
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

An assessment of dual-rail encoded on-line test methodologies and theirAn assessment of dual-rail encoded on-line test methodologies and their
impact on ASIC/FGPA designimpact on ASIC/FGPA design

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© David Thulborn

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Thulborn, David. 2019. “An Assessment of Dual-rail Encoded On-line Test Methodologies and Their Impact on
ASIC/FGPA Design”. figshare. https://hdl.handle.net/2134/13754.

https://lboro.figshare.com/

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Pl1kington Library

•• Lol!ghb.orough
"Umverslty

Author/Filing Title J:~~.':7:~~.) ;».
...

Accession/Copy No.
(\\t-c I '+-7 'l.. "7 c

Vol. No. Class Mark

0401472701

111111 I

"

AN ASSESSMENT OF DUAL-RAIL ENCODED

ON-LINE TEST METHODOLOGIES AND THEIR

IMPACT ON ASICIFPGA DESIGN

by

David Thulbom, B.Sc., M.Sc.

A Doctoral Thesis.

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy

of

Loughborough University.

March 1997

© by David Thulbom 1997

'. .. ~ ,

t, >':'~ .
.... "",'",'-.,;r.:;"""'.

, ",<:.'.o.;::-'"'~"'~"j

" "

ABSTRACT

The testing of fabricated Integrated Circuits (IC's) is of great concern to production

engineers and circuit designers alike. With the complexity of Very Large Scale

Integrated (VLSI) circuits increasing every year, the problem of testing the fabricated

designs is becoming acute. Several methods for reducing the burden of IC testing have

been incorporated into the designs being tested thus giving rise to the phrase Design

For Test (DFT).

This thesis aims to understand how dual rail encoding of digital data can affect the

different characteristics of electronic circuits. More specifically, it investigates a novel

on-line test methodology called IFIS (If it Fails, It Stops), and its impact upon the

design and implementation of electronic circuits intended for Application Specific

Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA) technologies.

The first two studies investigate the characteristics of the IFIS methodology to

determine the most efficient and effective encoding scheme, protocol rules and

feedback structures required for data processing. The third study investigates a series

of possible improvements to the design of IFIS cells and determines the most efficient

method of designing cells using the IFIS methodology. The final study investigates the

feasibility of IFIS using a 'real life' commercial UART re-engineered using the IFIS

methodology.

The outcome of this work is an identification and characterisation of the factors which

influence the performance and implementation cost of the IFIS methodology.

ACKNOWLEDGEMENTS

I wish to take this opportunity to offer my sincere thanks to my supervisor Professor

Simon Jones for his support, criticism, encouragement and technical guidance

throughout this period of research. I shall always be grateful to him.

I also wish to thank all the members both former and present, of the Electronic

Systems Design Group based at Loughborough University, for their help and

encouragement. They have been the source of many useful and stimulating

discussions. In particular, I wish to thank Mr. Mark Gooch and Mr. Julian Yeandel in

this respect. I would especially like to thank Mr. Julian Yeandel for producing the top

level structure of the 'C' model used for the verification of the UARTs.

To my parents I extend my warmest thanks. I wish to thank them for the education

they have afforded me and for their support and encouragement over the last 3 years.

Also, I must send a very special thank you to my girlfriend Claire and son Michael for

always being there to see me through.

For my financial support I wish to thank the Engineering and Physical Sciences

Research Council, without whom this work would not have been possible.

Finally, I wish to send a special thank you to Mr. Steve Stavrou whose enthusiasm and

humour have kept me motivated.

ii

TABLE OF CONTENTS
Page

Abstract. 1

Acknowledgements .. 11

Statement of Originality iii

Table of Contents. .. iv

CHAPTER ONE

INTRODUCTION. .. 1

1.1 Introduction. .. 1

1.2 Motivation. 2

1.2.1 Off-line Testing 3

1.2.2 On-line Testing 5

1.3 Aims of the Thesis. .. 7

1.4 Structure of the Thesis .. 8

CHAPTER TWO

REVIEW ... 10

2.1 Objectives of Review. .. 10

2.2 Motivation. .. 10

2.3 Hardware Redundancy 12

2.3.1 Duplication With Comparison 12

2.3.2 Triple Modular Redundancy. 13

2.3.3 N Modular Redundancy 13

2.3.4 Summary of Hardware Redundant Techniques ... 14

2.4 Time Redundancy 15

2.4.1 Alternating Logic 16

j'l'

2.4.2 Recomputing With Shifted Operands 16

2.4.3 Recomputing With Swapped Operands 17

2.4.4 Summary of Time Redundant Techniques 18

2.5 Information Redundancy 19

2.5.1 Duplication Codes 21

2.5.1.1 Alternate Data Retry 21

2.5.1.2 Summary of Duplication Codes 22

2.5.2 Arithmetic Codes 22

2.5.2.1 Non-Separable Arithmetic Codes 22

2.5.2.2 Separable Arithmetic Codes 23

2.5.2.3 Summary of Arithmetic Codes 25

2.5.3 Unidirectional Error Detecting Codes 25

2.5.3.1 Unordered Codes 26

2.5.3.1.1 Non-separable Unordered Codes. 27

2.5.3.1.2 Separable Unordered Codes 27

2.5.3.2 t-Unidirectional Error Detecting Codes .. 28

2.5.3.2.1 Non-separable t-Unidirectional

Error Detecting Codes 28

2.5.3.2.2 Separable t-Unidirectional Error

Detecting Codes. 29

2.5.3.3 Burst Unidirectional Error

Detecting Codes 30

2.5.3.3.1 Separable Burst Unidirectional

Error Detecting Codes 31

2.5.3.4 Summary of Unidirectional Error

Detecting Codes. 33

2.5.4 Parity Based Codes. .. 34

2.5.4.1 Bit-per-Word Parity 34

v

2.5.4.2 Interlaced Parity. 35

2.5.4.3 Parity Check Matrix 35

2.5.4.4 Summary of Parity Based Codes 36

2.5.5 Summary of Information Redundant Techniques. 36

2.5.6 Totally Self Checking Checkers. 39

2.5.7 Partially Self Checking Checkers. 40

2.6 Summary .. 40

2.7 Conclusions. .. 42

CHAPTER THREE

OVERVIEW OF INVESTIGATIONS. .. 43

3.1 Objectives of Chapter. 43

3.2 Aims of Research 43

3.2.1 Statement of Research Objectives 44

3.3 Experimental Vehicles 45

3.3.1 FIR Filter 45

3.3.2 UART 45

3.3.3 System Environment. .. 46

3.4 Introduction to Investigations. 47

CHAPTER FOUR

IFIS ON-LINE TEST METHODOLOGY. 49

4.1 Objectives of Chapter 49

4.2 Motivation. .. 49

. 4.3 IFIS Encoding Schemes. .. 50

4.3.1 IFIS 1 Encoding Scheme 50

4.3.2 IFIS 2 Encoding Scheme 51

4.4 IFIS Processing Methods. .. 52

vi

4.4.1 Elastic Processing. .. 53

4.4.2 In-Elastic Processing 54

4.4.3 Data Driven Processing. 56

4.5 IFIS Feedback Structures 57

4.5.1 Self Feedback 58

4.5.1.1 In-elastic Processing 59

4.5.2 Successor Feedback 60

4.5.2.1 Elastic Processing 61

4.5.2.2 In-elastic Processing 62

4.5.2.3 Data Driven Processing 63

4.5.3 Successor Successor Feedback. 63

4.5.3.1 Elastic Processing 64

4.5.3.2 In-elastic Processing 65

4.5.3.3 Data Driven Processing 65

4.5.4 Successor and Self Feedback 67

4.5.4.1 Elastic Processing 68

4.5.4.2 In-Elastic Processing. 68

4.5.4.3 Data Driven Processing. 69

4.6 Summary of Possible IFIS systems 70

4.7 Conclusions. .. 73

CHAPTER FIVE

IFIS IMPLEMENTATION STUDY. .. 75

5.1 Objectives of Chapter 75

5.2 Motivation. .. 75

5.3 IFIS Design Implementation Study 76

5.3.1 FIR Filter. .. 76

5.4 IFIS FIR Filter Comparisons 77

vii

5.5 Conclusions. .. 82

CHAPTER SIX

IFIS CELL DESIGN STUDY 84

6.1 Objectives of Chapter '" .. 84

6.2 Motivation. .. 84

6.3 IFIS Cell internals " 85

6.3.1 IFIS Control Block .. 86

6.3.2 Multiplexor Block. .. 88

6.3.3 Storage Block .. 88

6.3.4 Functional Block. .. 89

6.4 Design Solutions " 89

6.4.1 Behavioural Synthesis. .. 90

6.4.2 Arithmetic Coding 91

6.4.3 Duality. .. 93

6.4.4 Time Redundancy. .. 94

6.5 Summary of Results .. 96

6.6 Conclusions .. 97

CHAPTER SEVEN

IFIS FEASIBILITY STUDY... .. 99

7.1 Objectives of Chapter 99

7.2 Motivation. .. 99

7.3 Design Partitioning of the IFIS UART 100

7.3.1 UART Controller Design 101

7.4 UART Verification 102

7.5 FaultInjection 104

7.6 The Impact of The IFIS Methodology. 107

viii

7.7 Scalability of the IFIS Methodology , 109

7.8 Summary of IFIS UART Case Study 110

7.9 Conclusions 111

CHAPTER EIGHT

CONCLUSIONS. .. 112

8.1 Objectives of Chapter. .. 112

8.2 Review of Objectives 112

8.3 Experimental Investigations. .. 113

8.4 Main Conclusions. .. 114

8.5 Measures of Success .. 116

8.6 Limitations of the Work. .. 117

8.7 Further Work. .. 118

8.8 Summary of Thesis .. 118

References .. 119

Bibliography. .. 125

Published Papers. .. 126

ix

CHAPTER ONE

INTRODUCTION

1.1 Introduction

\

Integrated circuit technology currently enables highly complex circuit designs

containing hundreds of thousands of gates to be realised. Along with the increase in

gate count has come a decrease in gate cost and improvements in performance. The

ability to integrate several millions of transistors into a monolithic integrated circuit

(IC) offers many advantages. However, a major concern in the production of these

complex devices is the ability to verify their fault free operation. The testing of digital

circuits has been difficult since the beginning of the electronics industry. The

problems associated with test have been aggravated by several effects arising from the

increase in complexity and reduction in the pin to gate ratio. These include:

• Technological advances have enabled the prolific use of complex devices in

many applications ranging from consumer products to critical commercial

controllers and consequently reliability is highly important.

• The widespread deployment of ICs means reliability is an important

attribute for electronic systems (Williams (1983)). Williams states that the

cost of detecting a fault increases by a factor of ten from chip to board,

board to system and system to 'in the field' fault.

Commercial applications are demanding higher levels of integration and higher levels

of reliability. These demands need to be met with high levels of testing. Fault

1

CHAPTER ONE INTRODUCTION

coverages of greater than 99% are routinely expected during the testing of complex

ASIC devices as noted in Bahrarn (1992).

1.2 Motivation

The objectives in testing an electronic design are twofold:

• To ensure that the pre-fabrication circuit behaviour satisfies the intent of the

designer and it is free from timing and functional design errors.

• To detect post-fabrication faults.

The testing of devices after fabrication is one of the most difficult problems

confronting designers and test engineers as noted by WilJiams (1983). The problems

met are:

• Test pattern generation and evaluation times are increasing with circuit

complexity.

• An increase in the volume of test data needed, namely the number of input

vectors and output response pairs required to test the circuit.

• The increased requirement for complex devices has driven the development

of more sophisticated CAD tools. However, the greatest advances have

been in layout and simulation areas and less of an improvement in the area

of test until recently (Bahram (1992».

• The number of possible faults that have to be considered is large, as

complex circuits can contain substantial numbers of components (e.g.

memory elements, gates and interconnect lines) which are individually

subject to different kinds of faults.

• The observability and controllability of the internal elements of any circuit

are limited by the number of available input/output (VO) pins. As chip

complexities increase, the task of creating an adequate test to control or

observe a single circuit node becomes more difficult.

2

CHAPTER ONE INTRODUCTION

• The high speed nature of contemporary devices requires high-speed test

systems that can test the circuits when they are operating at their maximum

speeds.

Solving the problems above increases the number of test patterns required for a

successful test. This in turn increases the tirne required for applying the test and the

computing resources required to store the test patterns and the results. Moreover,

WiIliams (1983) shows that it has now become impracticable to attempt fully

exhaustive testing of complex circuits. As a result, several alternative test methods

have been suggested to alleviate the problem. The testing solutions for electronic

systems fall broadly into two categories, off-line and on-line testing.

1.2.1 Off-Line Testing

Off line testing, or explicit testing, separates the testing process from the normal

operation process. In general, off line testing involves three steps:

• Generation of the test patterns

• Application of the test patterns,

• Evaluation of the responses obtained from the device under test

The goal of the test pattern generation phase is to produce those input patterns which

will exercise the Device Under Test (DUT) in different modes of operation while

trying to detect any existing faults. The production of the test patterns is a difficult

task as each fault considered must be excited and then propagated to a primary output.

A wide range of algorithms have been proposed to automate the test pattern

production stage at both gate and transistor level, while targeting many different fault

types (e.g. Aitken (1991), BIeeker (1993), Corno (1996), Goel (1981), Fujiwara

(1983), Reddy (1985), Schulz (1989), Larrabee (1989), Nigh (1990), McEuen (1996)

and Ferguson (1991). It has been shown (e.g. WiIliams (1983) and Seth (1985» that

3

CHAPTER ONE INTRODUCTION

computer run time to perform test generation is approximately proportional to the

cube of the number of gates within the design. As circuit complexity increases, this

overhead becomes more intractable, making test pattern generation increasingly

complex.

The application of test patterns can be accomplished in two ways, either via external

testing or through the use of Built In Self Test (BIST) structures within the design.

With external testing, Automatic Test Equipment (ATE) is used to apply the test

patterns externally. This gives good control over the test process and allows testing

under different timing and electrical conditions.

With BIST techniques, the OUT is forced to execute a self test procedure. This is less

expensive in terms of required test equipment, but requires greater design effort to

incorporate the BIST structures into the design. There are numerous techniques for

designing BIST structures put forward by Asaad (1996), Konemann (1979), Beucler

(1984), McCluskey (1985), Avra (1993), Kothari (1993), Fertsch (1991) and Zorian

(1993). These techniques have been categorised under the Design For Test (OFT)

heading and aim to aid the testing of circuits using a structured design manner. These

DFT methods have a variety of performance and complexity overheads associated

with each implementation, and will not be discussed within the framework of this

thesis. For further information see Golstein (1979), Raider (1993), Rellerbrand

(1996), Abadir (1983) and Muehldorf (1981).

The process of evaluating the responses from the device under test usually aims to

achieve two goals. Firstly, to distinguish between the good and faulty devices, and

secondly, to provide fault location information for diagnostic purposes. There are

several techniques available to aid in the evaluation of the response vectors from the

device under test. All of these use some form of comparison between a known good,

or 'Golden Signature' response, and the actual response from the device under test.

This leads to a go/no-go decision as to the reliability of the device.

4

-- -

CHAPTER ONE INTRODUCTION

Generally, off-line testing has the following advantages:

• The test vectors, once generated, can be applied at speed to the DUT. This

allows full testing of the DUT's electrical and timing responses.

