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Abstract 

Within the field of rapid prototyping a range of metal materials and production techniques have 

emerged. One field of application which has been addressed is for elevated temperature 

applications, namely die-casting. 

This thesis will investigate a range of rapid tooling materials available at the commencement of 

the work for use in aluminium pressure die casting. 

A series of experiments were conducted to answer the following research questions:-

• To what extent can rapid tooling materials resist thermal cycling and be used as a 

solution for aluminium pressure die casting? 

• If the thermal profile of an aluminium pressure die cast tool can be obtained, can it be 

simulated? Can the thermal properties, failure mode, and life expectancy of rapid tooling 

metal materials be determined? 

• From the data obtained, is it possible to predict how other rapid tooling or like-materials 

would behave when subjected to thermal fatigue and can their suitability as a die casting 

tool material be determined? 

The experiments conducted showed that the surface temperature of a die could be obtained 

from a H13 steel tool running on an aluminium pressure die-casting machine. It was important 

to determine the temperature profile of the production process to gain an accurate thermal cycle 

to be simulated. An experimental apparatus was designed and manufactured to simulate the 

thermal cycle. The apparatus only simulated thermal fatigue as it is the main cause of die failure 

and determines die life. 

Thermal cycling of the materials was conducted to evaluate their performance in die-casting. 

Crack data was obtained by halting the thermal fatigue test, at predetermined intervals, to 

examine the specimens optically and measure any cracks. The mechanics I mode of crack 

initiation and propagation were determined by examining the microstructure of the material after 

thermal fatigue testing. Understanding these mechanisms may allow material improvements to 

be made with the aim of increasing their thermal fatigue resistance. 

The research highlighted limitations when employing rapid tooling materials in elevated 

temperature applications. The research demonstrates an assessment method for rapid tooling 

materials. In addition, the results indicate how a material's composition and structure affect its 

performance at elevated temperatures. The thermal fatigue test could lead to a new generation 

of rapid prototyping and tooling materials designed to work at elevated temperatures. 
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Insert 
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Lattice 
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Phase 
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Plunger 
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Rapid Manufacturing 

Rapid Prototyping 

Rapid Tooling 

Sintering 
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composition. 
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size, shape and distribution. 

Segment of a tool with a cavity that is placed in the tool 
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Transformation with time by holding at a specific 

temperature. 

The space arrangement of atoms in a crystal structure. 
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settling or filtering. 
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eutectoid temperature. 

The direct use of layer manufacturing technologies to 

produce final products. 

Additive layer-by-Iayer prototyping technology. 

Method of fabricating tools quickly or using a rapid 
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indirect methods: In direct methods, the part fabricated 

by the RP machine itself is used as the tool. In indirect 

methods, the part fabricated by the RP machine is 
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Toggle Clamp 

Selective laser sintering. 

Linkage employed to mechanically multiply pressure 

when locking the dies of a casting machine. 
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Chapter 1: Introduction and Literature Review 

1.1 Introduction 

It has been identified the die casting industry is seeking innovative methods of die manufacture 

and increased die performance to maintain a competitive edge in today's market. In addition 

they are seeking a method to validate dies and produce prototype I short run tooling using 

identical cast alloy and process to obtain the correct geometric shape and material properties 

that occurs in the production part (Rooks, 2002", Soar, 2000). Traditional prototyping techniques 

do not use a metal die or represent the process; hence, a prototype component is not a true 

representation of the production component. A means of manufacturing a cost effective tool 

capable of resisting the environment is required - a problem requiring a solution. 

The first stage off the investigation researched die casting to determine the process's, and 

alloys cast. Die casting is a process where molten metal is poured I injected into a permanent 

die (chapter 1). The investigation showed pressure die casting is considered the most 

detrimental due to the cycle times and temperatures as this produces rapid thermal cycling 

(Persson et.al., 20048
, Wallace and Schwam, 1999). Aluminium pressure die casting was seen 

to be the most commercial process with more occurrences of die failure. It was considered 

advantageous to choose the most commercial process as the research could have a larger 

impact on industry. Plus, if a tool material performs well with the aluminium die casting process 

it is likely to have an increased performance in casting processes with a longer cycle time and 

lower melting point alloys. 

The second stage of the investigation was to ascertain the current die designs, current die 

materials and their heat treatment to determine how these affect die failure (chapter 2). A tooling 

solution must be able to generate the same features of a typical die. It was also evident that 

geometries such as sharp corners and large change in cross section increases die failure and 

may influence specimen design. The importance of current material alloying was seen to have a 

significant affect as did heat treatment. It was evident that conventional materials used carbide 

forming elements to improve material properties and increase die life. However, these materials 

do fail and there was a need to understand how current materials fail and to see how a material 

initiated and propagated cracks. Pressure die casting subjects a tool material to an aggressive 

environment of wear, erosion and thermal fatigue (chapter 3). The literature research showed 

thermal fatigue is the main cause of die failure, however, it also highlighted that existing test 

methods did not simulate die casting since the thermal cycles and number of cycles to initiate 

cracking were not comparable. In addition, information on the thermal cycle within a tool was 

sparse. The research showed that certain material properties are considered to improve or aid 

die life. Chapter 3 then continued to discuss crack detection and measurement techniques as 

thermal fatigue is seen as the main cause of die failure. 
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Now that an understanding of the die casting process, die design, materials and main cause of 

tool failure had been established the next stage was to review the rapid tooling processes as 

they may provide the solution to prototype I low volume tooling for pressure die casting. 

However, the materials have mainly been used in low temperature tooling applications, 

(Radstok, 1999, Segal and Campbell, 2001, Klocke et.al., 1995). 

These potential tooling methods could provide the industry with: 

• Economically viable short run tooling 

• Short run tooling for a new niche market 

• Prototype tooling under production conditions allowing components to be assessed for fit, 

function and mechanical properties 

• Tool design verification under production conditions to assess tool geometry, part 

geometry (shrinkage, warping etc.) filling, cooling channels effectiveness I placement and 

allows design iterations 

A literature review of rapid tooling techniques and materials was conducted (chapter 4). It was 

clear that many rapid tooling materials are constructed from two different alloys and have 

different microstructures to typical alloys. It was also evident that the material properties were 

less than favourable (chapters 4 and 5). In addition, previous projects and papers (IMI RADICAL 

project, IMS Project and the Sony Ericsson project) (Hague, 2001, Harris et.al., 2003", Harris 

et.al., 2003', Harris et.al., 2004, Norwood et.al., 2001, Norwood and Soar, 2001, Norwood et.al., 

2004, Norwood and Dickens, 2005) showed, that the rapid tooling materials are not capable of 

withstanding the environment for long periods of time and suffer from thermal fatigue, otherwise 

known as heat checking or heat cracking. There is a need to understand how and why this 

failure occurs to improve rapid tooling materials for high temperature applications. This is a hole 

in the body of knowledge and one that requires an answer; hence, it was decide to thermally 

fatigue the materials as this is the most detrimental tool failure mode; to answer the research 

question. 

This research would enable the thermal fatigue life for these materials to be determined. The 

information obtained would give an understanding of the crack initiation and propagation of the 

materials and enable future material development to improve the thermal fatigue resistance of 

these material types. 

1.2 Aims 

The research programme was designed to study the principle mode of failure (thermal fatigue) 

of high pressure die casting tools. The aim of this work was to determine the mechanism of 

failure in rapid tooling materials that are subjected to harsh die casting environments and to 

analyse the material performance, mode of failure and suitability for the application. 
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1.3 Objectives 

The objective of this work was to determine the life expectancy of current rapid tooling materials 

and their failure mode leading to a method of comparing the materials to predict how similar 

materials would behave if subjected to thermal fatigue and how thermal fatigue resistance could 

be improved. This was achieved by: 

• Identifying a common die casting process, suitable prototype I low volume tooling 

materials, die failure modes, thermal fatigue test methods, crack initiation I propagation 

modes, and a means of crack detection I measurement. 

• Determining the temperature in a pressure die casting tool for aluminium parts. 

• Simulating the temperature profile of the surface of a die by designing an experiment and 

manufacturing a test apparatus. (To accomplish this several factors had to be taken into 

account; specimen geometry, heating and cooling method, and mediums, cycle time etc.). 

• Determining the number of cycles to initiate cracks and to observe crack growth by 

conducting a series of thermal fatigue experiments on rapid tooling materials. 

• Understanding how the cracks initiate and propagate through the materials allowing the 

mode of failure to be established and comparisons made between the performance of 

different materials. 

1.4 Die-Casting and Pressure Die-Casting 

In this chapter casting processes and the alloys used are reviewed to determine the process 

conditions in terms of cycle time, process temperature, thermal gradient etc. 

Die-casting is a manufacturing process enabling the production of dimensionally accurate near 

net shape components with little or no post processing (Liu et.al., 2000). Typically, the cast 

alloys are zinc, magnesium, aluminium and copper alloys. The advantages of die-casting are: 

• The ability to produce near net shapes with closer tolerances than achievable with other 

mass production casting and forming processes (Oberg et.al., 1996) 

• High rates of production with little or no machining required (Oberg et.al., 1996) 

• Thinner wall sections possible compared with other casting methods (1 mm) (DeGarmo, 

1988. Oberg et.al., 1996) 

• The production of durable, dimensionally stable parts with good surface finish (3.2 - 0.4 

Ra (IJm) (DeGarmo, 1988, Oberg et.al., 1996, Street, 1986) 

• Dies are capable of producing thousands of identical components within the specified 

tolerances (DeGarmo, 1988) 

• The ability to integrate fastenings, such as bosses and studs, in the die casting to improve 

assembly productivity DeGarmo, 1988) 

• Less material waste than other processes, for example, machining (DeGarmo, 1988, 

Oberg et.al., 1996, Street, 1986) 
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Where many components are required, die-casting is an efficient, cost effective process, it can 

produce shapes that are not easily machinable or alternatively have to be made as an assembly 

(Street, 1986). The benefit is significant savings in cost and labour as an assembly line is not 

required. 

Die-casting can be described as a method of producing multiple components, usually non

ferrous, from permanent dies. Processes include gravity die-casting and cold I hot chamber 

pressure die-casting. 

Prior to the development of die-casting all casting processes were based upon expendable 

moulds in which the metal was cast and when solidified, the mould was destroyed and the 

casting removed. Sand and investment casting are examples of the expendable mould 

processes. These processes also produce components of near net shape requiring little or no 

post machining, and eliminate excessive material waste and finishing costs compared to 

component manufacture using machining processes. Permanent moulds were introduced where 

high volumes, reduced shrinkage, improved surface finish, etc., were required (DeGarmo, 1988, 

Oberg et.a!., 1996, Street, 1986). 

In die-casting, thousands of components can be manufactured before excessive tool wear I 

thermal fatigue leads to tool failure. The components produced seldom require finishing with the 

exception of runners and risers when manufactured by the gravity die casting process (Ray, 

1987). 

1.5 Gravity Die-Casting 

Gravity die-casting employs reusable moulds commonly machined from grey cast iron, tool 

steel, graphite etc. The mould halves have to be aligned accurately, which can be achieved by 

employing a bolster in which the die is located or by hinging the mould to ensure accurate and 

repeatable mould closure. For aluminium die casting the mould is preheated with a gas lance 

(200°C - 250·C) to reduce the thermal shock on the tool and then molten metal poured into the 

pouring cup and the mould is filled under gravity alone. The molten metal flows along the runner 

and fills the component cavity and the risers. The risers allow gas to escape and contain surplus 

molten metal to feed the component cavity as solidification occurs (Figure 1 - 1). After 

solidification, the mould is opened and the casting removed, the process is then repeated. 

Common casting materials are aluminium, magnesium and copper based alloys and the use of 

graphite moulds enables iron and steel to be cast. 

The process produces dimensional accuracy within O.13mm - O.25mm over 600mm (DeGarmo, 

1988). Selectively heating (cartridge heaters), cooling (cooling channels) or altering the wall 

thickness of the mould allows directional solidification to be promoted producing near defect free 

castings. It is possible to produce complex castings using gravity die casting with the use of 

sand cores or retractable cores to create internal geometries. 
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Figure 1 - 1 Gravity die-casting 

1.6 Pressure Die-Casting 

Pressure die-casting differs from gravity die-casting in that molten metal is forced into a metal 

die under pressure. It is held under pressure during solidification improving the componenrs 

dimensional accuracy, uniformity, repeatability and creating a finer grain structure (Ray, 1987). 

Pressure die-casting machines require large clamping forces to maintain mould closure during 

the injection cycle. The forces can stretch 1S0mm diameter tie bars by 1.1Smm on a typical SOO 

ton machine (Oberg et.a!. , 1996). 

1.6.1 Cold Chamber Die-Casting 

Figure 1 - 2 illustrates a cold chamber die-casting machine. Metal is melted in a separate 

furnace and a measured amount of molten material is transported to the chamber shot sleeve of 

the machine, usually manually, however, robotic arms are also used. 

Toggl .. clamp 
Gas/oil accumulator 

Piston Plung .. r 

Figure 1 - 2 Cold chamber machine (Dynacast, 2004) 

The molten material is forced into the die via a hydraulic plunger I piston (Figure 1 - 3) in three 

controlled phases producing high quality castings. 
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• Phase one is termed take up and slowly pushes the aluminium towards the die with 

minimum turbulence 

• Phase two is the injection phase (filling of the die cavity) and has to be is fast enough to 

prevent chilling whilst the alloy is filling the die. The speed of this phase is approximately 

10m/s and typically takes 0.05 - 0.1 seconds; however, velocities can be as high as 

100m/s (Chen, 2005). During this phase any gases are expelled via machined vents in 

the die and through the parting line 

• Phase three is the compaction phase, as the alloy solidifies in the cavity it begins to shrink 

away from the surface of the die. The force applied to the alloy (50 - 70N/mm 2
) reduces 

this effect and reduces the size of inclusions and porosity caused by air, trapped during 

injection 

The process can be used with zinc, magnesium, aluminium and copper based alloys. The cold 

chamber process has a longer cycle time compared to the hot chamber process because the 

molten metal has to be transferred to the shot chamber (DeGarmo, 1988). 

Figure 1 - 3 Cold chamber die set (Dynacast, 2004) 

1.6.2 Hot Chamber Die-Casting 

Figure 1 - 4 illustrates the hot chamber machine. The term gooseneck refers to the area of the 

machine that is submerged in a pool of molten metal. 
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Figure 1 - 4 Hot chamber machine diagram illustrates the plunger mechanism, which is 

submerged In molten metal (Dynacast, 2004) 

Molten metal fills the gooseneck on each cycle; the metal is then forced out of the gooseneck by 

a mechanical plunger I piston into the die cavity where it solidifies, the die is then opened and 

the part is ejected and die lubricant applied to the surface to aid part release (Figure 1 - 5). Hot 

chamber die casting machines are fast and the metal is injected from the same chamber in 

which it is melted. 

Plunger 

£Jec\D< Cover 
d.e ~. 

Figure 1 - 5 Hot chamber die set (Dynacast, 2004) 

The processes discussed are all common commercial die casting processes. They all subject 

steel dies to fluctuating temperatures due to the injection of molten metal and then rapid cooling 

by part ejection and the application of die lubricant. This process causes the die to thermally 

fatigue and eventually fail , the rate of failure is dependent upon the type of alloy being cast i.e. 

alloys with high melting point have a greater thermal shock on steel dies. Thermal fatigue is 

costly for die casters, due to down time, loss of production, conducting die repairs etc. Obtaining 
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an understanding of how materials perform and fail when subjected to thermal fatigue is 

important for die casters (Wallace, 1997 and 2000). Dies could be manufactured with die life in 

mind, for example short run production is becoming increasingly popular and an alternative 

tooling solution and alternative cheaper materials may be beneficial. 

The die casting process with a high thermal fatigue temperature profile, i.e. a process with the 

greatest fluctuating temperature range and fastest cycle time, is the most detrimental to a die. 

Hot chamber die casting has the fastest cycle time of the processes due to the lower melting 

point alloys used (zinc and magnesium) and the automated gooseneck injection system. Since 

zinc alloys and magnesium alloys have low melting points and processing temperatures, the 

thermal shock the tool is subjected to is lower. This is reflected in the life expectancy of dies in 

terms of the number of shots they can take (Table 1 - 1). Gravity die casting typically has slower 

pouring and solidification times and hence, a slower cycle time. The dies are generally not water 

cooled and not sprayed with a water based die lubricate, so the thermal profile is not as great as 

cold chamber pressure die casting. The cold chamber pressure die-casting process, however, 

can cast aluminium alloys which are injected at 700°C - 750°C depending on the die geometry. 

The die is typically water cooled and the surface sprayed with water based die lubricant causing 

thermal shock. It has a fast cycle time and unlike gravity die casting, the tools are subjected to 

high pressures and increased wear. Cold chamber pressure aluminium die-casting is deemed 

the worst common casting process in terms of thermal cycle (temperature gradient, speed) and 

hence, die life. If a material can withstand this thermal cycle then it could be assumed that it can 

withstand the thermal cycles of the other die casting processes giving a longer die life. 

Alloy type Die life (number of shots) Pouring temperature (oC) 

Aluminium based 100,000 700 

Magnesium based 300,000 670 
Zinc based 1,000,000 420 

Table 1 - 1 Alloys melt temperature versus number of shots (Clegg, 1991) 

1.7 Alloys Used for Die-Casting 

The alloys used in modern die-casting techniques are zinc, magnesium, copper and aluminium 

alloys. Each has a particular advantage depending upon the final product environment, 

geometry, mechanical properties and the quantity requirements (Table 1 - 2 and Table 1 - 3). 

1.7.1 Zinc Alloys 

Zinc alloys are one of the Simplest alloys to cast because of their low melting point and their 

fluidity in the molten state enabling very intricate shapes to be made. Components can typically 

be made to closer tolerances and thinner wall sections than when using aluminium. Zinc alloys 

offer good mechanical properties with high ductility and high impact strength (Table 1 - 2). Die 

life is good (1,000,000 shots) due to the low casting temperatures of 400°C - 425°C. The hot 

chamber die casting process lends itself to simple automation and high production rates and the 

quality of surface finish is high allowing ease of plating and other finishing process. 
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1.7.2 Magnesium Alloys 

Magnesium has an excellent strength (Table 1 - 2) to weight ratio and is the lightest alloy 

commonly cast, with a density of only 1.74g/cm·3 at 20·C. Magnesium can be cast using either 

the hot or cold pressure die-casting processes and since it does not dissolve iron, the die life is 

better than that of aluminium. Magnesium has a lower specific heat and faster solidification rate 

than aluminium making production, typically, 50% faster. Magnesium, however, has to be 

processed in an atmosphere of argon, CO2, and 2% SF., (Sulphur Hexafluoride) gas or fluxes to 

prevent oxidation and to exclude oxygen from the surface of the molten metal. The alloys 

melting temperature is 650·C. 

1.7.3 Copper Alloys 

These alloys possess high hardness, high corrosion resistance and the highest mechanical 

properties of alloys cast. They offer excellent wear resistance and dimensional stability, with 

strength approaching that of steel parts. Typically they are cast at 900·C (NADCA, 2006). 

1.7.4 Aluminium Alloys 

Aluminium alloys are the most common materials used for die-casting (Davey and Hinduja, 

1990) (USA and Europe) because of their high dimensional stability for complex shapes and 

thin wall sections. They offer corrosion resistance, good mechanical strength (Table 1 - 2), even 

at high temperatures, and have high thermal and electrical conductivities (NADCA, 2006). 

Material Properties Aluminium Copper Magnesium Zinc 

Tensile strength, psi x 1000 47 55 34 41 

Yield strength, psi x 100 (0.2 pct offset) 23 30 23 -
Shear strength, psi x 1000 28 37 20 31 

Fatigue strength, psi x 1000 20 25 14 7 

Elongation, pct in 2 in. 3.50 15 3.0 10 
Hardness (Brinell) 80 91 63 82 

Specific gravity 2.71 8.30 1.80 6.60 

Weight, Ib/cu. in. 0.098 0.305 0.066 0.24 

Melting point (liquid), 'C 600 910 650 400 

Thermal conductivity, CG5 0.23 0.21 0.16 0.27 

Thermal expansion, in.lin.l'F x 10· 12.1 12.0 15.0 15.2 

Electrical conductivity, pct of copper standard 27 20 10 27 

Modulus of elasticity, psi x 10· 10.3 15 6.5 -
Impact strength (Charpy), ftllb 3.0 40 2.0 43.0 

Table 1 - 2 Alloy properties (NADCA, 2006) 
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Characteristics of Die Casting Alloys 

Aluminium Copper Magnesium Zinc 

Dimensional stability Good Excellent Excellent Good 

Corrosion resistance Good Excellent Fair Fair 

Casting ease Good Fair Good Excellent 

Part complexity Good Fair Good Excellent 

Dimensional accuracy Good Fair Excellent Excellent 

Die cost Medium High Medium Low 

Machining cost Low Medium Low Low 

Finishing cost Medium Low High Low 
Chart does not intend to compare metals. Its purpose is to show the most advantageous characteristics of each specific metal. 

Table 1 - 3 Characteristics of die casting alloys (NADCA, 2006) 

Table 1 - 4 shows a list of aluminium alloys that are used in cold chamber pressure die casting. 

Alloy Freezing range ('C) Typical Pouring temperature ('C) Fluidity 

LM2 570 - 525 615 - 700 Good 

LM6 575 - 565 725 Excellent 

LM 9 575 - 550 710 Good 

LM 12 625 - 525 710 Fair 

LM 13 560 - 525 700 Good 

LM 20 575 - 565 - Excellent 

LM 24 580 - 520 700 Good 

LM 26 580 - 520 700 Good 

LM 27 605 - 525 710 Good 

LM28 675 - 520 735 Fair 

LM29 770 - 520 830 Fair 

LM 30 650 - 505 760 Good 

LM 31 615 - 570 620 - 650 Fair 

Table 1 - 4 Aluminium alloys (Bartley, 1992) 

The most popular materials are aluminium-silicon-copper alloys, such as LM24 (the composition 

is shown in Table 1 - 5). Casting temperatures are typically in the region of 650'C - 750'C. 
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Material Percentage (%) 

Copper 3.0 - 4.0 

Magnesium 0.3Max 

Silicon 7.5 - 9.5 

Iron 1.3 Max 

Manganese 0.5 Max 

Nickel 0.5 Max 

Zinc 3.0 Max 

Lead 0.2 Max 

Tin 0.2 Max 

Titanium 0.2 Max 

Aluminium Remainder 

Table 1 - 5 LM24 composition 

The alloy selection is based on the component and the required material properties, i.e. thermal 

expansion, corrosion resistance, ductility, tensile strength, hardness, heat treatability etc. 

However, an important factor is the fluidity and castability of the alloy especially for a complex 

component with thin wall sections (1 mm). The most widely cast aluminium alloy for cold 

chamber casting is LM24, which 'is essentially a pressure die casting alloy, for which it has 

excellent casting characteristics and is generally a little simpler to die cast than higher silicon 

containing alloys' (Bartley, 1992). 

The next issue to be addressed is the different mould types to determine the general geometry 

and typical features of a die. From this assessment, features can be incorporated into a 

specimen design. 
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Chapter 2: Die-Casting Dies 

2.1 Die Design 

Die design and material selection is crucial as it affects the performance and the life of dies. A 

small radius (O.Smm - 1 mm) or a large change in the die thickness can cause accelerated 

thermal fatigue as they act as stress concentrators I crack initiators. Dies must be designed to 

minimise these features although it is not always possible. The die material and correct heat 

treatment process is also crucial in prolonging die life. 

Dies must also be robust enough to withstand the high pressures applied to them, designed to 

enable adequate fill rate (speed at which the die is filled with molten metal) and rapid air 

expulsion through vents. To ensure sound castings are produced it is essential that the gates 

and vents be positioned correctly. 

Pressure die casting dies (Figure 2 - 1) are made of alloy tool steels with at least two sections 

called the fixed die half and the moving die half. The steels most generally used are low carbon 

steel-chromium-vanadium and tungsten steels; known as hot work tool steels. The fixed die half 

is typically the female and is mounted on the side through which the molten metal is injected. 

The moving die half is typically the male half to which the casting usually shrinks onto and 

hence, contains the ejectors to push the casting off the die and is mounted on the moveable 

platen of the machine. 

Ejector Plates Return Pins 

Ejector Pins Moving Half Bolster 

Figure 2 - 1 Typical die design 
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Fixed Half 

Die Inserts 

Casting 

Gate 

Runner 

Biscuit 

Shot Sleeve 
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The fixed half is designed to contain the shot sleeve and biscuit (excess metal in the shot sleeve 

of a cold chamber die casting machine) through which molten metal enters the die cavity. The 

moving half usually contains the ejector pins I plates, runners (passage ways) and gates (inlets), 

which route molten metal to the cavity (or cavities) within the die. Ejection occurs when pins 

connected to the ejector plate move forward to force the casting off the die; this generally occurs 

as part of the opening stroke of the machine. Placement of ejector pins must be carefully 

arranged to prevent the ejection force resulting in deformation of the casting. Pins attached to 

the ejector plate return it to its casting position as the die closes (some are pushed and some 

driven). Dies are classified as: single cavity, multiple cavity, combination and unit dies as shown 

in Figure 2 - 2. 

Single Cavity Multiple Cavit 

~ ~ &*& IfP • • 
• • 

~ ~ ~ ~ 

~ ~ ~ ~ 

~ 
rF'l ~ 

~ ~ 
~ ~ 

Combination Unit 

Figure 2 - 2 Die designs (NADCA, 2006) 

A single cavity die consists of a single component. Multiple cavity dies have several cavities, 

which are all identical. If a die has cavities of different shapes, it is called a combination or 

family die. A combination die is used to produce several parts for an assembly. Unit dies might 

be used for several parts for an assembly, or for different customer's components. One or more 

unit inserts are assembled in a common holder and connected by runners to a common biscuit 

hole; this permits simultaneous filling of all cavities. These replaceable units are designed to be 

readily removed from the main die frame without the labour intensive removal of the standard 

frame from the die-casting machine. However, unit dies limit the use of core slides. 

Any new tool manufacturing process, such as rapid direct tooling and indirect tooling, must be 

able to match current tooling design in terms of cavity geometries (deep narrow cavities, small 

radiuses), die size etc. 
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A specimen for examining thermal fatigue properties should contain a small radius and varying 

cross section as these are the most detrimental features in terms of inducing stress in a die. It is 

also necessary to study current tooling materials and their properties to understand their 

performance and to select a suitable reference material. In addition, the method of heat 

treatment needs to be ascertained to enable the reference specimen to have similar properties 

to that of a die. 

2.2 Conventional Tooling Materials 

There are many grades of material that are used to produce tooling for the manufacturing 

industry. Different applications favour certain materials and factors, such as material cost, 

production run, temperature, forces, die design and material being formed; all play a role in 

material selection. 'The materials used in tooling are probably the single most critical aspect of 

manufacture' (Dandy, 1995). 

Commercially available materials suited for casting tools include maraging steels, high speed 

tool steels, hot work tool steels, shock resisting, mould and special-purpose tool steels. These 

materials are capable of withstanding high loading, elevated temperatures and I or rapidly 

changing temperatures; they also have good wear resistance and resistance to thermal fatigue. 

Material selection in die-casting requires knowledge of the extent and types of forces, the 

operating conditions, cost etc. (Oberg et.al., 1996). Tool steels are generally heat-treatable 

making them adaptable to the desired application by altering the material properties. Other 

factors to be considered are surface hardening, machinability, resistance to de-carbonisation, 

hot hardness, wear resistance, creep strength, ductility (% elongation), oxidation resistance, low 

thermal expansion coefficient and high thermal conductivity (Davis, 1995, Allsop and Kennedy, 

1983, NorstrOm, 1982). Hot work tool steels are generally used in the manufacture of aluminium 

pressure die casting dies (Zhu et.al., 2003). 

2.2.1 Hot Work Tool Steels 

Hot work steels, called group H, have been developed to withstand the combination of heat, 

pressure and abrasion. Group H steels have a medium carbon content (0.35 - 0.45%). H10 -

H19 hot work steels contain chromium, H21 - H26 tungsten and H41 - H43 molybdenum and 

generally have a low carbon content (Table 2 - 1) (Krauss, 1990, Roberts et.al., 1998). Typically 

H11, H12 and H13 are used for the manufacture of pressure die cast tooling. 

They have good resistance to softening at elevated temperatures due to their medium 

chromium content and the addition of carbide forming elements such as molybdenum, tungsten 

and vanadium. 

The low carbon and low total alloy contents promote toughness at the normal working hardness 

of 40HRc - 55HRc. Increasing the tungsten and vanadium alloying elements promotes greater 
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hot strength at the expense of toughness. Vanadium is added to promote wear resistance and 

silicon improves oxidation resistance at temperatures up to 800·C (ASM, 1998). 

Chromium hot work steels can all be deep hardened; air hardening balances the alloy contents 

resulting in low distortion during hardening. Since the alloy has a low carbon content, it can also 

be water-cooled without cracking. 

The advantage of H 11 over conventional high strength steels is its ability to resist softening 

during continued exposure to temperatures up to 540·C whilst at the same time retaining 

moderate toughness and ductility (% elongation). Since H11 has a secondary hardening 

characteristic it can be tempered at high temperatures, resulting in near complete relief of 

hardening stresses, which enhances toughness and high strength (ASM, 1998). 

Additional benefits of H11, H12, and H13 are ease of forming and working, good weld ability, 

relatively low thermal conductivity, low thermal expansion and resistance to corrosion. 

Chromium hot work steels are especially well adapted to hot die work of all kinds, particularly 

dies for the extrusion of aluminium and magnesium, as well as die casting dies, forging dies, 

mandrels and hot shears. 
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Hot-Work Tool Steels 

Chemical Composition and Materfal Data 

AISI 
Group Chromium Types Tungsten Types Molybdenum Types 

Type Hl0 Hll H12 H13 H14 H19 H21 H22 H23 H24 H25 H26 H41 H42 H43 

C 0.4 0.35 0.35 0.35 0.4 0.4 0.35 0.35 0.35 0.45 0.25 0.5 0.65 0.6 0.55 

W ..... ..... 1.5 ..... 5 5 9 11 12 15 15 18 1.5 6 ..... 
% Chemical Elements Mo 2.5 1.5 1.5 1.5 ..... ..... ..... ..... .... ..... ..... ..... 8 5 8 

Cr 3.25 5 5 5 5 5 3.5 2 12 3 4 4 4 4 4 

V 0.4 0.4 0.4 1 ..... ..... ..... ..... ..... ..... ..... 1 1 2 2 

Co ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 

Hardening Temperature Range °C 1010- 996- 996- 996- 1010- 1093- 1093- 1093- 1093- 1093- 1149- 1177- 1093- 1121- 1093-
1038 1024 1024 1038 1038 1204 1204 1204 1260 1232 1260 1260 1191 1218 1191 

Heat Treatment Data 
Tempering Temperalure Range ·C 538- 538- 538- 538- 538- 538- 593- 593- 649- 565- 565- 565-

565-649 565-649 565-649 
649 649 649 649 649 704 677 677 816 649 677 677 

Approx Tempered Hardness, (HRc) 56-39 54-38 55-38 53-38 47-40 59-40 54-36 52-39 47-30 55-45 44-45 56-43 60-50 60-50 58-45 

Relative Ratings and Properties CA' = greatest - 'D' = Least) 

Safety in Hardening A A A A A B B B B B B B C C C 

Depth of Hardening A A A A A A A A A A A A A A A 

Characteristics In Heat 
Resistance to Decarburisation B B B B B B B B B B B B C B C 

Treatment Air or 
Stability of shape in heat Quench salt B B B B C C C C ..... C C C C C C 

treatment medium 

Oil ..... ..... ..... ..... ..... D D D D D D D D D D 

Machinability CID CID CID CID D D D D D D D D D D D 

Service Properties 
Hot Hardness C C C C C C C C B B B B B B B 

Wear Resistance D D D D D CID CID CID CID C D C C C C 

Toughness C B B B C C C C D D C D D D D 

Table 2 - 1 Chemical composition and material data of hot work tool steels (Oberg et,al., 1996) 
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The most important properties required of materials for die-casting tools are resistance to 

thermal fatigue and to softening at elevated temperatures. Resistance to softening is required to 

withstand the erosive action of molten metal under high injection pressures and velocities. 

Additional properties that influence selection of materials for die casting dies are impact 

resistance, thermal conductivity, machinability and weldability (Table 2 - 2). Availability and cost 

are additional factors. 

Properties H11 H12 H13 

Hardening Temp (oC) 996-1024 996-1024 996-1038 
Annealing Temp (oC) 538-649 538-649 538-649 

Hardness (HRc) 38-54 38-55 38-53 
Impact Resistance (J) 18J @25°C 7J @25°C, 16J @ 500°F 14J @25°C 

Thermal Conductivity (W/mK) 24.57 @ 216°C 23@204°C 28.55 @ 416°C 

Thermal Expansion 9.8@ 100°C 9.8@ 100°C 10.7 @ 100°C 
(mm/mmfC x1O"6) 13.7 @ 600°C 13@ 600°C 13.1 @600oC 

Table 2 - 2 Material properties of H11. H12 and H13 

The performance of die casting dies is related to the casting temperature of the work metal, 

thermal gradients within the dies and the frequency of exposure to high temperature. Tool steels 

of increasingly higher alloy content are required as the casting temperature increases. 

Hot-work tool steels are the most popular materials for die casting dies, in particular H13. Other 

widely used hot work tool steels include H11, H12, H20, H21 and H22, Din 1.2367 (Thyrotherm 

2367) for high temperature aluminium die-casting ,,750°C (ASM, 1992). 

There are a number of considerations to be addressed when selecting a die material. In order to 

resist failure, the die material should have a uniform microstructure, no internal defects, good 

machinability, good surface finish (Novovic et.al., 2004), good response to heat treatment, good 

toughness, resistance to wear and resistance to thermal fatigue (Table 2 - 3). Such 

considerations limit the material choice for die manufacture. 

H13 is commonly used in industry for the manufacture of aluminium pressure die casting dies 

(SjostrOm and Bergstrom, 2004, Xiaoxia et.al., 2004, Zhu et.al., 2003). The heat treatment of 

the material is important as incorrect heat treatment can result in premature die failure. It is 

therefore necessary to understand the heat treatment of the material to obtain the desired 

material properties (Worbye, 1985). Understanding the heat treatment may also be beneficial in 

determining how failure occurs. 
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Resistance to 

Wear Thermal Catastrophic Fracture (Impact 
Softening Strength, Toughness) 

H26 H26 

H23 H24 

H24, A2 H23 H12 
H19, H14 H19 H11 

H21 H21 H10,H13 

H10,H12 H14 A9 
H13 

A9 H10 H14 
Increased 

AB Resistance 
H11 AB 

H11 H19, A2 
H12 

H13, AB 

A9 H21, H23 

AS 

H24 

H26 

Table 2 - 3 The most commonly used materials for dies working at elevated temperatures 

(ASM,199B) 

2.3 H13 Die Heat Treatment 

H13, like many hot work tool steels, has a high chromium (5%) and vanadium (1%) content; 

these elements control carbide formation. The elements are distributed between carbides and 

the austenitic matrix during solidification, annealing, hot work and austenitising for hardening. 

During hardening, the alloy carbides formed in austenite are retained and the austenite matrix 

transforms to martensite. When tempered further, alloy element partitioning occurs as retained 

austenite transforms and fine alloy carbides precipitate in tempered martensite. The strength 

and wear resistance are provided by the chemical elements in the microstructure (retained 

carbides, tempered martensite and the carbides formed when tempered). 

M,C3 carbide is mostly found in chromium rich alloy steels, having a hexagonal lattice structure; 

the carbide is resistant to dissolution at higher temperatures and is hard and abrasion resistant. 

H13 contains M,C3 carbides in equilibrium with austenite at B70°C. 

To minimize distortion in complex tools, a double preheat should be employed. Heating should 

occur at a rate that does not exceed 222°C per hour up to 621°C - 677°C; the temperature is 

then allowed to stabilise before it is raised to B16°C - B71°C and again allowed to stabilise. For 

tools not requiring double reheat, the second temperature range can be used as a single 

preheating treatment. The tool should be soaked for 1 hour per 25mm section thickness. 
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The tool is then heated rapidly to the austenitising temperature, 982°C - 1032°C, typically in a 

vacuum furnace, an inert atmosphere furnace (argon) or a salt bath. For maximum toughness, 

982°C should be used and for maximum hardness and resistance to thermal fatigue cracking 

and wear 1032°C, is used. Soaking should occur at this temperature for 15 - 60 minutes 

depending upon the section. Previous work has shown that different austenising temperatures 

in the tool steel hardening treatment can result in differences in thermal stability (SjostrOm and 

Bergstrom, 2004). 

The tool is then quenched in air, pressurised gas or warm oil. Tools with a thickness of up to 

and including 125mm will typically through harden when cooled, in still air, from the austenitising 

treatment. Sections greater than 127mm in thickness require accelerated cooling by the use of 

forced air, pressurised gas, or an interrupted oil quench to obtain maximum hardness, 

toughness and resistance to thermal fatigue cracking. 

For pressurised gas quenching, a minimum quench rate of approximately 28°C per minute to 

below 538°C is required to obtain the optimum properties in the steel. For oil, quench until black, 

about 482°C, then cool in still air to between 51°C - 66°C. 

2.3.1 Annealing of H13 Tool Steel 

Annealing is required to alter the microstructure into a condition suitable for machining. The 

annealing treatment produces a uniformly dispersed microstructure of spheroidised carbides in 

a matrix of ferrite. In addition, annealing refines coarse grained structures, which may have 

formed during high temperature processing, i.e. laser cutting, and is achieved by heating the 

part just above its upper critical temperature and cooling slowly in the furnace allowing re

crystallisation to occur. 

The coarse particles are primary M,C3 carbides, which form during melting and are dispersed 

during hot work. The finer spheroidised particles are a result of secondary low temperature 

precipitation. 

Annealing is achieved by heating just to the temperature where all ferrite transforms to austenite 

('" 800°C - 900°C). The material should not be subjected to a heat up rate exceeding 222°C per 

hour to 857°C - 885°C, the temperature should be held for 1 hour per 25mm of maximum 

thickness and for a minimum of 2 hours. It should then be cooled slowly in the furnace at a rate 

not exceeding 28°C per hour to 538°C. Cooling to ambient temperature can be continued in the 

furnace or in air. 

Carbide particles are retained and spheroidised, and the austenite transforms to ferrite and 

additional spheroidised carbides on cooling. If tool steels are annealed at too high a 

temperature, the alloy carbides dissolve and the enriched austenite may form carbides on 

austenitic grain boundaries or transform to pearlite or martensite on cooling. Slow cooling from 
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the annealing temperatures is essential to ensure that the austenite transforms to ductile ferrite 

spheroidised carbide microstructures instead of pearlite or martensite. 

2.3.2 Hardenability and Martensite Fonnation 

The hardenability of the majority of tool steels is excellent (Oberg et.al., 1996), oil, air or salt 

quenching is sufficient to produce the required microstructures and properties. Martensite forms 

in tool steels when cooling conditions and hardenability are sufficient to prevent diffusion 

controlled transformation to pro-eutectoid carbides, pearlite and bainite. The matrix austenite 

composition dictates the morphology (lath or plate formation) of the martensite microstructure 

(ASM, 1992, 1996, 1997). 

The retained austenite is present in thin sheets between the parallel martensite laths of the H 13 

steel. There are many crystallographic variants of martensitic laths formed in a given austenite 

grain, however, all austenite retained in an austenite grain has the same orientation despite its 

appearance within the martensite. The austenite retained after quenching can be transformed to 

carbides and ferrite during high temperature tempering. 

2.3.3 Tempering of H13 Tool Steel 

Tempering is the final stage of heat treatment for tool steels the aim being to improve 

toughness. Although, secondary hardening or precipitation of alloy carbides at high tempering 

temperatures is of great importance. Double or triple tempering stages are applied to tool steels 

to ensure that toughness is improved after micro-structural changes are introduced by the initial 

tempering steps; H13 is typically double tempered. In turn, retained austenite transforms to 

martensite, which is subsequently tempered (ASM, 1992, 1996, 1997). 

Tempering should be conducted immediately after quenching. The typical tempering 

temperature range is 53SoC - 621°C (Figure 2 - 3). The temperature should be held for 1 hour 

per 25mm of thickness and for 2 hours minimum and then air cooled to ambient temperature. 

The process is repeated for double tempering. To maximize toughness and tool performance, a 

third temper is often used as a stress relief mechanism after all finish machining, grinding, and 

electro discharge machining (EDM) have been completed on the tool. 

The formation of alloy carbides during tempering requires the diffusion of carbide forming 

elements to be substitutionally diffused through the body centred cubic iron lattice of the 

tempered martensite. The slow diffusion results in short diffusion distances and in fine closely 

spaced alloy carbide precipitates. In turn, this inhibits carbide coarsening during high 

temperature service. 

The composition of the alloy carbides, which form during tempering are very sensitive to the 

specific alloying elements present. 
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Figure 2 • 3 Tempering chart (Timken, 2004) 

Retained austenite transforms to ferrite and cementite during tempering. In highly alloyed steels 

the austenite has an increased stability and does not transform until temperatures in excess of 

500·C are reached; this can lead to coarse inter·lath carbides. Double tempering tends to 

spheroidise and produce less harmful interlath carbides formed by the transformation of 

retained austenite (ASM, 1992, 1996, 1997). 

All aspects of hardening and heat treatment have an effect on the thermal fatigue performance 

of materials and hence, die life. For reference specimens it is essential that the correct heat 

treatment schedule is followed to obtain a representative comparison. 
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Chapter 3: Die Failure 

3.1 Failure Modes for Dies 

During high pressure die casting of aluminium the die has to withstand severe operating 

conditions such as high pressure and rapid temperature fluctuations and over time, tool failure 

occurs (Gulizia et.al., 1999, Sjostrom and Bergstrom, 2004). There are three basic categories of 

failure associated with die casting dies (Schwam, et.al., 2004). 

• Erosion 

• Wear 

• Thermal fatigue 

3.1.1 Erosion 

During die casting, as molten metal is injected into the cavity at high speed, erosion occurs. 

3.1.1.1 Oxidation 

If an oxide film adheres to the surface it prevents metal to metal contact and wear is reduced. 

However, if it is a brittle oxide, it can break off and act as an abrasive. Oxides occupy larger 

volumes than the metal being replaced allowing oxide pealing I cleaving action to start. The 

oxide can also be removed I washed away by the molten metal during die filling (Danzer et.al., 

1983, Sundqvist et.al., 1997). 

3.1.1.2 Chemical 

Fatigue strength is reduced substantially by exposure to corrosive media such as moist air, 

electrolyte solution, or more aggressive substances. This causes corrosion of the surface which 

increases the surface roughness and provides more sites for crack initiation (Weror\ski and 

Hejwoski, 1991). Also aluminium dissolves iron in the die and has a similar effect. 

3.1.2 Wear 

Wear of die-casting dies is a significant problem due to their high cost. Wear is caused by solid 

particles in the molten alloy; these can be in the form of solidified aluminium, inclusions, 

hypereutectic silicon, dross, oxide from the ladle (Joshi et.al., 2004). The wear resistance of 

H13 tool steel is affected by heat treatment (Bahrami et.al., 2004). 

3.1.2.1 Abrasive Wear 

Abrasive wear occurs when a harder material cuts into a softer material. The hard material may 

be one of the mating materials or a foreign body between the mating surfaces (aluminium flash). 
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There are three levels (1) low stress abrasion (scratching); (2) high stress abrasion (grinding); 

(3) gouging abrasion where sizable gouges or grooves are formed. 

3.1.2.2 Adhesive Wear 

Adhesive wear is the most commonly found in moving machinery. At low stresses small 

junctions are formed at contact points and small fragments of metal become detached with 

movement. At higher stresses larger junctions are formed which can cause seizure. 

Another form of adhesive wear is the interaction between the die steel and the alloy causing the 

formation of intermetallic phases that adhere to the die surface. This is also known as soldering 

(Sundqvist and Hogmark, 1993, Chen et.al., 1999, Chen and Jahedi, 1999, Xiaoxia et.al., 2004, 

Yu et.al., 1995, Persson et.al., 2001). This is caused by iron and aluminium reacting with each 

other to form binary iron aluminium intermetallic phases (Klarenfjord, 2005). These phases then 

react further with the molten aluminium to form ternary iron-aluminium-silicon intermetallic 

phase (Chen, 2005, Shanker, 2000·, Shanker, 2000b
, Shanker and Apelian, 1997). 

Previous work has shown (Shankar and Apelian, 1999, Gopal et.al., 2000) the mechanism of 

adhesion in die casting to be as follows: 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Stage 5 

Stage 6 

Erosion of grain boundaries on the die surface 

Pitting of the die surface 

Formation of binary iron aluminium compounds 

Formation of pyramid shaped structures of ternary iron-aluminium-silicon 

phases 

Adherence of aluminium onto the pyramids of intermetallic phase 

Flattening, merging and straightening of erosion pits and intermetallic phase 

The problems can be reduced by employing die coatings; surface engineering methods 

(physical vapour deposition (Srivastava, 2003, Persson et.al., 2001, Gulizia et.al., 2001)), 

nitriding (Joshi et.al., 2004) and lubricants, however, these are not permanent solutions but do 

prolong die life. Eventually the intermetallic phases have to be removed by polishing, although, 

this results in loss of production and excessive polishing can damage the die reducing its life 

and ultimately, effect component geometry (Jahedi and Fraser, 2001). 

Typically a combination of the above die failure modes is common place with erosion and wear 

modes leading to a defective surface finish on the die. These act as stress concentrators and 

crack initiation sites eventually leading to tool failure by thermal fatigue (Zhu et.al., 2003, Zhu 

et.al., 2002). Thermal fatigue is the most important failure mode in die casting (Mitterer et.al., 

2000). 
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3.1.3 Thermal Fatigue 

Fatigue wear occurs when a surface is stressed and unstressed. Fatigue is greatly affected by 

surface conditions such as microstructure, hardness, surface finish (Novovic, et.al. , 2004), 

residual stresses etc. 

'In actual die casting, the dominant tool failure mechanism is thermal fatigue cracking. The 

formation of the cracks is associated with accumulation of the local plastic strain that occurs 

during each casting cycle. Initial crack growth is facilitated by oxidation of the crack surfaces, 

and proceeding growth is facilitated by this oxidation in combination with crack filling of cast 

material, and by softening of the tool material' (Persson, 2003). Figure 3 - 1 shows the stress 

associated with thermal or heat cracking. Initially molten metal contacts the die and causes the 

surface temperature to increase above that of the interior of the die (Schwam, et.al. , 2004). 

'. 'r,' ,_. 

_ tension develops in cooled surface .., 

Figure 3 - 1 Thermal shock (Badger Metals, 2003) 

The die face starts to expand; however, the cooler underlying layer resists this expansion 

creating a temporary compressive stress layer (Srivastava, 2003, Srivastava et.al. , 2004). When 

the casting is removed, the die surface starts to cool and as it does, the surface shrinks or 

contracts. The surface cools more quickly than the interior of the die, which places the sub

surface of the die into residual tensile stress, which is made worse by the application of die 

lubricant (Olive, 2005). During further cycling, the die surface is subjected to alternating 

compressive and tensile stresses that result in some plastic deformation (Bendyk et.al. , 1970). 

Continued cycling reduces the yield strength of the tool causing increased residual tensile 

stresses to develop and cracks to initiate. This type of cracking is more prevalent in aluminium 

and brass die casting because of the higher temperatures and resulting thermal shock by the 

molten metal. The heat cracking performance is improved by tool steel selection, proper heat 

treatment and preventative maintenance measures (Badger Metals, 2003). 

3.1.4 Cracking of Metals by Thermal Fatigue 

Thermal fatigue is typically a failure mechanism involving fluctuating temperatures. When 

certain materials are subjected to rapid heating and cooling, thermal gradient cracking may 

occur (thermal shock). The thermal gradient produces strain, which is related to the materials 

coefficient of expansion. Failure occurs when the thermally induced stress exceeds the strength 

of the material. In metals the thermal fatigue mechanism often results in the gradual formation 

of a network of cracks and is termed 'craze cracking' or 'heat cracking'. However, thermal 
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fatigue can occur under uniform temperatures caused by internal constraints such as differing 

grain orientation or anisotropy of the thermal expansion coefficient. 

The composition and structure is as influential in thermal fatigue as it is in mechanical fatigue. 

Increasing the strength of the material through carbide formation and solid solution 

strengthening increases the resistance of the material to repeated strains. The ability to 

withstand microstructural change and oxidation is also crucial (Werol'lski and Hejwoski, 1991). 

Thermal properties are also important, such as the coefficient of thermal expansion (Iow values 

offer improved resistance to fatigue), specific heat and heat conductivity (higher values are 

generally preferential) (NorstrOm, 1982, Werol'lski and Hejwoski, 1991, Worbye, 1985). 

When a material with high thermal conductivity is thermally cycled it heats up and cools quicker 

creating a large thermal shock (heating and cooling rapidly inducing stress in a material) 

(Werol'lski and Hejwoski, 1991). In addition, if a material is constructed of dissimilar metals then, 

the differing thermal conductivities may induce internal stresses. 

Thermal conductivity can be described as the ability of a solid to transmit heat; it is a measure 

of heat flow through a material (Material Testing Services, 2004). It relates heat flow (the flow of 

heat energy per unit area, per unit time) to the temperature gradient. The temperature gradient 

describes a temperature difference per unit distance. 

Thermal conductivity is defined as: 

K 

Where: 

K 
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A 
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(O/A)/(.H/c.L) 

Thermal conductivity of the specimen 

Heat passing through 

Cross sectional area of the specimen 

Heat flux 

Temperature difference 

Length 

Thermal gradient 

Equation 3 - 1 

The measurement of thermal conductivity always involves the measurement of the heat flux and 

the temperature difference. The measurement of the heat flux is carried out by measuring the 

electrical power entering the heater and is then called absolute. Where the flux measurement is 

carried out indirectly it is called comparative. Other methods exist and are usually transient in 

nature (Anter Corporation, 2004). 
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Ferritic steels have higher thermal conductivities and lower coefficients of expansion than 

austenitic steels. However, at elevated temperatures (800·C) their thermal conductivities are 

similar. High thermal conductivity reduces the thermal gradient and a lower coefficient of 

expansion is beneficial (Norstrom, 1982, Weroriski and Hejwoski, 1991, Worbye, 1985). 

In general, a material with a low Young's modulus and high yield stress is advantageous as the 

elastic element of the strain is high and the plastic element low during thermal cycling 

(NorstrOm, 1982, Weroriski and Hejwoski, 1991, Worbye, 1985). Both high strength and high 

ductility (% elongation) are desirable to resist thermal fatigue, however, high strength typically 

equates to low ductility (% elongation), hence, a compromise has to be made to achieve 

optimum properties (NorstrOm, 1982, Sjostrom and Bergstrom 2004, Worbye, 1985). 

Rutz et.al. (1996) discovered that the density of a material can affect the thermal fatigue 

performance. The higher the density of a material the better the thermal fatigue resistance. 

Woodford and Mowbray's (1974) thermal fatigue experiment investigated the effect of chemistry 

and structure on fatigue performance. They discovered that carbides played an important role in 

thermal fatigue and that cracks progressed between them. They graded the materials either by 

type and morphology of carbides or by environmental effects. In terms of grain size, fine grains 

impede crack initiation in thermal fatigue and course grains impede crack propagation. Hence, 

the as-cast structure is ideal since it has small grains on the outside and large ones in the 

centre. It was also found that directional solidification improves the resistance to thermal fatigue. 

However, the effect of heat treatment resulted in anomalies and it was not clear, which 

structural feature was most influential. 

Another factor affecting thermal fatigue is, of course, the cycle time or time spent either 

subjected to hot or cold conditions. The maximum temperature in the thermal fatigue cycle is 

considered the most important since it is related to the reduction in the mechanical properties 

(yield point) and higher deformation. The temperature also affects the way in which the crack 

initiates and grows; high temperatures can cause re-crystallisation relaxation of stresses by 

creep etc. (Weroriski and Hejwoski, 1991, Worbye, 1985). 

Surface roughness or notch effect, as it is otherwise known, also plays a role. However, it is less 

significant in isothermal fatigue at ambient temperature. Decreasing the surface roughness from 

0.631.1m to 0.161.1m has been shown to increase the thermal fatigue resistance of materials by 40 

- 50%. Polishing increases the fatigue life in isothermal fatigue three to four times but only 

doubles it under thermal fatigue conditions (Weroriski and Hejwoski, 1991). 'The mode of 

cracking, and therefore its rate, depends primarily on the actual combination of three 

independent, important variables describing the thermal cycle. (1) the maximum temperature in 

the cycle, (2) the strain amplitude, and (3) the hold time' (Weroriski and Hejwoski, 1991). A 

moderate maximum temperature and low strain amplitude with no restraints initiate 
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transgranular fatigue whereas a high maximum temperature and a high strain cause the crack 

pattern to be a mixture of transgranular and intergranular cracking. 

The surface temperature of a die however, is dependent upon the casting temperature of the 

metal, size of the casting, geometry of the casting and the thermal properties of the die material. 

In turn, longer holding times at peak temperature increase the risk of tempering the die steel 

(Worbye, 1985). 

To improve the life of dies the materials should have (Worbye, 1985): 

• Low coefficient of thermal expansion to reduce the thermal stresses 

• High hot yield strength, since a small plastic strain amplitude results in a low thermal 

fatigue damage 

• High resistance to tempering 

• High creep strength 

• Good ductility (% elongation) to resist plastic strain without cracking 

Essential variables can be used to evaluate fatigue resistance between materials, however, 

there is a slight variation depending upon the literature source (Equation 3 - 2, Equation 3 - 3 

and Equation 3 - 4). 

Thermal fatigue resistance = yield strength x thermal conductivity I (elastic modulus x coefficient 

of thermal expansion) (White, 2005) Equation 3 - 2 

Thermal fatigue resistance = yield strength x thermal conductivity x (1 - Poisson's ratio) I (elastic 

modulus x coefficient of thermal expansion) (Hansen, 2006) Equation 3 - 3 

Thermal fatigue resistance = thermal conductivity x tensile fracture strength I (elastic modulus x 

coefficient of thermal expansion) (Askeland, 1994, Schwam et.al., 2004) Equation 3 - 4 

The higher the value from each of the equations above then the better the thermal fatigue 

resistance (White, 2005). 

3.2 Initiation of Cracks 

3.2.1 Fatigue Fracture 

Fatigue failure will naturally occur in a component that is subjected to repeated or fluctuating 

stress or strains having maximum values less than the tensile strength of the material (ASM, 

1975). 

Any feature, which increases stress concentrations, may enhance the likelihood of fatigue 

failure. Superficial flaws, discontinuities of the metal such as blowholes, microstructure defects 

(inclusions), local concentrations of stress such as notches, scratches, pits, sharp corners or 
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other causes of discontinuity, are all stress raisers and increase the likelihood of fracture 

(Simons, 1972). 

The fatigue process is a three-step mechanism: 

• Crack nucleation at the surface of the component 

• Slow crack growth through the cross section of the component 

• Catastrophic failure when the remaining cross section cannot support the load 

The fatigue mechanism begins with plastic deformation as metal grains are distorted by a 

process of slipping along the crystal planes, 'like a pile of books sliding over each other when 

pushed sideways' (Simons, 1972). 

During fatigue, slip is concentrated into narrow bands where crystals within the metal are 

distorted elastically with the distortion increasing proportionally as stress increases. If the stress 

is removed, the material will return to its original shape. However, if the stress is increased and 

the yield point reached (the point at which the elastic limit of the material is reached) then the 

material will not return to its original shape when the stress is removed; this region is known as 

'plastic deformation' (Higgins, 1991) where the atoms in the lattice structure de-bond allowing 

the layers or planes of atoms to slide over each other. Within these bands extrusions and 

intrusions develop as shown in Figure 3 - 2 (Cottrell and Hull, 1957); this is the first stage of 

crack development from an intrusion and leads to crack propagation down the slip plane. After 

one or two crystals, the influence of the slip band is lost and the crack changes direction and 

orientates perpendicular to the applied stress. During the second stage the crack propagates a 

small amount with each stress cycle leaving an imprint of striations on the fracture surface 

similar to the marks left on sand by a receding tide and eventually failure results. 

