 

splitting of the approximate sub-space only, while the detailed sub-space 

obtained after decomposition is left untouched during the subsequent 

decompositions. 
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Figure 3.3: Two-level wavelet decomposition achieved by filtering and decimating 

the original signal 

wl 
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Figure 3.4: Left recursive binary tree structure obtained by the above scheme for 

decomposition by DWT. 

3.2 Review of feature extraction by the DWT 

Owing to its multi-resolution capabilities and its ability to handle non­

stationary signals. the DWT has been suggested for feature extraction in for 

phoneme recognition [3]. [4]. [5]. In [3] the discrete wavelet decomposition was 

applied on the phonemes extracted from the TIMIT database [6]. The wavelet 

coefficients obtained after decomposition were used as features by first ranking 

them in order of their energy. The top wavelet coefficients having high energy 

were selected as features. However. since the DWT is shift variant. these features 

were not very reliable. With small shift in the signal the wavelet coefficients 

would change. thereby resulting in a change in the feature vector. The problem is 

absent if the shift is an integral mUltiple of the sampling time; however. this 
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cannot be guaranteed in a practical situation. In order to reduce the problem due 

to shift, the signal can be over-sampled or the CWT can be applied. Tan [4] has 

reported that the Sampled Continuous Wavelet Transform (SCWT) normally 

improves the recognition of phonemes as compared to the Mel Frequency FFT 

cepstral coefficients and the discrete wavelet transform. Tan used a windowed 

wavelet (Morlet Wavelet) with 40 triangular band-pass filters. The MFCCs were 

extracted from a frame of 20ms with an overlapping of lOms. The original 

speech was sampled at 16kHz and 12 cepstra1 coefficients were extracted and fed 

to the HMM system for recognition. In [5] the wavelet transform has been used 

to calculate the power spectrum of the signal which is used to extract the MFCC. 

Apart from feature extraction, the DWT has also been used for segmentation [7] 

of the speech signal as well as pitch detection [8], [9]. 

The features extracted are used for the recognition of phonemes by a 

classifier. The most commonly used classifiers are based on the Hidden Markov 

Model [10], [11], Linear Discriminant Analysis (LDA) [3], [12] or Artificial 

Neural Network [13], [14], [15]. Of all these, LDA is the simplest and easy to 

implement. In this thesis, it is the LDA classifier that is mostly used for the 

recognition of phonemes, while for the continuous speech recognition HMM­

based classifier is used (discussed in Chapter 6). A brief introduction of the LDA 

classifier is given in the following section. 

3.3 Linear Discriminant Analysis 

For recognition of different classes based on features, template matching 

was the earliest technique used. Let x be the feature vector for the unknown 

input, and let m), m2, ... , me be the templates (i.e., perfect, noise-free feature 

vectors) for the c classes. Then the error in matching x against mk is given by: 

(3.l6) 

Here Ilxll is called the norm of the vector x. A minimum-error classifier 

computes Ilx - mk II for k = I to c and chooses the class for which this error is 

minimum. Since Ilx - mk II is also the distance from x to mk, it is also known as 

minimum-distance classifier. Clearly, a template matching system is a minimum-
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distance classifier. Using the inner product to express the Euclidean distance 

from x to ffik. it can be written as: 

C3.17) 

The first term x'x is the same for every class. i.e. for every k. To find the 

template ffik that minimises Ilx - ffik 11. it is sufficient to find the ffik that 

minimises the bracketed expression. Let a linear discriminant function gCx) be 

defined by: 

C3.18) 

Then a minimum Euclidean distance classifier classifies an input feature 

vector x by computing c linear discriminant functions g\Cx), ~Cx) •...• ~Cx) and 

assigning x to the class corresponding to the minimum discriminant function. 

Linear discriminant functions can also be thought as correlation between x and 

ffik. with the addition of a correction for the "template energy" represented by 

Ilffik 112. With this correction included. a minimum Euclidean distance classifier is 

equivalent to a maximum correlation classifier. 

The frequent problems encountered in the minimum distance classifier 

are: 

• The features may be inadequate to distinguish the different classes 

• The features may be highly correlated 

• The decision boundary may have to be curved 

• There may be distinct sub-classes in the data 

• The feature space may be too complex 

Some of the limitations of simple minimum Euclidean distance classifiers 

can be overcome by using' a Mahalanobis distance measure. In particular. this can 

often solve problems caused by poorly scaled and/or highly correlated features. 

The Mahalanobis distance r for a feature vector x with mean vector rn, and ~ as 

covariance matrix is given as: 
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(3.19) 

In the special case where the features are uncorrelated and the variances 

in all directions are the same, the Mahalanobis distance becomes equivalent to 

the Euclidean distance. The covariance of two features is a measure of their 

tendency to vary together. Where the variance is the average of the squared 

deviation of a feature from its mean, the covariance is the average of the products 

of the deviations of feature values from their means. 

Let {x[I,i], x[2,i], ... , x[n,i]} be a set of n examples of feature i, and let 

{x[IJ], x[2J], ... , x[nJ]} be a corresponding set of n examples of feature j. (That 

is, x[k,i] and x[kJ] are features of the same pattern, k) Similarly, let m[i] be the 

mean of feature i, and mU] be the mean of feature j. Then the covariance of 

feature i and feature j is defined by: 

l: .. = {[ xlI, il- m[i]][ x[I,jl- mUll + ... + [x[n, il- m[i]][ x[n, jl- mU)]} (3.20) 
1,J n -1 

One can use the Mahalanobis distance in a minimum distance classifier as 

follows. Let 011, 012, ... , lIIc be the means (templates) for the c classes, and let ~J, 

~2, ... , ~c be the corresponding covariance matrices. To classify a feature vector 

x, the Mahalanobis distance from x to each of the means is measured, and x is 

assigned to the class for which the Mahalanobis distance is minimum. 

The use of the Mahalanobis metric removes several of the limitations of 

the Euclidean metric such as: 

• It automatically accounts for the scaling of the co-ordinate axes 

• It corrects for correlation between the different features 

• It can provide curved as well as linear decision boundaries 

However, there is a price to be paid for these advantages. The covariance 

matrices can be hard to determine accurately, and the memory and time 

requirements grow quadratically rather than linearly with the number of features. 

These problems may be insignificant when only a few features are needed, but 

they can become quite serious when the number of features becomes large. 
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There is an important special case in which the Mahalanobis metric 

results in linear discriminant functions. This case occurs when the clusters in all c 

classes have the same covariance matrix ~. In that case, we can expand the 

squared Mahalanobis distance from the feature vector x to the mean vector ffik 

as: 

(3.21) 

This is a similar expression as obtained for a Illimmum Euclidean 

distance classifier. Once again a linear discriminant function can be obtained by 

maximising the last three terms of the Equation 3.21. The linear discriminant 

function gk(X) is defined by: 

(3.22) 

Although the above expression gives up the advantage of having curved 

decision boundaries, it retains the advantage of being invariant to linear 

transfonnations. In addition, it reduces the memory requirements from the c d­

by-d covariance matrices to the cd-by 1 with a corresponding speed-up in the 

computation of the discriminant functions. Finally, when the covariance matrices 

are the same for all c classes, one can pool the data from all the classes and get a 

much better results from a limited amount of data. 

This algorithm has been used for the classification of phonemes using the 

wavelet features and is referred to as the linear discriminant analysis (LDA) 

throughout this work (thesis). 

3.4 Proposed feature extraction by using the DWT 

It is obvious from the discussion in Section 3.2 that the use of wavelet 

coefficients directly as features is not a good choice. Taking the analogy from the 

human hearing, which is sensitive to the pressure (energy of the signal), the idea 

of energy-based feature has been used in speech recognition. This idea is here 

extended to the DWT -based features. Instead of using the energy of some of the 
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wavelet coefficients in a sub-space (sub-space is the same as a frequency band in 

the context of signal processing) as features, the energy in each frequency band is 

proposed. This scheme overcomes the problem of shift variance, as the energy in 

a band remains constant even if the signal is shifted. The feature extraction step 

based on the DWT proceeds as follows: 

• A single frame of 32ms was selected, which gives 512 samples for speech 

sampled at 16kHz. This frame size was chosen, as it is large enough to 

accommodate all the phonetic variations required for identification. This also 

gives a dyadic length of the samples (number of samples which are integer 

multiple of 2"), which is suitable for wavelet decomposition. If the phoneme 

length is less than 512 samples then it is padded with zeros to have all the 

frames of equal size. Let the phoneme sample be denoted by 

x[nTl 1:S n:S 512 T = lIfs fs = sampling frequency (3.23) 

• These frame samples are transformed using different levels of discrete 

wavelet decomposition. In general a 'p' level of discrete wavelet 

decomposition gives a 'p' detailed sub-space and an approximation sub­

space. The transform was obtained by taking the inner product of the 

phoneme samples x[nTl and the wavelet function 1jf (t). The wavelet function 

used in this work was a 'Daubechies 6', where 6 indicates the vanishing 

moment or the order of wavelet used. 

Cj,k = (x, 1jf j,k) 

where 

(3.24) 

(3.25) 

• If Cj,k is the j'h wavelet coefficient in the kth band then the total energy (Ep ) 

in the band p is given by: 

p = 1,2, .... L (3.26) 

p = 1,2, .... L (3.27) 
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where N p is the number of wavelet coefficients in the p'h band and L is the 

number of bands. The calculated energy is then divided by the number of the 

wavelet coefficients in the corresponding band, thereby giving the average 

energy per wavelet coefficients per band Fp. Since, by the DWT, 

partitioning of the frequency plane is such that the lower bandwidth occurs 

at the lower frequencies then progressively doubles towards the higher 

frequency end. This can be seen in Figure 3.5, which shows partitioning of 

the frequency band of a signal of bandwidth B Hz by three-level discrete 

wavelet decomposition. The first level of decomposition splits the band into 

two equal sub-bands at point c. The second level of decomposition splits the 

sub-band left of c into two at point b and the third level of decomposition 

further splits the sub-band at point a. This gives more number of samples at 

the higher frequency band as compared to the lower frequency band. Thus, 

the above division results in giving more weight at the lower frequency end 

and less at the higher frequency end. For a p-Ievel of discrete wavelet 

decomposition there will be 'p+ I' sub-bands, resulting in 'p+ I' features to 

be used for classification. 

a b 

o XIS Xl4 

c 

Xl2 

Frequency (HzT---+ 

B 

Figure 3.5: Partitioning of the frequency spectrum by a three-level discrete 

wavelet decomposition. 
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3.5 Results 

The phonemes used for training the classifier and testing its performance 

were extracted from the TIMIT database [6]. A list of phonemes present in the 

TIMIT database is given in APPENDIX B. The two dialect regions ORI (New 

England region) and OR2 (Northern part of USA) were selected for the 

extraction of the phonemes. A total of 151 speakers' data was used, of which 114 

were used for training and the rest for testing the classifier. Out of the total of 

152 speakers, 102 were male, of which 77 were used for training. Vowels, 

fricatives and stops from all possible contexts were extracted from the database 

(Table 3.1). The features were extracted by the method explained in Section 3.4 

and passed to a classifier based on a simple LOA, where the classification was 

performed by using the Mahalanobis distance, as explained in Section 3.3. 

Table 3.1: List of phonemes extracted from the TIMIT database 

Vowels laaJ, lax!,liyl 

U nvoiced fricatives If I, Ish/, Isl 

Voiced fricatives lvI, Idh/, Iz/ 

Un voiced stops Ipl, It!, /k/ 

Voiced stops /hI, Id!, IgI 

A range of experiments was carried out for the extraction of features by 

the OWT. In the first experiment, the level of decomposition by the OWT was 

varied from 4 to 7, thereby giving 5 to 8 features respectively for each 32ms 

frame duration of a phoneme. The mother wavelet used for this experiment was 

'Oaubechies 6'. The recognition performance achieved is shown in Figure 3.6. It 

can be seen from the results that there is not much increase in the recognition 

performance of the phonemes with the increase in the number of features. Instead 

there is a slight decrease in the recognition performance for the higher number of 

features. This reduction in recognition performance is attributed to the fact that 

the OWT recursively decomposes the lower frequency band only. This results 

into the energy features coming from the very low frequency bands. These 
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features are less significant and carry little discriminatory information from the 

phoneme classification point of view [12]. Thus, increasing the level of 

decomposition although increases the dimension of the feature but is not helpful 

in classification. 
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Figure 3.6: Recognition performance for phonemes with different numbers of 

features where uv indicates the unvoiced and v the voiced phonemes. 

Table 3.2 shows the level of decomposition and the corresponding 

frequency bands obtained for a speech signal of 0-8kHz band. For example the 

lowest frequency band energy features form six or seven levels of decomposition 

by the DWT, but this is not very significant for classification as it carries little 

information about the phoneme. Thus, increasing the level of decomposition will 

not help to improve the recognition performance by the DWT. 

Table 3.2: Partitioning of the 0-8kHz frequency band signal by different levels of' 

decompositions by DWT 

Level of Bands obtained by DWT (kHz) 
decomposition 

4 0-0.5,0.5-1,1-2,2-4 & 4-8 

5 0-0.25,0.25-0.5,0.5-1,1-2,2-4 & 4-8 

6 0-0.125,0.125,0.25,0.25-0.5,0.5-1,1-2,2-4 & 4-8 

7 0-.0625, .0625-0.125,0.125,0.25,0.25-0.5,0.5-1,1-2,2-4 & 4-8 
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A classifier based on an Artificial Neural Network (ANN) was also 

implemented to compare the improvement in recognition performance achieved 

by a non-linear classifier over a linear classifier. An ANN consists of a 

collection of neuron units communicating with each other. The signal travelling 

from one neuron to another is weighted and is passed through a non-linear 

activation function. The output of a neuron is the weighted sum of all the inputs 

passed through an activation function. The neurons are arranged in layers. with 

each neuron of the previous layer connected to all the neurons in the current 

layer. This gives a parallel architecture. thereby making it very fast and robust. 

An ANN can be trained to classify patterns either in a supervised or an 

unsupervised manner. In the case of supervised training the training pattern is 

applied at the input and the corresponding output is defined. The training 

progresses by adjusting the weights such that the error between the defined 

output and the actual output is minimised. The details of the different types of 

ANN and their training can be found in [16]. [17]. [18]. The Multi-layer 

Perceptron (MLP) [15]. [19] as well as time delay neural network (TDNN) [13]. 

[14] have been used as classifier for speech recognition applications. 

A MLP is a class of ANN that can learn from the training set (under 

supervision) to classify the input patterns. For classification by the MLP. the data 

was divided into three sets: training. validation and testing. The validation set 

was used as a stopping criterion during the training process. This helps in 

avoiding the MLP to learn the local features of the training set. About 67% of the 

data are used for training. 10% for validation and the rest for testing the 

classifier. All three sets are mutually exclusive to each other. An MLP with one 

hidden layer of five neurones and three output neurones was simulated and 

trained for the classification of vowels (laaJ. lax! and liyl) and stop phonemes 

(lp/.lt! and 1kI) [20]. [21]. The results obtained are plotted in Figure 3.7. 
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Figure 3.7: Recognition performance achieved by using linear discriminant 

analysis and a multi-layer perceptron network. 

By comparing the performance of the MLP classifier for unvoiced stops 

and vowel classification it can be observed that by increasing the number of 

features further will not increase the recognition performance. The performance 

of the MLP classifier is found to be about 8-10% better than the LDA classifier 

for classification of the stop phonemes (Figure 3.7). For the case of vowel 

classification the improvement is not that large owing to the fact that vowels 

have themselves distinct formant frequencies causing the features to be linearly 

separable at lower levels of wavelet decomposition. It can also be seen that the 

recognition performance of the vowel improves consistently with an increase in 

the number of features while there is a distinct decrease in the recognition 

performance of the stops (lp/. It! & It!) at the end [21). The stop phonemes have 

most of the discriminatory information at the higher frequency band. By 

increasing the number of features, the lower frequency band is decomposed and 

the features corresponding to these lower bands are used for classification, which 

carries very little discriminatory information. Thus the recognition rate reduces 

not only for the LDA but also for the MLP classifiers. Although the MLP-based 

classifier gave better recognition performance than the LDA-based classifier, it 

was not used in the later tests because of the long training time requirement. 
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In the second experiment the frame was further sub-divided into sub­

frames of 16ms and 8ms to account for the temporal evolution of the phonemes. 