• The fault coverage of the vector set can be determined with a high degree of

accuracy and test vectors generated until the desired level of fault coverage

is achieved.

However, there are also several disadvantages with off-line testing, namely

• Test pattern generation requires considerable amounts of computing

resource to generate vectors and to store the stimulus vector set.

• Exhaustive testing is impractical.

• Fault simulations are required to determine the level of fault coverage a

particular vector set achieves. This also requires considerable amounts of

computing resource.

• Faults occurring after production tests cannot be detected (e.g. transient

faults, stress faults, wear out faults).

These problems are going to become increasingly apparent as circuit complexity

grows and device dimensions shrink.

1.2.2 On-Line Testing

On-line testing, or implicit testing, integrates the testing process with the normal

operation of the device. Any device designed using on-line test concurrently tests

itself during normal operation. This generally requires the introduction of redundancy

into the circuit design. This redundancy usually takes the form of either information

redundancy, time redundancy or hardware redundancy. In practice, one type of

redundancy (which is predominant) usually involves introducing some other type as

well. As an example, consider information redundancies such as encoding of data with

5

CHAPTER ONE INTRODUCTION

an error detecting code (EDC). This relies on introducing extra bits to any data unit,

e.g. by encoding inputs and outputs of all circuits (and internal states if the circuit is

sequential) with EDCs. However, it also involves hardware redundancy such as

encoders, decoders, extra data path lines (to transmit) or extra memory elements (to

store) these extra bits. Time redundancy is also introduced as the encoding I decoding

of data may introduce some delay into the system. Although the introduction of extra

redundancy is required, the benefits when compared to explicit testing can be

attractive:

• Explicit testing expenses (e.g. for test equipment, down time, and test

pattern generation) are eliminated during the life of the system as the data

patterns used in normal operation serve as test patterns.

• The faults are detected instantaneously during the use of the chip, hence the

first faulty data pattern caused by a certain fault is detected. The user can

then rely on the output results within the degree of fault coverage provided

by the error detection method used. In explicit approaches, nothing can be

said about the correctness of the result until the chip is fully tested.

• Transient faults, which may occur during normal operation, are detected if

they cause a faulty data pattern. These faults cannot be detected by any

explicit testing method.

Unfortunately, the on-line testing approach also suffers from several drawbacks that

limit its usage in testing:

• The data patterns (application patterns) may not exercise all the storage·

elements or all the internal connection lines within the chip. Defects may

exist in places not exercised, and hence the faults produced will not be

detected.

• Using information redundancy to code the information used in an le often

requires additional I/O pins. At least two extra pins are needed as error

signal indicators (A single pin cannot be used, since a single pin stuck at the

6

CHAPTER ONE INTRODUCTION

good value could go undetected). Because of the constraint on pin count,

however, such requirements cannot easily be fulfilled.

• Additional hardware circuitry is required to implement checkers, storage

units and to transmit any coded information.

• Designing a circuit for on-line testing is often a more complex task than

designing a similar circuit that is tested explicitly.

• On-Line test approaches provide no control over critical voltage or timing

parameters. Hence, devices cannot be tested under marginal timing and

electrical conditions.

• The degree of fault coverage usually provided by implicit methods is less

than that provided by explicit methods.

The on-line and off-line methods of testing digital electronic circuits both have a

common aim - to distinguish between good and faulty devices in the most cost

effective manner. In Williams (1983), it is shown that the greatest commercial cost

occurs if a device fails in the field, which is after passing its production test. It has

also been shown by Sieviorek (1992) and Iha (1993) that transient faults are by far the

most common types of faults occurring during the operation of contemporary

electronic systems and it is these types of faults that off-line testing is unable to detect.

Consequently, although off-line testing is considered to be the more comprehensive

test since the fault coverage is generally higher, only on-line testing can offer any form

of protection against the more expensive 'in-the-field' component failures a company

may face. In addition to this, many designs which incorporate on-line test strategies

also undergo an off-line test immediately after fabrication. Consequently, on-line test

is an exciting area of research that is currently exhibiting rapid growth.

1.3 Aims of the Thesis

This thesis focuses on a novel approach to on-line testing under development at

Loughborough University. The approach, IFIS (If it Fails, It Stops), is a test

methodology that uses dual-rail encoding of data and handshaking between

7

CHAPTER ONE INTRODUCTION

computation elements to achieve on-line test. This thesis attempts to evaluate the lFIS

on-line test methodology and offer evidence as to its suitability for rc design. The

evaluation of the IFIS methodology is achieved by employing two aims, namely

• An identification and assessment of the encoding schemes, fundamental

building blocks and design methodologies for !FIS.

• An evaluation of the utility of the lFIS concept issues through the

construction of a 'realistic' demonstrator le.

1.4 Structure of the Thesis

A review of related work is provided in Chapter Two. Firstly, the current state of on

line testing is examined within the context of information, time and hardware

redundancy. The review shows how the various on-line test techniques are related and

compares the overheads associated with each method. Comparisons of the various on

line test methods help to identify areas of interest; in particular it focuses on IFIS.

Chapter Three introduces the objectives of the experiments, used to fulfil the aims of

the thesis. It outlines four experiments to satisfy the objectives and explains the

experimental assumptions used in these investigations.

Chapter Four discusses the first experiment which provides an in-depth investigation

into the lFIS methodology with the goal of identifying the required characteristics for

processing data. This involves a study into encoding schemes, processing rules and of

feedback structures within an lFIS system. The outcome of the experiment identifies

effective encoding schemes and feedback structures for use within the lFIS

methodology.

Chapter Five details the implementation impact of the lFIS methodology when

targeted to ASrC and FPGA technologies. The different encoding schemes and

8

CHAPTER ONE INTRODUCTION

feedback systems undergo hardware implementation to identify and assess the more

cost-effective combinations.

Chapter Six details a design study focused on producing a less complex cell design

for the IFIS methodology. Several possible design solutions undergo hardware

evaluation to identify the most generic and cost-effective cell design for IFlS cells.

Chapter Seven focuses on implementing the new methodology into a 'real life'

design as a feasibility study. A commercial UART (Universal Asynchronous Receiver

Transmitter) is re-engineered using the IFIS methodology. Comparisons are then

drawn between the IFIS and conventional UARTs to highlight the impact of the

methodology on 'real life' designs.

Chapter Eight draws together the conclusions from each of the four investigations

and discusses whether the stated objectives have been achieved. It examines the

limitations of the work and outlines possible extensions to the existing investigations,

as well as further research areas that may be of interest for extended study. Finally it

summarises the main points of the thesis.

9

CHAPTER TWO
REVIEW

2.1 Objectives of Review

The main objectives of this chapter are three fold:

• To review the current state-of-the-art in on-line testing,

• To identify interesting topics which could be investigated further,

• To specify the area in which the work in this thesis will address, given the

available time and resources.

With these objectives met, the experiments performed within this thesis should be in

context.

2.2 Motivation

This work is necessary to help identify areas that have not been fully explored and to

help clarify the direction taken by the field in general. The field of on-line test can be

broken into three categories as shown in Figure 2.1:

10

CHAPTER TwO

On-Line Test

/!~
Hardware

Redundancy
Time

Redundancy

REVIEW

Information
Redundancy

Figure 2.1 - Redundancy Methods within On-Line Test

• Hardware Redundancy: This technique is one of the simplest, requiring

multiple copies of the design to be placed in parallel. The circuit outputs are

compared after each computation and if no errors have occurred, the results

will be identical. In the presence of a fault, the faulty design will yield an

output inconsistent with the other copies. These methods are discussed in

section 2.3.

• Time Redundancy: This technique involves the re-use of a single hardware

design at successive points in time. The data is applied, the computation is

performed, and the output response is stored for comparison with another

calculation using the same data. If no errors have occurred, the results will

be identical. However, if a fault has occurred then the results will be

inconsistent. Several methods have been presented in the literature to

prevent a fault from affecting both computations in the same manner, thus

yielding a corrupted but undetected output response. These are discussed in

section 2.4.

• Information Redundancy: The final technique uses redundancy within the

transmitted data to determine if a fault is present. The information is

encoded before operation, and decoded after operation. Any fault affecting

the operational data alters the expected codeword and is detected. A variety

of coding schemes exist which offer different degrees of protection against

faults. These schemes are discussed in section 2.5.

Each redundancy technique brings benefits and penalties which make it suit a

particular implementation. This review discusses the advantages and disadvantages of

11

CHAPTER TwO REVIEW

each technique, and highlights areas where further work could be undertaken. This

allows the direction of the work within this thesis to be identified. The three categories

of hardware, time and information redundancy described above will now be reviewed

further.

2.3 Hardware Redundancy

Several forms of Hardware Redundancy exist which are all based on an idea originally

proposed by von Neumann in 1956. The idea was to replicate the original circuit such

that a single fault would affect only one copy of the circuit in question. The remaining

correctly operating circuits would thus mask the fault and still produce a correct

output. Although this basic technique is simple and easy to achieve, it is also limited

by the addition of potentially large amounts of redundant hardware. Unfortunately,

along with the increase in complexity comes an increase in power consumption and a

substantial increase in the physical size occupied by the extra hardware. These factors

can make the use of hardware redundancy very difficult to justify. Several variations

of von Neumann's proposal have been implemented, with varying degrees of success.

2.3.1 Duplication With Comparison

One form of hardware redundancy is that of duplication with comparison. This is the

simplest form of von Neumann's idea and requires the duplication of the circuit as

described in 10hnson (1988). The outputs of the two circuits are fed into a comparator

which determines if a fault has occurred. Duplication with comparison involves a

simple and straightforward design style that is effective in detecting all single stuck-at

faults which result in an error. Unfortunately, duplication with comparison requires

careful design of the comparator to ensure that any faults within the comparator do not

cause an incorrect output response or mask a fault within the duplicated units (i.e. the

comparator must be self-checking). Another disadvantage is the increase in physical

size and power consumption of the design. Although the increased circuit complexity

12

CHAPTER Two REVIEW

could possibly be tolerated, the increased power consumption and weight of this

technique are considerable disadvantages.

2.3.2 Triple Modular Redundancy

Another simple form of hardware redundancy is that of Triple Modular Redundancy

(TMR) as described in Russell (1989) and Audet (1996). The logic circuits are

triplicated and fed into a majority voting element which usually calculates the majority

function M = XY + XZ + YZ. The logic circuits are not restricted in terms of

complexity, and can be any design from a simple gate to a microprocessor or larger.

The majority function ensures that if one circuit is faulty, the other two circuits will

override the error and mask the fault. However, there are two main problems with this

type of on-line error detection scheme. Firstly, two circuits failing in the same manner

will produce an incorrect output response. Secondly, the majority voting element is a

single point of failure. Consequently, although the voting element is usually much

simpler than the circuits being triplicated, its design is of the utmost importance. The

voting element must be the most reliable unit, as a single fault in the voter can still

produce an incorrect output response. In an attempt to overcome this problem, the N

Modular Redundancy technique was proposed.

2.3.3 N-Modular Redundancy

A method for fault tolerance has also been described in Russell (1989) where the

technique ofTMR was expanded to that ofN-Modular Redundancy (NMR). The main

difference between NMR and TMR is that the function circuit and the voting elements

are both duplicated N times. This gives greater tolerance to faults as (N+ 1)/2 circuits

would need to fail in exactly the same way for an incorrect output response to be

generated. Statistically, the probability of the (N+ 1)/2 circuits all developing the same

fault at the same time is considerably small. The single point of failure in TMR, the

13

CHAPTER Two REVIEW

voting element, is also duplicated N times. This eliminates the possibility of a single

fault in the voting circuit causing an incorrect output response to be generated. A

reliability analysis of systems using both TMR and NMR is given in Russell (1989).

2.3.4 Summary of Hardware Redundant Techniques

The main penalties paid when using the hardware redundant techniques are the

overheads created during implementation. Duplication requires at least twice the

overhead (two circuits and a comparator), TMR requires at least three times the

overhead (three circuits plus the voting element), while NMR requires more than N

times (N circuits plus the N voting elements). In addition to this, duplication with

comparison and triple modular redundancy both have single points of failure (Le. the

comparator or voting element) which requires careful design to ensure the hardware

redundancy is not rendered in-effective by a fault within the comparator. These points

are highlighted in Table 2.1. The points shown in Table 2.1 are significant

disadvantages as some of the implementation characteristics are highly undesirable.

For many applications which use ASIC technologies, the increase in complexity and

power cannot be justified and consequently a more efficient means for implementing

on-line test needs to be found.

14

CHAPTER TwO REVIEW

Duplication Yes,

with >x2 >x2 >x2 >x2 Comparator.

Comparison

Triple Yes, Voting

Modular >x3 >x3 >x3 >x3 Element.

Redundancy

N-Modular >xN >xN >xN >xN No.

Redundancy

Table 2.1 - Hardware Redundancy Summary

2.4 Time Redundancy

. The hardware redundant methods for on-line testing require an increase of at least

100% (duplication with comparison), 200% (triple modular redundancy) or greater

(n-modular redundancy) in terms of area, power consumption, weight, size and overall

system cost. In an attempt to overcome some of the difficulties with hardware

redundancy, time redundancy has been proposed and has received much attention (e.g.

Reynolds (1978), Patel (1982) and Hana (1986)). Using redundancy in time also leads

to the advantage that on-line checking of the circuit operation is achieved without

increasing the number of 110 pins. In complex designs, where constraints on 110 pin

counts can be of great importance, time redundancy could thus be an attractive

approach. The main areas involving time redundancy that have received recent

attention will now be explored.

15

,

CHAPTER Two REVIEW

2.4.1 Alternating Logic

A design technique which uses time redundancy has been proposed by Reynolds

(1978) where the successive execution of a required function and its dual is used to

determine the validity of the output response. This technique requires all circuits

designed in this manner to exhibit the 'self-dual' property. The 'self-dual' property is

difficult to achieve as it requires a circuit to have the following property:

If a combinational circuit implements the Boolean function Y = F(X j ,X2,X3),

then the function F(X IoX2,X3) is self-dual if inverting all of the inputs yields an

inverted output, such that Y = F(X 10 X 2, X 3).

Evidently any arbitrary function is not self-dual and cannot be immediately

implemented using this design style. However, according to Reynolds (1978), it is

possible to convert any non-self-dual function of n variables into a function of n+ 1

variables that is self-dual. The converted circuit can then be implemented using this

technique. The self-dual method is also adaptable to sequential circuitry, but does

require the addition of memory elements within the design. Unfortunately,

transforming an arbitrary function into a self-dual equivalent usually incurs a

substantial increase in the amount of circuitry required for the implementation.

Johnson (1988) notes that the alternating logic technique may require an increase of

85%-100% in hardware to make a function self-dual. This technique is then

comparable to duplication with comparison.