Intrusion 

Figure 3 - 2 Extrusions and intrusions bands (University of Groningen, 2006) 
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Other factors that affect the fatigue characteristics of a material are: 

• Surface condition: generally metals having a highly pOlished surface will be less affected 

by fatigue (Si mons, 1972) due to reduced stress concentrators. However, surface 

treatments cause residual stresses, which enhance crack nucleation (ASM, 1996) 

• Heat treatment and cold working: which influence fatigue resistance and hardness 

(Bendyk, et.a!., 1970, SjostrOm and Bergstrom, 2004, Simons, 1972, Worbye, 1985) 

• High tensile strength and greater hardness: of a steel or other metals results in improved 

fatigue resistance in most cases (Bendyk, et.a!., 1970, Simons, 1972) 

• Temperature: affects fatigue strength and fatigue limit, especially where martensitic steels 

are involved (Bendyk, et.a!., 1970, Simons, 1972) 

• Cleavage of a non-metallic inclusion: a hard precipitate, or opening of holes also initiate 

fracture. The size, dispersion and type of particles have an influence on fatigue 

characteristics (ASM 1996, Worbye, 1985, ASM, Fine and Chung, 1980) 

During a thermal fatigue cycle there is a tensile and a compressive mode. The tensile mode is 

generally more destructive in a fatigue test. In compression, when cracks try to propagate, they 

will find it difficult to do so. The reason for this is the friction between the fracture surfaces when 

the specimen is compressed. In tension, when cracks try to propagate, the fracture surfaces 

separate and there is no friction between them so the cracks find it easier to propagate 

(Andarifar, 2004). 

3.2.1.1 Initiation of Micro Cracks 

The type of material plays a role in fatigue characteristics. Pure metals contain no alloying 

constituents and can contain single or polycrystalline crystals. However, many materials are 

alloyed to improve their properties and they may, therefore, contain large second phase 

particles and have multiple phases and grain boundary phases as well as phases within the 

grain. A method has been used to classify materials based upon their structure as shown in 

Table 3 - 1 (Hertzberg, 1996). 

Physical Properties Increasing Tendency for Brittle Fracture 

Electron bond Metallic ~ IoniC ~ Covalent 

Crystal structure Close packed crystals ~ Low-symmetry crystals 

Degree of order Random solid ~ Short range order ~ Long range order 

Table 3 - 1 Material classification (ASM, 1996) 

Crystal structure is extremely important since it influences flow and fracture. The crystal 

structure in metals that results in poor fracture toughness is the body centred cubic lattice 

structure. This is because there is a limited number of slip systems in comparison to other metal 

crystal structures like face centred cubic or hexagonal close packed. When a metal is subjected 

to stress, it can deform elastically and plastically because planes of atoms that make-up the 

lattice structure can move. If a crystal structure can allow planes of atoms to move relative to 
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each other (slip), it will not cleave or separate the planes of atoms. If the slip systems are limited 

in number (as with the body centred cubic structure) or become ineffective, the planes of atoms 

will break bonds and separate instead of slip. As planes of metal atoms separate by cleavage, 

cracks and brittle fracture behaviour results. Metals like austenitic stainless steel, copper and 

aluminium have face centred cubic structures (FCC). Metals like titanium and tin have 

hexagonal close pack (HCP) lattice structures with increased slip systems operative at even low 

temperatures - so they don't exhibit brittle fracture behaviour. 

At the microstructural level, fracture paths in alloys can occur through the grains termed 

'transgranular' or along the grain boundaries termed 'intergranular'. However, associated failure 

modes are dimpled rupture, ductile striation formation, cleavage and intergranular failure. In 

turn, crack initiation has been observed to occur along slip bands, in grain boundaries, in 

second phase particles and in inclusion or second phase interfaces with the matrix phase (ASM, 

1996). The type of crack initiation depends, simply, upon which provides the easiest path. Weak 

brittle precipitates also tend to play a dominant role in crack initiation. 

Grain boundaries are particularly susceptible to fatigue crack initiation as slip is discontinuous 

across grain boundaries and many slip systems must be in action to prevent grains pulling apart 

(ASM,1996). 

There are differing opinions (ASM, 1996), on the sequence of events and modes of initiation of 

fatigue cracks. Fine and Chung (1980), describe it as cyclic plastic deformation in a metal that 

occurs by dislocations either emerging at the surface or piling up against obstructions. If the 

former occurs then slip bands eventually become cracks in the centre of the grains. The 

resistance to this decreases the larger the grain size. Dislocation pile-up on the other hand, can 

occur at any obstruction for instance at grain boundaries, inclusions, oxides, precipitates, etc. 

The consequence of the pile-ups is increased elastic strain energy, which leads to the initiation 

of micro cracks. From these, cracks can form along the slip band by, de-cohesion along the 

grain boundary or cracking of a second phase particle in the matrix or at the grain boundary. If 

there are no precipitates at the grain boundaries of a precipitation hardened alloy, then plastic 

flow at low plastic strains may be present in the area and cause crack initiation to occur. It must 

be noted that not all inclusions cause fatigue cracks as a cracked second phase inclusion must 

transfer to the matrix to start a fatigue crack (Fine and Chung 1980). 

Notch sensitivity is another factor affecting crack initiation; if a material is notch sensitive then a 

small surface intrusion or extrusion can lead to crack initiation. The degree to which a material 

is notch sensitive is considered to increase with yield stress although this is not a general rule 

(Fine and Chung, 1980, Reimann and Brisbane, 1973). 
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3.2.1.2 Propagation of Micro Cracks 

A crack must have initiated and grown in order to be detected and the degree to which detection 

can be achieved is dependent upon the resolution of the equipment. Venkataraman et.al., 

(1990,1991) detected cracks of 1~m or less. 

Not all micro cracks that form necessarily grow since a micro crack may initiate in an inclusion 

but the stress required to transfer and continue the crack grow1h in the matrix may be larger 

than the stress required to initiate it in the inclusion (Chang et.al., 1979). In a two phase alloy or 

composite, a crack may initiate in a non-continuous phase and be unable to transfer and 

continue into the continuous phase. If a crack initiates from a notch, pit, scratch etc. the stress 

reduces as the crack grows away from the defect and may stop. Grain boundaries can also 

prevent crack grow1h (ASM, 1996). 

The number of micro cracks that form is dependent upon the stress or plastic strain amplitude. 

At high amplitudes many cracks form and combine across grain boundaries; this is the most 

common form of crack grow1h. At low amplitudes individual micro crack grow1h occurs (ASM, 

1996, Ewing and Humfrey 1903). 

The usual method of micro crack propagation in metals is by plastic deformation except when 

there are high levels of grain boundary embrittlement (ASM, 1996, Forsyth, 1979). 

3.3 Key Factors for Improving Thermal Fatigue Life of a Material 

From the literature researched it was found that certain material properties are important to 

improve thermal fatigue resistance, these are: 

• High hardness and hot hardness are important and are related to mechanical strength, 

the greater the hardness the greater the yield and tensile strength. A loss of hardness 

reduces thermal fatigue life (ASM, 2001, Bendyk, et.al., 1970, Novovic et.al., 2004, 

Schwam, et.al., 2004, Simons, 1972, SjostrOm and Bergstrom 2004) 

• A high density increases fatigue endurance level. In infiltrated materials or cast materials 

density is extremely important as reduced porosity improves thermal conductivity and 

fatigue life (Rutz, 1996) 

• A high thermal conductivity reduces the thermal gradient through a material so the 

materials surface tensile and compressive stresses are reduced, increasing fatigue 

endurance level. (Askeland, 1994, NorstrOm, 1982, Olive, 2005, Schwam et.al., 2004, 

Weroriski and Hejwoski, 1991, Worbye, 1985) 

• A low thermal expansion will reduce the stress in a material (NorstrOm, 1982, Schwam 

et.al., 2004, Weroriski and Hejwoski, 1991, Worbye, 1985). Basically, a low coefficient of 
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thermal expansion minimises dimensional change and reduces thermal shock (Askeland, 

1994) 

• A low elastic modulus results in lower stress at a given strain level. A material with a low 

Young's modulus is advantageous as the plastic component of the strain is small in a 

typical thermal cycle (Askeland, 1994, Norstrom, 1982, Schwam et.al., 2004 Weronski 

and Hejwoski, 1991, Worbye, 1985) 

• High elongation at break allows a material to accumulate plastic deformation before 

fracture occurs. (reduced by non metallic inclusions (oxides, sulphides, course carbides)) 

(Bendyk, et.al., 1970, NorstrOm, 1982, NorstrOm, 1989, Weronski and Hejwoski, 1991, 

Simons, 1972, SjostrOm and BergstrOm 2004, Worbye, 1985) 

• High ultimate tensile strength is favourable to increase thermal fatigue resistance. So 

when plastic deformation occurs the higher the ultimate tensile strength the greater the 

resistance to thermal fatigue. A high ultimate tensile strength usually goes hand in hand 

with a high yield strength which is also a desired property (Askeland, 1994, Bendyk, et.al., 

1970, NorstrOm, 1982, Weronski and Hejwoski, 1991, Simons, 1972, Sjostrom and 

Bergstrom 2004, Worbye, 1985) 

• High toughness is advantageous as it is the ability of a material to resist shock loading 

(reduced by coarse grain size, grain boundary precipitation of large carbides (bainite or 

pearlite as appose to martensite) and the presence of trace elements causing temper 

embrittlement) (Bendyk, et.al., 1970, NorstrOm, 1982, NorstrOm, 1989, Weronski and 

Hejwoski, 1991, Schwam et.al., 2004 Simons, 1972, SjostrOm and Bergstrom 2004, 

Worbye, 1985) 

• A high yield strength is important as during a thermal cycle the elastic component of the 

strain is large. In turn, during the compression part of the thermal cycle the increase in 

temperature can lower the yield strength of the material and the compressive strain may 

become plastic. During the tensile part of the cycle the thermal stress is larger than the 

yield strength and reverse plastic deformation may occur. After sufficient number of cycles 

the localised plastic deformation will create a fatigue crack (Badger Metals, 2001, 

Worbye, 1985, Schwam, et.al., 2004) 

• High resistance to annealing to prevent a reduction in materials mechanical properties 

(yield strength, ultimate tensile strength etc.) (Persson, 2003, Schwam, et.al., 2004, 

Worbye, 1985) 

• Heat treatment alloys that can be hardened through carbide formation increase the 

capacity to withstand repeated strains. They also retard the rate of softening by resisting 
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grain coarsening and provide hardness retention, good creep and thermal fatigue 

resistance. The decrease in hardness and strength of carbon steels during tempering is 

largely due to the coarsening of Fe3C. However, excess alloying produces large carbide 

particles on the grain boundaries in the quenched and tempered steel causing increased 

brittleness resulting in gross cracking. (Bendyk, et.al., 1970, Schwam, 1994, Simons, 

1972, Sjostrom and Bergstrom 2004, Weror'lski and Hejwoski, 1991, Woodford and 

Mowbray, 1974) 

• High creep strength increases thermal fatigue life. A material under constant load may be 

stretched and eventually fail, even though the stress is less than the yield strength. 

Hence, a high creep strength is advantageous to resist this (Askeland, 1994, Worbye, 

1985) 

• Resistance to oxidation at elevated temperatures. Oxidation is referred to as an instability 

and can cause crack initiation (Schwam, 1994, Weror'lski and Hejwoski, 1991) 

3.4 Die Life Expectancy 

The life of a die in terms of number of parts which can be made under production conditions will 

depend upon the alloy used, the product features required and the tolerances to be maintained 

on those features. The required surface finish and the final specifications for the cast surface 

have an important impact on die life. Typically, an aluminium die will produce 100,000 - 150,000 

castings, a magnesium die 3 - 5 times more and a zinc die can typically produce an unlimited 

number. 

Cracking initiates and propagates from the outside-in. It is a metallurgical principle that a crack 

cannot propagate into or through a layer of compressive stress unless the effective yield 

strength of the steel is exceeded (Badger Metals, 2001). 

Although cracking is only one of the factors that cause die failure it can accelerate the time to 

failure, since, there is a greater chance of the additional failure modes to taking affect, i.e. 

adhesion in the crack could lead to ejection problems and allow further degradation of the die by 

material removal. Over time the problem will increase and the die will inevitably become 

inoperable. 

Heat cracking occurs over a period of time as a result of strain cycling, the number of cycles 

required to initiate a crack range from thousands to millions of cycles depending upon the strain 

levels. 

Thermal fatigue is the main cause for the reduction of the life of a die and consequently it is 

important to understand how a material behaves. There are no standard test procedures; this 

has led to researchers (Wallace et.al., 1997, Howes, 1973) developing and conducting their 

own experiments. 
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3.4.1 Determining Die Failure 

Determining when a die has failed is case dependent, for example, a tool could be classed as 

failed for the following reasons: 

• The severity of a crack or cracks impairing die operation and productivity 

• The severity of a crack or cracks impairing the performance of the component in terms of 

aesthetics, geometry, surface finish, component tolerances etc. 

Post processing operations could rectify some component defects but this is dependent upon 

the component specifications and the cost of post processing versus die repair. In some 

circumstances a die could be considered to have failed at the first sign of a crack, for example, 

a small hairline on a component may be unacceptable. 

3.5 Thermal Fatigue Testing 

To understand how a material behaves when subjected to thermal fatigue it is important to 

simulate the process thermal cycle in which it is to be used. This is achieved by assessing the 

process and developing a test that simulates the process temperature cycle (heating rate, 

cooling rate, temperature difference, mean temperature, cycle duration etc.). 

There are several forms of thermal fatigue test, i.e. various forms of heating and cooling, for 

example forced convection methods, conduction methods by immersion in liquids, radiation, 

quartz lamp (Hartman, 1985), induction, (Taira et.al., 1979, Fissolo et.al., 1996, Persson et.al. 

2005) resistance (Kawamoto et.al., 1966), immersion in fluidised solids (fluidised bed) etc. 

The forced convection method involves subjecting the specimen to a blast of hot or cold gas 

with suitable velocity and pressure. The problem with this method is that large quantities of fuel 

are required to test specimens with a moderate size flame, which is typically followed by an air 

blast and hence, it is expensive (Glenny et.al., 1959). An additional drawback is the flow over 

the specimen needs to be uniform, to maintain constant heat transfer coefficients. An alternative 

technique is to heat a localised area of the specimen by a flame followed by an air blast to cool 

it, but this does not reproduce the thermal cycles very well. 

Immersion in liquid is a common method used to induce fatigue damage and is carried out by 

immersing specimens in molten metals or salts. During immersion, heat transfer occurs by 

conduction. The specimen and molten medium contact layers initially reach a common 

temperature established by the ratio of their thermal conductivities. The large temperature 

gradient that occurs at the surface layer of the test piece during this time causes high stress 

generation but this method causes the specimen to be heated rapidly. The heat up rate is 

reduced if heating occurs by convection because of the low conductivity of air and hence, a 

lower initial thermal gradient results. A material can be affected by the difference between 

heating methods due to the extent and dispersal of the stresses (Glenny et.al., 1959). 
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There is also a limited choice of liquids available to heat specimens since the melting point must 

be higher than the final temperature of the specimen interface to prevent heat transfer problems 

caused by brief freezing of the liquid to the specimen surface. The metal or salts present may 

also cause corrosion I erosion affects. 

Rapid cooling of specimens into liquids such as water, brine etc. result, initially, in localised 

boiling and vapour on the specimen surface. As the specimen cools the vapour begins to 

dissipate causing sporadic contact between the specimen surface and the liquid; this hinders 

the heat transfer and may not provide an acceptable thermal shock. 

Heating or cooling of a specimen can be achieved by radiation, however, in order to obtain the 

required heating, rate it is necessary that the radiating surface be set at a higher temperature to 

achieve the desired specimen surface temperature. For example, Glenny et.al. (1959) states 

that to achieve rapid heating to 1000·C a radiating surface of 1400·C is required. After initial 

heating in a furnace, set at 1400·C, the specimen would have to be transferred, once the 

surface temperature reaches 1000·C, to a second furnace set at 1000·C. It may be difficult to 

determine the heat transfer coefficient using this method of heating. However, if it is required 

that the specimen surface reaches a certain temperature then this method could be used. 

Quartz lamps are typically more economical at lower temperatures because they offer uniform 

heating over different areas of the specimen. However they do have slow cooling rates and 

forced cooling is required when they are used (ASM, 1996). 

Induction heating is achieved by allowing electric currents (eddy currents) to flow in the surface 

of a metal; this is achieved by an alternating magnetic field applied to a metal object. The 

alternating magnetic field is applied to the metal specimen to be heated by means of a 'work 

coil'. The coil can be configured and shaped to best suit the specimen shape and size. The 

alternating magnetic field causes electric currents (eddy currents) to flow in the surface of the 

metal and these currents produce heat due to the electrical resistance of the metal. Induction 

heating allows good control of heating rate and maximum temperature. However, as with 

radiation heating the heat input needs to be varied in order to first achieve the desired heating 

rate and then to maintain the desired temperature. Castelli and Ellis (1993) used a series of 

three independently controlled coils allowing a systematic approach to temperature modification 

at localised points along the specimen; this approach allows complex specimen geometries to 

be used but it is expensive (ASM, 1996). 

Resistance heating is the oldest and simplest method of electric metal heating and melting. The 

two basic types are direct and indirect resistance heating. Direct resistance heating is where 

metal is clamped to electrodes in the walls of a furnace and charged with electric currents. 

Electric resistance generates heat, which melts the metal. Indirect resistance heating is where a 

current is passed through a wire coil to generate resistance and heat. This is then transferred to 

the metal by radiation, convection, or conduction. 
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The use of fluidised solids (fluidised beds) has been used extensively to heat and cool 

specimens. It consists of a container with a porous bottom through which a gas can flow to 

fluidise a powder. This method is discussed in more detail later in this chapter, section 3.5.2. 

3.5.1 Wail ace Thermal Fatigue Test 

The Wallace dunk test has been used widely at Case Western Reserve University (CWRU) to 

measure the thermal fatigue resistance of die steels. The test measures average maximum 

crack length and total crack area on the four corners of a specimen after a set number of cycles 

of immersion into a bath of molten aluminium at 730·C. The specimen is internally water-cooled 

and has a high thermal gradient with sharp corners of radius 0.01" (0.254mm) (Figure 3 - 3). 

The test has been used for 30 years and the results correlate well with the service performance 

of die-casting die materials (Wallace et.al., 1997). 

The specimen dimensions are 50.8mm x 50.8mm x 117.8mm (2"x2"x7") with a 038.1mm 

(01.5") hole in the centre for internal water-cooling. The outer surface of the specimen is 

sprayed with a water-based lubricant before entering the aluminium. Water is passed through 

the specimen at 85 gallons (USA gallons) (321.76 litres) per minute. The molten aluminium is 

maintained at 730·C and the specimen is immersed for 12 seconds, removed and air cooled for 

24 seconds, and then sprayed with die lubricant for a further 4 seconds. Wallace's procedure 

involves 5,000 thermal cycles, then a measure of the cracking pattern, it is then repeated every 

5000 cycles up to a total of 15,000 cycles and then termination of the test occurs. 
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Wallace has tested many die materials and surface treatments with the aim of improving die life. 

In the die casting industry, premium grade H13 is used to produce dies and hence, all materials 

studied are compared to it (Wallace et.al., 2000). 

Table 3 - 2 shows the composition of five commercially available steels that were tested using 

the Wallace dunk test. The aim was to investigate: 

• The heat treatments of the steels to optimise the required properties 

• Various austenitising temperatures and cooling rates to determine their influence on 

properties 

• The effect of variation in Electro Discharge Machining (EDM) of the die steels on their 

properties (Wallace et.al., 1997) 

Elements Steels 
(% Wt.) P.G. H13 H-11 K Q C 

C 0.40 0.35 0.38 0.37 0.26 

Si 1.00 0.85 0.21 0.30 0.85 

Mn 0.35 0.38 0.42 0.63 0.90 

P 0.025 0.016 0.01 0.015 0.019 

S 0.001 0.003 0.002 0.001 0.001 

Cr 5.25 4.81 5.20 2.46 10.94 

Mo 1.50 1.82 1.85 2.22 0.94 

V 1.00 0.31 0.51 0.84 0.50 

Cu 0.08 0.03 0.22 0.05 

Ni 0.15 0.45 0.03 0.95 

W 0.01 0.90 

Table 3 - 2 Steel compositions 

The results of the experiments showed that K steel had the highest thermal fatigue resistance 

followed by Q, H13, H11 and C. The results also showed a small effect of hardness on the 

thermal fatigue resistance. As hardness increased from 45HRc to 48HRc there was an 

improvement in thermal fatigue resistance. Higher austenitising temperatures also resulted in 

increased thermal fatigue resistance; this was due to the higher temperatures resulting in 

reduced carbide levels and also a strengthening of the matrix (Wallace et.al., 1997). 

Wallace also found the effect of EDM on thermal fatigue resistance is dependent upon the EDM 

process. In order to prevent a reduction of thermal fatigue resistance it is important to follow 

several steps: (1), Reducing the amperage of the arc on the final cuts, (2), Removal of the 

recast layer by polishing, (3), Tempering the un-tempered martensite layer. 

The toughness of the steel gave an indication of the resistance to gross cracking. Again, K steel 

was better than H 13, H 11, Q and C steels in this respect. 
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Wallace concluded that the thermal fatigue resistance of all the steels tested was significantly 

affected by the heat treatment and processing. Faster cooling from the austenitising 

temperature improved both the thermal fatigue resistance and toughness of the die steels. A 

higher austenitising temperature without significant grain growth and a higher hardness up to 

48HRc increased the thermal fatigue resistance but lowered the toughness to some extent. 

Wallace conducted further thermal fatigue tests on other aluminium die casting tooling materials 

(Table 3 - 3 and Table 3 - 4). The Wallace dunk test was used to compare the materials to 

enable guidelines to be drawn up for selective use of high alloy tool steels, refractory metals 

and other non-ferrous high temperature die materials. Wallace concluded that a few of the most 

recently developed die steels show an improvement in thermal fatigue resistance compared to 

premium grade H13. The steels, however, required quenching from the austenitising 

temperature and a double temper to attain the properties. The alloying elements were very 

similar to that of H13 and they had sufficient toughness to be employed as die inserts. The tool 

steels, similar to H19 and H21, had improved thermal fatigue resistance and could be used as 

small inserts although these materials have low toughness and may be prone to gross cracking. 

The nickel copper alloys and refractory metals suffer little or no thermal fatigue cracking and 

hence, offer considerable promise for better die performance. Copper based alloys and 

refractory metals (metals with high thermal conductivity and heat diffusivity) can be employed to 

act as heat dissipaters from areas within a die and increase productivity. Low temperature 

diffusion coatings of nitriding and carbonising reduced the formation of thermal cracks 

compared to uncoated H13 (Wallace et.al., 2000). 

39 Chapter Three 



Material C Mn Si S P Cr Mo V Ni Cu W Ti Co Fe 

H13 0.40 0.35 1.00 0.005 0.025 5.25 1.50 1.00 Bal. 

BohlerW303 0.38 0.40 0.40 0.005 0.01 5.00 2.80 0.65 Bal. 

Thyssen E38K (mod H11) 0.38 1.00 0.005 0.015 5.3 1.30 0.40 0.60 Bal. 

Thyssen 2367 (mod H13) 0.37 0.001 0.009 5.00 3.00 0.60 0.01 Bal. 

Unddeholm Over Supreme 0.39 0.40 1.00 0.001 0.01 5.20 1.40 0.90 Bal. 

Kind T01 0.35 0.43 0.40 0.001 0.01 5.20 1.80 0.55 Bal. 

Kind RPU 0.38 0.40 0.40 0.001 0.01 5.2 2.80 0.60 Bal. 

Uddeholm ORO-90 0.37 0.63 0.30 0.001 0.015 2.46 2.22 0.84 0.2 Bal. 

Dunn-Marlok C-1650 0.01 4.50 14 0.30 10.5 Bal. 

Allvac C-300 0.006 0.05 0.08 6e-4 0.20 4.82 18.8 0.02 0.58 9.44 Bal. 

Crucible S5446 0.20 1.50 1.00 0.03 0.04 25.00 0.25 Bal. 

H21 Bohler W100 0.29 0.30 0.25 0.001 0.009 2.70 3.50 8.5 Bal. 

Table 3 - 3 Ferrous materials 

Material C W Mo Fe Ni Ti Zr Cu Be Cr Nb 

CMW-Anviloy 1150 90.00 4.00 2.00 4.00 

Allvac 718L 0.01 3.10 18.20 53.8 0.93 17.90 5.06 

CSM-PM Mo 100 

Brush-OMAX Copper Beryllium 0.02 Bal. 2.00 

Brush-Nybril 360 Nickel Beryllium Bal. 0.50 2.00 

Brush-Nybril-FX1 Nickel Beryllium Bal. 0.50 12.50 1.00 

Table 3 - 4 Non-ferrous materials 
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3.5.2 Glenny Thermal Fatigue Test 

Glenny designed a fluidised bed thermal fatigue test to evaluate materials for turbine blades. A 

fluidised bed consists of a container holding a bed of powder (in Glenny's case, aluminium 

oxide sand), supported on a filter. When air or gas is passed through the filter and the powder, a 

pressure difference is created across the bed. The pressure difference is increased by greater 

air I gas flow until it is equal to the hydrostatic weight of the bed. The bed then expands at which 

point the powder particles lose contact with one another and it becomes fluid like, increasing the 

pressure further, making the powder appear to boil. Heat transfer in a fluidised bed is achieved 

through elements that heat the powder particles through the gas boundary layers covering the 

particles; these particles then transfer heat to one another aided by the gas flow. It is also 

possible to cool the material using a fluidised bed (Van Heerden et.al. , 1953) giving rise to a 

controllable thermal fatigue medium (Figure 3 - 4 A). 

In the work by Glenny the specimens employed were tapered discs (Figure 3 - 4 S), which 

permitted a convenient method of evaluating thermal fatigue behaviour because the cracks 

initiated at the edges and were easily measured. During the test, the disc specimens were 

subjected to alternate heating and cooling shocks by transferring them between hot and cold 

flu idised beds of aluminium oxide sand. The specimens in the early work were designed to 

represent the thickness and edge radius of a typical turbine blade (Glenny et.al. , 1959) . 
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Figure 3 - 4 (A) Fluidised bed test equipment (Glenny et.al., 1959); (S) Thermal fatigue 

test specimen (measurements in Inches) 

Mowbray and McConnelee, (1976) conducted a study of the Glenny specimen shape and 

method of heating and cooling to determine the stress and strain on the disc. In the tests the 

cooling bath was held at 21·C for an exposure time of 4 minutes. The hot bath temperature was 
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varied between 81S·C and 103S·C with exposure times of 1 or 4 minutes. The material tested 

was a cast cobalt-base super alloy, FSX414. 

In the initial seconds of each shock the maximum temperature change developed at the discs 

extremities and in turn the maximum strain also occurred at this location. 

3.5.3 Persson Thermal Fatigue Test 

Persson (2003, 2004) investigated the thermal fatigue temperature profiles and conditions of 

brass pressure die casting and developed a test method. The method developed to measure 

the die's surface temperature during casting was achieved by placing four probes in a 

production die for tube couplings. The probes had a diameter of 16mm which housed a small 

cylindrical test disc behind which k type thermocouples (with thin wires of 00.13mm) were spot 

welded to the back of the discs. The thickness of the discs were 0.2Smm, O.Smm, 2mm and 

Smm (Figure 3 - 5) . 

Disc: Probe , 

B 

Figure 3 - 5 (A) Location of the four temperature measurement probes; (B) Casting; (C) 

Schematic of the probe (Persson et.al., 2004·) 

The temperature of the molten brass was 980·C and was used with a cycle time of 30 seconds 

during which the die was closed for 10 seconds and opened for 20 seconds. Water at 20·C 

circulated continually in the die and the die surfaces were lubricated. The shot weight of each 

casting was 1.6kg with a peak casting pressure of 164MPa. 

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady 

state of 300·C. Persson et.al. , (2004·) described a typical die surface temperature cycle as 

follows: When the 980·C melt makes contact with the tool, the tool material is heated within 

about 0.35 seconds from around 300·C to a maximum temperature of around 7S0·C at a 

surface depth of 0.25mm'. 'Until the tool is opened, cooling occurs by heat conduction into the 

bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss 

through irradiation and convection' (Figure 3 - 6). 
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Figure 3 - 6 Typical temperature profiles; (A) Whole temperature profile; (8) Close-up 

(Persson et.al., 2004") 

Persson (2003) and Persson et.aL, (2004", 2004", 2005) developed a thermal fatigue test to 

simulate the temperature found in his previous work. This enabled thermal fatigue cracking of 

tool materials to be evaluated. Thermal fatigue cracking was produced on the surface of a test 

rod by simulating the rapid alternating temperature conditions using cyclic induction heating and 

internal cooling of the hollow cylindrical test rods (010mm, length 80mm with a 03mm cooling 

channel in the centre). Surface strain was also measured using a non-contact laser speckle 

technique (Figure 3 - 7 and Figure 3 - 8). 
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Figure 3 - 7 Schematic of Persson thermal fatigue test (Persson, 2004) 
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Figure 3 - 8 Persson thermal fatigue test equipment (Persson, 2004) 

In a typical test, the induction unit (25kW, 3 MHz) heated approximately 20mm of the middle of 

the test rod. The cooling channel was continually supplied with silicon oil (2.5 litres I minute) at 

60°C and cooled externally wilh argon or air. The external cooling also decreased oxidation. 

During the test a pyrometer and a k-type thermocouple measured Ihe specimen temperature 

(Persson, 2003). 

Three temperature profiles were represented to simulate various die casting temperature 

conditions (Table 3 - 5) . 

Maximum Minimum Heating Time (s) Total Cycle External 
Temperature (oC) Temperature (·C) Time (s) Coolina 

600 170 0.2 11.2 Argon or Air 
700 170 0.3 - 0.4 14.3 - 14.4 Argon or Air 

850 170 2.2 - 2.5 26.2 - 26.5 Argon or Air 

Table 3 - 5 Thermal cycles (Persson, 2003) 

Some of Persson's, (2003) findings, when thermal-fatigue testing hot work tool steel grades 

ORO 90 and Supreme and Hotvar 700·C, were that a typical crack network occurred after 

10,000 cycles with considerable softening of the tool materials. Persson estimated the tensile 

stresses during the test never exceeded the yield strength of the steel. However, numerous 

cracks formed within the low cycle fatigue range. 

Low-cycle fatigue occurs at a relatively small numbers of cycles, or stress applications. The 

numbers of cycles may be in the tens, hundreds, or even thousands of cycles. Low-cycle fatigue 

conditions prevail when considerable plastic deformation occurs (Persson, et.al., 2004"). There 
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is no exact dividing line between low-cycle and high-cycle fatigue, however, many define low 

cycle fatigue as that occurring in 50,000 cycles or less (Oberg, et.al., 1996). 

High-cycle fatigue occurs at relatively large numbers of stress cycles and is not accompanied by 

plastic deformation instead it is dominated by elastic deformation (Persson, et.al., 2004"). 

It is believed that the results of Persson's work were due to the presence of stress raising 

defects that may have caused the tensile strength to exceed the tool steel yield stress during 

thermal fatigue with gradual softening reducing the yield strength. Hence, the material was 

subjected to cyclic stresses that caused accumulation of plastic strains after a certain number of 

cycles. It was also noted that crack length and crack density had a tendency to decrease with 

higher tool steel hardness. Persson, (2003) states that a higher hardness reduces the 

accumulation of plastic strain in the surface layer. Persson's later work was based on the 

thermal fatigue testing of hot work steel with Physical Vapour Deposition (PVD) coatings, 

Persson, (2003) and Persson et.al., (2005). 

It is important to design a thermal fatigue test to simulate the environment I process to establish 

an accurate life expectancy of a material. Green and Munz, (1996), Merola et.al., (1996) and 

Hayashi et.al., (1998) show examples of thermal fatigue tests simulating different processes. 

3.6 Temperature within a Pressure Die-Casting Tool 

Bounds, (2000) investigated the thermal behaviour of the zinc pressure die casting process by 

measuring the temperature of the die to obtain the operating conditions. J type mineral insulated 

thermocouples were placed through the die block and die surface so that they would be in 

contact with the casting and additional thermocouples were positioned 2.5mm behind the die 

surface. The zinc solidus was at 380.4°C, the liquid us at 386.1°C and the casting alloy 

temperature, prior to injection, was 410°C. The report details a problem with the response rate 

of the thermocouples. 

Aluminium pressure die casting research regarding die temperature is limited. However, 

Persson's, (2003) research estimated an aluminium die surface temperature to be 520°C. 

Srivastava, (2003) states that a typical die surface temperature reaches a maximum of 457°C 

and can be cooled to 107°C. 

Research showed that on average the ex1ernal surface temperature of the shot sleeve directly 

below the pouring hole reached 350°C whilst the internal temperature reached between 480°C 

and 500°C (Diecasting Times, 2004). The shot sleeve removes a significant amount of heat 

from the molten aluminium prior to injection. When injected, the aluminium formed a skin on 

impact with the die and the mass of the die cooled the metal so rapidly that the surface 

temperature never reached the aluminium pour temperature (Chen, 2003, Ghomashchi, 1995). 

This is confirmed by Oberg et.al, 1996 where it is stated 'Although the die is hot, metal entering 

the die is cooled quickly, producing layers of rapidly chilled, dense material about 0.015 in 
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("O.4mm) thick in the metal having direct contact with the die cavity surface'; this is termed the 

skin effect. 

3.7 Crack Detection and Measurement 

Measurement and detection of fatigue cracks can be achieved using several techniques. The 

resolution of crack detection methods can range from 0.1~m - SOO~m (Table 3 - 6). 

Crack Detection Method Method Resolution (~m) 

Optical microscope 100 - 500 

Liquid penetrant 2S - 2S0 
Magnetic particle SOO 
Ultrasonics SO 
Gamma radiography 2% of component thickness 
Scanning electron microscope (SEM) 1 

Transmission electron microscope (TEM) 0.1 

Table 3 - 6 Crack detection methods and resolution (ASM, 1996) 

3.7.1 Optical 

The optical method is typically used to analyse and determine fatigue crack growth. It is 

normally conducted using a travelling microscope at 20 - SOx magnification. The crack length is 

measured over a number of cycles, at the same time the surface of the specimen can be 

observed and potential crack initiation sites detected (Marom and Mueller, 1971). The technique 

is simple and inexpensive and no calibration is required. In turn, accurate measurements can be 

performed provided no oxides or corrosion are present. 

3.7.2 Liquid 

The liquid penetrant method uses a liquid to flow into defects of a specimen by capillary action. 

Initially the specimen is degreased and dried thoroughly then covered with penetrant. The 

penetrant is left for a time to allow absorption into the specimen then the excess is wiped off 

and the developing agent is applied to the surface. The developing agent forms a powder on the 

surface of the specimen and draws the penetrant into it revealing the cracks; this method only 

reveals crack length information and cracks of 1 ~m in length and greater. The information 

gained from this technique depends upon the surface condition, such as roughness, porosity, 

crack morphology etc., of the specimens. The test can be applied to metals and non metals, 

magnetic and non magnetic materials (ASM, 1989). 

3.7.3 Magnetic 

The magnetic particle method requires material to be magnetised. Cracks set up a leakage field 

and can be detected by the application of fine magnetic particles over the surface of the 

specimen, which are attracted to the leakage field. The method can be used to determine crack 

length and is used as an inspection technique for structural components during service. 

However, the resolution is only O.Smm (ASM, 1996). 
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3.7.4 Ultrasonic 

Ullrasonic melhods involve transmitting pulses of elastic waves (An elastic wave is a 

mechanical wave. I n this wave, the force is directly proportional to the displacement, but is 

oppositely directed. This causes sinusoidal motion and the wave is a sine wave) through the 

specimen from a probe held on the surface. The resolution of the equipment is 50~m; this 

method is extensively used for crack measurement I detection, however, interpretation of the 

signals is required to determine the characteristics of the cracks detected (Coffey, 1980). 

3.7.5 Gamma Radiography and X-ray Radiography 

Gamma radiography and x-ray radiography are other methods of detecting cracks. The process 

emits radiation, which penetrates the specimen. If a crack is present it will allow the radiation to 

pass though more easily than in the solid material and this can be seen either on radiographic 

film or on real time imaging x-ray systems. Cracks can be magnified by positioning the film 

further away from the specimen, however, the use of the x-ray film method is difficult, initially, 

because voltage and amperage have to be determined to obtain high-resolution images; this will 

change depending upon the specimen size, thickness, density etc. Orientation is also a 

problem, false readings may occur if the crack is not at 90· to the x-ray beam. Real time x-ray 

units now overcome all of these problems and can even create 3D images of the specimen; 

however, this technique is expensive (ASM, 1996). 

3.7.6 SEM and TEM 

Microscopy methods include scanning electron microscope (SEM), and transmission electron 

microscope (TEM) etc. allowing the mechanisms for fatigue crack initiation and propagation to 

be established (ASM, 1996). The processes provide very high resolution and allow 

microstructural changes to be observed. SEM has a resolution of 1 ~m and the TEM 0.1 ~m. 

SEM also provides chemical analysis by using x-ray diffraction allowing chemical changes at 

the crack, in the specimen, to be determined. Energy dispersive spectroscopy (EDS) or Energy 

dispersive x-ray spectroscopy (EDXS) as it is also known allows an interaction between the 

energetic monochromatic electrons from an impinging electron beam to be determined. 

Characteristic x-rays are always of a specific energy or wavelength and can be used to identify 

the elements in a specimen (Gideon, 2004). The x-rays are characterised by their specific 

wavelength using a crystal diffraction grating. The most common instrument in use is an energy 

dispersive x-ray analyser (EDXA) attachment to the SEM; this is a doped wafer of silicon, which 

is used as a detector. The generated x-rays hit the silicon detector surface, which is doped with 

lithium. The penetration depth of the x-rays into the silicon is a direct function of the energy of 

the x-rays. A weak x-ray of a shallow penetration depth will generate a pulse of lower current 

than a more energetic x-ray of a longer penetration depth (Gideon, 2004). 
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Chapter 4: Prototype I Low Volume Tooling for High Pressure Die

Casting 

4.1 Introduction 

The main benefit of prototyping is design verification. allowing design flaws to be identified 

before a component goes into production (6Donnchadha and Tansey. 2004). The discoveries 

of errors or problems further along the developmental track, lead to greater cost to eliminate 

them; this is especially true for die-cast components where tooling costs can run into six figure 

sums. 

Many production dies require rework ranging from simple modifications to a major overhaul; this 

may lead to additional costs in terms of a shorter tool life and delays in production resulting in 

loss of sales (Mueller, 1992). 

Using rapid prototype processes (Upcraft and Fletcher, 2003) it may be possible to resolve the 

prototyping problem for pressure die casting and create a means for low volume - medium 

volume production, which at present is not available. 

Several tooling techniques exist to produce prototype castings and prototype tooling for die

casting. Traditional processes include cast tooling (CSIRO, 2004), sand casting, investment 

casting, plaster mould casting etc. (Mueller and Thomas, 1992). Newer processes include, 

selective laser sintering (Levy and Schindel, 2002), spray metal tooling (Halford, 1999), 

Optoform (Bernard et.al., 2003), laser caving (Gildemeister, 2004), Metalcopy, Keltool, 

(6Donnchadha and Tansey, 2004) Laminate tooling (Soar and Dickens, 2001) etc. Information 

on rapid prototyping processes can be found in alternative sources (Wohlers, 2004 and 

Wohlers, 2005). 

These tooling techniques fall into two categories 'indirect' and 'direct tooling'. Indirect tooling 

refers to a tool, which is made using a rapid prototype part as a pattern for a secondary process 

as opposed to direct tooling, which is made directly by a rapid prototyping system (Hague and 

Reeves, 2000, Karapatis et.al., 1998). 

4.2 Indirect Tooling Methods 

Developments in rapid tooling technologies have been made in an effort to address the problem 

of producing accurate prototypes for pressure die casting by developing different methods of 

tool manufacture (Norwood and Soar, 2001), including cast tooling, rapid solidification process, 

metalcopy process etc. Many of these techniques have been used and reviewed for magnesium 

pressure die casting (Hague, 2001). 
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Processes such as sand casting, investment casting, plaster mould casting, etc., all require 

patterns to produce the moulds. The patterns are traditionally made from wood, however, many 

rapid prototyping techniques can be used to produce mould patterns for the die-casting industry 

(Rooks, 2002", Dickens et. al. 1995, Mueller, 1992, Wang et.al., 1999, Van and Gu, 1996). 

Exam pies of these are: 

• Quickcast process using stereolithography patterns for investment casting I plaster 

moulding (Jacobs, 1995, Hague et.al., 2001) 

• Laser sintering process to produce sand or polymer (polystyrene, polyamide) patterns 

• Thermojet to produce wax patterns 

• Sanders to produce thermoplastic patterns 

• Fused Deposition Modelling (FDM) process to produce wax or acrylonitrile butadiene 

styrene (ABS) patterns 

• Laminated Object Manufacturing (LOM) to produce paper patterns 

Traditional foundry techniques all produce castings that can be used for assessing the geometry 

and fit of components. 

When asseSSing functionality, the prototype castings from the processes above have limitations 

since only production from an actual gravity die casting or pressure die casting tool can produce 

a part with precise die cast characteristics. Many prototyping methods cannot be used to cast 

the required alloys resulting in assumptions being made regarding component behaviour in 

terms of thermal conductivity, thermal expansion, mechanical properties, grain size, tolerances, 

draft angle, surface finish, porosity etc. (Soar, 2000). 

A single-cavity metal prototype die is the most acceptable approach to determine product 

perfonmance characteristics. Using certain rapid prototyping and rapid tooling techniques it may 

be possible to produce tooling that can be used to make castings using the desired process, a 

metal die and the desired casting alloy to ensure that the correct component properties are 

obtained. 

4.2.1 Cast Tools 

The cast tooling process is a simple indirect process requiring a pattern. The parting line is 

chosen and a soft negative is created in the shape of the tool. From this a ceramic tool is made 

in which the H13 die halves are cast. Secondary machining of the die is required to finish it and 

to add features such as runners, ejectors etc. The cast inserts are fitted into a bolster and can 

be run in a pressure die-casting press. Components can be produced using any type of die cast 

alloy (Armstrong, 2004). 
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Rapid prototyping techniques are generally quicker than traditional pattern making techniques, 

however, they have drawbacks. Their dimensional tolerance, stepping caused by the layer-by

layer manufacture and the maximum build size are limitations (Feenstra et.al., 2002). 

4.2.2 Metalcopy 

This technique has been developed by the Swedish company Prototal AB (previously known as 

Wiba AB). The technique is commercially termed 'Metalcopy' (Wohlers, 2003). The tool material 

consists largely of steel powder with a low melting point alloy bonding material. 

The Metalcopy process involves the use of powder binder mixtures to produce metal tooling. 

The process starts with a primary master pattern of the part, typically manufactured via a rapid 

prototyping route. A silicone negative is cast from this, which is used to produce a green part 

consisting of a mixture of steel powder and binder; this is sintered and infiltrated with a low 

melting point alloy filling the pores between the metal powder grains (Figure 4 - 1) (Norwood 

and Dickens, 2005). The parts may require machining depending upon their application. The 

technique may provide time and cost advantages when compared with traditional tool 

production techniques dependent upon geometrical complexity. Initial tools have proved the 

possibility of producing pressure die-cast tooling and prototype castings (Harris et.al., 2003", 

2003" and 2004). 

Main Advantages 

• Good finish 

Main Disadvantages 

• Tolerance 

• Size 

CAD Model 

C=8 

~ 
SLA Master 

Silicon Mould 

Figure 4 - 1 Metalcopy process 
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• Several process steps 

• Expensive infiltrant 

• Heterogeneous material 

4.2.3 Keltool 

The Keltool process has been used to produce injection mould tools where hundreds of 

thousands of components have been produced (Dickens, 1999). The process is similar to the 

Metalcopy process and initially requires the manufacture of a master pattern typically from 

stereolithography. From this a negative silicone rubber soft mould is made and then a steel 

powder (grade A-6) in a binder is poured into the silicone mould. When set it is removed and 

placed in a furnace to melt and remove the binder to form a green part, which is then 

impregnated with copper (Zhou and He, 1999). Tools are approximately 70% A6 steel and 30% 

copper. 

These tool or inserts require parting lines, core pins, ejector pins etc. to be machined in and 

heat treatment may be required. Up to 45HRc can be achieved. 

Main Advantages 

• Good finish 

Main Disadvantages 

• Tolerance 

• Size 

• Several process steps 

• Expensive infiltrant 

• Heterogeneous material 

4.2.4 Rapid Solidification Process 

The Rapid Solidification Process (RSP) begins with a pattern being created, ceramic is then 

poured and created from this pattern. Moulds are created by spraying molten steel from a 

crucible through a nozzle onto the ceramic negative as shown in Figure 4 - 2. As the metal is 

sprayed, the ceramic pattern is rotated and tilted to create an even coverage. With RSP 

Tooling, a pattern of the tool being developed is generated from a CAD solid model (Wohler, 

2002). 
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Figure 4 · 2 RSP process (RSP Tooling, 2004) 

Post processing is required for the removal of over spray, ejectors, runners gates, cooling 

channels etc. An RSP tool insert can be sprayed in two hours from a CAD file. However, size is 

limited with a maximum diameter of 152.4mm by 101 .6mm thick (Knirsch et.al. , 2002). 

It has been reported that RSP tools made of H13 do not require heat treatment and tools made 

of H 13 appear to have a 25% increase in life expectancy over standard machined tools from 

high grade forged H13 (RSP Tooling, 2004). 

Main Advantages 

• Good strength 

Main Disadvantages 

• Tolerance 

• Size (deep cavities not possible) 

• Requires machin ing 

4.3 Di rect Tooling Methods 

The direct tooling method is where metal die cavities are manufactured by an additive layer by 

layer approach. 

52 Chapter Four 



4.3.1 Laminate Tooling 

Laminate tooling (Himmer et.a!. , 1999, Himmer et.a!. , 2003, Gibbons et.a!. , 2003) the technique 

uses commercial grade metals (Obikawa, 1999, Norwood, 2001 , Norwood 2002', Norwood 

2002' and Dickens, 1997). 

The die halves shown Figure 4 - 3 require slicing (Tyberg and Bohn, 1998, Kulkarni and Dutta, 

1996) to generate the 2D CAD data (Tata et.a!., 1998) required for cutting the profiles of each 

laminate. A slicing subroutine in Delcam's Power-Shape 3D Package (Delcam, 2004) enables 

automatic slicing of the 3D tool and outputs individual 2D, DXF or IGES files. 

Figure 4 - 3 3D model of die halves 

The 2D data shown in Figure 4 - 4 can then be transferred directly to any automated cutting 

process: water jet, laser (Rooks, 2002'), plasma etc. 

Figure 4 - 4 Individual DXF file output (profile of one laminate) 

The cut laminates require cleaning prior to assembly; this can be effectively achieved by 

linishing or tumbling. Both processes are fast although linishing allows the laminate stack order 

to be maintained. Once clean the laminates are stacked, aligned and bolted or bonded together. 

The tool then requires finishing by electro discharge machining (EDM) or high speed machining 

can be employed. 
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Laminate tooling has produced several tools or parts for different applications, such as: 

• Blanking tool and die set (Yokoi et.al., 1984) 

• Polyurethane foam moulding tool (Dickens, 1996) 

• Specimen products (spanner and wheel) (Obikawa, 1999) 

• Metal forming dies (Walczyk and Hardt, 1994, Walczyk and Hardt, 1996, Walczyk, 1998) 

• Injection moulding dies (Glozer, 1992, Bryden and Pashby, 1999, CRDM, 2005) 

• Aluminium die casting tool (Soar and Dickens, 1998·, Soar and Dickens 1998") 

• Bonded laminate steel tools (Bryden et.al., 2000, Bryden et.al. , 2001 , Bryden and Pashby, 

2001, Wimpenny et.al., 2003) 

Injection mould tools have been manufactured and tested with favourable results (Glozer, 

1992). 

The next logical transition was to transfer the technology to high pressure die casting (HPDC). 

However, there are additional problems associated with the die-casting process: 

• Higher injection speeds and forces 

• Thermal shock (thermal fatigue) 

• Ingress of the aluminium between the laminates 

The laminate tooling process has the benefit of producing castings using the desired tool 

material, casting process and casting alloy. An additional benefit is that the scale of the tool is 

limited only by the size of a laser cutting machine bed. Tooling has been manufactured and 

tested for both gravity and pressure die-casting producing prototype parts and low volume 

manufacturing quantities (500 - 2000 parts) (Norwood and Soar, 2001). 

Main Advantages 

• Complex geometries possible 

Main Disadvantages 

• Time consuming 

• Tolerance 

• Several process steps 

• Bonding required 

• Machining required 

• Heterogeneous material 

4.3.2 Selective Laser Sintering and Direct Laser Sintering 

Both the selective laser sintering (3D Systems) and the DirectMetal laser sintering (EOS GmbH) 

processes produce metal tools less than 370mm x 320mm x 445mm and 250mm x 250mm x 

54 Chapter Four 



215mm respectively. The main difference between the processes is that selective laser sintering 

uses polymer coated metal powder to form green parts that require sintering and infiltration with 

a low melting point alloy, whereas the direct laser sintering process produces a tool directly 

without binder and infiltration (Norwood and Soar, 2001). Both tooling methods have been used 

for pressure die-casting to produce prototype components. For additional metal laser sintering 

information, refer to Wohlers 2003, Agarwala et.al. , 1995", Agarwala et.al. , 1995·, Klocke et.al. , 

1995. 

4.3.2.1 Selective Laser Sintering (SLS, 3D Systems) 

The selective laser sintering machine was originally developed by OTM corporation and now 3D 

Systems (2004). The following metals are currently used: 

• LaserForm™ ST100 - polymer coated stainless steel (iron balance, chromium 12 - 14%, 

manganese 1 %, silicon 1 %) with an organic binder (2 - 3%) and has similar material 

characteristics to P20 tool steel , infiltrated with bronze 46%. The bronze used is phosphor 

bronze 0 C52400 (90% Cu, 10% Sn) 

• LaserFormTM ST200 - polymer coated metal mixture (iron balance, chromium 10 - 30%) 

with an organic binder (1 - 5%), infiltrated with bronze 46%. The bronze used is phosphor 

bronze 0 C52400 (90% Cu, 10% Sn) 

However, at the commencement of this research only RapidSteel TM (Oalgarno and Stewart, 

2001) materials were available: 

• RapidSteel™ 1.0 - 1 080 steel with Cu bonding material (Stewart et.al., 1999) 

• RapidSteel™ 2.0 - austenitic 316 stainless steel 60%, Phosphor Bronze 0 C52400 40% 

(90% Cu, 10% Sn) 

RapidSteel™ 2.0 was the latest material development at the beginning of this work with 

improved material properties (Table 4 - 1). The base material was changed from 1080 carbon 

steel to 316 stainless steel with a powder size of 34~m reducing layer thickness from 100lJm to 

75~m . The binder material was also modified to eliminate the need for the cross-linking stage, 

hence, reducing the processing time and increasing the accuracy (Pham et.al. , 2000). 

Ultimate Modulus of 

Oensitr 
Hardness 

Tensile 
Yield Elasticity Thermal Thermal 

Material (HRc and Strength Strength (Young's Conductivity Expansion (g/cm ) HRb) (MPa) Modulus) (W/m-K) (mm/mmrC x 10<) (MPa) (GPa) 

RapidSleel'" 8.23 75.3HRc 475 225 210 184@ 100"C, 
14.4 1.0 (OTM) 91 @200'C 

RapidSleel '" 7.5 99 - 103.5HRb 580 413 413 23@ 100'C, 14.6 2.0 (DTM) 28@200'C 

Table 4 -1 RapidSteel™ material data (DTM, 1999) 
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Using the sliced data from the STL file, a 25 or 100 watt (material dependent) CO2 laser 

selectively scans a layer of the object on the polymer coated powder as shown in Figure 4 - 5. 

The system works by automatically depositing a layer of powdered material across the build 

platform by means of a precision roller mechanism. The build material is typically heated to 

100·C - 130·C and the build area to .. 172·C. A CO2 laser is then used to heat the material and 

fuse it together creating a green part (Dimov et.a!. , 2001 , Bak, 2003). The operation is repeated 

layer after layer until the component is completed. The part is then removed from the build 

envelope and the excess powder removed (Pham et.a!., 1999). 

Figure 4 - 5 DTM (now 3D Systems Vanguard) laser sintering system (3D Systems, 2004) 

Parts require a secondary operation as the metal is not fully dense. The metal powder is coated 

in nylon, which bonds it together. This structure requires infiltrating with bronze or copper to 

achieve a fully dense material; this is achieved by using an oven as shown in Figure 4 - 6 

(Juster, 1994). The nylon is burnt out during the process and replaced with the bonding material 

by capillary action. 

Figure 4 - 6 3D DTM (now 3D Systems) LaserForm '" slntering and infiltration furnace (3D 

Systems, 2004) 
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The components to be sintered are placed in a graphite crucible in the oven and the infiltrate 

placed by the component; it is then surrounded by alumina powder for covering and supporting 

the components in the oven. The oven has pre-set programmes that automatically sinters the 

parts in an inert atmosphere of nitrogen. Once molten. the infiltrate material is drawn by 

capillary action into any voids producing an infiltrated component with a resultant density of 

",99.5%. RapidSteel 1.0 requires one furnace cycle to de bind and infiltrate however RapidSteel 

2.0 requires two furnace cycles. one to debind and sinter the second to infiltrate (Dalgarno and 

Stewart. 2001). 

Main Advantages 

• Complex geometries possible 

Main Disadvantages 

• Machine takes a long time to heat up and cool down 

• Infiltration is required 

• Warpage may occur during infiltration cycle 

• 370mm x 320mm x 445mm build area 

• Heterogeneous material 

4.3.2.2 DirectMetal Laser Slntering (DMLS, EOS GmbH) 

The DirectMetal laser-sintering machines EOSINT M (Behrendt and Shellabear. 1995) (M250 

and M270) manufactured by EOS GmbH (Figure 4 - 7) work in a similar manner to the selective 

laser sintering process. 

Figure 4 - 7 EOS M250 slnterlng machine 

Figure 4 - 8 shows how the sintering machine operates. Powder from a feed container is drawn 

across the build area with a powder slide (blade) to form a layer. A 200W CO2 laser with a wave 
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length of 10 .6~m and a spot size of 0.3mm (Khaing et.al., 2001 ) follows the 20 profile of the 

slice file to sinter the required area. The process is repeated until the component is produced. 

Component 

• -

Figure 4 - 8 EOS M250 sinterlng process 

The process uses the following metal materials: 

• EOS DirectSteel 20~m (Steel based matrix containing Ni) 

• EOS DirectSteel 50~m (Steel based matrix containing Ni) 

• EOS DirectSteel H20 (Alloy steel containing Cr, Ni, Mo, Si, V and C) (available from 

quarter 1, 2004) 

• EOS DirectMetal 20~m (bronze based metal) 

Data for these materials is limited (Table 4 - 2). However, recent compression testing of EOS 

DirectSteel 50~m showed inconsistencies in the performance of the material (Dalgarno and 

Goodridge, 2004). Tests conducted by Storch et.al. , (2003) revealed EOS DirectSteel 20~m to 

have brittle behaviour and the material properties were sensitive to build orientation. 

Ultlm.u. Modulus of Therm,l Yield Elasticity Therma' Chemical D.n.~ Poroatty Hard"", Ten,lI. Expansion Material Composition (glcm (11) (HRb) Strength Strength (Young" Conductivity (mmlmmfC 
(MPI) (MPI) M;1~~") (W/m.J<) .,0" GPI 

OlrectSteel Steel based 

SO~m 
matrix - . . . . . 25 18 1 

containing NI 

DlrectSt'" 
Steel based 

matruc &3· 7 8 2 94 600 400 130 '30 SO"C 905O"C 
2O~ containing Ni 

13 ('00 C • 
Alloy ,tee! 250°C) 

DlrectSt ... containing Cr, 
7·7.8 <0,5 108-113 1100 800 ,eo 15 0 5O"e 14 (250~C -

H2O NI. Mo. SI. V 18C 200"C 400"C) 
ondC 15 (400'C -

5SO"CI 

DuectMetal Bronze based 83 -78 8 &4 400 200 eo 30 (I 5O"e 18 C sa"e 2O~m metal 

Table 4 - 2 EOS GmbH material data (EOS GmbH, 2005 material data sheet) 
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The parts are built directly onto a plate, which can be an integral part of the component I tool or 

a support structure can be built to aid component removal. However, the support structure has 

to be removed by machining. 