As the speech signal is stationary for roughly tOms duration (due to the physical 

limitations of the articulators) any further increase in the number of sub-frames 

was not tried. The feature extraction process, as explained earlier, is carried out 

for each sub-frame duration and the classification is carried out after 32ms (a 

frame duration). The subsequent features of a sub-frame give the dynamics of the 

features for a given phoneme and are important for classification of the stops. 

The results for unvoiced stops and vowels are shown in Figure 3.8 and Figure 

3.9. It can be seen from the results in Figure 3.9 that the vowel recognition does 

not improve with the increase in the number of sub-frames. The reason for this is 

because the signal spectrum of a vowel is fairly constant from beginning to end 

of the phoneme; thus features obtained in each sub-frame have very little or no 

difference. Also, by increasing the number of features without having much 

discriminatory information the linear classifier's performance is expected to 

degrade. The recognition performance of the un voiced stops shows considerable 

improvement when two sub-frames and four sub-frames are used (Figure 3.8). 

The increase in recognition of Ipl, It! and /kJ is because of the marked difference 

in the shape of the signal waveform at the beginning and at the end. Thus, 

dividing into sub-frames helps in the recognition because the features are 

different in each sub-frame (due to the change in the signal, energy in each 

frequency band also changes, giving different features). Here the LDA-based 

classification was carried out because of the reason that if it shows better 

recognition then it implies these features will always give better performance for 

other non-linear classifiers as well. Therefore only the LDA-based classifier will 

be used -for recognition from here onwards. The results of the phoneme 

recognition based on the DWT with different numbers of sub-frames features are 

gi ven in Table 3.3. 
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Figure 3.8: Recognition performance of the unvoiced stops vs. number of 

features per sub-frame for di fferent number of sub-frames. 
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Figure 3.9: Recognition performance of the vowels vs. number of features per sub­

frame for different number of sub-frames. 
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In the next experiment logarithmic compressIOn was applied on the above 

features in order to reduce the dynamic range. The results obtained are for single 

frame of 32ms duration. The comparative recognition performance of the LDA 

classifier for recognition of vowels and un voiced fricatives based on energy and 

log-energy features are shown in Figure 3.10 and Figure 3.11. 

These plots also show the variation in recognition performance with the 

number of features. It is clear from the results that the log-energy features are far 

more superior as compared to simple energy-based features. However. the 

recognition performance does not improve with an increase in the number of 

features. as explained earlier. The variation of recognition performance of the 

un voiced fricatives. unvoiced stops and vowels with the number of sub-frames 

and features is given in Table 3.4. 
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Table 3.3: Phoneme recognition performance achieved by the LDA classifier for 

different numbers of energy features extracted by the DWT. 

No. of features Phonemes One frame Two sub- Four sub-

frames frames 

5 Vowels 78.80 77.55 78.12 

Un voiced fricatives 82.88 83.07 78.21 

Voiced fricatives 76.77 77.53 71.97 

Voiced stops 67.89 66.05 70.40 

Un voiced stops 61.86 66.30 69.40 

6 Vowels 78.12 78.68 78.80 

Unvoiced fricatives 82.10 80.35 76.85 

Voiced fricatives 72.22 72.73 71.72 

Voiced stops 68.99 64.95 70.39 

Un voiced stops 63.19 68.07 69.18 

7 Vowels 78.57 79.25 79.70 

Un voiced fricatives 81.91 80.16 75.25 

Voiced fricatives 73.23 73.74 70.96 

Voiced stops 69.36 66.79 70.76 

Unvoiced stops 62.08 66.96 68.51 

8 Vowels 78.46 79.82 78.46 

Unvoiced fricatives 81.91 78.40 73.93 

Voiced fricati yes 73.23 72.22 70.96 

Voiced stops 69.17 66.05 68.23 

Unvoiced stops 60.53 66.52 66.96 
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Figure 3.10: Improvement achieved by using log-energy features over simple 

energy features for vowel recognition. 
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Figure 3.11: Improvement achieved by using log-energy features over simple 

energy features for un voiced fricative recognition. 
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Table 3.4: Phoneme recognition performance with different numbers of log­

energy features and sub-frames extracted by the DWT. 

No. of features Phonemes One sub- Two sub- Four sub-

frame frames frames 

5 Vowels 82.09 80.54 80.73 

Unvoiced fricatives 85.21 85.41 84.82 

Un voiced stops 66.08 71.40 74.94 

6 Vowels 83.90 82.20 80.95 

Un voiced fricatives 85.02 84.63 85.02 

Un voiced stops 69.62 73.39 73.39 

7 Vowels 82.65 81.41 81.63 

Unvoiced fricatives 84.44 84.82 84.82 

U nvoiced stops 68.96 74.94 74.06 

8 Vowels 82.65 81.63 79.71 

Unvoiced fricatives 85.41 86.77 85.41 

Unvoiced stops 71.18 72.06 72.28 

Lastly the performance of the log-energy features is then compared with 

the earlier proposed DWT coefficient-based features for the phoneme recognition 

task [3]. Both the tests are carried out on the same dialect regions of the TIMIT 

database using a 32ms frame duration and 'Daubechies 6' wavelet for the DWT. 

The DWT coefficient-based features are selected by ranking them by energy and 

taking the top 64 for classification. The comparative results are encouraging and 

are shown in Figure 3.12. 

It shows improvement in recognition for both un voiced fricatives and 

unvoiced stops; however, the performance is poor for vowel recognition. This is 

because the periodicity is easily represented with a large number of features. It 

should be noted that the proposed log-energy-based features are only 8 as 

compared to 64 wavelet coefficient features. Thus the task of the classifier is 

much simpler when the proposed features are used. 
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Figure 3.12: Phonemes recognition performance by log-energy and coefficients 

based features obtained by the DWT. 

Some of these simulation results can be obtained by using the software 

provided at the back of this thesis. The usage of the software is given in brief in 

the APPENDIX E. There is also a 'readme.txt' file included with the software 

that gives the details of the functions developed in Matlab. 

3.6 Summary 

In this chapter, features based on the DWT have been explored and the 

recognition performance achieved by varying the number of sub-frames and 

features is studied. The results found show that the log-energy-based features 

perform the best and it shows better results for un voiced stops and fricatives than 

the 64-wavelet coefficients. Further, the recognition performance is found to be 

better when a non-linear classifier based on the MLP is used. However, it is 

worth noting that there was no significant improvement in the recognition 

performance if the number of features were increased (by increasing the level of 

decomposition). This clearly indicates that in order to have further improvement 

in the recognition performance, the DWT cannot go beyond this limit. However, 

it is may be possible to increase the recognition performance if the new features 
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were derived from the band that had more perceptual information, e.g. I-2kHz 

and 2-4kHz band. The DWT cannot decompose these bands (because of its 

limitation of decomposing the lower frequency band only), however; it is 

possible to do so by using a more general form of wavelet transform known as 

wavelet packets. In the next chapter this possibility is explored and new features 

based on the admissible wavelet packets and its application to the phoneme 

recognition are discussed. 
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CHAPTER 4 

ADMISSIBLE WAVELET 

PACKETS FOR PHONEME 

RECOGNITION 

In the previous chapter it had been established that the recognition 

performance could not be improved even if the number of features were 

increased. The increase in the feature dimension was achieved by increasing the 

level of decomposition by the DWT. This resulted in splitting the lower 

frequency bands only, producing new features from the very low frequency end 

of the spectrum. These very low frequency bands (less than 250Hz) are not as 

important as the mid-frequency band (about 500Hz-4kHz range) because the 

mid-band has more discriminatory information related to phonemes. Therefore it 

is desirable to have more features coming from the mid-frequency band region. 

This in turn implies further splitting of these bands into smaller sub-bands. 

However, as can been seen in Section 3.1, the DWT can successively decompose 

only the low frequency band obtained from the previous decomposition. This 

limitation can be overcome by using a more general form of wavelet transform 

proposed by Coifman [I], which decomposes the frequency axis arbitrarily. This 

new family of dyadic orthonormal wavelets is called wavelet packets and is 

uniformly translated in time to ensure that the entire time-frequency place is 

covered. 
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Orthonormal bases of L 2(1R) have also been constructed by dividing the 

time axis instead of the frequency axis. The time axis is segmented into different 

intervals and each interval is multiplied by cosine functions of different 

frequencies. This is known as local cosine bases due to the multiplication by the 

cosine function. Wavelet packets and local cosine bases form a dual family of 

bases. The partitioning of the time-frequency plane by the wavelet packet and the 

local cosine transform is shown in Figure 4.1 (a) and (b). 

Frequency 
(kHz) 

- 8 

_ 4 

2 

Frequency 
(kHz) 

Time 

Figure 4.1: An example of tiling of time-frequency plane by (a) wavelet packet (b) 

local cosine basis 

In this chapter the possibility of using wavelet packets for feature 

extraction is explored and the admissible wavelet packets are proposed for this 

purpose. Further, a filter structure based on the Mel frequency scale using the 

admissible wavelet packets has been proposed for the extraction of features. 

4.1 Wavelet Packets 

The DWT performs recursive decomposition of the lower frequency band 

obtained from the previous decomposition in a dyadic fashion. A speech signal 

sampled at 16kHz when decomposed once by the DWT will give two bands (0-

4kHz & 4-BkHz). The second level of decomposition will partition the lower 

frequency band of 0-4kHz further into a band of 0-2kHz and 2-4kHz. In wavelet 

packet decomposition, the lower as well as the higher frequency band is 

decomposed into two sub-bands, thereby giving a balanced binary tree structure 
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as shown in Figure 4.2. Each node Wf, in the tree represents the depth (level) j 

and the number of node p to the left of it. The two wavelet packet orthogonal 

bases generated from a parent node (Wf) are defined as: 

~ . 
",if 1 (k) = L g[nw} (k - 2 Jn) (4.1) 

n=-QQ 

",;f:1(k)= ~ h[nW}(k-2i n) (4.2) 
0=-00 

where g[n] is the scaling filter and h[n] is the wavelet filter. 

wj 

Figure 4.2: Balanced binary tree achieved by wavelet packet decomposition. 

Full wavelet packet decomposition results in an over-complete set of 

bases. For a full j level wavelet packet decomposition there will be over 

2
2j

-
1 

orthogonal bases. From the above library of bases (also called packet table) 

the best basis is to be selected. A wavelet packet basis divides the frequency axis 

into intervals of varying sizes and covers each interval with a uniform translation 

in time. A selection of the best basis tries to have a best frequency partitioning 

for a given signal by reducing a cost function. The most commonly used cost 

function is the Shannon entropy [7]. 

There has been some recent research in the area of speech recognition 

where the wavelet packet transform has been used for feature extraction [2], [3], 

[4], [5], [6]. In [3], [4], [5] the wavelet packet decomposition has been used and 

different criteria such as best basis selection and local discriminant basis have 

been applied for feature selection. The wavelet packet parameters have been used 

for the recognition of stressed speech [6] and its performance is found to be 
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superior to the MFCC-based features. In this, the features are based on the energy 

of the wavelet coefficients in each band. A local cosine transform has also been 

used for feature extraction for the recognition of Korean digits [2]. 

4.2 Selection of the 'Best Basis' 

In order to have a compact representation of a signal with a minimum set 

of orthogonal bases, the time-frequency tiling should be signal specific. This 

would correspond to an irregular sampling grid, locally adapted to the signal 

variations. This can be achieved by pruning the binary tree in a manner that 

minimises/maximises a given cost function. The cost function is highly 

dependent on the type of application, e.g. in compression, Shannon's entropy 

(this minimises the distortion) is usually used. However, for the recognition 

application, a cost function that reflects the distance between the classes is 

desirable [3]. Examples of these types of functions are the relative or cross 

entropy [7]. L2(1R) norm and logarithm of energy have also been used for this 

purpose. For a signal of dyadic length N, there exists more than 2Nn bases, i.e. 

the number of admissible choices of tree structure. To compute the best tree just 

by comparison of all possible bases would cost more than N2N12 operations that 

are too large [7]. A faster search for the best basis was introduced by Coifman 

and Wickerhauser [I] using a dynamic programming technique that employed 

O(N*log2(N)) operations. In this algorithm the entropy of the parent node is 

compared with the sum of the entropies of the two children and the minimum is 

selected to contribute towards the best basis set. Although the best basis 

algorithm is good for the speech compression, it has problems when applied to 

the pattern recognition task. This is because of translation variance [7] as 

explained in the next section. For the phoneme recognition task, due to the 

presence of co-articulation, stress and emotion, the best basis will result in 

different bases for a given phoneme. In other words, this will cause the 

partitioning of the frequency axis in different ways for the same phoneme under 

different conditions. Thus, the features based on the best basis algorithm will not 

be a very good choice for phoneme classification. Also, the presence of noise and 

channel distortion will result into different basis selection. 
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4.2.1 Translation Variance 

Both the wavelet packets and local COSlDe transfonn suffer from the 

problem of translation variance similar to the DWT. This poses a serious 

limitation on the use of these transfonns for pattern recognition applications. 

Various methods have been proposed to overcome this problem [8], [9]. A 'spin­

cyclic' procedure tried to remove the sensitivity of the wavelet coefficients due 

to translation in the final stage of classification. In this approach a circular shift 

of the training and the test signal between the interval [-'t,+'t] (where 't is an 

integer and less than the signal dimension) is carried out. This generates 2't extra 

samples for training and testing. For the shifted signals, the wavelet packet 

decomposition will give modified coefficients, thereby yielding a different basis 

when the cost function is minimised. This directly increases the load on the 

classifier if the best bases are to be used as features. Even if the energy in each 

band is used as features (similar to that of features proposed in Chapter 3), this 

may result into different number of features, which may further create problems 

in recognition. 

For speech recognition if the full wavelet packet decomposition is applied 

then the energy in each frequency band will not be a good feature for recognition. 

This is because of the fact that wavelet packet will divide the frequency spectrum 

into sub-bands of equal bandwidth. Since the higher frequency bands have little 

discriminatory infonnation, it will be better to have fewer features from these 

bands, otherwise they will reduce the recognition perfonnance. Due to the above 

reasons neither the best basis criterion nor the full wavelet packet decomposition 

can be used effectively for the extraction of features from a phoneme. 

For the speech recognition application it is desirable to have more 

features coming from the 500Hz-4kHz band and fewer from the 4-8kHz and 0-

500Hz band. This specifically requires the tiling of the time-frequency plane 

which is neither similar to the DWT nor to the full wavelet packet decomposition 

but a special case of wavelet packet known as the admissible wavelet packets. 

The next section deals with the admissible wavelet packet and its uses for feature 

extraction. 
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4.3 Admissible wavelet packets 

Instead of applying the full wavelet packet decomposition it is possible to 

selectively decompose the lower or the higher frequency band. This results in an 

admissible wavelet packet (A WP) structure and gives flexibility to have any tree 

structure ranging from the one achieved by the DWT to the one by the full 

wavelet packet. Thus it is capable of splitting the time-frequency plane in any 

desired manner. This property can be exploited such that the features carrying 

more discriminatory information can be extracted from the signal. A predefined 

partitioning of the frequency band can be performed taking into consideration the 

speech spectrum and human perception. This will result in an admissible binary 

tree structure, as shown in Figure 4.3. This structure is different from the tree 

structure obtained by full wavelet packet decomposition, as shown in Figure 4.2. 

It can also avoid the undesirable partitioning of the higher frequency bands, 

which are not very useful for recognition. Thus the problem of shift (that is 

present when applying best basis algorithm) in the phoneme will not affect the 

decomposition process as it is fixed. Out of the various possible admissible tree 

structures from a full wavelet packet tree, only a few are selected by considering 

the approximate energy distribution of the speech signal in entire frequency 

band. However, as all the phonemes will not have the same energy distribution, a 

fixed frequency axis partitioning will not be optimal for the recognition of a 

complete set of phonemes. 