2.4.2 Recomputation With Shifted Operands

Another method of concurrent error detection called Recomputing with Shifted

Operands (RSO) was proposed by Patel (1982). This technique applies an input data

word to an arithmetic unit and calculates the result. The result is then shifted N bit

positions and stored. The inputs are shifted M bit positions and re-applied to the same

unit (e.g. for addition M=N, and for mUltiplication, M2 = N). Under fault free

16

CHAPTER Two REVIEW

conditions the two results will be identical, as the shift is present only to force

different data paths through the arithmetic unit. This ensures a single fault will not

affect both calculations in the same manner and does not affect the arithmetic

operation performed by the unit. The complexity increase caused by the

implementation of the RSO technique depends upon the original circuit, but has been

shown by Hana (1986) to be 31.4% for an ALU. A similar technique of recomputing

with rotated operands (RRO) has also been proposed by Patel (1982) and separately

by Li (1992). With this technique, the operands are applied, barrel shifted and then re

applied in an attempt to detect errors. Similarly, this approach uses barrel shifting in

an attempt to force different data paths through the design, and does not affect the

arithmetic operation taking place. The complexity increase for this technique is similar

to the RSO overhead, as RRO is a special case of RSO as noted by Patel (1982). As

both the RSO and RRO techniques effectively apply different vectors to the functional

circuit during the second computation, the corresponding fault coverage is

considerably higher than the hardware redundancy techniques of duplication with

comparison and TMR as noted in Johnson (1988). Unfortunately, both approaches

only work for certain arithmetic functions (e.g. addition and multiplication) and

cannot be applied to arbitrary logic functions. Although these methods do allow the

detection of single faults within the arithmetic unit, the inability to implement the

technique to functions other than simple arithmetic is a major disadvantage.

2.4.3 Recomputation With Swapped Operands

Recomputation with swapped operands (RSWO) is a variation of the recomputation

with shifted operands (RSO) as shown in Hana (1986). The encoding and decoding

function is that of swapping the upper and lower halves of each operand. At time to,

the computation is performed using the unmodified operands and the result is stored

for later comparison. At time 1o+ot, the upper and lower halves of each operand are

swapped and the computation repeated. This method has the advantage of being

simple to implement, while only requiring a complexity increase of 23.8% for the

same ALU implementation discussed for RSO (Hana (1986)). The advantages of this

17

CHAPTER Two REVIEW

approach are that the hardware overhead required to implement the required swapping

is 5%-10% less than that required by the shifting operand technique. However, the

disadvantages of this technique are that the comparison stage still requires careful

design such that the extra redundancy is not rendered in-effective by a fault within the

comparator itself. Consequently, the comparator must again be self checking.

2.4.4 Summary of Time Redundant Techniques

The technique of time redundancy immediately brings a reduction in data throughput,

as 50% of the calculations are used solely for the purpose of error detection. The time

redundant methods discussed also come with some form of hardware redundancy,

either in the form of extra registers required to hold a result before comparison, the

comparison hardware, or the extra bits since the data word width is increased (e.g. due

to shifting the operands in RSO). Although this extra hardware is usually smaller than

the various overheads of hardware redundancy, it can still be significant with

Alternating Logic requiring up to 85% as stated by Johnson (1988). As with hardware

redundancy, careful design of the comparison hardware must be undertaken so that a

fault within the comparator does not render the time redundancy il':-effective. These

points are highlighted in Table 2.2. From Table 2.2, it can be see that although time

redundancy does have some advantages when compared to hardware redundancy, such

as decreased hardware overhead and lower I/O pin counts, it also has some

disadvantages which need to be considered. These disadvantages include a still

significant hardware overhead and reduced data throughput. In many ASIC designs,

where operational speed is crucial, the reduced data throughput incurred by time

redundancy could severely limit the performance of the system.

18

CHAPTER TwO REVIEW

Alternating Logic 50% 85-100% Negligible Comparator

Recomputing with 50% z31,4% Negligible Comparator

Shifted Operands

Recomputation with 50% z40% Negligible Comparator

Rotated Operands

Recomputing with 50% z23.8% Negligible Comparator

Swapped Operands

Table 2.2 - Time Redundancy Summary

2.5 Information Rednndancy

Both of the redundancy techniques previously discussed can incur substantial

penalties in terms of hardware, 110 pins and power consumption. This can make them

less attractive to ASIC implementation. The third technique in the on-line testing

environment is information redundancy. Information redundancy is the process

whereby the data to be manipulated is coded such that any faults within the system

alter the expected code and are detected. Data coding introduces redundancy into the

data stream which usually manifests itself in terms of extra bits in the data word being

manipulated. These extra bits provide the means for the receiver to determine if an

error has occurred and take the appropriate action. There are various techniques within

the on-line test environment which use data coding, and these can be broken into four

coding groups as shown in Figure 2.2.

19

CHAPTER Two

Duplication
Codes

Arithmetic
Codes

Parity
Codes

Unidirectional
Codes

Figure 2.2 - Information Redundant Code Categories

REVIEW

• Duplication Codes: This coding technique duplicates the entire word to be

transmitted, with bit by bit inversion in the duplicated word.

• Arithmetic Codes: These coding techniques are designed specifically for

arithmetic operations. Here the coding function is retained or modified in a

known manner through the arithmetic operation. Some of these codes can

be used for logical operations as well.

• Unidirectional Error Detecting Codes: These codes are designed

specifically to offer protection against faults which manifest themselves as

single, multiple or burst bit errors in the '0' ~ '1' direction, or the '1' ~

'0' direction, but not both simultaneously.

• Parity Based Codes: These codes are based purely on the generation and

checking of parity bits.

Unfortunately, selection of only one error detection code that would be best suited for

a particular digital system is infeasible. It is well known that the error codes suitable to

protect bus data or the memory system are not preserved by the arithmetic circuitry.

Conversely, error codes suitable to protect arithmetic circuitry may be too expensive

to be used for data bus protection and not powerful enough to be used in memory

systems (which generally require the use of an error correcting code). Consequently,

all four classes of error detecting codes are required depending upon the application

and consequently will now be reviewed in more detail.

20

CHAPTER Two REVIEW

2.5.1 Duplication Codes

Duplication codes are the most redundant error detecting codes available with 100%

redundancy, but also have the advantage that totally self checking circuits (see section

2.5.6) are generally simple to construct. Methods for translating duplication codes

directly into TSC circuits are readily available in Ashjaee (1977), Nikolos (1996) and

Piestrak (1995).

2.5.1.1 Alternate Data Retry

One information redundancy technique that uses duplication coding is that of alternate

data retry as described in Shedletsky (1978). The alternate data retry method is a re

execution of an operation which initially fails to produce an error-free result. The

alternate data retry method uses an alternative data representation in an attempt to

nullify the effects of any faults. The choice of alternate data representation and the

design of the processing circuits combine to ensure that even an error due to a

permanent fault is not repeated during retry. This is best illustrated with the example

from Shedletsky (1978), where unit A sends an odd-parity vector <0001> over the bus

to unit B. Due to the presence of a stuck-at fault, unit B receives the erroneous, even

parity vector <1001> and signals an error. For the retry, unit A sends the alternate data

representation <1110>, which is received correctly despite the fault. In this example,

both the vectors <0001> and <1110> represent the same message and convey the

same information between units. This system of recomputing a result if an error

condition occurs involves information redundancy as each data representation within

the design must be duplicated to allow both the vector <1110> and the vector <0001>

to convey the same information. This forces any implementation to be only 50%

efficient in terms of transmitted information. Unfortunately, Shedletsky (1978) does

not provide hardware implementation data.

21

CHAPTER Two REVIEW

2.5.1.2 Summary of Duplication Codes

Duplication codes are used in areas where the information redundancy is not of great

concern and the design time is necessarily short. The main disadvantage with

duplication codes is the immediate information redundancy of 100%. However, the

advantages with this type of encoding scheme are the ease in which totally self

checking (TSC) circuits can be implemented and the conceptually simple nature of the

encoding.

2.5.2 Arithmetic Codes

Error correcting codes for arithmetic operations have received considerable attention

and can be classified into non-separate and separate codes. Both classes of codes

possess many similar properties, but differ significantly in their implementation. The

non-separate code considered is the AN code as described by Brown (1960), which is

formed when an uncoded operand (N) is multiplied by the check modulus (A) to give

a coded operand AN. With this type of coding, the coded word cannot be separated

into original data and check bits as the check is integral to the data undergoing the

operation. Alternatively, the separate codes considered are the residue code, and the

inverse residue code as described by Brown (1960), Garner (1966), Russell (1989),

Siewiorek (1992) and A vizienis (1971). These codes are separate since the check bits

are generated and appended to the original data to form the transmitted word. In this

manner, the data transmitted is of the form IC (where I is the original information

word and C is the appended check) and the check bits are easily determined.

2.5.2.1 Non-Separable Arithmetic Codes

The AN codes described by Brown (1960) are a coded form of the operands such that

two numbers X and Y are coded as AX+B and AY +B. These codes are useful since

22

CHAPTER TwO REVIEW

the two coded operands can undergo arithmetic operations and the result will differ

from the coded output by a constant. Consequently, the coding is preserved by the

arithmetic operation. In the case of addition for example, the two coded input

operands could be:

AX+B + AY+B = A(X+Y)+2B

The coded result thus differs by a constant B from the AN coded output of

A(X+ Y)+B. Similar results can also be shown for other arithmetic operations.

However, certain requirements must be satisfied by the AN code. Firstly, the

minimum Hamming distance between messages must be two for error detection and

three for error correction. Secondly the complement of a coded operand must be

obtainable by complementing each binary symbol in the coded message. This

necessary for subtraction as noted by Brown (1960). However, some logical

operations cannot be checked by arithmetic codes and as such are unsuitable for this

type of coding. In this case, the operations must be performed on uncoded operands

with no error protection as noted in Siewiorek (1992).

2.5.2.2 Separable Arithmetic Codes

The separable arithmetic codes considered are the residue and inverse residue codes as

described by Brown (1960), Garner (1966), Russell (1989), Siewiorek (1992) and

Avizienis (1971). In the residue-m code, the residue of a data word N is defined as

R(N) = N mod m, with the codeword formed by concatenating N and R(N) to produce

NR(N). The result after operation can be checked by comparing the residue of the

result with the residue of the inputs undergoing the same operation as shown in Figure

2.3.

23

CHAPTER Two REVIEW

NI....,.._--I~
Arithmetic
Function

* NI N2 RG

RG R(N)'---R-e-su-lt---'
Residue R(N, * N,) Error

RGr-----I~ Generator r----+i Compare r--t~
R(N~

Key:
RG Residue

Generator

Figure 2.3 - Residue Coding for Arithmetic Functions

If the residues after operation are equal, no error has occurred. One variation of the

residue-m code is the inverse residue-m code, where the check quantity, Q, is formed

by Q = m - (N mod m). The inverse residue code has greater tolerance of repeated-use

faults as shown in Avizienis (1971), where a sequence of operations could be

performed on faulty hardware before any checking is performed (e.g. iterative circuits

such as multipliers and dividers). Unfortunately, the use of residue and inverse residue

codes are greatly affected by three factors:

• Generally the complexity of the checking hardware increases

sharply as the base (m) increases.

• As the base increases, more bits are needed to represent the residue.

• The error detection ability of the residue increases only slowly as the

base increases.

This indicates that the choice of base must be kept as low as possible to ensure a low

hardware complexity and the fewest check bits. Russell (1989) states that logical

operations can also be coded using residue coding, with only a slight alteration to the

basic method. However, Russell (1989) also shows that although the residue code can

24

CHAPTER Two REVIEW

be used for coding logical operations, the hardware increase can be up to 35 times

greater than for pure arithmetic functions depending upon the function.

2.5.2.3 Summary of Arithmetic Codes

In both the AN and residue codes, the error detection operations can be complex,

except when the check base equals 2a
- 1 (where a is the number of check bits). Thus

for binary implementations with check base equal to 3, the number of check bits (a)

must be 2 to achieve a low cost solution. Implementations that use the 3N (for AN

coding), and mod 3 (for residue coding) schemes are termed low cost arithmetic codes

as the hardware implementation requirement is minimal as stated in Avizienis (1971).

Both the AN code and residue code can protect data as it is operated upon by

arithmetic functions, but only the residue code can offer protection when logical

functions are used. Consequently, the residue coding scheme seems to offer greater

flexibility, especially when the designs contain a large proportion of arithmetic

circuitry.

2.5.3 Unidirectional Error Detecting Codes

Unidirectional errors are considered to be one of the most common forms of

semiconductor failure as noted in Ashjaee (1977). Consequently, unidirectional error

detecting codes have received much attention (e.g. Ashjaee (1977), Burns (1992),

Freiman (1962), Berger (1961), Smith (1984), Piestrak (1995), Borden (1982), Dong

(1984), Bose (1985) and Blaum (1988)). A unidirectional error is a single or multiple

error such that all erroneous bits are either of the '0' -+ '1' or' l' -+ '0' error type

within a data word, but not both at the same time. These are also known as

asymmetric channel transmission errors. Three types of unidirectional error codes are

commonly investigated, these being the unordered codes, the t-bit unidirectional error

detecting codes and the burst unidirectional error detecting codes as shown in Figure

2.4.

25

CHAPTER Two

Unidirectional Error
Detecting Codes

/ \
Burst

Unidirectional
Codes

Unordered
Codes

t~unidirectional
Codes

Figure 2.4 - Unidirectional Error Detecting Code Categories

REVIEW

These various coding schemes form the basis of the current work within the field of

unidirectional error detection and will be reviewed in more detail.

2.5.3.1 Unordered Codes

Unordered codes are a set of codes that can detect all unidirectional errors in a data

word as described in Piestrak (1995). The term unordered is defined by the following

conditions:

X covers Y if and only if X contains a '1' everywhere Y contains a '1'.

If neither X covers Y nor Y covers X, then the binary codewords X

and Y are unordered.

Consequently, a binary code C is an unordered code if for every {X,Y} EC, X does

not cover Y, and Y does not cover X. For example, the words 1010, 1101 and 0011

form an unordered set, and are capable of detecting unidirectional errors.

26

CHAPTER Two REVIEW

2.5.3.1.1 Non-Separable Unordered Codes

The unordered unidirectional error detecting code considered is the m-out-of-n code.

The m-out-of-n code (also known as the mln or constant weight code) is the set of

codewords which contain exactly m 'l's and (n-m) 'O's. This code is non-separable as

the original word is not directly identifiable from the codeword and must undergo

decoding to obtain the original message. Freiman (1962) and Piestrak (1995) have

both offered proofs stating that the m-out-of-n code is optimal when m = nl2, as this

allows the maximum number of codewords for any code of length n. According to

Piestrak (1996) totally self checking circuits can be easily achieved for both

combinational and sequential circuits provided that the circuitry is realised inverter

free. Also, the detection of a valid codeword within the m-out-of-n set only requires a

counter to determine its weight (i.e. the number of 'l's in the codeword). This is

relatively simple to achieve, but does mean that the counter and the logic function that

operate upon the m-out-of-n code are both of crucial importance when designing

circuitry. Unfortunately, as the code is non-separable, decoding must take place to

obtain the original message.

2.5.3.1.2 Separable Unordered Codes

The separable unordered code considered is the Berger code as originally proposed by

Berger (1961) and reviewed again by Ashjaee (1976), Smith (1984) and Burns (1992).

The Berger code is separable as the check bits are appended after the original

information bits. The check bits are calculated by counting the number of '0' s within

the information word (Io) and appending the binary count after the information bits.