Main Advantages 

• No infiltration required 

Main Disadvantages 

• 250mm x 250mm x 215mm build area 

Rapid tooling technology as discussed so far enabled the die-caster to produce prototype high 

pressure die-cast components. The majority of the rapid tooling processes discussed, use 

materials with 'similar' material characteristics to tool steels 'according' to the manufacturers. 

This enables prototype pressure die-cast components to be produced from the desired process, 

using the desired casting alloys, allowing cast components and tool designs to be evaluated 

and tested prior to the manufacture of production tooling. However, they are all in direct 

competition with high speed machining, which has increasing manufacturing speeds. 

4.3.3 Other Tooling Methods 

There are other rapid tooling methods these include, ProMetal, Solidica-Ultrasonic 

Consolidation, LaserCaving, EcoTool, Controlled Metal Build-up (CM B), ARCAM, Sprayform, 

Laser Engineered Net Shaping (LENS), Laser Consolidation, however, they were not studied in 

this research due to problems associated with obtaining I manufacturing specimens. 

ProMeta/: The process uses inkjet print heads to jet a binder onto the surface of metal powder. 

Layer by layer, the machine builds metal parts in 316L or 420 stainless steel. A furnace cycle 

burns out the binder and brings the parts to full density using a bronze infiltrant. The final part 

consists of about 60% steel and 40% bronze (ProMetal, 2006). 

Solidica-Ultrasonlc Consolidation: The process combined ultrasonic seam welding and 

layered manufacturing process. The process uses metal tape and ultrasonic vibration to bond 

the metal tape together. No inert environment is required or preparation of the metal prior to 

bonding. During bonding localised shear forces break up oxides and pressure creates internal 

stresses at the interfaces to set up elastic I plastic deformation and diffusion. The process is 

combined with machining to achieve a good surface finish (Solidica, 2006). 

LaserCaving: This employs a laser to ablate the surface of a piece of metal to produce a tool, 

however, the process is time consuming and deep tools I deep cavities can not be 

manufactured due to the focal length of the laser. 
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EcoTool: The process is similar to aluminium-filled epoxy tooling. However, it uses a steel 

powder and binder which hardens at room temperature. It is then infiltrated in a similar manner 

to MetalCopy and Keltool (Castle Island's, (2006). 

CMS: The controlled metal build up (CMB) combines laser deposition welding and milling in 

order to build up, modify and repair moulds and dies. The process deposits a layer of weld in 

the desired area and a 3 axis high speed milling machine removes the excess material which 

insures accuracy. 

ARCAM: Is similar to laser sintering of metal. The process fuses metal powders layer by layer 

to form strong metal parts using electron beam technology. The parts are nearly 100% dense, 

however, the surface finish is rough. It is reported that parts produced in H13 result in properties 

that are identical to parts machined from H13 stock (Wohler, 2002). 

Sprayform: Employs twin wire metal arc guns that are robotically controlled to spray carbon 

steel onto the surface of a ceramic pattern. The ceramic patterns are made using a special 

freeze-casting process that ensures stability and accuracy of the ceramic. The build area is 

760mm x 1015mm x 250 mm. Sprayform has been used to produce production dies for sheet 

metal stampings, injection moulding and composite lay-up tooling however class A finishes are 

not achievable (Wohler, 2002). 

Laser Engineered Net Shaping (LENS): The process is a laser cladding process which injects 

metal powder into a pool of molten metal created by a focused laser beam. Parts are built layer 

by layer. LENS offers functionally grade material manufacture, however, the surface finish of 

components are poor and post machining is required. There are three companies that have 

commercialised the LENS process, Optomec, POM and Trumpf. 

• Optomec: The process manufactures metal parts directly from CAD. The process 

produces components, made out of difficult-to-process materials such as titanium alloys. 

It can be used to repair components such as injection mould inserts. (Wohlers, 2002). The 

process is conducted in an inert atmosphere of argon. A 750W Nd:YAG laser is employed 

which traces the cross section of the part melting the powder as it is fed from the delivery 

nozzle (Optomec, 2006 and Wohlers, 2002) 

• POM: Is similar to Optomec the main difference is it employs a 750W CO2 laser instead of 

a 750W Nd:YAG laser (POM, 2006) 

• Trumpf: Uses the POM system combined with a 5 axis control and closed loop feed back 

system to control feed rates. In addition the system offers up to four powder feeds 

(Trumph, 2006) 
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Laser Consolidation: The process is similar to LENS using a 500W Nd:YAG laser with fibre 

optic delivery. The process, however, produces a significant better surface finish than other 

powder systems. The process is not yet commercial and is only offered as a service 

(Accufusion, 2006). 

4.4 Hypothesis 

The literature review has shown that high pressure die casting is an important process for 

making aluminium parts and that LM24 is the most widely used material in the cold chamber 

process. 

The dies are normally made from hot working steels and H 13 tool steel is the most common 

material for this. However, the dies are subjected to extreme conditions and this can lead to 

failure of the tool due to a number of reasons. It has been shown that thermal fatigue is the 

predominant cause of tool failure and the extent of this is highly dependent on the tool material, 

tool design, heat treatment of the tool and the die casting process parameters. 

Several methods have been suggested for evaluating the thermal fatigue resistance of tool 

materials but, there is little sound basis for these and they do not fully represent the die casting 

conditions. A major unknown factor is the temperature of the tool surface during casting. 

There are several processes that can be used for assessing cracks in a sample but optical 

microscopy is the fastest, simplest and cheapest. 

In recent years a number of rapid tooling processes have been suggested as methods to 

manufacture prototype or short run tooling for high pressure die casting of aluminium. However, 

there is no authoritative information available on the materials fatigue resistance of these 

materials. The literature review has already shown that thermal fatigue resistance of a material 

is highly dependant on its structure and composition. 

There are several types of rapid tooling materials, made with varying processes and different 

materials, many containing multiple materials; this is likely to have a major effect on thermal 

fatigue properties and die life. 

The literature suggests that a suitable die material needs the following properties for good 

resistance to fatigue and thermal fatigue: 

• High density (Rutz, 1996) 

• Materials with high thermal conductivities to reduce thermal gradient (Norstrom, 1982, 

Weror'lski and Hejwoski, 1991, Worbye, 1985) 

• Materials with a low thermal expansion to reduce stress (Norstrom, 1982, Schwam et.a!., 

2004, Weror'lski and Hejwoski, 1991, Worbye, 1985) 
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• Low elastic modulus (bulk) (Norstrom, 1982, Weroriski and Hejwoski, 1991, Worbye, 

1985) 

• Low elastic modulus (rigidity) (NorstrOm, 1982, Weroriski and Hejwoski, 1991, Worbye, 

1985) 

• Low elastic modulus (Young's) (NorstrOm, 1982, Weroriski and Hejwoski, 1991, Worbye, 

1985) 

• High elongation at break (%) (ductility) (Bendyk, et.al., 1970, NorstrOm, 1982, Weroriski 

and Hejwoski, 1991, Simons, 1972, Sjostrom and Bergstrom 2004, Worbye, 1985) 

• High tensile strength I toughness (a compromise as it is not possible to have high 

strength with the toughness) (Bendyk, et.al., 1970, NorstrOm, 1982, Weroriski and 

Hejwoski, 1991, Simons, 1972, SjostrOm and BergstrOm 2004, Worbye, 1985) 

• High yield strength (Badger Metals, 2001, Worbye, 1985) 

• High resistance to annealing (Persson, 2003, Worbye) 

• High hardness (Bendyk, et.al., 1970, Novovic et.al., 2004, Simons, 1972, Sjostrom and 

BergstrOm 2004) 

• High creep strength (Worbye, 1985) 

• Resistance to oxidation (Weroriski and Hejwoski, 1991) 

However, many rapid tooling materials are constructed from two different alloys such as 

stainless steel powder and phosphor bronze and have different microstructure to typical alloys. 

Generally rapid tooling materials do not meet the desired material properties or have a 

mismatch due to the different materials. It was believed that all of the rapid tooling materials 

would have poor thermal fatigue properties and not be suitable as die casting tool materials. 

Therefore, it was decided to subject a selection of rapid tooling materials to thermal fatigue 

testing in order to validate this assumption and to compare them against each other. It was 

expected that the analysis of the materials would enable an understanding of the key material 

properties that prevent thermal fatigue. 

4.5 Methodology 

Die casting was chosen as the application because it is a high temperature application requiring 

a prototype I low volume tooling solution. 

Aluminium (LM24) cold chamber pressure die casting was chosen as the representative 

process because it is the most common high volume casting process, has one of the highest 

casting temperatures, fastest cycle time and tool failure rate. 

The choice of rapid tooling materials to be tested was driven by their accessibility through 

research projects being undertaken at the time of this work since funds were not available to 

purchase a complete set. 
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It was necessary to understand the compositions of each of the tooling materials that would be 

thermally fatigued as comprehensive data was not available for most of them. This was to be 

undertaken by EDS analysis. 

It was also necessary to determine the tooling materials density and thermal conductivity as 

there properties have been shown to affect thermal fatigue (Norstrom, 1982, Rutz et.al., 1996, 

Weronski and Hejwoski, 1991, White, 2005, Worbye, 1985). 

Other material properties that also affect thermal fatigue resistance such as tensile, percentage 

elongation, Youngs modulus, toughness etc., were not evaluated due to the difficulty in 

obtaining specimens from the suppliers and time constraints. 

Before a thermal fatigue test could be designed it was necessary to determine the temperature 

cycle within an aluminium die casting tool. At this point within the research this information was 

sparse. 

A program of work was designed to determine these temperatures using thermocouples in the 

tool and the results of this were validated with temperature sensitive paints. 

The next stage was to determine the shape and size of the thermal fatigue specimen. It was 

decided to employ Glenny's sample shape as it met several requirements. 

• It is small unlike Wallace's sample. This will reduce power requirements and heat loss 

from the furnace and several samples can be tested simultaneously 

• Glenny's sample has a small radius and changing cross section (typical features in a die) 

• There was no need to polish the samples to analyse them as in Wallace's tests. This 

could remove small cracks or cracks that have just initiated and change the surface 

roughness and affect future crack initiation 

• Persson's sample makes it difficult to measure crack length as it only shows surface 

cracking 

• Glenny's sample has no water flowing through it unlike Wallace's and Persson's test. 

Rapid tooling materials may be porous and could be dangerous if water contacts molten 

aluminium or furnace elements 

Both Wallace and Persson have designed thermal fatigue tests which are designed to test 

materials suitability for die-casting. The author of this work believed that neither Wallace's or 

Persson's tests were representative of pressure die-casting. Wallace's test dunks the specimen 

into molten aluminium at 730°C for 12 seconds and heats the specimen to 635°C and cracks 

occur in H13 die steel at 15,000 cycles. This is not a correct temperature profile as dies do not 

heat up to 635°C and are not subjected to that temperature for 12 seconds and H13 dies do not 

typically initiate cracking until 100,000 cycles. Persson's test caused cracking of die steel at 

20,000 when tested at 600°C, again not representing the die casting temperature profile. 
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Glenny's thermal fatigue test was designed to test materials for turbine blade suitability and not 

die casting. This is reflected in the cycle times which can be as high a four minutes heating and 

four minutes cooling. 

Due to previous tests not meeting the desired requirements a new test method had to be 

designed. Hence, once the specimen shape (Glenny's) had been determined and the apparatus 

built it was possible to manufacture H13 specimens to reproduce the temperature cycle within 

the tool. This involved several tests with different heating mediums. 

Once the test design was complete the rapid tooling specimens were manufactured. For each 

rapid tooling process five thermal fatigue specimens were manufactured and their initial 

hardness recorded. Four specimens were tested and one was used as reference for each 

material. 

The main experimental work subjected the specimens to the designed thermal fatigue test and 

periodically the specimen's were optically examined and hardness tested. Optical analysis was 

chosen as it was available to the author and it is quick, simple and has an accuracy of 

0.001 mm. The hardness tests were conducted to determine if the materials had softened during 

thermal fatigue. The following data was planned to be recorded: 

• Number of cycles to initiate cracking 

• Crack grow1h rate 

• Number of cracks 

• Hardness 

After obtaining the thermal fatigue date optical, SEM and EDS (chapter 3, section 3.7.6) 

analysis was planned to examine the cracks and microstructure in more detail to determine the 

mode of crack initiation and propagation. 
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Chapter 5: Initial Work 

5.1 Selection of Test Materials 

The choice of rapid tooling materials to test in the experimental program was largely dependent 

upon those available in the rapid prototyping industry at the commencement of this research 

and the obtainability. These included Metalcopy 5507, Metalcopy Janalloy, Metalcopy Cu, 

Laminate steel, EOS DirectSteel 20IJm, RapidSteel'" 2.0. Regarding the choice of material as a 

reference, previous background research detailed in chapter 2 revealed H 13 to be the main 

tooling material for aluminium pressure die casting for a number of reasons but mainly because 

of hot working properties of this material. 

The experimental plan was also important and several factors required initial research to enable 

the development of a thermal fatigue test. A procedure was also required to obtain data and to 

monitor the specimens during the test. Finally, the specimens required post examination to 

determine crack initiation, crack propagation, etc. 

5.2 Reference Specimen H13 

The material for the specimens was provided by Bohler and the material speCifications can be 

seen in Table 5 - 1. Using a scanning electron microscope (SEM) (Leo 1350 VP FEG) and an 

energy dispersive spectroscopy (EDS) (EDAX) (chapter 3, section 3.7.6) chemical analysis it 

was possible to measure the energy and intensity distribution of x-ray signals generated by an 

electron beam strike on the surface of a specimen. The elemental composition at a point, along 

a line or in a defined area, can be easily examined to a high degree (0.1 % Wt.). The energy 

dispersive spectrometer analysis (EDS) composition is shown in Table 5 - 1. It must be noted 

that EDS cannot detect carbon and the analysis is conducted over a small area of a specimen 

so values may vary for a given material. 

Composition % wt. 

Fe C V Si Ni Cr Mo 

H13 (reference) Bal 0.32 - 0.4 1 1 - 5 - 5.25 1.33 - 1.5 

H13 EDS Bal. - 1.3 1.2 0.1 5.3 1.3 

Table 5 -1 H13 reference (Oberg, E., et.al., 1996, Shackelford and Alexander, 2001, 

Matweb, 2004) and EDS % Wt. composition 
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H13 has the following material properties (Table 5 - 2). 

Property Value 

Density (g/cm 3
) 7.8 

Thermal conductivity (W/moK) 24.3 

Coefficient of linear thermal expansion (m/mfC) 1.0xl0'" 

Elastic modulus (bulk) (GPa) 140.0 

Elastic modulus (rigidity) (GPa) 81.0 

Elastic modulus (Young's) (GPa) 210.0 

Elongation at break (%) 9 

Ultimate tensile strength (MPa) 1990 

Yield tensile strength (MPa) 1650 

Poisson's ratio 0.3 

Annealing temperature (0C) 870.0 

Melting point (oC) 1425 

Hardness (HRb) 104-120 

Table 5 - 2 H13 material properties (Shackelford and Alexander, 2001, MatWeb, 2004, 

Timkin Latrobe Steel, 2004) 

5.3 Indirect Die Materials 

5.3.1 Metalcopy 5507 

Metalcopy 5507 was claimed to be stainless steel 316L powder (Table 5 - 3 powder material) in 

a matrix of silver (Table 5 - 4). There was limited material property data for this material and 

Prototal AB would not divulge the alloy composition. However, material data has been obtained 

from an EDS analysis (Table 5 - 5). 

Composition % Wt. 

Fe C Mn Si P S Cr Mo Ni N 

Min Bal. - - - - - 16.0 2.00 10.0 -
316L reference 

Max Bal. 0.03 2.0 0.75 0.045 0.03 18.0 3.00 14.0 0.10 

316L EDS Bal. - - 1 - - 18.5 2.7 9.7 -
Table 5 - 3 316L reference (Azom, 2006, Shackelford and Alexander, 2001) and EDS 

composition 

Composition % Wt. 

Ag Fe Mo Cr Ni Si Cu Zn 

Metalcopy 5507 bonding material EDS Bal. 0.8 0.9 0.2 0.2 0.4 4.8 14.4 , 
Table 5 - 4 Metalcopy 5507 bonding material EDS composition 
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Composition % Wt. 

Fe Mo Cr Ni Si Ag Cu Zn 

Metalcopy 5507 combined EDS Bal. 1.7 12.5 6.7 0.5 15.2 2.7 7.9 

Table 5 - 5 Metalcopy 5507 EDS composition 

It should be noted that the materials were claimed to be 316L stainless steel powder with silver 

bonding material. However, from the EDS results it was clear that the bonding material was not 

pure silver. 

This material was selected as a candidate as the powder was 316L stainless steel, which has 

good oxidation resistance in intermittent service to 870°C and in continuous service to 925°C. 

Grade 316L is also resistant to carbide precipitation and can be used in the temperature range 

425°C - 860°C (Azom, 2006). 316L also has a high annealing temperature preventing softening 

at elevated temperatures. The 316L material properties can be seen in Table 5 - 6. The ultimate 

tensile strength and yield strength of this material are lower than those of H 13. In turn the 

coefficient of thermal expansion of 316L is higher and its thermal conductivity lower than for 

H13. 

Property Value 

Density (g/cm3) 8.0 

Thermal conductivity (W/moK) 18.9 

Coefficient of linear thermal expansion (m/mfC) 16.5 x 10" 

Elastic modulus (bulk) (GPa) 193 

Elastic modulus (rigidity) (GPa) 83.0 

Elastic modulus (Young's) (GPa) 215 

Elongation at break (%) 40 

Ultimate tensile strength (MPa) 515 - 558 

Yield tensile strength (MPa) 170 - 290 

Poisson's ratio -
Annealing temperature (OC) 1010-1120 

Melting point (OC) 1375 - 1400 

Hardness (HRb) 95 

Table 5 - 6 Material properties of 316L grade of stainless steel (Azom, 2006, Sandmeyer 

Steel, 2005, MatWeb, 2004, Shackelford and Alexander, 2001) 

The Metalcopy 5507 matrix was primarily silver, which resists corrosion, has a high melting 

point and a high thermal conductivity, which are beneficial to thermal fatigue resistance. 

However, its annealing temperature is 600°C. which is lower than the processing temperature of 

LM24 ,,700°C. Silver, also has poor mechanical properties in comparison to 316L stainless steel 

(Table 5 - 7). 
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Property Value 

Density (g/cm 3
) 10.5 

Thermal conductivity (W/moK) 427 

Coefficient of linear thermal expansion (m/mfC) 19.7 x 10'" 

Elastic modulus (bulk) (GPa) 104 

Elastic modulus (rigidity) (GPa) 30 

Elastic modulus (Young's) (GPa) 83 

Elongation at break (%) 50 

Ultimate tensile strength (MPa) 140 

Yield tensile strength (MPa) -
Poisson's ratio 0.4 

Annealing temperature (0C) 600 

Melting point (OC) 961 

Hardness (HRb) 100 

Table 5 - 7 Material properties of pure silver (Shackelford and Alexander, 2001, 

Goodfellow, 2005, Environmetal Chemistry, 2005, MatWeb, 2004) 

The points discussed above indicate that the material could withstand a degree of thermal 

fatigue but, it is unclear how the structure of the material would perform. Hence, Metalcopy 

5507 was selected for thermal fatigue testing. 

5.3.2 Metalcopy Janalloy 

Metalcopy Janalloy is claimed to be identical to Metalcopy 5507 with 316L stainless steel 

powder in a matrix of silver. The difference was that the material was manufactured by Prototal 

AB in house and not by their supplier. However, the 316L EDS data was not identical to 

Metalcopy 5507, the most noticeable reductions are in the Fe and Cr content (Table 5 - 3 and 

Table 5 - 8). Differences in the bonding material composition were also evident. Increased Ag 

and Fe. no Mo, no Cr, no Ni, no 5i, presence of Mg. reduced Cu, reduced Zn (Table 5 - 4 and 

Table 5 - 9). The overall EDS analysis of Metalcopy Janalloy can be seen in Table 5 - 10. 

Composition % Wt. 

Fe C Mn Si P 5 Cr Mo Ni N 

316L EDS Bal. - - 0.3 - - 14.3 1.1 11.5 -
Table 5 - 8 Metalcopy Janalloy 316L EDS composition 

Composition % Wt. 

Ag Fe Mg Cu Zn 

Metalcopy Janalloy bonding material EDS Bal. 1.6 1 3.2 11.3 

Table 5 - 9 Metalcopy Janalloy bonding material EDS composition 
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----------------------------------------------------------------------- - -----

Composition % Wt. 

Fe Mo Cr Ni Si Ag Cu Zn 
Metalcopy Janalloy combined EDS Bal 0.5 7 8.5 0.1 17.4 2.7 7.3 

Table 5 ·10 Metalcopy Janalloy EDS composition 

The material was selecled for Ihe same reasons as Melalcopy 5507 and 10 delermine if the 

thermal fatigue performance was similar. 

5.3.3 Metalcopy Cu 

Melalcopy Cu had the same powder malerial of stainless steel 316L as Metalcopy 5507 and 

Metalcopy Janalloy. However, the EDS analysis showed small differences in the alloying (Table 

5· 11). Table 5 . 12 shows the copper bonding material alloy and Table 5 . 13 shows the 

combined material composition. Table 5 • 14 shows the material properties of copper. When 

compared to the previous Metalcopy materials the thermal fatigue resistance could be impaired 

by the lower thermal conductivity, annealing temperature and higher Young's modulus. 

However, the material is corrosion resistant, has a higher hardness, higher tensile strength and 

a lower coefficient of linear thermal expansion than Metalcopy 5507 I Metalcopy Janalloy. Again 

without thermal fatigue testing it was uncertain how suitable this material would perform; hence 

it was selected for testing. 

Composition % Wt. 

Fe C Mn Si P S Cr Mo Ni N 
316L EDS I Bal. . . 2.9 . . 15.1 5 9.7 . 

Table 5 ·11 316L EDS composition 

Composition % Wt. 

Cu Fe Mo Cr Ni Si 
Metalcopy Cu bonding material EDS Bal. 4.2 0.2 0.7 2.9 0.3 

Table 5 • 12 Metalcopy Cu bonding material EDS composition 

Composition % Wt. 

Fe Mo Cr Ni Si Cu 
Metalcopy Cu combined EDS Bal. 2 12.8 7.8 0.7 24.9 

Table 5 ·13 Metalcopy Cu EDS composition 

69 Chapter Five 



Property Value 

Density (g/cm 3
) 9.0 

Thermal conductivity (W/moK) 398 

Coefficient of linear thermal expansion (m/mfC) 16.5 x 10'" 

Elastic modulus (bulk) (GPa) 140 

Elastic modulus (rigidity) (GPa) 48 

Elastic modulus (Young's) (GPa) 130 

Elongation at break (%) 60 

Ultimate tensile strength (MPa) 210 

Yield tensile strength (M Pal 33.3 

Poisson's ratio 0.3 
Annealing temperature (0C) 405 
Melting point (0C) 1085 

Hardness (HRb) 110 

Table 5 ·14 Material properties of pure copper (Shackelford and Alexander, 2001, 

Goodfellow, 2005, Environmetal Chemistry, 2005, MatWeb, 2004) 

5.4 Direct Die Materials 

5.4.1 Laminated H13 

Laminated H13 was selected as a candidate material as it is a tooling method, which employs 

commercial die material with excellent material properties (Table 5 - 2) in conjunction with a 

known brazing technique. As previously discussed, H13 has good thermal fatigue resistance. 11 

is, however, unclear how the braze and indeed the laminate structure would perform when 

subjected to thermal fatigue, hence the material combination was selected for testing. 

The nickel braze (Amdry 790) was commercially available and supplied by Sulzer Metco, The 

braze element data was provided by Sulzer Metco and is shown in Table 5 • 15. Table 5 - 15 

also shows the EDS results (note boron cannot be detected by EDS) and highlighted an 

inconsistency in the iron content between the supplier's material data and the EDS analysis. It 

was expected that the small traces of Ti, Mo, Zr, P, S and Se would not be detected. 

Composition % Wl 

Ni Si B Fe C AI Ti Mo Zr P 5 5e 
Amdry 790 Bal. 3-4 1.5·2.2 1.5 0.06 0.05 0.50 0.05 0.05 0.02 0.02 0.005 

EDS Bal. 3.7 - 0.3 . 0.8 . - . . - . 

Table 5·15 Composition of Amdry 790 (Sulzer Metco (UK) Ltd., 1998) 

Table 5 -16 shows the EDS of the Vertical laminate structure and the H13 steel. 
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Composition % Wt. 

Fe Mo Cr Ni Si V 

Vertical laminate H13 EDS Bal. 1 4.2 21.4 1.3 0.9 
Vertical laminate combined EDS 7.6 0.4 0.5 Bal 8.1 0.2 

Table 5 - 16 Vertical laminate EDS and Vertical laminate H13 EDS composition 

Sulzer Metco had no mechanical data for Amdry 790 however, the material had a high 

percentage of nickel and its mechanical data is shown in Table 5 - 17. When compared with the 

bonding material materials of Metalcopy Cu, Metalcopy Janalloy and Metalcopy 5507 and the 

desired properties to resist thermal fatigue, nickel would have better resistance in terms of 

tensile strength, yield strength, annealing temperature, coefficient of liner expansion. However, 

it has a high Young's modulus and lower thermal conductivity, which may affect the thermal 

fatigue resistance of the material. 

Property Value 

Density (g/cm 3
) 8.9 

Thermal conductivity (W/moK) 90.9 
CoeffiCient of linear thermal expansion (m/mfC) 13.3 x 10" 

Elastic modulus (bulk) (GPa) 180 

Elastic modulus (rigidity) (GPa) 76 
Elastic modulus (Young's) (GPa) 200 
Elongation at break (%) 40 
Ultimate tensile strength (M Pal 660 
Yield tensile strength (MPa) 480 
Poisson's ratio 0.3 
Annealing temperature (OC) 705 
Melting point (OC) 1455 
Hardness (HV) 638 MN m-2 (over 120HRb) 

Table 5 -17 Material properties of pure nickel (Goodfellow, 2005, Environmetal 

Chemistry, 2005, MatWeb, 2004) 

5.4.2 3D Systems RapidSteeP" 

RapidSteel™ 1.0 was being phased out and replaced by RapidSteel™ 2.0 at the 

commencement of this research and was the only available metal from DTM I 3D Systems 

selective laser sintering process. The material is similar to Metalcopy in that the powder material 

is 316 stainless steel but it is infiltrated with 90% Cu 110% Sn phosphor bronze. Table 5 - 18 

shows the alloying data and the EDS results. 

Composition % Wt. 

Cu Sn 

90/10PB Bal. 10 

EDS Bal. 10.4 

Table 5 -18 Chemical composition and EDS analysis of phosphor bronze (MatWeb, 2004) 
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Many rapid tooling processes, like laser sintering, are layer manufacturing processes; it was 

thought that there could be differences in thermal fatigue properties depending upon the 

orientation of the specimens. It was decided to manufacture specimens in two different 

orientations. These were vertical and horizontal (Figure 5 - 1). 

I 
A B 

Figure 5 - 1 (A) Vertical orientation; (B) Horizontal orientation 

Table 5 - 19 shows the alloy content of the RapidSteel'" 2.0 material, its bonding material and 

steel composition. 

Composition % Wt. 

Fe Cr Si Cu Sn 

Vertical RapidSteel™ 2.0 Steel Bal 9 0.7 8.7 0.5 
Vertical RapidSteel™ 2.0 bonding material EDS 1.7 0.1 0.3 Bal 10.4 
Vertical RapidSteel™ 2.0 combined EDS Bal 8.6 0.6 33.8 3.5 
Horizontal RapidSteel TM 2.0 Steel Bal 29 0.4 2.5 0.4 
Horizontal RapidSteel™ 2.0 bonding material EDS 8.2 1.2 0.4 Bal 24.3 
Horizontal RapidSteel™ 2.0 combined EDS Bal 9.6 0.7 32.1 4.1 

Table 5 -19 RapidSteel™ 2.0 material, bonding material and steel EDS compositions 

It should be noted that the composition of both the steel and the bonding material varied 

considerably depending upon the specific point chosen for analysis. 

Comparing the desired material properties to resist thermal fatigue phosphor bronze has a 

significantly higher tensile strength than the other bonding materials. In comparison to 

Metalcopy bonding materials it has a higher yield strength but not higher than nickel (Amdry 

790), it has a good annealing temperature of 675°C. The Young's modulus is lower than nickel 

(Amdry 790) and similar to the copper bonding material. However, its thermal conductivity is low 

in comparison to the other bonding materials discussed (Table 5 - 20). The material was 

selected due to its reasonable mechanical properties (Table 5 - 20 and Table 5 - 21). 
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Property Value 
Density (g/cm3) 8.8 

Thermal conductivity (W/moK) 50.0 

Coefficient of linear thermal expansion (m/mfC) 18.4x10" 

Elastic modulus (bulk) (GPa) -
Elastic modulus (rigidity) (GPa) 50.0 

Elastic modulus (Young's) (GPa) 120 

Elongation at break (%) 70 

Ultimate tensile strength (MPa) 455 - 1014 

Yield tensile strength (MPa) 193 
Poisson's ratio -
Annealing temperature (OC) 675.0 

Hardness (HRb) 55 

Table 5 - 20 Material data for 90 Cu, 10 Sn phosphor bronze (MatWeb, 2004, Efunda, 2005, 

Goodfellow, 2005) 

Property Value 
Density (g/cm3) 7.5 
Thermal conductivity (W/moK) 23 @ 100°C, 28 @ 200°C 

Coefficient of linear thermal expansion (m/mfC) 14.66 x 10" 

Elastic modulus (Young's) (GPa) 413 

Elongation at break (%) 90 

Ultimate tensile strength (MPa) 580 
Yield strength (MPa) 413 

Heat capacity (specific heat) (J/g0C) 339 - 418 @ 100-150°C 
Annealing temperature (OC) -
Melting point (OC) -
Hardness (HRb) 99 - 103.5 

Table 5 - 21 Material properties of RapidSteel'" 2.0 (DTM corporation, 1999) 

5.4.3 EOS GmbH DirectSteel 20llm 

DirectSteel 20llm was a new material developed by EOS GmbH superseding DirectSteel 50llm 

at the commencement of this work, enabling 20 micron layers to be sintered. EOS GmbH also 

supply DirectMetal 20llm material (bronze based material containing nickel), however, the main 

limitation is its maximum operating temperature of 400°C. EOS DirectSteel 20llm was selected 

as its maximum operating temperature is 8000e and has superior material properties over 

DirectMetal 20llm (Table 5 - 22). The previous materials have been compared using their 

bonding material. EOS DirectSteel however, is an alloy and is not infiltrated. However, when 

comparing the material properties it does have the lowest thermal conductivity of all the 

materials. In comparison to Metalcopy it has higher tensile strength and good yield strength but 

not as high as nickel (Amdry 790). When compared to phosphor bronze it has a lower tensile 

strength but higher yield strength. The material also has the lowest coefficient of linear thermal 

expansion in comparison to the other materials. These factors made it a suitable candidate 

material. EOS DirectSteel H20, however, is now available (Quarter 1, 2004 EOS GmbH, 2005), 
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which has much improved material properties and would have been the material of choice had it 

been available at the time. 

Property 
DirectMetal DirectSteel DirectSteel 

20llm 20llm H2O 

Density (g/cm') 6.3 - 7.6 6.3 - 7.6 7 -7.B 

Thermal conductivity (W/moK) 30 13@ 50°C 15 - 1B 

Coefficient of linear thermal expansion (m/mfC) 1Bx 10-6 9 x 10-6@ 50°C 13 - 15x10-6 

Elastic modulus (bulk) (GPa) - - -
Elastic modulus (rigidity) (GPa) - - -
Elastic modulus (Young's) (GPa) BO 130 1BO 

Elongation at break (%) -
Ultimate tensile strength (M Pa) 400 600 1100 

Yield strength (MPa) 200 400 BOO 

Poisson's ratio - - -
Annealing temperature (0C) - - -
Max operating temperature (0C) 400 BOO 1100 

Hardness (HRb) 65 94 42 

Table 5 - 22 Material properties of EOS GmbH materials (supplied by EOS GmbH) 

EOS DirectSteel 20llm contains steel (alloy not divulged) alloyed with nickel. An EDS analysis 

was unable to determine a grade of steel as carbon cannot be detected. Using this technique, 

however, it is clear it was a plain carbon steel as it did not contain carbide forming elements and 

it was not a stainless steel as no chromium was evident. The material was an alloy of plain 

carbon steel, nickel and copper (Table 5 - 23). 

Composition % Wt. 

Fe Ni Cu P 

EOS DirectSteel 20llm EDS Bal. 26.3 9.3 1.3 

Table 5 - 23 EDS analysis of EOS GmbH DirectSteel 20llm 

5.5 Density of the Test Materials 

The aim was to determine the density of each material, bonding material and powder. 

5.5.1 Methodology 

The density of a material is calculated by dividing its weight by its volume. 

Weight I Volume = Density (g/cm') Equation 5 - 1 

However, to determine the volume of specimen accurately it was necessary to weigh the 

specimens in air and in a beaker of water (300ml) and subtract one result from the other. 
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Archimedes principle states that the: 

Weight of an object in air (g) - Weight of the same of the same object in water (g) = Weight of 

the water that the object displaces (g) Equation 5 - 2 

As 19 of water occupies 1cm3 at 25°C (Oberg et.al. , 1996) the volume of the object can be 

determined, hence: 

Weight of an object in air (g) - Weight of the same of the same object in water (g) = Volume of 

that object (cm') Equation 5 - 3 

The water temperature was maintained at a constant 25.5°C throughout the test. The Stanton 

Unimatic, Model C.L.1 (Figure 5 - 2) scales were calibrated using several standard weights. Five 

specimens of each material were tested with the exception of Amdry 790 because insufficient 

braze material was available to manufacture five specimens. 

Figure 5 - 2 Stanton Unlmatic model C.L.1 

The densities of all the specimens are shown in Appendix i, Figure 1, and the average densities 

for each material, bonding material and powder are shown in Figure 5 - 3. 
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5.5.2 Results 
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Figure 5 - 3 Average material density 

5.5.3 Review of Results 

The density of H13 was determined, from the experiments, to be 7.77g/cm 3
, which compared 

well with the standard value of 7.8g /cm3 (MatWeb, 2004) - a difference of approximately 0.4%. 

Metalcopy Janalloy was determined to have a density of 7.19g/cm3 and a bonding material 

density of 9.35g/cm3 (reference value of silver density is 10.49g/cm3 MatWeb, 2004). The 

Metalcopy Janalloy specimens increased in weight suggesting that they were porous and would 

explain the reason for the variation in the density results (Appendix i, Figure 1); this may affect 

thermal fatigue of the material as any void acts as a stress raiser from which a crack can initiate. 

In turn, porosity can also affect thermal conductivity as the void or voids act as an insulator (s). 

Metalcopy 5507 had a density of 8.05g/cm3 and a bonding material density of 9.27g/cm3
. 

Janalloy and Metalcopy 5507 should have identical had densities. The bonding material 

densities were similar differing by approximately 0.85%, however; their overall densities had a 

difference of approximately 10.7%. The likely cause of the difference was the porosity in the 

Metalcopy Janalloy. 

Metalcopy Cu had a density of 7 .73g/cm3 and a bonding material density of 8.88g/cm3
. The 

density value for Cu is 8.96g/cm3 (MatWeb, 2004), approximately 0.9% difference. 

Both laminate specimens had similar densities 7. 3g/cm3 and 7.7g/cm3 with the nickel braze 

having a density of 7.99g/cm 3 (density of pure nickel is 8.88g/cm 3
, MatWeb, 2004). 

The horizontal and vertical RapidSteel™ 2.0 specimens also had similar densities of 7.8g/c m3 

(DTM corporation, 1999, value 7. 5g/cm\ Although the density of the bonding material was not 
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tested it was infiltrated with phosphor bronze 90% Cu 10% Sn, which has a density of 8.78g/cm3 

(MatWeb, 2004). 

The EOS DirectSteel 20~m and 50~m material is an alloy of Fe, Ni and Cu and had a density of 

7.91g/cm3 and 7.49g/cm3 respectively (EOS (2005) value for DirectSteel 20~m 6.3g/cm3 
-

7.6g/cm\ 

5.6 Thermal Conductivity Experiment 

A series of experiments were required to test the thermal conductivity of the materials. 

5.6.1 

5.6.1.1 

Methodology 

Test Apparatus 

The thermal conductivity test used was the guarded axial flow method manufactured by 

Cussons Technology. The test was chosen because it is a long established test method and 

produces the highest accuracy (Anter Corporation, 2005), (ASTM C 177 - 04, DIN 52612 or BS 

874 - 2.1 and 3.1 test method). This steady state technique involves placing a solid specimen of 

fixed dimension between two temperature controlled plates. One plate is heated while the other 

plate is cooled, and their temperatures are monitored until they are constant. The steady state 

temperatures, the thickness of the specimen and the heat input are used to calculate the 

thermal conductivity (Figure 5 - 4). 

Specimen 

Figure 5 - 4 Guarded hot plate assembly 

A steady state condition has to be achieved with this method of measurement. The test also 

requires the following to be recorded: 

• The unidirectional heat flux in the metered region 

• Temperatures of the hot and cold surfaces 

• The dimensions of the specimens 
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The Cussons thermal conductivity apparatus Model P5687 (Figure 5 - 5) consists of a self 

clamping specimen stack assembly with an electric heat source in the dewar vessel (vacuum 

flask) (Figure 5 - 6), calorimeter base, dewar vessel enclosure (to ensure negligible loss of 

heat), and a constant water supply. Two mercury glass thermometers are provided to allow 

water inlet and outlet temperature readings. Four calibrated nickel chromium I nickel aluminium 

(type K) thermocouples were fitted and connected to a suitable potentiometer instrument to give 

accurate metal temperature readings. 

Figure 5 - 5 Cussons thermal conductivity apparatus model P5687 

Figure 5 - 6 Self clamping specimen stack inside the dewar vessel 

5.6.1.2 Specimen Preparation 

A range of specimen lengths should be available depending upon the thermal conductivity of 

the material, for example when testing copper or aluminium (materials with high thermal 

conductivity) , the specimen length needs to be longer in order to attain a noticeable temperature 

drop over the specimen length. Figure 5 - 7 shows three specimen sizes to suit the Cussons 

thermal conductivity apparatus. Specimen A and B need to be tested together so their overall 

length is sufficient (1 02mm) to test in the apparatus. The maximum specimen size is 025 with a 
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length of 102mm which is dictated by the Cussons thermal conductivity apparatus model 

P5687. Using two specimens is preferred as a reference specimen can be used to validate the 

test. 

All the specimens in this experiment were machined to the dimensions shown in Figure 5 - 7 A 

because of the limited quantity of material available. The exception was the 99.9% pure iron 

which was used as the reference specimen for the thermal conductivity test as it was a pure 

material with a known thermal conductivity over a temperature range. The 99.9% pure iron was 

machined to the dimensions shown in Figure 5 - 7 B and used in every test. 

The specimens were turned and the ends ground to an average surface roughness of 1IJm (Ra) 

to ensure good surface contact and accurate specimen length (38mm +/- 0.01 mm). Two 02mm 

holes were drilled to the centre of the specimens with hole centres of 25mm +/- 0.01 mm. 

A 6'> 

~/ 
2!i mm dia 

B 

25 mm dia 

c 

18mmdia 

rc'''' 
Cl I Stain1ess Steel. Copper &. Mild 

Steel spec:imeDs 38 mm long 

';? 
'0 mm'S--"/T--(; Copper &. Aluminium 

b specimens 64 mm long 

'" 
luminium 

specimen 102 mm Iona 

Thmnocou:ple bole position 

Figure 5 - 7 Specimen geometries 

Five specimens of each of the following materials were chosen to ensure reproducibility: 

• H13 tool steel (steel from Taylor Special Steels, cast number R0128) 

• Metalcopy 5507 (Wiba / Prototal) 

• Metalcopy 5507 bonding material (Wiba / Prototal) 

• Metalcopy Janalloy (Wiba / Prototal) 

• Metalcopy Janalloy bonding material (Wiba / Prototal) 

• Metalcopy Cu (Wiba / Prototal) 

• Metalcopy Cu bonding material (Wiba / Prototal) 
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• Vertical laminate braze bonded H13 tool steel (1mm thick H13 sheet 0.15mm braze 

thickness). Details of brazing process is discussed in Appendix iii. section iii.v (steel from 

Bohler Special Steels. braze supplied by Sulzer Metco) 

• Horizontal laminate braze bonded H13 tool steel (Details of process and thickness of 

sheet and braze is discussed in Appendix iii. (steel from Bohler Special Steels. braze 

supplied by Sulzer Metco) 

• Amdry 790 (laminate braze supplied by Sulzer Metco) 

• Vertically built RapidSteel™ 2.0 (built by DTM Corporation) 

• Horizontally built RapidSteel™ 2.0 (built by DTM Corporation) 

• Vertically built EOS DirectSteel 50~m (built by EOS GmbH) 

• Horizontally built EOS DirectSteel 50~m (built by EOS GmbH) 

• Vertically built EOS DirectSteel 20~m (built by EOS GmbH) 

• Horizontally built EOS DirectSteel 20~m (built by EOS GmbH) 

5.6.1.3 Test Procedure 

One test specimen was placed in the apparatus with one 99.9% iron reference specimen to 

ensure consistency between each test. The 99.9% iron reference specimen was placed in the 

lower position of the stack with Electrolube heat transfer compound (HTC10S). (supplied by RS 

Components). applied to the mating surfaces to ensure good contact. The clamp mechanism 

was applied and the thermocouple tips coated with Electrolube then inserted into the specimens 

and the dewar vessel replaced. 

The water supply was turned on and adjusted to give a small regular flow of 0.5cc/sec -

1 cc/sec. During the experiment adjustment of the flow was required to prevent the difference in 

temperature between the thermometers from exceeding 10°C in order to prevent excessive 

cooling. 

The heat delivered to the specimen was controlled so that thermocouple 4 (T.) was stable. at 

approximately 200°C. It was maintained at this temperature so the other thermocouples (T,. T2• 

and T3) could stabilise at their independent temperatures. 

During the test the following were recorded every 2 minutes for the duration of the test. 

= 

= 

= 

Temperature of water in (oC) 

Temperature of water out (oC) 

Thermocouple temperatures (0C) 

The test was run for a minimum of 600 seconds and upon completion the following were 

recorded: 

M = Mass of water (kg or ml) 
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s = 

Amp = 

5.6.2 Results 

Test duration (seconds) 

Amperage (amps) 

The conductivity of each specimen was determined using the Fourier equation: 

KA(t. T)/L = mS(T out-Tin) 

Therefore K = L(mS(Tout-Tln»/A(t.T) 

Where: 

K = Conductivity of the specimen (W/mok) 

L = Distance between thermocouples (m) 

M = Mass of water (kg or ml) 

s = Test duration (seconds) 

m = Mass flow of cooling water (M/s) 

S = Specific heat of water (J/kgOC) 

Tout = Temperature of water out (oC) 

Tin = Temperature of water in (0C) 

A = Cross sectional area of the specimen (m2
) 

t.T = Temperature change over length (oC) 

Equation 5 - 4 

Equation 5 - 5 

The first specimens to be tested were the 99.9% pure iron reference specimens and the H13 

specimens. Pure iron thermal conductivity varies with temperature from 69W/moK at 125°C to 

61.3W/moK at 225°C (Efunda. 2005). 

Both specimens were tested in the top position in the apparatus and at ,,200°C. Table 5 - 24 

and Table 5 - 25 shows the results. The thermal conductivity of the 99.9% iron reference 

specimen is comparable to thermal conductivity data found in literature (Efunda, 2005). 

Specimen Test temperature (oC) Thermal conductivity (W/moK) 

Iron 99.9% pure 1 201.70 63.38 

Iron 99.9% pure 2 204.40 64.35 

Iron 99.9% pure 3 205.60 60.92 

Iron 99.9% pure 4 208.77 61.89 

Iron 99.9% pure 5 209.32 61.99 

Average 205.96 62.51 

Table 5 - 24 Thermal conductivity of 99.9% pure iron 
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Specimen Test temperature (oC) Thermal conductivity (W/moK) 

H131 211 .72 25.88 

H132 200.58 26.53 

H133 200.65 25.42 

H134 202.52 25.79 

H135 203.00 25.48 
Average 203.7 25.82 

Table 5 - 25 Thermal conductivity of H13 tool steel 

Appendix i, Table 1 to Appendix i, Table 16 show the values obtained during the tests and the 

calculations used to derive the thermal conductivity of the materials. 

Figure 5 - 8 shows the average thermal conductivity for each specimen. 
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Figure 5 - 8 Thermal conductivity average results 

5.6.3 Review of Results 
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The reference specimen of 99.9% pure iron had an average thermal conductivity of 

62.51W/moK at 205.96°C. This is a difference of only 0.24W/moK (0.4%) from the value found 

by Efunda (2005). The results with iron showed the thermal conductivity apparatus was 

accurate and gave confidence in the test and results of the other materials. 

Metalcopy 5507 and Metalcopy Janalloy were manufactured by the same process as discussed 

in section 4.2.2 but the silver bonding alloy (chemical composition) was different (section 5.3.1 

and section 5.3.2). Metalcopy 5507 bonding material was manufactured by a supplier whilst 

Metalcopy Janalloy bonding material was made by Prototal AB. As expected the thermal 

conductivities of the infiltrated materials were similar 27.2W/moK and 24.6W/moK respectively, a 

difference of approximately 2.6W/moK or approximately 10%. The thermal conductivity of their 

bonding material was also similar to one another 62.7W/moK and 65.2W/moK respectively, a 
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difference of 2.5W/moK or approximately 4%. The variation between the results may have been 

due to the slight differences in the chemical make up of the specimen and the formation of 

inclusions and porosity during manufacture. The experiment also showed that the bonding 

material (Metalcopy 5507 = 62.66W/moK and Metalcopy Janalloy = 65.15W/moK) and the 

powder material (316 Stainless Steel = 16.3W/moK) had dissimilar thermal conductivities (Figure 

5 - 8), which was likely to be detrimental to their thermal fatigue performance. 

Metalcopy Cu had a thermal conductivity of 32.2W/moK and was supposed to be infiltrated with 

copper but the infiltrant material only had a thermal conductivity of 230.5W/moK whereas pure 

copper, (99.9%) has a thermal conductivity, of 401W/moK (Hypertextbook, 2003). However, 

from EDS chemical analysis the bonding material was shown not to be pure copper and the 

method of manufacture may have caused inclusions and porosity. Metalcopy Cu had the largest 

difference between powder (316 stainless steel = 16.3W/moK) and bonding material 

(230.54W/moK) thermal conductivity, of all the materials tested. 

The laminated steel, RapidSteel 2.0 selective laser sintering and EOS DirectSteel 20llm direct 

laser sintering materials were built in two orientations to determine whether or not the build 

direction affected their thermal conductivities (vertical and horizontal). 

The Vertical laminate steel specimens brazed with Amdry 790 gave similar results to those of 

the Horizontal laminate steel specimens brazed with Amdry 790, 21.6W/moK and 20.6W/moK 

respectively. The braze (Amdry 790) had a thermal conductivity of 25.8W/moK, which is 

surprising as it contains over 90% Ni (confirmed by EDS, chapter 5, section 5.4.1), which has a 

thermal conductivity value of 90.7W/moK (Environmetal Chemistry, 2005, Goodfellow, 2005). It 

was shown later that the specimens contained voids that were most probably formed when the 

braze powder was melted. The brazing process can cause gas entrapment. During brazing, flux 

can also be trapped causing voids or porosity in the specimen. 

Build orientation did not have a major affect on the thermal conductivities of RapidSteel 2.0. The 

vertically built RapidSteel 2.0 had a thermal conductivity of 31. 7W/moK and the horizontally built 

RapidSteel 2.0 had a thermal conductivity of 34.3W/moK (Figure 5 - 8), a difference of 

2.6W/moK or approximately 7.5%. There is a discrepancy between the thermal conductivity 

recorded in the test and DTM Corporation, 1999 literature, which states RapidSteel 2.0 has a 

thermal conductivity of 28W/m°K. The difference may be due to inconsistent infiltration. 

Although the bonding material was not tested due to availability, it is phosphor bronze (90% Cu, 

10% Sn) (DTM Corporation, 1999) with a thermal conductivity of 50W/moK (Hypertextbook, 

2003). As with the Metalcopy materials there was a large difference between thermal 

conductivities of the powder and bonding materials. 

The EOS DirectMetal materials were built in two orientations, vertically and horizontally. Two 

different layer thicknesses (50llm and 20llm) were also tested. The EOS DirectMetal materials 

had the lowest thermal conductivities (average 14.08W/moK) with values between 13.4W/moK -
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14.5W/mOK. In turn the values were very similar to the literature values for EOS of 13W/moK 

(EOS, 2005). 

The difference in thermal conductivity between bonding and powder material, of many of the 

materials, may affect thermal fatigue resistance because of induced internal stresses. (Weroriski 

and Hejwoski, 1991). 
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Chapter 6: Establishing the Thermal Fatigue System (Parameters, 

Equipment and Specimens) 

At the time of this research information on the temperature cycle within the aluminium pressure 

die casting tool during casting was sparse. It was, therefore, necessary to conduct experiments 

to determine this. 

Tests were carried out to establish the temperature at the surface of a die. It was necessary to 

calibrate thermocouples and the temperature paints to verify the thermocouple readings 

(Appendix ii). 

6.1 Tool Temperature Recording 

6.1.1 Aim 

To assess the performance of tool materials for thermal cycling applications such as aluminium 

pressure die-casting it was necessary to determine the thermal cycle of the process in order to 

conduct an accurate and comparative thermal fatigue experiment. A series of tests was 

conducted to establish the temperature profile of an aluminium pressure die-casting tool 

surface, under production conditions. The results were then used to determine the temperatures 

and cycle time for the thermal fatigue experiment. 

6.1.2 Methodology 

Obtaining a temperature profile was not a simple process because of the high pressures and 

speed of solidification in the pressure die casting process. The main problem was locating and 

securing the thermocouples in position on the surface of the die. They had to be located and 

secured, such that they resisted being pushed back into the bolster during injection, to prevent 

the aluminium escaping the cavity. 

6.1.3 Mould Design 

A typical industrial aluminium pressure die casting tool was required that could be modified to 

accommodate thermocouples. The tool needed to be manufactured from H 13 tool steel 

(standard die material) to ensure the thermal characteristics of the tool were accurate. 

A typical production H13 multi cavity (four) aluminium die cast tool was chosen. This was a tool 

for a clutch housing. The tool consisted of 5 inserts three on the moving half (Figure 6 - 1 (A)) 

and two on the fixed half; this arrangement made tool modification easier since they could easily 

be removed from the bolster and if damaged, replaced. The casting had a shot weight of 250g 

with runner and biscuit and all four components (Figure 6 - 1 (B)), and an individual component 

weighed 14g (Figure 6 - 2). 

85 Chapter Six 



Figure 6 - 1 (A) Moving half of the tool; (8) Clutch housing casting (Supplied by Dyson 

and Kemlows) 

30 111111 

Figure 6 - 2 CAD image of 'Dyson' clutch housing 

6.1.4 Cast Alloy 

The casting alloy used was AI-Si8-Cu3 or LM24 (BS. 1490 I ASTM, B85-03). The alloy is 

commonly used for pressure die casting because its material properties are well suited for the 

process (Table 6 - 1). 

Property Value 

0.2% Proof stress 150 N/mm2 

Tensile strength 180 N/mm2 

Elongation 1 - 3% 
Impact resistance Charpy 3.4 Nm 

Brinell hardness 85 

Expansion coefficient 2.3 x1 0.5 N/mm2 

Shear strength 195 N/mm2 

Table 6 - 1 LM24 die-cast properties 

Aluminium is prone to hydrogen absorption when molten, which can cause porous castings; this 

was resolved by modifying the alloy in the furnace by degassing. The aluminium was degassed 

by bubbling nitrogen through the molten alloy. The alloy also required f1uxing (Foseco, Coverall 

11); this separated the dross from the molten aluminium so that is rose to the surface creating a 

protective layer that hydrogen could not penetrate. The dross was only removed at the 
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beginning of the casting process. A sample of molten aluminium was taken in order to test the 

gas level using a hydrogen gas analyser, it was found to contain 0.15 - 0.25 cc of gas I 500g, 

which was within typical casting limits. 

6.1.5 Die Casting Machine Parameters 

The machine used had to be large enough to accommodate the size of the die and the shot 

weight. A Frech DAK 125 SDV cold chamber machine was used (Figure 6 - 3) . 

Figure 6 - 3 Frech OAK 125 SDV 

The machine was set up to the values required when the die was in production. The parameters 

were provided by Kemlows Die Casting Products and are shown in Table 6 - 2 with the casting 

cycle shown in Figure 6 - 4. For consistency of die cooling, the automated die lubricator on the 

machine was utilised. The die lubricant (release agent) was Acheson DeltaCast 333 release 3, 

at", 20·C - 25·C; this was sprayed onto the die surface immediately prior to each shot, through 

six nozzles for three seconds. 

As in production, the die was initially heated to approximately 150·C with a gas lance and 50 

shots ran through to heat the die to the operating temperature. 
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6.1.6 

6.1.6.1 

Parameter Value 

Machine type Frech OAK 125 SOV 

Max piston velocity (1 11 Phase) 0.15 m/s 
Max piston velocity (2nd Phase) 0.8 m/s 

Start 2nd phase 140mm 

Start 3'" Phase 270mm 

Maximum shot chamber length 315mm 

Maximum die closing force 125 tonne 

Alloy LM24 

Pouring temperature 750·C 

Initial temperature of die 180·C 

Die coating material OeltaCast 333 R3 

Total cycle time 20- 24 seconds 

Piston size I2l 50mm 

In gate velocity 2.48 m/s 
Shot weight 250g 

System pressure 105 bar 

Table 6 - 2 Casting parameters 

cycle •• c 3 •• c 
1sec 

Figure 6 - 4 Casting machine process cycle 

Tool Temperature Experiment One 

Methodology 

Measuring the surface temperature was difficult and several attempts and test adaptations were 

conducted. An initial attempt to determine the surface temperature of a die resulted in an 

aluminium blowout causing considerable loss of time because the die had to be disassembled 

cleaned, repaired and re-assembled (Figure 6 - 5). 

It was obvious from the first attempt that the thermocouples required relocation resulting in the 

machining of the bolster and the insert, to secure two calibrated mineral insulated k-type 

0.25mm diameter end ground thermocouples by means of a collet. The size of the 

thermocouples was important because the smaller the diameter of the wire the faster the 

reaction speed. A compromise had to be made, if the thermocouple was too small it would be 

destroyed, and if it was too big its response rate would be too slow. 
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Ejector plate----

AI...,inium blowout 

Ejectors ------

Thermocouples ----

Bolster -------

Figure 6 - 5 Aluminium blowout through thermocouple holes 

The thermocouple tips were positioned at the die surface to allow direct contact with the molten 

aluminium as it entered the die. The temperature sensitive paints were placed in the biscuit and 

runner system of the aluminium die cast tool as these areas are typically subjected to the most 

heat (Figure 6 - 6). However, it was found that as the aluminium was being forced down the 

runners it washed the paints away. The location of the paints was changed to the over flow 

region of the die, to solve this problem (Figure 6 - 6) . 