Figure 4.3: Admissible binary tree resulting from wavelet packet decomposition. 
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4.3.1 Feature Extraction by Admissible wavelet packets 

To extract features from the phonemes, a frame duration of 32ms was 

chosen. The A WP decomposition was applied and the features were calculated 

by summing the energies of all the wavelet coefficients in a given frequency 

band. This step is similar to that explained in Section 3.3 for the DWT. Different 

A WP tree structures were selected, and the number of sub-frames was varied to 

see their effect on the recognition performance. 

In the first experiment a single sub-frame of 32ms (equal to a frame 

duration) was selected and different admissible tree structures were used to give 

different numbers of features for the recognition of vowels. The recognition 

performance achieved (in Figure 4.4 and Figure 4.5) shows considerable 

improvement over the DWT -based features. Thus the use of A WPs overcomes 

the problem that was encountered by the DWT [lOj. It can also be seen in Figure 

4.4 that the recognition performance of the vowels improves with an increase in 

the number of features initially, then its effect is not so pronounced. For 5 

features the recognition performance of the DWT -based features is better than 

the A WP-based features because it gives better frequency partitioning. However, 

it should be noted that the DWT a special case of the A WP where the lower 

frequency band is only decomposed. 
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Figure 4.4: Recognition performance of the vowels by using a single sub­

frame of 32ms duration. 
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Figure 4.5: Classification of un voiced stops (lp/, ItJ & 1kI) by LDA using 7 

features per sub-frame. 

To include the temporal information about the evolution of features, the 

process of feature extraction should be carried out more than once in the 32ms 

duration. To incorporate this, a frame of 32ms was divided into smaller sub­

frames. Experiments were carried out by varying the number of sub-frames and 

keeping the number of features per sub-frame fixed [10]. Figure 4.5 shows the 

classification performance achieved by the LDA for unvoiced stops with 

different numbers of sub-frames for the DWT and the A WP decomposition. The 

number of features used in both cases is 7 for each sub-frame duration. It is 

possible to have various admissible tree structures giving the same number of 

features, but the one giving the best recognition is shown here in Figure 4.5. It is 

clear that the recognition performance of the A WPs is superior to that of the 

DWT for the same number of features. This is because that the band structure 

achieved by the AWP (as shown in Table 4.1) is better in extracting the 

discriminatory features as compared to the DWT band structure. 
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Table 4.1: Frequency bands structure for 7 features obtained by the DWT and the 

A WP used in the experiment 

Bands obtained after decomposition (in Hz) 

DWT 0-125, 125-250, 250-500, 500-1000, 1000-2000, 2000-4000, 4000-

8000 

AWP 0-500, 500-1000, 1000-1500, 1500-2000, 2000-3000, 3000-4000, 

4000-8000 

Detailed results for the un voiced stops, unvoiced fricatives, vowels, 

voiced stops and voiced fricatives are given in Table 4.2. It shows the variation 

in the recognition performance of the phonemes with different numbers of sub­

frames and different numbers of features. Although there are a large number of 

possible admissible tree structures for a given number of features, the structures 

chosen for these results are such that they give an overall best performance for 

the phoneme classes under consideration. 

Similar to the Chapter 3, instead of using the energy in each band, the 

logarithm of energy was used as a feature [Ill. The results obtained are shown in 

Figure 4.6, giving further improvement in the recognition performance' over the 

simple energy features. The detailed results of the recogniser performance using 

the log-energy features are given Table 4.3, where the number of features as well 

as the number of sub-frames is also varied. Table 4.4 shows the different band 

structures used for the extraction of different numbers of features by the A WP. 

The same band structure was used to evaluate the recognition performance of 

phonemes in Table 4.2 and Table 4.3. 
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Table 4.2: Phoneme percentage recognition performance by LDA classifier with 

different number of energy features extracted by A WP. 

No. of features Phonemes One frame Two sub- Four sub-

frames frames 

5 Vowels 77.32 76.98 76.08 

Un voiced fricatives 83.07 82.68 79.57 

Voiced fricatives 77.78 78.28 75.76 

Voiced stops 69.36 64.04 65.52 

Unvoiced stops 63.19 66.96 70.29 

6 Vowels 78.12 78.46 78.80 

Un voiced fricatives 82.10 82.88 77.43 

Voiced fricatives 77.53 78.20 71.72 

Voiced stops 68.81 64.77 69.31 

Unvoiced stops 64.97 70.29 72.51 

7 Vowels 80.73 80.73 80.16 

Unvoiced fricatives 81.71 81.91 76.46 

Voiced fricatives 77.27 78.03 71.97 

Voiced stops 67.34 65.32 68.05 

Un voiced stops 65.63 71.40 71.84 

8 Vowels 80.73 80.95 79.37 

Unvoiced fricatives 83.07 81.13 77.43 

Voiced fricatives 78.03 78.03 71.21 

Voiced stops 68.44 65.87 67.69 

Unvoiced stops 66.96 69.84 70.95 
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Table 4.3: Phoneme percentage recognition performance by LDA classifier for 

different number of log-energy features extracted by A WP. 

No. of features Phonemes One frame Two sub- Four sub-

frames frames 

5 Vowels 79.14 79.37 80.39 

Unvoiced fricatives 87.35 87.16 85.60 

Unvoiced stops 66.96 72.73 72.06 

6 Vowels 82.52 84.24 80.95 

Unvoiced fricatives 86.58 86.97 85.41 

U nvoiced stops 68.51 73.17 74.06 

7 Vowels 82.65 85.49 82.65 

Un voiced fricatives 86.77 86.97 86.77 

Unvoiced stops 72.28 75.83 74.72 

8 Vowels 83.33 84.69 82.09 

Unvoiced fricatives 87.55 85.99 84.44 

Unvoiced stops 71.40 75.83 74.50 

Table 4.4: The number of features and the corresponding frequency band 

selected by A WP decomposition for the extraction of features. 

No. of Frequency bands obtained by A WP corresponding to the number 

features of features (kHz) 

5 0-1,1-2,2-3,3-4,4-8. 

6 0-0.5,0.5-1,1-22-3,3-4,4-8. 

7 0-0.5,0.5-1,1-1.5,1.5-2,2-3,3-4,4-8. 

8 0-0.5,0.5-1, 1-1.5, 1.5-2,2-2.5, 2.5-3, 3-4,4-8. 
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Figure 4.6: Comparative performance of energy and log energy features using 6 

features in 32ms frame duration. 

Since different phonemes have different spectra, it is obvious that to have 

the best recognition for a phoneme a specific admissible tree structure will be 

more suitable. However, this structure will not perform well for other classes of 

phonemes. In order to have an admissible tree structure that gives good 

recognition for all classes of phonemes, an analogy from the Mel scale that is 

used in MFCC can be used to give a similar structure. The next section discusses 

about the realisation of this filter structure using the A WPs. 

4.3.2 Mel scaled wavelet filter bank 

The Mel scale has been used since the 1980' s for the design of filter bank 

structures to extract the MFCC-based features for speech recognition. These 

features have shown better performance as compared to all other features. Since 

A WP decomposition has the ability to partition the frequency axis in any desired 

manner, it was logical to think of designing a Mel scaled wavelet filter bank 

using the A WPs. Since a dyadic decomposition is used, the frequency band 

formed would not exactly follow the Mel scale. The signal bandwidth of 8kHz 

was split into 24 bands that closely follow the Mel scale [12]. The tree structure 
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obtained is shown in Figure 4.7 where the upper branch gives the higher 

frequency band and the lower branch gives the lower frequency band. The 

bandwidth of the filters obtained by using A WP decomposition is given in Table 

4.5. This table also shows the corresponding Mel scaled filter central frequency 

and bandwidth used for the calculation of the MFCC. A similar approach has 

also been tried in [6] with 4kHz speech, the difference being that instead of using 

the DCT, the wavelet transform has been used on the 24 band log energies. This 

paper compare the performance achieved for stressed phoneme recognition by 24 

wavelet coefficients and 20 MFCC features. However, it has been found that the 

best recognition performance is achieved with about 13 MFCC features and the 

performance may degrade if the number of features is increased. 

For the calculation of phoneme features a window of 32ms duration was 

selected and decomposition by the A WP was performed to split the signal into 24 

bands (as shown in Figure 4.7). The energy in each of these frequency bands was 

calculated and logarithmic compression applied to it. The Discrete Cosine 

Transform (DCT) was then applied to these 24 coefficients and the first 13 DCT 

coefficients were taken as features. The 13 MFCCs were also derived from 32ms 

duration of the speech signal. The LDA was used to classify the features 

extracted from the vowels, unvoiced fricatives, voiced fricatives, un voiced stops 

and voiced stops. The results obtained are shown in Figure 4.8. It can be 

observed that the recognition performance for the voiced phoneme except for 

stops is better with the MFCC. This is due to the reason that the MFCC uses the 

STFT, which uses the sine and cosine bases. These bases are more efficient to 

extract the periodic structure from a signal. For the case of an unvoiced phoneme 

the features derived by A WP analysis are superior. 
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Table 4.5: Frequency bands of a wavelet-based Mel filter 

Wavelet Filter Mel Filter 

Filter Lower cut Higher cut Bandwidth Central Bandwidth 
number off off (Hz) frequency (Hz) 

frequency frequency (Hz) 
(Hz) (Hz) 

1 0 125 125 100 100 

2 125 250 125 200 100 

3 250 375 125 300 100 

4 375 500 125 400 100 

5 500 625 125 500 100 

6 625 750 125 600 100 

7 750 875 125 700 100 

8 875 1000 125 800 100 

9 1000 1125 125 900 100 

10 1125 1250 125 1000 124 

11 1250 1375 125 1149 160 

12 1375 1500 125 1320 184 

13 1500 1750 250 1516 211 

14 1750 2000 250 1741 242 

15 2000 2250 250 2000 278 

16 2250 2500 250 2297 320 

17 2500 2750 250 2639 367 

18 2750 3000 250 3031 422 

19 3000 3500 500 3482 484 

20 3500 4000 500 4000 556 

21 4000 5000 1000 4595 639 

22 5000 6000 1000 5278 734 

23 6000 7000 1000 6063 843 

24 7000 8000 1000 6954 969 
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Figure 4.7: Admissible wavelet tree structure for 24-band filter. 
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The reason of getting better recognition in voiced stops by A WP analysis 

is because the stops have a sudden burst of high frequency and the signal is not 

stationary during the 32ms duration. This results in spilling of energy to the 

adjacent frequency bands when STFr processing is used, causing variations in 

the feature calculation. These features are correctly picked out by wavelet 

analysis because of its compact support, which thus improves their classification 

performance. 
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Figure 4.S: Classification of phonemes (32ms duration) using LOA classifier. 

In the next experiment the frame duration was further split into sub­

frames of Sms duration each. This gave a total of about 52 features in 32ms 

duration. It is evident, by comparing the recognition score in Figure 4.S and 

Figure 4.9, that the overall improvement in the recognition performance by 

A WP-based features found in the former is not reflected in the later. This is 

because of the fact that the signal is almost stationary during the Sms duration 

and hence it is suitable for decomposition by the STFr. Since the wavelet can 

handle the non-stationary signal as well so it is more effective for large frame 

duration as compared to the STFr. 
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Figure 4.9: Recognition performance of the phonemes with features being 

extracted every sub-frame of 8ms duration. 

Some of the techniques that can give an idea of the effectiveness of 

features for classification are Euclidean distance, Mahalanobis distance, Fisher's 

discriminant etc. Of these, Fisher's discriminant is superior because it accounts 

for the within class spread as well as the between class separation [13). The next 

section gives a brief introduction to Fisher's discrimination criterion and uses it 

to evaluate Fisher's class separability for the MFCC and the A WP-based 

features. 

4.4 Fisher's Discriminant 

The ability of a feature to separate two classes not only depends on the 

distance between the classes but also the scatter within the classes. The Fisher's 

discriminant is based on these two measures and is given by: 

f (4.3) 

where III and 112 are the mean and ClI and Cl2 are the variance of the two classes. 

Figure 4.10 shows the distribution of features VI and V2 for the two-class 

identification problem. The between-class separation using feature V I is higher 
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Figure 4.10: (a) Higher class separation and higher within class scatter (b) 

lower class separation and lower with-in class scatter. 

but due to the lower variance of the feature V 2 it is superior for classification 

purposes. Thus within-class scatter is also an important parameter for 

classification purposes. With more than two classes, the class-to-class separation 

of features over all classes is evaluated. This is done by evaluating the variance 

of the class means. This variance is then compared to the average width of the 

distribution for each class, i.e. the mean of the individual variances. This measure 

is commonly called as the F ratio: 

F= 
var iance of the means (over all classes) 

mean of the variances (within classes) 

If there are n measurements for each of the m different classes, then 

F 
I m D( \2 

men-I) j~ i~ Xij -I.lj} 
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where Xij IS the ith measurement of class j, ~ j is the mean of all the 

measurements of class j and ~ is the mean of all the measurements of all classes. 

When m=2, Equation 4.4b reduces to Fisher's discriminant; therefore the 

F ratio is also referred as the generalised Fisher's discriminant. High F ratios 

means that the scatter among the classes is more than the spread of each class. 

However, it does not guarantee that none of them will overlap. Although the 

above measure is simple it is limited to a single feature and also assumes that 

same number of measurements are available for all the classes. To have a more 

general measure for the class separability, within-class and between-class scatter 

matrix are used. 

A within-class scatter matrix gives the scatter of features around their 

respective class expected vector and is expressed by: 

(4.5) 

where Pi is the probability of occurrence of class UJj, Xj is the feature vector of 

class UJj and L is the number of classes. E[.] is the expectation operator. The 

between-class scatter matrix is the scatter of expected vectors around the mixture 

mean and is given as: 

(4.6) 

where ~o represents the expected vector of the mixture distribution and is given 

by: 

t. 
~o = LPi~i (4.7) 

i=l 

In order to have criteria for class separability, a number is obtained by 

calculating the trace of the matrix J in Equation 4.8. For a set of features to be 

good for classification the value of J should be higher [13]. 

(4.8) 
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The results obtained by using Equation 4.S for the 24-band A WP-based 

features and the MFCC features are shown in Table 4.6 where the features are 

extracted every 32ms and Sms duration. It was found that the value of J is higher 

for the 24-band wavelet features as compared to the MFCC features when the 

feature extraction process is done after every 32ms while lower in the other case. 

This is due to the fact that the long duration signal of 32ms cannot be strictly 

taken as stationary, due to this reason the STFT is not suitable for time-frequency 

decomposition of the signal. Hence, some of the features are not properly picked 

up by the MFCC while the wavelet transform can do this effectively. Since the 

speech is almost stationary for a short duration of Sms so this problem is not 

encountered here. 

Table 4.6: Calculation of class separability by 24-band wavelet and MFCC features. 

24-band wavelet features MFCC features 

Features extracted every 32ms 0.0355 0.0346 

Features extracted every 8ms 0.0167 0.0178 

4.5 Summary 

From the results obtained in this chapter it becomes clear that the log 

energy-based A WP features give better recognition performance as compared to 

the DWT-based features. This is because of the flexibility of splitting the lower 

or higher frequency bands by the A WPs. This capability has further been 

exploited to design a 24-band filter that closely follows the Mel scale. The 13 

features extracted using this filter structure gave better classification of the 

unvoiced phonemes as compared to the MFCC-based features when the features 

were extracted after every 32ms. Calculating the Fisher discriminant measure 

further supports these results. However, if the features are extracted more 

frequently (every 8ms), the recognition results of the MFCC-based features 

become better. The features are shift invariant and are not very dependent on the 

speakers as seen in the results. The features extracted should not just satisfy the 

above criterion but also be robust to noise. To establish robustness of these 
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features, their performance in the presence of different levels of noise is to be 

tested. This issue of robustness of features is discussed in the next chapter and 

experimental results are reported for noisy phoneme recognition. 
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CHAPTERS 

SPEECH RECOGNITION 

UNDER NOISY CONDITIONS 

Due to recent advancement in ASR technology new applications are 

growing in areas such as recognition over the telephone network, the mobile 

network and the Internet. Thus an ASR system has to perform recognition under 

all these unknown environmental conditions. It has been well established that the 

performance of the ASR degrades substantially in the presence of a mismatch 

between the training and the test environment. This mismatch could be caused by 

various factors, such as noise, microphone distortion, channel characteristics, etc. 