The Berger code has the property that if all 2n information codewords are used. it

requires the minimum number of check bits to form an unordered code. In this case,

the Berger code is optimal as defined by Smith (1984). The decoding and checking of

information coded as a Berger code by a totally self checking checker has been

explored by Burns (1992). Chang (1996), Metra (1996), Ashjaee (1976) and again in

27

CHAPTER TwO REVIEW

much detail by Piestrak (1995). Currently, the Berger code is most commonly used in

applications where a separable code is needed as noted in Bums (1992). There are

many totally self checking checker designs for the Berger code that have been

explored and are well known (e.g. Bums (1992), Piestrak (1995) and Ashjaee (1976))

2.5.3.2 t-Unidirectional Error Detecting Codes

The data stored within digital systems are usually organised and operated upon in

words. Therefore, provided only single hardware failures occur, instead of any number

of unidirectional errors occurring as previously described, it is more likely that up to t

unidirectional errors will occur (where t is the word length). Piestrak (1995) describes

at-unidirectional EDC (t-UEDC) as a codeword where no set of t unidirectional errors

can transform one codeword into another codeword. The area of t-unidirectional error

codes has been the subject of much investigation (e.g. Borden (1982), Dong (1984)

and Bose (1985)). As previously, the various codes for detecting t-unidirectional

errors can be split into non-separable and separable codes where the check bits are

either integral to the transmitted word (non-separable), or directly identifiable

(separable).

2.5.3.2.1 Non-Separable t-Unidirectional Error Detecting Codes

The non-separable codes are tbe Borden codes as originally developed by Borden

(1982). These are similar to the m-out-of-n codes discussed previously. The Borden

codes are created by using an m-out-of-n code where the weight of n (i.e. the number

of' 1 's or m) is given by:

m= LnI2Jmod(t+ 1)

28

CHAPTER Two REVIEW

where n is the length of the codeword and t is the number of unidirectional errors.

This code was shown to be optimal in Borden (1982), and stated again in Bose (1985).

It should be noted that if t = 1, the Borden code becomes identical to the parity code

which is separable. This is a unique case of the Borden code as all other versions are

non-separable. Self checking checkers for Borden codes have recently been proposed

in Piestrak (1995) and have been built using a number of self checking checkers for

m-out-of-n codes cascaded. The self checking checkers for Borden codes discussed in

Piestrak (1995) are complex and contain a highly irregular internal structure that

consequently makes them difficult to design and thus less suitable for complex

systems.

2.5.3.2.2 Separable t-Unidirectional Error Detecting Codes

The separable codes capable of detecting t-unidirectional errors are the Bose codes

and Dong codes. The separable t -unidirectional error detecting codes were first

introduced by Dong (1984) and optimised by Bose (1985). Both codes are similar in

that the check bits are appended after the information word, thus forming a separable

code. Dong codes are constructed by assuming that any occurring fault can also affect

the check bits generated to protect the original information bits. As the check bits

themselves are not protected, the Dong codes introduce extra coding to protect the

check bits of the original information word. The coding method presented in Dong

(1984) uses duplication to achieve check bit protection. In this manner, the entire

word is generated in the following manner:

• From the original data word, count the number of 'O's (10) present

and append the binary representation of this number to the original

data word. This is a Berger code.

• Perform the bit-by-bit complement of the binary representation of

the number of '0' s, and append this number after the Berger code.

29

CHAPTER Two REVIEW

The resultant Dong code is more expensive than the Berger code in terms of both

check bits and the cost of the self checking checkers. Also, their efficiency is slightly

lower than the Berger codes for a given number of check bits, although the Dong

codes can detect all unidirectional errors of weight less than IQ (Dong (1984». The

decoding of the received data word consists of a Berger code checker and a two rail

checker operating upon the two versions of the received check bits. A detailed

explanation of the generation of Dong codes is given in Dong (1984), along with the

error detection ability and the method for generating totally self checking checker

circuitry.

The second and more optimal separable t -unidirectional error detecting code is the

Bose code as described by Bose (1985). Bose codes are separable and require a fixed

number of check bits for a particular level of error protection that is independent of

the number of information bits. In addition, Piestrak (1995) states that the Bose codes

are optimal and self checking checkers are easy to realise. The Bose codes are

constructed by counting the number of '0' s (10) in the information word and taking the

binary representation of IQ mod 2' where r is the number of check bits. As an example,

the Bose code for the information word of '0000110 l' with two check bits is

'000011 0 1 01'. The choice of the number of check bits to use is deterntined by the

number of errors requiring detection. Bose (1985) shows that for double error

detecting, two check bits are needed, while for triple error detecting, three check bits

are needed. The proof of the optimality of the Bose codes is given in Bose (1985),

along with the methods for generating totally self checking circuits for checking the

received codewords.

2.5.3.3 Burst Unidirectional Error Detecting Codes

Certain faults in senticonductor memories tend to produce bursts of unidirectional

errors. Hence, codes capable of detecting bursts of a certain length using a ntinimum

number of check bits are important. To date, no non-separable burst unidirectional

error detecting (b-UED) codes have been proposed. However, separable b-UED codes

were first proposed by Bose (1986) and improved by Blaum (1988). It has been stated

30

CHAPTER Two REVIEW

in Piestrak (1995) that if b(K) denotes the maximum length of a burst error detectable

by a separable b-UED code with K check bits, then the Base codes have b(K) = 2K
-
I

for all K. Alternatively, the Blaum codes have b(K) = 2K
-
I for K = 2,3 and b(K) > 2K-I

for K ;::: 4. Consequently the Blaum codes are more efficient than the Bose codes for

larger K. However, both are discussed for completeness.

2.5.3.3.1 Separable Burst Unidirectional Error Detecting Codes

The separable burst unidirectional error detecting codes considered are the Bose codes

and the Blaum codes. Bose (1986) originally developed a burst unidirectional error

detecting code containing r check bits which could detect any error burst of length up

to 2r
-
l
. Any of the t-unidirectional error detecting codes previously discussed are also

capable of detecting burst unidirectional errors of length t. However, the Bose code is

more efficient than the t -unidirectional error detecting codes in that its error detecting

performance stays constant at 2r-1 (where r is the number of check bits), while the t

unidirectional error detecting codes suffer from lower error detecting performances for

larger numbers of check bits as noted by Bose (1986). Consequently, the Bose code is

superior for a larger number of burst errors and larger numbers of check bits. The

Bose code checkbits are determined by:

Check Bits = 10 (mod 2r)

where la is the zero weight of the information word, and r is the number of check bits.

The most significant check bit is then inserted into the information word while the

remainder of the check bits are appended to the end of the information word. As an

example, if k = 12, r = 3, and the infonnation symbol is '110001000000', then the

check is given by 9 mod 23 = 9 mod 8 = 1 = 00lz, Thus the code word will be as

follows:

31

CHAPTER Two

1100 0100 0 0000 01

t tt
MSB of check Two LSB of check

REVIEW

The MSB of the check is placed between the information bits It1 +1 and I{-1 as shown.

Full details of the code construction are given in Bose (1986), along with the design of

encoding and decoding circuitry.

The second burst unidirectional error detecting code considered is the Blaum code as

presented in Blaum (1988). Blaum (1988) shows that the Blaum code is capable of

detecting bursts of errors of length greater than 2r
-
1 when the number of check bits (r)

is ;;:: 4. In contrast to this, the previously discussed Bose code is capable of detecting

burst errors of length 2r
-
1 when the number of check bits (r) is ;;:: 3. The Blaum code is

thus superior to the Bose code and is constructed in the following manner:

check number = 10 mod 2r

where 10 is the zero weight of the information part and r is the number of check bits.

The check bits are found by looking up the check number in tables found in Blaum

(1988). The check bits are then inserted into the information word at specific bit

positions determined by the minimum of the formula in Blaum. The tables are

constructed from mathematical formulae which are beyond the scope of this review

but are discussed in detail in Blaum (1988). As an example, consider the case of the

information word '101001110', which has weight 4. From the tables in Blaum, the

check bits are '010' and the minimum is 4. The constructed code is thus:

101 0 001 1 110 0

t t t
Check Bits

This code will detect all burst errors up to length 4. A comparison of the burst error

detecting ability of the Blaum and Bose codes for increasing number of check bits is

32

CHAPTER Two REVIEW

given in Blaum (1988), where it is shown that the Blaum codes are superior for check

bit numbers of <': 4. Methods for constructing encoding and decoding circuits are also

given in Blaum (1988), along with totally self checking checker designs.

2.5.3.4 Summary of Unidirectional Error Detecting Codes

The unidirectional error detection codes presented possess a variety of error detection

properties, including the ability to detect single, multiple and burst unidirectional

errors. The codes usually implemented are the separable codes as these can be easily

constructed and checked with simple encoding and decoding of the information bits.

This usually involves smaller delays and lower hardware overhead than the generally

more complex non-separable codes. The unordered codes considered were the m-out

of-n and Berger codes. It has been stated that the m-out-of-n codes are optimal when

m = nl2 as this allows the maximum number of codewords, while the Berger codes are

optimal in check bits if all codewords are used. However, the m-out -of-n code is non

separable while the Berger code is separable. Consequently, the Berger code is used

more due to the difficulty and complexity i!l encoding and decoding the non-separable

m-out-of-n code.

The t -unidirectional error detecting codes considered were the Borden, Dong and Bose

codes. Again it was stated that the Borden and Bose codes were more efficient than

the Dong codes for a fixed number of unidirectional errors. The Borden codes were

shown to be optimal t-unidirectional error detecting codes provided the weight of the

codewords was Lnl2Jmod (t+l). Unfortunately, they are non-separable with all the

associated problems. The Bose codes were stated to be separable and optimal in check

bits.

Finally, the burst unidirectional error detecting codes considered were the Bose and

Blaum codes. It was stated that the Blaum codes were more efficient than the Bose

codes if the number of check bits is greater than four. Both codes were separable

33

CHAPTER TwO REVIEW

hence making encoding and decoding easier. To date, no non-separable burst

unidirectional error detecting codes are known.

2.5.4 Parity Based Codes

Parity based codes are the simplest coding technique to implement, with the parity bit

generated by the EXOR of all the bits in the data word. The parity bit is then appended

to the data word to form a code which is capable of detecting single bit errors. Any

single bit error is easily detected as the parity will change from odd to even or vice

versa. The ability to detect errors can be quantified by the Hamming distance, which is

the number of bits by which any two codewords differ. For the simple parity code, the

Hamming distance is two, which allows the detection but not correction of single bit

errors. Consequently, if two errors occurred, the parity scheme would not be able to

detect the errors. In general, any code of Hamming distance (d+ 1) is capable of

detecting d errors, while a code of Hamming distance (2c+ 1) is capable of detecting

and correcting up to c errors. If the Hamming distance is 3, then the code can detect

double bit errors and correct single bit errors. The parity code can be generated by

several different methods as described below.

2.5.4.1 Bit-per-Word Parity

Bit-per-word parity is a technique where one parity bit is appended to the entire data

word. This causes the least hardware overhead as it requires a minimum of

redundancy in the information transferred. It also allows a single parity tree to be used

for both encoding and decoding of the data provided the data is transmitted in full

duplex mode. According to Siewiorek (1992), bit-per-word parity codes can detect all

single-bit errors and all errors that involve the corruption of an odd number of bits. A

slightly different approach is that of bit-per-byte parity, where an extra bit is appended

to each byte of data rather than the entire word as previously discussed. This technique

34

CHAPTER Two REVIEW

also detects single or odd numbers of errors in each byte. Another advantage of the

bit-per-byte technique is that fewer bits are covered by each parity bit, thus improving

the resolution of any diagnostic procedures. This technique also suffers less from the

encoding and decoding speed penalties since the parity trees are more compact.

2.5.4.2 Interlaced Parity

Interlaced parity is a technique where i parity bits are appended to the data word. Each

parity bit is associated with a group of (b/i) bits (b is the data word length). This is

achieved by forming the parity over every b/ith bit, starting in a different bit position

for each parity group. Siewiorek (1992) states that interlaced parity covers single bit

errors in each group, and multiple errors providing at least one group has an odd

number of errors. Siewiorek (1992) also states that if the parity is alternated from

group to group, the interlaced parity code also covers a large number of unidirectional

errors. As for the bit-per-byte parity technique, the resolution of any diagnosis is to the

parity group in error. The speed of error detection and initial encoding is also

increased due to the more compact parity tree.

2.5.4.3 Parity Check Matrix

To determine the number of check bits required by any given parity code, the

Hamming relationship can be used. This is given by:

where m is the number of information bits, and k is the number of check bits required.

If, for example, an 8 bit single error correcting code was required, then m = 8 and k =
4 corresponding to four check bits and 12 bits in total. In a parity check matrix

representation, the check bits are inserted into the original message at the power of

two bit positions. This has the advantage that comparing the regeneration of the check

35

CHAPTER Two REVIEW

bits at the receiver with the received check bits can lead to the correction of a single

bit error as described by Russell (1989).

2.5.4.4 Summary of Parity Based Codes

Parity based codes are perhaps the easiest information redundant code to implement as

the encoding / decoding consists purely of an EXOR tree and an extra data bit (and

storage element if the circuit is sequential). This is easily realised and also provides a

reasonably low cost solution to on-line error detection. However, the parity based

coding schemes are limited by their ability to detect only an odd number of errors

within the group of bits the parity is covering. A trade-off is then apparent between the

hardware implementation cost and the level of protection offered by the parity code.

Consequently, the parity based codes are best suited to implementations which require

a low hardware overhead and can tolerate a lower level of data protection. A totally

self checking checker for the parity code consists of a tree of EXOR gates split into

two parts such that a two-rail code is generated as described in Khakbaz (1984) and

Piestrak (1995).

2.5.5 Summary ofInformation Redundant Techniques

The technique of information redundancy brings an important benefit, namely the

removal of the single point of failure present in most hardware and time redundancy

techniques. This can be achieved with the use of totally self checking checkers (see

section 2.5.6) which are capable of detecting errors in codewords caused by faults

both internal and external to the checker. The various codes available can be used for

many different operations, from arithmetic to logic and transmission to unidirectional

error detection. Most of the codes presented have been proven to be optimal, and as

such represent the best codes available for the type of protection required. The main

points of the various information redundancy codes can be seen in Table 2.3.

36

CHAPTER Two REVIEW

Duplication Yes Yes Any Yes

Residue Yes Low Cost if Arithmetic No

m=3

Inverse Yes Low Cost if Arithmetic No

Residue m=3

AN Codes No Low Cost if Arithmetic No

A=3

M-out-of-N No If M =N/2 Single Yes

unidirectional

Berger Yes Optimal in Single Yes

Check bits unidirectional

Borden No If Weight is t unidirectional Yes

LnI2Jmod(t+l)

Bose-Lin Yes Optimal in t unidirectional Yes

Check bits

Dong Yes No t unidirectional Yes

Bose Yes No Burst Yes

unidirectional

Blaum Yes Yes Burst Yes

unidirectional

Parity Yes Yes Any Yes

(Odd number)

Table 2.3 - Summary of Information Redundancy Techniques

Table 2.3 shows that the various information redundancy codes available have

different characteristics. These characteristics include factors such as the optimality of

the coding scheme, the separability of the check bits, the types of error the code can

37

CHAPTER Two REVIEW

detect and the availability of a totally self checking checker for the code

implementation. As the codes presented are intended for use in significantly different

environments, it is not possible to categorically state which code is 'the best'.