Figure 6 - 6 Location of the thermocouples and temperature paint on the moving half of 

the tool 

The thermocouples were connected via a compensating cable to a computer data logger 

controlled by National Instruments LabVIEWTM version 5.1 .1 software. It enabled several 

thermocouples to be connected at once. The data could also be loaded into Microsoft Excel. A 

screen dump of the software is shown in Figure 6 - 7. 
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Figure 6 - 7 Screen dump of LabVIEW data logging software 

6.1.6.2 Results 

Figure 6 - 8 shows the results obtained from this test. Unfortunately the thermocouple in the 

runner failed when the die was warmed up to 250·C as it was directly next to the gas lance. The 

thermocouple in the hottest area (biscuit) survived and the test continued showing the surface 

temperature of the die reaching 350·C and cooling to between 150·C - 200·C with a typical 

cycle time of 20 - 24 seconds (Figure 6 - 9). However, the paints suggested that the surface 

temperature was between 399·C and 454·C. 
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Figure 6 - 8 Graph showing tool surface temperature during casting (biscuit area) 
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Figure 6 - 9 Section of figure 6 - 8 showing tool surface temperature during casting 

(biscuit area) 

It was clear that reaction time of the thermocouples was too slow because of the large wire 

diameter and the insulation. Hence, the results obtained were not representative of the surface 

temperature in an aluminium pressure die-casting cycle because the thermocouples were not 

able to measure the temperature fast enough. 

6.1.7 

6.1 .7.1 

Tool Temperature Experiment Two 

Methodology 

To overcome the problem in the previous experiment several fibre glass insulated K type open 

ended thermocouples, with a wire diameter of 0.3mm, were adhered to the surface of the die. 

These thermocouples have a faster reaction time since they are open ended. There was, 

however, a question over their ability to survive the conditions long enough to enable a 

temperature reading to be obtained. 

An additional problem was that the die could not be preheated as before since the 

thermocouples were fixed to the surface of the die with masking tape. However, a few shots 

were ran through the die to increase the temperature prior to applying the thermocouples. 

6.1.7.2 Results 

The results showed that on occasion the die temperature reached over 450·C but was typically 

between 400·C and 450·C (Figure 6 - 10). The paints verified this. 
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Unfortunately the cooling profile could not be obtained using the small thermocouples as they 

failed upon opening the die. However, the cooling profile could be obtained from Figure 6 - 9. 

Cooling occurred over a longer period of time (,,20s) allowing the thermocouples to respond. 

This allowed the aluminium pressure die casting thermal cycle shown in Figure 6 - 11 to be 

determined. 
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Figure 6 - 11 Aluminium pressure die casting thermal cycle 
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6.2 Design of Thermal Fatigue Specimens and Apparatus 

It was considered to be inadvisable to use the Wallace dunk experimental procedure on rapid 

tooling materials because the procedure cools the specimen internally with pressurised water. 

Rapid tooling materials could contain flaws, voids I porosity etc. , which could allow the water to 

leak and make contact with the molten aluminium (Wallace's heating medium) leading to a 

violent reaction. Wallace's specimens are designed to crack from the small radius. 

At this point in time Persson's (2003, 2004), (Persson et.a!. , 2005) research had not been 

published. 

6.2.1 Specimen 

One of the advantages of the Wallace et.a!. , (1997), (Wallace et.a!., 2000) specimen was that it 

had a small radius, which acts as a stress concentrator from which cracks initiate and 

propagate. This allowed crack initiation and propagation to be measured and recorded. Glenny 

et.a!., 1959, however, used a disc shaped specimen with a small edge radius of 0.5mm. This is 

typically the smallest expected on a die. The specimen also had a change in cross section, 

which also occurs in dies, making it a suitable specimen geometry. The discs (Figure 6 - 12) 

were designed to initiate cracks at the edge radius (stress concentrator) and allow for ease of 

measurement. The specimen size was also relatively small (0 61 mm) resulting in less energy to 

heat the specimens. 

Figure 6 - 12 Disc design (dimensions in mm) 

Using the disc shape it was possible to test several specimens simultaneously (Figure 6 - 13) 

allowing more accurate validation of the results in the same time that it would take to test one 

specimen using Wallace's method. 
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Figure 6 - 13 Multiple specimen test arrangement 

6.2.2 Design of Thermal Fatigue Apparatus 

In order to conduct accurate material evaluation, a reliable experimental apparatus and 

reproducible procedure needed to be developed for testing the thermal fatigue resistance of 

materials. An experiment was required to simulate the thermal conditions experienced by tool 

materials under high-pressure aluminum die casting conditions. 

There are standard test procedures for fatigue testing but no standard test procedures were 

discovered for thermal fatigue at the commencement of this work. Hence, researchers (Glenny 

et.al. , 1959, Howes, 1973, Wall ace et.al. , 1997, Mowbray and McConnelee, 1976) developed 

and conducted their own experiments for specific applications. Glenny's thermal fatigue test 

employs long cycle times, one to four minutes heating and four minutes cooling. 

To conduct the thermal fatigue experiment a heating medium, a cooling medium and an 

automated transfer system were required. The transfer apparatus shown in Figure 6 - 14 was 

designed to be versatile allowing adjustments to be made in the positioning of the specimens. 

The basic design consisted of a steel frame with X and Z axis pneumatic actuators. An 

additional frame was fabricated connecting the Z piston to the specimen holder to prevent the 

heat being transfered and damaging the actuator and the electronics. 