In this chapter the recognition performance of the wavelet-based features 

are evaluated in the presence of additive white Gaussian noise. The reason or 

choosing the Gaussian distribution is because in the presence of different noise 

sources, the overall distribution tends to be Gaussian. The performance of these 

features is also compared with MFCC-based features under the similar noisy 

conditions for various levels of signal-to-noise ratios (SNR). Further, these 

features are modified to make them robust to the noise. In addition, a new pre­

processing based on wavelet denoising is also proposed in this chapter. This acts 

as a front end to reduce the effect of noise on speech signals before the feature 

extraction phase. 

85 



5.1 Introduction 

Figure 5.1 shows a block diagram of a speech signal corrupted by noise at 

different stages while passing through a communication channel. First the signal 

is passed through a microphone, which picks up the background or ambient noise 

d,[nj along with the speech signal. This noise can be due to a noisy automobile, 

helicopter, aircraft cockpit or factory, etc. If the frequency response of the 

microphone is not flat over the speech signal bandwidth, it will also introduce 

Input 
speech 

Microphone 
Distortion 

Channel 
Distortion 

Speech recognihon 
system 

Figure 5.1: Addition of noise and distortion at different level when speech is 

transmi tted through a channel. 

some amount of distortion. This causes further degradation in the quality of 

speech. It is also possible that the microphone may reduce the bandwidth of the 

speech signal due to its poor and band-limited frequency response. At this stage, 

the speech signal can be affected by the emotions of the speaker (i.e. anger, fear, 

etc). 

If the signal is passed through a channel, which may be a telephone or a 

mobile channel, degradation in the quality of speech signal occurs. These 

channels due to their limited bandwidth, cause reduction in the bandwidth of the 

signal, e.g. the telephone channel will restrict the bandwidth of the signal to 

3.4kHz approximately. In addition to the bandwidth reduction a mobile channel 

will also introduce severe distortion in the signal due to the effect of fading 

(caused by mUlti-path propagation). The component d2[nj in Figure 5.1 shows the 

noise added to the signal while passing through the channel. The noise at the 

receiving end is modelled by d3[nj, which is added to the signal after coming out 

of the channel. In order to have a robust ASR the above effects should be 

minimised. For this purpose various techniques have been proposed, some of 

which are discussed in the next section. 
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5.2 Robust Speech Recognition System 

For robust ASR systems the basic strategies currently used are based on 

the following two approaches: 

• Robust feature extraction 

• Compensation technique 

The first approach is based on the extraction of the features that are 

inherently resistant to noise. The techniques used under this category are RASTA 

(RelAtive SpecTrA) processing [l], one-sided auto-correlation LPC [2] and 

auditory model processing of speech [3]. The second approach is based on the 

compensation model, which tries to recover the original speech from the 

corrupted speech in the feature parameter domain or at the pattern-matching 

stage. Methods using the second approach are cepstral normalisation [4], 

probabilistic optimum filtering [5], [6] and parallel model combination [7]. 

RASTA processing performs filtering of the spectral components and 

tries to remove the changes that occur faster or slower than a typical range of 

change of speech signal [I]. This results in the removal of some of the noise 

components, thereby giving an improvement in the performance of an ASR in the 

presence of additive noise and different channel conditions. However, RASTA 

processing may not always give an optimal solution for noisy speech recognition 

[8]. A similar strategy based on the high-pass filtering approach is used in delta 

features [9]. This is calculated by taking the time derivative of the features, 

which is insensitive to a constant bias. This has the disadvantage of having only 

the transition information and hence it has to be used along with the other 

features for recognition. Cepstral mean subtraction is also an alternative way of 

high-pass filtering the cepstral coefficients. This is achieved by subtracting the 

short time average of the cepstral vector from the current cepstral vector [10]. 

If the noise is uncorrelated with the speech signal and is stationary, then 

short time auto-correlation (unbiased estimation [2]) of the signal will result in 

the auto-correlation of the signal plus the auto-correlation of noise. If one side of 

the auto-correlation is selected and high-pass filtering is applied, it will remove 

the slowly varying component. This causes the noise to be removed, since it is 

assumed to be stationary, leaving a clean one-sided auto-correlation of the 
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speech. The feature extraction process, which is similar to that of the MFCC 

features except that one-sided auto-correlation is used instead of the speech 

signal. A similar analogy has been taken in [11] where instead of using the auto­

correlation (time domain approach); the power spectrum (frequency domain 

approach) is used for feature extraction. Here, differences in the power at the 

output of the filter are used as features. Both of these techniques have shown 

improvement in the recognition performance in the presence of different levels of 

SNR over the MFCC features. Although these techniques give some 

improvement in the recognition process, they have a basic assumption that the 

noise is stationary. These techniques will not be effective if the noise property 

changes with time as in the case of mobile environment. 

The human auditory system is known to be robust to background noise, 

so in order to have speech recogniser with robust performance under noisy 

conditions, the human auditory system has been studied and a model has been 

proposed. Kim [3] proposed a simple zero crossing with peak amplitude (ZCPA) 

model as a robust front end for a speech recognition system in noisy 

environments. It consists of a bank of band-pass cochlear filter and a non-linear 

stage at the output of each filter. Kim [12] has also studied the performance of 

the ZCPA model and suggested that the cepstral measures based on this model 

show better performance as compared to MFCC under different noisy conditions. 

Cepstral normalisation has been carried out by various techniques in 

order to reduce the effect of noise and channel distortion. SNR-dependent 

cepstral compensation (SDCN) [4] is based on the stereo database with 

simultaneous recording of the speech in the training and the testing 

environments. The individual frames are partitioned into subsets according to 

SNR in the testing environment. Compensation vectors corresponding to a given 

range of SNR are calculated by evaluating the average difference between the 

training and testing environments. When a new utterance is presented to the 

classifier, the SNR is evaluated first for each frame and then an appropriate 

compensation vector is added to the computed feature vector. Fixed Codeword­

Dependent Cepstral Normalisation (FCDCN) [4] is a similar technique to SDCN 

with the difference that for each SNR, vector quantisation (VQ) is performed to 

compute the cepstral vector. This shows a small improvement in the recognition 
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performance as compared to SDCN [4]. If a new environment is presented in the 

test speech then the compensation corresponding to the environment closest to 

the new environment is applied. 

The above cepstral compensation techniques are based on empirical 

procedures and perform compensation frame by frame. The Codeword­

Dependent Cepstral Normalisation (CDCN) [4] is a model based on the 

compensation approach that tries to remove the effect of additive noise with 

linear filtering. This is achieved by using a maximum likelihood parameter 

estimate of the noise followed by a linear filtering effect. Although this requires a 

lot of computation the environment changes are slow. hence the computation of 

these parameters is not done frame by frame. 

The Probabilistic Optimum Filtering (POF) [5], [6] approach is based on 

the assumption that the clean speech cepstrum can be derived from the noisy 

cepstrum by using a linear transformation. In order to train the POF filter, stereo 

pairs of noisy and clean cepstral vectors are used at different levels of SNR. 

During the testing phase the SNR for a sentence is computed and the 

transformation with the nearest SNR value is used to get the clean cepstral 

vector. 

The parallel model combination is used to alter the parameters of a set of 

HMM based acoustic models, so that they reflect speech in a new acoustic 

environment [7]. This method has been found effective for the speech under 

noisy conditions as well as channel distortion. 

All the above techniques proposed for the robust performance of an ASR 

are for the STFT -based features. Although there has been some research relating 

to the use of the wavelets for feature extraction, there has been no study carried 

out to evaluate its performance in the presence of noise. In the next section, the 

performance of wavelet-based features under noisy conditions is studied. Further 

modifications in these features are proposed to make them more robust to white 

Gaussian noise. 
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5.3 Experimentation on noisy speech recognition 

Recently there has been some research in the use of sub-band based 

features [131. [141. These features give an additional advantage of being robust to 

band-limited noise because this type of noise will affect the corresponding band 

features only. In this section the possibility of using sub-band features based on 

A WP is explored. The sub-band feature extraction process is similar to the one 

explained in Section 4.3.1 except for the fact that some additional processing 

steps are carried out. This was done to improve the recognition performance for 

the case of speaker-independent applications and also to make it robust to white 

noise. 

The number of sub-bands chosen for feature extraction was 6 and 8. and 

A WP was used to give a band structure similar to that shown in Table 4.4. Total 

energy of the wavelet coefficients in each frequency band was calculated and 

normalised by dividing it by the number of wavelet coefficients in the 

corresponding band. A minimum band energy during a sub-frame (8ms duration) 

was identified and 50% of its value was subtracted from all the band energies. 

This process has an advantage that negative energy will never be encountered. 

which may result when noise is estimated or non-linear spectral subtraction is 

applied [15]. This technique also does not require speech/non-speech detection 

that is needed for the estimation of noise and is simple to implement. The 

logarithm of these energies in each band was used as a feature vector [13]. 

An additional feature. i.e. the variance of the sub-band energies. was also 

calculated and included in the feature vector. This is useful. as this feature is not 

affected by a constant offset that may be produced by a different speaker or 

noise. In the first experiment a 6-band structure derived by the A WP was used 

and different mother wavelets were tested to evaluate the phoneme recognition 

performance. 

In order to have noisy speech. a white Gaussian noise of zero mean and 

different variance was generated and injected into the speech signal to obtain 

different levels of signal-to-noise ratios. Figure 5.2 shows a sample noise power 

spectral density was used to degrade the speech quality. In the first experiment 

the A WP that was used to decompose the signal into sub-bands using the 
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Figure 5.2: The power spectral density of the additive white noise added to the 

speech. 

Oaubechies 6-order wavelet (OB6). The frequency band of 0-8kHz was divided 

into 0-500Hz, 500-lkHz, I-2kHz, 2-3kHz, 3-4kHz and 4-8kHz sub-bands and 

the features were calculated as explained earlier. This resulted in 7 features in 

each sub-frame, giving a total of 28 features for 32ms duration. 13 MFCC-based 

features were also extracted from each sub-frame duration. The comparative 

results obtained are shown in Figure 5.3. 

It can be seen from the results above that the MFCC-based features 

perform especially well for vowel recognition, while similar recognition 

performance is achieved for fricative and stop recognition even though there is a 

reduction of about 46% in the feature dimension. 
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Figure 5.3: Recognition performance of the fricatives, vowels and 

stops by using 52 MFCC features and 28 A WP (DB6) based log­

energy features. 
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In order to see the effect of mother wavelet on recognition performance, 

three different orders of Oaubechies wavelets (OB2, OB6 and OB20) were tried. 

By using the higher order wavelet the support size increases and the function 

becomes smoother. The variation in recognition performance due to the change 

in the mother wavelet is because of the normalisation of the energy by the 

number of wavelet coefficients in the sub-band. The number of coefficients after 

a single decomposition by a mother wavelet 'OB N' of a signal x[nl is given by: 

jn-I) 
floo'l-2- + N (5.1) 

where n is the length of decomposed signal and floor(x) is the greatest integer 

less than or equal to x. From Equation 5.1 it is clear that the number of 

coefficients obtained will depend on the mother wavelet as well as on the length 

of the input signal (the sub-frame duration). Since the sub-frame duration is 

fixed, the normalisation factor depends on the factor N. By analysing this it 

becomes clear that by using the lower order mother wavelet puts less relative 

emphasis on higher bandwidth features compared to the lower bandwidth 

features. Since the higher bandwidth occurs at higher frequencies, the classifier 

becomes less sensitive to the higher frequency features when lower order mother 

wavelets are used. If the mUltiplying factor (i.e. the reciprocal of the number of 

coefficients) corresponding to the band with minimum bandwidth is scaled to 

unity then the mUltiplying factors for different mother wavelets corresponding to 

different bandwidths is shown in Figure 5.4. Thus by choosing 'N' higher the 

multiplying factor of 4-8kHz band will be larger, thereby giving more emphasis 

to this band. This may result in an improved recognition performance of 

phonemes with higher frequencies such as un voiced fricatives, but it may also 

reduce the recognition of other phonemes because the higher frequencies carry 

speaker-dependent information as well. Figure 5.5 shows an improvement in the 

recognition of vowels and unvoiced fricatives with the increase in the wavelet 

order, but it is not true for the un voiced stops. It can be seen that an increase in 

the wavelet order does not improve the overall phoneme recognition; although, it 

does increase the computational cost. For this reason, the best performing 

wavelet i.e. OB20 was chosen for the next phase of the experimentation. 
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Figure 5.4: The weighting factor for different mother wavelets for a frame of Sms. 
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Figure 5.5: Recognition performance by using different order of Daubechies 

wavelet. 
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In the next set of experiment the number of sub-bands were increased 

from 6 to 8 and D820 was chosen for decomposition. The A WP decomposition 

was applied such that the following 8 sub-bands; 0-500Hz, 500-1000Hz, 1-

1.5kHz, 1.5-2kHz, 2-2.5kHz, 2.5-3kHz, 3-4kHz and 4-8kHz were obtained. Two 

sets of feature vectors were extracted, the first one was similar to the one 

extracted in the previous experiment (having 8 normalised log-energy features 

and one variance feature), while in the second set of feature vector the variance 

was omitted. The recognition performance achieved is shown in Figure 5.6. It 

can be seen that there is no significant improvement in the recognition 

performance when the variance feature is added. The variance feature is 

dependent on the distribution of sub-band energies. If the number of sub-bands is 

less (i.e. the bandwidth is larger) then the effect of speaker variation will not 

cause much variation in the sub-band energies for a given phoneme. This will 

give the same variance feature for a phoneme for different speakers' i.e. it will be 

a speaker-independent feature. However, if the number of sub-bands are more 

(i.e. the bandwidth is small), the energies in the sub-band may be different for a 

given phoneme for different speakers due to difference in their formant 

frequencies. This will cause the variance feature to change with the change in 

speaker making it not suitable for speaker-independent phoneme recognition 

task. Further, the noise energy (for the case of white noise) in each sub-band will 

be more uniform if the sub-bands are less in number (i.e. higher bandwidth) and 

hence the subtraction method proposed will be more effective to remove its 

effect. 

The recognition performance of the features extracted by the 24-band 

filter derived by the A WP was also evaluated for speech under noisy conditions. 

The features were extracted every 8ms for a 32ms frame size. This gave a total of 

52 features, which has the same dimension as the MFCC. The results obtained 

are shown in Table 5.1. It is evident from the results that the recognition by using 

the MFCC features is better than the A WP-based features. This is because 8ms 

sub-frame was used during which the signal is almost stationary, hence the STFT 

can extract all features effectively. This table also shows the recognition 

performance of the voiced stops/fricative using different features under various 

SNR levels. 
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Figure 5.6: Comparative recognition performance achieved by using 52 MFCC 

and 32 and 36 A WP-based features with DB20. 
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Table 5.1: Percentage recognition performance of phonemes under noisy conditions 
with different features 
A, 8 and C: 6 sub-band energies and a variance feature per sub-frame with wavelet 
DB2, DB6 and DB20 respectively 
D: 13 features per sub-frame using MFCC 
E: 13 features per sub-frame using AWP with 24-filter bank 
F: 8 sub-band energy features per sub-frame using DB20 wavelet 
G: 8 sub-band energies and a variance feature per sub-frame using DB20 wavelet. 