However, the review has shown that the separability of the code is a very useful

characteristic, as parallel decoding of the information and check bits can be

undertaken. With this is mind, it is possible to highlight the codes that can be

implemented easily and consequently those which represent good choices. For

arithmetic coding, the residue and inverse residue codes are both separable whereas

the AN coding is not. This allows the residue codes to be implemented with less cost

than the AN codes. The residue code can also be used to protect logical operations,

although the resulting solutions are usually costly in hardware.

For the single unidirectional error detecting codes, the Berger code represents a

separable and optimal code which also has the benefit that totally self checking

checker circuits are readily available. In contrast to this, the M-out-of-N codes are

non-separable and are only optimal for a small set of input codewords, but do also

have totally self checking circuits available. Consequently, the Berger codes are

usually favoured for single unidirectional error detection.

Of the codes that can detect t -unidirectional errors, the Bose code offers a separable

and optimal code, while the Borden code is non-separable and the Dong code is non

optimal. As the Bose code is both optimal in the number of check bits and separable,

it represents a good choice for t-unidirectional error detection.

The burst unidirectional error detecting codes available are the Bose and BIaum codes.

The BIaum code is separable and optimal, whereas the Bose code is separable but

non-optimal. As this is the case, the Blaum code would seem to offer the better

choice. However, the generation of the check bits for the BIaum code requires

sophisticated algorithms, and is usually implemented as a look-up table in ROM. In

contrast, the Bose code check bits are easily generated. A trade-off is then apparent

between the required optimality of the code and the difficulty in generating the check

bits.

38

CHAPTER Two REVIEW

The final code considered is the parity code. The parity code is separable and optimal,

but suffers from the disadvantage of only being able to detect an odd number of errors.

However, the errors detected can be of any direction (i.e. the code is not constrained to

detecting unidirectional errors) and self checking checker circuits are easy to

construct.

2.5.6 Totally Self Checking Checkers

Totally Self checking checkers (TSCC) are designed to eliminate the problem of "who

checks the checker" in information redundant codes. The idea is to design a checking

circuit that also checks itself on-line for any errors. The self checking can be achieved

by adhering to three rules:

• Self Testing,

• Fault secure,

• Code Disjoint.

The self testing property is defined as: A circuit is self testing for the fault set F if, for

every fault f E F, the circuit produces a non-codeword output for at least one

codeword input. This ensures that any fault within the TSCC can be manifested at the

circuit output with a codeword input. Secondly, the fault secure property is defined as:

A circuit is fault secure for a fault set F if, for every fault f E F, the circuit never

produces an incorrect codeword output for any codeword input. Finally, the code

disjoint property is defined as: A circuit that maps codeword inputs (non-codeword

inputs) onto codeword outputs (non-codeword outputs). Consequently, a TSCC is a

circuit which is fault secure, code disjoint and self testing. The design of TSCC

circuits is of the utmost importance for information redundancy techniques as this

eliminates the single point of. failure seen with most time and hardware redundancy

techniques. Consequently, most of the information redundancy codes also have

complete methods for designing and implementing TSCCs for them (e.g. for m-out

of-n, Berger, Borden, Base and Blaum codes in Piestrak (1995) and for parity codes in

39

CHAPTER TWO REVIEW

Gossel (1993». TSCC circuits for many different types of fault are also described in

Cheema (1992), Jha (1993) and Gaitanis (1996).

2.5.7 Partially Self Checking Checkers

Partially self checking checkers (PSCC) are similar in operation to the totally self

checking checkers (TSCC) previously discussed. PSCC designs were originally

proposed by Wakerly (1973) and essentially divide the input code space into two

sections. One section consists of codewords for which the PSCC is totally self

checking, while the other section consists of codewords for which the PS CC is not

totally self checking. The PSCC is defined to be in 'secure mode' if the input

codewords are in the set for which the PSCC is totally self checking, otherwise it is

defined to be in 'insecure mode'. If the PS CC operates in 'insecure mode' it is

possible that any error may be undetectable. One implementation performed by

Wakerly (1973) was the design of an ALU using a PS CC design. Here the ALU

operated in 'secure mode' during arithmetic operations, but reverted back to 'insecure

mode' during logical operations. With this implementation, residue coding was used

for the arithmetic operations while the logical operations were left uncoded. This

avoids the difficulty of producing a code capable of checking logical operations.

2.6 Summary

This chapter has reviewed the current state of on-line testing, using the categories of

hardware, time and information redundancy. The three categories have been explored

and the various advantages and disadvantages of each of the techniques highlighted.

As stated in the summary for Hardware redundancy, the hardware redundancy

methods alone require a significant amount of additional circuitry to achieve the

required on-line error detection. In addition to the increase in circuitry comes an

increase in the number of IJO pins, size, power consumption and overall physical

weight of the implementation. Finally, the hardware redundant methods also suffer

40

CHAPTER Two REVIEW

from the single point of failure, (i.e. the comparator) where any fault would render the

on-line test method in-effective. These factors are significant disadvantages and

consequently make hardware redundancy alone a less attractive choice for

implementing on-line error detection, although duplication with comparison is still

used in some areas due to its simplistic nature.

The summary for time redundancy showed that although the majority of the time

redundancy techniques require less hardware to implement than the pure hardware

redundant methods, they are still quite expensive in terms of hardware overhead. In

addition, they also suffer from many of the problems associated with the hardware

redundant methods. The most noticeable problems with time redundancy are the

increase in hardware, the single point of failure in the comparison stage and a

reduction in data throughput. Again the hardware overhead becomes one of the

dominant factors that dictate the usefulness of the redundancy techniques in complex

designs.

The information redundancy summary stated that on-line test methods require

additional bits to be added to the data word requiring protection. This in turn results in

an increase in hardware. Information redundancy comes in many different forms, from

duplication codes to arithmetic codes and simple parity to unidirectional error

detecting codes. These codes give different levels of protection when implemented

and different hardware overheads. A trade-off then exists between the required level

of on-line error detection and the resultant hardware overhead of the code once

implemented. The summaries highlighted the residue codes, parity codes, m-out-of-n

codes, Berger codes, Borden codes, Base codes and Blaum codes as the main

information redundancy techniques implemented in contemporary designs, the choice

being dependant upon the type of errors expected and the level of protection given by

the coding.

41

CHAPTER TWo REVIEW

2.7 Conclusions

This chapter has highlighted several points which greatly influence the suitability of a

redundancy scheme for hardware implementation. These points include increased I/O

pin counts, increased complexity, increased power consumption, decreased

performance and single points of failure. The required level of on-line test thus needs

to be balanced against the implementation penalties to find an acceptable solution. Of

the schemes presented, information redundancy offers several benefits that are not

obtainable from hardware or time redundancy. These include:

• No single point of failure (provided Totally Self Checking Checkers are

used),

• Small increase in I/O pin counts,

• Slight decrease in performance,

• Slight increase in power consumption,

• Slight increase in complexity.

Consequently, information redundancy is an active area of research offering many

benefits to the field of on-line test. Many examples of information redundancy being

used to aid on-line test have been shown within this chapter, and each implementation

brings its own benefits and costs. However, although several approaches employing

information redundancy have been shown, there are still many areas where further

exploration could be undertaken. The research described in this thesis aims to build

upon the benefits of information redundancy, and develop an on-line test methodology

using information redundancy as a fundamental component. The information coding

scheme used is a parity based dual-rail code under development at Loughborough

University. The coding scheme, IFIS (If it Fails, It Stops), uses a parity-per-bit

approach to achieve on-line test.

42

CHAPTER THREE

OVERVIEW OF INVESTIGATIONS

3.1 Objectives of the Chapter

The objectives of this chapter are to select and introduce the investigations carried out

within the context of this thesis. More specifically, it includes:

• A statement of research objectives,

• An introduction to the research vehicles employed by these investigations,

• Summaries of the proposed investigations.

3.2 Aims of the Research

This research focuses on an approach to on-line testing under development at

Loughborough University. The approach, IFIS (If it Fails, It Stops), is a test

methodology that uses dual-rail encoding of data and handshaking between

computation elements to achieve on-line test. This research has two aims, namely:

• To identify and assess the encoding schemes, fundamental building blocks

and design methodologies for IFIS.

• To evaluate the utility of the concept issues through the construction of a

'realistic' demonstrator le.

43

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

3.2.1 Statement of Research Objectives

This thesis aims to understand the on-line test methodology of IFIS and how to apply

it effectively and efficiently to FPGA I ASIC technologies. Four investigations have

been proposed to address this area of research and are discussed below.

The first experiment is an investigation into the encoding schemes, processing rules

and feedback systems proposed as part of the IFIS methodology. The investigation is a

theoretical study with the goal of understanding how the different encoding schemes

and feedback systems impact on processing speed and error halting ability.

The second experiment implements the different combinations of encoding schemes,

and processing rules into hardware. This is to identify the combination that gives the

greatest benefit in terms of processing speed, error halting ability and lowest

implementation overhead.

The third experiment improves the complexity overhead of the IFIS methodology.

Implementation data on the various IFIS cell re-designs is presented and compared,

with the goal of identifying the design that yields the least complexity overhead.

The final experiment is a feasibility study that uses a commercial UART re-designed

using the IFIS test methodology. This study gives valuable information as to how well

the IFIS methodology scales with design complexity as well as an insight into the

different design problems associated with using the IFIS methodology for 'real-life'

designs.

44

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

3.3 Experimental Vehicles

This section outlines the Finite Impulse Response (FIR) filter and the Universal

Asynchronous Receiver Transmitter (UART) which are the key research vehicles of

the proposed investigations.

3.3.1 FIR Filter

The FIR filter employed throughout the second experiment was chosen for several

reasons, namely:

• The FIR filter is a reasonably simple design, containing only arithmetic

functions.

• It is designed to be a vehicle to prove the concept of lFIS, and as such is not

required to be complex.

• It has a well-defined architecture that is simple to follow.

These points made the FIR filter a suitable choice, as several of the basic arithmetic

blocks (e.g. delay elements, adders and shifters) had already been built and tested for

correct operation under the IFIS methodology.

3.3.2UART

The UART employed throughout the fourth experiment was also chosen for several

reasons, namely:

• It is a large design, containing many translation blocks, state machine

control units, serial-to-parallel and parallel-to-serial converters. This should

allow a comprehensive feasibility study to be undertaken.

45

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

• The UART is a commercial available device with well-known

characteristics.

• The UART contains several thousand gates, which should give a reasonable

estimation as to how well the IFIS methodology scales with increased

circuit complexity.

With this in mind the UART seems to be a suitable IC, giving a reasonably large

circuit with many different types of electronic designs (e.g. state machines, shifters,

counters and parallel-serial converters), but still small enough to be realistically

tackled within the given time constraints.

3.3.3 System Environment

The experiments carried out in this thesis were performed using a variety of Computer

Aided Design (CAD) synthesis, simulation and test programs. Intergraph's synthesis

engine (synovation) was used to perform all of the behavioural VHDL to schematic

synthesis, while the simulation engine (DLAB) also from Intergraph was used for

simulation of pre-layout and post-layout netlists. The testing of netlists was performed

using models of the circuit function written in the 'c' programming language together

with VHDL testbenches to apply computer generated test vectors. This particular

design route was chosen for several reasons:

• The number of test vectors required to achieve a 'satisfactory' test is usually

very large. Consequently, a method of applying an arbitrarily large number

of test vectors is required.

• 'Satisfactory' testing is very SUbjective. Consequently, a method for

applying any test vector set is required. Using this method, only the test

vector file need change.

• No lengthy sequential test vector set is required since the 'C' model and the

simulated netlist change 'in lockstep'. Any applied vector will affect both

the 'c' model and the netlist, allowing the outputs to still be compared.

46

CHAPTER THREE OYERVIEW OF INVESTIGATIONS

• Using a 'C' model together with the design netlist under observation allows

a true functional comparison as both the netlist and the 'C' model can

continue to transition between any states, and the outputs can still be

compared.

With post-layout simulations completed, the netlists were used to configure a Xilinx

FPGA. Real-time simulations of the configured Xilinx chip were then performed

using Lab View lrn on a PC based system. With all the experiments, the host systems

were a UNIX based SP ARCstation and a DOS / Windows based Personal Computer.

3.4 Introduction to Investigations

The first experiment is designed to assess the impact of varying the processing rules,

feedback structures and encoding scheme upon the data throughput and error halting

ability of circuits designed using the IFIS test methodology. Two encoding schemes

are identified which are possible candidates for use within the IFIS methodology. The

first encoding scheme uses an 'empty' or non-data carrying state as an intermediate

state between data states, while the second encoding scheme uses all possible states to

carry data. The various advantages and disadvantages of these two encoding schemes

are discussed within the framework of processing speed and error halting ability. Also

addressed are the different feedback strategies and processing rules available for the

IFIS methodology. Four feedback strategies are identified as possible choices for

implementation, and their various advantages and disadvantages are discussed also

within the framework of processing speed and error halting ability.

The second experiment is designed to compliment the first experiment and assess the

cost I performance impact of the IFIS methodology on real electronic systems. The

two encoding schemes and two processing rules previously identified are compared by

implementation in hardware. The four different possible combinations are

implemented as a digital filter to obtain comparison data. The data is obtained after

implementation to both a Xilinx gate array, and the LSI logic ASIC cell library. The

47

CHAPTER THREE OVERVIEW OF INVESTlGA TlONS

second experiment is a more practical evaluation of the IFIS methodology and allows

a conclusion to be drawn as to the encoding scheme and processing rule combination

most suitable for use in IFIS systems.

The third experiment involves a re-design of the individual IFIS cells in an attempt to

reduce the overhead of implementing the IFIS test methodology. On-Line test

methodologies incur a penalty of some kind and that penalty usually involves an

increase in circuit complexity. IFIS is no exception, and the third experiment is an

investigation into ways of reducing this overhead through a series of individual IFIS

cell re-designs. Several choices from chapter two are used as IFIS cell designs, with

the goal of identifying the cell design with the least increase in circuit complexity.

The final experiment is the re-engineering of a commercial UART using the IFIS

methodology. Many on-line test methodologies presented in the literature are shown

only for small circuits of modest gate counts. This does not give any indication of how

well the methodology scales with realistic commercial designs containing many

thousands of gates. The re-engineering of a commercial UART allows a thorough

concept feasibility study to be undertaken. This feasibility study is valuable in many

ways. Firstly, the UART contains many different control and translation blocks which

need to be implemented in IFIS. This allows a rigorous feasibility study of the

methodology on many different types of electronic designs. Secondly, the UART

needs to be able to interface with other electronic systems. This requires a study into

the practical requirements behind an interfacing scheme for IFIS to non-IFIS systems.

Finally, the study will yield comparison data that shows how well the methodology

scales with increased complexity of the design.

48

CHAPTER FOUR

IFIS ON-LINE TEST METHODOLOGY

4.1 Objectives of Chapter

The objectives of this chapter are to understand and assess the factors which impact

the effectiveness of the encoding schemes and protocols of the IFIS (If it Fails, It

Stops) methodology. In order to achieve these objectives, it is necessary to introduce

the IFIS methodology and the different types of encoding schemes, processing rules

and feedback structures which operate within.