94 Chapter Six 



II 

z 

Sample 
Hold« 

_Main 
Frame 

cooling-tank 

-

~~~_ sampl e = Frame 

-~ 

~ j 
'/ 

Furnace 

Figure 6 - 14 Thermal fatigue apparatus design 

The assembled thermal fatigue apparatus is shown in Figure 6 - 15 with a furnace and cooling 

tank beneath. 

Figure 6 - 15 Thermal fatigue apparatus X - Z 

6.3 Cooling Tank 

Since dies have internal water I oil cooling channels and die casters use a water based lubricate 

to act as a coolant and release agent on the surface of the die, water was used to cool the 

specimen in the thermal fatigue experiments. 
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The cooling medium tank was designed to have constant cooling. The temperature was 

controlled through a series of copper pipes circling the edge of the tank; this was connected to a 

chiller system. Over a one hour thermal cycling period the tank maintained a steady water 

temperature between ,,11°C - 14°C (Figure 6 - 16); this was tested using eight calibrated 

thermocouples placed in the water. 
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Figure 6 -16 Water temperature recording (1hr thermal cycling period) 

In order to obtain a constant level of water a float valve was positioned at the top of the water 

tank. A compressed air agitator was also installed in the tank to circulate the water around the 

cooling pipe array (Figure 6 - 17). 

Figure 6 - 17 Tank design; (A) Empty quench tank; (8) Quench tank with agitator on 
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6.4 Reproducing the Thermal Cycle 

6.4.1 Manufacture of H13 Specimens 

In order 10 reproduce the thermal fatigue cycle of a die casting tool it was necessary to 

manufacture preliminary specimens for the trials. H13 (H13 supplied by Bohler Special Steels) 

specimens were manufactured for this purpose as this material can withstand the thermal cycle 

and would have a similar thermal conductivity to that of the H13 used in a die (similar rate of 

heat absorption and heat loss). In addition, it was necessary to test the specimens as their 

mass would affect the power required to achieve the temperature profile. 

The H13 specimens were rough machined (1mm oversize), heat treated and finally CNC 

machined to size to ensure that the specimens were geometrically comparable. 

6.4.2 H13 Heat Treatment 

Heat treatment was conducted as discussed in chapter 2, section 2.3 but this is not a precise 

process and trials were necessary to determine a procedure to achieve the required hardness. 

Three additional specimens were made for this purpose and all the heat treatment work was 

conducted in a Carbolite furnace model: FFHT 1.1400 Prog, with an argon atmosphere (flow of 

20 litres I minute) to prevent oxidisation and to reduce de-carburising. For all the tests the 

furnace was initially heated to 750°C, with the argon flowing, prior to inserting the specimen into 

the furnace. Appendix ii Table 8 and Appendix ii Table 9 show the trial methods of hardening 

and tempering with the final method shown in Appendix ii Table 10. 

Appendix ii Table 11 shows the hardness values obtained from the heat treatment methods. 

The hardness test was conducted using a Rockwell testing machine (Avery 6402). The heat 

treatment profile used for trial three was used for all the H13 thermal fatigue specimens as it 

achieved the desired hardness of between 43HRc and 45HRc. 

6.4.3 Thermal Cycle Methodology 

These tests were designed to determine the most suitable method of heating and cooling. 

Three fibre glass insulated K type open ended thermocouples, with a wire diameter of 0.3mm 

were positioned at the edge of one specimen (Figure 6 - 18) in the cooling tank and in the 

furnace, each was calibrated and the data recorded as previously discussed. 
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Figure 6 - 18 Thermocouple location in specimen 

The furnace used for the tests was capable of operating between 20·C to 1200·C. The furnace 

was a laserform oven manufactured by DTM, now 3D systems. The furnace consisted of three 

sets of independently controlled elements, each with its own temperature feed back circuit. The 

furnace elements were controlled by a Eurotherm controller and by rheostats to power up or 

down depending upon whether heat was being lost or the correct temperature was obtained. 

Tests conducted with a calibrated thermocouple on the empty furnace showed that it could 

maintain temperature to within +/- 10·C. This was also verified on the furnace control display. 

The only alteration to the furnace was the manufacture of a furnace lid with a hole in the centre, 

to enable the specimens to be repeatedly placed in and out. Foundry cement, otherwise known 

as refractory, was used (Kerlite, Lafarge Refactories, supplied by Monolithics). 

6.4.4 Thermal Profile when Heating Specimens in a Fluidised Bed 

A fluidised bed was created, and positioned at the bottom of the furnace; this was connected to 

compressed air supplied through the hole at the base of the furnace and the flow controlled 

using a flow gauge. F0885 aluminium oxide sand with a maximum operating temperature of 

900·C (supplied by Techne Ltd.) was then poured into the furnace and the air supply regulated 

to achieve a fluidised bed. 

A graphite sheath was supplied by Ramsell SMC and 27, 2mm holes were drilled into it to allow 

the air to flow, which fluidised the bed of sand (Figure 6 - 19); this air distributor was used in all 

the experiments. 
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Figure 6 - 19 Graphite air distributor design 

6.4.4.1 Results 

After a series of preliminary tests it was found to be necessary to set the furnace at 1000·C in 

order to maintain the specimen edge radius temperature of SOO·C - SSO·C with the cycle time 

set to 30 seconds and the water temperature set and maintained below 20·C. 

The method of heating was not ideal because at the start of each test the specimen edge radius 

heated to approximately 1000·C. This edge radius temperature eventually reduced and a stable 

profile attained at ",S7S·C, after 3600 seconds or 120 cycles (Figure 6 - 20). The problem arose 

because the furnace was unable to maintain temperature once the cold compressed air was 

passed through the sand and in turn , the specimens were removing heat from the furnace on 

every cycle resulting in the system stabilising after one hour. An additional problem occurred 

over a period of time, when small quantities of the fluidised sand became airborne and were 

deposited on the thermal fatigue transfer apparatus causing severe wear over time and 

resulting in the replacement of the X axis cylinder. 
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Figure 6 - 20 Fluidised bed temperature 

The method created a heating cycle, which raised and lowered the specimen surface 

temperature from ",SO·C to ",SSO· C (Figure 6 - 21 ); the temperature, however, could be altered 

by changing the length of time the specimens were placed in the furnace. 
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Figure 6 - 21 Fluidised bed temperature profile 

The method was not representative because of the number of cycles (",120 cycles in 3600 

seconds) required to achieve a stable temperature profile. In addition, the specimens needed to 

be subjected to the same thermal cycle from the beginning of the test and not subjected to the 

elevated temperatures prior to stabilisation. 

In an attempt to reduce the temperature loss in the fluidised bed the input air was pre-heated by 

placing a two layered rectangular network of 022mm stainless steel pipes in a Gallenkamp 

muffle furnace (20 - 1000·C). The furnace was set at 900·C and a calibrated thermocouple 

recorded the air input temperature for the fluidised bed to be ~OO·C. 

The laserform oven temperature was reduced to 900·C and the water temperature remained 

below 20·C. 

It was clear that heating the air was beneficial since the furnace temperature could be reduced 

and a higher maximum temperature of the thermal cycle ",750·C could be maintained (Figure 6-

22). 
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It did however; take approximately 4,000 seconds, or 133 cycles, for the temperature to drop 

from 850·C to the steady temperature of 750·C Figure 6 - 23. Again the time to reach a steady 

state was not acceptable since the specimens would experience different thermal cycles at the 

initiation of each thermal fatigue test. 
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Figure 6 - 23 Fluidised bed with heated air temperature profile 

Comparing the two fluidised bed methods showed that by heating the air and reducing the 

furnace temperature from 1000·C - 900·C, it was possible to maintain a hotter furnace 

temperature of 750·C rather than 600·C. However, both beds took a similar time, 4,000 

seconds, to achieve a steady temperature state making them unsuitable as a means of heating 

the specimens. The time to heat the specimens to 500· C - 550·C was 6 - 7 seconds, and to 

achieve 700·C required 15 seconds. A further concern of the heated air and flu idised beds was 

reliability of the air distributor and loss of sand over a period of time, making it an unsuitable 

method for the test work. 
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6.4.5 

6.4.5.1 

Thennal Profile when Heating Specimens in Aluminium 

Methodology 

The experiment was conducted in an attempt to obtain a stable temperature profile. A 70kg 

capacity crucible was placed in the furnace and filled with LM24 aluminium. The furnace was 

set at 750°C and the cooling medium temperature was between ",11°C -15°C . 

A problem occurred during the process as the aluminium adhered to the specimens over time 

(Figure 6 - 24) and interfered with heat transfer to the specimens; the aluminium could cause 

chemical attack introducing additional thermal fatigue factors (see chapter 3). 

Figure 6 - 24 Aluminium build up after one cycle 

6.4.5.2 Results 

The process maintained a stable temperature ",720°C from the beginning of the test +/- 10°C 

(Figure 6 - 25) with the surface of the specimens being subjected to ",715°C (Figure 6 - 26). The 

heating temperature, however, could not be lowered since the aluminium had to remain molten 

and hence, the thermal shock could not be reduced. 

From the in die temperature experiments it was clear that the tool surface did not reach 600°C -

700°C so the aluminium furnace trial was unrepresentative. 
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Figure 6 - 25 Aluminium thermal fatigue temperature 
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Figure 6 - 26 Aluminium temperature profile 

6.4.5.3 Conclusion 

The specimen surface was healed too quickly to over 600°C in 2 seconds, which was not 

representative as the in die surface test showed that it took approximately 2 seconds to reach 

only 400°C - 450°C. The maximum surface temperature obtained (over 700°C) was also too 

severe. In addition, using molten metals was not desirable because of the problem of 

solidification of the metal onto the specimens, which would affect the heat transfer and thermal 

profile. 
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6.4.6 

6.4.6.1 

Thermal Profile when Heating Specimens in Air in the Furnace 

Methodology 

The furnace was initially set at 900°C and the water was cooled to 20°C - 25°C; this ensured a 

constant thermal cycle with a maximum temperature of ,,425°C and a 30 second cycle time 

(Figure 6 - 27). 
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Figure 6 - 27 Furnace experiment one temperature profile 

Results 

Comparing the thermal cycle obtained (Figure 6 - 28 A) to the thermal profile from the die 

experiments (Figure 6 - 28 8), it is clear that the thermal cycles were not the same. The furnace 

heated the specimen to 425°C over a 10 second period and maintained it at 425°C for 15 

seconds and cooling approximately 5 seconds. giving a total cycle time of 30 seconds. The 

surface of a die was heated to 425°C over a 5 second period with cooling occurred over 20 

seconds, giving a total cycle time of 25 seconds. 
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Figure 6 - 28 (A) Furnace temperature profile; (8) Temperature profile from die 
experiments 

B 

The temperature rates were not representative and the cycle time was too long. Changes to the 

cycle time and temperatures were required. 
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The cycle time was reduced to approximately 20 seconds and the furnace temperature rose to 

1000°C. This achieved a temperature of 450°C - 480°C (Figure 6 - 29). 
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Figure 6 - 29 Maximum temperature 

The specimens were heated in the furnace for 8 seconds, then removed from the furnace and 

transferred to the cooling medium within 5 seconds, immersed in water for 1 second, which was 

then followed by a 5 second transfer back to the furnace. The cycle achieved is shown in Figure 

6 - 30 and a single cycle in Figure 6 - 31 A. It is clear that the thermal cycle was not comparable 

to the thermal cycle recorded in the die Figure 6 - 31 B. The thermal cycle took a minimum of 8 

seconds to reach 400°C - 450°C. 

500 

450 

400 

350 

et :: 
200 

I" 

150 

100 

50 

o 

.. 1\ 1\ " f', 
j, JI j ~ J A 

I f f I 

I 

J 7 I J I J 
7 J J J J J 

V V V V III 11' 

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9.5 100 105 110 115 120 

nme(s) 

Figure 6 - 30 Furnace experiment two temperature profile 
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Figure 6 - 32 shows the temperature profile when reversed; it can be seen, when comparing this 

to the actual die surface temperature Figure 6 - 31 B, that the reverse profile is similar. 

However, heating puts the material in tension and is generally more destructive due to the 

separation of the fracture surface. Cooling causes compression and it is harder for cracks to 

propagate between the fracture surfaces (Andarifar, 2004) so the profile is not a completely 

accurate representation. 
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Figure 6 - 32 Furnace experiment two reversed temperature profile 

The test showed that the desired temperature was achievable (400°C - 450°C), however, the 

heating rate was slow in comparison to the in die temperature experiments, the cooling rate was 

also too harsh. This would probably lead to a higher number of thermal fatigue cycles to initiate 

cracking. 

6.4.7 Temperature Simulation Conclusion 

It was clear that using the available equipment that none of the methods tested were able to 

simulate the temperature of the die surface. 

The test apparatus was required to run non-stop for many hundred of thousands of cycles so it 

had to be durable. The fluidised bed and the aluminium heating methods both had problems 

with respect to their suitability as a means of heating the specimens. The fluidised bed 

experiments were not reliable due to loss of sand, aggressive wear on the pneumatic actuators 

and the time it took for the system to reach a stable temperature. The aluminium heating 

method was not chosen because the thermal cycle was too hot and aluminium adhered to the 

specimen surface affecting the thermal cycle. Both methods were investigated because 
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previous research of using these methods had been conducted by Wallace and Glenny but an 

alternative, improved, heating method was required. 

This led to the most controllable, reliable and consistent method being adopted to simulate a 

thermal cycle. Although not simulating the die casting surface temperature, the materials would 

be subjected to the same temperatures experienced in a die. H13 specimens would also act as 

a reference and be used for comparison to assess the suitability of a material as a die material. 

The furnace temperature simulation method in chapter 6, section 6.4.6 was the most 

controllable, reliable and consistent of all the methods tested. The profile in figure 6 - 37 was 

selected as it achieved the desired temperature. There were no problems cooling the , 
specimens in water (note no water continually flowed inside the specimens as in Wallace's test) 

in a quench tank as this only cooled the surface and any excess water evaporated prior to 

dipping into the furnace. 

6.5 Specimen Manufacture 

The test program was designed to use four specimens for thermal fatigue testing with one 

control specimen. The control specimens were manufactured and treated in the same manner 

as the thermal fatigue specimens. For each of the test materials, H13, Metalcopy 5507, 

Metalcopy Janalloy, Metalcopy Cu, Vertical laminate, Horizontal laminate, Amdry 790, Vertical 

RapidSteel 2.0, Horizontal RapidSteel 2.0, EOS DirectSteel 201Jm, five specimens were used -

making 50 specimens in total. 

Both the EOS DirectSteel 50IJm and the EOS DirectSteel 20IJm specimens were built. However, 

only the EOS DirectSteel 20IJm material was tested because the EOS DirectSteel 50IJm was 

cracked after building and was unusable. 

6.5.1 Vertical Laminate and Horizontal Laminate Specimen Manufacture 

The sheet used to manufacture the laminate samples was H13 with a specified thickness of 

1 mm +/- 0.11 mm. The sheets were laser cut to shape, 1 mm x 065mm for the horizontal profile; 

1 mm x 15mm x 65mm for the vertical profile. These were then linished to improve the flatness 

and roughness of the laminates. The laminates had an average flatness deviation of 0.04Bmm 

and an average roughness of 0.4BlJm Ra. The laminates were then cleaned in isopropanol 

alcohol followed by rinse and drying. One laminate was placed in the jig and dusted with braze 

powder (Amdry 790), another laminate was placed on top and the process repeated until the 

desired height of approximately BOmm was reached in the case of the vertical profile and 15mm 

for the horizontal profile; the jig lid was then closed. The lid had a dead weight and when closed 

it applied a uniform weight distribution on the laminate stack. The jig assemblies were placed in 

a furnace with an inert atmosphere of argon and the brazing conducted. After brazing the jig 

assemblies were removed and the brazed laminate stacks removed ready for final machining. 

Further information can be seen in Appendix iii. 
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6.5.2 Amdry 790 Specimen Manufacture 

Amdry 790 was the brazing material used to bond the laminate specimens (Appendix iii). 

Thermal fatigue specimens of this material were tested alone to assess fatigue resistance and 

to determine whether or not the braze performed well on its own i.e. to answer the question is 

the fatigue resistance dependent upon the braze or a structure? The Amdry 790 brazing powder 

was placed in a ceramic crucible with a diameter of 65mm and heated until molten and then 

allowed to cool. 

6.5.3 Final Machining 

The external radius of the thermal fatigue specimen was designed to act as a stress raiser. A 

die designer typically avoids radii of less than 0.5mm, to prevent stress concentration points. 

However, sometimes component design prevents this approach and small radii are used. The 

external radius on each specimen was 0.5mm ± 0.001. All the specimens were rough cut on a 

standard lathe using carbide cutters and then machined to size on a Cincinnati Milacron Hawk 

150 CNC lathe to the speCified tolerances shown in Figure 3 - 4 (8). 

One side of the specimen was machined and then the specimen was turned through 1800 and 

the other side machined. On the final cut on each side, the specimen was machined with a new 

carbide tool tip to ensure accurate tolerances and identical surface roughness. 

After machining, the specimens were measured by a shadowgraph (Isoma M 119G) and all 

were found to be within tolerance. 

6.5.4 Hardness 

Testing the specimens prior to thermal fatigue ensured each material set had similar hardness 

to each other. Each specimen was tested twice in different positions (Figure 6 - 33). Throughout 

the thermal fatigue testing programme specimens were hardness tested in the same manner to 

determine whether thermal fatigue was detrimental to the hardness of the material under test. 

• = Hardness Test 

Figure 6 - 33 Position of hardness measurements 

Figure 6 - 34 shows the results of the initial hardness tests. Table 6 - 3 shows that H13 had an 

average hardness of .,114HRb (.,44HRc), Metalcopy 5507 .,79.5HRb and Metalcopy Janalloy 
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had the lowest average hardness of ",57HRb. Metalcopy Janalloy specimen 5 had a higher 

hardness in comparison to the other specimens, further tests showed the specimen to contain 

hard areas; this may have been due to areas that were rich in 316 steel and so there was not a 

uniform mixture of 316 steel powder and silver based bonding material. Metalcopy Cu had an 

average hardness of 70.5HRb. The Vertical laminate, Horizontal laminate and H13 specimens 

had similar hardness to each other, 110HRb - 114HRb respectively. Amdry 790 had an average 

hardness of ",88.5HRc but specimen 3 was harder than the rest, it was later found to be as a 

result of its microstructure (a result of the manufacturing method, i.e. how it cooled, and position 

in the bar (edge or centre may have had different cooling rates and hence, crystal structure I 

mechanical properties)). The Amdry 790 braze powder was put into a crucible and melted but 

on solidification and cooling it was possible that the material did not cool homogeneously, i.e. 

the top may have cooled faster then the bulk of the specimen. 

Specimen Average Hardness (HRb) 
H13 114.0 

Metalcopy 5507 79.5 
Metalcopy Janalloy 57.1 

Metalcopy Cu 70.5 
Vertical laminate 110.2 

Horizontal laminate 113.4 
Amdry 790 88.5 

Vertical RapidSteel 2.0 84.4 
Horizontal RapidSteel 2.0 83.6 

EOS DirectSteel 20~m 87.7 

Table 6 - 3 Specimen hardness prior to thermal fatigue 

Both the vertical RapidSteel 2.0 and horizontal RapidSteel 2.0 had similar hardness of", 84HRb 

with EOS DirectSteel 20~m exhibiting an average hardness of ",88HRc. 
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Chapter 7: Thermal Fatigue Experiment 

7.1 Aim 

To provide an understanding of how, when and why cracks in direct and indirect tooling 

materials initiate and their preferred direction of propagation. 

7.2 Thermal Fatigue Test Methodology 

During the thermal fatigue test on a material it was necessary to conduct periodic examinations 

consisting of a hardness test and observations of the specimens for signs of thermal fatigue 

(Maillot et.al., 2005) (each specimen was always re-positioned on the apparatus in the same 

place and with the same orientation after the examinations). The test was repeated until 

sufficient thermal fatigue cracking was evident and recorded or if the specimen was 

overwhelmed with cracks making analysis difficult. The number of cycles was increased in 

increments. If there was no prior knowledge of when thermal fatigue would initiate a crack, then 

the initial increments were small and increased if no cracking occurred. i.e. 50, 100, 200, 300, 

400, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 

15,000, 20,000, 30,000, 40,000 cycles etc. 

After each set of cycles the specimens were wiped clean using Viakal (Proctor and Gamble) to 

remove mineral deposits (lime scale) and then optically inspected (Fissolo et.al., 1996). 

7.3 Optical Examination Methodology 

Optical examination of each specimen was conducted using a Nikon SMZ-2T Stereo Viewer. 

Any cracks were documented and their length measured, this process was repeated at each 

increment in the number of cycles to allow crack data to be obtained. 

When a crack was detected it was referenced with a marker pen so that it could be recorded on 

the crack log sheet. A JPEG picture was taken of any crack using a JVC Colour Video Camera 

TK-C1481BEG and Win-TV image capture computer software. All pictures were taken at the 

same resolution. To prevent measurement errors a picture of the graticule was taken at set 

magnifications and measurement taken from the graticule. 

If a crack was too large to be captured on one picture then several were taken along its length. 

These images were then imported into Microsoft Paint where they could be joined together and 

the crack length measured (Figure 7 - 1). Overlaying I joining the pictures could typically be 

achieved to within 1 - 2 pixels (Table 7 - 1). 

The cracks were given a unique identity. First the specimen type was identified, second the 

specimen number, third the number of cycles, fourth crack number and fifth the magnification at 
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which the photograph was taken. For example, data for Metalcopy Cu-S2-1 80K-1-x4 was given 

as: Metalcopy copper, specimen number 2, 180,000 cycles completed, crack number 1, 

photograph taken at x4 magnification. For Metalcopy Cu-S2rs-200K-x1 the data was given as 

Metalcopy copper, specimen number 2 reverse side, 200,000 cycles completed, crack number 

1, photograph taken at x1 magnification. 
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The measurement was achieved by drawing a line along the crack length and recording the 

number of pixels. The conversion factors are shown in Table 7 - 1. 

Magnification Number of pixels In One pixel equates to 
1mm (Ilmi 

X1 105 10llm 

X2 207 5IJm 

X3 308 3IJm 

X4 414 2.4lJm 

X5 526 2IJm 

X6 616 1.61Jm 

Table 7 - 1 Magnification and conversion factors 

Once a crack had been identified it was recorded on a specimen crack log sheet (Figure 7 - 2) 

along with the specimen identification details, the number of cycles, the crack number etc. 

Rotational position was maintained with a score mark at the centre and on both sides of the 

specimen. The log sheet showed disc details for the front of the specimen and the back of the 

specimen allowing the cracks to be catalogued and making identification easier after further 

cycling (one sheet I specimen I set of cycles). 

Front Bo.ck 

Figure 7 - 2 Example of crack log sheet with specimen In position with cracks 1 - 4 

Identified 

In addition to crack monitoring the specimens were assessed for change in surface appearance 

and hardness. 
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7.4 H13 Thermal Fatigue Methodology 

The number of thermal fatigue cycles for the H 13 specimens were increased in increments of 

10.000 up to 300.000. The reason for the large increments was because the material was a hot 

work steel having a metallurgy tailored to resist thermal and elevated temperature conditions. 

Therefore. cracks were not expected within 90,000 cycles. 

7.4.1 

7.4.1.1 

H13 Thermal Fatigue Results 

Initial Signs of Cracking 

The first recorded sign of thermal fatigue cracking was seen on specimen 4 at 180,000 cycles. 

7.4.1.2 Hardness 

Specimen 3 exhibited a reduction in hardness between 120,000 and 130,000 cycles, specimen 

4 at 190,000 cycles and specimen 2 and 3 at 220,000 (Appendix v Figure 1, and Figure 7 - 3). 

Over the duration of the thermal fatigue test the reference specimen 5 maintained a hardness of 

113HRb - 114HRb whilst the thermally fatigued specimens (1 to 4) exhibited a reduction in their 

hardness. At 220,000 cycles there was a noticeable drop in hardness from ,,112HRb to 

,,107HRb; this coincided with severe cracking in all the specimens with hundreds of cracks 

appearing at the radius (Figure 7 - 3) and gradually growing as the test continued to 300,000 

cycles at which point the test was terminated. 

7.4.1.3 Number of Cracks 

The number of cracks made it impossible to catalogue them and hence, no data could be 

obtained from the specimens in terms of crack length, crack growth etc. However, H13 was the 

reference material and was only used as a material comparison. Typically an aluminium 

pressure die casting tool will suffer from fatigue cracking between 100,000 - 150,000 cycles 

depending upon the geometry of the die (Clegg, 1991). Signs of cracking in the test specimens 

began at approximately 180,000 cycles and severe cracking at 220,000 cycles. It must be noted 

that the experiment only took into account the thermal fatigue aspect of aluminium pressure die

casting and not other factors such as pressure, wear, adhesion, ingress, chemical attack etc., 

which occur during the casting process and promote crack initiation and crack growth in dies. 

The discrepancy found was probably a result of these additional factors but the experiment 

represented the thermal fatigue element of the process. 
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Figure 7 - 3 Specimen 2 S2-1 BOK-1-x4 

The thermal fatigue test however, produced cracking with the same characteristics pattern of the 

crazed cracking found in hot working dies (Figure 7 - 4) (Starling and Branco, 1997, Chinese 

Standard GBfT 15824 (1995). 

Figure 7 - 4 Specimen 4 S4-220K-1-8-x2 

115 Chapter Seven 



7.5 Metalcopy 5507 Thermal Fatigue Methodology 

The thermal fatigue cycles for the Metalcopy 5507 specimens were increased in increments of 

50 to 100, then increments of 100 to 500, followed by increments of 500 to 3000, then 

increments of 1,000 to 10,000 and finally increments of 3000 to 25,000. The small incremental 

changes were used because it was not clear when the material would fracture. Smaller 

increments were used initially but increased as the material exhibited resistance to cracking. 

7.5.1 

7.5.1.1 

Metalcopy 5507 Thermal Fatigue Results 

Initial Signs of Cracking 

The first crack was observed on Metalcopy 5507 specimen 4 after 3000 cycles and measured 

as O.44mm in length, however, this propagated from both sides of a surface defect in the 

material and not from the edge radius. 

Initial signs of cracking from the specimen edge radius (Figure 7 - 5) were seen at 10,000 cycles 

on all specimens, with the exception of specimen 2 where nine cracks appeared between 

13,000 to 16,000 cycles. 

0.5 mm 

Figure 7 - 5 Metalcopy 5507 S1-1 OK-1-x4 

7.5.1 .2 Hardness 

The hardness of the specimens and the reference specimen varied by a small amount over the 

course of the tests (Appendix v. Figure 2) and was probably due to the position of the indenter 

on the microstructure of the material, which consisted of steel balls in an alloy matrix of silver, 

copper and zinc. The average hardness of each of the Metalcopy 5507 specimens were similar 

",79HRb. 

7.5.1.3 Number of Cracks 

Cracks initiated on specimen 4 at 3,000, specimen 1 and 3 at 1 0,000 and specimen 2 between 

13,000 and 16,000. Over the duration of the test the number of cracks increased on specimen 1 

and 2 but not to the same ex1ent on specimens 3 and 4 (Figure 7 - 6). 
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Figure 7 - 6 Metalcopy 5507 number of cycles versus number of cracks 

The average number of cracks on each specimen increased at a rate of 0.09 I 500 cycles up to 

13,000 cycles, it then increased to a rate of 1.2 cracks. After 25,000 cycles the average number 

of cracks in a specimen was ",36. It was clear that the number of cracks I specimen was variable 

with specimen 3 exhibiting 65 cracks and specimen 1 only 10 (Appendix v, Figure 3) . 

The total number of cracks during thermal fatigue cycling can be seen in Appendix v, Figure 4. 

The cracks initiated at 0.4 cracks I 500 cycles between 3,000 - 13,000, increasing to 5.46 cracks 

1500 cycles to 25,000. 

7.5.1.4 Crack Length 

From Figure 7 - 7 it is clear that the average crack length did not increase rapidly (0.03mm 1500 

cycles), which indicated that many new small cracks were initiating and propagating slowly. The 

low minimum crack length suggested this to be the case. 
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Figure 7 - 7 Metalcopy 5507 number of cycles versus average crack length with maximum 

- minimum crack length of all cracks 
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The specimen had a low average crack length and a high maximum crack length because there 

were only a few large cracks and many small ones initiating (Appendix v, Figure 5) . 

Initially the total crack length increased at a rate of 0.96mm 1 500 cycles; this increased after 

13,000 cycles to 5.79mm 1 500 cycles and at 22,000 cycles it increased to 21.04mm 1500 cycles 

with a total crack length reaching 247.31mm after 25,000 cycles and (Figure 7 - 8) . 
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Figure 7 - 8 Metalcopy 5507 number of cycles versus total crack length 

7,6 Metalcopy Janalloy Thermal Fatigue Methodology 

The thermal fatigue cycles for the Metalcopy Janalloy specimens was increased in the same 

way as with Metalcopy 5507 up to 5,000 cycles and for the same reasons, given earlier. The 

test, however, was terminated after 5,000 cycles due to the abundance of cracks that formed. 

The thermal fatigue cycle was increased in increments of 50 to 100, then increments of 100 to 

500, increments of 500 to 3,000 and finally increments of 1,000 to 5,000. 

7.6.1 

7.6.1.1 

Metalcopy Janalloy Thermal Fatigue Results 

Initial Signs of Cracking 

Cracking initiated on all four specimens between 1,000 to 1.500 cycles ranging from 1 crack on 

specimen 2 to 6 cracks on specimen 1 (Figure 7 - 9). 

Figure 7 - 9 Metalcopy Janalloy S1-1 ,500-12-x1 
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7.6.1.2 Hardness 

The hardness of the specimens and of the reference specimen tended to vary between ,,50HRb 

and ,,62HRb up to 3,000 cycles (Appendix v, Figure 6) , the variance was most likely a result of 

the position of the indenter on the microstructure of the material. Again the structure consisted of 

steel balls in a matrix of silver and copper. 

7.6.1.3 Number of Cracks 

Figure 7 - 10 and Table 7 - 2 shows the number of cracks in the test specimens and rate of 

initiation. The cracks initiated between 1,000 and 1,500 cycles and their number increased 

between 1,500 and 2,000 cycles, after which the rate of initiation reduced but was then followed 

by a sharp increase in crack initiation for specimens 2, 3 and 4 between 2,500 and 3,000. The 

initiation of cracks in specimen 3 then reduced (0.25 cracks I 500 cycles) but in specimen 2 and 

4 the number of cracks continued to increase at similar rates up to 4,000 cycles where they both 

reduced in rate to 0.5 cracks I 500 cycles. Specimen 1 on the other hand did not exhibit the 

same increase in crack numbers but at between 3,000 and 4,000 cycles more cracks became 

visible (2.5 cracks I 500 cycles) . 
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Figure 7 - 10 Metalcopy Janalloy number of cycles versus number of cracks 
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Crack growth Crack growth Crack growth Crack growth 

Specimen rate between rate between rate between rate between 
1,500 - 2,000 2,500 - 3,000 3,000 - 4,000 4,000 - 5,000 

cycles cycles cycles cycles 

1 1 crack /500 2.5 cracks / 500 
cycles cycles 

2 3 cracks / 500 6.66 cracks / 500 6.66 cracks / 500 0.5 cracks / 500 
cycles cycles cycles cycles 

3 3 cracks / 500 8 cracks / 500 0.25 cracks / 500 
cycles cycles cycles 

4 2 cracks / 500 5.67 cracks / 500 5.67 cracks / 500 0.5 cracks / 500 
cycles cycles cycles cycles 

Table 7 - 2 Metalcopy Janalloy crack initiation rate 

The average number of cracks / specimen increased between 2,500 and 4,000 cycles and then 

became constant. The average crack initiation rate was 2.60/ 500 cycles (Appendix v, Figure 7). 

The total number of cracks grew from 15 initially, to 25 over 500 cycles (5 cracks / 500 cycles) . 

Between 2,500 and 4,000 cycles the crack numbers increased significantly to 76 (17 cracks / 

500 cycles) and then reached 78 (1 crack / 500 cycles) (Appendix v, Figure 8) . 

7.6.1.4 Crack Length 

Figure 7 - 11 shows the average crack length of the specimen with the maximum and minimum 

lengths. It is clear that the average crack length remained reasonably constant at approximately 

4mm (0.08mm / 500 cycles) . However, the maximum crack size grew from ,,8.5mm to ,,12mm 

over 3,500 cycles with an increase occurring after 2,500 cycles. 
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Figure 7 - 11 Metalcopy Janalloy number of cycles versus average crack length with 

maximum - minimum range crack length of all cracks 

Between 3,000 and 5,000 cycles new cracks initiated (Appendix v, Figure 9) resulting in the 

average crack length remaining reasonably constant. 
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The initial total crack length of all four specimens at 1,500 cycles was over 50mm and increased 

at a rate of 1B.9mm I 500 cycles; at 2,500 cycles the rate increased to 74.5Bmm I 500 cycles 

and at 4,000 cycles the rate reduced to 14.17mm I 500 cycles giving a total crack length of 

,,350mm after 5,000 cycles (Figure 7 - 12). 
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Figure 7 - 12 Metalcopy Janalloy number of cycles versus total crack length 

7.7 Metalcopy Cu Thermal Fatigue Methodology 

The thermal fatigue cycles for Metalcopy Cu were increased by increments of 50 up 500, 

increments of 500 up to 3,000, increments of 1,000 up to 10,000 and increments of 3000 up to 

25,000. 

7.7.1 

7.7.1.1 

Metalcopy Cu Thermal Fatigue Results 

Initial Signs of Cracking 

Cracks first initiated on specimen 1 between 6,000 and 7,000 cycles. Three cracks occurred, the 

largest measuring 1.0Bmm (Figure 7 - 13). 

Figure 7 -13 Metalcopy Cu specimen 1 S1-7K-B-x3 
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7.7.1.2 Hardness 

The hardness of the specimens was reasonably constant throughout the experiment, between 

68HRb and 78HRb, and the overall specimen average hardness was ",70HRb (Appendix v, 

Figure 10). 

7.7.1.3 Number of Cracks 

Figure 7 • 14 shows that each specimen cracked in a different manner. Specimen 1 was the first 

to exhibit crack initiation and the number of cracks increased at a rate of 1.67 cracks 1 500 

cycles, at 10,000 cycles this decreased to 0.47 cracks 1500 cycles, giving a total of 27 cracks at 

25,000 cycles. Specimens 2 and 3 did exhibit crack initiation but the number of cycles to initiate 

cracks and the rate of initiation were different and variable. Specimen 4 did not develop any 

cracks. The results show that there are inconsistencies and this may be due to the 

manufacturing process (poor infiltration versus good infiltration). 
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Figure 7 • 14 Metalcopy Cu number of cycles versus number of cracks 

The average number of cracks slowly increased at a rate of 0.31 cracks 1 500 cycles, however, 

there was a large difference between the maximum number of cracks on a specimen and the 

minimum. There was an increase in the average number of cracks between 13,000 and 19,000 

cycles because specimen 1 and specimen 2 developed new cracks during this period (Appendix 

v, Figure 11). 

The total number of cracks increased at a rate of 5.5 cracks 1 500 cycles between 7,000 . 8,000 

cycles; at 10,000 the increase was 1.1 cracks 1 500 cycles and the specimens had a total of 48 

cracks after 25,000 cycles (Appendix v, Figure 12). 
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7.7.1.4 Crack Length 

Figure 7 - 1S shows the average crack length, which was initially O.SSmm at 7,000 cycles and 

increased to 1. 72mm at 8,000 cycles (0.S9mm 1 SOO cycles) because large cracks were initiating 

in specimen 1. The average crack length then levelled out between 8,000 and 10,000 cycles 

because specimen 1 and 3 only exhibited the initiation of small cracks. The average then 

increased between 10,000 and 13,000 cycles (0.1Smm ISOO cycles) as a result of rapid growth 

in crack length, with few cracks initiating. Again the average crack length levelled out as new 

cracks initiated whilst others propagated (0.004mm 1 SOO cycles). The individual crack length 

over the number of cycles can be seen in Appendix v, Figure 13. 
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Figure 7 -15 Metalcopy Cu number of cycles versus average crack length with maximum 

- minimum crack length of all cracks 

The total crack length (Figure 7 - 16) increased at a rate of 3.96mm 1 SOO cycles from an initial 

1.66 mm to a length of over 131 .68mm at 2S,000 cycles . 
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Figure 7 - 16 Metalcopy Cu number of cycles versus total crack length 
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7.8 Vertical Laminate Thennal Fatigue Methodology 

The specimens were inilially thermally fatigued for 100 cycles. since no signs of cracking 

occurred a further 400 cycles were conducted. then the thermal fatigue cycle was increased in 

increments of 500 to 5,000 cycles. 

7.8.1 

7.8.1.1 

Vertical Laminate Thennal Fatigue Results 

Initial Signs of Cracking 

The first signs of cracking on the Vertical lam inate specimens were observed on specimens 2 

and 3 between 100 and 500 cycles. The cracks all initiated and propagated in the braze. an 

example is shown in Figure 7 - 17. 

Figure 7 - 17 Vertical laminate specimen 2 S2rs-3K-1·x3 

7.8.1.2 Hardness 

The hardness of the specimens ranged from (1 08HRb - 115HRb) (Appendix v. Figure 14). It was 

possible that the difference in hardness was due to the structure of the composite material and 

how it was tested, i.e. whether the indenter was located on the H13 sheet. braze or a 

combination of both. The specimens, however, all had a comparable average hardness of 

",111 HRb, which equates to 39HRc. 

7.8.1.3 Number of cracks 

Figure 7 - 18 shows that a single crack initiated in the Vertical laminate specimens 2 and 3 

between 100 and 500 cycles. Specimen 1 developed a crack between 500 and 1.000 cycles and 

specimens 2 and 3 developed their second cracks between 1,000 and 1.500. 

When cracking occurred in all the specimens the rate of initiation was similar, at 3,000 1 3.500 

cycles the rate increased. After 5,000 cycles specimen 1 had a total of 13 cracks, specimen 2, a 

total of 9 cracks and specimen 3 a total of 14 cracks after 5.000 cycles, Specimen 4 did not 

follow the same pattern but exhibited its first crack between 2,500 and 3,000 cycles and another 

between 3.000 and 3.500 cycles after which its crack initiation rates also increased to 2.5 cracks 

1500 cycles (Figure 7 - 18 and Table 7 - 3), 
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Figure 7 -18 Vertical laminate number of cycles versus number of cracks 

Crack growth rate Crack growth rate Crack growth rate 
Specimen between 500 - 3,000 between 3,000 - 4,000 between 4,000 - 5,000 

cycles cycles cycles 
1 1 crack I 500 cycles 4.5 cracks I 500 cycles 4.5 cracks I 500 cycles 
2 0.67 I 500 cycles 2.5 cracks I 500 cycles 0.5 cracks I 500 cycles 
3 1.5 cracks I 500 cycles 3.5 cracks I 500 cycles 3.5 cracks I 500 cycles 
4 1 crack I 500 cycles 2.5 cracks I 500 cycles 

Table 7 - 3 Vertical laminate crack Initiation rate 

There was a steady increase in the rate of crack numbers in the specimens (0.5 cracks I 500 

cycles) and a greater increase after 3,000 cycles (2 cracks I 500 cycles) (Appendix v, Figure 

15). The total number of cracks increased by 2 every 500 cycles and Ihen at 3,000 cycles 

increasing to a rate of B.25 cracks I 500 cycles with a total of 45 cracks after 5,000 cycles 

(Appendix v, Figure 16). 

7.8.1.4 Crack Length 

Figure 7 - 19 shows the average crack length, which increased uniformly. From the gradient of 

the graph the average crack groW1h rate was calculated to be approximately 0.95mm I 500 

cycles. However, the maximum crack length was increasing whereas the minimum was not, so 

smaller cracks formed in order to maintain a linear average crack length. The individual cracks 

initiated and the rate of crack groW1h is shown in Appendix v, Figure 17. 
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Figure 7 • 19 Vertical laminate number of cycles versus average crack length with 

maximum· minimum range 

Figure 7 . 20 shows the total crack length of all the specimens over the course of the 

experiment. The rate at which the total crack length developed remained steady at 

approximately 13.57mm I 500 cycles up to 3,000 cycles and then increased to approximately 

82.32mm I 500 cycles to a total crack length of 406.67mm after 5,000 cycles. 
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Figure 7 . 20 Vertical laminate number of cycles versus total crack length 
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7.9 Horizontal Laminate Thermal Fatigue Methodology 

The thermal fatigue cycles were increased in increments of 500 to 2,000 and increments of 

1,000 to 5,000. At 5,000 cycles the tests were terminated. 

7.9.1 

7.9.1.1 

Horizontal Laminate Thermal Fatigue Results 

Initial Signs of Cracking 

The Horizontal laminate specimens failed in a different manner to the Vertical laminate 

specimens making data acquisition difficult. The mode of crack growth during the thermal fatigue 

test meant that no crack growth data could be recorded. 

The interface between the H13 and braze was not uniform and the H13 laminate and braze had 

been removed in many places (Figure 7 - 21 ). At the braze I H13 interface, the H13 laminate 

became so thin during machining that it had simply been removed because of the cutting forces. 

Smm 
Figure 7 - 21 Horizontal laminate machining defects 

As the test continued these areas thermally fatigued and the H 13 was being removed (thin 

sections being fatigued easily) exposing more braze. Figure 7 - 22 shows a defect on specimen 

3 after 500 cycles and Figure 7 - 23 shows the same defects over a larger area of the disc after 

3,000 cycles. 

Figure 7 - 22 Horizontal laminate specimen 3 S3-500-1-x2 
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Figure 7 - 23 Horizontal laminate specimen 1 S1 rs-3K-5-x2 

7.9.1.2 Hardness 

Each specimen exhibited a relatively stable hardness. The average hardness was ",114HRb 

(Appendix v, Figure 18). 

7.10 Amdry 790 (Solid) Thermal Fatigue Methodology 

The thermal fatigue cycles were increased in increments of 500 up to 2,000 cycles, increments 

of 1,000 up to 10,000 cycles, increments of 5,000 up to 30,000, increments of 10,000 up to 

50,000 and increments of 20,000 up to 110,000 at which point the tests were terminated. 

7.10.1 

7.10.1.1 

Amdry 790 (Solid) Thermal Fatigue Results 

Initial Signs of Cracking 

Only three thermal fatigue specimens and one reference specimen were manufactured because 

of the availability and cost of braze. Initial cracks occurred at the edge radius between 2,000 -

3,000 cycles (Figure 7 - 24). 

Figure 7 - 24 Amdry 790 S3rs-3K-5-x5 

128 Chapter Seven 



7.10.1.2 Hardness 

The specimen hardness and the reference specimen had a hardness of approximately 83HRb 

(Appendix v. Figure 19). Specimens 1, 2 and 3 all maintained their hardness levels up to 50,000 

cycles and then the hardness began to fal l. The reference specimen hardness was constant. It 

must also be noted that specimen 3 had a higher hardness, approximately 112HRb, compared 

to specimens 1 and 2 which had hardness's in the 75HRb - 90HRb range. Post analysis showed 

that specimen three had a eutectic structure and was different to the other specimens and that 

could explain the difference. 

7.10.1.3 Number of Cracks 

Figure 7 - 25 shows that specimen 3 was the first to exhibit crack initiation with a total of 8 

cracks between 2,000 - 3,000 cycles and specimen 1 initiated 4 cracks between 4,000 - 6,000 

cycles. There was little change in crack initiation until 50,000 cycles when crack initiation 

significantly increased in specimen 1 to 0.38 cracks / 500 cycles and at 70,000 cycles increasing 

to 1.43 cracks / 500 cycles with a total of 133 cracks at 110,000 cycles. Specimen 3, however, 

only exhibited a small increase in the numbers of cracks to 14 (0.028 cracks / 500 cycles) . 

Specimen 2, on the other hand, initiated 20 cracks between 10,000 and 90,000 cycles to a total 

of 44 after 110,000 cycles (0.55 cracks / 500 cycles) . 
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Figure 7 - 25 Amdry 790 number of cycles versus number of cracks 

The average number of cracks on a specimen remained low (0.025 cracks / 500 cycles) up to 

50,000 cycles, increasing to 0.13 cracks / 500 cycles up to 70,000 cycles and increasing again 

to 0.63 cracks / 500 cycles up to a total of 63.67 at 110,000 cycles (Appendix v, Figure 20). 

The total number of cracks was 8 at 3,000 cycles rising slowly to 15 at 50,000 cycles (0.07 

cracks / 500 cycles) but increasing faster to 30 cracks at 70,000 cycles (0.38 cracks / 500 

cycles) with a further increase in rate to 180 cracks at 100,000 cycles (1.88 cracks / 500 cycles) 

(Appendix v, Figure 21 ). 
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7.10.1.4 Crack Length 

Figure 7 - 26 shows how the average crack length remained low throughout the duration of the 

test reaching 1.58mm after 110,000 cycles (increasing at 0.005mm 1 500 cycles . The minimum 

crack length remained low; however, the maximum rose steadily to 5.77mm after 110,000 

cycles. The individual crack lengths are shown in Appendix v, Figure 22. 
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Figure 7 - 26 Amdry 790 number of cycles versus average crack length with maximum -

minimum range 

Figure 7 - 27 shows the total crack length in the specimens. The total crack length was 4.01 mm 

at 3,000 cycles, and increased to 22.71 mm at 50,000 cycles (0.2mm 1 500 cycles) with a faster 

increase to 46.76mm at 70,000 cycles (0.6mm 1 500 cycles), followed by a further increase to 

302.13mm at 110,000 cycles (2.92mm 1500 cycles) . 
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Figure 7 - 27 Amdry 790 number of cycles versus total crack length 
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7.11 Vertical RapidSteel2.0 Thermal Fatigue Methodology 

The thermal fatigue cycles were increased in increments of 500 to 3,000, increments of 1,000 to 

10,000 s, increments of 3,000 to 40,000 and increments of 5,000 to 65,000. 

7.11.1 

7.11 .1.1 

Vertical RapidSteel 2.0 Thermal Fatigue Results 

Initlat Signs of Cracking 

The tests were terminated prematurely because of the failure of the compressed air supply to 

the thermal fatigue apparatus. The specimens had remained in the furnace for over 8 hours 

causing severe degradation and destruction of the specimens, no cracks had initiated at this 

stage. 

7.11.1 .2 Hardness 

The hardness had remained constant (Appendix v, Figure 23) with a specimen average 

hardness of ,,85.8HRb. No further tests were conducted on these specimens. 

7.12 Horizontal RapidSteel2.0 Thermal Fatigue Methodology 

The thermal fatigue cycles were increased in increments of 500 up to 3,000 cycles, increments 

of 1,000 up to 10,000 cycles, increments of 3,000 up to 40,000 cycles, increments of 5,000 up to 

70,000 cycles and increments of 10,000 up to 100,000 cycles, the termination point of the test. 

7.12.1 

7.12.1.1 

Horizontal RapidSteel 2.0 Thermal Fatigue Results 

Initial Signs of Cracking 

Initial cracks occurred at the edge radius at between 40,000 - 50,000 cycles (Figure 7 - 28). 

Figure 7 - 28 Horizontal RapldSteel 2.0 specimen 1 S1-50K-4-x3 

7.12.1.2 Hardness 

The specimens had similar hardness's to each another, which did not alter over the duration of 

the experiment. Specimen 1 had an average hardness of ",84.5HRb, specimen 2 ",83HRb, 

specimen 3 ,,86HRb, specimen 4 ",85HRb and specimen 5 ,,85HRb (Appendix v, Figure 24). 
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7.12.1.3 Number of Cracks 

Figure 7 • 29 shows that specimen 1 was the first to initiate cracking, between 40,000 • 50,000 

cycles, 14 cracks became visible and this rose to 20 cracks over the next 3,000 cycles. No 

further cracks developed up to 60,000 cycles but between 60,000 • 70,000 cycles there was a 

large increase to 39 cracks (approximate rate of 0.63 cracks 1 500 cycles) after which no further 

cracks were detected up to 100,000 cycles. Specimens 2 and 4, however, exhibited crack 

initiation between 70,000 . 80,000 cycles. Specimen 2 had 12 cracks and specimen 4 only 3 but 

the rate of crack increase was similar in both cases. Specimen 3 showed the initiation of 9 

cracks between 90,000 . 100,000 and again the rate of crack initiation was comparable 

(specimen 1 exhibited 0.63 cracks 1 500 cycles, specimen 2 exhibited 0.45 cracks 1 500 cycles, 

specimen 3 exhibited 0.45 cracks 1 500 cycles and specimen 4 exhibited 0.48 cracks 1 500 

cycles). 
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Figure 7 • 29 Horizontal RapldSteel 2.0 number of cycles versus number of cracks 

The average number of cracks crack rate was 0.17 cracks 1 500 cycles up to 80,000 cycles and 

increased to 0.29 cracks 1500 cycles up to 100,000 cycles (Appendix v, Figure 25). 

The total number of cracks increased from 14 at 50,000 cycles to 54 cracks at 80,000 cycles (a 

rate of 0.67 1500 cycles) . The number of cracks increased to 100 after 100,000 cycles (a rate of 

1.15 cracks 1 500 cycles) (Appendix v, Figure 26). 

7.12.1.4 Crack Length 

Figure 7 . 30 shows the average crack length; initially it was 2.62mm at 50,000 cycles rising to 

4.12mm over 10,000 cycles (a rate of 0.08mm 1 500 cycles). The crack length then became 

nearly constant increasing by 0.13mm up to 100,000 cycles (a rate of 0.002mm 1 500 cycles). 

Each individual crack, the number of cycles to initiation and propagation can be seen in 

Appendix v, Figure 27. 
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with maximum· minimum range 

Figure 7 • 31 shows the total crack length, which started at 36.66mm at 50,000 cycles and 

increased to 204.4mm at BO,OOO cycles (a rate of 2.BOmm 1 500 cycles). The total crack length 

then grew to 424.97mm at 100,000 cycles (a rate of 5.51mm 1500 cycles). 
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Figure 7 • 31 Horizontal RapidSteel 2.0 number of cycles versus total crack length 
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7.13 EOS DlrectSteel20llm Thermal Fatigue Methodology 

The thermal fatigue cycles were increased in increments of 500 to 3,000 and increments of 

1,000 up to 5,000. at which point the tests were terminated. 

7.13.1 

7.13.1.1 

EOS DirectSteel 20llm Thermal Fatigue Results 

Initial Signs of Cracking 

Cracks initiated at the edge radius between 0 - 500 cycles (Figure 7 - 32). 

Figure 7 - 32 EOS DirectSteel 20llm specimen 4 S4-500-2-x2 

7.13.1.2 Hardness 

The individual specimen hardness over the course of the thermal fatigue experiment were 

similar to each other between ",88HRb and ",89HRb (Appendix v, Figure 28). 

7.13.1.3 Number of Cracks 

Figure 7 - 33 shows the rate of crack initiation, all the specimens initiated cracks between 0 and 

500 cycles; Specimen 1 exhibited 2 cracks initially, which increased at a rate of 2 I 500 cycles to 

1 ,500 cycles after which no further cracks initiated. Specimen 2 crack initiation was slower (0.22 

cracks I 500 cycles), 2 cracks were initially present, then between 1,000 and 1,500 one crack 

formed and between 4,000 and 5,000 cycles another formed, making a total of 4 cracks after 

5,000 cycles. Specimen 3 initiated 4 cracks, then between 1,000 and 1,500 cycles a further 

crack initiated, between 1,500 and 2,500 cycles cracks initiated at a rate of 3 I 500, cycles which 

then slowed to a rate of 0.4 I 500 cycles making a total of 13 cracks after 5.000 cycles. 

Specimen 4 initiated 3 cracks then continued to initiate cracks at a rate of 6 / 500 cycles to 1,000 

cycles slowing to 1 crack initiation every 500 cycles , making a total of 17 cracks at 5,000 cycles 

when the test was terminated. 
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Figure 7 - 33 EOS DirectSteel 20llm number of cycles versus number of cracks 

The average number of cracks I specimen increased at a rate of 1,5 cracks I 500 cycles 

between 500 and 2,000 cycles and then slowed to 0.46 cracks I 500 cycles (Appendix v, Figure 

29), 

The total number of cracks increased from 11 to 29 between 500 and 2,000 cycles , a rate of 6 

cracks I 500 cycles, The rate then reduced to 1,83 cracks I 500 cycles until the experiment was 

terminated with a total of 40 cracks in all the specimens (Appendix v, Figure 30), 

7.13.1.4 Crack Length 

Figure 7 - 34 shows the average crack length remained relatively constant at approximately 

6mm, increasing at a rate of 0,05mm I 500 cycles. However, it was apparent that there was a 

large maximum crack size starting at ,,14mm and rising to ,,19mm at 5,000 cycles, Small new 

cracks also initiated and maintained the constant average, Each crack and its length is shown in 

Appendix v, Figure 31 . 
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Figure 7 - 34 EOS DlrectSteel 20llm number of cycles versus average crack length with 

maximum - minimum range 

Figure 7 - 35 shows the total crack length, which started at 62.6mm at 500 cycles and increased 

to 129.2mm at 1,000 cycles (a rate of 66.6mm I 500 cycles); this reduced to 11.45mm I 500 

cycles bul at 2,000 cycles the rate increased again to 44mm I 500 cycles and at 2,500 reduced 

to 9.56mm I 500 cycles. The total crack length at the conclusion of the experiment was 

243.95mm. 
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Chapter 8: Post Thermal Fatigue Analysis 

Optical and scanning electron microscopy (SEM) were employed to examine material 

microstructure, crack initiation sites and crack growth characteristics. Energy dispersive 

spectroscopy (EDS), otherwise known as energy dispersive x-rays (EDX) as discussed in 

chapter 3, section 3.7.6) allowed the material composition of the material and the composition of 

the crack surface to be determined. 

8.1 Specimen Sectioning and Mounting 

Specimens for the SEM examination required a flat surface. Initially the area of interest was cut 

from each specimen using a Struers Labotom cut-off machine with a Struers high quality cut-off 

wheel (34 TRE 250 x 1.5 x 32mm). 

The next stage was to place specimens in a conductive mount (Buehler Konducto Met™ 11 

aluminium conductive phenolic mounting compound) using a Struers Labopress-1 mounting 

machine. 

Grinding was required to produce a flat surface; the first step was rough grinding using 220 wet 

and dry paper on a Metaserv polisher I grinder, model number C2345A. The specimen was 

washed with soapy water and rinsed prior to the next stage. Using a Metaserv hand grinder 

model C187 further grinding was carried out using successively finer grades (320 , 400 and 600) 

of paper. To avoid carrying course grit to the finer papers the specimens were washed in soapy 

water and rinsed after each grade of paper had been used. 

The next stage was to polish the specimens using a Metaserv universal polisher I grinder, 

model C25485, with variable speed settings. In this process, the first polishing stage used the 

wheel impregnated with 6~m diamond paste (Buehler, Medadi"); this was wetted with extender 

fluid (Buehler, Metadi") for lubrication. The specimen was polished at 400rpm for two minutes, 

was then washed with soapy water and rinsed. The process was repeated using the wheel 

impregnated with 1 ~m diamond paste and the speed reduced to 200rpm and again the 

specimen was washed before the final polish. The final polish used a wheel impregnated with 

0.05mm alumina (Buehler, Gamma Micropolish" number 3) . The wheel was lubricated with 

distilled water and polishing occurred at 200rpm for two minutes. Finally, the specimen's surface 

was washed in soapy water, rinsed with water and then acetone or methanol before being 

thoroughly dried on a Metaserv specimen dryer model C210 and placed in a specimen 

dessicater with silica gel crystals to reduce the moisture level. All specimens were prepared in 

the same manner. 
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The specimens were then examined optically on a Nicon Optiphot with images taken using a 

JVC Colour Video Camera TK-C1481BEG and WinTV software. Images were also obtained 

using the SEM (Leo 1350 VP FEG) and EDS analysis (chapter 3, section 3.7.6). 

After the initial examination, the specimens were etched to reveal the structure of the materials 

in more detail. Different etchants were used depending upon the material as some materials are 

resistant to certain chemicals. Metalcopy 5507, Metalcopy Janalloy and Metalcopy Cu were 

etched in acidic ferric chloride (5g FeCI3, 50ml HCI, 100ml H20). The Metalcopy 5507 was 

etched for 15 - 30 seconds, Metalcopy Janalloy for 30 seconds, Metalcopy Cu for 10 - 15 

seconds. Amdry 790 was etched with 50% acetic acid and 50% nitric acid for 10 - 20 seconds 

and the remainder of the specimens were etched with 2% or 5% nitric acid (in alcohol) for 15 -

45 seconds dependent upon the depth of etch required. After etching the specimens were 

immediately rinsed in water followed by acetone or methanol and thoroughly dried on a 

Metaserv specimen dryer model C210 and placed in a specimen dessicater with silica gel 

crystals to reduce moisture level. 

8.2 H13 Post Thermal Fatigue Results 

8.2.1 Crack Initiation and Propagation 

Optical examination of H13 specimens revealed a retained austenite tempered martensite 

structure with fine carbide precipitate. Figure 8 - 1 shows two cracks in specimen number 1, the 

crack seen in (A) is wide with smaller cracks propagating from the end of it. 

Figure 8 - 1 (A) H13-S1-300K-2-x40 crack tip; (B) H13-S1-300K-3-x40 

The SEM examination of specimen 1 (Figure 8 - 2) revealed the propagation of two cracks 

causing a section of the material to fatigue and break away creating a larger void as seen in the 

enlarged image. 
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Photo No -'1255 

Figure 8 - 2 H13 specimen 1. 51-300K-1-x1000 (close up specimen 1. 51-300K-1-x3000) 

8.2.2 EDX Analysis 

Figure 8 • 3 shows an area of specimen 1 with a crack. under EDX analysis; it shows the crack 

area to have a higher concentration of vanadium, silicon, molybdenum, oxygen and aluminium. 

However, there was a reduced amount of chromium and iron, which suggested that it had either 

been removed or had fallen out during thermal fatigue test. The presence of oxygen suggested 

the presence of an oxide. The EDX results suggested that the crack favoured grow1h where the 

alloy was rich in the elements that form carbides in H13 steel, such as vanadium and 

molybdenum. 
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v"""n,rrm, Cr = Chromium , Fe = Iron, Mo = Molybdenum, 0 = Oxygen, , AI = Aluminium, 
indicates electron transitions to the K shells, l is electron transitions to the L shell. L shells have 
lower energy and are more related to heavier elements. 

Figure 8 - 3 H13 EDX analysis 

8.3 Metalcopy 5507 Post Thermal Fatigue Results 

8.3.1 Crack Initiation and Propagation 

Optical examination revealed that the cracks initiated in the matrix and at the outer radius of the 

specimen and then propagated through the matrix. The steel balls acted as crack arresters and 

the cracks could not propagate through them but were forced to go around them. Figure 8 - 4 

shows a dark area running from left to right, which is a crack. It shows how the crack 

propagated through the matrix when subjected to a series of thermal fatigue cycles. 
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Figure 8 - 4 Metalcopy 5507 S3-25K-6-x20 showing crack propagating through matrix 

Figure 8 - 5 shows the Metalcopy 5507 structure with a heavy etch revealing what appeared to 

be grain boundaries in the steel. The black areas in the matrix indicated areas, which had been 

over etched in order to reveal the structure of the steel. 

Figure 8 - 5 Metalcopy 5507 reference specimen S5-25K-3-x20 over etched to reveal 

structure In the stainless steel 

SEM examination provided similar evidence with the crack originating from the edge of the 

specimen and running through the matrix (Figure 8 - 6). 
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Figure 8 - 6 Metalcopy 5507 S3-25K-11-x500 

However, at the end of one crack a different type of crack propagation was observed (Figure 8 -

7) , where a crack was seen propagating through or along the grain boundary of a steel ball. In 

this instance the crack appeared to grow around the interface, through the matrix and through 

the powder. Additional unknown particles were also visible and the EDX analysis revealed these 

to be copper (Figure 8 - 10). 

Figure 8 - 7 Crack tip showing growth in the matrix and through the steel 
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In the majority of cases the crack propagated in the matrix and circumnavigated the steel balls 

(Figure 8 - 8) . The image also shows small dark areas in the steel balls, which spot analysis 

revealed to be chromium rich areas. 
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Figure 8 - 8 Metalcopy 5507 S3-25K-9-x10K 

Figure 8 - 9 shows an area of Metalcopy 5507 specimen 3 with a crack propagating through it; 

this was subjected to EDX analysis and the results follow. 
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Figure 8 - 9 Metalcopy 5507-53-25K-1 
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8.3.2 EDX Analysis 

The EDX analysis showed that the matrix was an alloy of silver. copper and zinc in which balls 

having an iron, chromium, manganese, nickel, silicon and sulphur composition were insitu 

(Figure 8 - 10). It was apparent that there were areas in the matrix where copper and zinc were 

in greater concentrations (brighter areas) . Also chromium , rich areas could be seen. 

Zn = Zinc, Cr = Chromium , Cu = Copper, Fe = Iron, Mn = Manganese, Ni = Nickel, Si = ::;mcori,l 
S = Sulphur, Ag = Silver, K indicates electron transitions to the K shells , L is electron tral1sition:sI 
to the L shell. L shells have lower energy and are more related to heavier elements. 

Figure 8 - 10 Metalcopy 5507 EDX analysis 
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8.4 Metalcopy Janalloy Post Thermal Fatigue Results 

8.4.1 Crack Initiation and Propagation 

Optical examination revealed that the specimen contained porosity, which would have been 

detrimental to the thermal fatigue resistance resulting in crack initiation and allowing a crack 

path to be easily developed (Figure 8 - 11). It is likely that the porosity was a result of gasses 

and carbon being trapped during the infiltration process of the specimen manufacture. This 

could also explain the crack number difference between specimens since the amount of 

porosity varied from one specimen to another . 
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Figure 8 - 11 (A) Reference specimen S5-0K-2-x10 (not etched); (8) Specimen 3 S3-5K-8-

x10 (not etched) 

Figure 8 - 12 shows the Metalcopy Janalloy structure heavily etched revealing what appear to 

be the grain boundaries in the steel. 
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Figure 8 -12 Reference specimen S5-0K-12-x40 

SEM examination revealed that crack initiation occurred at the interface between the steel balls 

and the matrix with propagation along the passage of least resistance in the matrix (Figure 8 -

13). 
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Figure 8 - 13 (A) Metalcopy Janalloy specimen 3 S3-5K-4-x20K; (8) Metalcopy Janalloy 

specimen 3 S3-5K-5 

The Figure 8 - 14 (A) shows an interesting region of specimen 3 where the steel ball had broken 

at the periphery (chromium rich particles). It also showed that the matrix contained small 

particles, which showed up lighter on the image. Figure 8 - 14 (B) proved how the crack 

propagated though the matrix travelling from one ball I matrix interface to the next via areas of 

porosity. 
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Figure 8 - 14 (A) Metalcopy Janalloy specimen 3 S3-SK-3-x2SK; (8) Metalcopy Janalloy 

specimen 3 S3-SK-8 

8.4.2 EDX Analysis 

The EDX analysis of Figure 8 - 13 B is shown in Figure 8 - 15. It showed that the matrix was an 

alloy of silver, rhenium and copper, through which the crack propagated. Areas rich in copper 

were also visible (brighter areas on the EDX). The steel contained iron, dispersed vanadium , 

dispersed molybdenum, nickel and chromium with chromium rich areas at the boundary of the 

steel balls. 
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Ag 
V = Vanadium, Cr = Chromium, Ni = Nickel, Cu = Copper, Fe = Iron, Mo = Molybdenum, Re = 
Rhenium , Ag = Silver, K indicates electron transitions to the K shells, L is electron transitions to 
the L shell. L shells have lower energy and are more related to heavier elements. 

Figure 8 - 15 Metalcopy Janalloy EDX analysis 

8.5 Metalcopy Cu Post Thermal Fatigue Results 

8.5.1 Crack Initiation and Propagation 

Optical examination showed some porosity in the specimens (Figure 8 - 16 (Al) and a heavy 

etch removed the bonding material and revealed particles in the steel balls (Figure 8 - 16 (8)). 

0.05 mm A 
, , 

-
" 

Figure 8 - 16 (A) Reference specimen 5 S5-OK-3-x20; (8) Specimen 1 S1-25K-8-x40 
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Further examination using SEM revealed that some steel balls did not appear to have wetted to 

the bonding material and were not bonded to the matrix (Figure 8 - 17). 
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Figure 8 -17 Reference specimen 555-0K-13-x10K 

As with the previous specimens the cracks initiated from the steel powder I matrix interface and 

tended to propagate through the matrix (Figure 8 - 18). 
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Figure 8 - 18 (A) Metalcopy Cu specimen 1 51-25K-92; (B) Metalcopy Cu specimen 1 51-

25K-89 

However, this was not always the case, Figure 8 - 19 shows a crack propagating through the 

matrix and also through the steel balls. I n addition, the bonding problem was likely to have 

caused the void formation as the cracks propagated and the powder detached (Figure 8 - 19). 
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Figure 8 - 19 Metalcopy Cu specimen 1 S1-25K-91 

8.5.2 EDX Analysis 

Figure 8 - 20 shows EDX analysis, which was conducted on the area of Metalcopy Cu specimen 

1 with a crack growing through the matrix, It was clear that the balls were steel made up of iron, 

chromium, molybdenum, nickel and manganese, Both the steel and some areas of the matrix 

contained chromium and manganese rich particles, It should also be noted that there were 

particles containing higher concentrations of molybdenum, especially in or near the crack area, 

The matrix appeared to be primarily copper with some chromium rich particles, 
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Mo Ni (K) 
Cr = , Cu = Copper, Fe = Iron, Mn = Manganese, Mo = Molybdenum, Ni = Nickel, K 
indicates electron transitions to the K shells, L is electron transitions to the L shell. L shells have 
lower energy and are more related to heavier elements. 

Figure 8 • 20 Metalcopy Cu EDX analysis 

8.6 Vertical Laminate Post Thermal Fatigue Results 

8.6.1 Crack Initiation and Propagation 

From optical examination (Figure 8 • 21) it was clear that the braze had bonded well and 

diffusion had occurred. The EDX analysis showed the presence of chromium, iron, nickel, and 

silicon with the centre of the braze having a nickel rich phase. 
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• 
Figure 8 - 21 Vertical laminate reference specimen S SS-SK-4-x20 

The braze structure had two phases, one of which tended to run down the centre (Figure 8 - 22 

(A)). Porosity in the centre of the braze was also apparent in some of the specimens (Figure 8 -

22 (8»; this was probably caused because the gasses produced during the brazing process 

could not escape. Porosity was also a possible source of crack initiation. 

B ' 

'. - ~ ~-
- .... I.o'.J .'; -.- _ Braze -___ _ .. 

Nickel rich Phase 

" H13 

Figure 8 - 22 (A) Vertical laminate specimen 1 S1-SK-S-x20; (B) Vertical laminate reference 

specimen S SS-SK-S-xS 

Figure 8 - 23 (A), shows a crack initiating from a void and working its way along the central 

phase of the braze. It was interesting to note that the crack went through the nickel rich phase 

and not down the boundary between phases. Figure 8 - 23 (8) also shows the crack 

propagating to the braze H13 interface and along the interface. All the cracks initiated in the 

braze that bonded the laminate structure together. 
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Figure 8·23 (A) Vertical laminate specimen 1 S1·5K·12·x20; (B) Vertical laminate 

specimen 1 S1-5K-4·x20 

SEM showed the same crack formation, however, an area in the central phase suffered from 

craze cracking as shown in Figure 8 • 24 (A) and in a higher magnification in Figure 8 • 24 (B) . 
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Figure 8 - 24 (A) Vertical laminate specimen 1 S1-5K-85; (B) Vertical laminate specimen 1 

S1-5K·86 

8.6.2 EDX Analysis 

A 30 line spot test and an EDX was conducted to determine the elements in the braze. The spot 

test was repeated three times on different areas of the specimen across the braze (Figure 8 -