A 8 C D E F G 

Unvoiced Clean 86.58 88.33 90.66 89.30 87.74 93.S8 91.05 

fricatives 20dB 85.41 87.35 90.47 87.74 86.97 91.05 90.08 

15dB 83.07 85.21 88.52 84.63 84.44 89.69 88.33 

lOdB 78.40 81.71 85.41 81.32 81.32 85.99 85.41 

SdB 70.43 69.26 75.29 72.96 71.40 78.02 73.74 

OdB 59.92 59.14 61.67 59.92 61.28 65.95 59.14 

Vowels Clean 80.05 83.67 85.26 86.17 85.15 86.05 87.98 

20dB 76.42 78.80 84.58 84.35 82.42 85.71 85.94 

15dB 69.84 73.47 83.33 81.86 80.95 84.69 85.49 

lOdB 60.88 63.72 78.80 75.96 78.46 81.63 82.07 

SdB 55.56 51.93 71.43 69,73 72.79 76.76 75.06 

OdB 48.98 40.82 59.07 59.86 68.71 66.44 63.61 

Un voiced Clean 76.94 78.27 75.83 76.50 73.84 75.38 77.38 

stops 20dB 76.50 76.05 74.94 76.50 69.18 73.17 74.94 

15dB 74.28 72.73 73.39 72.06 68.07 71.40 72.06 

lOdB 67.41 69.18 70.29 70.29 64.75 68.74 71.18 

SdB 56.10 58.31 65.63 62.53 60.09 63.86 64.53 

OdB 49.45 49.00 55.21 49.67 50.33 58.09 57.65 

Voiced Clean 73.48 76.52 81.31 80.56 80.56 78.03 79.56 

fricatives 20dB 72.22 75.00 77.27 77.02 78.79 79.04 79.29 

15dB 70.20 72.72 74.75 73.74 75.51 75.25 76.26 

lOdB 69.70 70.20 73.23 69.95 70.20 72.73 72.47 

5dB 64.39 64.90 70.45 66.41 64.90 6S.91 68.18 

OdB 59.34 58.33 63.89 56.57 51.77 57.07 62.37 

Voiced Clean 66.61 74.91 77.62 74.55 70.76 71.12 72.56 

stops 20dB 62.64 67.87 70.94 68.77 64.08 6S.88 67.69 

15dB 63.90 61.55 67.33 63.54 60.45 61.73 62.45 

lOdB 58.12 58.66 61.55 61.19 58.30 59.93 60.11 

5dB 48.92 53.97 58.66 58.12 53.61 57.40 56.68 

OdB 45.85 49.29 51.99 51.99 48.19 50.72 50.90 
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5.4 Wavelet-based denoising 

In the traditional Fourier-based signal processing, out of band noise can 

be removed by applying the linear time-invariant filtering approach. However, 

the noise cannot be removed from the portions where it overlaps the signal 

spectrum. The denoising technique used in the DWT analysis is based on an 

entirely different idea and assumes the amplitude rather than the location of the 

spectrum of the signal to be different from the noise. The localising property of 

the wavelet is helpful in thresholding and shrinking the wavelet coefficients that 

helps in separating the signal from noise [16]. Denoising by wavelet is quite 

different from traditional filtering approaches because it is non-linear, due to a 

thresholding step. Let a signal x[n] be given as: 

x[n] = f[n] + w[n] 0:5 n :5 N (5.2) 

where f[n] is the original signal (which is assumed to be piecewise smooth) and 

w[n] is the white Gaussian noise with zero mean. Denoising of the signal x[n] by 

thresholding involves the following steps: 

• Perform a suitable wavelet transform of the noisy data; (the wavelet 

basis may be chosen based on various factors including heavy 

computational burden, and ability to compress the energy of the signal 

into a very few, very large coefficients). 

• Calculate the threshold 0 depending upon the noise variance. 

• Perform thresholding of the wavelet coefficients. 

• The coefficients obtained from the step above are then padded with 

zeros to produce a legitimate wavelet transform and this is inverted to 

obtain the signal estimate. 

The two types of thresholding commonly used are hard and soft 

thresholding. Usually thresholding is applied on the detailed coefficients (the 

coefficients at high-pass filter output after down sampling) obtained after wavelet 

decomposition of the signal and the approximate coefficients (the coefficients at 

low-pass filter output after down sampling) are left untouched. In the hard 

thresholding all the coefficients with absolute value below a threshold 0 are 
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forced to zero. Mathematically, for the detailed coefficient dij the thresholding is 

carried out as follows: 

_h {d .. 
d .. = IJ 

IJ 0 
ifldjil > /) 

ifldjil s; /) 
(5.3) 

For soft thresholding, the detailed coefficients are modified as follows: 

_S _ {Sign(dji)(ldijl-/) 
d·· -IJ 0 

ifldjil > /) 

ifldjil s; /) 
(5.4) 

where sign(x) is + I if x is positive and -I if x is negative. Soft thresholding is 

similar to that of hard thresholding with the difference that the wavelet 

coefficients with magnitude above /) are reduced by a factor /). Due to this reason 

soft thresholding is also called wavelet shrinkage. The difference between the 

soft and hard thresholding is shown in Figure 5.7 where the wavelet coefficients 

are shown before and after thresholding. Shrinkage of the wavelet coefficients is 

more helpful in reducing the noise from the signal as compared to the hard 

thresholding method. For this reason it is most commonly used for denoising the 

signals [17]. 

Ymax 

Ymax' /) 

Ymjn' /) 

Ymin L.. _______ ---' 

(a) (b) (c) 

Figure 5.7: Plot of (a) the wavelet coefficients for original signal (b) the wavelet 

coefficients after hard thresholding (c) the wavelet coefficients after soft 

thresholding. 

100 



Donoho and 10hnson [16] have shown that the optimal threshold for 

denoising is obtained by using the equation below: 

(5.5) 

where er is the noise standard deviation estimate. If the noise is Gaussian 

random variable then the wavelet coefficients after decomposition are also 

Gaussian random variable with the same variance (J2 as noise [17]. A robust 

estimate of the noise variance is obtained with a median measurement, which is 

highly insensitive to isolated outliners of potentially high amplitudes. It is 

important to note that the median is different from the average (mean) value, 

which is more sensitive to large outliners. If {Pk }O$k<K are K independent 

Gaussian random variables of zero mean and variance (J2 then 

(5.6) 

where E is the expectation operator and Med is the median. The noise standard 

deviation estimate er is thus given as: 

(5.7) 

The noise standard deviation estimate is carried out by performing one­

level wavelet decomposition and calculating the median of the absolute values of 

detailed wavelet coefficients as shown in Equation 5.7. Once er is estimated, 

thresholding is usually applied to the detailed wavelet coefficients only. It is also 

possible to perform a 'j' level wavelet decomposition and apply the thresholding 

to all the 'j' detailed coefficients. Figure 5.8 and Figure 5.9 shows the hard and 

soft thresholding on a noisy speech signal for an unvoiced fricative and a vowel. 

The 'Daubechies 6' mother wavelet was used for denoising and in both the cases 

the thresholding was not applied to the approximate coefficients. With two-level 

discrete wavelet decomposition, where the thresholding is applied to the detailed 

coefficients only, the signal after denoising is smoother but it also loses some of 

the high frequency signal components as seen in Figure 5.8(d). This may cause 
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Figure 5.8: (a) Original signal of an unvoiced fricative (b) Signal with additive 

noise (c) Signal after denoising using one-level of decomposition (d) Signal 

after denoising using two-levels of decomposition. 

reduction in the recognition performance at higher SNR for the phonemes with 

high frequency components. The un voiced fricatives have very similar frequency 

characteristics to that of the white noise, thus application of denoising will cause 
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not only the removal of the noise but also some of the higher frequency 

components of the signal even when the single level decomposition is applied. 

This is clearly evident in Figure 5.8 (c) and the effect is more pronounced in 

Figure 5.8 (d). Also from Figure 5.8 (c) and (d) it is evident that a large­

amplitude noise spike producing a high magnitude wavelet coefficient is retained 

as such after denoising when hard thresholding is applied but its effect is reduced 

by using soft thresholding (due to the shrinkage of the wavelet coefficients). This 

problem may be encountered at low SNR and will be absent at higher SNR. 

However, for the vowels and the voiced phonemes the signal energy is 

mostly concentrated at the lower frequency end of the spectrum. Thus the 

denoising is expected to perform better in removing the noise for these phonemes 

as compared to the fricatives. This is evident if the Figure 5.8 and Figure 5.9 are 

compared. 

Figure 5.10 shows the effect of the denoising processes on the power 

spectrum of the phoneme /aa!. The power spectrum of the phoneme changes 

considerably at the higher frequency end if the white Gaussian noise is added as 

seen in Figure 5.10 (a) and (b). The difference in the power spectrum of the 

phoneme is not significant for one-level denoising by soft or hard thresholding as 

in Figure 5.10 (b). However, a lower power spectral density is found with soft 

thresholding when two-level decomposition is applied (as seen in Figure 5.10 

(c)). This results due to the shrinkage of wavelet coefficients, which reduces the 

overall amplitude of the signal. 
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Figure 5.9: (a) Original signal of a vowel (b) Signal with additive noise (c) 

Signal after denoising using one-level of decomposition (d) Signal after 

denoising using two-level of decomposition. 
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5.5 Denoising for phoneme recognition 

In order to reduce the noise from noisy phonemes, a wavelet-based 

denoising technique is proposed here. Denoising is carried out at a pre­

processing stage before the feature extraction, such that the effect of noise on the 

features extracted is minimised. The block diagram of the proposed scheme is 

shown in Figure 5.11. The 'Daubechies 6' mother wavelet was used to perform 

one-level wavelet decomposition of the signal of 32ms frame duration. Since the 

noise added was white and Gaussian the threshold for denoising was calculated 

by using Equation 5.5. Soft thresholding of the noisy phoneme was carried out 

and the thresholding was applied to the detailed wavelet coefficients only. The 

signal was reconstructed after thresholding and then divided into sub-frames of 

8ms duration for feature extraction. Finally the features were extracted by using 

the sub-band feature extraction technique (explained in section 5.3) in which 6 

sub-bands were used. A total of 7 features per sub-frame were extracted using 

DB20 wavelet and the LDA was used for classification after every 32ms. 

Digitised noisy phoneme 

Ir 

Wavelet based denoising based on 

softlhard thresholding 
c:::> Pre-processing 

Ir 

Wavelet based feature extraction c:::> Feature extraction 

, 

Linear discriminant analysis c::::> Classification 

,Ir 

Recognised phoneme 

Figure 5.11: Block diagram of proposed robust feature extraction technique 

using wavelet based denoising. 
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The recognition performance with and without denoising for unvoiced 

fricatives is shown in Figure 5.12. Since the un voiced fricatives have very high 

frequency components and the characteristics similar to white Gaussian noise, 

therefore when denoising is applied, it removes some of the signal part also, 

thereby, reducing the recognition performance for the clean and noisy phoneme. 

Only for the case of OdB SNR, the process of denoising removes much of the 

white Gaussian noise causing the denoising-based features to perform better as 

compared to features without denoising. 

For vowel recognition, the performance is found to be lower « 1%) as 

seen in Figure 5.13 for clean and 20dB SNR. But at SNRs below 20dB the 

denoising helps in improving the recognition performance and the improvement 

increases as the noise power increases. A maximum improvement of about 

24.4% is found at OdB. The vowels show such improvement in recognition 

performance because of the periodic nature of the signal, which helps in isolating 

the noise from the signal part in the wavelet amplitude domain. 

Hard thresholding was also tried for the denoising of noisy phonemes and 

the recognition results obtained are shown in Table 5.2 to Table 5.4. Each table 

shows the percentage recognition performance achieved when no denoising was 

used and when soft or hard thresholding was applied. In general it can be seen 

that with the presence of denoising, the improvement occurs only for very low 

SNR. Also, the best results are obtained with the vowels and the recognition 

performance degrades for the unvoiced fricatives. There is no specific advantage 

of soft or hard thresholding noticed from these results. 
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Figure 5.12: Recognition performance of un voiced fricatives by using 6-band 

features with and without denoising. 

c 

90 

85 

80 

.2 75 ." c 
g> 70 
u 
e 65 
#-

60 

55 

50 
Clean 20dB 15dB 10dB 5dB OdB 

SNR 

ID without denoising • with denoising I 

Figure 5.13: Recognition performance of the vowels by using 6-band features 

with and without denoising. 

108 



-- - - -----------------

Table 5.2: The recognition performance of the 6 sub-band based features in the 

presence of different noise levels for 

A: system not using denoising 

B: system using denoising with soft thresholding 

c: system using denoising with hard thresholding 

A B C 
Unvoiced Clean 90.66 80.74 84.24 

fricatives 20dB 90.47 80.74 83.27 

15dB 88.52 78.79 82.30 

10dB 85.41 76.26 78.79 

5dB 75.29 72.76 69.84 

OdB 61.67 62.06 60.51 

Un voiced Clean 75.83 76.50 74.72 

stops 20dB 74.94 75.39 75.17 

15dB 73.39 74.26 75.61 

10dB 70.29 70.29 72.73 

5dB 65.63 66.08 66.74 

OdB 55.21 56.54 57.87 

Voiced Clean 74.73 75.81 73.47 
stops 20dB 66.79 67.51 65.34 

15dB 63.90 65.16 63.72 

10dB 59.57 61.19 60.11 

5dB 58.21 59.57 58.30 

OdB 51.81 53.25 53.79 

Voiced Clean 79.29 79.80 76.77 
fricatives 20dB 75.76 78.54 77.27 

15dB 73.74 78.54 78.28 

IOdB 72.47 75.76 77.78 

5dB 68.18 67.93 68.43 

OdB 63.13 57.83 59.85 

vowels Clean 85.26 84.47 84.58 

20dB 84.58 84.24 84.47 

15dB 83.33 83.78 84.13 

10dB 78.80 83.45 83.56 

5dB 71.43 79.37 79.48 

OdB 59.07 73.47 72.00 
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Table 5.3: The recognition performance of the 24-band A WP-based features in 

the presence of different noise levels for 

A: system not using denoising 

B: system using denoising with soft thresholding 

c: system using denoising with hard thresholding 

A B C 
Un voiced Clean 87.74 78.40 77.04 
fricatives 20dB 86.97 74.90 77.43 

15dB 84.44 73.15 75.68 

lOdB 81.32 69.65 69.07 
5dB 71.40 57.00 62.84 

OdB 61.28 49.81 54.09 

Unvoiced Clean 73.84 69.40 71.40 
stops 20dB 69.18 66.30 67.84 

15dB 68.07 68.29 69.18 

10dB 64.75 66.30 67.85 

5dB 60.09 61.20 62.97 

OdB 50.33 52.77 54.99 

Voiced Clean 70.76 69.86 68.59 
stops 20dB 64.08 65.52 64.98 

15dB 60.45 61.19 61.19 
lOdB 58.30 58.30 55.78 

5dB 53.61 58.30 54.51 

OdB 48.19 51.26 50.90 
Voiced Clean 80.56 77.02 79.29 
fricatives 20dB 78.79 75.76 77.27 

15dB 75.51 71.72 74.49 

lOdB 70.20 65.91 69.19 

5dB 64.90 63.88 63.13 

OdB 51.77 54.29 56.31 
vowels Clean 85.15 85.71 84.81 

20dB 82.42 84.24 83.11 
15dB 80.95 81.86 80.84 

IOdB 78.46 79.93 78.91 

5dB 72.79 73.13 72.22 

OdB 68.71 70.18 68.82 
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Table 5.4: The recognition performance of the MFCC based features in the 

presence of different noise levels for 

A: system not using denoising 

B: system using denoising with soft thresholding 

C: system using denoising with hard thresholding 

A B C 
Unvoiced Clean 89.30 78.21 78.79 
fricatives 20dB 87.74 77.43 78.21 

15dB 84.63 74.12 75.88 

lOdB 81.32 72.76 75.49 
5dB 72.96 63.04 68.48 

OdB 59.92 54.67 57.20 
Un voiced Clean 76.50 76.05 77.83 
stops 20dB 76.50 74.28 76.94 

15dB 72.06 72.51 73.39 
lOdB 70.29 69.84 69.18 

5dB 62.53 63.19 63.41 

OdB 49.67 50.55 51.66 
Voiced Clean 74.55 73.29 73.10 
stops 20dB 68.77 61.73 59.39 

15dB 63.54 57.76 54.51 

lOdB 61.19 51.99 48.38 

5dB 58.12 50.18 47.11 

OdB 51.99 47.83 46.39 
Voiced Clean 80.56 78.54 77.02 
fricatives 20dB 77.02 76.26 72.73 

15dB 73.74 70.45 69.19 

10dB 69.95 66.16 63.38 

5dB 66.41 58.33 56.82 

OdB 56.57 53.54 53.03 
vowels Clean 86.17 84.47 84.81 

20dB 84.35 80.84 81.75 

15dB 81.86 80.50 80.50 

lOdB 75.96 74.04 74.38 

5dB 69.73 65.76 67.46 
OdB 59.86 58.50 57.82 
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5.6 Summary 

New sub-band based features have been proposed in this chapter for 

adding robustness in the recognition performance. The recognition performance 

with different mother wavelets has also been explored and DB20 was found to be 

the best for 6 sub-band decomposition. Its performance was found superior to the 

MFCC-based features for unvoiced fricative and vowel under noisy conditions, 

although it used 28 features (as compared to 52 for MFCC). No significant 

improvement in the recognition was noticed if the sub-bands were increased from 

6 to 8. Finally a novel pre-processing stage before the feature extraction has 

been proposed based on wavelet denoising. Both hard and soft thresholding were 

carried out for denoising the phonemes and the recognition results gave further 

improvement in the recognition performance under low SNR. However, a 

reduction in the recognition performance was found for the case of clean 

phonemes. A marked improvement in the performance of noisy vowels was 

noticed when the denoising was applied. The assumption that signal is smooth, 

for the threshold calculation is not totally correct for the fricatives and stops, 

hence this results in an incorrect calculation of the threshold. This causes the 

signal to be removed along with the noise thereby altering the features extracted 

and reducing the recognition performance. 