4.2 Motivation

The IFIS on-line test methodology is based upon the dual-rail encoding of data,

designed to detect the logical errors caused by stuck-at, stuck together and transient

faults. This is achieved by utilising a parity based dual-rail encoding scheme in

conjunction with a set of processing rules which determine when computations should

take place. The IFIS encoding schemes and protocols make a novel test methodology

which uses information redundancy as a means of achieving on-line test. To perform

an efficient implementation of the IFIS encoding scheme, it is necessary to evaluate

the various encoding schemes, feedback structures and processing rules. This chapter

studies the impact of the IFIS encoding schemes, feedback structures and processing

rules on the on-line error detection and data throughput capabilities of systems

designed using the IFIS methodology.

49

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

4.3 IFIS Encoding Schemes

The IFIS methodology utilises dual-rail encoding of data. This gives the four possible

states of:

Possible States = {00, 01, 10, 11}

The four states can be grouped into the two parity sets:

0 1 = {00, 11} and O 2 = {OI, 1O}

These parity sets can then be used to determine if an IFIS cell should compute or halt

by comparing the input data's parity set against a processing rule. If the input data

obeys the constraints of the processing rule, the cell is permitted to compute,

otherwise the cell is halted and the previous data value is retained.

4.3.1 IFIS 1 Encoding Scheme

The first encoding scheme, 'IFIS 1', is described by the following state diagram.

Logical 1
{I}

,
"

LllgicalO
to}

Figure 4.1 - !FIS 1 Encoding Scheme

50

CHAPTER FOUR [FrS ON-LINE TEST METHODOLOGY

From Figure 4.1, it can be seen that there are two data states encoded as "10" (for

logical '1') and "01" (for logical '0') corresponding to the parity group O2 , and two

states encoded as "11" (for invalid) and "00" (for empty) corresponding to parity

group 0 1• The states are encoded such that any transition between states is monotonic

with the exception of transitions involving the invalid state. This ensures that any

desired transition between states within the IFlS 1 encoding scheme causes the parity

of the encoding to alternate, and is used to detect errors. Consequently, to transmit a

sequence of bits using the IFlS encoding scheme, an alternating parity must be seen

for each successive data value. With the IFlS 1 encoding scheme, the empty state must

be visited after each data state to maintain the monotonicity of the code and the

required parity alternation. Any data stream transmission using the 'IFIS l' encoding

scheme must be of the form D,E,D,E,D,E where 'D' represents either the logical '1'

or logical '0' and the 'E' represents the empty state. If the invalid state is entered, or

the coding is disrupted (such as a 'D' to 'D' transition), the parity of the state

encoding ceases to alternate and is detected. One disadvantage of the 'IFIS l'

encoding scheme is that the data throughput is half that of conventional binary

systems as the non-data carrying or 'empty' state must be visited after each data state

to maintain the monotonicity of the transitions. Another disadvantage is that the IFIS

methodology introduces redundancy at the bit level rather than at the byte or word

level. This irrunediately introduces an information redundancy of 100%, which will

increase the hardware overhead required to implement the encoding.

4.3.2 IFIS 2 Encoding Scheme

The second encoding scheme under consideration, 'IFIS 2', uses all possible states

available under the dual-rail encoding as shown in Figure 4.2.

51

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

'0' -
Ol

'0'

'1' /----..,...:0'1'
Figure 4.2 - IFIS 2 Encoding Scheme

With this encoding scheme, there are two states representing a logic '0' and two states

representing the logic 'I'. As before, the monotonicity of the transitions must be

maintained. The advantage of this encoding scheme is that the empty or non-data

carrying state seen with 'IFIS I' is removed and there are no invalid states. This

allows the data throughput of 'IFIS 2' to be equal to the data throughput of

conventional systems. As before, the disadvantage of this type of encoding scheme is

that an information redundancy of 100% is introduced. Again this will cause an

increase in the hardware overhead required to implement any IFIS systems.

4.4 IFIS Processing Methods

Three methods of allowing each individual IFIS cell to process have been identified.

These methods include elastic processing, in-elastic processing and data driven

processing. These processing methods control the movement of data through an IFIS

system, and are discussed in detail.

52

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

4.4.1 Elastic Processing

Elastic processing is the name given to the procedure where cells downstream must

finish processing before the cells upstream can begin as shown in Figure 4.3, Figure

4.4 and Figure 4.5.

IP
A B

alP

Clock

Data Flow

Figure 4.3 - Elastic Processing Stage One

Cell C finishes it's computation (as denoted by the shading) and synchronously

signals a completion to cell B which is then allowed to start processing.

IP
A c alP

Clock

Data Flow

Figure 4.4 - Elastic Processing Stage Two

53

1
~ ,

1
~
1
i

I ,
~

1
<
I
1
!
1
I ,
\
I ,
1
,1

). ,

I
j
1 ,

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

Cell B then finishes it's computation, and synchronously signals a completion to cell

A. Cell A is prevented from processing until the completion signal is received from

cell B.

B c GIP

Clock

Data Flow

Figure 4.5 - Elastic Processing Stage Three

Finally, cell A is allowed to process as a completion signal has been received from

cell B. Processing data in this manner is clock driven as both the new data and the

completion signal are synchronised to a clock edge. However, only those cells

receiving the required completion signal are permitted to process.

4.4.2 In-Elastic Processing

In-elastic processing is the name given to the procedure where all cells synchronously

perform a computation without waiting for a completion signal from downstream cells

as shown in Figure 4.6, Figure 4.7 and Figure 4.8.

S4

CHAPTER FOUR !Frs ON-LINE TEST METHODOLOGY

B
O/P

---1-+

Clock

Data Flow

Figure 4.6 - In-elastic Processing Stage One

With in-elastic processing the cells are again clock driven and process data on every

clock cycle. Here the shading represents data of the same parity phase.

IP
A c O/P

j...-IL--+

Clock

Data Flow

Figure 4.7 - In-elastic Processing Stage Two

B
O/P

Clock

Data Flow

Figure 4.8 - In-elastic Processing Stage Three

55

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

The difference between the elastic and in-elastic processing methods is that the in

elastic processing method has all cells processing all of the time, whereas the elastic

processing method has a computation wave which propagates upstream governed by

the production of a completion signal.

4.4.3 Data Driven Processing

The final processing method is that of data driven processing as shown in Figure 4.9,

Figure 4.10 and Figure 4.11. With this system, the computation also operates in a

wave like manner, but unlike elastic processing, data driven processing does not

produce a completion signal synchronised to a clock edge.

liP
A

O/P
B

Data Flow

Figure 4.9 - Data Driven Processing Stage One

lIP
A

O/P
c

Data Flow

Figure 4.10 - Data Driven Processing Stage Two

56

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

B
O/P lIP c

Data Flow

Figure 4.11 - Data Driven Processing Stage Three

Data driven is similar to elastic processing except that the completion signal from the

computing cell is generated as soon as the computation completes rather than being

synchronised to a clock edge. This allows any system designed in this manner to

operate at it's maximum speed while still guaranteeing the correct data output.

With the three methods of processing data introduced, several feedback structures can

be investigated.

4.5 IFIS Feedback Structures

The IFIS on-line test methodology also requires the presence of feedbacks to provide

communication between cells. If a fault occurs and the encoding scheme is disrupted,

the IFIS cell at which the error was first detected is required to stop processing and

remain in a halted state. Once this detection has occurred and the faulty cell has halted

operation, it is also required that this halting information be transmitted to the

surrounding cells so that they may take the appropriate action. The transmission of

this information implies that communication between cells must be provided, and

57

CHAPTER FOUR IPlS ON-LINE TEST METHODOLOGY

hence some sort of communication structure must be present. Several possible

structures immediately present themselves, each with advantages and disadvantages.

4.5.1 Self Feedback

The first structure considered to provide communication about each cells status is self

feedback. This is the simplest feedback structure as shown in Figure 4.12 and requires

little in the way of extra routing resources as each cell automatically has access to it's

own output.

•
liP 01 .. A .. B ... C ..

~ ~ ~ ~

p

Data Flow

Figure 4.12 - Self Feedback Structure

The elastic and data driven processing methods both require a completion signal from

downstream cells before computation can begin. This is not possible with a self

feedback structure as no downstream information is ever passed back to upstream

cells. The upstream cells thus never know when the downstream cells have finished

processing and hence cannot compute. Consequently, self feedback structures cannot

support elastic or data driven processing. However, in-elastic processing of data can

be supported.

58

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

4.5.1.1 In-Elastic Processing

To in-elastically process, all cells must synchronously compute their new data value.

This is possible within an IFIS system using the self feedback structure as the

individual cells are not waiting for permission to compute from downstream cells.

Consequently, to in-elastically process using self feedback, the following processing

rule must be obeyed, where 0 denotes the data parity:

Output = F(New Data) IFF -- Rule 1

0(New Data) '" 0(SelfFeedback)

By using the self feedback structure, each ceJl has the previous computational state

available for comparison with new data. This allows the cell to determine if the old

data and the new data are in opposite parity sets, and hence to process or halt. If the

old data and the new data are in opposite parity sets, then computation can continue,

otherwise the cell is forced to halt operation and retain the previous (old data) value

on its output. If a cell halts because the processing rule is broken, the parity of the

output stops alternating. This is then detected by the next downstream cell which also

stops processing. The overall effect is a progressive halting of all cells including

fanout paths until primary outputs are reached. This type of feedback structure does

not affect the data throughput as cells compute in a fully synchronous manner with no

completion signal being required from downstream ceJls. Consequently, the data

throughput for self feedback systems using in-elastic processing methods can be one

state per clock cycle which is equal to conventional binary systems. However, a

disadvantage of this type of feedback structure is that it is possible for a halted system

to be restarted with the application of correctly phased data. As the halting propagates

forward only, the primary inputs can still accept data. It is then possible for data to be

applied to the system which restarts the halted cells, which is a major disadvantage.

Another disadvantage of this structure is the forced introduction of delay elements to

59

CHAPTER FOUR IFIS ON-LINE TEST METHODOWGY

synchronise the parity sets of converging data paths. If a cell operates on data arriving

from two separate sources, it is possible that the data could be in opposite parity sets.

This would cause the processing rule to be violated, and the cell to halt. To prevent

this occurrence, delay elements would need to be introduced to synchronise the data

parity sets and ensure that any reconvergence did not cause a system halt. Finally, to

prevent the processing rule from being violated immediately after a reset, the system

must be initialised with a parity phase which alternates along the data path. Otherwise

the system would initiate a halt due to a protocol violation as soon as the reset was

released.

4.5.2 Successor Feedback

The second feedback solution to provide intercommunication is that of successor

feedback as shown in Figure 4.13. .

...
, to .. , ,

liP
~ ~

0
A B C r

IP

Data Flow

Figure 4.13 - Successor Feedback Structure

This system uses the output of the next downstream cell to provide the information

needed to determine if a cell should process. This type of feedback structure requires

more in terms of routing resources as the feedbacks originate from the output of a cell

which can realistically be placed an arbitrary distance away. This is more costly than

60

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

the self feedback structure, but has the advantage that elastic and data driven

processing can also be supported.

4.5.2.1 Elastic Processing

Elastic processing is possible with this type of feedback structure as a completion

signal is provided from downstream cells. To elastically process with this feedback

structure the following processing rule must be obeyed:

Output = F(New Data) IFF -- Rule 1

0(New Data) * 0(Successor Output)

Where 0 again denotes the parity phase. The feedback signal is compared to the new

data arriving at the cell input. If they have opposite parity then computation is allowed

to occur, otherwise computation is prevented and the cell halts operation. This halting

is then propagated downstream causing all downstream cells including fanout cells to

halt. In addition to this, the successor feedback also allows the cell halting to

propagate upstream until primary inputs are reached. The advantage of this type of

feedback structure is that the halting of cells is propagated bi-directionally towards

both primary inputs and primary outputs until the entire IFlS system halts operation.

Unfortunately, a disadvantage of this type of feedback structure is that the data

throughput is affected by cells awaiting the arrival of a completion signal from the

next downstream unit. Consequently, the data throughput of a system employing this

type of feedback structure is one state per two clock cycles, as the completion signal

can only arrive two clock cycles after the current computation has finished. Another

disadvantage of this type of feedback structure is that it may again be necessary to

61

CHAPTER FOUR IFIS ON-LINE TEST METHODOWGY

insert delay elements into the data path to ensure the synchronisation of reconverging

parity phases.

4.5.2.2 In-Elastic Processing

In-elastic processing is also possible with the successor feedback structure, with the

feedback providing the parity information required to determine if processing should

occur or the cell should halt. The changing parity also signals the finish of the

computation, but this is not used with the in-elastic processing system as the

individual cells are not waiting for the completion signal. With this feedback system,

the IFIS cells should process if the following rule is adhered to :

Output = F(New Data) IFF -. Rule 2

0(New Data) = 0(Successor Feedback)

Where 0 again denotes the data parity. As before, the halting of an IFIS cell is

propagated towards both the primary inputs and primary outputs of the system,

including fanout paths, until the entire system halts. Another advantage is that as in

elastic processing does not wait for a completion signal from a downstream unit, the

data throughput is not affected by the type of feedback structure used, and

consequently is one state per clock cycle. However, as before, care must be taken

when designing to ensure that any reconvergent fanout paths do not offer parity sets

inconsistent with the processing rule of the reconvergence cell. Again, this may

require the insertion of delay elements into the data path. Finally, any system must be

initialised with a parity phase which alternates along the data path. Otherwise it would

not be possible to apply data of the opposite parity phase to the reset condition.

62

CHAPTER FOUR !FIS ON-LINE TEST METHODOLOGY

4.5.2.3 Data Driven Processing

Data driven processing is also possible with the successor feedback structure, as a

completion signal is provided to indicate when data can legally be overwritten by

upstream cells. As with the elastic processing system, the processing rule is :

Output = F(New Data) IFF -- Rule 1

0(New Data) * 0(Successor Feedback)

As before, a disruption of the encoding scheme causes a bi-directionaI halting to

propagate towards both primary inputs and primary outputs. Also, any reconvergent

fanout paths must be designed so that consistent parity sets are offered to the

processing rule of the reconvergence cell. This also may require the insertion of delay

elements into the data path.

4.5.3 Successor Successor Feedback

The third feedback solution uses a feedback structure from two units downstream as

shown in Figure 4.14 .

.. ~ •
IjP 0

A B ~ C .. jP

Data Flow

Figure 4.14 - Successor Successor Feedback

63

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

This solution is even more costly in terms of routing as the routing path lengths are

increased, but also has the advantage that all the methods of processing are supported

due to completion signals being available.

4.5.3.1 Elastic Processing

Elastic processing using feedbacks which originate from a position of two cells

downstream can be supported as the required completion signal is present. As

feedback signals do exist, the bi-directional halting of cells once a fault has been

detected does occur. However, a disadvantage of this type of processing with large

feedback lengths is the reduction in data throughput caused by the number of clock

cycles each cell must wait before the completion signal arrives again. The data

throughput drops according to :

1
Max. Data Throughput = 1 + feedback length

To successfully process data, the processing rule is :

Output = F(New Data) IFF -- Rule 1

0(New Data) "* 0(Successor Output)

which is identical to the elastic processing method previously discussed. Again, the

insertion of delay elements may be required to synchronise the parity phases of

reconverging data.