25) producing comparable data. The braze was richer in nickel and poorer in iron at the centre 

(Figure 8 - 26). EDX results confirmed this and Figure 8 - 27 shows the area over which EDX 

was conducted. The results (Figure 8 - 28) showed high concentrations of nickel and silicon in 

the centre. The chromium trace showed higher concentrations in the H13 as expected. 
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Figure 8 - 25 Vertical laminate SEM element spot line 
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Figure 8 - 26 Vertical laminate elemental change across braze 

Figure 8 - 27 Vertical laminate specimen 4 S4-5K-82 
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Ni (K) 
Cr = Chromium, Fe = Iron, Ni = Nickel, Si = Silicon, K indicates electron transitions to the K 
shells, L is electron transitions to the L shell. L shells have lower energy and are more related to 
heavier elements. 

Figure 8 - 28 Vertical laminate EDX analysis 

8.7 Horizontal Laminate Post Thermal Fatigue Results 

8.7.1 Crack Initiation and Propagation 

Optical examination revealed further detail of the mode of failure. Figure 8 - 29 shows an 

untested H13 braze interface. It shows how the H13 laminate thinned from 1mm thick to 

fractions of a mm thick. It should also be noted that the braze contained porosity. 

Specimen Mount Braze 

~.----~--------~-------=---- H13 

Figure 8 - 29 Horizontal laminate specimen 5 S5-5K-1-x5 
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Figure 8 - 30 shows a H13 braze interface after 5,000 cycles, where it can be seen that some of 

the braze has been removed, as a result of the constant expansion and contraction, leading to a 

thin unsupported I un-bonded section of H13 being exposed, which would eventually fatigue 

and fall off. As the test progressed this process continued and escalated. The mode of failure 

caused under cuts at the H13 braze interface that would be detrimental in a die, since the 

molten aluminium would be forced into the undercut, which when ejected would , either, cause 

adhesion (failure to eject), or removal of the undercut resulting in further die damage. 

--------T'hin H13 Sec;ti~n 

Braze remo~al 
4' . . . 
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Figure 8 - 30 Horizontal laminate specimen 1 S1-5K-9-x5 

Optical examination also revealed the same material structure (Figure 8 - 31) in the Horizontal 

laminate specimens as in the Vertical laminate specimens. 
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Figure 8 - 31 Horizontal laminate specimen 1 S1-5K-5-x5 
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8.7.2 EDX Analysis 

SEM examination did not reveal any further information and the EDX analysis was the same for 

both Vertical and Horizontal laminate specimens. 

8.8 Amdry 790 Post Thennal Fatigue Results 

8.8.1 Crack Initiation and Propagation 

Optically specimens 1 and 2 and the reference specimen were identical to each other 

containing a nickel and a silicon phase. The specimens, however, appeared to contain porosity 

but this could have been mistaken for nickel particles, wh ich had been pulled out during 

polishing (Figure 8 - 32) . 

- Nickel 

Figure 8 - 32 Amdry 790 specimen 1 S1-100K-1-x5 

Etching the specimen revealed the structure in the silicon phase (Figure 8 - 33) . 

... ....;~# .... __ """:'-:- Nickel 
~. Q{ • 

-- • .- , Silicon 

g/>-., 

Figure 8 - 33 Amdry 790 specimen 1 81-11 0K-2-x20 

157 Chapter Eight 



However, specimen 3 contained a eutectic structure (Figure 8 - 34) probably as a result of 

different element contents (poor mixing of the powder and the heavier elements sinking; it could 

also have occurred due to different cooling conditions) , The difference in the structure and the 

increased quantities of silicon present may further explain the difference in hardness previously 

observed, 

Figure 8 - 34 Amdry 790 specimen 3 53-1 1 OK-1-x5 

Figure 8 - 35 shows the structure in more detail, the nickel appeared to have a characteristic 

structure emanating from a circle of silicon, 

8.8.2 EDX Analysis 

From the SEM (Figure 8 - 36 and Figure 8 - 37) and the EDX (Figure 8 - 38) analyses a clearer 

picture of specimen 3 emerged. Figure 8 - 36 shows a light area (A), which contained 99,97% 

nickel; area B was nickel containing small traces of sulphur and micro cracks; area C was 

silicon with nickel veins running through it. 

Micro cracks initiated in area B propagated through it until they reached the interface of the 

nickel area B and area C, The cracks then propagated down thin veins of nickel in the sil icon 
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until reaching another nickel rich area (9) (Figure 8 - 36). Figure 8 - 37 shows this propagation 

over a larger area. 

The reason for this could be a function of the different rates of expansion between nickel and 

silicon, also nickel is ductile in comparison to silicon . 
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Figure 8 - 36 Amdry 790 specimen 3 S3-11 OK-3 

• .. 

• ,,,... 
H 

s-r () tIN DItktor ·oas! 
wo r1"n PfIDIO No .5113 

23 _2004 

Figure 8 - 37 Amdry 790 specimen 3 S3-11 OK-4 
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Mn = manganese, Ni = nickel, Si Silicon, S Sulphur, Cr = Chromium, K indicates .. I .. ct",nl 
transitions to the K shells. 

Figure 8 - 38 Amdry 790 specimen 3 EDX test 1 

Although specimen 3 had a different structure to specimens 1 and 2, the SEM images showed 

similar crack initiation and crack propagation (Figure 8 - 39). 

Figure 8 - 39 Amdry 790; (A) Specimen 1 S1-110K-14; (8) Specimen 1 S1-110K-16 
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8.9 Horizontal RapldSteel 2.0 Post Thermal Fatigue Results 

8.9.1 Crack Initiation and Propagation 

Optical examination revealed a structure similar to that exhibited by the Metalcopy materials 

(Metalcopy 5507. Metalcopy Janalloy. Metalcopy Cu). The material consisted of steel balls in a 

bronze matrix and most noticeable were dark areas of porosity in the specimens (Figure 8 - 40). 
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Figure 8 - 40 Reference specimen 5; (A) S5.QK-1-x5; (B) S5.QK-1-x20; (C) S5-0K-1-x40 

Figure 8 - 41 shows specimen 5 with Ihe steel heavily etched revealing smaller particles. which 

the EDX resulls indicated as chromium rich areas (Chromium rich precipitates. Uzunsoy et.al. . 

2002 and 2003). 

Figure 8 - 41 Specimen 5; (A) S5-0K-5-x40; (B) S5-0K-1·x40 

161 Chapter Eight 



Figure 8 - 42 shows that specimen 1 contained a greater amount of porosity, which may have 

accounted for the premature cracking observed . 
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Figure 8 - 42 Horizontal RapldSteel2.0 specimen 1 S1-100K-5-x5 

Optical examination showed that there were potential crack initiation sites, for example, porosity 

and the matrix braze interface. The crack preferred direction of crack propagation was along the 

interfaces between the steel and the matrix. However, on occasions the crack propagated 

though the matrix and the steel balls (Figure 8 - 43) (Uzunsoy et.al., 2003) . 
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Figure 8 - 43 Horizontal RapidSteel2.0 specimen 1; (A) S1-100K-6-x20; (8) S1-110K-7-x40 

8.9.2 EDX Analysis 

The SEM examination revealed oxide along the crack edges (Figure 8 - 44). The EDX analysis 

(Figure 8 - 45 and Figure 8 - 46) revealed what appears to be iron oxide forming down either 

side of the crack path. It also revealed that the bonding material (matrix) was a bronze material 

containing copper, silicon and tin and that the balls consisted of chromium rich steel. Particles 

with high chrome content were also revealed as were areas rich in tin (brighter areas). 
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Figure 8 - 44 Horizontal RapidSteel 2.0 specimen 1 EDX analysis area test 1 

Cr = Chromium, Cu = Copper, = Iron, 0 = Oxygen, Si = Silicon, K indicates electron 
transitions to the K shells, L is electron transitions to the L shell. L shells have lower energy and 
are more related to heavier elements. 

Figure 8 - 45 Horizontal RapidSteel 2.0 specimen 1 EDX analysis test 1 
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EDX area 
Cr = Chromium, Sn = Tin, K i electron transitions to K shells, L is "IF'r-tron! 

8.10 

8.10.1 

to the L shell. L shells have lower and are more related to heavier elements. 

Figure 8 • 46 Horizontal RapidSteel 2.0 specimen 3 EDX analysis test 2 

EOS DirectSteel 20llm Post Thermal Fatigue Results 

Crack Initiation and Propagation 

Optical examination revealed a structure similar to a series of welds layered one upon another 

(Figure 8 . 47), which was a reflection of the method of manufacture. It is likely that the darker 

areas were porosity, contaminants or inclusions from the bonding process. However, there 

appeared to be an underlying structure at 90· to the layers (Figure 8 • 47 and Figure 8 . 48) in 

the form of a needle like phase (columnar crystals) orientated in the direction of cooling, which 

the crack propagated down. Inclusions (contaminants, flux etc?) or porosity and an interface 

layer were also visible (Bassoli et.al. , 2004). 

Figure 8 ·47 EOS DirectSteel 20llm specimen 5 S5·5K-4·x10 
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Figure 8 • 48 EOS DirectSteel 20Jlm specimen 5 S5·5K·3·x40 

Although no specific cause of crack initiation was evident it was likely that initiation was either 

from an inclusion in the melt pool or poor wetting between melt pools. Examination showed that 

the cracks grew at 90· to the build direction and followed the columnar crystals (Figure 8 ·49). 
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Figure 8·49 EOS DirectSteel20Jlm specimen 1 S1-5K-9·x10 
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8.10.2 EDX Analysis 

The SEM examination did not reveal any additional information. The EDX (Figure 8 • 50 and 

Figure 8 . 51) showed that the material was made from iron, copper, nickel and phosphorous. It 

is clear from literature that the infiltrant is a nickel, copper and phosphorous alloy. However, 

phosphorous in a nickel alloy causes embrittlement. 
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Figure 8 • 50 EOS DirectSteel 20llm specimen 1 S1·5K·87 

i 
P = phosphorus, Cu = copper, Fe = iron, Ni = Nickel, K indicates electron transitions to the K 
shells, L is electron transitions to the L shell. L shells have lower energy and are more related to 
heavier elements. 

Figure 8 • 51 EOS DirectSteel 20llm EDX analysis 
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Chapter 9: Discussion 

9.1 Overview 

The aim of this work was to acquire an understanding of the mechanism of failure in rapid 

tooling materials that are subjected to harsh die casting environments and to determine material 

performance, mode of failure and suitability for the application. Hence, by carrying out this 

research it was expected to be possible to predict the life expectancy of materials and their 

failure mode leading to research to improve the thermal fatigue resistance of these materials. 

Die casting and more importantly pressure die casting was selected as the process to simulate 

as the industry has a problem and requires a means of producing prototype components and 

short run tooling, the tooling could even lend itself for tooling for production die validation. 

Chapter 1 describes the various common industrial die casting practices. The research showed 

pressure die-casting to be one of the most common and commercially used casting processes. 

The process has a fast cycle time ( .. 25 seconds) although dependent upon the alloy and 

casting size. Aluminium cold chamber pressure die casting tools have a shorter die life than 

magnesium and zinc due to the melting temperature of alloys and hence the thermal gradient 

and thermal shock the die is subjected to. Brass die casting is the only other pressure die 

casting process that has a higher melting temperature and thermal shock and shorter die life, 

but, the process was not chosen as it is not as common. Due to this aluminium pressure die 

cast was selected as the area of study. 

In terms of the aluminium alloy to cast, research showed that in both America and Europe LM24 

is most commonly cast alloy mainly due to its fluidity and castability. Due to this it was chosen 

as the material to be cast in the study. 

Chapter 2 discussed the types of die used in the pressure die casting industry; this served a 

number of purposes. One was to determine the various features found in a die i.e. radius as 

small as O.5mm, varying cross section etc. and to implement them in a specimen design. The 

second purpose was to determine what type of die to use to conduct the surface temperature 

trials to obtain a representative result. Finally it was necessary to establish current tooling 

practice which would allow alternative tooling manufacturing processes to be selected. Any new 

process must be able to match the current tooling methods. 

In terms of comparing the tool materials it was important to have a direct comparison to an 

existing tooling material used commercially. The study revealed there are several commonly 

tried and tested materials and all are mainly hot work tool steels. The study showed H 13 tends 
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to be the alloy of choice due to its hot work performance and was chosen as a suitable 

reference material. 

Chapter 2 also discusses the heat treatment process for H13. It was important to establish how 

the material was heat treated in order to conduct the same heat treatment program on the 

reference specimens to obtain identical materials properties to that found in a die. This was 

important for accurate comparison between materials. 

Chapter 3 assessed the modes of failure of a pressure die casting tool to determine what is 

most detrimental and how best to test the candidate materials to determine their suitability. The 

most detrimental was deemed to be thermal fatigue, although the other modes can contribute to 

crack initiation and a decline in fatigue life. It was decided thermal fatigue failure should be 

simulated to test a materials suitability and life expectancy for a pressure die cast tool. A study 

on fatigue and thermal fatigue was conducted to understand how cracks initiate, propagate and 

lead to failure. It was found that a material is fatigue life is affected by both its microstructure 

and mechanical properties. 

The research revealed three equations (equations 3 - 2, 3 - 3 and 3 - 4) all similar to one 

another. From the formulas, it was apparent that yield strength, thermal conductivity, elastic 

modulus and coefficient of thermal expansion play a key role in thermal fatigue resistance. A 

high yield strength is important since thermal fatigue generally occurs in the elastic region, a 

high thermal conductivity is advantageous to reduce the thermal gradient and hence, the stress 

in the material, a low elastic modulus is of benefit since the plastic component of thermal fatigue 

is small and a low thermal expansion reduces stress in the material. 

However, the research revealed several other material properties that are also beneficial such 

as hardness, resistance to tempering, good ductility etc. A complete list and explanation is 

shown in chapter 3, section 3.1. A major point that must be noted is that the formulas and the 

material properties which are deemed advantageous were created for alloy materials and may 

not be conclusive if used for rapid tooling materials. Moreover, many of the rapid tooling 

material properties are unknown and due to time constraints and material availability not all 

could be tested. Hence, the thermal fatigue test was required to determine the material 

suitability. 

Chapter 3 also addresses types of thermal fatigue testing including two used to assess 

materials and material coatings for die casting. However, these test are not representative of 

the die casting process for the reasons discussed in chapter 4, section 4.5. 

Chapter 3 continues to identify methods for crack detection. Optical was considered the best 

solution for crack detection during the test programme as it was simple, cost effective and 

accurate to O.1mm - O.5mm. It also was the only practical method due to the facilities available. 

Post thermal fatigue analysis employed both optical microscopy and scanning electron 
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microscopy. The scanning electron microscopy has a better resolution (0.001 mm) and was 

used to determine how the cracks initiated. Energy dispersive spectroscopy I energy dispersive 

X-ray (spectrometer) determined the mode of crack propagation through the material. 

Once the die casting process, alloy, die types I die characteristics I die materials I die failure 

mode, the most detrimental failure mode, testing methods and evaluation methods etc. had 

been established it was possible to review possible rapid tooling solutions and materials. 

However, obtaining a compete set of materials proved difficult due to some processes being in 

their infancy or because of insufficient funds (It must be noted that several of the techniques 

discussed in chapter 4 did not exist at the commencement of the work). 

When selecting a material to use as a die material for aluminium pressure die casting it is 

desirable to choose materials with similar properties to that of H13. However, the research was 

not trying to match a production die material, merely assess the potential of direct and indirect 

tooling materials for suitability for short run tooling (1 - 2000 components) for the manufacture of 

prototype components using the pressure die casting process. Due to this the materials were 

selected mainly on their temperature resistance and not purely on their mechanical properties. 

One of the reasons the metal copy process was selected for was because they were an 

industrial collaborator during the research period. Their materials are a mixture of 316L 

stainless steel infiltrated with three infiltrant materials. As discussed in chapter 5, section 5.3, 

316 stainless steel should withstand the temperatures of pressure die casting enabling castings 

to be produced. The material was chosen to determine which infiltrant material increased the 

performance of the material. 

Keltool uses A6 tool steel and is infiltrated with 30% copper, but was not selected for testing as 

specimens could not be obtained and they were not a collaborator in the research. 

The rapid solidification process (RSP) claims to be as good if not better than a H13 tool steel. 

The problem of the process is its limited size approximately 0150mm x 100mm thick. Due to 

this and that they were not a collaborator; it was not selected as a suitable process as dies are 

generally larger. 

The EcoTool process was not selected as specimens could not be obtained. 

The direct tooling methods found in the literature were, laminate tooling, selective laser 

sintering, direct laser Sintering, ProMetal, Solidica-Ultrasonic Consolidation, Laser Caving, CMS, 

ARCAM, Sprayform, Laser Engineered Net Shaping (LENS), Laser Consolidation. 

Laminate tooling was selected due to previous research on unbonded tooling, however, it was 

unclear how a bonded tool would perform. The material is predominantly sheet H13 tool steel 

brazed together with a high temperature braze. It was selected as it is the only process that 
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uses a commercial tool material used in pressure die-casting and it was not clear how the 

brazed laminate structure would behave when subjected to thermal fatigue. 

The direct laser sintered materials selected were DirectSteel 20~m and DirectSteel 50~m, as 

they both contained steel (alloy not divulged) as the base material and have a max operating 

temperature of BOO·C. The DLS process has other materials such as DirectMetal 20~m; 

however, this is a bronze material with a maximum operating temperature of 400·C and lower 

mechanical properties than the steel based materials. In addition DirectMetal 20~m has higher 

thermal expansion which is detrimental to thermal fatigue. The manufacture of the DirectSteel 

50~m specimens proved problematic due to cracking during manufacture preventing there 

testing; this left DirectSteel 20~m. 

From the selective laser sintering process only one material was selected, RapidSteel 2.0 which 

replaced RapidSteel 1.0. The material is 60% 316 stainless steel infiltrated with 40% phosphor 

bronze (90%Cu, 10%Sn). 

ProMetal, Solidica-Ultrasonic Consolidation, Laser Caving, CMB, ARCAM, Sprayform, Laser 

Engineered Net Shaping (LENS), Laser Consolidation process was not selected as specimens 

could not be obtained. 

9,2 The Thermal Cycle of an Aluminium Pressure Die Casting Tool 

Using thermocouples and temperature paints it was possible to obtain the temperature profile of 

an aluminium pressure die casting tool. 

The results of this work showed that the surface temperature of the die reached between 400·C 

and 450·C and cooled to between 150·C and 200·C. Persson's (2003) research was on brass 

pressure die casting and not aluminium. Persson (2003), recorded the surface temperature of 

the die reaching 9BO·C but cooled rapidly to 750·C in 0.35 seconds then cooled to 

approximately 300·C over the remainder of the cycle (",29.65 seconds). Despite Persson using 

brass, it was clear that there are similarities between the die temperature profile of a brass and 

aluminium die with the only difference being the higher temperatures (brass has a higher 

casting temperature than aluminium). Both experience rapid cooling as the molten metal hits the 

die surface and they have a similar cooling profile over the cycle time. Persson (2003), 

however, did estimate the surface of an aluminium die would reach 520·C. Srivastava (2003), 

also states that an aluminium pressure die casting tool surface reaches a maximum 

temperature of 457·C and cools down to 107·C. These results are in keeping with the tool 

temperature results of this work (450·C - 150·C). 

In addition, the profile shown in Figure 6 - 31 B is believed to be correct as research (Diecasting 

times, 2004) has shown a shot sleeve to reach an internal surface temperature of 4BO·C -

500·C with a significant amount of heat being lost by the molten metal (typically poured at 

700·C) prior to injection. In turn, the tool surface temperature was recorded to reach 400·C to 
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450°C. Research has shown that as molten aluminium contacts the surface of the die a thin 

layer freezes instantaneously and the die never reaches the temperature of the molten material 

(Chen, 2003, Ghomashchi, 1995). The mass of the die draws the heat away rapidly during 

solidification. Upon die opening, ejection, mould spray etc. the die surface begins to cool more 

rapidly as shown in Figure 6 - 18. 

9.3 Reproducing the Temperature Profile of an Aluminium Pressure Die Casting 

Tool 

A new method of thermal fatigue testing was developed at the beginning of the work to establish 

a means of comparing materials and determining their suitability for tooling in aluminium 

pressure die casting. 

At the commencement of the work, searches of the British and American standards revealed 

that no thermal fatigue test for this existed. This was thought to be due to the different variables 

involved that affect the materials thermal fatigue resistance. For example, the shape of the 

specimen, different heating and cooling mediums, the shape of the thermal cycle, the maximum 

and minimum temperatures etc. However, when undertaking a final search of the American 

standards during the writing up of the work a Japanese industrial standard (JIS Z 2278. 1992) 

and a Chinese standard GBfT 15824 - 1995 (1995) were identified. Despite the standard dates 

(1992 and 1995) they had only recently been placed in the American standards, hence, 

previous searches did not detect them (Chinese standard GBfT 15824 - 1995 still has a new tag 

on the American standards (2006) website). 

Unfortunately, no information could be gained from the Chinese standard as it has not been 

translated. However, the Japanese industrial standard by coincidence is identical to the test 

method developed in this work. It employs the same specimen and edge radius, and employs 

an automated transfer system, however, is does not identify the means of heating or COOling 

with the exception of water. It does recommend that if cooling in water the temperature should 

be maintained below 30°C; this research maintained the water temperature below 20°C. 

The thermal fatigue test methods discussed in chapter 3, section 3.5 were not considered to be 

a true representation of thermal fatigue in an aluminium pressure die casting so a new test was 

created. Although the new test does not reproduce the die casting temperature cycle exactly, 

the materials were subjected to the same minimum and maximum temperatures experienced in 

a die. The new test only considered thermal fatigue and not other contributing factors 

associated with die-casting such as pressure, erosion, wear, chemical attack etc. This allowed 

thermal fatigue resistance of materials to be compared. 

Additional benefits over previous tests methods were that the apparatus was versatile in terms 

of the temperature range 25°C - 1200°C, heating and cooling medium and the cycle time could 

be easily controlled. The specimens were small. allowing several to be tested Simultaneously 

and the geometry allowed easy measurement of cracks. The fatigue apparatus was robust and 
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reliable which was essential since many thousands of cycles were required. This test method 

could be adopted as a standard internationally for thermal fatigue testing. 

9.3.1 Effect of Material Structure on Thermal Fatigue 

The materials tested can be categorised into four types: 

1 ) Alloy steel 

2) Spherical powder infiltrated with a lower melting point alloy 

3) Braze bonded laminates 

4) Direct laser sintered 

Category 1: The material tested in category 1 was H 13 tool steel which was the experimental 

reference specimen. Literature has shown that a die in aluminium pressure die casting will 

exhibit cracking at approximately 100,000 - 150,000 (Clegg, 1999) cycles and Wallace's thermal 

fatigue experiment attempts to mirror this. However, his experiment incorporates other 

categories associated with die failure such as chemical attack which promotes crack initiation 

sites. The test in this work only considered thermal fatigue and hence, cracking did not occur in 

the H13 until later (180,000 - 220,000 cycles). The results from the H13 specimens were limited 

due to the overwhelming numbers of cracks that fonmed simultaneously, making cataloguing 

practically impossible. The crack patterns created are termed crazed cracking and are typical of 

the type of cracks seen on a thermally fatigued die surface. It was clear that a drop in hardness 

coincided with severe cracking. Persson, 2005 reported that gradual softening of his specimens 

also reduced the material's yield strength; a high yield strength increases thermal fatigue life. 

H 13 is strengthened by carbide formation and this increases the materials resistance to 

repeated strains. It was noticed that the cracks in the H 13 specimens tended to propagate 

through the areas rich in carbides and small cracks interlinked, which is endorsed by literature. 

Woodford and Mowbray's (1974) research showed that when a material containing carbides 

was subjected to thermal fatigue, the crack propagated from one carbide to another. The 

carbides may be a stress concentrator in the material and the source of crack initiation (Bendyk, 

et.al., 1970, NorstrOm, 1982, Norstrom, 1989, Weronski and Hejwoski, 1991, Schwam et.al., 

2004 Simons, 1972, SjostrOm and BergstrOm 2004, Woodford and Mowbray's, 1974, Worbye, 

1985). 

Category 2: The materials tested in category 2 contained steel powder (spheres) in a low 

melting point alloy bonding material (silver, copper, phosphor bronze etc.). The tendency for the 

metalcopy materials was for a crack to initiate at the interface between the steel powder and the 

matrix. This was probably a result of poor wetting creating a void which was a defect and stress 

concentrator and this allowed a crack to initiate (Simons, 1972). In addition, the material had 

chrome and molybdenum rich areas (carbides) in the steel and at the powder I bonding material 

interface that could have caused a stress raiser. The crack then propagated from one interface 

to another through the matrix. This structure proved detrimental to thermal fatigue resistance 

since the interfaces are crack initiation sites. The literature (Weronski and Hejwoski, 1991) 
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showed that composition and structure is as influential in thermal fatigue as it is in mechanical 

fatigue. It was seen that the materials contained large chrome and molybdenum carbides in the 

steel powder and at the steel and at the powder I infiltrant interface that may have caused a 

stress raiser. Although literature states carbide formation and solid solution strengthening are 

mechanisms to increasing strength and thermal fatigue resistance (Weroriski and Hejwoski, 

1991), large carbides are detrimental and are crack initiators and also cracks propagate from 

one carbide to another (Bendyk, et.al., 1970, NorstrOm, 1982, NorstrOm, 1989, Weroriski and 

Hejwoski, 1991, Schwam et.al., 2004 Simons, 1972, Sjostrom and BergstrOm 2004, Woodford 

and Mowbray's, 1974, Worbye, 1985). 

The thermal fatigue resistance of the Metalcopy materials was relatively poor and a major 

contributing factor was thought to be the inconsistency in the material manufacture with porosity 

and inclusions allowing ease of crack propagation. Another contributing factor was the alloying 

of the bonding material for Metalcopy 5507 and Metalcopy Janalloy. Both contained 316 

stainless steel powder. However, the bonding materials were meant to be identical and contain 

silver, copper and zinc, but, the Metalcopy Janalloy bonding material was manufactured in

house, whereas the Metalcopy 5507 bonding material was made by a supplier. It was clear from 

the thermal fatigue results that Metalcopy Janalloy was inferior to Metalcopy 5507. The 

Metalcopy Janalloy bonding material did not contain any zinc, instead it contained rhenium. It is 

not clear if this was a contributing factor to the poor thermal fatigue resistance. 

Metalcopy Cu tended to have better thermal fatigue characteristics than the other Metalcopy 

materials. Metalcopy Cu was infiltrated with copper whereas Metalcopy 5507 and Metalcopy 

Janalloy were an Ag, Cu, and Zn I Re alloy. 

The RapidSteel 2.0 material also fell into category 2; this material contained 316 stainless steel 

powder in a matrix of phosphor bronze. This bonding alloy also has good material properties in 

comparison to others. From optical examination, the matrix and the 316 stainless steel powder 

exhibited better wetting than the Metalcopy materials. Literature showed that better wetting 

reduces crack initiation sites and aids thermal fatigue performance (ASM, 1996). The material 

contained porosity and the likely cause was gas entrapment during infiltration. Despite this the 

material had a good resistance to thermal fatigue. This may be due to better mechanical 

properties of the material and good wetting characteristics in comparison to the Metalcopy 

materials, reducin9 the possibility of crack initiation sites. It was unclear how the cracks initiated. 

Literature suggests that cracking may have initiated from the porosity and or the chromium rich 

(carbides) areas at the powder I bonding material interface as both are material flaws and stress 

concentrators (Simons 1972). The cracks propagated down the powder I bonding material 

interface and through the bonding material taking the easiest route from one interface to 

another. It was also noticed that the areas around the crack were oxidised. Literature states that 

oxides are detrimental as they produce a brittle oxide film which can crack, form pits, create a 

stress concentrator which can promote cracking. It should also be noted that the steel powder 

was 316 stainless steel and should not oxidise at the test temperatures since it has good oxide 
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resistance in intermittent service to 870°C (Azom, 2006). However, it did oxidise to some extent. 

It is likely the 316 stainless steel became sensitised during infiltration. Phosphor bronze melts at 

830°C - 1020°C and when 316 stainless steel is heated to around 700°C, chromium carbide 

forms at the intergranular boundaries, depleting the grain edges of chromium, impairing their 

corrosion resistance. Steel in such condition is called sensitized. Chromium rich areas were also 

visible in the EDX analysis of RapidSteel 2.0 (chapter 8, section 8.9.2). It is however, possible 

to reclaim sensitized steel by heating it to above 1000°C and holding at this temperature for a 

given period of time, dependent on the mass of the piece, followed by quenching it in water. 

This process dissolves the carbide particles and then keeps them in solution. However, the 

manufacturing process of RapidSteel 2.0 does not involve water quenching (Wikipedia, 2006). 

Sensitised 316 stainless steel is susceptible to intergranular corrosion and chromium-depleted 

zones also act as local galvanic cells, causing local galvanic corrosion. In addition, RapidSteel 

2.0 is manufactured from two materials one more noble than the other and this could have 

caused a galvanic cell. In turn, water may have travelled down the crack (capillary action) 

creating an electroly1e cell causing the oxidation seen along the crack (Wikipedia, 2006). 

Amdry 790 is a braze material and although not bonded like the other category 2 materials, it 

had a similar microstructure with the nickel phase forming spheroid particles in a matrix of 

silicon (silicon is added to aid fluidity in the braze). However, the mode of crack initiation was 

different. It was unclear how the cracks initiated, however, sulphur was present in the nickel 

phase where micro cracking occurred. The sulphur may have caused embrittlement (Chen 

et.al., 2004). The crack propagated in this phase until it reached the silicon phase and then 

propagated down thin vanes of nickel (nickel I silicon grain boundaries) running through the 

silicon until it reached a nickel phase again. Once a crack is initiated it is common for it to 

propagate by de-cohesion along the grain boundary (ASM, 1996). 

Category 3: Category three consisted of nickel braze (Amdry 790) bonded H 13 tool steel 

(Horizontal laminate and Vertical laminate). It is clear from the micrographs that good wetting 

and diffusion bonding had occurred, which literature states increases thermal fatigue life (ASM, 

1996). It was found that the braze had two phases, one near the laminates and the other which 

tended to run down the centre, it is believed that this can and did affect the thermal fatigue 

resistance. The braze was richer in nickel and poorer in iron at the centre. The braze also 

contained porosity, probably caused by the gasses produced during the brazing process which 

were not able to escape. Porosity was also the likely source of crack initiation (Simons 1972). 

The cracks initiated from voids and propagated down the central phase of the braze and not 

down the boundary between phases. Cracks on occasion initiated and propagated along the 

braze I H13 interface. All the cracks initiated in the braze that bonded the laminate structure 

together. 

Category 4: The EOS DirectSteel 20~m material had a structure similar to a series of welds 

layered one upon another and these were caused by the method of manufacture. There 

appeared to be contaminants or inclusions in the material, which could be possible crack 

174 Chapter Nine 



initiators. This was also noted by Bassoli et.al, 2004. The material had a grain structure at 90· to 

the build I layer orientation, which appeared to be a needle like phase (columnar crystals). This 

was orientated in the direction of cooling and it was along this that the cracks propagated (grain 

boundary de-cohesion ASM, 1996). 

No specific cause of crack initiation was identified but it was likely that initiation was either from 

an inclusion in the melt pool or from poor wetting between melt pools. A crack may also have 

initiated I propagated as a result of residual stress, created by the melt pool solidifying whilst 

being restrained by the surrounding material. In turn, weld structures have a heat affected zone 

which is undesirable as the crystal structure varies, as do the material properties, in that area. 

9.4 Comparison of Material Perfonnance 

Prior to comparing the thermal fatigue resistance it is important to establish a ranking system so 

that the effects of material properties can be understood later. Ranking the fatigue resistance of 

the different materials was difficult as it is dependent upon how you view the data, for example: 

• Is a material that initiated cracks first with a low rate of crack initiation thereafter better or 

worse than a material which initiated cracks later with a high rate of crack initiation 

thereafter? 

• Is a material that initiated cracks first with a low crack length thereafter better or worse 

than a material which initiated cracks later with a high crack length thereafter? 

• Is a material that initiated cracks first with a low crack growth rate better or worse than a 

material which initiated cracks later with a high crack growth rate thereafter? 

• Is a material that initiated cracks first with many cracks but a low crack length better or 

worse than a material which initiated cracks later with few cracks but a high crack length? 

The following sections discuss the order of fatigue resistance in terms of the number of cycles 

versus initial crack initiation, initial and final number of cracks, initial and final total crack length 

and initial and final average crack length. The effect of the material properties will be discussed 

later. 

As the materials chosen for this research were mainly for low volume tools then the ranking was 

determined as follows: 

• The lower the number of cycles for crack initiation, the worse the material is at resisting 

thermal fatigue 

• The higher the number of cracks (initially and finally), the worse the material is at resisting 

thermal fatigue 

• The higher the crack length (initially and finally), the worse the material is at resisting 

thermal fatigue 
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The H 13 tool steel as expected out performed the rapid tooling materials in all cases, however, 

when cracking occurred the numbers were overwhelming and no sensible crack data could be 

obtained. 

9.4.1 Initial Signs of Cracking 

When comparing the order of thermal fatigue resistance in terms of the number of cycles to 

initiate cracks (Figure 9 - 1), it can be seen that EOS DirectSteel 20jJm was the worst material 

initiating 11 cracks at 500 cycles. Horizontal RapidSteel 2.0 was the best rapid tooling material 

initiating 14 cracks at 50,000. As expected H13 out performed all the rapid tooling materials 

initiating cracking at 180,000 cycles. 
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Figure 9 - 1 Number of cycles versus Initial number cracks (log scale) 

Previous aluminium pressure die-casting trials (Hague, 2001, Harris et.ai. , 2003', Harris et.ai., 

2003", Harris et.ai., 2004, Norwood et.ai. , 2001, Norwood and Soar, 2001, Norwood et.ai., 

2004, Norwood and Dickens, 2005) showed that the rapid tooling materials (DirectSteel 20jJm, 

RapidSteel 2.0, Metalcopy 5507, Vertical laminate) cracked earlier than predicted and severe 

cracking was evident after 500 cycles. It is probable that this was made worse by chemical 

attack of the infiltrant material by the molten aluminium. Factors such as chemical attack, 

adhesive wear, abrasive wear, erosion, oxidation, mechanical loading etc. promote crack 

initiation sites and propagation in these materials. 

9.4.2 Number of Cracks 

This section reviews the number of cycles versus the total number of cracks; this is the 

combined number of cracks on all the four specimens. The data shows how crack numbers 

increased for each material as the number of cycles increased. 
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It is important to compare the total number of initial cracks, the total number of final cracks and 

the number of cycles at which the cracks initiated. (Le. some materials may develop a few 

cracks at a low number of cycles (EOS DirectSteel 20llm) and have a low initiation rate 

thereafter, however, some materials may start to initiate cracks later (Metalcopy Janalloy) but 

initiate many cracks). So when comparing two materials, initially EOS DirectSteel 20llm was 

worse than Metalcopy Janalloy as it initiated cracking at a lower number of cycles. However, 

finally it was better than Metalcopy Janalloy as it had less cracks at the same number of cycles 

(Figure 9 - 2). 

The materials are ranked as follows: a material that cracks at a low number of cycles is worse 

than one which cracks at a higher number of cycles. If more than one material initiated cracking 

at the same number of cycles, the material with the highest total number of cracks is considered 

to be worse. For example, EOS DirectSteel 20llm is worse at 500 cycles than the Vertical 

laminate material (Figure 9 - 2) . 

Reviewing the initial results (again the higher the number of cracks) showed that EOS 

DirectSteel 20llm was the worst material with Horizontal RapidSteel 2.0 being the best (Figure 9 

- 2). 
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Figure 9 - 2 Number of cycles versus initial the total number of cracks (log scale) 

Reviewing the final results (Figure 9 - 3) the materials are ranked as follows: a material with a 

low number of cycles at the end of testing is worse than one which cracked at a higher number 

of cycles. If more than one material initiated cracking at the same number of cycles, the material 

with the highest total number of cracks is considered to be worse. 
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Therefore, Metalcopy Janalloy was the worst because of the three materials that were stopped 

at 5,000 cycles it had the highest total number of cracks. RapidSteel 2.0 was the best material 

because it had a lower number of total cracks than Amdry 790 at 100,000 cycles. 
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Figure 9 - 3 Number of cycles versus the final total number of cracks (log scale) 

9.4.3 Crack Length 

This section reviews the number of cycles versus the total crack length; this is the combined 

length of every crack on the specimens. The data shows how the crack length of each material 

increased as the number of cycles increased. 

When ranking the number of cycles against crack length both the initial and final crack lengths 

have to be assessed. For example, a material that initiates cracking first and has a high crack 

length (EOS DirectSteel 20~m) is worse than a material that initiates cracking later (Metalcopy 

Janalloy) (Figure 9 - 4) . However, a material that has a high final crack length (Metalcopy 

Janalloy) at the same number of cycles as a material with a lower final crack length (EOS 

DirectSteel 20~m) is worse (Figure 9 - 5) . 
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When comparing the specimens in terms of cycles versus total crack length the following was 

observed: 

Initially EOS DirectSteel 20~m was the worst with Horizontal RapidSteel 2.0 being the best 

(Figure 9 - 4). 

Finally the Vertical laminate specimens were the worst (Vertical laminate, Metalcopy Janalloy 

and EOS DirectSteel 20~m all completed 5,000 cycles) since they had the highest total crack 

length followed by Metalcopy Janalloy, EOS DirectSteel 20~m , Metalcopy 5507, Metalcopy Cu, 

Horizontal RapidSteel 2.0, Amdry 790 (Figure 9 - 5). 
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Figure 9 - 5 Number of cycles versus final total crack length (mm) (log scale) 

9.4.3.1 Average Crack Length 

The average crack length is the total crack length divided by the number of cracks . 

A material which has a horizontal plot must be initiating and propagating cracks at a similar rate. 

Such as EOS DirectSteel 20~m and Metalcopy Janalloy. If the plot is increasing, the number of 

cracks must be low and the crack length and propagation higher (e.g. Vertical laminate) (Figure 

9 - 6) . 

As with the previous ranking it is important to look at the initial average crack length and final 

average crack length against the number of cycles. 

It is clear that initially EOS DirectSteel 20~m had the largest average crack length, with 

Horizontal RapidSteel 2.0 being the best (Figure 9 - 6). 
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Figure 9 - 6 Number of cycles versus initial average crack length (mm) (log scale) 

Figure 9 - 7 shows that finally the Vertical laminate material was the worst with Amdry 790 being 

the best. 
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Figure 9 - 7 Number of cycles versus final average crack length (mm) (log scale) 

As this research was investigating prototype tools , then initial results are more important than 

final results, Table 9 - 1 shows the overall initial material performance results, The lower the 

number the worse the material performance. 
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Material Initial number Initial total Initial average 
Overall of cracks crack length crack length 

EOS DirectSteel 1 1 1 1 
20~m 
Vertical laminate 2 2 2 2 
Metalcopy Janalloy 3 3 3 3 
Amdry 790 4 4 4 4 
Metalcopv 5507 5 5 5 5 
Metalcopy Cu 6 6 6 6 
Horizontal 7 7 7 7 RapidSteel2.0 
H13 8 8 8 8 

Table 9 - 1 Initial material performance 

The main problem of cracking is the effect on surface finish of a part. In this case each of the 

three criteria have similar or equal importance. Therefore, each criteria was given the same 

importance. 

If the demand for prototypes increased, as is often the case during product development, then 

the final material performance results would become important. 

Table 9 - 2 shows the final material performance results. The lower the number the worse the 

material performance. 

The severity of these factors will determine whether a part will stick in the tool cavity and 

therefore affect the usability of the die. This will depend greatly on the geometry of the part and 

therefore for this study each factor was assumed to have equal weighting. 

Material 
Final number Final total Final average crack 

Overall of cracks crack length length 
Vertical laminate 2 1 1 1.33 
Metalcopy Janalloy 1 2 3 2.00 
EOS DirectSteel 3 3 2 2.67 
20~m 
Metalcopv 5507 4 4 5 4.33 
Metalcopy Cu 5 5 4 4.67 
Horizontal 7 6 6 6.33 RapidSteel 2.0 
Amdrv 790 6 7 7 6.67 
H13 8 8 8 8 

Table 9 - 2 Final material performance 

By using both the initial and final results the following material performance was established 

(Table 9 - 3). Again the lower the number the worse the materials performance. 

As the factors have been weighted equally and the materials have been promoted for small and 

medium volumes then the initial and final order were also weighted equally. 
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Material Initial order Final order Order 
Vertical laminate 2 1.33 1.67 
EOS DirectSteel 20~m 1 2.67 1.84 
Metalcopy Janalloy 3 2 2.50 
Metalcopy.5507 5 4.33 4.67 
Metalcopy Cu 6 4.67 5.34 
Amdrv 790 4 6.67 5.34 
Horizontal RapidSteel 2.0 7 6.33 6.67 
H13 8 8 8 

Table 9 - 3 Overall thermal fatigue results 

9.5 The Relationship between Material Properties and Thermal Fatigue Life 

As discussed in the hypothesis in chapter 4 section 4.4 it was believed that the materials 

properties would be directly linked to thermal fatigue performance. This section will review the 

results against each of these material properties. 

9.5.1 Hardness 

Figure 9 - 8 shows the hardness of the specimens during thermal cycling. It is clear that the 

hardness remained reasonably constant. 
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Figure 9 - 8 Number of cycles versus hardness (HRb) (log scale) 

When comparing the experimental data of category 2 materials (Metalcopy Janalloy, Metalcopy 

Cu, Metalcopy 5507, Horizontal RapidSteel 2.0) with the exception of Amdry 790 (Amdry 790 is 

an alloy and not an infiltrated material) there appeared to be a correlation between hardness 

and thermal fatigue properties, i.e., the harder the material the better the thermal fatigue 

resistance in terms of crack initiation and life expectancy (Table 9 - 4, Table 9 - 5, Table 9 - 6). 

No comparison (Table 9 - 4) between thermal fatigue resistance and hardness could be drawn 

for the EOS DirectSteel 20~m , Vertical laminate and Amdry 790 materials, as these are very 

different types of material. 
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Material Hardness (HRb) Fatigue Performance 
EOS DirectSteel 20~m 89 Worst 
Vertical laminate 111 
Metalcopy Janalloy 56 
Amdrv 790 79 
Metalcopy 5507 70 
Metalcopy Cu 83 
Horizontal RapidSteel 2.0 86 
H13 104 - 120 Best 

Table 9 - 4 Initial material performance versus hardness 

Material Hardness (HRb) Fatigue Performance 
Vertical lam inate 111 Worst 
Metalcopy Janalloy 56 

j EOS DirectSteel 20~m 89 
Metalcopv 5507 70 
Metalcopy Cu 83 
Horizontal RapidSteel 2.0 86 
Amdrv 790 79 
H13 104-120 Best 

Table 9 - 5 Final material performance versus hardness 

Material Hardness (HRb) Fatigue Performance 
Vertical laminate 111 Worst 
EOS DirectSteel 20~m 89 
Metalcopy Janalloy 56 
Metalcopv 5507 70 
Metalcopv Cu 83 
Amdry 790 79 
Horizontal RapidSteel 2.0 86 
H13 104-120 Best 

Table 9 - 6 Overall material performance versus hardness 

9.5.2 Density 

Density is one of the material properties that may allow the prediction of thermal fatigue 

resistance. The higher the material's density the better it should be at resisting thermal fatigue . 

No correlations for density and thermal fatigue resistance could be drawn for material 

performance (Table 9 - 7 - Table 9 - 9). 

Material Density_{g/cm') Fati(lue Performance 
EOS DirectSteel 20~m 7.91 Worst 
Vertical laminate 7.73 
Metalcopy Janalloy 7.19 
Amdrv 790 7.99 
Metalcopv 5507 8.05 
Metalcopy Cu 773 
Horizontal RapidSteel 2.0 7.82 
H13 7.8 Best 

Table 9 - 7 Initial material performance versus density 
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Material Density (g/cm') Fatigue Performance 
Vertical laminate 7.73 Worst 
Metalcopv Janallov 7 19 
EOS DirectSteel 20jJm 7.91 
Metalcopy 5507 8.05 
Metalcopv Cu 7.73 
Horizontal RapidSteel2.0 782 
Amdry790 7.99 
H13 7.8 Best 

Table 9 - 8 Final material performance versus density 

Material Density (g/cm') Fatigue Performance 
Vertical laminate 7.73 Worst 
EOS DirectSteel 20~m 7.91 
Metalcopv JanalloJ' 719 
Metalcopy 5507 8.05 
Metalcopv Cu 7.73 
Amdry790 7.99 
Horizontal RapidSteel 2.0 7.82 
H13 7.8 Best 

Table 9 - 9 Overall material performance versus density 

During thermal fatigue testing it was noted that cracks tended to initiate and propagate through 

the materials bonding material. When looking at the bonding material density, a pattern 

emerged. With the exception of Amdry 790 which is a braze and an alloy (not infiltrated / 

bonded) the remaining materials had improved thermal fatigue resistance as their bonding 

material density decreased (Table 9 - 7 - Table 9 - 9). This is a contradiction since a low density 

usually equals a low thermal fatigue resistance. 

Material Density (g/cm') Fatigue Performance 
Metalcopv Janallov infiltrant 9.35 Worst 
Amdry 790 7.99 

~ Metalcopv 5507 infiltrant 9.27 
Metalcopy Cu infiltrant 8.88 
Horizontal RapidSteel 2.0 mfiltrant 8.78 Best 

Table 9 -10 Initial material performance versus Infiltrant density 

Material Density (g/cm') Fatigue Perfomnance 
Metalcopv Janallov infiltrant 935 Worst 
Metalcopy 5507 infiltrant 9.27 

! Metalcopy Cu infiltrant 8.88 
Horizontal RapidSteel 2.0 infiltrant 878 
Amdry 790 7.99 Best 

Table 9 - 11 Final material performance versus infiltrant density 

185 Chapter Nine 



Material DensTtVTtilcm"f Fatiaue Performance 
Metalcoov Janalloy Infiltrant 9.35 Worst 
MetalcoDv 5507 infiltrant 9.27 

t MetalcoOv Cu infiltrant 8.88 
AmdrV790 7.99 
Horizontal RaDidSteel 2.0 infiltrant 8.78 Best 

Table 9 - 12 Overall material performance versus infiltrant density 

However, this led to discovering that the difference in density between the powder material and 

bonding material is important. With a bonding material with a low density there is less difference 

with the powder material. So it is advisable to have a bonding material and powder material with 

similar densities to improve thermal fatigue life. Table 9 - 13 shows differences of up to 

1.35g/cm3
. 

Material Powder material Bondlna material Difference Fatiaue Perfonnance 

Metaloopy Janalloy 316 SS (8glcm') Ag alloy (9.35g/cm,) 1.35g/cm' Worst 

Melaloopy 5507 316 SS 8(glcm') Ag alloy (9.27g1cm,) 1.27g/cm' 1 Met.loopy Cu 316 SS (Sg/cm') Cu alloy (8.88g1cm') 0.88g/cm' 

RapidSteel '" 2.0 316 SS (Sg/cm') Phosphor Bronze (8.78g/cm') 0.78g/cm' Best 

Table 9 - 13 Powder material and bonding material densities and differences 

The lower the difference in densities between the materials the better the thermal fatigue 

resistance. 

9.5.3 Thermal Conductivity 

Initial tests were conducted on all the candidate materials to assess their thermal conductivity. 

It is generally considered that a high thermal conductivity equates to better fatigue resistance as 

there is a reduced temperature difference through a material and hence less stress. 

All the materials analysed are made either from two alloys (e.g. Metalcopy 5507, 316 stainless 

steel and a silver alloy) or contain two main element's forming the alloy (e.g. EOS DirectSteel 

20~m , Amdry 790). Each alloy I elements thermal conductivity was reviewed to determine if a 

correlation existed. 

The initial material performance shows that there is a correlation between the composite 

material's thermal conductivity and the material's ability to resist thermal fatigue. (The higher the 

composite material thermal conductivity the better the thermal fatigue performance) (Table 9 -

14). 

The final and overall material performance show a similar trend, the exceptions are EOS 

DirectSteel 20~m and Amdry 790. However, these are both alloys and not bonded materials so 

it is difficult to directly compare them. When comparing them to one another the rule still applies 
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(the higher the thermal conductivity of the material the better the material performance) (Table 9 

- 15 - Table 9 - 16). 

Another point to note is EOS DirectSteel 20~m contained two materials iron and nickel with 

thermal conductivities of 80.4W/mk and 90.0W/mk respectively. However, the material itself had 

a thermal conductivity of only .. 14W/mk. Microscopy revealed that the material contained large 

inclusions I porosity and poor wetting between the layers, which was the probable cause of its 

poor thermal conductivity. 

Micrographs also showed that Amdry 790 contained porosity, which may have reduced the 

material's thermal conductivity. 

No clear correlations were evident for material 1, material 2 or the thermal conductivity 

differences between the materials (Table 9 - 14 - Table 9 -16). 

Thennal Conductivity W/mk 
Material Composite Material 1 Material 2 Difference Fatigue 

Material Perfonnance 
EOS DirectSteel 20 m 1393 Iron - 804 Nlckel- 90 0 104 Wo .. t 
Vertical laminate 21 .64 H13 - 25.82 Amdry - 25.78 0.04 

J 
Metalcopy Janalloy 24.61 316 SS - 16.3 Ag alloy - 65.15 48.85 
Amdrv790 25.78 Nlckel- 90 9 SIlicon - 150 591 
Metalcopy 5507 27.17 316 SS - 16.3 Ag alloy - 62.66 46.36 
Metalcopy Cu 32.18 316 SS - 16.3 Cu alloy - 230.54 214.24 
Horizonlal RapidSleel 2.0 34.34 316 SS - 16.3 Phosphor Bronze - 50 33.7 
H13 24.3 Best 

Table 9 - 14 Initial material performance versus thermal conductivity 

I ,(W/mk) 
Material 11 12 

Ver :al 21 .64 H13 - 25.82 Amdry - 2 i.7; 0.04 

~ 
316 SS - .3 Aa alloy 15 48.85 

;,-1""" 20U!!!....m _f---,;~;--t-.:iI~ronl i:' -8~( c"t---.-'N~'ck=ell~ - '" ",_1-...,~10' 4:'--i 
16 ss - .3 Ag alloy - j6 46.36 

r Cu !.18 316 SS - 1 i.3 Cu alloy - 2: 0 . 54=C---+-~2141 .. 2=C--4-1 
12.0 14.34 316 SS - 1 i.3 ,- 50 33.7 

25 78 N,ckel- 90 9 Silicon 15e 59 1 Amdrv 790 T 
H13 24.3 Best 

Table 9 - 15 Final material performance versus thermal conductivity 

Thermal Conductivity (W/mk) 
Material Composite Material 1 Material 2 Difference Fatigue 

Material Perfonnance 
Vertical laminate 21 .64 H13 - 25.82 Amdry - 25.78 0.04 Worst 
EOS DlrectSleel 20um 1393 Iron - 80 4 Nickel- 900 104 

j Metalcopy Janalloy 24.61 316 SS - 16.3 Aa alloy - 65.15 48.85 
MetalcoPY 5507 27.17 316 SS -16.3 Aa alloy - 62.66 46.36 
Metalcopy Cu 32.18 316 SS -16.3 Cu alloy - 230.54 214.24 
Amdry 790 2578 Nlckel- 909 Sihcon - 150 591 
Horizontal RapidSteel 2.0 34.34 316 SS -16.3 Phosphor Bronze - 50 33.7 
H13 24.3 Best 

Table 9 - 16 Overall material performance versus thermal conductivity 
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9.5.4 

9.5.4.1 

The Effect of the Material Properties and Thermal Fatigue Properties 

Crystal Structure 

The bonding materials had the same crystal structure, face centre cubic (Shackelford and 

Alexander, 2001 and Gale and Totemeier 2004), and therefore, the same slip planes. This 

meant that the bonding material crystal structure of the materials chosen was not a factor in 

fatigue performance. 

9.5.4.2 Thermal Expansion 

A material with low thermal expansion is generally considered to have better thermal fatigue 

resistance. The thermal expansion data shown in Table 9 - 17 to Table 9 - 19 shows that no 

definite correlations can be drawn. 

The Vertical laminate specimen was made from two materials laminated together with different 

coefficients of expansion (the coefficient of linear thermal expansion of nickel is 13 . 3~m/moC 

and H13 1 . 04~m/m°C) . It is likely this would induce expansion and contraction at different rates 

resulting in stress formation in the material. The braze also had a nickel rich centre through 

which the crack propagation occurred. 

Thermal Expansion m/mf C 
Material Material 1 Material 2 Difference 

EOS DireclSteel 20~m Iron· tl .8xl0 Nickel - 13.3 xl 0 1.5 xl 0 
Vertical laminate H13 -1 .04 xl0 Nickel-13.3.'0 12.26 xl0 
Melalcopy Janalloy 316 SS - 16.5 xl0 Silver - 19.68 xl0 3.18 xl0 
Amdry 790 Nickel - 13.3 xl0~ Silicon - 4.2 xl O~ 9.1 xl0~ 
Metalcopy 5507 316 SS -165 xl0 Silver-19.68xl0 3.18 xl0 
Metalcopv Cu 316 SS - 16.5 xl0 Copper - 16.5 xl0 0 
Honzontal RaoidSteel 2.0 316 SS -16.5 .,0 Phosphor Bronze - 18.4 x10 1.9 xl0 
H13 1.04 xl0~ 

Table 9 - 17 Initial material performance versus thermal expansion 

Material 

Vertical 
I 

EOS I 1 20~m 
1507 

I :u 
2. 

Amdry 790 
H13 

1 

HI3-1 . Ix1 
316 SS - ,.5 x 

Iron - 11 1X10~ 

; . 
; - ;. 
; - ; x 

i ,e, -13 I xl 
1.04 x 

I m/m,C 

Silver .68x· 3.1! "D' 
Copper - 1.5 x' 

. Bronze -18.4 xl0~ 1.9 xl 0~ 

Silicon - 4.2 xl0' 9 .1 xl0' 

Table 9 -18 Final material performance versus thermal expansion 

Thenmal Expansion m/mfC 
Material Material 1 Material 2 Difference 

Vertical laminate H13 - 1.04 xl 0 Nicke l- 13.3 xl0~ 12.26 xl 0 
EOS DirectSteel 20~m Iron -11 .8 xl0~ Nickel - 13.3.,0 1 .5 xl0~ 

Metalcopv Janallov 316 SS - 16.5 .'0~ Silver - 1968 xl0 3.18 xl 0 
Metalcopy 5507 316 SS - 16 5 xl0 Silver - 19.68 xl0 318xl0 
Metalcopy Cu 316 SS - 16.5 xl0 Copper - 16.5 xl0~ 0 
Amdry 790 Nickel -13.3 xl0~ Silicon - 4.2 . ,0 9.1 xl0~ 
Horizontal RapldSteel2 .0 316 SS - 16.5 xl0~ Phosohor Bronze - 18.4 x10 1.9 xl0~ 
H13 1.04 xl 0 

Fatigue 
Performance 

Worst 

j 
Best 

T 
Best 

Fatigue 
Performance 

Wo",t 

j 
Best 

Table 9 -19 Overall material performance versus thermal expansion 
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9.5.4.3 Modulus of Elasticity 

The thermal fatigue resistance of a material is considered to increase if the material has a low 

modulus of elasticity. The modulus of elasticity investigated were bulk, rigidity and Young's. 

Table 9 - 20 - Table 9 - 22 shows the material moduli of elasticity, at first glance there does not 

appear to be any correlations. However, when comparing Metalcopy Janalloy, Metalcopy 5507, 

Metalcopy Cu and RapidSteel 2.0 materials some correlations appear. 

1) The thermal fatigue resistance increases as material 2 rigidity modulus increases 

2) The thermal fatigue resistance increases as rigidity modulus difference decreases 

Matart.1 

VInic.! 
1amin.11 
Metaloopy 
Janallay 
EOS 
OlrectS,"' 
20jJm 
Met.leapy 
'S07 
MetalC:O Cu 
Hon"'21a . 
RapldSteel 
20 
Amd 790 
H13 

31655 ?? 83 ". PhotJ)hor 
0""". ?? 50 120 ?? 33 95 

Table 9 - 20 Initial material performance versus modulus of elasticity 

Modulus of El .. Uclty (GP.) 

OHft; ... nca 

Mat.r1a' Bulk RIgidity Young. Materill Bulk Rigidity Young. Bulk Rltldlty Young. 1 , 
H13 1<0 ., 210 Nick., 180 7. 200 <0 • 10 

31655 ?? 83 ". Sd.,. 104 30 .3 ?? 53 132 

In>n 170 ., 211 Nickel 180 7. 200 10 • 11 

316 SS ?? 83 215 .. ,- 104 30 83 ?? 53 132 

316 SS ?? 83 215 Co 140 .. 130 " 35 ., 
3165$ ?? 83 215 Phosphor 

0...". " 50 120 " 33 •• 
Nldtel 180 7. 200 "'<On 100 11 ., 80 n 153 

1<0 ., "0 

Table 9 - 21 Final material performance versus modulus of elasticity 

Worst 

"at!eu. 
p.rfonnlnu 

Worst 

..~ 
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Worst 

Table 9 - 22 Overall material perfonnance versus modulus of elasticity 

9.5.4.4 Elongation 

The percentage elongation at break of the bonding materials played a part in determining 

fatigue resistance. Generally, the higher the percentage elongation of material 2, the better the 

thermal fatigue resistance (Table 9 - 23 - Table 9 - 25). 

Elongatlon (% 
Material Material 1 Material 2 Difference Fatlgue 

Performance 
EOS DirectSleel 20 m Iron -?? Nickel- 30 - 40 ?? Worst 
Vertical laminate H13-9-10 Nickel- 30 - 40 20·30 

j Melalcoov Janallov 316 SS - 40 Silver ~ 50 10 
Amdrv790 Nickel- 30 - 40 Silicon· ?? ?? 
Melalcopy 5507 316 SS ·40 Silver - 50 10 
Metalcopy Cu 31655·40 Copper· 60 20 
Horizontal RapidSteel2.0 316 SS· 40 Phosphor Bronze - 70 30 
H13 9 -10 Best 

Table 9 - 23 Initial material performance versus elongation 

Elongation % 
Material Material 1 Material 2 Difference Fatigue 

Performance 
Vertical laminate H13 ·10 Nickel - 30 - 40 20·30 Worst 
Metalcopy Janalloy 316 SS - 40 S,iver - 50 10 

j EOS DirectSteel 20~m Iron · ?? Nickel· 30 - 40 ?? 
Metalcoov 5507 316 SS -40 Silver - 50 10 
MetalcODV Cu 316 55·40 Copper· 60 20 
Honzontal RapidSteel 2 0 31655·40 PhosDhor Bronze - 70 30 
Amdry790 Nickel - 30 • 40 Silicon· ?? ?? 
H13 9·10 Best 

Table 9 - 24 Final material perfonnance versus elongation 

, {"to 

Material 11 12 ~atlgue 

Ver <;al H13 - 10 Nickel - 30 - 4U 2U - 30 Worst 
EO: 120~m I",n -?? Nickel- 30 '·~O. ?? 

j ~ 
,liver -

; . "iver -
;. ·60 

Amdry 790 Ni kei-10·40 ,ilicon ·n 
2 3165: , 40 . Bronze- 30 

H13 9- Best 

Table 9 - 25 Overall material perfonnance versus elongation 
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9.5.4.5 Ultimate Tensile Strength 

A correlation is evident for Metalcopy Janalloy, Metalcopy 5507, Metalcopy Cu and RapidSteel 

2.0 materials. As the ultimate tensile strength of material 2 (bonding material) increased, the 

resistance to thermal fatigue improved (Table 9 - 26 - Table 9 - 28). 

No correlations were apparent for EOS DirectSteel 20~m, Vertical laminate and Amdry 790. 

Ultimate Tensile Strength MPa) 
Matertal Matertal1 Matertal2 Difference Fatigue 

Performance 
EOS DirectSteel20 m Iron -180 - 210 Nickel· 400 - 600 220 - 390 Worst 
Vertical laminate H13 -1990 Nlckel- 400 • 600 1590·1390 

j Metalcopy Janalloy 316 SS - 515 Silver ·140 375 
Amdrv 790 Nickel - 400 - 660 Silicon -?? ?? 
Metalcopv 5507 31655-515 Silver · 140 375 
Metalcopv Cu 316 SS - 515 Copper - 210 305 
Honzontal RapidSteel 2.0 316 SS - 515 Phosphor Bronze· 455·1014 60·499 
H13 1990 Best 

Table 9 - 26 Initial material performance versus ultimate tensile strength 

Matertal 

Table 9 - 27 Final material performance versus ultimate tensile strength 

Matortal 

Table 9 - 28 Overall material performance versus ult imate tensile strength 

9.5.4.6 Yield Strength 

A high yield stress is considered advantageous to resist thermal fatigue. A potential correlation 

may exist between yield stress and thermal fatigue resistance; however, Ihere is not enough 

data to validate this (Table 9 - 29 - Table 9 - 31). Further testing would be required to determine 

this for certain . In addition, no material data could be sourced for the yield strength of silver or 

silicon so no correlations could be made. 
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Yield Strength (MPa) 
Material Material 1 Material 2 Difference Fatigue 

Perfonnanee 
EOS DirectSteel20~m Iron - 120 - 150 Nickel- 150 - 480 30 - 330 Worst 
Vertical laminate H13 -1650 Nickel - 150 - 480 1500-1170 

I Metalcopv Janalloy 316 SS - 205 Silver -?? ?? 
Amdry790 Nickel-150 - 480 Silicon -?? 11 
Metalcopy 5507 316 SS - 205 Silver- ?? 11 
Metalcopv Cu 316 SS - 205 Copper - 33 3 172 
Horizontal RapidSteel 2.0 316 SS - 205 Phosphor Bronze - 193 12 
H13 1650 Best 

Table 9 - 29 Initial material performance versus yield strength 

Yield Strength (MPa) 
Material Material 1 Material 2 Difference Fatigue 

Performance 
Vertical laminate H13 -1650 Nickel - 150 - 480 1500 - 1170 Worst 
Metalcopy Janalloy 316 SS - 205 Silver -?? ?? 

j 
EOS DirectSteel 20~m Iron - 120 -150 Nickel - 150 - 480 30 - 330 
Metalcopy 5507 316 SS - 205 Silver -?? 11 
MetalcODV Cu 316 SS - 205 Copper - 33 3 172 
Honzontal RapldSteel 2 0 316 SS - 205 Phosphor Bronze - 193 12 
Amdry 790 Nickel - 150 - 480 Silicon - ?? ?? 
H13 1650 Best 

Table 9 - 30 Final material performance versus yield strength 

Yield Strength MPa 
Material Material 1 Material 2 Difference Fatigue 

Performance 
Vertical laminate H13 - 1650 Nickel - 150 - 480 1500 - 11 70 Worst 
EOS DirectSteel 20~m Iron -120 -150 Nickel- 150 - 480 30 - 330 

j Metalcopy Janalloy 316 SS - 205 Silver -?? ?? 
Metalcopv 5507 316 SS - 205 Silver -?? ?? 
Metalcopy Cu 316 SS - 205 Copper - 33.3 172 
Amdry 790 Nickel - 150 - 480 Silicon - 1? 11 
Horizontal RapidSteel 2.0 316 SS - 205 Phosohor Bronze - 193 12 
H13 1650 Best 

Table 9 - 31 Overall material performance versus yield strength 

9.5.4.7 Poisson's Ratio 

Table 9 - 32 - Table 9 - 34 shows the thermal fatigue data and the material's Poisson's ratio. 

There appears to be a general trend for Metalcopy Janalloy, Metalcopy 5507, Metalcopy Cu and 

RapidSteel 2.0 materials. As material 2 Poisson's ratio decreases the thermal fatigue 

performance increases. As the Poisson's ratio difference decreases the thermal fatigue 

resistance increases. 

No conclusions could be drawn for EOS DirectSteel 20~m , Vertical laminate and Amdry 790. 
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Polsson's Ratio 
Material Material 1 Material 2 Difference Fatigue 

Performance 
EOS DirectSteel20 m Iron - 0.291 Nickel- 0.31 0.019 Wo .. t 
Vertical laminate H13 - 0.3 Nickel- 0.31 0.01 

j 
Metalcopy Janalloy 31655 - 0 27 -0 3 Silver - 0 37 01 - 007 
Amdry 790 Nickel- 0.31 Silicon - 0.42 0.11 
MelalcoDV 5507 316 SS - 0.27 - 0.3 Silver - 0.37 0.1- 0.07 
MelalcoDv Cu 316 SS - 0.27 - 0.3 CODoer - 0 343 0.073 - 0.043 
Honzontal RapldSleel 2 0 31655 - 027 -0 3 Phosohor Bronze - 034 007-004 
H13 0.3 Besl 

Table 9 - 32 Initial material performance versus poisson's ratio 

Polsson's Ratio 
Material Material 1 Material 2 Difference Fatigue 

Performance 
Vertical laminate H13 - 0.3 Nickel- 0.31 0.01 Wo .. 1 
Melalcopy Janalloy 31655 - 0 27 - 0 3 Silver - 0.37 01-007 

j EOS DirectSteel 20~m Iron - 0.291 Nickel- 0.31 0.019 
Metalcopy 5507 316 SS - 0.27 - 0.3 Silver - 0.37 0.1-007 
MetalcoDV Cu 316 SS - 027 - 0 3 Copper - 0 343 0073 - 0.043 
Honzontal RaPldSleel 2 0 316 SS - 0 27 - 03 Phosohor Bronze - 0_34 007 - 0.04 
Amdry 790 Nickel- 0.31 Silicon - 0.42 0.11 
H13 0.3 Best 

Table 9 - 33 Final material performance versus poisson's ratio 

Polsson's Ratio 
Material Material 1 Material 2 Difference Fatigue 

Performance 
Vertical laminate H13 - 0.3 Nickel - 0.31 0.01 Worst 
EOS DirectSleel 20~m Iron - 0.291 Nickel - 0.31 0.019 
MetalcooY Janalloy 316 SS - 0.27 - 0.3 Silver - 0_37 01 - 0 07 
Melalcopv 5507 316 SS - 0 27 - 0.3 Silver - 037 0.1-007 
Metalcopv Cu 316 SS - 027 - 0 3 Copper - 0 343 0073-0043 
Amdry790 Nickel- 0.31 Silicon - 0.42 0.11 
Honzonlal RaDidSteel2 0 316 SS - 0.27 - 0.3 Phosphor Bronze - 034 007 - 004 
H13 0.3 Best 

Table 9 - 34 Overall material performance versus polsson's ratio 

9.5.5 The Effect of Material Properties on Fatigue Resistance Overview 

The results show that there are many factors (mechanical properties and material 

microstructure) which influence a material's thermal fatigue performance. 

Since the materials are manufactured by different methods and have different structures it is 

difficult to do a direct comparison of the material's thermal fatigue performance and the material 

properties. It must also be noted that the list of desirable material properties obtained from the 

literature search are for alloy materials, no such list was able to be drawn for composite 

materials. 

9.5.5.1 Category 1 H13 Tool Steel 

As expected the H13 reference material showed superior thermal fatigue resistance when 

compared to the rapid tooling materials tested. The reason for this is that the material has been 

specifically designed for such an application. 
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9.5.5.2 Metalcopy Janalloy, Metalcopy 5507, Metalcopy Cu and RapidSteel 2.0 

Materials 

In the case of Category 2 materials it is possible to conclude important information when 

viewing the material properties. It was, however, clear from the research that the mechanical 

properties of the bonding material were key in the performance of the materials. 

The literature showed (ASM, 2001, Bendyk, et.al., 1970, Novovic et.al., 2004, Schwam, et.al., 

2004, Simons, 1972, Sjostrom and Bergstrom 2004) that higher hardness leads to better 

thermal fatigue resistance and this has also been seen in this work. 

A high density material also performs better (Rytz, 1996), however, no conclusions could be 

drawn since the densities were similar to one another. What does seem important to improve 

thermal fatigue resistance is a low difference in density between the steel powder and the 

infiltrant material. 

Askeland, 1994, NorstrOm, 1982, Olive, 2005, Schwam et.al., 2004, Weroriski and Hejwoski, 

1991 and Worbye, 1985 state that a high thermal conductivity improves fatigue performance 

and this work shows this to be true. However, a material constructed of dissimilar metals and 

different thermal conductivities it likely to induce internal I localised stress in the material 

(Schwam, et.al., 2004). 

NorstrOm, 1982, Schwam et.al., 2004, Weroriski and Hejwoski, 1991 and Worbye, 1985 state 

that a low thermal expansion is considered beneficial, however, the results of this work are 

inconclusive. 

Askeland, 1994, NorstrOm, 1982, Schwam et.al., 2004 Weroriski and Hejwoski, 1991 and 

Worbye, 1985 state that a low Young's modulus is advantageous. The bonding materials all had 

very low modulus when compared to the steel powder and it was evident that if the bonding 

material had a higher modulus it had better fatigue resistance, however, this is a contradiction, 

but it transpired that by reducing the modulus difference between the bonding material and the 

powder material increases fatigue resistance. 

Bendyk, et.al., 1970, NorstrOm, 1982, NorstrOm, 1989, Weroriski and Hejwoski, 1991, Simons, 

1972, SjostrOm and Bergstrom 2004, Worbye, 1985 stated that a high percentage elongation 

improves thermal fatigue resistance and the work found this to be the case for the bonding 

material. 

Askeland, 1994, Bendyk, et.al., 1970, NorstrOm, 1982, Weroriski and Hejwoski, 1991, Simons, 

1972, SjostrOm and BergstrOm 2004, and Worbye, 1985 state that a high ultima~e tensile 

strength improves fatigue performance and this work clearly shows that as the higher the 

bonding material UTS the better the thermal fatigue resistance (Table 9 - 26 - 9 - 28). 
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Badger Metals, 2001, Worbye, 1985, Schwam, et.al., 2004 state that is beneficial for a material 

to have a high yield strength. No conclusions could be drawn from this work. 

Although no literature was found to suggest that Poisson's ratio has an affect on thermal fatigue 

resistance the results of the work showed that if the bonding material had a lower Poisson's 

ratio it had improved thermal fatigue resistance. A lower bonding material Poisson's ratio also 

reduces the difference between it and the powder material increasing the composites fatigue 