All these experiments carried out takes a phoneme of 32ms duration from 

the TIMIT database; however, practically speaking this duration may vary over a 

wide range. Also, classifying on a small set of phonemes does not give an exact 

idea of the recognition performance that may be achieved for a larger set of 

phonemes. In order to overcome this difficulty a complete continuous speech 

recognition system was implemented by using the HTK (HMM Tool Kit) of 

Cambridge University. This system is described in detail in the next chapter. 
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CHAPTER 6 

CONTINUOUS SPEECH 

RECOGNITION USING 

WAVELET -BASED FEATURES 

In order to recognise continuous speech, HMM based recognisers are 

commonly used. In this chapter, before discussing the results based on wavelet 

and MFCC features a brief review is presented of the HTK system [I], which 

uses HMM for acoustic modelling. 

6.1 Introduction to HMM 

The HMM is the most popular and successful stochastic approach to 

speech recognition generally used. This is due to the availability of efficient 

training and recognition algorithm. The HMM is used both for acoustic and 

language modelling. The basic theory of HMM is presented here in brief. The 

more detailed discussion of HMM theory and its application to speech 

recognition is given in [2], [3]. The use of HMM for speech recognition assumes 

that the speech can be divided into segments (typically of IOms duration), during 

which the signal is stationary and the parameterisation of the waveform is carried 

out. However, this assumption is not strictly true specifically in the case of stops. 

Figure 6.1 shows a three-emitting state HMM model using the left-to-right 

topology. This topology is virtually the standard used in the case of speech 
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recognition and is used throughout in this work. The HMMs are characterised as 

follows: 

• It consists of N distinct states, which are interconnected to each other. 

Each state is denoted by s ={s" S2, ... , SN} and qi(T) indicates "being 

in" state Si at time T. For the multiple Gaussian mixture component 

the notation used is qim(T), which indicates being in mixture 

component Mm of the state Si at time T. 

• The transition from one state to another is given by the state transition 

probability distribution A={ 3ij} where 

1:5 i,j :5 N (6.1) 

For the special case of HMM where any state can be reached from 

any other state in a single step, 3ij>O for all i,j. For other types of 

HMM 3ij=O for one or more (i,j) pairs. The elements of the state 

transition matrix must obey the following constraint: 

(6.2) 

• The output probability distribution B of the observation symbol 

associated with each emitting state Sj is given as: 

(6.3) 

where yeT) is the feature vector at time T. If the output distribution is 

based on discrete elements then the model is known as the Discrete 

HMM (DHMM). Alternatively if the output distribution is continuous 

then it is referred to as the Continuous Density HMM (CDHMM). In 

this case B becomes a probability density function. In this work 

CDHMMs are considered only. 

• The initial state distribution is n={ni} where 

n = P[qi (1)] (6.4) 
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Usually in CDHMM the output probabilities are modelled by multivariate 

Gaussian distribution or as a mixture of these distributions. The formula for 

computing bj(Y(T» for the multiple Gaussian mixture components is given by 

M 
bj(Y(T))= L CjmN(Y(T);!ljm'~jm) 

m=l 
(6.5) 

where M is the number of mixture components, Cjm is the weight of the m'h 

component and N(Y(T); /1, I:) is a multivariate Gaussian with mean /1 and the 

covariance matrix I:, that is 

(6.6) 

where n is the dimensionality of yeT). The observation sequence YT is [y(l) y(2) 

.. yCT)]. The matrix B consists of a set of means, variances and mixture 

component weights. For convenience a compact representation of the HMM is 

used as;\1 = CA, B). The details of using a HMM for the pattern recognition 

problem is given in APPENDIX C. 
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6.2 Speech recognition using HMM 

The HMM parameter re-estimation can be carried out using the Baum-

Welch algorithm [4], [5], [6]. This could also be used to find out the P[YT 1,N1] 

and hence it could be used for recognition; however, in practice, the most likely 

state sequence associated with Y T is commonly used. This likelihood is 

calculated using the same algorithm as the forward probability calculation (see 

APPENDIX C) except that a maximum operator replaces the summation. For a 

given model M, let <j)j(t) represent the maximum likelihood of observing speech 

vectors y(l) to y(t) and being in state Sj at time t. The partial likelihood can be 

computed efficiently using the following recursion, also known as Viterbi 

algorithm 

cp.(t) = max [cpj(t-l)ar]b·(y(t)) 
J lSi";N J J 

(6.7) 

In continuous speech recognition there are a large number of possible 

word strings and it is not feasible to have a single concatenated model for each 

word string. Instead, a token passing framework is used [7]. In this scheme each 

state has a token associated with it. This token contains the history of the model 

sequence that was taken to get to that point and the current value of <j)j(t). When a 

new vector is observed these tokens are updated and propagated to each state 

within the model. The most likely token calculated at the end state of each model 

is then propagated to all the connected models and the history of the token is 

updated. 

In most of the speech recognition systems, it is not practical to propagate 

all the tokens. In order to reduce the computational load, a thresholding is applied 

to all the possible paths and those below this threshold are removed or pruned. 

The threshold is set at a fixed value below the current most likely path. This 

helps in reducing the computation but may introduce search errors. 

The errors encountered during the recognition process of continuous 

speech can be classified into three categories. The error arising due to 

substitutions, where the wrong words are hypothesised, deletions, words left out 

of the hypothesis, and insertions where words are added. In order to minimise the 
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total number of errors in the recognition system, a fixed transition penalty score 

is added. This penalty score is used to set the level of insertion and deletions such 

that the performance is optimised. A grammar scale factor is also used to balance 

the information of the acoustic and language model. For the case of bigram 

language model the likelihood of a word Wj following a word Wj with associated 

observed data YT, the log-likelihood is given by 

log(P[YT, Wj I WiD = log(P[YT I WjD + slog(P[Wj I wi D +p (6.8) 

where s is the grammar scale factor and p is the fixed transition penalty. 

6.2.1 HMM Parameter Tying 

In small vocabulary systems, words can be used for modelling, but it is 

not possible to do the same for the case of medium and large vocabulary 

recognition systems. This is because insufficient examples of all the words may 

be present in the training set to develop a good model of whole words. For this 

reason it is necessary to tie sets of parameters together. Tying means that two 

Gaussian mixture components from two different states share the same 

distribution. Tying can be applied at model level, state level or Gaussian 

component level. In order to overcome the problem of insufficient data, the 

words are split into phonemes and phoneme models are developed. All 

observations of the same phoneme are tied together at the model level. This 

results in a context-independent model called the monophone set. Another 

advantage of the monophone model is that unseen words can be split into 

phonemes by looking up a dictionary, thus giving the capability of recognising 

new words, which was impossible at the word level model. 

Although the monophone system performs well because of tying, it is 

well known that a phoneme model will not be the same due to the problem of co­

articulation. In other words, the model of a phoneme will differ depending upon 

the context in which it appears. To model this effect, triphone models, also 

known as context-dependent models, are used. A triphone is a model of a 

phoneme, given particular preceding and following phonemes. For example the 

monophone and triphone sequence for the word "beat" is 

beat = si! b iy t si! monophone sequence 
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beat = sil-h+iy h-iy+t iy-t+sil triphone sequence 

The 'siI' at the beginning and at the end indicates silence. The problem 

arising in the context-dependent model is because of insufficient data, which 

causes an inaccurate estimate of the of triphone models. Also there may be 

unseen triphones in the test set that do not appear in the training phase. To 

overcome this problem, schemes based on acoustically similar triphones 

clustering are used. Model-based [8], state-based decision tree clustering [9] and 

triphone model-based clustering [10] are the techniques used in which the latter 

has the limitation of handling the seen triphone only. 

6.2.2 Recogniser specifications 

A recogniser based on HMM was implemented for the task of word 

recognition. The speech recogniser used CDHMM to model the phonemes. Each 

context-independent phoneme was modelled by three emitting states, simple left­

to-right CDHMM. The context-independent model was used to model context­

dependent phoneme and the training was performed by using the Baum-Welch 

algorithm. Further, eight Gaussian density mixtures were used with state tying. 

No language model was used and all the words had equal occurrence probability. 

In order to minimise the total number of errors in the recognition system, a fixed 

transition penalty score was added. This penalty score was used to set the level of 

insertion and deletions such that the performance was optimised. This entire 

scheme was implemented using the HTK system [l]. 

6.3 Experiments for clean speech recognition 

In order to test the recognition performance for continuous speech the 

TIMIT database was used. The two dialect regions (DRI and DR2) were selected 

with two sentences (sal and sa2) spoken by all the speakers. The two sentences 

used are given below, with their corresponding phonetic transcript shown in 

Table 6.1. 

"She had your dark suit in greasy wash water all year" 

"Don't ask me to carry an oily rag like that" 
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Table 6.1: Words and their corresponding phonetic transcript 

Word Phonetic transcript 

ALL ao I 

AN ae n 

ASK ae s k 

CARRY k ae r iy 

DARK d aa r k 

DON'T down t 

GREASY griysiy 

HAD hh ae d 

IN ih n 

LIKE I ay k 

ME m .y 

OILY oy I iy 

RAG r ae g 

SHE sh iy 

SUIT s uw t 

THAT dh ae t 

TO tuw 

WASH waosh 

WATER w ao t axr 

YEAR y ih r 

YOUR y uh r 

The speech signal o(t) was pre-emphasised by: 

o(t) = o(t) - 0.970(t -1) (6.9) 

A Hamming window of the form below was used for all the experiments 

~(t) = [0.54 - 0.46CO{ ~:tl )}(t) (6.10) 

where T is the size of window. A window of 25ms duration was used with a 

frame length of IOms for the feature extraction process. 
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6.3.1 Baseline system 

The baseline system used in this work was based on MFCC as a feature 

vector (O(t» for recognition task. The MFCC features were derived from 24 

Mel-spaced triangular filters. 13 MFCC, out of which 12 were the DCT 

coefficients (first 12 coefficients leaving the dc component), and a log of energy 

were selected as features. In order to include the dynamic features, delta 

coefficients were used. These delta coefficients were calculated by using the 

following regression formula 

(6.11) 

where d2 is the width over which the dynamic coefficients are to be calculated. 

For regression, parameter dl = 1 and for simple difference d1 = d2. The use of 

differential coefficients has been extended to acceleration or the delta-delta 

coefficient, ~02(t). This can be calculated by using the similar way as the delta 

coefficients. The delta and delta-delta coefficients were calculated and appended 

to give a complete 39-dimension feature. 

6.3.2 Wavelet-based system 

The 24-band filter structure obtained by using the A WP was used to 

extract 13 coefficients, as explained in Section 4.3.2. The filter structure was 

designed using the 'Daubechies 6' mother wavelet. In the case of the wavelet 

transform, there is no need to use an overlapping window since the wavelets have 

compact support. Thus, after a similar pre-emphasis as given in Equation 6.9, 13 

features were extracted every lOms. Delta and delta-delta coefficients were 

calculated and the 39 dimensional features vector was used for recognition. 

Further, 8 sub-band and 6 sub-band features (using 'Daubechies 20' wavelet) 

were also calculated along with the variance feature. These were then appended 

with the delta and delta-delta coefficients to give a 27- and 2 I-dimension feature 

vector respectively. 

A dictionary was used to split the words of the two sentences into 

phonemes with a short pause (sp) at the end. This resulted in a total of 25 
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phonemes. A HMM was created for each phoneme and the training was done 

using the extracted features. Further, a three emitting state left to right HMM was 

used to model silence (sil) with an extra transition from state 2 to 4 and from 

state 4 to 2. Also, a single state sp model was created with a direct transition 

from the entry to the exit node. The sp model has its emitting state tied to the 

centre state of the sil model. The required topology of the two silence models is 

shown in Figure 6.2. 

Figure 6.2: Silence model based on HMM. 

In the final stage, monophone HMMs (context independent) were used to 

create triphone (context dependent) HMMs which resulted into a creation of 64 

HMMs after tying states. There was no language model used for the recognition 

of continuous speech and all the words were assumed to have equal probability. 

This assumption is fairly true for the two sentences chosen for the task of 

recognition. A single Gaussian HMM, as well as multiple mixture components 

HMM, was used for training and testing. 

The recognition results are evaluated in terms of the percentage correct 

and percentage accuracy. The percentage correct recognition is given as: 

N -D-S 
Percentage correct = w * 100% 

Nw 
(6.12) 

where Nw is the total number of words in the reference transcript, and D and S 

are the total number of deletions and substitutions in the recognised transcript. 

The percentage accuracy is calculated as: 
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N -D-S-I 
Percentage accuracy = w *100% 

Nw 
(6.13) 

where I is the total number of insertions in the recognised transcript. The number 

of insertions and deletions can be optimised by choosing the appropriate value of 

the transition penalty p. The best results were obtained by choosing p=-1O and 

this value was used in aJl the later experiments. The results obtained by using the 

MFCC features and the 24-band wavelet-based features are shown in Table 6.2, 

where H is the number of words correctly recognised. The recognition results 

achieved by using the 6 sub-band and 8 sub-band features along with the energy 

variance features are also given at the end of Table 6.2. 

It can be seen from the results that best recognition performance is 

achieved with 8 mixture and p=-IO. The 24-band A WP-based features give the 

best percentage recognition, but due to large numbers of insertions, the 

percentage accuracy of MFCC-based features is the best. From the results of the 

previous chapters the recognition performance by 6 sub-band and 8 sub-band was 

found to be superior to MFCC and 24-band A WP features, but the results in 

Table 6.2 are just the opposite. This is because earlier only the three-class 

recognition problem was considered, but here all the 25 phonemes are classified 

by using these features, hence higher dimensions of features are helpful in giving 

better performance. 

Table 6.2: Word recognition performance for continuous speech recognition 

MFCC based features 

% correct % accuracy H D S I Nw 

Mixture=1 Training 99.67 98.58 2386 2 6 26 2394 

p=O Testing 99.10 97.30 770 '1 6 14 777 

Mixture=4 Training 99.92 99.33 2392 1 1 14 2394 

p=O Testing 99.36 98.58 772 0 5 6 777 

Mixture=8 Training 99.92 99.37 2392 1 1 13 2394 

p=O Testing 99.23 98.46 771 1 5 6 777 

Mixture=8 Training 99.87 99.58 2391 2 1 7 2394 

p=-10 Testing 99.23 98.71 771 1 5 4 777 
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Table 6.2: conI. 