64

CHAPTER FOUR IFJS ON-LINE TEST METHODOLOGY

4.5.3.2 In-Elastic Processing

With in-elastic processing the performance is more favourable as the cells are not

waiting for the completion signal to continue processing. Consequently, the data

throughput is not affected and remains at one state per clock cycle. However, nothing

is gained from using this feedback structure over the successor feedback described

previously, and a distinct disadvantage of increasing the feedback distance is the

potential routing problem once implemented. The processing rule of each cell using

this feedback solution is :

Output = F(New Data) IFF -- Rule 1

0(New Data) ~ 0(Successor Feedback)

Once again, systems using this feedback structure and processing rule must be

initialised with a parity phase which alternates along the data path. Otherwise it is not

possible to apply data of the opposite parity phase to the reset condition.

4.5.3.3 Data Driven Processing

Data driven processing is not advisable with successor successor feedback as data

corruption can occur as shown in Figure 4.15, Figure 4.16 and Figure 4.17. Cell A

could receive a completion signal from cell C which has finished processing. Cell A

would then perform it's own computation, and conceivably overwrite the input data

which Cell B had not finished with.

65

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

IP
A B

alP

Processing

Data Flow

Figure 4.15 - Data Corruption Stage One

B c alP

Data Flow

Figure 4.16 - Data Corruption Stage Two

..
:.
~ _t_ , • •

liP ... A ~ B ~ c Q
~

Corrupti;';
... ~

of Input

IP

Data to Corrupted
CellS

Data Flow

Figure 4.17 - Data Corruption Stage Three

66

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

This situation gets increasingly worse as the feedback point is moved further

downstream.

Due to the decreased data throughput and increased routing, feedback structures using

feedback distances of three cells or greater are not considered further.

4.5.4 Successor and Self Feedback

The final feedback structure considered is a hybrid between the self feedback and

successor feedback discussed above, and is shown in Figure 4.18 .

~ • ,. , ' . . '
lIP

~ A .. B .. c 9
~

IP

Data Flow

Figure 4.18 - Successor and Self Feedback Structure

The hybrid feedback structure is considered for completion, as both the self feedback

and the successor feedback structures have both proven to yield interesting

characteristics. This system uses information from both the output of the current cell

and the output of the next downstream cell to determine if processing should occur.

The twin feedback system increases the routing problem as more feedbacks are

introduced to each cell. Fortunately, all processing methods are supported using this

feedback structure and are consequently explored.

67

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

4.5.4.1 Elastic Processing

Elastic processing is possible with this type of feedback structure, with the feedbacks

providing the completion signals required to determine when a cell has finished

processing its current data. With this structure, the processing rule is :

Output = F(New Data) IFF .. Rule 3

0(New Data) *- 0(Successor Feedback) and

0(New Data) *- 0(SelfFeedback)

As with the elastic processing method for successor feedbacks, the halting of cells is

bi-directional, and the data throughput is reduced to one state per two clock cycles.

Again, the insertion of delay elements into the data path may be required to prevent

the system from halting immediately after a reset due to incorrect parity set data being

offered to the reconvergence cell.

4.5.4.2 In-Elastic Processing

In-elastic processing is possible using this type of feedback structure, with the

feedbacks providing the parity information required to determine if the cells should

continue to process. To in-elastically process using self and successor feedback, the

processing rule for each cell is :

Output = F(New Data) 1FF .. Rule 4

0(New Data) = 0(Successor Feedback) and

68

CHAPTER FOUR IFIS ON-LINE TEST METHODOWOY

0(New Data) '" 0(Self Feedback)

As before, the halting of any cell is propagated bi-directionally to primary inputs and

primary outputs and the data throughput remains at one state per clock cycle. Again, a

disadvantage of this type of hybrid structure is that delay elements may need to be

inserted into the data path. Otherwise the cell performing the computation on

reconvergent data will receive data in conflicting parity sets and halt operation. Also

as before, any system using this feedback structure must be initialised to a reset state

which contains alternating parity phases along the data path. Otherwise, it is not

possible to apply data of the opposite parity to the reset state.

4.5.4.3 Data Driven Processing

Data driven processing is also possible with the self and successor feedback structure,

with the feedbacks providing the completion signal required to determine if

processing should occur or the cell should halt. With this feedback system, each IFIS

cell should process if the following rule is adhered to :

Output = F(New Data) IFF .. Rule 3

0(New Data) '" 0(Successor Feedback) and

0(New Data) '# 0(SelfFeedback)

As before, the halting of an IFIS cell is propagated towards both the primary inputs

and primary outputs of the system, including fanout paths, until the entire system

halts. Again, delay elements may be required to maintain the consistency of the parity

set information seen by the reconvergence cell.

69

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

4.6 Summary of Possible IFIS Systems

From the discussions of the different encoding schemes, processing rules and

feedback structures addressed above, it can be seen that each system has advantages

and disadvantages which must be evaluated to determine the most efficient and

practical solution. Table 4.1, Table 4.2, Table 4.3 and Table 4.4 show the main points

highlighted in the above discussions.

IFIS 1 112 100% Yes, if fault free

IFIS 2 1 100% Yes, if fault free

Table 4.1 - IFIS Encoding Schemes

Table 4.1 shows the two IFIS encoding schemes discussed with their characteristics

listed for comparison. Both encoding schemes have monotonic transitions under fault

free conditions and both have an information redundancy of 100%. However, it can

also be seen that data throughput of 'IFIS 2' is twice that of 'IFIS 1'.

Table 4.2, Table 4.3 and Table 4.4 show the elastic, in-elastic and data driven

processing respectively using the different feedback structures.

The four feedback structures discussed each have different characteristics. The first

feedback structure discussed was self feedback, which the tables show cannot support

either elastic or data driven processing and can also only offer forward haIting with

the in-elastic processing.

70

CHAPTER FOUR

Successor

Greater than

Successor

Self and

Successor

bi-directional NO

bi-directional NO

Bi- Directional NO

[PIS ON-LINE TEST METHODOLOGY

Increased

Increased

Increased

1/2

1/(1 + feedback

length)

112

Table 4.2 - Elastic Processing ofIFIS Cells with Different Feedback Structures

Self Forward Only Yes Negligible 1

Successor bi-directional NO Increased 1

Greater than bi-directional NO Increased 1

Successor

Self and bi-directional NO Increased 1

Successor

Table 4.3 - In-elastic Processing of IFIS Cells with Different Feedback Structures

The second feedback structure discussed was successor feedback. The tables show

that this feedback structure can support all of the data processing methods considered,

complete with the non-recoverable, bi-directional halting required by the IFIS

methodology.

71

CHAPTER FOUR

Successor

Greater than

Successor

Self and

Successor

bi-directional NO

Possible Data Possible Data

Corruption Corruption

Bi- Directional NO

IFIS ON-LINE TEST METHODOLOGY

Increased

Possible Data

Corruption

Increased

N/A

Possible Data

Corruption

N/A

Table 4.4 - Data Driven Processing of IFIS Cells with Different Feedback Structures

The third feedback structure discussed was greater than successor feedback. The

tables show that the elastic and in-elastic processing methods can be supported.

However, the elastic processing method suffers from a data throughput which

decreases linearly with increased feedback distance, only allowing a cell to process

every P+ I clock cycles, where P is the feedback length. Also, the data driven

processing method has a strong possibility of data corruption.

The final feedback structure discussed was self and successor feedback. The tables

show that similar to the successor feedback structure alone, all three methods of

processing data can be supported. However, this feedback structure does create an

increase in routing above that caused by successor feedback alone. The data

throughputs for these structures are equal to the successor feedback structures

respectively.

With the basic characteristics of the feedback structures and processing rules

examined, some conclusions can now be drawn.

72

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

4.7 Conclusions

The comparisons of the IFIS 1 and IFIS 2 encoding schemes offer evidence suggesting

that the IFIS 2 encoding scheme should be favoured due to its ability to achieve a data

throughput equal to conventional binary systems. However, no circuit implementation

data has been presented using these encoding schemes, and consequently the impact of

the encoding scheme on hardware overhead is unclear.

Three methods of data processing were identified, namely elastic processing, in-elastic

processing and data driven processing. The tables show that the in-elastic processing

method is supported by the widest number of feedback structures while the data

driven processing method is supported only by the successor feedback structure and

self and successor feedback structure. Consequently, the scope of this work is limited

to elastic and in-elastic processing as these two methods are best supported. Also, the

data driven processing method with different feedback structures has already been

investigated in Sutherland (1989), Dean (1991), Dean (1994) and David (1995).

Finally, four feedback structures were identified as possible candidates for use within

the IFIS methodology. The self feedback structure cannot support elastic processing or

data driven processing. In-elastic processing can be supported, but cannot offer the bi

directional halting required by the IFIS methodology. In addition to this, the halting

that is achieved with self feedback can be eliminated if the correct data is applied. As

the halting is not permanent, this feedback structure cannot offer the characteristics

required by the IFIS methodology which precludes its use.

The successor feedback structure can support all of the identified processing methods,

complete with bi-directional halting which cannot be restarted unless a system reset is

applied. The only apparent disadvantages perceived with this feedback structure

would be the reduction in data throughput if used with elastic processing and the

slight increase in routing for the feedbacks themselves.

73

CHAPTER FOUR IFIS ON-LINE TEST METHODOLOGY

The successor successor feedback structure can only support elastic and in-elastic

processing as data driven processing can result in data corruption. This cannot be

allowed to occur and consequently data driven cannot be supported. Both the elastic

and in-elastic processing methods can offer the bi-directional halting required by the

IFIS methodology. However, the elastic processing method suffers from a data

throughput which linearly decreases with the increase in feedback length.

Consequently, large feedback lengths are not recommended with elastic processing.

In-elastic processing is supported with no effect on data throughput. The only

perceived disadvantage of in-elastic processing with this feedback structure is the

routing increase from the potentially large feedback lengths.

The self and successor feedback structure is similar to the successor feedback

structure in that all processing methods can be supported with the required bi

directional halting. Again, the elastic processing method suffers from a reduction in

data throughput to one half that of a similar conventional system. The in-elastic

processing method can achieve a data throughput equal to that of a conventional

system. The only perceived disadvantage of this feedback structure is the slight

increase in routing when compared to the successor feedback structure.

The successor feedback structure has been identified as the most suitable feedback

structure for use within IFIS systems. This is due to its ability to support elastic and

in-elastic processing and negligible performance impact if used with in-elastic

processing. The only disadvantage perceived with this feedback solution is the

increase in routing. However, with triple and quad layer metal processes becoming

commonplace in contemporary ASIC designs, it is expected that the routing increase

can be catered for with little extra cost.

74

CHAPTER FIVE

IFIS IMPLEMENTATION STUDY

5.1 Objectives of Chapter

The objectives of this chapter are to understand and identify the cost and performance

implications of using the IFlS methodology in real electronic systems. In order to

achieve this objective, it is necessary to implement the IFlS methodology into real

electronic designs. It will then be possible to draw comparison data relating to each

implementation of the processing rules and encoding schemes identified in chapter

four, and to show realistic figures for the impact of the IFlS methodology on

contemporary designs.

5.2 Motivation

The experiment detailed in chapter four highlighted the advantages and disadvantages

inherent with each of the encoding schemes, feedback structures and processing rules

considered. However, without solid implementation data, it is difficult to identify

which combination is the most efficient. This chapter addresses the problem by

targeting each combination to the same digital design to obtain data for comparison.

This should allow the most efficient combination to be identified.

75

CHAPTER FIVE IFIS IMPLEMENTATION STUDY

5.3 IFIS Design Implementation Study

For an implementation study to be undertaken, a suitable vehicle needs to be found

which provides a realistic design but which is also reasonably simple to implement.

This will allow the IFIS components within the design to be identified and compared,

while still providing a range of functional elements which can exercise the

methodology. As described in chapter three, the vehicle chosen for this experiment

was an FIR filter. This is because the filter contains several shift, addition and

multiplication elements, which together with careful choice of the filter coefficients

can lead to a simple design. The coefficients were constrained to be 1, 112 and 114

such that the filter performed an integrating function. This results in a simple design

which still contains arithmetic functions needed to exercise the IFIS methodology to a

reasonable extent.

5.3.1 FIR Filter Design

The block diagram of a conventional FIR filter is given in Figure 5.1, where the

various arithmetic functions can clearly be seen.

liP -I D

CoefCA x CoefCB x CoefCC x

D Delay Unit
+ Addition Unit
X Multiplication Unit alP

Figure 5.1 - Block Diagram of the Conventional FIR Filter

76

CHAPTER FIVE !FIS IMPLEMENT A TION STUDY

In contrast to this, the IFIS version of the same filter architecture has some noticeable

differences, as shown in Figure 5.2 .

...: _________ ., , __________ .. r----------.,

Input

D
F
+
X ---.

• __ -1 ____ .J. __ _ r ___ L ___ .1_ _ _ _ ___ l.. _____ ~

I I I I I I I I I I
I I I I I I I I

I - -,- ..

Delay Element
Fork Element
Adder Element
Multiplication Unit

Data Flow Lines

Feedback Lines

I

" I
I
I

I
I I I

I I L., _____ _
I
I
I
I
I .

'- - - - - -- - - - ~- -- - - --- -- - - - -- - - --'

Figure 5.2 - Block Diagram of the IFIS FIR Filter

Figure 5.2 shows that the IFlS version of the FIR filter requires the insertion of several

delay elements into the data stream. This is a constraint of the IFIS methodology

whereby the system must be reset such that there are alternating parity sets along the

data path. If this is not the case, the cells within the system will see combinations of

inputs which violate the processing rule and halt operation. Also shown on the

diagram is the implementation of the feedback structure chosen from chapter four,

with each feedback line originating from the successor cell.

5.4 IFIS FIR Filter Comparisons

The filter architecture described above was used as a basis for the implementation of

five designs, one being a conventional FIR filter used for comparison and the other

four being the IFIS implementations of the different encoding schemes and processing

77

CHAPTER FIVE IPIS IMPLEMENTATION STUDY

rules described in chapter four. These designs are labelled according to the following

description:

• Conventional - A single rail conventional FIR filter design

• FIRli - An in-elastic pipelined FIR filter using the IFlS 1 encoding scheme.

• FIR2i - An in-elastic pipelined FIR filter using the !FIS 2 encoding scheme.

• FIRle - An elastic pipelined FIR filter using the IFIS 1 encoding scheme.

• FIR2e - An elastic pipelined FIR filter using the !FIS 2 encoding scheme.

Table 5.1 shows general information about the FIR designs which is independent of

the target technology.

Latency 4 4 4 24 12

(Clock Cycles)

Maximum

Throughput (Data 111 112 111 118 114

States / Clock Cycle)

Bi-directional No Yes Yes Yes Yes

Halting?

Table 5.1 - General Information about the FIR Filters

As described in chapter four, the choice of processing rule dictates the resultant type

of data movement within the FIR filter. Consequently, the processing rule also dictates

the resultant maximum data throughput and latency of the design. Table 5.1 shows

that the latency of a filter using elastic processing is significantly greater than the

corresponding in-elastic filter using the same encoding scheme. This is because the

elastic data processing method requires a completion signal from downstream cells

before a new computation can occur. Due to the architecture of the FIR filter,

feedback loops exist which increase the latency as the completion signal must traverse

78

-- -

CHAPTER FIVE IFIS IMPLEMENTATION STUDY

the longest feedback loop. The latency is thus affected by the processing method and

the architecture of the design.

The data throughput can be affected by two factors. Firstly, the choice of encoding

scheme can impact upon the data throughput. If the IFIS-I encoding scheme is used,

the data throughput is immediately reduced to one half of the conventional data

throughput. This is due to the non-data carrying state visited after every data state.