resistance. 

The research has shown that several conclusions can be drawn for category 2 composite 

materials. It also showed it is beneficial to reduce the difference or have similar material 

properties for the powder and bonding material. 

9.5.5.3 EOS DirectSteel 20llm, Vertical Laminate and Amdry 790 Materials 

Due to the different structure of these materials and limited material data is proved difficult to 

compare the thermal fatigue performance against material properties. Few conclusions could be 

drawn. 

Askeland, 1994, NorstrOm, 1982, Olive, 2005, Schwam et.al., 2004, Weror'lski and Hejwoski, 

1991 and Worbye, 1985 state that a high thermal conductivity improves fatigue resistance and 

this work shows this to be true. However, a material constructed of dissimilar metals and 

different thermal conductivities it likely to induce internal I localised stress in the material 

(Schwam, et.al., 2004). 

Although no literature was found to suggest that Poisson's ratio has an affect on thermal fatigue 

resistance the results of the work showed that if the bonding material had a lower Poisson's 

ratio it had improved thermal fatigue resistance. A lower bonding material Poisson's ratio also 

reduces the difference between it and the materials increasing fatigue resistance. 

It is clear that further material tests would need to be conducted to enable conclusions for EOS 

DirectSteel 20IJm, Vertical Laminate and Amdry 790 Materials to be drawn. 

9.6 Methods to Improve Thermal Fatigue Resistance 

Using the information from this research and the information gained from the literature search 

the thermal fatigue resistance of rapid tooling materials that are composites may be improved 

using the following general guidelines. 

• Reduce porosity I inclusions to decrease potential crack initiation sites 

• Avoid having a element rich phase in the structure 

• Avoid having materials with carbides or element rich phase at the powder bonding 

material interface to reduce crack initiation 
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• Ensure good wetting and bonding of materials to reduce potential crack initiation sites and 

propagation routes 

• Avoid bonding materials that cause embrittlement 

The research has shown, that all the rapid tooling materials have poor thermal fatigue 

characteristics, when compared to H13 tool steel because they contain multiple materials, have 

poor material microstructure and poor material properties. However, Metalcopy 5507 and 

Metalcopy Cu did not initiate cracking until 3,000 cycles and it may be possible to use these 

materials for prototype die casting tooling. Moreover, Horizontal RapidSteel 2.0 did not initiate 

cracking until 50,000 cycles and it may be used for prototype and low volume die cast tooling. 
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Chapter 10: Conclusions 

This work has shown clearly the temperature at the surface of a typical aluminium pressure die 

casting tool and revealed the surface heats up to 400·C - 450·C and cools to 150·C - 200·C. 

A new test method has been established enabling a materials thermal fatigue resistance to be 

identified. The test is robust, reliable and versatile. It has a large operating temperature range, 

(25·C - 1200·C), alternative heating and cooling mediums can be used. The cycle times and 

dwell times are adjustable. 

An exact simulation of the aluminium die casting process could not be achieved using this 

method due to insufficient heating rate. However, materials can be compared and an 

approximate fatigue life for aluminium pressure die casting determined. 

It was possible to determine how many thermal cycles a material could be subjected to prior to 

crack initiation and to determine the crack growth properties. Post thermal fatigue examination 

was able to determine the mechanism of crack initiation and propagation. 

For the Metalcopy materials cracks initiated at the interface between the steel powder and the 

matrix, the material also had chrome and molybdenum rich areas (large carbides) in the steel 

and at the powder I infiltrant interface that may have caused a stress raiser. The cracks 

propagated from one interface to another through the matrix and the material was manufacture 

with porosity and inclusions allowed ease of crack initiation and propagation. Hence, the 

thermal fatigue resistance of the Metalcopy materials was relatively poor. 

RapidSteel 2.0 was the best tooling material at resisting thermal fatigue as it had better powder 

I bonding material wetting than the Metalcopy materials but it did contain some porosity. There 

were large carbide rich areas at the powder I bonding material interface and the cracks 

propagated down the powder I bonding material interface and through the bonding material 

taking the easiest route from one interface to another. Oxide was also visible at the crack 

edges. 

Amdry 790 resisted thermal fatigue in a similar manner to RapidSteel 2.0 but differed to the 

other materials in that it was a braze and not a bonded material. It was unclear how the cracks 

initiated, however, the presence of sulphur indicated embrittlement and could cause the 

observed micro cracking in the nickel. The cracks propagated from the micro cracks down thin 

vanes of nickel (grain boundary de-cohesion). 
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This material suffered from internal stresses possibly due to different thermal coefficients of 

expansion of the component materials. The presence of a rich phase at the centre of the 

bonding material is the likely cause of crack initiation and propagation through the rich phase. 

The presence of porosity in the bonding material increased crack initiation sites and reduced 

thermal fatigue resistance. 

A weld like structure with columnar grains was observed with inclusions that would increase 

crack initiation sites and reduce thermal fatigue resistance. Poor wetting between layers which 

would also increase crack initiation sites and reduce thermal fatigue resistance. Cracks 

propagated at 90· to the build orientation and down (or along) the columnar grain structure (de

cohesion along the grain boundary). 

It is important to note, before using the results and manufacturing a die-casting tool from any of 

the rapid tooling materials tested, that aluminium has an affinity for the bonding materials. It is 

likely that adhesion, wear, erosion will result from its use in die casting tooling. The thermal 

fatigue resistance will reduce because of the increased potential of crack initiation sites as 

observed in several tooling case studies conducted during the course of this work (Gibbons 

et.al. 2003, Harris et.al., 20038
, Harris et.al 2003", Harris et.al 2004, Norwood, 2001, Norwood 

et.al., 2001, Norwood 2002", Norwood et.al., 2004). 

The structure, alloying and material properties were found to have a big influence on how a 

material will behave when subjected to thermal fatigue. 

From this work material properties clearly had an effect on the thermal fatigue performance. It 

has been shown that the hardness, UTS, elongation to break and thermal conductivity should 

be as high as possible. This work has shown for the first time the importance of Poisson's ratio 

and the difference of values between the infiltrant materials and the powders, also a similar 

situation is apparent for density. The key finding is reducing the difference between the values 

for the two materials improves fatigue performance. Large carbides, porosity, inclusions, poor 

wetting and element rich phases have been shown to provide crack initiation sites. 

From the data obtained in this research it was clear that two materials performed better than the 

majority studied, namely Horizontal RapidSteel 2.0 and Amdry 790. The best in terms of 

resistance to crack initiation was Horizontal RapidSteel 2.0 and the best in terms of crack 

growth rate was Amdry 790. However, Amdry 790 is a braze material and was predominantly 

tested to understand how the braze behaved independently of a laminate structure (not bonded 

to form a H13 laminate structure). The research has shown Horizontal RapidSteel 2.0 to be the 

best material for resisting thermal fatigue. 

198 Chapter Ten 



Chapter 11: Recommendations for Further Work and the Contribution of 

this Work to the Body of Knowledge 

11.1 Recommendations for Further Work 

It would be useful to understand how different thermal cycles affect the performance of 

materials in order to establish their limitations and to predict their life expectancy in tooling 

applications. In addition. developing stress versus number of cycles curves (S - N curves) for 

the materials would be useful to enable finite element analysis to be conducted for life time 

predictions with different geometries and at varying stress levels. 

This work identified that the mode of crack propagation in the EOS DirectSteel 20IJm was at 90· 

to the build orientation. It would be of use to determine how altering the build orientation affects 

the crack propagation. 

Metalcopy materials and Amdry 790 showed inconsistency in their microstructure, indicating 

that their manufacture was not consistent. Research into their manufacture and how it affects 

the microstructure and material properties will be necessary to improve the performance of the 

materials. Additionally, infiltration techniques need to be researched to reduce defects, such as 

inclusions and porosity. 

Due to time restraints it was not possible to create a statistical I modelling approach to 

determine the thermal fatigue resistance of the materials using the materials mechanical 

properties of the materials. Creating such a model would be very advantageous. 

An area of this research was concerned with bonded H13 laminates but research of different 

brazes, braze thickness or bonding methods could lead to improved thermal fatigue. Selecting a 

braze with the desired mechanical properties discussed in chapter 9) and similar thermal 

expansion properties to the material being bonded may improve fatigue life. In turn, it is 

unknown how varying the braze thickness will affect thermal fatigue resistance. Improving the 

brazing process may also reduce porosity and reduce crack initiation sites. 

Thermal fatigue is only one aspect of aluminium pressure die-casting. Other aspects need to be 

investigated such as chemical attack, i.e. how aluminium reacts with rapid prototype materials; 

impact and how constant loading and unloading affect the die materials (die opening and 

closing). 

It is necessary to conduct bulk elastic modulus testing on phosphor bronze to confirm that the 

thermal fatigue resistance of a material increases as bulk modulus increases. 
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It would also be advantageous to test the material mechanical properties, to gain an overall 

picture of how this affects thermal fatigue resistance. 

11.2 Contribution to the Body of Knowledge 

The knowledge gained from this research has enabled the suitability of currently available rapid 

tooling metallic materials for high temperature processes to be determined. It has also created a 

platform for thermal fatigue testing from which new materials may be developed and their 

performance compared. 

The contribution has also been the generation of data to provide an understanding of 

temperatures in dies; it has provided a new thermal fatigue test method allowing comparisons 

between materials. The results have shown how thermal fatigue occurs in rapid tooling 

materials, and established guidelines on how a material may perform. In turn, the guide lines 

show how the rapid tooling materials should be im proved in order to increase thermal fatigue 

resistance. 
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Appendix i 

Material Thermal Conductivity and Density 

Appendix i 



H13 tool steel results 

Mass of Specific Hes Test Duration Water Temp Water Temp Change in Water Water FIOYi Heat Conducted Distance Between Thermocouple Thermocouple Temp Change Ove Specimen Cross Thermal Conductivity 
Water (M) of Water (5) (s) Out(T ..., In (T.., TempT .... · T In (4t) (m) m·S·~t (Q) Thermocouples (L) One (T,) Two (T,) Length T,- T2 (.:1n Sectional Area (A) (L(m·S· Mll/(AXA TJ (K) 

Litres (I) Joules (J) Seconds (s) (,C) (OC) (,C) (Vs) Watts (!N) Mertres (m) ('Cl (,C) ('C) (m') (w/m OK) 

0.7545 4186 6t5 31.72 2t.90 9.62 0.00123 50.43 0.025 112.30 211.72 99.42 0.00049 25.88 

0.7355 4186 615 31.23 21.60 9.63 0.00120 48.21 0.025 107.88 200.58 92.70 0.00049 26.53 

0.7279 4188 615 31.12 21.83 9.29 0.00118 46.01 0.025 108.28 200.65 92.37 0.00049 25.42 

0.7289 4186 615 31.37 21.92 9.45 0.00119 46.89 0.025 109.75 202.52 92.77 0.00049 25.79 

0.7360 4186 615 31.18 21.98 9.20 0.00120 46.09 0.025 110.72 203.00 92.28 0.00049 25.48 

Average 25.82 

Appendix i Table 1 H13 thennal conductivity data 

Metal copy 5507 

Mass of Speci1ic Hea Test Duration Water Temp Water Temp Change in Water Water FIOVII Heat Conducted Distance Between Thennocouple jrh~nnOCOUPle Temp Change Ove Specimen Cross Thennal Conductivity 
Water (M) of Water (5) (s) Out (T"" In (Tin) Temp Tout· T In (at) (m) m·S·~t(Q) Thennocouples (L) One (T1) Two (T,) Length Tl - T2 (aT) Sectional Area (A) (L(m·S·~t))/(AX~TJ (K) 

Utres (I) Joules (J) Seconds (s) ('Cl lOC) (,C) (Vs) watts(!N) Mertres (m) ('Cl (,C) ('Cl (m') (w/m "1<) 

0.6175 4186 600 32.20 21.90 10.30 0.00103 44.37 0.025 115.63 203.47 87.84 0.00047 26.80 

0.6119 4186 600 32.08 21.72 10.37 0.00102 44.25 0.025 112.47 203.77 91.30 0.00047 25.72 

0.6240 4186 600 32.48 22.00 10.48 0.00104 45.64 0.025 122.55 212.65 90.10 0.00047 26.87 

0.6167 4186 600 31.90 21.38 10.52 0.00103 45.25 0.025 118.45 207.72 89.27 0.00047 26.89 

0.6107 4186 600 32.00 21.75 10.25 0.00102 43.67 0.025 120.82 199.20 78.38 0.00047 29.56 

Average 27.17 

Appendix i Table 2 Metal copy 5507 thennal conductivity data 
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Metal copy 5507 Infiltrant 

Mass of Specific Hea Test Duration Water Temp jw~terTem~ Change in Water Water Flov. Heat Conducted Distance Between Thermocouple trn~rmOCOUPle Temp Change OVe Specimen Cross Thermal Conductivity 
Water (M ofWater(S) (a) Out(T _) In(T .) Temp T out - T In (.6.t) (m) m·S·"t (Q) Thermocouples (L) One (T" Two (T,) Length T, - T2 (AT) Sectional Area (A) (L(m·S· "t))/(AXa T) (K) 

Litres (I) Joules (J) Seoonds (5) ~C) (DC) ~C) (Vs) Watts ()N) Mertres (rn) ~C) ~C) ~C) (m2
) (w/m "1<) 

0.6073 4186 800 31.60 21.12 10.48 0.00101 44.41 0.025 171.65 209.57 37.92 0.00047 62.15 

0.6572 4186 610 30.80 20.88 9.92 0.00108 44.73 0.025 171.28 209.15 37.87 0.00047 62.67 

0.6445 4186 800 31.03 21.17 9.87 0.00107 44.36 0.Q25 168.57 208.25 37.68 0.00047 62.48 

0.5907 4186 830 32.30 21.40 10.90 0.00094 42.78 0.025 169.43 206.97 37.54 0.00047 60.47 

0.6605 4186 600 31.30 21.75 9.55 0.00110 44.01 0.025 173.85 209.28 35.63 0.00047 65.53 

Average 62.66 

Appendix i Table 3 Metal copy 5507 infiltrant thermal conductivity data 

Metal copy Janalloy 

Mass of Specific Hea Test Duration [w...aterTemp ~aterTemp Change in Water ~ater FIO\O Heat Conducted Distance Between ~ennocouP'e ~nnocouple Temp Change eve Specimen Cross Thennal Conductivity 
Water (M) ofWater(S) (a) Out (T'" In (T.) Temp T out - T In (.6.t) (m) m·S·"t(Q) Thennocouples (L) One (T1) Two (T,) Length Tt - T2 (6.T) Sectional Area (A) (L(m·S·"t)y(AXaT) (K) 

Litres 0) Joules (J) Seconds (5) ~C) {0C) ~C) (Vs) Watts ()N) Mertres (m) ~C) ~C) ~C) (m2) (w/m "1<) 

0.6377 4186 600 32.60 22.80 9.80 0.00108 43.60 0.025 109.80 206.60 96.80 0.00047 23.90 

0.6415 4188 600 32.63 22.55 10.08 0.00107 45.12 0.025 113.67 208.12 94.45 0.00047 25.34 

0.6396 4188 600 32.90 22.53 10.37 0.00107 46.27 0.025 107.93 206.95 99.02 0.00047 24.79 

0.6304 4186 600 32.12 22.38 9.73 0.00105 42.81 0.025 113.77 205.40 91.63 0.00047 24.79 

0.6334 4188 600 32.47 22.60 9.87 0.00106 43.60 0.025 104.90 200.48 95.58 0.00047 24.20 

Average 24.61 

Appendix i Table 4 Metal copy Janalloy thermal conductivity data 
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Metal copy Janalloy infiltrant 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water Water ~Iow Heat Conducted Distance Between Thermocouple Th!rmocouple Temp Change Ove Specimen Cross Thennal Conductivity 
Water (M) of Water (5) (s) Out (1...) In (T In) Temp T OUI· T In (at) (m) m"S""t(Q) Thermocouples (L) One (1,) T'IIO (12' length T,- T2 (liT) Sectional Area (A) (l(m"S" "t))/(AX" T) (K) 

Utres (I) Joules (J) Seconds (s) re) (GC) re) (I/s) Watts 0N) Mertres (m) re) rC) re) (m'l (wlm "K) 

0.6342 4186 600 30.92 21.27 9.65 0.00106 42.69 0.025 172.98 209.32 36.34 0.00047 62.34 

0.6211 4tB6 BOO 30.60 20.70 9.90 0.00104 42.90 0.025 171.98 208.65 3B.B7 0.00047 62.08 

0.6172 4tB6 600 30.90 20.97 9.93 0.00103 42.77 0.025 170.95 207.25 36.30 0.00047 62.52 

0.6160 4t66 600 31.00 21.20 9.80 0.00103 42.11 0.025 170.15 205.22 35.07 0.00047 63.72 

0.6508 4186 600 31.25 21.47 9.7B 0.00106 44.42 0.025 173.35 204.73 31.38 0.00047 75.11 

Average 65.15 

Appendix i Table 5 Metal copy Janalloy infiltrant thermal conductivity data 

Metal copy Cu 

Mass of Specific Hea ~est Duration Water Temp W~terTemp Change in Water ~ater Flow Heat Conducted Distance Between Thennocouple Thennoc:ouple Temp Change Ove Specimen Cross Thennal Conductivity 
Water (M) ofWater(S) (s) Out (1...) In(T In) Temp T CUI - T In (bot) (m) m"S""t (Q) Thennoc:ouples (L, One (T1) Two (T2' length T1 - T2 (boT) Sectional Area (A) (l(m"S""t))/(AX"T) (K) 

litres (I) Joules (J) Seconds (s) re) (0C) rC) (Vs) Watts fY'{J Mertres (m) re) re) re) (m') (w/m "1<) 

0.7004 4186 600 3t.37 21.60 9.77 0.00117 47.73 0.025 117.27 212.78 95.51 0.00047 26.51 

0.7949 4186 600 31.95 21.90 10.05 0.00132 55.73 0.025 128.93 203.30 74.37 0.00047 39.76 

0.79B1 4188 600 30.78 21.60 9.18 0.00133 51.11 0.025 118.88 20B.50 69.62 0.00047 30.26 

0.7932 41B8 600 31.78 21.78 10.00 0.00132 55.34 0.025 122.63 203.0B BO.45 0.00047 36.50 

0.7646 4186 600 32.25 22.20 10.05 0.00127 53.61 0.025 123.18 217.00 93.82 0.00047 30.32 

Average 32.18 

Appendix i Table 6 Metal copy CU thermal conductivity data 
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Metal copy Cu Infiltrant 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water ~ater Ftov. Heal Conducted Distance Between Thermocouple Thermocouple Temp Change Ove Specimen Cross Thermal Conductivity 
W3ter(M of Water (S) (s) Qul(T ...) In (T oJ Temp T out - T In (At) (m) m·S·&t(Q) Thermocouples CL) One (Td Two (Tz) length T1 - T2 (.:.\n Sectional Area (A) (L(m·S·&\))/(AX&T) (K) 

litres (I) Joules (J) Seconds (s) ('C) (0C) ("C) (Vs) Watts f!N) Mertres (m) (,C) ("C) ("C) (m') (w/m "1<) 

O.BOO4 4186 600 31.50 22.00 9.50 0.00133 53.05 0.025 195.03 207.2B 12.25 0.00047 229.n 

0.7752 4186 600 31.50 21.68 9.B2 0,00129 53.09 0.025 195.72 208.02 12.30 0.00047 229.01 

0.770B 4186 BOO 31.22 21.55 9.B7 0,00128 51.97 0.025 191.75 203.77 12.02 0.00047 229.46 

0.7568 4186 600 31.42 21.80 9.B2 0.00126 51.83 0.025 192.57 204.97 12.40 0.00047 221.78 

0.8528 4186 600 30.95 21.42 9.53 0.00142 56.72 0.025 197.00 209.40 12.40 0.00047 242.69 

Average 230.54 

Appendix i Table 7 Metal copy CU infiltrant thermal conductivity data 

Vertical Laminate 

Mass of Specific Hea [Test Duration ~aterTemp lw~erTemp Change in Water ~ater FI"" Heat Conducted Distance Between Inermocouple rn~rmOCOUPle Temp Change Over Specimen Cross Thermal Conductivity 
Water (M) ofWater(S) (s) QuI(T ~) In (T ml Temp T out - T In (bot) (m) m*S·bot (Ql !Thermocouples (L) One (T1) Two (T,) Length T1 - T2 (boT) Sectional Area (Al (L(m·S· &I))/(AX& T) (K) 

Litres (I) Joules (J) Seconds (5) ("C) (0C) ("C) (Vs) Watts f!N) Mertres (m) ("C) ("C) ("C) (m') (w/m "1<) 

0.B545 4188 600 31.1B 22.10 9.08 0.00109 41.48 0.025 110.55 211.48 100.93 0.00049 20.93 

0.6470 4186 BOO 31.70 22.40 9.30 0.00108 41.98 0.025 107.83 207.83 100.00 0.00049 21.38 

0.6403 4188 600 31.43 22.30 9.13 0.00107 40.79 0.025 106.02 201.17 95.15 0.00049 21.87 

0.5223 4188 600 31.9B 21.65 10.33 0.00087 37.65 0.025 117.27 205.05 87.78 0.00049 21.88 

0.8600 4186 1020 29.50 21.00 B.50 0.00084 30.00 0.025 65.00 134.00 69.00 0.00049 22.14 

Average 21.64 

Appendix i Table 8 Vertical Laminate thermal conductivity data 
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Horizontal Laminate 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water Water FI.,.. Heat Conducted Distance Between Thermocouple hennocouple Temp Change Ove Specimen Cross Thermal Conductivity 
Water (M ofWater(S) Is) Out IT",) In IT",) Temp T atJI-T In (.6.t) Im) m'S'AIIQ) Thermocouples (L) One (Tt) Two (T2) Length T, - T,d.6.T) Sectional Area (A) Illm'S' AI))/(AXA T) IK) 

litres (I) Joules (J) seconds (S) ('C) (GC) ('C) (Vs) Watts (VII) Mertres (m) ('C) ('C) ('C) (m!) (w/m~) 

0.7208 4186 600 31.58 23.06 8.53 0.00120 42.89 0.025 110.75 214.12 103.37 0.00049 21.13 

0.5984 4186 600 31.90 22.82 9.28 0.00100 38.75 0.025 105.42 202.10 98.88 0.00049 20.41 

0.5838 4186 600 31.73 22.23 9.50 0.00097 38.69 0.025 104.77 200.73 95.98 0.00049 20.54 

0.8188 4186 600 31.12 22.10 9.02 0.00103 38.93 0.025 103.77 200.70 96.93 0.00049 20.45 

0.8078 4186 600 31.38 22.20 9.18 0.00101 38.94 0.025 103.90 201.05 97.15 0.00049 20.41 

Average 20.59 

Appendix i Table 9 Horizontal Laminate thermal conductivity data 

Amdry (790) 

Mass of Specific Hea ~est Duration Water Temp W~terTemp Change in Water ~ater FI.,.. Heat Conducted Distance Between TheOllOCOUple ~nmOCOUPIe Temp Change OVOI Specimen Cross Thermal Conductivity 
Water (M) of Water (S) Is) Out IT",) In (T ,.) Temp T out - T In (.6.t) Im) m'S'AI IQ) TheOllocouples (L) One (T,) Two (T2) Length T,- T2 (boT) Sectional Area (A) (l(m'S'AI))/(AXATJ (K) 

Litres m Joules (J) Seconds (s) (,Cl (0C) ('C) (Vs) Watts rNJ Mertres (m) ('C) ('C) ('C) (m2) lw/m '1<) 

0.7730 4186 800 31.12 22.47 8.65 0.00129 46.65 0.025 111.83 208.90 95.07 0.00047 28.02 

0.7748 4186 800 30.85 22.40 8.45 0.00129 45.68 0.025 107.45 200.03 92.58 0.00047 26.16 

0.7685 4186 800 30.78 22.45 8.33 0.00128 44.66 0.025 105.23 204.30 99.07 0.00047 23.91 

0.7645 4186 800 31.08 22.60 8.48 0.00127 45.25 0.025 113.80 202.90 89.10 0.00047 26.93 

0.6586 4166 600 31.72 21.92 9.80 0.00110 45.03 0.025 109.45 201.73 92.28 0.00047 25.88 

Average 25.78 

Appendix i Table 10 Amdry (790) thermal conductivity data 
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Venice! RapidStael 2.0 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water Water Flow Heat Conducted Distance Between Thermocouple Th~rmocouple Temp Change Ove Specimen Cross Thermal Conductivity 
Water (M) ofWater(S) (s) Out (T .., In (T In) emp T out - T In (At) (m) m·S·"1 (Q) Thermocouples (L) One (T1, Two (T2) length T, - T2 (an Sectional Area (A) (L(m·S·"I))/(AX..!.T) (K) 

Litres (I) Joules (J) seconds CS) ('C) !"C) ('C) (Vs) Watts (W) Mertres (m) ('C) ('C) ('C) (m') (w/m "'1<) 

0.8283 4188 600 31.87 22.22 9.65 0.00138 55.77 0.025 111.65 205.82 94.17 0.00047 31.40 

0.8510 4168 605 30.90 21.68 9.22 0.00141 54.27 0.025 107.87 202.82 94.95 0.00047 30.31 

0.8255 4186 800 31.25 21.60 9.85 0.00138 55.58 0.025 123.93 214.65 90.72 0.00047 32.49 

0.8197 4186 600 31.12 21.62 9.50 0.00137 54.33 0.025 119.18 209.32 90.13 0.00047 31.96 

0.8657 4186 640 31.60 21.97 9.63 0.00135 54.54 0.025 117.05 206.25 89.20 0.00047 32.43 

AVeT21ge 3'1.72 

Appendix i Table 11 Vertical RapidSteel 2.0 thennal conductivity data 

Horizontal RapidSteel 2.0 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water Water Flow Heat Conducted Distance Between Thermocouple Thermocouple Temp Change Ove Specimen Cross Thermal Conductivity 
Water (M) of Water (8) (s) Oul(T .., In (T..., Temp T out - T In (dt) (m) m·S·"1 (Q) Thermocouples (L) One (T1) Two (T,) length T1 - Tt (dT) Sectional Area (A) (L(m·S·"I))/(AX..!.T) (K) 

Litres (I) Joules (J) Se<:onds (s) ('C) (0C) ('C) (Vs) Watts IY'f) Mertres (m) ~C) (,C) ('C) (m2
) (w/m "1<) 

0.8537 4186 600 31.77 22.13 9.64 0.00142 57.40 0.025 123.20 206.07 82.87 0.00047 36.73 

0.8450 4186 800 31.27 22.13 9.14 0.00141 53.87 0.025 119.25 2OS.60 87.35 0.00047 32.70 

0.8440 4186 600 31.33 22.10 9.23 0.00141 54.37 0.025 118.45 205.37 86.92 0.00047 33.17 

0.8750 4186 600 30.93 21.63 9.30 0.00146 56.77 0.025 112.97 203.02 90.05 0.00047 33.43 

0.8585 4188 600 31.20 21.60 9.60 0.00143 57.50 0.025 116.93 202.40 85.47 0.00047 35.67 

Average' 34.34 

Appendix i Table 12 Horizontal RapidSteel 2.0 thennal conductivity data 
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Vertical EOS DirectSteel 5OJ.Lm 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water Water Flov. Heat Conducted Distance Between Thermocouple Thermocouple Temp Change Ove Specimen Cross Thermal Conductivity 
Water (M) ofWater(S) (s) Out(T ..., In (T o,J Temp T atJI - T In (b.t) (m) m'S'At (Q) rnermocouples (L) One (Td Two (T2) Length T, - Tz (b.T) Sectional Area (A) (L(m'S'Atll/(AXAT) (K) 

Litres (I) Joules (J) Seconds (s) ('Cl (oCl ('Cl (VS) wattsf!N) Mertres (m) (,C) ('C) ('C) (m2) (w/m "K) 

0.5349 4186 625 30.40 21.42 8.96 0.00086 32.18 0.025 92.28 206.66 116.60 0.00047 14.64 

0.4998 4186 600 30.48 21.60 8.88 0.00083 30.96 0.025 96.10 207.72 111.62 0.00047 14.71 

0.4328 4188 600 31.80 21.90 9.90 0.00072 29.89 0.025 91.52 206.78 115.26 0.00047 13.75 

0.4324 4186 600 31.78 21.77 10.02 0.00072 30.21 0.025 93.02 207.50 114.48 0.00047 13.99 

0.4295 4186 600 31.03 21.63 9.40 0.00072 28.17 0.025 86.35 206.32 119.97 0.00047 12.45 

Average 13.91 

Appendix i Table 13 Vertical EOS DirectSteel 50l1m thennal conductivity data 

Horizontal EOS DirectSteel 50llm 

Ma880f Specific Hea Test Duration WaterTem Water Temp Change in Water Water ~1oYw Heat Conducted Distance Between Thennocouple Thennoc:ouple Temp Change Ove Specimen Cross ThennalConductivtty 
Water (M) of Water (S) (s) Out (T"" In (T o,J Temp T out· T In (At) (m) m'S'AI (Q) Thennocouples (L) One (T,) Two (T,) Length T, - T2 (AT) Sectional Area (A) (L(m'S'AI»/(AXAT) (K) 

Litres (I) Joules (J) Seconds (s) ('C) (DC) ('Cl (Vs) Watts (W) Mertres (m) ('C) ('Cl ('Cl (m') (w/m "1<) 

0.4061 4186 600 31.12 21.00 10.12 0.00068 28.66 0.025 66.53 203.93 115.40 0.00047 13.17 

0.4782 4166 600 30.72 21.07 9.65 0.00080 32.20 0.025 92.70 207.88 115.18 0.00047 14.62 

0.4851 4186 600 30.27 21.40 8.87 0.00081 30.01 0.025 92.03 201.90 109.87 0.00047 14.48 

0.4807 4186 600 30.72 21.20 9.52 0.00080 31.91 0.025 89.62 205.67 116.05 0.00047 14.58 

0.4564 4186 600 31.83 21.60 10.23 0.00076 32.58 0.025 95.03 206.37 111.34 0.00047 15.52 

Average 14.52 

Appendix i Table 14 Horizontal EOS DirectSteel 5011 m thennal conductivity data 
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Vertical EOS DirectSteel 20llm 

Mass of Specific Hea est Duration Water Temp Water Temp Change in Water Water Flow Heal Conducted Distance Between Thermocouple Th~nnocouple Temp Change Ove Specimen Cross Thermal Conductivity 
Water (M) ofWater(S) (s) Out(T ~) In (T,.) Temp T out - T In (at) (m) m'S'.!.t(Q) Thermocouples (L) One (T1) Two (T2) Length T1 - T2 (I1n Sectional Area (A) (l(m'S' .!.III/(AX.!. 1) (K) 

Uttes(l) Joules (J) Seconds (s) ("C) (DC) ("C) (Vs) Walls 0NI Mertres (m) ("C) ("C) ("C) (m') (w/m "1<) 

0.4376 4186 600 31.45 21.87 9.58 0.00073 29.26 0.025 98.88 208.28 109.60 0.00047 14.16 

0.4400 4186 600 31.07 21.n 9.30 0.00073 28.55 0.025 93.10 202.93 109.83 0.00047 13.79 

0.4510 4186 600 32.52 22.30 10.22 0.00075 32.15 0.025 92.57 212.25 119.68 0.00047 14.24 

0.4240 4186 600 32.02 23.70 8.32 0.00071 24.60 0.025 89.35 208.07 118.72 0.00047 10.99 

0.4261 4186 600 32.05 22.45 9.80 0.00071 28.54 0.025 93.63 204.50 110.87 0.00047 13.85 

Average 13,36 

Appendix i Table 15 Vertical EOS DirectSteel 20j1m thennal conductivity data 

Horizontal EOS DirectSteel 20llm 

Mass of Specific Hea Test Duration Water Temp Water Temp Change in Water Water Flow Heat Conducted Distance Between rn~nnOCOUPle Th~nnocouple ~emp Change OVe Specimen Cross Thennal Conductivity 
Water (M) of Water (5) (s) Out(T ..., In (Tin) TempT w·T ln (.6.t) (m) m*S*.6.t(Q) Thennocouples (L) One (T1) Two (T,) length T1 - T2 (.6.T) Sectional Area (A) (l(m'S' .!.III/(AX.!. 1) (K) 

Uttes (I) Joules (J) Seconds (s) ("C) toC) ("C) (Vs) Walls 0NI Mertres (m) ("C) ("C) ("C) (m2) (w/m"l<) 

0.5797 4188 600 29.62 21.55 8.07 0.00097 32.63 0.025 93.93 211.12 117.19 0.00047 14.76 

0.4807 4186 800 30.73 21.40 9.33 0.00080 31.29 0.025 98.75 203.52 104.77 0.00047 15.84 

0.4223 4188 600 31.97 22.00 9.97 0.00070 29.36 0.025 94.60 203.73 109.13 0.00047 14.27 

0.4384 4188 605 31.57 21.67 9.90 0.00072 30.02 0.025 94.20 206.32 112.12 0.00047 14.20 

0.4310 4188 800 31.45 21.80 9.65 0.00072 29.01 0.025 92.85 208.00 115.15 0.00047 13.36 

~verage 14,49 

Appendix i Table 16 Horizontal EOS DirectSteel 20"m thennal conductivity data 
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Appendix ii: Thermocouple Calibration 

A calibrated mineral insulated K type thermocouple (12-k-500-125-1.5-21-3p2L-100mm A30KX) 

from TC Ltd was used. 

Appendix ii Table 1 shows the calibration data obtained from TC Ltd., (TC Ltd, 2003). 

Measured Measured Equivalent IEC value Error (oC) 
temperature (oC) voltage (mV) (oC) 

19.80 787 19.7 -0.10 

700.67 29153 700.54 -0.13 

1000.55 41210 998.30 -2.25 

Appendix ii Table 1 Temperature and micro voltage readings 

The thermocouple was calibrated by comparison with two reference resistance thermometers 

and two reference type R thermocouples. All measurements are traceable to recognised 

national standards. Calibration was carried out using a stirred liquid bath and a triple zone 

furnace. The thermocouple wires were referenced to OoC. The resistance and voltage outputs 

were measured on a precision digital mUlti-meter. All tests were carried out in a controlled 

environment using devices having known and traceable values. The temperature 

measurements were traceable to ITS-90. The thermocouple voltages were converted using SS 

EN 60584-1:1995 and Linseis, (1985). 

The depth of immersion of the thermocouple was to a minimum of 125mm. The overall 

uncertainty of measurement was +/- 0.3°C at 20°C, +/- 1.5°C at 700°C and +/- 2.5°C at 1000°C. 

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 

factor of K = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements (TC Ltd., 2003). 

The calibrated K type thermocouple was used as a reference for all other temperature 

measuring equipment used in this project. The thermocouples were placed in a Carbolite 

furnace (Model number: MFHT 1.1400 Prog) set at 700°C. A calibrated digital volt meter was 

used to record the micro volts output of each of the thermocouples, which were compared to 

reference values to obtain the temperature (Appendix ii Table 2). These values were then 

compared with the calibrated thermocouple. 

XII Appendix ii 



Thermocouple 
Furnace set Volt meter reading 

Reference temperatures 
temperature from micro volt readings 

·(oC) (mV) (oC) 

Calibrated 700 29270 703.4 

1 700 29180 701.2 

2 700 29145 700.4 

3 700 29240 702.7 

4 700 29210 702 

5 700 29190 701.5 

6 700 29120 699.8 

7 700 29060 698.4 

8 700 29210 702 

9 700 29290 703.9 

10 700 29140 700.3 

Appendix ii Table 2 Results of Carbolite furnace thermocouple micro volt calibration at 

700°C 

In Appendix ii Table 2 the deviation of the micro-volts reading from the reference thermocouple 

can be seen to be between +0.5°C and _5°C. When measuring the temperature in the tool it was 

necessary to use a compensating cable to connect the thermocouples to a multi channel 

recorder. As a result of using this procedure the calibration test was repeated using the 

compensating cable. When connected to a multi-channel digital reader, through compensating 

cables, the deviations were greater, between +9.9°C and -5.4°C (Appendix ii Table 3). 

Thermocouple Furnace set Digital reader Reference temperatures 
Difference temperature (oC) temp (0C) from micro volt (oC) 

readings (oC) 

Calibrated 700 695 703.4 8.4 

1 700 695 701.2 6.2 

2 700 694 700.4 6.4 

3 700 694 702.7 8.7 

4 700 694 702 8 

5 700 693 701.5 8.5 

6 700 693 699.8 6.8 

7 700 693 698.4 5.4 

8 700 694 702 8 

9 700 694 703.9 9.9 

10 700 694 700.3 6.3 

Appendix ii Table 3 Thermocouple digital readout calibration at 700°C 

The results show that there can be a total variation of ,,15°C when recording temperatures 

around 700°C. A second test was conducted to asses the performance of the thermocouples at 

lower temperatures. A water tank was chilled to 10°C and the procedure used for the high 

temperature comparisons were fOllowed. 
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From Appendix ii Table 4 it can be seen that the micro volt deviation from the reference 

thermocouple was between +1°C and -1.7°C. 

Thermocouple Tank set Volt meter reading 
Reference temperatures 

temperature from micro volt readings 
'(OC) (mV) (oCI 

Calibrated 10 390 9.8 

1 10 395 9.9 

2 10 395 9.9 

3 10 415 10.5 

4 10 320 8.1 

5 10 355 8.9 

6 10 390 9.8 

7 10 430 10.8 

8 10 385 9.7 

9 10 415 10.5 

10 10 360 9.1 

Appendix ii Table 4 Thermocouple micro volt calibration at 10°C 

When connected to a multi-channel digital reader, through compensating cables, the deviation 

was between +1.5°C and -0.9°C (Appendix ii Table 5). It is clear from the data that the 

thermocouples were more accurate at lower temperatures. 

Thermocouple Tank set Digital reader Reference temperatures Difference 
temperature (oC) temp (oC) from micro volt (oC) 

readings (oC) 

Calibrated 10 10 9.8 -0.2 

1 10 10 9.9 -0.1 

2 10 9 9.9 0.9 

3 10 9 10.5 1.5 

4 10 9 8.1 -0.9 

5 10 9 8.9 -0.1 

6 10 9 9.8 0.8 

7 10 10 10.8 0.8 

8 10 10 9.7 -0.3 

9 10 10 10.5 0.5 

10 10 10 9.1 -0.9 

Appendix ii Table 5 Thermocouple digital readout calibration at 10°C 

ii.i Thermal Paints Furnace Test 

ii.i.i Aim 

Temperature sensitive paints made by Tempilaqe were used to validate the maximum 

temperature recorded by the thermocouples. However, the tolerance range and accuracy of 

these paints had to be assessed as did their suitability for use with molten aluminium. In order 
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to make this assessment, appropriate tests were conducted. Appendix ii Table 6 shows the 

temperatures at which they should burn off. 

Paint Number 1 2 3 4 5 6 7 8 9 10 11 
Temperature ("F) 225 400 475 700 750 850 950 1022 1100 1200 1300 
Temperature (0C) 107 204 246 371 399 454 510 550 593 649 704 

Appendix ii Table 6 Temperature paint range 

ii.i.ii Methodology 

The first test used was the furnace trials. A muffle furnace (Errorl Reference source not 

found., Vectstar SP700) was calibrated at each of the test temperatures using a calibrated 

thermocouple and reader. A shelf was constructed to position the specimen in the centre of the 

furnace and a calibrated thermocouple placed alongside to ensure that the correct temperature 

was attained (Appendix ii Figure 1). 

Appendix ii Figure 1 (A) Vectstar muffle furnace; (8) Specimen positioning 

Five specimens were assessed at each test temperature by applying one paint type to each of 

five H13 steel strips (1mm thick x 20mm width x 80mm long) in a similar manner shown in 

Appendix ii Figure 2. The specimens were placed on the shelf in the furnace until the 

temperature at which the paint burns off was shown by the thermocouple. The specimens were 

then immediately removed from the furnace. 
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Appendix ii Figure 2 Temperature paints and test strips 

ii.i.iii Results 

• Temperature paint 107°C: 1Qoe below the specified temperature the paint was clearly 

visible. At the specified tem perature half of the paint had burned off and at 1Qoe above 

the specified temperature all the paint had burned off. Giving a temperature range of 

97°C - 117°e 

• Temperature paint 204°C: 100 e below the specified temperature the paint was clearly 

visible. At the specified temperature half of the paint had burned off. 100 e above the 

specified temperature only small traces of paint remained. 200 e above the specified 

temperature all the paint had been removed. Giving a temperature range of 194°e -

224°e 

• Temperature paint 246°C: 100 e below the specified temperature the paint was visible. At 

the specified temperature half of Ihe paint had burned off. 100 e above the specified 

temperature only traces of paint remained. 200 e above the specified temperature all the 

paint had been removed. Giving a temperature range of 236°e - 266°e 

• Temperature paint 371 °C: 20°C below the specified temperature the paint was clearly 

visible. 100 e below the specified temperature the paint had dulled. 100 e above the 

specified temperature all the paint had been removed. Giving a temperature range of 

351 °e -381°C 

• Temperature paint 399°e : 200 e below the specified temperature the paint was clearly 

visible. 100 e below the specified temperature the paint had dulled. At the specified 

temperature all the paint had been removed. Giving a temperature range of 379°e -

409°C 

• Temperature paint 454°e : 100 e below the specified temperature the paint was visible. At 

the specified temperature half of the paint had burned off. 100 e above the specified 

temperature all the paint had been removed. Giving a temperature range of 444°e -

464°e 
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• Temperature paint 510°C: 10°C below the specified temperature the paint was visible. 

10°C above the specified temperature all the paint had been removed. Giving a 

temperature range of 500°C - 520°C 

• Temperature paint 550°C: 10°C below the specified temperature the paint was visible. At 

the temperature half the paint had burned off. 20°C above the specified temperature all 

the paint had been removed. Giving a temperature range of 540°C - 570°C 

• Temperature paint 593°C: 50°C below the specified temperature the paint was visible. 

40°C below the specified temperature half the paint had burned off. 30°C below the 

specified temperature only traces of paint remained, from 10°C below the specified 

temperature, and above, all the paint had been removed. Giving a temperature range of 

543°C - 583°C 

• Temperature paint 649°C: 30°C below the specified temperature a quarter of the paint 

had burned off. 20°C below the specified temperature half the paint had burned off. 10°C 

below the specified temperature half the paint had burned off. At the specified 

temperature and 10°C above the specified temperature only traces of the paint remained. 

20°C above the specified temperature all the paint had been removed. Giving a 

temperature range of 619°C - 669°C 

• Temperature paint 704°C: 10°C below the specified temperature the majority of the paint 

was visible. At the specified temperature two thirds of the paint had burned off. 10°C 

above the specified temperature all the paint had been removed. Giving a temperature 

range of 694°C - 714°C 

ii.i.iv Conclusion 

It is important to apply an even layer of paint to avoid confusing results . However, the paints do 

work at approximately their set temperature. The furnace trials showed the temperature paints 

had a variable tolerance. The test determined at what temperature the paints were visible and 

visa versa, allowing them to be used as a cross reference in the die temperature experiment. 

However, it was not clear if the paints would respond in the same manner when subjected to 

molten aluminium, so additional tests were conducted. 

ii.iI Casting Test One 

ii.il.i Aim 

The casting trials were used to establish how the temperature paints behaved when molten 

aluminium at 700°C was poured onto them. 

ii.ii.ii Methodology 

Casting trial one was a simple test, which was repeated three times to assess the reproducibility 

of the results. Six specimens (H13 steel strips 1 mm thick x 20mm width x 80mm long) were 

each painted with the 11 temperature paints as shown in Appendix ii Figure 3. 
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Appendix iI Figure 3 Painted specimens 

The test was set up as shown in Appendix ii Figure 4 and aluminium LM24 was heated in a 

ceramic crucible to 800·C using an induction furnace (Induction heating Systems (UK) Ltd ., 

100KW, 700 V, 199 A, 800 - 1200 Hz, weight 700kg). The molten aluminium was cooled in still 

air to 700·C; this was verified using a calibrated thermocouple. The aluminium was then poured 

onto the surface of the painted test specimens for 3 seconds ensuring the aluminium coated the 

specimens as shown in Appendix ii Figure 4, and allowed to cool. 

Appendix iI Figure 4 Aluminium being cast on the specimens 

ii.iUil Results 

Once cool the aluminium was removed from the surface of the test specimens and the results 

are shown in Appendix ii Figure 5. The aluminium was also inspected and no sign of the paint 

was visible. The specimens showed that the higher temperature paints 1 - 6 (702·C - 454·C) 

were still visible but paints 7 - 11 (399·C - 107·C) had burnt off. 
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Appendix ii Figure 5 Casting specimens after casting (A) test 1; (B) test 2; (C) test 3 

The test showed that some of the paints burn off when in contact with molten aluminium. 

However, the test also showed that the aluminium cooled rapidly when poured onto the H13 

steel surface, which was at 20·C - 25·C. This was seen visually during the experiment and the 

paints showed that the H13 specimens never reached 700·C. The lowest visible paint from all 

the tests was the blue paint (paint 6), which was designed to burn off at 454·C; this occurred 

because the small quantity of aluminium poured formed a skin almost instantaneously on 

contact with the painted specimens. 

ii.iii Casting Test Two 

iLiii.l Aim 

There was some concern that the results of the previous test may have been affected by the 

small amount of aluminium used and, therefore, resulted in a rapid cooling rate. A new test was 

designed to assess the affects of a large volume of aluminium on the paints. 

li.iii.iI Methodology 

The paints (1 - 11) were applied to the bottom of four ingot moulds and where space allowed 

additional paints (7, 6, 5, 3) were added (Appendix ii Figure 6). A thermocouple was placed at 

the end of each ingot to verify the temperature of the aluminium. The ingots were constructed 

from 5mm mild steel plate and were at 20·C - 25·C. 
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Appendix iI Figure 6 Ingot moulds with temperature paint and thermocouple locations 

The aluminium (LM24) was melted in a gas furnace (Morgan Crucible model MIN), when molten 

it was removed from the furnace and its temperature measured using a calibrated 

thermocouple. Each ingot received the same quantity of aluminium LM24 measured in a ladle 

(495ml), the ladle was then left to cool to 700°C prior to pouring. During the pouring process the 

maximum temperature was recorded using a thermocouple. The aluminium was allowed to cool 

and then removed. 

ii.iii.iii Results 

Although it could be seen where all the paints had been applied (Appendix ii Figure 7), there 

were only two paints remaining, pa int 1 (704°C) and paint 2 (649°C); this agreed with the 

maximum temperatures recorded during the casting process, as shown in Appendix ii Table 7. 

4 3 2 1 

Appendix ii Figure 7 Cast ingots after casting (white tex1 = paint number; Black text = 

ingot number) 
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Ingot Maximum temperature (oC) 

1 640.58 

2 630.54 

3 621.6 

4 618.2 

Appendix ii Table 7 Ingot casting test maximum thermocouple temperatures 

Temperature paint 3 had burned off completely indicating that the temperature reached 603°C 

but temperature paint 2 remained indicating that it did not exceed 649°C. 

The casting trials proved that the paints operated at the predicted temperatures within the 

tolerances discussed in section 6.1.2.3 and worked with a larger volume of molten aluminium. 

The paint experiments would be able to confirm the thermocouple temperature recorded during 

the aluminium pressure die casting process. 

ii.iv H13 Heattreatment 

Hardening profile for trial 1 

Furnace set to 750°C 

Argon shield, flow rate 20 Litres/min 

Notes Time (mins) Temperature (oC) 

Specimen placed in furnace 0 573 

Furnace ramped up to 1040°C 30 750 

55 1000 

60 1015 

Removed at 70 1018 

Specimen withdrawn from furnace and cooled in still air 25 

Tempering 1 profile for trial 1 

Furnace set at 630°C 0 616 

5 630 

20 630 

Specimen withdrawn from furnace and cooled in still air 25 

Tempering 2 profile for trial 1 

Furnace set at 660°C 0 645 

5 660 

20 660 

Specimen withdrawn from furnace and cooled in still air 25 

Appendix 11 Table 8 H13 hardness and tempering trial one 
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Hardening profile for trial 2 

Furnace set to 750·C 

Argon shield, flow rate 20 Litres/min 

Notes Time (mins) Temperature (·C) 

Specimen placed in furnace 0 602 

Furnace ramped up to 1030·C 20 750 

50 1000 

Removed at 65 1015 

Specimen withdrawn from furnace and cooled in still air 25 

Tempering 1 profile for trial 2 

Furnace set at 650·C 0 500 

20 650 

35 653 

Specimen withdrawn from furnace and cooled in still air 25 

Tempering 2 profile for trial 2 

Furnace set at 650·C 0 495 

20 650 

35 651 

Specimen withdrawn from furnace and cooled in still air 25 

Appendix ii Table 9 H13 hardness and tempering trial two 
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Hardening profile for trial 3 

Furnace set to 750°C 

Argon shield, flow rate 20 Litres/min 

Notes Time (mins) Temperature (0C) 

Specimen placed in furnace 0 612 

10 725 

25 750 

Furnace ramped up to 1040°C 45 1000 

Removed at 60 1027 

Specimen withdrawn from furnace and cooled in still air 25 

Tempering 1 profile for trial 3 

Furnace set at 645°C 0 565 

5 623 

20 645 

Specimen withdrawn from furnace and cooled in still air 25 

Tempering 2 profile for trial 3 

Furnace set at 645°C 0 565 

5 620 

20 645 

Specimen withdrawn from furnace and cooled in still air 25 

Appendix ii Table 10 H13 hardness and tempering trial three 
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Trial 1 
Hardening at 1040"C Temper 1 at 630"C Temper 2 at 660"C 

hardness (HRc) hardness (HRc) hardness (HRc) 
46.5 45.5 41 

Side 1 44.8 46.0 40.8 
46.5 47.2 40.5 
44.8 44.3 42.0 
46.5 45.3 38.9 

Side 2 45.2 46.5 40.8 
46.8 44.9 42.0 
44.8 45.8 40.5 

Averaqe 45.74 45.69 40.81 

Trial 2 
Hardening at 1030"C Tem per 1 at 650"C Temper 2 at 650 C 

hardness (HRc) hardness (HRcl hardness (HRc) 
43.5 42.5 41.2 

Side 1 44.8 43 42.5 
44.1 40.8 41.5 
47.5 43 42 
42.0 42.2 42.5 

Side 2 
44.0 42.0 42 
42.0 41.8 41.8 
43.0 42.4 42 

Averaqe 43.86 42.21 41.94 

Trial 3 
Hardening at 1040"C Temper 1 at 645"C Temper 2 at 645 C 

hardness (HRc) hardness (HRc) hardness (HRc) 
50 44 45.1 

Side 1 
50.1 45.2 43.8 
50.1 42.5 44.1 
50.5 44.7 43.4 
48 43.2 46 

Side 2 
50 43.5 44 

46.8 42.6 42.8 
48.4 43.3 43.4 

Averaqe 49.24 43.62 44.075 

Appendix ii Table 11 Hardness values (Rockwell Scale C) from hardness and tempering 

trials 
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Appendix iii 

Bonded Laminate Manufacture 
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Appendix iii: Vertical Laminate and Horizontal Laminate Specimen Manufacture 

iil.i Sheet Thickness 

The sheet as supplied was specified to have a thickness of lmm +/- 0.11mm. Five sheets 

measuring 2m x 1 m x 1.05mm were measured using a digital vernier to establish the sheets 

tolerance (Appendix iv Table 1 to Appendix iv Table 5). All sheets measured were within the 

specified tolerance. 

iii.ii Cutting and Affect on Flatness and Microstructure 

iiI.ii.i Flatness 

The sheet flatness was tested, with specimens selected randomly from several sheets. The 

guillotined and laser cut specimens were de-burred while a third set of specimens were laser 

cut, de-burred and linished. The specimen size was 100mm x 100mm and these were tested 

individually at the same location on a surface plate. The surface plate had a flatness tolerance 

of +/- 0.0001 mm. A dial gauge moved across the surface of the specimen and measurements 

were taken at 25mm - 50mm increments (Appendix iii Figure 1). To achieve uniform braze 

thickness and stack height it was important to ensure that the sheets remained as flat as 

possible (Appendix iii Table 1). 

x 

y 

Appendix Iii Figure 1 Location of measurements for flatness test (. = measurement 

point) 
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Process Distance from edge 
Distance from edge ( mm) (X Axis) 

condition (mm) (Y Axis) 0 25 50 75 100 

Guillotined 0 0 0.09 0.01 
50 -0.012 0.068 0.08 0.048 -0.02 

Specimen 1 
100 -0.03 0.065 -0.05 

Guillotined 0 0 -0.05 -0.02 
50 0.021 0.06 0.055 0.04 0.08 

~pecimen 2 
100 -0.02 -0.05 -0.05 

Puillotined 0 0 0.05 -0.05 
~pecimen 3 50 0.045 0.048 0.045 0.045 0.02 

100 -0.015 -0.05 -0.01 
~uillotined 0 0 0.03 -0.02 
~pecimen 50 0.018 0.059 0.06 0.044 0.025 
Point Ave. 100 -0.022 -0.012 -0.037 
,""aser Cut 0 0 0.02 0.015 
~pecimen 1 50 0.032 0.03 0.01 

100 0.18 -0.03 0 
~aser Cut 0 0 0.035 0.03 
~pecimen 2 50 0.05 0.025 0.024 

100 -0.01 0.03 0.01 

j'-aser Cut 
0 0 0.045 0.02 
50 0.04 0.07 0.035 Specimen 3 
100 0.01 0.04 0.05 

aser Cut 0 0 0.033 0.022 
Specimen 50 0.041 0.042 0.023 
Point Ave. 100 0.06 0.013 0.02 

inished 
0 0 -0.06 -0.075 

Specimen 1 50 0.05 0.03 0.03 0.025 0.015 
100 0.03 0.01 0.01 

inished 
0 0 0.032 0.04 

Specimen 2 50 -0.02 0.01 0.015 0.01 0.015 
100 -0.012 0.02 0.03 

Linished 
0 0 -0.03 -0.05 
50 -0.02 -0.051 -0.01 -0.015 -0.03 

Specimen 3 
100 -0.015 -0.02 -0.051 

Llnlshed 0 0 -0.019 -0.028 
Specimen 50 0.003 -0.004 0.012 0.0067 0 
Point Ave. 100 0.001 0.003 -0.004 

Appendix iii Table 1 Flatness test results 

The guillotined specimens had a large deviation in flatness, probably, caused by the cutting 

forces bending the specimen. The maximum deviation of flatness was 0.97mm (the shape of 

the specimen can be seen in Appendix iv Figure 1). The laser cut specimen had an improved 

flatness with an average maximum deviation of 0.06mm (Appendix iv Figure 2) whereas the 

laser cut and linished specimens had an average maximum deviation of 0.048mm (Appendix iv 

Figure 3). 

iii.iLiI Microstructure 

The laminates were all cut oversize to allow for machining, which would have removed the laser 

cut portion from the laminates. In turn the specimens would be heat treated, which would also 

change the structure. 
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iii.iii Surface Finish of Laminates 

The surface roughness of a random selection of laminates was measured, to ensure that they 

had similar surfaces, which would enable consistent bonding (Appendix iii Figure 2). The tests 

were conducted with a Taylor - Hobson Talysurf 10 with the following: 

• 50mm recording length 

• 2000 x magnification 

• Ra meter ranges: full scale 0.51lm 

The Individual surface roughness (Ilm Ra) of laminates was controlled via linishing (Appendix iii 

Table 1). In addition, to controlling the surface roughness of the laminates, linishing de-burrs, 

de-oxidises, de-greases and helps flatten the laminates. The as rolled and linished specimens 

were 1mm x 065mm and 1mm x 15mm x 65mm cut randomly from the H13 sheets. As 

expected the as rolled surface roughness was good with an average of 0.251lm Ra in 

comparison to the linished specimens with an average of 0.481lm Ra. 

Tally surf test path 

A B 

Appendix iii Figure 2 Tally surf test paths; (A) 1 mm 1Zl65mm horizontal profile; (B) 1 mm x 

15mm x 65mm vertical profile 

Specimen Sheet as Rolled (IIm Ra) Sheet Linished (IIm Ra) 

1 0.28 0.51 

2 0.21 0.48 

3 0.23 0.4 

4 0.29 0.46 

Average 0.25 0.46 

Appendix Iii Table 2 Laminate surface roughness 

iii.iv Bonding Methods 

Bonding can be categorised into several domains such as adhesive bonding, melt bonding, 

infiltration bonding, diffusion bonding, reaction bonding and deformation bonding (Lesuer, 

1996). 
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Aluminium laminates have been bonded with epoxy resin and solders. Epoxy adhesives 

produce an extremely high interfacial bond strength and when tested to failure the material did 

not de-laminate (Lesuer, 1996). An epoxy bonded aluminium structure does make a relatively 

good short run rapid tool for injection moulding. Employing this method of construction would 

make it a production tool of limited life because the more aggressive polymers, such as glass 

filled nylon, would erode both the epoxy bond and the aluminium laminates rapidly. 

The major draw back with adhesive bonding is that it cannot operate above 250·C (Soar and 

Dickens, 1996). Although it is possible to load the resin with ceramic powder, the resin is still the 

weak link. However, it is feasible to operate these adhesives at the average temperature of a 

die casting tool for a short period. Alternatives are inorganic adhesives that can operate up to 

and beyond 990·C (Soar and Dickens, 1996). However, wear, tensile strength and differences 

in thermal expansion again limit these tools to short run tools only. 

Brazing and soldering are cost effective, simple and commonplace engineering joining I bonding 

techniques and both methods have been employed to produce mould tools. Work conducted 

with silver solders has been successful in low temperature applications «450·C) and can be 

employed for laminated injection mould tools (Soar and Dickens, 1996). 

Brazing produces high strength joints with a melting point higher than aluminium but lower than 

H13 steel. The braze material can be applied between laminates in the form of a foil, paste, 

powder or spray. This process is commonly used in the aerospace industry for bonding 

honeycomb structures (Soar and Dickens, 1996). The thickness of the braze must be accounted 

for when slicing a CAD model to produce individual laminate slices, in order for the tool to meet 

its overall dimensions. 

The high temperature and strength characteristics of brazing are very attractive and important 

when considering its application for the construction of a die casting tool. Selecting the correct 

braze is crucial, factors such as chemical composition of the substrate and the material to be 

cast, have to be considered. Other considerations include resistance to debond (Kilingbeil, and 

Bontha, 2003), distortion, wear and heat treatment of a laminate structure. The reason for 

selecting a particular brazing alloy was based on the hardening curve of H13. H13 is heat

treated between 995·C - 1025·C with quenching in still air, inert gas or sail. Nickel brazing 

alloys have a melting temperature between 950·C - 1010·C (Sulzer Metco (UK) Ltd, 1998). This 

enables bonding at the same stage as heat treatment hence eliminating a process. 

Nickel chromium brazes, termed as 'super alloys', have been developed for high temperature 

service and are suitable for use under moderate to high loading in the temperature range of 

540·C to 11 OO·C. Nickel brazes have been used in the aerospace industry for the construction 

of gas turbine engines and hot airframe components (Schwartz, 1990). 
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Heat resistant alloys are generally brazed in an inert environment or in high vacuum furnaces 

using nickel based metals. Most brazing processes may be used on nickel alloys. The most 

common are torch, furnace, induction and resistance brazing. 

A selection of nickel braze alloys supplied by Sulzer Metco (UK) Lld are shown In Appendix iii 

Table 3, they have good corrosion resistance, good bond strength, good oxidation resistance 

and excellent machinability. 

Alloying elements (% Wt.) 

Braze Ni Fe Re Cu Cr B Mn Si 

Amdry 936 Bal. 0.03 4 1 19 6 

Amdry 775 Bal. 15 3.5 

Amdry 780 Bal. 3 4.5 

Amdry 100 Bal. 19 10 

Amdry 790 Bal. 1.5 2 3.5 

Appendix iii Table 3 Nickel based brazes (Sulzer Metco, 1998) 

Nickel brazes are brazed at high temperatures and the affect on the base metal should be taken 

into account. Non heat treatable alloys will suffer moderate strength losses due to grain growth 

during brazing (Schwartz, 1990). 

In order to obtain good braze coverage and uniform thickness it was important to select a 

suitable method of depositing it onto the base material. For the purpose of laminate tooling it 

was also necessary to control the braze thickness in order to maintain the tolerance of the tool. 

This could be achieved, by tape, spray, powder or paste. It is possible to automate spray or 

paste forms, improving process control and consequently maintaining the 1001 tolerance. 

Surface preparation was crucial to achieve a good bond, base materials must have oxide layers 

and grease removed by machining, pickling and de-greasing. Each laminate specimen was 

manufactured as outlined in Appendix iii Table 4. 
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Stage Activity Process 

1 Rough machining 
Machined individual profiles with a CO, laser to 
+ 1 mm of finish soecification. 

2 Linishing 
Linished individual laminates to O.481Jm Ra on a de-
burrinQ and finishinQ machine. 

3 De-grease Isooropanol alcohol followed by rinse and dry. 

4 Assemble 
Assembled the laminates with powder I paste braze 
between them. 

S Braze In an inert arQon atmosphere. 

6 Finish machininQ Turn external surfaces on CNC lathe. 

Appendix ili Table 4 Manufacturing process for bonded laminates 

The furnace temperature is dependent upon the composition of the braze material and can go 

up to 1150·C. Appendix iii Figure 3 (Sulzer Metco, 1998) shows a typical brazing cycle. 

@ 

alternate 
diffusion cycle 

@ / 

Appendix iii Figure 3 Typical heating and cooling cycle for brazing (Sulzer Metco, 1998) 

The first hold (1) is between 150·C - 260·C for 10 - 15 minutes to allow the solvents or water in 

the powder I paste I binder to outgas from the braze alloy; this also reduces porosity in the 

braze and restores the atmosphere, which can be degraded by the gasses. The second hold 

(2) is at 540·C for 10 - 15 minutes to allow the organics (not liquids) in the braze sufficient time 

to become gaseous and to be pumped out. Hold number three (3) is for 10 minutes at 10·C -

38·C below the braze alloy solidus temperature to allow stabilisation. The temperature is then 

increased as fast a possible to the brazing temperature (4) and held for 1 hour to allow 

sufficient time for the braze to melt and flow into the joints. One of two ramp down methods can 

be chosen for the final stage: 

1) Allows the braze to solidify then quenching can take place below the solidus temperature 

of the braze 
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2) Hold at 1066°C - 1150°C (5) for 2 - 4 hours to allow boron to diffuse and raise the re-melt 

temperature of the braze alloy 

Bryden and Pashby, (1999) conducted research on laminate tooling, which was joined by 

brazing for injection moulding. Using a heated platen, individual bonded joints were produced. 

Lap shear specimens of two laminate gauges (0.8mm and 1.6mm) were produced to evaluate 

the tensile strengths of the bonded laminates. At optimum conditions, which is the least time 

taken for highest tensile strength to be attained, the 0.8mm laminate withstood a load of 4.7kN 

after 120 seconds heating time and the 1.6mm laminate averaged 9.3kN after 210 seconds 

heating time. 

Like brazing, soldering has a lower melting point than the materials to be joined and will form a 

bond even if the surfaces are not even. A diffusion soldering technique was developed by GEC

Marconi Materials Technology Ltd. The solder was based on copper, silver, gold and tin . Each 

laminate required electro-plating. The layers were stacked and subjected to 3 MPa and 525°C 

for 1 hour in a vacuum . The process produced a diffused solder joint of primarily silver. Like the 

brazing technique it was necessary to have an accurate thickness of electro-plated solder 

material to ensure tool accuracy was maintained; this process produced shear strengths 

approaching 100MPa and was capable of withstanding temperatures approaching 962°C due to 

the phase changes that occurred during the soldering process (Bocking et.al. , 1997). 

Obikawa, 1999, described a similar process where 0.2mm steel laminates were coated with 

40IJm of U-alloy, a low melting point solder (90°C) (Obikawa, 1999). A laminate structure was 

built up layer-by-Iayer and each layer was bonded to the next using an induction heater to heat 

the press. Once bonded the laminate was laser cut and the process repeated until the 

component was complete. 

Diffusion bonding removes the need for a material, such as a braze or solder, to be placed 

between the laminates. Instead the edges of each individual laminate are electron beam welded 

in a vacuum. The laminate structure is then placed in a hot isostatic press (HIP) where it is 

subjected to a temperature of 11000 C and a pressure of 6MPa. The thesis author, in conjunction 

with CERAM, has successfully hot isostatically pressed H13 tool steel and stainless steel 

producing a complete solid. This method, however, is time consuming and requires an 

expensive hot isostatic press. 

Nakagawa, 1985, overcame this by employing a process of pressure bonding of tool steel (Hot 

rolled SK5) laminate sheets (Nakagawa, 1985). The process began with a stack of assembled 

laminates that were subjected to 1100°C in an atmosphere of dissociated ammonia (N2 + 3H2). 

This was then removed and immediately pressed (30MPa) between two flat dies in air for up to 
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a minute. Once the pressing cycle was complete it was cooled in the furnace to prevent 

oxidisation. 

Additional bonding methods include: explosive welding, friction welding, ultrasonic welding and 

resistance welding (DeGarmo, 1988). However, possible problems of bonded tools are: 

• The heat treatment process for a bonded laminate structure will be different to that of a 

conventionally manufactured die, which is heat treated after machining. H13 is hardened 

at 1020·C and double tempered at 640·C to achieve a hardness of 43HRc - 48HRc. The 

bonding material has a higher melting point than 730·C (aluminium casting temperature) 

to prevent melting during the casting process. In order to bond the laminates it is also 

important that the bonding material has a melting point similar to or higher than the 

hardening temperature of the laminates to aChieve bonding and hardening. The laminates 

then require finishing in their hardened state 

• A bonded laminated structure may have different rates of thermal conductivity and this 

can cause hot spots I cool spots within the tool and its structure; this may cause 

increased stress and heat cracking and I or thermal fatigue, which in turn would cause 

premature failure 

• Differing coefficients of expansion between the laminate and bonding material could 

create stress in the tool and premature failure 

• Clamping I ejection forces may cause de-lamination of the tool 

• Erosion I wear of bond during the tool life 

• Thermal fatigue I hot cracking of a bonded laminate structure 

• Subjecting the die to abnormal tensile loading, (if a component seizes), would result in 

possible composite structure failure 

iii.v Bonding of Laminates 

The brazing process has several variables, such as: 

• Time (controlled by furnace cycle) 

• Temperature (controlled by furnace cycle) 

• Heat cooling profile (controlled by furnace cycle) 

• Pressure (controlled by a dead weight on the laminate stack) 

By using a programmable furnace it was possible to control the brazing temperature, time and 

heating profile. During the brazing process equal pressure, laminate alignment and braze 

thickness were achieved by using jigs with dead weights applying a load on the top of the 

laminate stack. Appendix iii Figure 4 shows the horizontal (A) and vertical jigs (B) ; five of each 

type were manufactured. 
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Appendix iii Figure 4 (A) Horizontal laminate jig; (8) Vertica l laminate jig 

A nickel braze (Amdry 790, supplied by Sulzer Meteo (UK) Lld) was used in the brazing 

process. The jigs were coated with a foundry coating (SMC-192, Foseco Foundry International 

Lld) to assist the release of the laminate stack after brazing. The stacks were assembled by 

placing an individual laminate in the fixture and dusting it with the braze powder (Appendix iii 

Figure 5 and Appendix iii Figure 6) , then the next laminate was placed on top and the process 

repeated until the desired height was achieved (note: during brazing the process stack would 

compress so it was important to compensate for this). Finally a bar was placed at the top of the 

stack to distribute the load applied from the jig evenly across the laminate stack. 

The braze thickness was controlled by the weight of the top part of the fix1ure. When the braze 

was molten, excess would flow out of the Joint resulting in a uniform braze thickness . This 

technique was taken from previous work (Bryden and Pashby, 1999). 
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SMC-192 
release age. " !I!IIt __ !.:;:~ .... -" 

Appendix iii Figure 5 Laminate stack braze assembly 

Appendix iii Figure 6 Laminate stack with dusting of braze (Amdry 790) 

All the assemblies were placed in the furnace, which was purged with argon for 20 minutes at a 

rate of 30 litres/minute; this was then reduced to 10 litres / minute throughout the brazing cycle. 

Brazing was conducted in an inert atmosphere to avoid surface oxidation and embrittlement. 

Appendix iii Figure 7 shows the time / temperature profile for the brazing process. 
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Appendix Hi Figure 7 Brazing furnace profile (Sulzer Metco, 1998) 

Appendix iii Figure 8 shows the Horizontal and Vertical laminate stacks in the jigs after brazing. 

The brazed laminates were then removed from the jigs to await machining. 

Appendix iiI Figure 8 Jigs and braze bonded laminates after removal from furnace; (A) 

Horizontal laminate specimens; (B) Vertical laminate specimens 
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lII.vl Braze Thickness 

After rough machining the laminate stacks were examined (Appendix iii Figure 9). The 

specimen edges were inspected with a microscope, fitted wnh micrometers, at 50x 

magnification. 

Omm 
X Axis 

65mm 

45mm 

lAxis 

H13 Laminate 
Omm 

Braze 

Append ix III Figure 9 Bonded structure 

The braze thickness was, on average, found to be 0.15mm, a maximum of 0.16mm and a 

minimum of 0.11mm (Appendix iii Table 5) . 

Braze number Braze thickness (mm) (X Axis) Average 

(l axis measurement points) Omm 25mm 50mm 

1 (Omm) 0.14 0.14 0.16 0.15 

2 (5mm) 0.13 0.14 0.16 0.14 

3 (10mm) 0.15 0.12 0.14 0.14 

4 (15mm) 0.18 0.18 0.11 0.16 

5 (20mm) 0.13 0.16 0.14 0.14 

6 (25mm) 0.14 0.15 0.17 0.15 

7 (30mm) 0.14 0.13 0.13 0.13 

8 (45mm) 0.1 5 0.1 6 0.17 0.16 

9 (40mm) 0.1 4 0.14 0.15 0.14 

Appendix ill Table 5 Braze thickness 

XXXVii Appendix iii 



Appendix iv 

Material Flatness 
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1.05mm 1.04mm 1.05mm 1.05mm 1.05mm 1.05mm 

1.04mm Start 1.06mm 

1.06mm 

1.05mm 

1.05mm 

Sheet One Sheet Thickness 

Max 1.06 mm 

Min 1.04 mm 

1.05mm 1.04mm 1.04mm 1.04mm 1.04mm 1.04mm 

Appendix Iv Table 1 Sheet 1 thickness 

1.06mm 1.05mm 1.05mm 1.05mm 1.05mm 1.05mm 

1.06mm 

1.06mm 

1.05mm 

1.06mm Start 1.06mm 

1.06mm Sheet Two Sheet Thickness 1.06mm 

1.06mm 

1.06mm 

1.00 

1.01 

1.03 

1.06 

Max 1.06 mm 

Min 1.05 mm 1.06mm 

1.06mm 

1.05mm 1.05mm 1.06mm 1.06mm 1.06mm 1.05mm 

1.06 

Start 

1.07 

Appendix iv Table 2 Sheet 2 thickness 

1.03 1.03 1.00 1.02 

Sheet Three Sheet Thickness 

Max 1.07 mm 

Min 1.00 mm 

1.06 1.06 1.04 1.04 

Appendix Iv Table 3 Sheet 3 thickness 
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1.04 

1.02 

1.02 

1.02 

1.05 

1.04 

1.04 

1.04 

1.02 

Start 

1.00 

1.02 

Start 

1.04 

1.01 1.01 1.02 1.03 

Sheet Four Sheet Thickness 

Max 1.04 mm 

Min 1.00 mm 

1.00 1.00 1.01 1.01 

Appendix iv Table 4 Sheet 4 thickness 

1.04 1.03 1.04 1.03 

Sheet Five Sheet Thickness 

Max 1.07 mm 

Min 1.02 mm 

1.04 1.05 1.04 1.05 

Appendix iv Table 5 Sheet 5 thickness 
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Appendix iv Figure 2 Average laser cut specimen surface flatness 
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Appendix v 

Thermal Fatigue Experiment Graphs 
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Appendix v: Thermal Fatigue Experiment Graphs 

v.i H13 Thermal Fatigue Material Data 
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Appendix v Figure 1 H13 number of cycles versus hardness 

v.ii Metalcopy 5507 Thermal Fatigue Material Data 
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Abstract 
Manufacturing industry is continuously 
searching for new and more competitive 
methods to produce tooling, especially 
where low production volumes are 
concerned where time and flexibility is of the 
essence. Within this 'rapid tooling' field of 
research there are several methods being 
developed. Each method has advantages 
and limitations and are based on varying 
techniques. 

An area of such development involves the 
use of powder binder mixtures to produce 
metal tooling. This paper describes research 
into the use of a metal powder mixture 
tooling system utilised in plastic & metal part 
manufacturing processes. 

The work describes the evaluation, 
identification of difficulties & failure modes, 
and subsequent attempts at tooling process 
improvement, in plastic injection moulding, 
high-pressure aluminium die-casting and 
sheet metal form ing through evaluation by 
experimentation and case studies. The 
evaluation criteria includes: tool accuracy, 
mechanical & surface properties of tools, 
number & quality of parts , manufacturing 
time & cost, tool life and production process 
cycle time. 

Keywords 
High pressure die-casting, Metal powder 
mixture rapid tooling , Plastic injection 
moulding, Sheet metal forming, Small batch 
manufacturing. 

Introduction 
A techn ique to form solid geometries from a 
metal powder has been developed jointly by 
the Swedish company Prototal AB 
(previously known as Wiba AB) and IVF 
institute [1]. The process provides the 
opportunity to create tooling inserts as a 
rapid tooling technique. This technique is 
commercially termed 'MetaICopy'. The end 
product consists largely of steel with a low 
melting point alloy infiltrant material. 
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The MetalCopy process involves the 
following steps: A primary master of the tool 
is created, typically by an accurate rapid 
prototyping system . A silicone negative is 
cast from the master. The silicone negative 
is used to produce a ' green ' part which 
consists of a mixture of steel powder and 
binder. The green part is sintered and the 
pores between the metal powder grains are 
filled by a low melting point alloy metal. 

It is possible to utilise these products as 
tooling inserts for manufacturing processes. 
Depending on geometrical complexity, the 
technique may provide time and cost 
advantages as compared to traditional tool 
production techniques. Should the technique 
be further developed the tooling may be 
tailored to its purpose with respect to 
material properties due to the opportunities 
presented by ifs powder mixture nature. 

The aim of the work is to assess the 
technique's suitability as a tooling process 
for different manufacturing processes: plastic 
injection mOUlding, high-pressure aluminium 
die-casting and sheet metal form ing. 

Methodology 
High pressure die casting methodology The 
test piece that was used in die-casting trials 
is the 'dyson' geometry, as shown in Figure 
1. 

Approx stze 3QIJ x 17 mm 

Figure 1 - CAD image of 'dyson' geometry 

The tooling design produced 4 parts 
simultaneously and consisted of 5 separate 
inserts. One of these tooling inserts was 
produced by the MetalCopy process and 
was assembled in the tool along with 
conventional steel inserts. The tool half 
concerned and the gating arrangement is 
illustrated in Figure 2. 
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The accuracy of the MetalCopy insert was 
compared with the stl file (the form of CAD 
data used to manufacture the master) that 
was supplied to Prototal AB by comparing 
measurements of different features. The 
surface roughness (Ra) of an area within the 
casting cavity was measured before and 
after die casting. This area is illustrated in 
Figure 3. 

Figure 3 • Area of surface roughness 
analysis 

LM24 aluminium was utilised as the die
casting material. 

Injection moulding methodology 
The test piece that was used in die-casting 
trials is the geometry shown in Figure 4. This 
geometry is a scaled down version of a valve 
cover for a single cylinder engine, provided 
by Rotax Bombardier. 

LXIII 

1 

I 
Figure 4 - CAD image of valve cover 

geometry 

The 2 part tool consisted of one half 
manufactured by the MetalCopy process, 
and the other half was machined in 
aluminium. The tool inserts can be viewed in 

5. 

Figure 5 - MetalCopy insert (left) & 
aluminium insert (right) 

The accuracy of the MetalCopy insert was 