24-band A WP-based features 

% correct % accuracy H D S I Nw 
Mixture=l Training 99.16 96.49 2374 6 14 64 2394 

p=O Testing 98.84 93.31 768 2 7 43 777 

Mixture-4 Training 99.50 97.49 2382 3 9 48 2394 

p=O Testing 98.84 95.50 768 1 8 26 777 

Mixture=8 Training 99.71 98.08 2387 2 5 39 2394 

p=O Testing 98.97 95.75 769 1 7 25 777 

Mixture=8 Training 99.67 98.54 2386 3 5 27 2394 

p=-lO Testing 98.97 96.53 769 1 7 19 777 

8 sub-band A WP-based features 

% correct % accuracy H D S I Nw 

Mixture=l Training 94.18 84.11 2217 20 117 237 2354 

p=O Testing 91.51 76.83 711 10 56 114 777 

Mixture=4 Training 96.98 90.70 2283 12 59 148 2354 

p=O Testing 95.24 84.30 740 4 33 85 777 

Mixture=8 Training 97.62 92.31 2298 9 47 128 2354 

p=O Testing 95.88 86.36 745 4 28 74 777 

Mixture=8 Training 97.41 93.80 2293 13 48 85 2354 

p=-lO Testing 96.01 88.16 746 4 27 61 777 

6 sub-band A WP-based features 

% correct % accuracy H D S I Nw 

Mixture=l Training 92.51 82.95 2187 38 139 226 2364 

p=O Testing 91.38 79.28 710 11 56 94 777 

Mixture=4 Training 95.60 89.89 2260 25 79 135 2364 

p=O Testing 94.69 86.10 735 8 34 66 777 . 

Mixture=8 Training 96.40 91.24 2279 23 62 122 2364 

p=O Testing 95.62 87,64 743 7 27 62 777 

Mixture=8 Training 96.40 93.15 2279 34 51 77 2364 

p=-lO Testing 95.37 89.45 741 9 27 46 777 
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6.4 Noisy speech recognition 

In order to test the recognition performance under noisy conditions, noisy 

speech was generated by taking clean speech from the TIMIT database [Ill and 

adding it with white Gaussian noise of zero mean and different variances. The 

baseline system and the 24-band filter using the A WP (explained in Section 6.6.1 

and Section 6.6.2 respectively) were used for the recognition of noisy speech for 

different SNRs. The 6 sub-band and 8 sub-band based features were not used for 

this task as it gave inferior recognition performance for clean speech and was not 

expected to perform well for noisy speech. 

The wavelet-based denoising stage proposed in Section 5.4 was also used 

before the feature extraction to assess the improvement in word recognition 

under noisy conditions. The process of denoising was carried out on a frame by 

frame basis. In the first experiment, one-level wavelet decomposition using the 

'Daubechies 6' mother wavelet was applied over a frame duration and the 

threshold was calculated. The soft thresholding was carried out on detailed 

coefficients obtained by wavelet decomposition. The signal was then 

reconstructed using the same mother wavelet. This signal was then pre­

emphasised and passed to the feature extractor, which was similar to the baseline 

system. In the second experiment, the threshold for denoising was calculated and 

two-level wavelet decomposition was carried out on the input speech signal. This 

resulted into splitting of 0-8kHz band into three sub-bands of 0-2kHz, 2-4kHz 

and 4-8kHz. The soft thresholding was applied on the detailed coefficients (two 

higher frequency bands) and the reconstructed signal was used for feature 

extraction. Similar tests were repeated using hard thresholding instead of soft 

thresholding. 

It can be seen in Figure 6.3 that the percentage recognition accuracy by denoising 

with soft thresholding using one-level decomposition is 0.25% less and with two­

level decomposition is 1.28% less as compared to the features extracted without 

denoising for the case of clean speech. This is due to the fact that some of the 

higher frequency components of phonemes are removed during denoising. This 

problem is encountered in the case of fricative recognition. However, for the case 

of voiced phoneme recognition the performance of the features with and without 
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Figure 6.3: Recognition performance achieved by using 

(a) MFCC features without denoising 

(b) MFCC features with one-level denoising using soft thresholding 

(c) MFCC features with one-level denoising using hard thresholding 

(d) MFCC features with two-level denoising using soft thresholding 

(e) MFCC features with two-level denoising using hard thresholding 

denoising is approximately the same. Also, denoising with two-level 

decomposition results in slightly inferior recognition accuracy at higher SNR as 

compared to one-level decomposition. This is because some of the discriminatory 

information present in the 2-4kHz band is also removed along with the noise 

during the denoising process. The denoising is found to improve the recognition 

accuracy under the noisy conditions irrespective of hard or soft thresholding. 

At SNR below IOdB the recognition accuracy with two-level denoising 

based features is found to be the best. However, the one-level denoising-based 

features perform better for SNR between 20dB to IOdB. The reason that two­

level-based denoising performing' better at lower SNR (higher level of noise) is 

understandable because it can remove the noise from the band 4-8kHz as well as 
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2-4kHz but one-level denoising cannot remove the noise from the 2-4kHz band. 

Hence, when the noise is more (i.e. lower SNR), two-level denoising is more 

effecti ve in cleaning the speech signa\. 

The recognition performance achieved by using the hard thresholding is 

found to be lower as compared to soft thresholding (because of its shrinkage 

capabilities) for SNR below 15dB. However, it is always superior to the baseline 

system performance for noisy conditions. It is clear from Figure 6.3 that the 

recognition performance when the denoising is introduced is higher under noisy 

conditions and the soft thresholding usually gives the best result. 
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Dc 96.78 85.07 71.3 51.35 26.51 13.26 

I!!ld 91.51 73.75 57.92 38.48 23.29 16.22 .e 94.21 75.8 59.97 40.28 25.48 12.23 

SNR 

Figure 6.4: Recognition performance achieved by using 

(a) wavelet features without denoising 

(b) wavelet features with one-level denoising using soft thresholding 

(c) wavelet features with one-level denoising using hard thresholding 

(d) wavelet features with two-level denoising using soft thresholding 

(e) wavelet features with two-level denoising using hard thresholding 
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The recognition accuracy achieved by usmg the 24-band A WP-based 

features is shown in Figure 6.4. One-level denoising with soft thresholding gives 

the best recognition performance except for OdB SNR. For the case of two-level 

denoising, the results obtained by hard thresholding are found to be superior to 

the soft thresholding except at Odb SNR. 

Comparing the performance of the MFCC and the 24-band A WP-based 

features; the former gives a better performance. Further, the denoising proposed 

here show considerable improvement in the recognition performance of both the 

feature extraction techniques. This establishes that denoising can be used as an 

effective tool at the pre-processing stage for the noisy speech recognition. The 

detailed results for these recognition tests are given in APPENDIX D. 

6.5 Summary 

The recognition results obtained by using the 24-band A WP-based 

features give 769 words correctly recognised words (H in Table 6.2 for test data) 

while 771 words are correctly recognised by MFCC-based features for the case 

of clean speech. It was found that there were more insertions when the wavelet­

based features were used, causing the percentage accuracy of the word to be 

lower than the MFCC-based features. It is clear that the recognition performance 

by 6 sub-band and 8-sub-band based features are not comparable to the 

performance of the MFCC based features for the word recognition task since the 

number of phonemes to be identified is much higher than those considered in 

Chapter 5. 

The denoising technique proposed was found to give substantial 

improvement in the word recognition accuracy for both MFCC and 24-band 

A WP-based features. Soft thresholding using one-level of decomposition was 

found to give better results under high and moderate SNR. When the signal 

power and noise power was about the same, two-level soft thresholding was 

found to be superior. This scheme has an advantage that there is no need to use 

complex algorithms to estimate the noise level, which requires the detection of 

speech and non-speech segment in an utterance. 
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CHAPTER 7 

CONCLUSIONS 

7.1 Overview 

Although there has been considerable progress in the area of image 

processing using wavelets, there has not been much research in exploiting its 

capabilities for speech processing. This thesis has explored a number of different 

techniques in wavelet-based feature extraction for the purpose of speech 

recognition. The advantage of using the wavelet-based technique over the STFf 

is its ability to process stationary as well as non-stationary signals. The wavelets 

also have compact time-frequency support; therefore, any feature extraction 

technique does not require the use of an overlapping window, thereby reducing 

the computational cost as compared to the conventional STFf technique. The 

emphasis of this work lies in the extraction of features that are shift invariant and 

speaker independent. For this reason a simple LDA classifier was mostly used for 

the classification of phonemes. However, a more complex scheme has also been 

used in Chapter 6 for the word recognition problem. The results of the 

experimentation were reported in three chapters, each containing a different 

approach to utilise the properties of wavelets for phoneme recognition. Chapter 6 

takes the best features extracted by wavelet techniques and applies then to the 

word recognition problem. 

In Chapter 3, the DWT was used for feature extraction and instead of 

using the wavelet coefficients as features, energy in each of the frequency bands 

was calculated and used as features. This overcame the problem of shift variance 
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in features because the energy in a band remains constant for a phoneme with 

small shifts. Another advantage of using the energy-based features was the 

dimension reduction of the feature vector. Different levels of decomposition by 

the DWT were performed and the frame size was varied to observe its effect on 

the recognition performance. A logarithmic compression was also applied to the 

extracted energy features and the recognition performance was evaluated. 

In Chapter 4 the limitations of the DWT, that it can only give left 

recursive binary tree structure was overcome by using the wavelet packets. 

Instead of using the Best-Basis algorithm, which requires a lot of processing for 

shift adjustments, admissible wavelet packets were used. Since the human 

hearing system is the best working speech recognition system to emulate, the Mel 

scale was adopted to design a 24-band filter structure using the AWP. The 

features derived from these 24-band filters were similar to those of the MFCC 

features. Different mother wavelets have also been explored to investigate their 

effect on the recognition performance. 

An important quality of good features for speech recognition is their 

invariance in the presence of noise. Chapter 5 explores the phoneme recognition 

performance achieved by these features for noisy speech. Further modifications 

to these features were also proposed, which resulted in improving the phoneme 

recognition under noisy conditions. A new pre-processing based on wavelet 

denoising has also been proposed in this chapter. This technique is simple to 

implement and does not require the detection of speech and non-speech frames 

for estimating the noise. Due to the non-linear processing that is inherent because 

of thresholding, it can effectively remove additive Gaussian noise from the noisy 

speech. The effect of both hard and soft thresholding has been explored on the 

phoneme recognition task at various SNR levels. 

Finally the performance of the wavelet-based features were tested using a 

state-of-the-art speech recogniser, the HTK. Continuous speech was taken from 

the TIMIT database and the word recognition was performed using the context­

dependent phoneme model based on HMM. The pre-processing based on 

denoising was also performed for clean and noisy speech to evaluate the 

improvement in word recognition accuracy. These perfonnances were also 

compared with the standard MFCC-based system under similar conditions. 
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The findings of this thesis can be summarised as follows. 

7.1.1 Discrete Wavelet Transform 

• Derivation of new energy-based features by the DWT retains the 

discrimination information as in the STFf. It also reduces the 

dimension of feature vectors as compared to the wavelet coefficient 

based features. 

• These features overcome the problem of shift variance and speaker 

dependency. 

• A comparative study of the recognition performance for different 

frame sizes and different levels of decomposition has also been 

carried out, which shows that an 8ms frame duration appears best for 

feature extraction. 

• A non-linear classifier based on MLP gives better recognition 

performance as compared to the linear classifier based on LDA. 

• A proposal of new features based on logarithmic compression of the 

energy features shows substantial improvement in the phoneme 

recognition over the simple energy features. 

• The main drawback of the DWT-based features is the inability of the 

DWT to decompose the higher frequency band (which gives a left 

recursive binary tree structure). Thus, for higher levels of 

decomposition the features come from the very low frequency band 

having very little discriminatory information. This causes no 

improvement in the recognition performance even if the number of 

features is increased. 
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7.1.2 Admissible Wavelet Packets 

• Proposing features based on the A WP shows an overall improvement 

in the classification of the phonemes over the DWT -based features. It 

also provides shift invariant features and is fast to compute contrary to 

the Best-Basis algorithm, which requires additional processing for 

shift adjustment. 

• Different admissible wavelet tree structures have been tested for 

different frame sizes and the recognition performance evaluated. 

• A novel filter using the A WP has been designed that splits the 0-8kHz 

speech signal into 24 bands closely following the Mel scale. The 

features derived by using these filters are similar to that of the MFCC 

features. 

• Fisher class separability based on the 24-band A WP-based features 

appears to be higher than the MFCC features if the frame duration 

remains large. This gives a statistical measure that these features are 

better than MFCC features for large frame duration; however, for the 

lower frame duration the latter is found to be superior. 

7.1.3 Robust Features 

• The effect of white Gaussian noise on phoneme the recognition task 

based on the A WP features has been established. A new energy 

subtraction method is proposed for features to compensate the effect 

of noise and is found to show an improvement in phoneme 

recognition. 

• The A WP-based features are found to perform better under very low 

SNR as compared to the MFCC. 

• The effect of changing the mother wavelet on the phoneme 

recognition has also been investigated. 
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• A new pre-processing stage has been proposed based on denoising of 

the input signal using the wavelet transform and both soft and hard 

thresholding techniques have been tested. This scheme shows huge 

improvement in the recognition of vowels but the performance 

reduces for the unvoiced fricatives. 

7.1.4 Continuous speech recognition using wavelet features 

• The major advantage of the wavelet for feature extraction for 

continuous speech is its compact time and frequency support. This 

means that wavelet processing will not require an overlapping 

window function contrary to the STFr processing. This saves a lot of 

computation during the feature extraction phase. 

• The pre-processing stage using wavelet denoising has also been 

evaluated for continuous speech recognition. Soft as well as hard 

thresholding techniques have been tested for both one-level and two­

level denoising and considerable improvement in word recognition is 

achieved for both the MFCC as well as the A WP-based features. 

The results of simulation without denoising the speech show that the 

recognition performance at lower SNR (in the range of 5dB to OdB) is better 

when the wavelet based features are used. Thus these features will be useful for 

ASR in the application environment such as factory, cockpit communication and 

highway/motorway communication. The last two applications use a telephone 

network to transfer speech, therefore it will result in the reduction of speech 

bandwidth. This will require re-designing of the band splitting structure for 

feature extraction. 

7.2 Future Work 

Wavelet-based feature extraction makes theoretical sense to implement it 

for speech recognition systems. This thesis has explored the use of the wavelet 

transform for the extraction of energy based features, a concept similar to that in 

the STFr -based features. However, wavelets have even higher capabilities and 

the time information available by wavelet transform has not been used at all. This 
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information is of course not available when the conventional STFf technique is 

used. The timing information along with the band energy information can 

provide the temporal evolution of features. This may be helpful in avoiding the 

delta and delta-delta features and also enables the use of larger window duration. 

Recognition performance in the presence of noise can be further 

improved by using more complex techniques of wavelet-based denoising. 

RASTA processing can also be used to enhance the performance under noisy 

conditions. Further, the resistance of wavelet-based features can be explored in 

the presence of real life noise other than white Gaussian. 

A similar filter, such as the 24-band A WP, can be developed for the 0-

4kHz bandwidth for the telephone channel and its performance can be studied in 

the presence of channel distortion as well as fading environment. 

Finally, wavelet-based features should prove to be very useful for speaker 

recognition applications because of its multi-resolution capabilities. 
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APPENDIX A 

A.1 Proof of Inverse Wavelet Transform 

For a wavelet function lII(t) the continuous wavelet transform of a signal 

x(t) is given as: 

(A.I) 

where ® is the convolution operator with 

(A.2) 

Let b(t) is given by: 

t<>o t<>o 1 da 
b(t) = c J J CWT(a,-r). c lII(t --r/a)d-r2" 

o -00 v3 a 
(A.3) 

The right hand side of the equation A.3 can be rewritten as a sum of 

convolutions 

t<>o da 
b(t) = c J CWT(a,.) ® III a (t)2" 

o a 
(A.4) 

where'. " Indicated the variable over which the convolution is performed. 