again compared with the .stl file (the form of 
CAD data used to manufacture the master) 
that was supplied to Prototal AB by 
comparing measurements of different 
features. 

The material utilised in the injection 
moulding was PA66 with a 35% glass 
content. 

Sheet metal forming methodology 
The geometry utilised in the sheet metal 
forming trials was taken from part of an 
exhaust manifold assembly provided by 
Rotax Bombardier. The whole assembly is 
shown Figure 6. 
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Figure 6 - CAD Image of exhaust 
manifold assembly 

The tooling consisted of three parts: the 
punch, the die, and the blank holder. The 
punch was manufactured using the 
MetalCopy process, the die by direct metal 
powder laser sintering (EOSint) and the 
blank holder by wire spark erosion of steel. 
The die and punch are shown in Figure 7. 
Prior to use the cavity surfaces were 
polished. 

Figure 7 - Sheet metal forming die (right) 
& punch (left) 

The sheet forming material was 1.Smm thick 
stainless steel. 

Results 
High pressure die casting results 
The tool was used to produce SOO parts. 
This quantity had previously identified by the 
project partners in represent a 'Iow volume' 
production run. The process cycle time taken 
to produce one part was 2S seconds utilising 
the same process parameters used by a 
complete steel tool .. Initial signs of cracking 
in the Prototal AB insert began after 
approximately the SO parts. This propagated 
from the central boss feature and continued 
to progress during continued production. 

These cracks became clearly visible after 
approximately 200 parts. As production 
progressed to the SOOth part this cracking 
became more extreme and ablative. This 
cracking is shown in Figure 8. 
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Some these effects were quantified by 
measuring the surface roughness of the tool 
before and after die- casting. Prior to 
casting, the area of tool shown in Figure 3 
measured an average surface roughness of 
4.8I'm, while after casting it measured 
7.8I'm. 

The comparative accuracy measurements 
are shown in Fi ure 9. 

" --11""" 
Figure 9 - Comparative measurement of 

MetalCopy Insert & STL file 

Injection mOUlding resu lts 
The tool successfully produced 840 parts 
without any signs of wear. All parts were 
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deemed to be of acceptable quality and 
dimensions. 

The accuracy measurements of the 
MetalCopy insert in comparison to the CAD 
data yielded similar results to those from the 
die-casting trials, the inserts were -0.2mm 
undersized. 

Sheet metal fonming results 
The tool begins to show signs of severe 
wear after on a few sheets were formed; 
production was ceased after only 17 sheets 
were formed. The area of wear occurred on 
the edge curvature on the die edge. This 
area is illustrated in Figure 10. 

Figure 10 - Area of wear on die 

Conclusions 
High pressure die casting conclusions 
The results show that the MetalCopy insert 
is undersized in comparison with the 
supplied .stl file. The process concerns 
multiple translation steps. The comparative 
accuracy of the translation needs to be 
examined after each step in order to 
determine at which points there is a change. 
Subsequently attempts to compensate for 
the under-sizing may be made. 

The progression of MetalCopy material for 
die casting hinges upon improving it's 
resistance to the cracking experienced in 
these trials. The repeated expansion and 
contraction of the tool material, caused by 
this heating & cooling, leads to the 
development of internal stresses. These 
stresses result in cracks appearing in the 
tooling material which ultimately lead to its 
failure [2]. In order to facilitate these 
improvements the following work in the 
project will be instrumental. A thermal fatigue 
test has been designed by Loughborough 
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University to evaluate tooling materials for 
high pressure die-casting. The experiment 
involves a repeated thermal shock treatment 
by exposing the sample to the temperature 
conditions that would be experienced in die
casting. The sample is exposed to very high 
temperatures, then a rapid decrease in 
temperature is induced to an ambient level. 
These conditions are repeated for 1000's of 
cycles. The experiment simulates the 
continued rise and fall in temperature that 
would be experienced by a tool in die
casting. The experiment is designed to 
assess the effects of this thermal fatigue by 
simulating these conditions and thus being 
able to assess its sole effects by eliminating 
other variables experienced during physical 
die-casting (ie. part release forces etc). The 
experiment is designed to ascertain a 
materials resistance to thermal fatigue and 
its suitability for use as a die-casting tooling 
material. The experiment will be utilised to 
quantify the suitability and facilitate 
improvements to powder binder mixture 
materials. 

Injection moulding conclusions 
In this particular application, the MetalCopy 
inserts demonstrated themselves to be very 
suitable for use as plastic injection moulding 
tooling. In a cost comparison it was 
demonstrated that the economical 
advantage over conventional machined 
tooling increased in relation to increasing 
geometrical complexity. 

However, the use of MetalCopy inserts in 
plastic injection moulding did exhibit 
conditions that may lead to part anomalies. 
The mould was utilised at ambient 
temperature Le. neither heated or cooled. 
The different heat transfer characteristics of 
the MetalCopy material and aluminium lead 
to a difficulty in maintaining the different 
mould sides at the same temperature prior to 
polymer injection. Previous work [3] has 
shown that the heat transfer characteristics 
of a tool during injection moulding are a 
highly influential factor that controls the 
resultant structure and characteristics of 
crystalline polymers, such as the material 
used in this case. 

Sheet metal fonmlng conclusions 
The wear occurred on the die, which was 
manufactured by direct metal laser sintering. 
However, the work investigating the use of 
MetalCopy for sheet metal forming tOOling 
will not be continued for reasons of 
economic viability. The use of MetalCopy to 
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produce tooling is only advantageous when 
the required geometry is complex. Due to 
the process nature of sheet metal forming 
only simple geometries can be produced. 
Therefore MetalCopy would never be able to 
compete economically with conventional tool 
production techniques. 
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ABSTRACT 
The pressure die-casting industry is searching for new and more competitive methods to 
produce tooling, especially where low production volumes are concerned where time and 
flexibility is of the essence. Within this 'rapid tooling' field of research there are several methods 
being developed. Each method has advantages & limitations and are based on varying 
techniques. 

An area of such development involves the use of powder binder mixtures to produce metal 
tooling. This paper describes research into the use of a metal powder mixture tooling system 
used for high-pressure die-casting of aluminium. 

The work describes the identification of difficulties & failure modes through case studies. 
Subsequent tool material evaluation will be made by the development of a concise & 
quantitative experimental method. The results may lead to the further development of a metal 
powder binder material which is more suited to the conditions experienced in high-pressure die
casting. This work constitutes part of the IMS RPD 2001 project which is funded by the 
European Union. 

Keywords 
Rapid Prototyping & Tooling, Small batch manufacturing, High-pressure die-casting. 

1. INTRODUCTION 
A technique to form solid geometries from a 
metal powder has been developed by the 
Swedish company Prototal AB (previously 
known as Wiba AB). The process provides 
the opportunity to create tooling inserts as a 
rapid tooling technique. This technique is 
commercially termed 'MetalCopy' [1]. The 
end product consists largely of steel with a 
low melting point alloy infiltrant material. The 
MetalCopy process involves the following 
steps: 

1. A primary master of the tool is created, 
typically by an accurate rapid prototyping 
system. 

2. A silicone negative is cast from the 
master. 

3. The silicone negative is used to produce 
a . green' part which consists of a 
mixture of steel powder and binder. 

4. The green part is sintered and the pores 
between the metal powder grains are 
filled by a low melting point alloy metal. 

It is possible to utilise these products as 
tooling inserts for manufacturing processes. 
Depending on geometrical complexity, the 
technique may provide time and cost 
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advantages as compared to traditional tool 
production techniques. Should the technique 
be further developed the tooling may be 
tailored to its purpose with respect to 
material properties due to the opportunities 
presented by its powder mixture nature. 

The aim of the work is to assess the 
technique's suitability as a tooling process 
for high-pressure aluminium die-casting and 
sheet metal forming. 

The work began with a case study which 
revealed several weaknesses of the 
MetalCopy process to the application for 
high pressure die casting. The particular 
characteristics of the flaws were examined 
using differing examination techniques. This 
work is described in section 2. 

In order to conduct more concise material 
evaluation, an experimental apparatus and 
procedure has been developed by the 
authors. This experiment simulates the 
detrimental thermal conditions experienced 
by the tool material in high-pressure 
aluminium die casting. This allows a 
material's suitability for pressure die casting 
to be assessed without the complications of 
the other extra variables experienced (flow 
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characteristics 
geometry etc). 
section 3. 

due to particular part 
This work is described in 

2. CASE STUDY 

2.1. CASE STUDY METHODOLOGY 
The test piece that was used in die-casting 
trials is the 'dyson' geometry, as shown in 
Figure 1. 

Approx size 30x17mm 

Figure 1 CAD image of 'dyson' geometry 

The tooling design produced 4 parts 
simultaneously and consisted of 5 separate 
inserts. One of these tooling inserts was 
produced by the MetalCopy process and 
was assembled in the tool along with 
conventional steel inserts. The tool half 
concerned and the gating arrangement is 
illustrated in Figure 2. 

Figure 2 MetalCopy & steel inserts In die 
casting tool 

The accuracy of the MetalCopy insert was 
compared with the .sti file (the form of CAD 
data used to manufacture the master) that 
was supplied to Prototal AB by comparing 
measurements of different features. The 
surface roughness (Ra) of an area within the 
casting cavity was measured before and 
after die casting. This area is illustrated in 
Figure 3. 
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Area of Ra 

Figure 3 Area of surface roughness 
analysis 

LM24 aluminium was utilised as the die
casting material. 

2.2. CASE STUDY RESULTS 
The tool was used to produce 500 parts. 
This quantity had previously identified by the 
project partners in represent a 'Iow volume' 
production run. The process cycle time taken 
to produce one part was 25 seconds utilising 
the same process parameters used by a 
complete steel tool. Initial signs of cracking 
in the MetalCopy insert began after 
approximately the 50 parts. This propagated 
from the central boss feature and continued 
to progress during continued production. 
These cracks became clearly visible after 
approximately 200 parts. As production 
progressed to the 500th part this cracking 
became more extreme and ablative. This 
cracking is shown in Figure 4. 

Figure 4 Damage Inflicted on MetalCopy 
insert after die casting 500 parts 
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Some these effects were quantified by 
measuring the surface roughness of the tool 
before and after die- casting. Prior to 
casting, the area of tool shown in Figure 
measured an average surface roughness of 
4.8).lm, while after casting it measured 
7.8).lm. 

The comparative accuracy measurements 
are shown in Figure 5. 
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Figure 5 Comparative measurement of 
MetalCopy insert & STL f ile 

Analysis was conducted to establish the 
characteristics of MetalCopy's structure that 
may have lead to the cracking failures 
experienced in the case study. Sections 
were taken from MetalCopy inserts before 
and after casting to allow magnified optical 
analysis of the structure and hardness 
testing at differing positions. 

The optical analysis also indicated a level of 
porosity that was present in the MetalCopy 
inserts as they were received and also the 
variation on steel particle size. This is shown 
in Figure 6. 
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Figure 6 Illustration of MetalCopy 
structure 
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The cracks that were created by the high 
pressure die casting were investigated 
optically. This showed that the cracks 
propagated along lines of infiltrant material. 
This is shown in Figure 7. 

• 
• 

• • 

" ~ 

• . , 
..,;. 

• 

, 

• 

• .... 

~ 
, • 

• • 

• 
• 

Figure 7 MetalCopy crack post casting 

3. THERMAL FATIGUE EXPERIMENTS 
The progression of MetalCopy material for 
die casting hinges upon improving it's 
resistance to the cracking experienced in 
these trials. The repeated expansion and 
contraction of the tool material, caused by 
this heating & cooling, leads to the 
development of internal stresses. These 
stresses result in cracks appearing in the 
tooling material wh ich ultimately lead to its 
failure [2]. In order to facilitate these 
improvements the following work in the 
project will be instrumental. A thermal fatigue 
test has been designed by Loughborough 
University to evaluate tooling materials for 
high pressure die-casting. The experiment 
involves a repeated thermal shock treatment 
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by exposing the sample to the temperature 
conditions that would be experienced in die
casting. The sample is exposed to very high 
temperatures, then a rapid decrease in 
temperature is induced to an ambient level. 
These cond~ions are repeated for 1000's of 
cycles. The experiment simulates the 
continued rise and fall in temperature that 
would be experienced by a tool in die
casting. The experiment is designed to 
assess the effects of this thermal fatigue by 
simulating these conditions and thus being 
able to assess it's sole effects by eliminating 
other variables experienced during physical 
die-casting (Le. part release forces etc). The 
experiment is designed to ascertain a 
materials resistance to thermal fatigue and 
its suitability for use as a die-casting tooling 
material. The experiment will be utilised to 
quantify the suitability and facilitate 
improvements to powder binder mix1ure 
materials. 

Thermal fatigue is the main cause in the 
reduction of a die's life and consequently it is 
important to understand how a material 
behaves. There are no standard test 
procedures. This has lead to researchers 
[3,4,5,6] developing and conducting their 
own experiments. The technique developed 
by Loughborough takes into account the 
findings of these prior works, leading to a 
hybrid technique. To conduct the thermal 
fatigue experiment a heated medium, a 
cooling medium and automated transfer 
system was required between the hot & cool 
mediums. A furnace containing molten 
aluminium and a cooling medium of water 
and die lubricant tank provided these 
mediums. The cooling medium tank was 
constructed from galvanised sheet steel and 
is designed to have constant cooling. The 
cooling medium temperature is controlled by 
a series of pipes circling the edge of the 
tank, which is connected to a chillier system. 
In order to obtain a constant level of water a 
simple float valve was positioned at the top 
of the water tank. The transfer rig consisted 
of X and Z axis operated by pneumatic 
pistons and controlled by reed switches and 
a CPU. This apparatus is shown in Figure 8. 
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Figure 8 Thermal fatigue experimental 
apparatus 

The CPU programme was constructed using 
Pneu Alpha Visual Basic software. Two 
timing delays were employed to enable 
separate control of heating and cooling times 
and a counter was used to enable automatic 
shut down after controlled number of cycles. 
A disc shaped specimen (Figure 9) was 
utilised which allows for easy crack 
measurement. The sample holder employed 
allows four separate samples to be analysed 
at once. 

Figure 9 Specimen geometry 

In order to ensure that these simulation tests 
represented the exact thermal conditions 
experienced by a high pressure die casting 
tool, it was necessary to perform some tests 
to exactly quantify these conditions. These 
tests were conducted to establish the exact 
temperatures of an aluminium pressure die
casting tool surface at production speeds 
and temperatures. The temperature profiles 
experienced would be replicated in the 
temperatures and cycle time of the thermal 
fatigue experiment. The temperature profiles 
were measured by a combination of two 
calibrated k-type 0.25mm diameter 
thermocouples and temperature sensitive 
paints in the runner system of the die 
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casting tool utilised in section 2. This is 
illustrated in Figure 10. 

Figure 10 Temperature measurement in 
tool 

The pressure die-casting test was conducted 
with the same casting parameters as in 
section 2. These were: 

• The aluminium melt temperature was 
710°C 

• The die was preheated to 100°C -
150°C using a gas lance 

• 50 shots ran prior to test initiation 
• Cycle time 20s - 24s (production 

speeds) 
• Die lubrication (delta cast 333 Release 

3) sprayed every two shots 
• Water cooling of overflow area and 

plunger tip 

As shown in Figure 11 , the thermocouple 
readings showed that the die surface 
temperature typically increased to 440°C 
when the aluminium was injected. The 
temperature paints confirmed this with the 
399°C paint disappearing the 454°C paint 
partly removed and the 510°C paint 
unblemished. Upon removal of the casting 
and die cooling the surface temperature fell 
to 100°C - 150°C. 
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Figure 11 Tool temperature readings from 
thermocouples 
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As a result of the findings, the same 
temperature profile has been replicated in 
the thermal fatigue experiment by altering 
the temperature of the cooling & heating 
mediums (19'C & 730°C respectively), and 
the time of exposure (cooling: 0.9 sec, 
heating: 0.5 sec). 

4. CONCLUStONS 
The resu lts show that the MetalCopy insert 
is undersized in comparison with the 
supplied .stl file . The process concerns 
multiple translation steps. The comparative 
accuracy of the translation needs to be 
examined after each step in order to 
determine at which points there is a change. 
Subsequently attempts to compensate for 
the under-sizing may be made. 

The results have shown that the infiltrant 
material is a weak point of the process when 
utilised as high pressure die casting. It has 
been shown that the cracks propagate along 
through this material avoiding the steel 
particles. The inherent porosity that has 
been demonstrated may also lend to this 
failure mode. 

It is hoped that the thermal fatigue 
experiment described in this paper will allow 
for a better understanding of the failure 
mode which will in turn lead to material 
improvements. The experiment will be 
utilised to further quantify the process' 
suitability for high-pressure die casting 
tooling and facilitate improvements to 
powder binder mixture materials. The results 
of these experiments will be available in due 
course. 
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ABSTRACT 
The die casting industry is under increasing 
pressure to improve production rates to 
enable greater productivity. Employing 
conformal cooling channels could potentially 
improve a die performance through the 
reduction of solidification times. The paper 
reviews simulated solidification results from 
a traditional cooling channel design and a 
conformal cooling channel design. The 
paper continues by describing the 
construction of bonded laminate insert with 
integrated cooling channels. Casting trials 
were conducted using the inserts to validate 
the simulated results. Work to date has 
demonstrated the ability to manufacture 
laminate inserts quickly, the accuracy of 
Finite element analysis and the importance 
of designing conformal cooling channels. 

KEYWORDS 
Rapid tooling, laminate tooling, pressure die
casting, confonmal cooling. 

INTRODUCTION 
The cooling of mould tools is crucial to the 
performance of tooling; it affects both 
production rates and component quality (Xu 
2001 & Wayde 2000). Various methods exist 
to produce tools; such as laser sintering, 
spray metal tooling (Halford 1999), laser 
caving, wiba & keltool etc. However, 
laminate tooling could offer higher strength 
and toughness than the materials currently 
used in traditional layered manufacturing 
(Obikawa 1999). Laminate tooling is a typical 
layer-by-Iayer manufacturing process 
requiring a 3D STL CAD file, wh ich is then 
sliced into layers. This sliced data is used to 
laser cut the individual laminates form sheet 
tool steel, these are then brazed together to 
fonm a die. The die surfaces are finished by 
either electrical discharge machining or high 
speed machining to remove the stepping 
effect created by layer manufacturing. 
Laminate tool manufacture allows a die to be 
constructed from die steel with the benefit of 
integrated conformal cooling as appose to a 
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solid H 13 die where only straight cooling 
channels can be machined. 

The rapid prototyping industry employs layer 
methods of manufacturing that allow virtually 
any geometry to be physically constructed 
(Dickens 1999). Due to this versatility, 
engineers are able to design and build 
complex components with internal features 
such as conformal cooling channels. 
Conformal cooling is achieved by creating a 
cooling channel that follows the exact 
contours of the mould cavity. By having the 
cooling channels uniformly located around 
the cavity, the risk of hot spots is virtually 
eliminated since the die is uniformly cooled 
this has been reported to produce less 
stressed parts in injection mOUlding. The 
increased effect of confonmal cooling also 
helps to reduce cycle times, which in turn 
results in increased production rates. 
Conformal cooling lines of high complexity 
can be created (Xu 2001). Currently tooling 
is cooled through straight interconnecting 
channels. This traditional method is less 
than optimal because the passages can only 
be directed at right angles and cannot be 
optimally placed next to those strategic 
areas that need cooling. The result is a 
slower cycle time for the production of parts. 

Software such as MAGMASOFr- now offer 
the die designer the ability to model tools 
and predict areas of concern and calculate 
mould fill times. The introduction of 
confonmal cooling channels within tool 
design reduces the constraints I 
compromises made regarding cooling, as 
they can be placed exactly where required 
(Xu 2001). 

AIMS AND OBJECTIVES 
It is the intention of this research to explore 
the benefits conformal cooling may have on 
aluminium (LM24) pressure die-casting cycle 
times. 
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Figure 3 Designs for traditional cooling 
(left) and conformal cooling (right) 

Figure 4 Male and female STL CAD of 
inserts 

CON FORMAL COOLING DESIGN 
The potential to decrease the cycle time is of 
great significance to the pressure die casting 
industry. A small reduction in the cycle time 
can Significantly improve production rates. 

STL CAD die insert files were created using 
Materialise Magics software and are shown 
in figure 3, one traditional cooled and the 
other conformal cooled. The diameters of the 
cooling lines in both were 10mm. The 
conformal cooling channel design shown in 
figure 3 had a 'M' profile following the runner 
and biscuit area. By introducing a larger 
cooled area in the biscuit region (1 Y. times 
larger) it was envisaged that the inserts 
cooling efficiency would increase due to the 
increased surface area of the cooling 
channel and water volume. 

MAGMASOFT SIMULATION 
Simulation was used to determine if a 
difference in time to solidification could be 
determined between the two cooling 
designs. 

Analysis of the die was conducted using 
MAGMASOFT* software. The STL CAD files 
were combined to create two stl files, one 
with traditional cooling and the other with 
conformal cooling shown in Figure 5. These 
were then Imported into the MAGMASOFre 
pre-processor. 
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Figure 5 3D CAD models of the inserts 
and shot sleeve used for simulation 

Half the model was removed, as the die was 
symmetrical allowing a reduction in 
processing time, the model was then 
meshed. Die cycling temperature and water
cooling were simulated. Figure 6 shows ten 
theoretical thermocouples that were 
positioned in the model, starting at the 
plunger tip spaced evenly through the insert, 
casting and cooling channel. The simulation 
was cycled 10 times to achieve 'near' steady 
state. The temperature of each 
thermocouple was recorded on the 11 III cycle 
in a graphical format showing the time taken 
for the component to SOlidify. Approximately 
8.5 temperature readings were recorded I 
thermocouple I second. Thermocouple 1 
was located at the end of the plunger tip 
stroke, thermocouple 2, 3, 4 were located in 
the biscuit area of the casting, thermocouple 
5, 6, 7, 8 were located in the insert and 
thermocouple 9, 10 were located in the 
cooling channel. 

Appendix vi 



Runner 

Cooling 
Channel 

Thermocou.cp;.;1 ..,. 10987,654 

Points 

Biscuit 

Plunger 

o 
f-- I 

I--

Figure 6 Section through the tool showing the location of thermocouple points. 

CASTING VALIDATION 
The experiment was designed to achieve a 
burst biscuit. A burst biscuit is where a 
casting has had insufficient time to fully 
solidify shown in Figure 7. In pressure die 
casting the biscuit is situated at the start of 
the runner system shown in Figure 8 and is 
usually the thickest part of a casting and 
hence Ihe last area to solidify. By decreasing 
the solidification time it is possible to create 
what is called a "burst biscuit" which is 
where molten metal in the centre of Ihe 
biscuit forces its way Ihrough a skin of 
solidified material. By achieving a burst 
biscuit the minimum amount of time to 
solidification can be determined. The lower 
the solidification time the faster the cycle 
time and better the productivity, as shown in 
Figure 9. 
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Figure 7 Burst biscuit 

Figure 8 Insert location 
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Figure 9 Typical cycle time of the die 

LAMINATE DIE INSERT MANUFACTURE 
The STL CAD file of each insert was sliced 
in order to generate the 2D DXF CAD data. 
These contained the profiles that defined 
each cutting path of the laser, to produce the 
individual laminates. Using Delcam's Power
Shape 3D Package the STL CAD files were 
sliced with a layer thickness of 1 mm, the 
thickness of the steel sheet. This was a 
subroutine that enabled automatic slicing of 

Recommended braze temperature 
Recommended gap size 
Composition Nickel Balance. 

the 3D tool and output individual 2D, DXF 
files and produced a total of 90 profiles. 

The profiles were then transferred directly to 
a 1200 Watt Photon Versa CO2 continuous 
gas laser cutter where the H 13 steel 
laminates were cut. The laminates were then 
grit blasted with a nickel alloy abrasive at 
620 kPa to remove burrs, oxide layer and 
then degreased with isopropyl alcohol 
«CH3h CHOH). The laminates were bonded 
using Amdry 936 supplied by Sulzer Metco 
in powder form (Table 1). The laminates 
were placed and each joint coated with 
Amdry 936 in a purpose built fixture to 
prevent excessive movement during the 
brazing process. The nickel braze was used 
due to its high melting temperature and ease 
of machinability. 

AMDRY 936 

970-1010°C (1775-18S0°F) 
0.013mm - 0.1mm (0.0005" - 0.004") 

19 Maanesium 6SIIicon - 1 Boron 4CoPDer - 0.03Rhenium 

Table 1 Braze details 

The inserts were brazed in a furnace with an 
inert Argon atmosphere. The furnace was 
purged with Argon at 1 OOkPa and 30 If m flow 
for 20 minutes prior to the start of the 
brazing cycle shown in Figure 10. The Argon 
was then reduced to 100kPa and 20Vm flow 
when the brazing process commenced. The 
first temperature hold at 1500 e for 15 
minutes was to allow solvents or water in the 
braze and furnace to outgas. This helped to 
prevent porosity in the braze and allowed 
time for the atmosphere to replenish. The 
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second hold at 540°C for fifteen minutes 
allowed organics in the braze sufficient time 
to become gaseous and to be pumped out 
and again time for the inert atmosphere to 
return . At 9600e there was a stabilisation 
hold for ten minutes. The temperature was 
then held at 101 oOe for one hour to allow 
sufficient time for the alloy to melt and flow 
into the joint. 
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Figure 10 Heating and cooling profile of the brazing process 
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The inserts were allowed to cool in the 
furnace below the solids temperature of the 
braze at approximately 9600 e at which point 
they were removed from the furnace and air 
quenched. Figure 11 shows the traditional 
insert after final machining of the exterior, 
runner, ejector holes etc. 

Figure 11 Insert after machining 

CASTING PROCEDURE 
The experiments involved a series of casting 
trials which were conducted at production 
speeds to maintain a representative die 
temperature. 

The cooling channels were tested to ensure 
no leaks were present. This was achieved by 
simply blocking the outlet of the water 
channel, connecting the inlet to mains water 
(400 kPa) and checking for leaks. 

The casting was conducted on a Frech 125 
DAK SDV cold chamber die-casting machine 
which was modified to allow the solidification 
time to be adjusted below 3 Seconds. This is 
not a standard procedure due to the danger 
involved with opening a die whilst aluminium 
is potentially molten. To safe guard against 
injury the area was sealed off and machine 
guards put in place. 

The die casting machine was set up as 
previously shown in figure 9. The cycle time 
was set at approximately 170 shots per hour 
(21 second cycle) with a solidification time of 
3 seconds. The die was initially heated with 
a gas lance for 1 Y. hours and then 150 shots 
cast to achieve the dies working temperature 
of 2000e - 250oe. Thereafter, samples were 
taken every 10 shots and the cooling time for 
each shot recorded. After every 10 shots the 
cooling time was decreased by 0.1 of a 
second until there were signs of a biscuit 
burst shown in figure 7. 

RESULTS 
SIMULATION RESULTS 
Thermal images show the rate at which 
solidification occurs in Figure 12 & Figure 
13. 
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The conformally cooled thermal image 
shows the majority of the casting had 
solidified after 2 seconds and is similar to the 
traditionally cooled image with the exception 
of the biscuit area. The centre of the 
traditionally cooled biscuit takes 
approximately 10 seconds to fully solidify in 
comparison to 9 seconds for the conform ally 
cooled image. 

Figure 12 Traditionally cooled 
solidification time 

Figure 13 Conformal cooling 
solidification time 

This is confirmed when comparing the raw 
data from thermo couple points 2, 3 & 4 
shown in Figure 14. Aluminium LM24 
solidifies between 5200 e and 580oe, which 
is where crystallisation begins and ends this, 
is termed latent heat of fusion . Thermo 
couple 2 and 3 are located in the centre of 
the biscuit and solidification begins after 1 
second and ends after approximately 8 
seconds. For both the traditionally cooled 
and conformally cooled insert there is no 
significant difference between the 
solidification times. Thermocouple 4 is 
located at the edge of the runner near the 
die surface and is naturally is the first area to 
solidify, starting at 0.3 of a second and 
finishing at approximately 5 seconds. 
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Figure 14 Traditional cooling (TC) verses conformal cooling (CC) (thermocouples 2-4) 

Figure 14 shows little difference between the 
traditionally cooled (TC) and conformally 
cooled (CC) insert solidification time. 

Thermocouples 5, 6, ? & a were situated in 
the insert and as one would expect the 
closer to the die surface the thermocouple 
was, the greater the temperature recorded. 

This can be see in Figure 15 where 
traditionally cooled thermocouple 5 (TC5) is 
approximately 55°C hotter than traditionally 
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cooled thermocouple a (TCa) the same is 
true of conformally cooled thermocouple 5 
and a (CC5 & CCa). 

When comparing the traditional and 
conformal thermocouple points it can be 
seen that the conformally cooled insert is 
typically 20°C cooler than that of the 
traditionally cooled insert for each 
thermocouple location (Figure 15, TC? and 
CC? for example). 
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Figure 15 Traditional cooling (TC) verses confonnal cooling (CC) (thennocouples 5-8) 
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RESULTS FROM CASTING 
The results from both the traditional and 
conformal cooled tool were the same. During 
the casting trials the components were 
visually examined for signs of a burst biscuit. 
In both the traditionally and conformally 
cooled inserts the solidification time could be 
reduced from 3.5 seconds down to 1 
second. The lowest time before failure of the 
biscuit and casting occurred was 0.7 
seconds. Failure was determined as a burst 
biscuit or the biscuit being semi molten and 
separating from the runner/casting during 
ejection. 

DISCUSSION 
The Magmasoft simulation shows the 
conformally cooled insert to be 
approximately 20·C cooler than the 
traditionally cooled insert, shown in figure 
15. The simulation however does not show 
an improved solidification time of the casting, 
shown in figure 14. When comparing the two 
simulations there is little difference in the 
cooling performance of the channel designs. 

This was verified by the casting trials, 
proving that the simulation is accurate at 
predicting solidification rates. It is clear that 
the design of a conformal cooling channel is 
crucial since both the simulation and 
physical casting experimentation showed no 
reduction in solidification time. 

The casting trials showed that solidification 
must happen quicker than predicted by the 
simulation since the die could be opened at 
1 second with no signs of a burst biscuit. At 
0.7 seconds the biscuit failed and separated 
from the rest of the casting upon die 
opening. This is achievable as the outermost 
surface of the casting created a skin trapping 
the remaining semi molten aluminium inside 
which allowed the die to be opened whilst 
the centre of the biscuit was semi molten. 
However the simulation shows no evidence 
of this, predicting that it takes the runner and 
biscuit area 8-10 seconds to solidify, as 
shown in figure 12 & figure 13. 

Although the conformal cooled channel had 
1 Y. times the surface area and volume it 
evidently was not enough to remove the 
heat. Both the simulation and casting trials 
showed no reduction in solidification time. In 
hindsight it would have be practical to 
conduct the finite analysis prior to the 
manufacture of the insert and casting trials. 
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CONCLUSIONS 
The results showed that the simulation was 
accurate at predicting no differences 
between the channel designs. This was 
verified by the casting trials. This proves that 
by simply increasing the length of a channel 
does not necessarily improve cooling 
performance in a aluminium pressure die 
casting tool. 

The simulation and casting trials do differ in 
how solidification takes place in the biscuit 
area. This area is the last area to solidify, as 
you would expect. However, the casting 
trials showed the die could be opened after 
one second with no signs of a burst biscuit. 
The simulation begs to differ. It clearly 
shows the biscuit slill SOlidifying after 8 
seconds even at the edge of the runner. If 
this were the case the die wouldn't have 
been able to open. The research has 
outlined the importance of conformal cooling 
geometry and placement, as conformal 
cooling did not reduce the solidification time 
in this case. 

This may be due to the shape, surface area, 
volume, flow rate and or location of the 
cooling channels being inadequate. 
Changing the shape and increasing the 
waterl tool contact area should allow 
increased heat transfer from the tool to the 
water in the channel. Increasing the volume 
of the channel may allow greater heat 
dissipation in the water. Experimentation 
with flow rate, turbulent flow verses laminar 
flow and good placement of the channels 
may improve cooling performance. 

The second stage of this research will be to 
conduct further finite element analysis with 
different conformal cooling channel designs 
to improve the cooling of the biscuit area. 
From this data the most efficient conformal 
cooling design will be manufactured and the 
simulated results validated by casting trials. 
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LAMINATE TOOLING 
Laminate tooling can be considered a direct 
tooling technique and is probably one of the 
simplest processes to design. manufacture 
and implement. The key attractions are low 
cost. scalability, robustness, lead time < 1 
week, deep cavities, design verification and 
conformal heating and cooling channels. 

Laminate tooling has been employed in 
applications, beginning with Professor 
Nakagawa's work in Japan in the late 
1970's. Much of the early work was based 
around the fabrication of tooling for deep 
drawing and blanking tools with horizontally 
stacked laminates. This initial work has lead 
to increased research into many tooling 
domains incorporating conformal cooling and 
heating channels. An additional benefit is the 
scale of the tooling is not limited unlike many 
rapid prototyping processes that are limited 
to the size of the machine platform. 

The manufacture of a laminate tool is similar 
to Laminate Object Manufacturing (LOM) 
process where sheets of paper are replaced 
with steel sheets. The process starts like 
many other rapid prototyping methods, with 
an STL CAD model. The model is sliced as 
an offset function and each slice is saved as 
a DXF file. The DXF files are nested and 
define the cutting path for a profiling 
machine (Water jet, laser, plasma etc.) Here 
in lies the limiting factor for the size of tool, 
the size of the profiling bed. However, there 
are many companies who perform profiling 
work of three meters square. Each individual 
laminate is assembled in order by physical 
clamping or bonding. Like many rapid 
prototyping methods stepping occurs and 
the tool requires finishing, employing EDM or 
high speed machining achieves the desired 
tool finish. The dies can also be heat treated 
however; this is dependent upon the tool and 
bonding material. 

Laminate tooling research is increasing and 
development work can be split into two 
categories (a) un-bonded for design 
verification, prototyping and short run 
tooling. These tools are mechanically 
clamped together usually employing nuts 
and bolts. (b) Bonded for long run tooling, 
adhesives, solder, brazing, friction welding 
etc. can be employed. Bonding prevents 
deflection of the individual laminates and 

LXXXIII 

seals conformal channels preventing 
leakage. 

Laminate tooling has been successfully 
employed for injection moulding, press tools, 
punch and die sets etc. and is beginning to 
emerge in industrial applications. Recent 
development work has lead to tools for 
aluminium gravity die-casting and pressure 
die casting where the working environment 
is extremely aggressive. 

GRAVITY DIE-CASTING DIES 
De Montfort University and Warwick 
University is currently running an EPSRC 
project with industrial partners and have 
developed a simple brazed laminate tool for 
aluminium gravity die casting, to evaluate 
erosion, chemical attack, heat checking, de
lamination etc. 

The tool was constructed from, cold rolled 
H 13 sheet which was laser cut, de-burred 
and brazed with Amdry 936 supplied by 
Sulzer Metco and machined to remove 
stepping. 

The die produced 2,000 components with 
out failure. Although the die was simple and 
under no external forces (die open/close) it 
proved that the composite material could 
tolerate the aggressive environment. In 
addition it produced a significant number of 
components making the process suitable for 
short run production tooling. 

The next stage was to produce a larger more 
complex tool both bonded and un-bonded for 
aluminium gravity die-casting. A production 
brake master cylinder provided by TRW was 
the chosen component. 

The tools were produced in the same manor, 
as before however, consideration for 
clamping and laminate orientation of the un
bonded tool had to be considered. Due to 
the components profile one insert was 
produced horizontally and the other vertically 
(Figure 1). 
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Figure 1 Pre Machined Inserts 

Machining the un-bonded inserts caused the 
laminates to burr and several de-burring 
operations were carried out in order to 
maintain tolerance. To overcome this extra 
clamping was required (or high speed 
machining could have been employed), as 
the cutting forces could have been reduced. 

PRESSURE DIE-CASTING DIES 
The pressure die-casting process has more 
issues to address than that of gravity die 
casting. It works at much higher pressures 
and clamping forces up to 3000 tonnes are 
required to insure the mould remains closed, 
it has a 3 stage injection cycle, faster cycle 
times which means the die has a rapid 
heating and cooling, and channels have to 
be integrated into the die. 

The majority of wear on a pressure die 
casting tool occurs in the gating system 
(where the biscuit is formed. This is due to 
the molten aluminium being forced into the 
runner system and rapidly changing direction 
by 90°. This is followed by pressure as the 
die continues to fill and SOlidify. 

Horizontal and vertical bonded laminated 
gating Inserts were produced for a four 
impression aluminium (LM24) production 
tool. These were designed to incorporate 
conformal and traditional cooling channels. 
The benefits of conformal channels are that 
a designer is able to place cooling or heating 
where it is needed within a die. This is only 
feasible by producing a tool in a layer by 
layer approach. 

A direct comparison between the bonded 
laminate inserts and the solid H13 inserts 
can be made. The test was designed to 
enable an evaluation of wear rates, thermal 
fatigue, failure mode, life expectancy and 
observe all the cycle times with conformal 
cooling and trad itional cooling (Figure 2). 
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Figure 2 Traditional and Confonnal 
Cooling Channels Designs for Inserts 

Recent experiments have been produced 
encouraging results, using the conformal 
cooled gating insert, reduced the 
solidification time from 3 seconds to 0.7 
seconds increasing production rate by 
approximately 11 %. The trials will continue 
to determine the life expectancy of the insert. 

The next stage will be to produce a bonded 
and un-bonded laminate pressure die
casting tool and compare them to a 
production die. This will enable us to 
evaluate the merit of laminate tools as an 
alternative method of producing prototype I 
production tooling for the die casting 
industry. 

This tool will be designed to make 
comparisons between bonded, un-bonded 
and the production tool e.g. address 
performance characteristics of horizontal vs. 
vertical laminate orientations, costing, time 
to market profiles and die life comparisons. 

It has been decided to use electro discharge 
machining (EDM) to remove any stepping 
and finish the tool due to the deep cavities 
on both sides of the die. EDM was chosen to 
determine whether it was a suitable finishing 
process for bonded and un-bonded 
structures Le. would the braze wear faster 
than the H13 tool steel , how would the 
electrodes wear, what finish was achievable, 
etc. The EDM tOOling are to be produced via 
electroplated SLA and EOS rapid 
prototyping methods. 
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The stereolithography process (SLA) 
employs a laser, which scans an image on 
the surface of a vat of UV curable resin. A 
thin layer of liquid resin becomes solid and 
the cross section is lowered and the next 
layer scanned on to the resin. The layering 
process continues until the part is built. 

SUMMARY 
Many of the tools discussed are beginning 
trials in industrial environments. 

The research to date is primarily associated 
with the manufacture of a laminate tool for 
the die casting industry. 

Un-bonded laminate tools are able to 
withstand the pressure die casting 
environment, however, it is not always 
possible to place claming bolts where 
required due to component geometry. This 
causes uneven clamping pressures with 
associated distortion. It is also important at 
the design stage to select the correct 
laminate orientation in order to prevent un
clampable island/features. 

Finishing via high speed machining can 
cause lifting and burring of laminates. 
Causing the tool to be disassembled and 
rebuilt increasing time and costs. Hence, 
EDM is the preferred finishing technique. 

Bonded tools eliminate the problems 
associated with an un-bonded die i.e. 
uneven clamping, burring, leaks from cooling 
channels etc. 

Heat treatment can also be conducted 
without the risk of laminates distorting. The 
brazing process is conducted at 1020oC, 
H13 Hardening temperature this is then 
tempered to 43Rc. 

Initial problems arose when machining the 
brazed laminate structure, laminates would 
peel off due to lack of wetting. An increased 
soak time at the brazing stage reduced this 
problem. However, EDM was employed to 
prevent this recurring . 

Our initial trials of the bonded gravity tool 
have proved promiSing with the brazed 
structure withstanding the temperature 
(730°C) involved with aluminium (LM24) 
gravity die-casting. The tool has shown no 
signs of erosion heat checking/fatigue or de
lamination to date. 
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It is envisaged that laminate tooling could be 
employed as a method of manufacturing 
prototype tooling to validate die design for 
the die casting industry. In addition it could 
be considered for short run tooling. 

Further Industrial trials are to be conducted 
in order to validate the dies failure mode, life 
expectancy, effects of conformal cooling etc. 

The direction is leading towards the 
construction of composite laminate tool 
allowing incorporation different metals and 
mechanical properties where required. It is 
envisaged that this will move towards mixed 
metal matrix and foils increasing tool detail 
and properties. 

DIRECT METAL LASER SINTERING 
(DMLS) 
Laminate tooling offers potential solutions to 
die-casters where sizes =>500x500x500mm, 
weight removal and conformal cooling are 
the main decisions on tooling selection. 
DMU are also addressing Rapid Tooling 
solutions for HPDC where tooling is required 
for sizes <500x500x500mm. One particular 
process centres on the application of the 
laser sintering process currently available. 
EOS Finland are currently performing trials 
with DMU for their new 20!,m DMLS 
DirectSteel material (DS20 v1). Much of the 
laser sintered materials prior to this 
development have made good inroads into 
the injection moulding industries but so far 
have struggled where HPDC is concerned. 
DS20 v1 is a very promising material in that 
is has far higher detail that the previous 
50!,m material and DMU have already 
demonstrated this material for injection 
moulding applications. 

Direct Metal Laser Sintering (DMLS) is the 
term coined by EOS GmbH to describe their 
metal laser sintering process. It's true 
definition is actually 'Liquid Phase Sintering' . 
Distinctions are often drawn between the 
DTM and EOS process, the main being that 
the DTM process uses a polymer coated 
metal powder to form 'Green' parts that are 
subsequently sintered and infiltrated. This is 
opposed to the EOS process that produces 
a fully sintered part in one stage. There is 
often a misconception that the EOS process 
uses a more powerful laser to fuse the metal 
powders that are loaded into the machine. 
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This is not quite correct as the process 
actually relies on a blend of powdered metal 
that contains a low melting point and high 
melting point powder. As the laser scans 
each layer of deposited powder it is the low 
melting point powder that binds the 
remaining powder into the desired shape. In 
this respect there is some similarity in the 
two processes as they both rely on a 
secondary material to melt and bind a more 
robust metal powder. 

80 why doesn't DTM used lower melting 
point alloys to bind its powder? Besides the 
patent issues, the E08 powders have one 
more trick up their sleeve. They are very 
unusual in that they exhibit a volume 
expansion as they cool. Under normal 
conditions one the biggest problems with 
trying to get a fully dense metal part out of 
such a machine is the stresses that are set 
up as the powder is melted. Not only is 
there a volume change but also the material 
will try to shrink as it cools. The E08 
materials (developed by Electrolux) expand 
as they cool thus negating some of the 
stresses that would otherwise hamper this 
process. 

Of key interest to the HPDC industry is 
DMU's recent application of this process to 
produce both magnesium and aluminium 
die-casting dies that were run in the 
production environment. DMU were able to 
demonstrate the production of 500 Ericsson 
mobile phone chassis, some of which were 
assembled into working phones. Based on 
the success of this project a new project was 
set-up that drew on the die-casting skills of 
Kemlows Die-casting Lld and the Dyson Lld 
who donated a high production HPDC tool 
used to for producing a clutch housing 
mechanism for their vacuum cleaner. One 
of the inserts in this tool was replaced by a 
D820 v1 insert, with integral heating and 
cooling lines. This tool was then run under 
full production conditions by Kemlows Die
casting Lld and the castings sampled and 
measured for accuracy I tolerances etc. 
Dyson were able to confirm that the castings 
were within tolerance and the tool was run 
for 500 shots. 

500 shots in Aluminium LM24 is a very 
promising number and certainly proves the 
concept for prototype tooling, bridge tooling 
or even short run tooling. The run was 
terminated after 500 casting based on time 
constraints and a frozen casting but the tool 
showed no signs of degradation and is 
awaiting to be run on to destruction. 
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Abstract 
The need to produce compcnents employing 
the desired casting material, tooling and 
process in order to evaluate a die design 
and its components is invaluable. This 
method of die manufacture has the ability to 
produce complex dies in a short lead-time 
and at a reduced cost. This paper 
addresses a novel method of manufacturing 
bonded and un-bonded laminate dies for use 
in aluminium die-casting. 

The process involves several stages, they 
are, generation of a 3-D CAD model of the 
tool, slicing the model, laser beam cutting 
the individual slices in H13 tool steel, 
laminating them to form the die profile with 
stepping, brazing or clamping. This is 
followed by electrical discharge machining 
(EDM) or high speed machining to remove 
stepping. 

The technique allows conformal cooling to 
be integrated and can allow die features to 
be altered, added or removed. Due to the 
compcsite structure of the die it is also 
feasible to integrate high strength materials 
where needed. 

Several experimental dies were 
manufactured for gravity and high pressure 
die-casting applications to address tool 
wear, heat checking/thermal fatigue and the 
effects of conformal cooling. 
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Introduction 
The rapid prototyping industry has created 
new methods of manufacturing allowing 
virtually any geometry to be physically 
constructed (Dickens 1999). Due to the 
versatility and layer technology engineers 
are able to design and easily build complex 
components. However, for validation of 
geometry and physical testing of 
components the prototypes need to be 
manufactured with the specified material and 
process. 

This has lead to spin-offs from the traditional 
methods of rapid prototyping, such as 
laminated tooling (Soar 2000) which 
employs the Laminated Object Manufacture 
(LOM) process however; metal sheet 
replaces resin bonded paper. 

Various methods exist to produce tools, such 
as selective laser sintering, spray metal 
tooling (Halford 1999), laser caving. 
However, Laminated tooling is a good option 
since sheet metals have higher strength and 
toughness than the materials used for 
traditional layer manufacturing. (Obikawa T. 
1999). 

Laminate tooling is in its infancy although, 
several tools have been developed for 
different applications, example's are: 

Blanking tool and die set (Yokoi 1 994) 
Polyurethane foam moulding tool (Dickens 
1996) Metal Forming dies (Walczyk 1994, 
1998), Injection Moulding dies (Glozer 1992, 
Bryden 1999) Aluminium die casting tool 
(Soar 1998'). 
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Injection mould tools have been 
manufactured and tested with favourable 
results (Glozer 1992). Glozer's moulding 
trials were conducted using polypropylene 
as it flows relatively easily and required a 
low injection pressure. The machine was set 
to have fill time of 1.56 second cycle and it 
had a maximum pressure of 67MPa on the 
screw. The mould produced over 400 
components and showed no sign of wear or 
fatigue. He estimated the mould life to be in 
its thousands and would only be limited due 
to the softness of the aluminium laminates. 
Glozer (1992) also concluded ' under the 
conditions used in this test that the polymer 
was not capable of forcing the laminates 
apart during injection". 

The next logical transition was to transfer the 
technology to high pressure die casting 
(HPDC). However there are additional 
problems associated with the die-casting 
process. 

• Injection speeds and forces 
• Thermal shock. 
• Ingress 

History 
Laminate tooling for the manufacture of high
pressure die-casting dies has several 
advantages: 

It is feasible to produce tools in a time and 
cost effective manner. Deep narrow 
geometry's could be produced. Die geometry 
could be altered quickly and cost effectively. 
It is likely that tool repair would be rapid and 
cost effective. Production of laminates may 
be faster and cheaper than billet tools. For 
volumes over 500mm x 500mm x 500mm, 
sheet steel is cheaper than billet. (Soar, 
2000). There is usually a shorter lead time 
on sheet as it's an off the shelf item. 
Evaluation of a component that has been 
produced using the desired production route 
and material. 

Scale is not limited (Soar & Dickens 1998") 
as tool size is determined by the bed size of 
the laminate cutting and finishing processes 
Both Male and female halves can be 
manufactured simultaneously. Inclusion of 
conformal cooling channels increases 
production and running speeds. (Himmer, 
1999). 

It may also be advantageous to produce 
hollow tools, to increase cooling/heating 
efficiency and reduce the die weight. 
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Harder die materials could be employed 
(Walczyk 1998) as different manufacturing 
processes are employed to manufacture a 
laminate tool. This would extend die life and 
reduce component cost since a greater 
number of components could be produced 
without the need for tool repairs or even a 
tool change. Cost effective short run tooling 
is achievable. 

It's only in recent years that laminated 
tooling has been researched with aluminium 
die-casting and high pressure die casting in 
mind (Soar 2000). 

The pioneering work conducted by Dr Rupert 
Soar (Soar 2000) was based upon 
investigating ingress of molten aluminium 
(LM24 alloy) between laminates, i.e. would 
the individual laminates deflect when 
subjected to the injection forces of the 
pressure die casting process and allow 
aluminium to enter between them. 

Soar constructed a cold chamber laminate 
die-casting tool (Figure1) employing 1mm 
H 13 steel sheet. The tool contained ramp 
features increasing in height. These went up 
in increments of 0.5mm, 1 mm, 2mm, 3mm, 
4mm, 5mm and 6mm. 

The significance of the array of eight 
laminate heights above the ramp feature, 
was to determine the range which ingress of 
molten aluminium (LM24) would occur 
between the laminates caused by deflection 
on the protruding features (Figure 2). 

Soar concluded (Soar 2000): 

Un-bonded laminate tools are able to endure 
the conditions found in high pressure die 
casting and can be used for short runs for 
design verifications. Ingress between 
laminates did not occur where Isolated 1 mm 
thick laminates protrude less than 6mm. 

For ingress of LM25 aluminium to occur the 
laminates must be deflected 0.05mm. For 
any die design laminates are more likely to 
deflect the closer they are to the inlet gate. 
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Removing a seized casting can damage the 
effectiveness of the laminates in a laminate 
die to resist deflection and hence ingress. 

This research showed that un-bonded 
laminate tools are able to withstand the 
aggressive environment of the pressure die
casting process. However, problems exist 
such as: 

• laminate deflection at the shut of face 
• Deflection of protruding features near 

to the gate due to high pressures in 
this area 

• Possible deflection of individual 
laminates greater than 6mm 

• Clamping of the laminates 
• laminate Alignment 
• Cooling channels may leak 

These factors hinder tool design and the 
complexity of an un-bonded pressure die 
casting tool is limited. The solution may be 
found in a bonded, and what could be 
termed composite laminate tool. 

Process Technology 
The initial stages of construction of a 
laminate tool are identical to that of a billet 
tool. A CAD model of the desired component 
is created and material shrinkage calculated, 
the model is then modified accordingly. This 
is easily achieved with modern CAD 
packages due to the fact the model can be 
offset and or scaled to achieve a 3D 
representation of what will become the tool 
cavity. It is then necessary to determine the 
parting line and orientation of the 
component. At this stage a number of factors 
should be considered; gating, undercuts, 
draft angles, witness marks, shrinkage on to 
features etc. 

Again with the help of modern CAD systems 
the 3D model complete with split line can be 
subtracted from a solid cube, creating 3D 
models of both male and female halves 
simultaneously. 

At this stage the design of a laminate tool 
deviates from that of a billet tool. 

Features have to be reviewed such as· 
through holes running the length of the tooi 
for clam ping purposes/locating dowels, core 
pins for upright features and conformable 
cooling channels. 

When the tool features have been finalised 
the two halves can be sliced in order to 
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generate the 20 CAD data required for 
cutting the profiles on each laminate. This is 
achieved by importing one half at a time into 
software such as Delcam's Power-Shape 3D 
Package. They have developed a slicing 
subroutine that enables automatic slicing of 
the 3D tool and outputs individual 20, DXF 
or IGES files. Prior to running the subroutine 
it is important to know the slice thickness 
which is determined by the sheet from which 
the laminate is to be cut. 

The 20 data can then be transferred directly 
to any automated cutting process, water Jet, 
laser, plasma etc. The selected process 
requires material type and dimensions to be 
inputted in order for the correct cutting 
parameters to be determined. The machine 
will then determine nesting to optimise the 
material. 

Some processes such as plasma create a 
burr when cutting which must be removed 
hence, laser or water jet cutting are 
favoured. However, the laminates require 
cleaning prior to assembly, this can be 
effectively achieved by linishing or tumbling. 
Both processes are quick although linishing 
allows the laminate stack order to be 
maintained. 

Once clean the laminates are stacked, 
aligned and either brazed or bolted together, 
the tool can then be checked to insure 
accuracy has been maintained. 

The final procedure is to finish the tool in 
order to remove stepping, common to most 
rapid prototyping methods and the 
incorporation of the ejectors. Depending 
upon the tool geometry, electro discharge 
machining (EO M) or high speed machining 
can be employed. 

The authors are involved in a collaborative 
project with Warwick University and several 
industrial partners funded by the UK Science 
& Engineering Council. 

The project partners chose to employ the 
brazing method to bond individual laminates 
due to a number of reasons. Brazing is a 
traditional bonding method with high 
strength, high temperature properties and it 
is cost effective. 

The high temperature and strength 
characteristics of brazing is very attractive 
and important when conSidering it for the 
construction of a aluminium die casting tool. 
Die surfaces are subjected to " 730°C 
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(LM24 molten temperature). It is apparent 
that HIPing is the only other suitable method 
to fabricate a laminate structure capable of 
withstanding the aggressive aluminium die 
casting environment. However, this is an 
expensive method of manufacture and the 
author believes that brazing has the desired 
properties at a fraction of the cost, therefore 
making it a cost-effective solution and an 
alternative to billet tools. 

Selecting the correct braze is crucial, factors 
such as chemical composition of the 
substrate and in our case the material to be 
cast (aluminium) have to be considered. 
Additional considerations are distortion, wear 
and heat treatment of a laminate structure. 
The rational behind selecting a brazing alloy 
was based on the hardening curve of H 13. 
H13 is heat-treated between 995°C -
102SoC with quenching in still air, inert gas 
or salt. Nickel brazing alloys have a melting 
tem perature between 950°C - 101 OoC 
(Sulzer Metco 1998). This potentially 
enables bonding at the same stage as heat 
treatment eliminating a process. 

Nickel chromium brazes termed as ' super 
alloys' have been developed for high 
temperature service and are suitable for use 
under moderate to high loading in the 
temperature range from 540·C to 1100·C. 
Nickel brazes have been used in the 
aerospace industry for the construction of 
gas turbine engines and hot airframe 
components. (Schwartz 1990). 

Heat resistant alloys generally are brazed in 
a hydrogen environment or high vacuum 
furnaces with nickel base or special filler 
metals. Most brazing processes may be 
used on Nickel and high Nickel alloys. The 
most common are torch, furnace, induction 
and resistance brazing. 

Nickel braze alloys were supplied by Sulzer 
Metco (UK) Ltd, The brazes (table1) have 
been selected as they have good corrosion 
resistance, bond strength, oxidation 
resistance and excellent machinability. 

Nickel brazes, braze at high temperatures 
and the effect on the base metal should be 
taken into account. Non heat treatable alloys 
will suffer moderate strength losses due to 
grain growth during brazing. (Schwartz 
1990). 

XC 

By employing a humped back hydrogen belt 
furnace at 10000C it is possible to bond and 
heat-treat multiple layers of H13 tool steel. 
In order to obtain good braze coverage and 
uniform thickness it is important to select a 
suitable method of depositing it on the base 
material. For the purpose of laminate tooling 
it is necessary to control the braze thickness 
in order to maintain the tools tolerance. This 
may be achieved by tape, spray or paste 
where a known deposit thickness is applied 
to the base material prior to brazing. It is 
possible to automate spray or paste forms, 
improving process control and consequently 
the tool tolerance is maintained. 

Surface preparation is crucial to achieving a 
good bond; base materials require oxide 
layers and grease removing which can be 
achieved by machining, pickling and de
greasing. 

Gravity Die-Casting Tool 
De Montfort University and Warwick 
University have developed a simple brazed 
laminate tool for aluminium gravity die 
casting, to evaluate erosion, chemical attack, 
heat checking, de-lamination etc. 

The tool was constructed from, cold rolled 
H13 sheet which was laser cut, de-burred 
and brazed with Amdry 936 supplied by 
Sulzer Metco and machined to remove 
stepping. 

The die produced 2,000 components with 
out failure. Although the die was simple and 
under no external forces (die open/close) it 
proved that the composite material could 
tolerate the aggressive environment. In 
addition it produced a significant number of 
components making the process suitable for 
short run production tooling. 

The next stage was to produce a larger more 
complex tool both bonded and un-bonded for 
aluminium gravity die-casting. A production 
brake master cylinder provided by TRW was 
the chosen component (Figure 3). 

The tools were produced in the same manor, 
as before however, consideration for 
clamping and laminate orientation of the un
bonded tool had to be considered. Due to 
the components profile one insert was 
produced horizontally and the other vertically 
(figure 4 & 8). 

Machining the un-bonded inserts caused the 
laminates to burr and several de-burring 
operations were carried out in order to 
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maintain tolerance. To overcome this extra 
clamping was required (or high speed 
machining could have been employed) , as 
the cutting forces could have been reduced . 

Pressure Die-Casting Tool 
The pressure die-casting process has more 
issues to address than that of gravity die 
casting. It works at much higher pressures 
and clamping forces up to 3000 tonnes are 
required to insure the mould remains closed, 
it has a 3 stage injection cycle, faster cycle 
times which means the die has a rapid 
heating and cooling , and channels have to 
be integrated into the die. 

The majority of wear on a pressure die 
casting tool occurs in the gating system 
(where the biscuit is formed. This is due to 
the molten aluminium being forced into the 
runner system and rapidly changing direction 
by 90°. This is followed by pressure as the 
die continues to fill and solidify. 

Horizontal and vertical bonded laminated 
Inserts were produced for a production tool 
(Figure 5). These were designed to 
incorporate conformal and traditional cooling 
channels. The benefits of conformal 
channels are that a designer is able to place 
cooling or heating where it is needed within 
a die. This is only feasible by producing a 
tool in a layer by layer approach. 

A direct comparison between the bonded 
laminate inserts and the solid H13 inserts 
can be made. The test was designed to 
enable an evaluation of wear rates, thermal 
fatigue, failure mode, life expectancy and 
observe all the cycle times with conformal 
cooling and traditional cooling (Figure 6 & 7) . 

Sintered inserts produced via selective laser 
sintering were also chosen as an alternative 
solution for incorporating conformal cooling . 

The next stage will be to produce a 
traditional , bonded / un-bonded laminate 
pressure die casting tool to evaluate its merit 
as an alternative method of producing 
prototype / production tooling for the die 
casting industry. 

This tool will be designed to allow 
comparisons to be made between the 
bonded, un-bonded and the production tool 
e.g. address performance characteristics of 
horizontal vs. vertical laminate orientations, 
costing, time to market profiles and die life 
comparisons. 

XCI 

It has been decided to use electro discharge 
machining (EDM) to remove any stepping 
and finish the tool due to the deep cavities 
on both sides of the die. EDM was chosen to 
determine whether it was a suitable finishing 
process for bonded and un-bonded 
structures Le. would the braze wear faster 
than the H13 tool steel , how would the 
electrodes wear, what finish was achievable, 
etc. The EDM tooling are to be produced via 
electroplated SLA and EOS rapid 
prototyping methods. 

The stereolithography process (SLA) 
employs a laser, which scans an image on 
the surface of a vat of UV curable resin. A 
thin layer of liquid resin becomes solid and 
the cross section is lowered and the next 
layer scanned on to the resin. The layering 
process continues until the part is built. 

The metal sintering machine (EOS) is a 
similar process in that a laser sinters a layer 
of metal powder the bed drops and the 
process repeats itself until the part is built. 

Summary 
Many of the tools discussed are beginning 
trials in industrial environments. 

The research to date is primarily associated 
with the manufacture of a laminate tool for 
the die casting industry. 

Un-bonded laminate tools are able to 
withstand the pressure die casting 
environment, however, it is not always 
possible to place claming bolts where 
required due to component geometry. This 
causes uneven clamping pressures with 
associated distortion. It is also important at 
the design stage to select the correct 
laminate orientation in order to prevent un
clampable island/features. 

Finishing via high speed machining can 
cause lifting and burring of laminates. 
Causing the tool to be disassembled and 
rebuilt increasing time and costs. Hence, 
EDM is the preferred finishing technique. 

Bonded tools eliminate the problems 
associated with an un-bonded die Le. 
uneven clamping, burring, leaks from cooling 
channels etc. 

Heat treatment can also be conducted 
without the risk of laminates distorting. The 
brazing process is conducted at 10200C, 
H13 Hardening temperature this is then 
tempered to 43HRc. 
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Initial problems arose when machining the 
brazed laminate structure, laminates would 
peel off due to lack of wetting. An increased 
soak time at the brazing stage reduced this 
problem. However, EDM was employed to 
prevent this recurring. 

Our initial trials of the bonded gravity tool 
have proved promising with the brazed 
structure withstanding the temperature 
(730°C) involved with aluminium (LM24) 
gravity die-casting. The tool has shown no 
signs of erosion heat checking/fatigue or de
lamination to date. 

It is envisaged that laminate tooling could be 
employed as a method of manufacturing 
prototype tooling to validate die design for 
the die casting industry. In addition it could 
be considered for short run tooling. 

Further Industrial trials are to be conducted 
in order to validate the dies failure mode, life 
expectancy, effects of conformal cooling etc. 
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FIGURES 
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• 
Figure 1 Laminate Die-casting Tool. 

Courtesy of Or Rupert Soar (Soar 2000) 

No Laminate Protrusion 
.i.i.i. 

Figure 2 Schematic showing potential 
movement of laminates in a die (Soar 

2000) 

Figure 3 TRW Brake Master Cylinder 
(187mm in length) 

XCIII 

Figure 4 Pre Machined Inserts 

Figure 5 Pre Machined Bonded Horizontal 
and Vertical Inserts 
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Figure 6 Traditional and Conformal 
Cooling Channels Designs for Inserts 
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Figure 7 Schematic of the Die Showing 
the Insert location 

Figure 8 Analysis Data 

Un-bonded Brake Master Cylinder 
Gravity Die Cast Bolster and Inserts 

XCIV 

Tables 
Alloyin elements 

Braze Ni RE Cu Cr B Mn 
Amdrv 936 Bal. 0,03 4 1 19 
Amdrv 775 Bal. 15 3.5 
Amdry 780 Bal. 3 
Amdry 100 Bal. 19 
Amdry790 Bal. 2 
Table 1 Nickel based brazes supplied by 

Sulzer Metco 

Si 
6 

4.5 
10 
3.5 
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