To prove that b(t) is the same as x(t), the Fourier transform of b(t) is calculated. 
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- da b(ro) = c f x(rohlalfl* (arohlalfl(aro)2 
o a 

+~ 2 da 
= x(ro)c f IIfI(aro)1 -

o a 

(A.5) 

since IfI is real 11fI( _ro)1
2 

= IIfI(ro)1
2 

. By changing the variable ~ = aro in 

the above equation the result obtained is 

(A.6) 

From the equation A.6 it is clear that the recovered signal bet) is the same 

as x(t) if 

(A.7) 

Thus equation k.3 can be used to recover the signal back from the 

transformed domain (or in other words is the inverse transform) if equation A.7 

is satisfied. This condition is known as the admissibility condition. To guarantee 

this condition the wavelets must have zero mean and should be continuously 

differentiable. 
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APPENDIXB 

List of phonemes present in the TIMIT database 

Phoneme Types Phoneme symbols 

Stops fbI, Id!, IgI, Ipl, It!, 1kI, Idx!, Iql 

Affricates Ijh!,/ch! 

Fricatives Isl, Ish!, Iz/, /zh!, If I, Ith!, lvI, Idh! 

Nasals Irn!, In!, Ing/, lern!, len!, lengl, Inx! 

Semivowels and Glides 11/, Irl, Iwl, Iyl, /hh!, /hv/, lell 

Vowels lax-h!, laa!, lael, lah!, laol, lawl, lax!, laxrl, layl, 

leh!, lerl, leyl, lih!, lix!, /iy/, lowl, loyl, luh!, luwl, 

lux! 
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APPENDIXC 

C.I HMM for Pattern Matching 

The HMM is used to detennine the probability of the observation vector, 

YT, given a hypothesised word string W. The word string is mapped to the 

appropriate set of models using the lexicon, the task is to compute pry TI;\1l 

where M is the set of HMM linked with word string W. Initially only the 

simplified case of a single model M, will be examined. The observation 

sequence is defined as 

Y T = y(1)y(2) •.• y(T) (C.l) 

where each observation yeT) is an n-dimensional vector 

(C.2) 

The total probability is given by summing over all possible paths through the 

model that ends at the appropriate final state. The probability of the observation 

sequence for a given model M is given by 

P[YTIM1= ~p[YTle,M1P[eIMl 
See 

T 

= ~ 3eTN IT 3e,_,e,be, (y(.t)) 
See T=l 
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where e is the set of all K possible state sequences of length T in the model;\1 

e = ~(1) ,8(2) , •••• ,8(K) } (C.S) 

and 8, is the state occupied at time T in the path 8. The model is initialised such 

that 80 = 1. 

The single model discussed till now is to be modified for it to work on the 

continuous speech. Many models are required for this purpose and are to be 

connected together to form the word string. This combination of model is 

achieved by linking two models together as shown in Figure c.l. The end non­

emitting state of model A is combined with the start-state of model Band 

............................................... 

~ ........... "~'1. ~ .................... ] 1 Model B . . .................................................. 

Composite Start 
State 

Connecting Link Composite End 
State 

Figure C.I: Composite Hidden Markov Model AB 

replaced by the connecting link. The start-state of the model A becomes the 

composite start state and the end state of model B becomes composite end state 

of the model. The set of possible states, e, is the set of all path of length T in the 

composite model AB. Equation CA is never implemented directly as it is 

computation ally very expensive and forward-backward algorithm is used for its 

computation. 

C.2 Forward-Backward Algorithm 

The forward-backward algorithm is an efficient way of calculating the 

probability of an observation sequence being generated by a particular set of 
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models. The assumption made here is that the probability of a particular 

observation only depends upon the current state. Consider the forward 

probability Uj(t) and the backward probability Jlit). These are the joint 

probabilities of the partial observation sequence and being in state Ijj(t) of the 

given model;\lt. These are defined as: 

a j (t) = P[y(l), y(2), .... y(t),qj (t)IM] (C.6) 

13/t) = P[y(t + l),y(t + 2), .... y(T),qj(t)IM] (C.7) 

Using these definitions it is possible to compute by iterations the values 

of Uj(t) and Jlj(t). From the HMM definition, the initial conditions for Uj(O) are: 

(C.8) 

(C.9) 

Then for I :s t:S T and 2:Sj:S N-I 

(C.lO) 

and terminates with 

N-I 
aN (T) = La; (T)3;N (C.ll) 

;=2 

A similar set of recursion can be defined for the backward probability. 

The initial conditions in this case are: 

and the iterative scheme from t=T-l to t=O is: 

N 
13;(t) = L3ijb/y(t+l))l3j (t+l) forl:Sj:SN 

j=1 

The probability of a particular observation sequence is given by: 

N 
P[YT I M] = aN (T) = 131 (0) = L aj(t)13 j(t) 

j=1 
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The above equation gives the probability of a particular utterance and is also 

useful in the re-estimation formulae for the HMM. 

C.3 Estimation of HMM Parameters 

The estimation of the HMM parameter is essentially an optimisation 

problem. The task is to obtain a set of models that according to a criterion 

matches the available training data well. The criterion used may be Maximum 

Mutual Information (MMI) or the Maximum Likelihood (ML), however ML 

criterion is more commonly used. In this work the ML estimation will be used for 

the parameter estimation. 

The aim of the ML estimation is to obtain a set of HMMs M, such that 

they maximise Xml.CJ\1) where: 

(C.l6) 

Due to the large dimension of the problem (mean, variance and weight for 

large vocabulary system) the training process is very slow. To overcome this 

problem, Baum-Welch algorithm based on Expectation Maximisation (EM) 

technique is used. The Baum-Welch algorithml is designed such that: 

where ;\It is the new estimate of the model set. This is done by introducing an 

auxiliary function, A(M,;\It) , defined as: 

- -
A(M,M) = LP[YT,SIM]log(P[YT,SI MD 

SE9 
(C. IS) 

Maximising this auxiliary function ensures the Xml.CJ\1) is non-

decreasing satisfying Equation C.l7. Equation C.lS can be used as many times, 

I L. E. Baum, T. Petrei, G. Soules and N. Weiss, "A maximisation technique occurring in Ihe 

statistical analysis of probabilistic functions of Markov chains", Annals of Mathematical 

Statistics, vol. 41, pp. 164-171, 1970. 
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each time replacing the original model set by the new model set estimate. Each 

iteration is guaranteed not to decrease the likelihood. This results into a local ML 

estimate of the parameters. Baum first proved the convergence of this algorithm 

and it was later extended to mixture distribution and vector observations. For 

CDHMM with Gaussian output distribution the model parameters can be 

estimated in an iterative manner. The details of the derivation of the formulae can 

be found in2
, only the results are quoted here. The probability of being in a 

particular mixture component is given by: 

Ljrn('t) = P[qjrn('t) I YT,Ml 

1 
= AA Uj('t)cjrnbjrn(y('t»~j('t) 

P[YT I/Vll 
(C.19) 

where 

if't= 1 

otherwise 
(C.20) 

The extended dataset is {y(l), y(2), ... ,y(T), L(l), L(2), .•. , L(T)}, where L(T) is 

the matrix whose elements Ljm(T) are the probability of being in state Sj and 

component Mm at time T. The terms frame/state alignment and frame/state 

component alignment is used to denote Lj(T), where Lj(T)=P[<J.i(T)IYT.Ml, and 

Ljm(T) respectively. Using the extended dataset the estimation of the mean 

variance and mixture weight is given by 

T 
_ LLjrn('t)y('t) 

,=1 
I.ljrn = T 

LLjrn('t) 
,=1 

T - -
_ L L jrn ('t)(y( T) -I.l jrn )(y( 't) -I.l jrn) T 

:Ejrn = ,=1 T 

LLjrn('t) 
<=1 

(C.21) 

(C.22) 

2 L. A. Liporace, "Maximum likelihood estimation for multivariate observations of Markov 

source", IEEE Trans. on Information Theory, vo!. 28, pp. 729-734,1982. 
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Cjrn = T 

~Lj('t) 
t=1 

The transition probabilities are re-estimated by 

T-l 
_ ~ui('t)aijbj(Y(Hl))~j(Hl) 

t=1 
aij = T-l 

~ Ui ('t)~i ('t) 
t=1 

(C.23) 

(C.24) 

where 1 < i, j < N. The transition from the non-emitting states are re-estimated 

by 

- 1 
alj = P[Y

T 
IM]Uj(l)~j(l) (C.25) 

- Ui (T)~i (T) 
aiN = T (C.26) 

~ Ui ('t)~i ('t) 
t=1 

These re-estimation formulas are used to train all the HMMs used in this 

work. The details of how multiple component models are built are given in HTK 

manual. 
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APPENDIXD 

Table 0.1: Test results for wavelet-based word recognition without denoising for 

a total of 777 words. 

% Correct % Accuracy H D S I 

Clean 98.97 96.53 769 I 7 19 

20dB 86.74 79.92 674 38 65 53 

15dB 74.26 65.25 577 70 130 70 

IOdB 50.19 40.41 390 151 236 76 

5dB 24.20 18.28 188 253 336 46 

OdB l3.90 10.94 108 409 260 23 

Table 0.2: Test results for wavelet-based word recognition with one-level 

denoising with soft thresholding. 

% Correct % Accuracy H D S I 

Clean 99.23 96.78 771 I 5 19 

20dB 91.63 86.23 712 18 47 42 

15dB 82.63 74 642 32 103 67 

IOdB 64.09 51.48 498 54 225 98 

5dB 36.68 27.54 285 161 331 71 

OdB 15.19 13.26 118 462 197 15 
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Table D.3: Test results for wavelet-based word recognition with one-level 

denoising with hard thresholding. 

% Correct % Accuracy H D S I 

Clean 98.97 96.78 769 1 7 17 

20dB 90.99 85.07 707 16 54 46 

15dB 79.92 71.3 621 33 123 67 

IOdB 63.45 51.35 493 50 234 94 

5dB 34.23 26.51 266 188 323 60 

OdB 14.41 13.26 112 480 185 9 

Table D.4: Test results for wavelet-based word recognition with two-level 

denoising with soft thresholding. 

% Correct % Accuracy H D S I 

Clean 98.33 91.51 764 1 12 53 

20dB 84.94 73.75 660 17 100 87 

15dB 75.03 57.92 583 20 174 133 

IOdB 63.32 38.48 492 24 261 193 

5dB 42.60 23.29 331 74 372 150 

OdB 19.05 16.22 148 278 351 22 
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Table D.5: Test results for wavelet-based word recognition with two-level 

denoising with hard thresholding 

% Correct % Accuracy H D S I 

Clean 98.33 94.21 764 I 12 32 

20dB 85.71 75.8 666 12 99 77 

15dB 76.96 59.97 598 18 161 132 

10dB 62.42 40.28 485 36 256 172 

5dB 43.50 25.48 338 139 300 140 

OdB 14.54 12.23 113 428 236 18 

Table D.6: Test results for MFCC-based word recognition without denoising 

% Correct % Accuracy H D S I 

Clean 99.23 98.71 771 I 5 4 

20dB 93.05 89.32 723 19 35 29 

15dB 78.12 71.3 607 56 114 53 

10dB 46.59 41.18 362 138 227 42 

5dB 21.75 20.72 169 401 207 8 

OdB 7.08 7.08 55 668 54 0 
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Table 0.7: Test results for MFCC-based word recognition with one-level 

denoising with soft thresholding 

% Correct % Accuracy H D S I 

Clean 99.10 98.46 770 0 7 5 

20dB 94.21 91.63 732 7 38 20 

15dB 89.83 86.62 698 18 61 25 

IOdB 74.77 69.88 581 45 151 38 

5dB 45.30 41.96 352 168 257 26 

OdB 16.22 15.44 126 468 183 6 

Table 0.8: Test results for MFCC-based word recognition with one-level 

denoising with hard thresholding 

% Correct % Accuracy H D S I 

Clean 99.10 98.71 770 1 6 3 

20dB 93.95 91.51 730 8 39 19 

15dB 88.42 84.04 687 12 78 34 

IOdB 70.01 64.99 544 40 193 39 

5dB 38.48 36.04 299 179 299 19 

OdB 12.48 12.23 97 504 176 2 
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Table D.9: Test results for MFCC-based word recognition with two-level 

denoising with soft thresholding 

% Correct % Accuracy H D S I 

Clean 98.71 97.43 767 I 9 10 

20dB 95.62 90.09 743 3 31 43 

15dB 90.60 83.53 704 8 65 55 

lOdB 79.79 68.47 620 20 137 88 

5dB 59.33 46.46 461 70 246 100 

OdB 29.09 24.32 226 242 309 37 

Table D.lO: Test results for MFCC-based word recognition with two-level 

denoising with hard thresholding 

% Correct % Accuracy H D S I 

Clean 99.23 98.33 771 I 5 7 

20dB 97.04 92.54 754 3 20 35 

15dB 90.99 82.11 707 8 62 69 

lOdB 77.22 62.81 600 23 154 112 

5dB 49.03 33.72 381 93 303 119 

OdB 22.65 17.89 176 304 297 37 
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APPENDIXE 

E.t Software Introduction 

A phoneme recognition software with GUI facility is provided in the 

attached CD at the back of this thesis. It contains a demo version of the software 

developed using MATLAB version 5.3 in the 'Program' directory. It requires 

'Wavelet toolbox' and 'Statistics toolbox' for the execution of some of the 

routines. In order to run the demo, execute the file 'asrdemo'. This will produce a 

new window (as shown in Figure E.I) giving the user three options. 

~ Figure No. 1 : Ii!!ilIilIf3 
file £dit 10o1s 2iiridov.; ·~H'~iP . 

I Start recog~itionforcJ:ean,phoneme 

I Start recognition for noisy phoneme 

Figure E.I: The window displayed when running the 'asrdemo' 
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1. Recognition of the clean phoneme recognition. 

2. Recognition of the noisy phoneme recognition. 

3. Exit the demo. 

Selection of first or second option will open another window and will ask 

user to select from further different options available. If the user clicks the first 

option he has to select from the following options (as shown in Figure E.2): 

1. The phoneme class to be recognised (unvoiced fricatives, un voiced stops or 

vowels). 

2. The type of features to be extracted (DWT, A WP or MFCC base). 

3. The number of features to be extracted during every 8ms duration. For 

MFCC it has a default value of 13. 

4. The phoneme file to be used for the extraction of these features. These are the 

'wave' files and are supplied with this software. 

::tl Figure No. 2 I!lIiIIf3 
file £dit 1001s' ~inaow Help 

IThe percentage recognition of phoneme f is 97.56 
IThe percentage recognition of phoneme sh is 1 .22 
The percentage recognition of phoneme s is 1 .22 

B '------------' 

~~.r.; 
unvoiced'stops ~1 
vowels I§ 

1 
f 

, , , , 
__________ 1 _________________ 1 ______ _ , , 

2 
sh 

, , 

3 
s 

Figure E.2: Window for the recognition of clean speech 
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Once the selections are made correctly the classification results are 

displayed in percentage as well as a bar chart. 

In the case of user selecting the noisy phoneme recognition, the user is 

provided with the following options in a new window (as shown in Figure E.3). 

1. The phoneme class to be recognised (unvoiced fricatives, unvoiced stops or 

vowels). 

2. The type of features to be extracted (A WP or MFCC base). 

3. The number of features to be extracted during every 8ms duration. 

4. The phoneme file to be used for the extraction of these features. 

5. The level of noise present in the phoneme (20dB, lOdB or OdB). 

6. The option whether denoising is to be applied (select 2) or not (select 1). 

7. If denoising is to be applied then the type of denoising (hard/soft) and the 

level of denoising (one level or two levels). 

;;!l Figwe No. 2 Ii!iIilIl3 

IThe percentage recognition of phoneme p is 1 .50 
IThe percentage recognition of phoneme t is 14.00 
The percentage recognition of phoneme k is 84.50 

B '----------' 
100,-----,-------------,------------.------, 

_______ L _________________ ! _________ _ , , 50 , , , 

oL---L-----... ' .. --
2 

p 
3 
k 

Figure E.3: Window for the recognition of noisy speech 
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After making these selections the feature extraction is carried out and the 

classification is performed by using the Linear Discriminant Analysis (LOA). 

The LOA uses the training feature file that is supplied with the software. Once 

the classification of the clean/noisy phonemes has been performed the second 

window can be closed by the exit options and the first window can be used for 

the recognition of other phonemes. 

The asrdemo uses different Matlab 'functions', 'wave' files of the 

phonemes for feature extraction and 'txl' file to train the classifier. The details of 

these files are included in 'Readme.txt' file provided with the software. 
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