However, if the IFIS-2 encoding scheme is used, the data throughput is not affected.

Secondly, the choice of processing rule can also impact upon the data throughput. The

elastic processing method is dependant upon the completion signal arriving from

downstream processing cells. The completion signal for elastic processing can only be

generated every other clock cycle, and consequently the data throughput is reduced.

The in-elastic processing method does not affect the data throughput as a completion

signal is generated on every clock cycle. Consequently, the data throughput remains

constant. The architecture of the design also affects the data throughput for the elastic

processing method. As was seen previously with the latency, a computation stalls

waiting for a completion signal from downstream cells. Due to the feedback loops

within the FIR filter, the completion signal must traverse the longest feedback loop

before the stalled cell can continue processing. This is an architecture dependant

constraint which only affects the elastic processing method. The data throughput of

the in-elastic processing method is unaffected by the architecture of the design.

Table 5.1 also shows that the detection of a fault by a protocol violation causes a bi

directional halting towards primary inputs and primary outputs which can only be

removed if the fault disappears and a reset is applied. Table 5.2 shows some of the

most commonly occurring environment and production faults and their impact upon

the operation of the IFIS protocol.

79

CHAPTER FIVE IFIS IMPLEMENTATION STUDY

.. " d, !UF<'< ... """y;,;.,<, .. "!'"., ..
a-particle Continue Halt Halt Halt Halt

(Transient)

Stuck-at-O

(Permanent)

Stuck-at-l

(Permanent)

Bridging

(Permanent)

Continue

Continue

Continue

Halt Halt Halt

Halt Halt Halt

Halt Halt Halt

Table 5.2 - Fault Types detected by the lFIS Methodology

Halt

Halt

Halt

It can be seen in Table 5.2 that alllFIS encoding schemes protect against stuck-at-O,

stuck-at-l, bridging faults and transient faults. This shows the lFIS methodology to be

excellent at detecting protocol violations.

Area(~) 2022

Maximum Frequency

(MHz)

Data Throughput

(Mbits/Sec)

101.6

101

"':, ". ."" ,., '"

10098 7384 10038 7506

28.5 49.8 28.6 49.6

28.5 24.9 7.1 6.2

Table 5.3 - Implementation of the FIR Filters to the lea 300k ASIC cell library

Table 5.3 consists of data drawn from targeting the lFIS FIR filter designs to the LSI

logic lea 300k cell library, a triple layer metal 0.61l process. Table 5.4 shows the same

data normalised to the conventional FIR filter.

80

CHAPTER FIVE IFIS IMPLEMENTATION STUDY

Relative Complexity 1 5 3.6 5 3.7

Relative Maximum 1 0.3 0.5 0.3 0.5

Frequency

Relative Data 1 0.28 0.24 0.07 0.06

Throughput

Table 5.4 - Relative lea 300k Implementation Data

The data presented in Table 5.3 and Table 5.4 show that the dual-rail nature of the

IFIS methodology causes a significant increase in the circuit area of up to 500% for

the IFIS-l encoding scheme, and up to 370% for the IFIS-2 encoding scheme. This

can be seen again in Table 5.5 where the same FIR filter designs have been

implemented into a Xilinx 4013 gate array.

FUNCTION 14 103 64 104 67

FLIP-FLOP 6 14 14 14 14

Table 5.5 - CLB Implementation of the FIR Filter Designs

Table 5.5 clearly shows a doubling of the required I/O pins for the IFIS designs. This

is expected as the IFIS methodology uses information redundancy at the bit level

which doubles all signals within a design, including input and output signals. Also

shown is an approximate doubling of the required number of storage elements used in

the design. Again, this is expected as the number of signals within the design is

doubled, thus the number of storage elements is also doubled. Finally, the relative

81

CHAPTER FIVE IFIS IMPLEMENTATION STUDY

number of function CLBs required by the IFIS 1 and IFIS 2 encoding schemes are 7.3

(103114) and 4.6 (64114) respectively. These figures are both greater than for the ASIC

implementations, but still show the expected complexity increase involved in using

the IFIS methodology. The difference in area increase seen between the IFIS encoding

schemes is due to the IFIS-2 encoding scheme using a saturated state encoding, while

the IFIS-I encoding scheme uses only three of the four possible states. The fourth

state in the IFIS 1 encoding scheme is 'illegal' and must be checked for on each

transition. Consequently, extra circuitry is required to perform this checking which

increases the hardware overhead. This accounts for the difference in gate count and

eventual area and CLB usage. Since the area usage and gate counts rise with an IFIS

design, the critical path through the design is also going to increase. This causes a

decrease in the maximum frequency and also a decrease in data throughput when

compared to a conventional implementation. Table 5.4 thus shows the penalty paid for

implementing the IFIS methodology, with a significant increase in area, a reduced data

throughput and a reduced maximum frequency.

5.5 Conclusions

Chapter five has shown the effect of implementing the IFIS methodology on real

electronic systems, and the impact on performance and complexity which results. Two

encoding scheme and two feedback structure combinations were implemented in

hardware and comparison data drawn to identify the most efficient combination for

further investigation. It was shown that the IFIS 2 encoding scheme can achieve twice

the data throughput of the IFIS 1 encoding scheme due to the removal of the non-data

carrying state. It was also shown that the implementation of the IFIS 1 encoding

scheme was 1.58 times larger than the implementation of the IFIS 2 encoding scheme

for the same design. It can thus be seen that the IFIS 2 encoding scheme is superior in

terms of both data throughput and implementation efficiency. Consequently, the IFIS

2 encoding scheme has been selected for further investigation.

82

CHAPTER FIVE IFIS IMPLEMENTATION STUDY

The choice of processing rule is governed by the error halting ability of the system and

by the effect on data throughput. It was shown that both elastic and in-elastic methods

of processing data achieve the required halting, and consequently the deciding factor

is that of data throughput. It was also shown that in-elastic processing can achieve a

higher data throughput than elastic processing. Consequently, the in-elastic method of

processing data is selected for further investigation. Since it is now known which

encoding scheme, processing rule and feedback system to use, larger and more

complex systems which utilise the IFIS methodology can be developed.

Finally, the hardware overhead required to implement the IFIS methodology is

currently a factor of 3.7 for the IFIS 2 encoding scheme using in-elastic processing. As

this is quite significant, chapter six details an investigation into the causes behind this

overhead, and looks at possible alternatives in an attempt to decrease the hardware

overhead.

83

CHAPTER SIX

IFIS CELL DESIGN STUDY

6.1 Objectives of Chapter

The objectives of this chapter are to develop efficient circuit design methods for the

implementation of IFIS cells. These various methods can then be compared and

conclusions drawn as to which cell design method yields the most efficient solution

for the implementation of IFIS cells.

6.2 Motivation

The current method of designing IFIS cells leads to a substantial hardware overhead,

as was shown in chapter five. The processing rules, feedback structure and encoding

scheme of IFIS all contribute to an increase in hardware of up to 370%. In order for

the IFIS methodology to become a viable on-line test alternative, this hardware

overhead must be reduced. As the IFIS cells are the main contributor to the hardware

increase, their redesign should allow a reduction in the hardware overhead required to

implement the IFIS methodology. To attempt a cell redesign, it is important to identify

the areas within each IFIS cell which contribute most to the increase in hardware, and

target the design effort at these points.

84

CHAPTER SIX IFIS CELL DESIGN STUDY

6.3 IFIS Cell Internals

Before attempting the redesign of the individual IFIS cells, the behaviour of the IFIS

cells must be defined. The behaviour of the !FrS cells can be specified as follows:

• To interact with other IFIS cells according to a strict protocol

defined by the IFIS methodology.

• To detect errors within the data or feedbacks supplied by other IFIS

cells.

• To flag any errors detected hy other IFIS cells by the halting of

operation.

• To flag any internal errors when a fault is excited and detected under

normal operation.

• To receive data using the IFIS encoding scheme, perform some

operation on that data, and then transmit data also using the IFIS

encoding scheme.

The high level list of the IFIS cells' behaviour implies that both storage elements and

combinational logic are required, and thus the internal design of the !FrS cells can be

described with Figure 6.1.

85

CHAPTER SIX

Feedba
Inputs

ck

InputB

Input A

f

9
a

C lock

IFIS
CONTROL

~ LOGIC

.. FUNCTION I-...

..
r

Select ..
:5::

~
C
!:::j)j. "U
r-
m .. 6
::v

n

IFIS CELL DESIGN STUDY

\/J.
J-:l
0

~
~

IJ ..
-0

Cell
utput

Figure 6.1 - IFIS Cell Internal Block Diagram

One constraint on the design of the IFIS cells is that it contain some form of storage. It

is usually considered good design practice to use synchronous design techniques

wherever possible as this also aids the off-line testing. Another constraint is that as the

functionality of the IFIS cells must match the functionality of their conventional

counterparts, an easy method of obtaining IFIS equivalents from conventional

functions would be highly advantageous. This would allow the translation from

conventional design to IFIS design to be highly automated, and consequently

minimise design errors.

6.3.1 IFIS Control Block

The IFIS control block is responsible for the checking of the input data and feedback

parity sets against the processing rules defined by the IFIS methodology. The choice

of processing rule has been previously discussed in chapter four and chapter five, and

it is the IFIS control block which implements this rule. If the input data and the

feedback(s) are of the correct parity set according to the processing rule, then

computation is permitted, otherwise the last known valid data output is retained. The

affect of retaining the last known good data value initiates the halting of the cell and

this affect is then propagated to the primary inputs and primary outputs. The in-elastic

86

CHAPTER SIX IFIS CELL DESIGN STUDY

processing rule was identified as the most efficient in chapter five, and thus chosen for

implementation. Restated, the processing rule is :

Output = F(New Data) IFF

0(New Data) = 0(Successor Feedback)

where 0 denotes the parity of the data. Consequently, the IFIS control block needs

only to ensure the parity sets of the input data and the feedbacks are the same to allow

processing. The implementation of this processing rule only depends upon the data

arriving at the cell inputs, and the feedback signal(s) from downstream. Consequently,

the IFIS control block scales linearly with the increase in the width of the data inputs,

and cannot be reduced to any great degree. For a cell which operates on A and B IFIS

bit numbers, but also has F IFIS feedback inputs:

Number of binary inputs to IFIS control block = 2(A+B+F)

Consequently, the hardware implementation requires A+B+F 2-input EXOR gates to

generate the IFIS bit wise parity set, and a comparator which takes A+B+F inputs to

determine if the cell should process or halt as shown in Figure 6.2.

IFIS Input A {~ ..

~ 1;l

{ ~:- .!
IFIS Input B :::

~.~
.-::: .n
00

{ ~::-- g; IFIS Feedback F ~

~
0

~
Il<
::E
0 u

Figure 6.2 - IFIS Data Control Block

Ou

Mul

tput to

tiplexors

87

CHAPTER SIX [PIS CELL DESIGN STUDY

This represents the inherent hardware overhead required to implement the lFIS

methodology, and cannot be reduced without causing disruption.

6.3.2 Multiplexor Block

The multiplexor block is required to multiplex between the new data computed by the

function block and the previous data stored as output from the cell. The multiplexor is

controlled by the output of the lFIS control block. If the lFIS control block indicates

that the processing rule has been obeyed, the new data from the function block is

transferred to the storage elements, otherwise the previous data output is recycled and

the cell halting is initiated. As the multiplexor block is directly attached to the output

of the function block, the multiplexor block scales linearly with the increase in the

output bit width of the function block. However, due to the simplicity of the

multiplexor block, which contains as many multiplexors as the cell has outputs, no

reduction in hardware can be implemented as this would also cause disruption to the

IFIS methodology.

6.3.3 Storage Block

The storage block is present to store the current output of the cell for use by other cells

further downstream. The inputs to the storage block are from the multiplexor block,

which either recycles the previous output, as in the case of a manifested fault and a

halting condition, or allows the output of the functional block to be captured and

stored. As with the multiplexor block, the number of elements within the storage

block scales linearly with the output bit width of the function block. As before, the

structure of this block is quite simplistic, and consequently no optimisation can be

performed. As a result, the only block within an lFIS cell which can undergo a re

design in the attempt to reduce the hardware overhead is the functional block.

88

CHAPTER SIX IFrS CELL DESIGN STUDY

6.3.4 Functional Block

The functional block contains the operation the IFIS cell is intended to perform upon

the input data. No constraint is placed upon the function performed within the

function block, and the only requirement placed upon its design is that the output from

the function block should be a valid dual-rail IFIS code under fault free conditions. As

the function block is currently unconstrained in its implementation, with only the

requirement for an IFIS code output, the method of implementation is entirely the

choice of the designer. Consequently, the different register transfer level (RTL) coding

techniques and logic synthesis tools impact greatly upon the resultant design

characteristics. Chapter five showed the hardware overhead for the IFIS methodology

to be 3.7 times that of the corresponding conventional binary implementation. As the

implementation of the function within the IFIS cell is the only unconstrained block, it

is here that the design effort must be concentrated. The re-design can be aided by

noting that the individual IFIS bits entering each function block can be separated into

two distinct groups. The first group, the 'T' bit group, carries the data (as normal with

conventional designs), while the second group, the 'F' bit group, is encoded with the

parity set information required by the methodology. As this is true for all IFIS codes, it

is possible to use this information to re-design the function block within the IFIS cells.

Consequently, several possible solutions for the re-design of the IFIS cell function

block present themselves. Each solution has advantages and disadvantages which

must be explored before a decision can be reached about the most efficient design

method. The design solutions will now be presented and explored.

6.4 Design Solutions

Chapter two explored the current state of on-line testing, and highlighted three distinct

redundancy categories aimed at aiding on-line testing. These were hardware

redundancy, time redundancy and information redundancy. These three categories

form the basis of the investigation into the solutions of the IFIS function block

redesign.

89

CHAPTER SIX IFIS CELL DESIGN STUDY

6.4.1 Behavioural Synthesis

The first possible solution considered is similar to the original method of the IFIS cell

function block design in that it uses behavioural synthesis to obtain the final

functional circuit. However, the method of producing the final circuit is constrained to

a greater extent than before. This architecture is conceptually the easiest to understand

as the design is the result of offering the behavioural description to a circuit

synthesiser I optimiser. The IFIS bits are decoding upon input to the function block to

determine the parity set. The function then operates on the 'T' input bit lines through a

conventional function design. The output is then re-coded in the IFIS manner using

the decoded parity set to determine the final output as shown in Figure 6.3.

Cl.) set extraction :>< F Bits 0
"tj 0 .g 0 ~ U CFl !a ::s (j
§' 0

...... Function 0.-
~

TBits

Figure 6.3 - Behavioural Synthesis of an IFlS Cell

The advantages of this technique are :

• The complexity of this technique is only slightly greater than the

conventional implementation counterpart due to the EXOR gates

required for decoding and re-encoding the IFIS set information.

• The speed penalty incurred is minimal since the only additional

delay is that incurred by the EXOR gates, which is generally

insignificant when compared to the delay through the binary

function.

90

CHAPTER SIX [PIS CELL DESIGN STUDY

However, the disadvantage is that:

• A single stuck-at fault within the binary function block will go

undetected as the EXOR gates would correct the output and still

produce a valid IFIS code.

The complexity overhead for this implementation becomes equal to the conventional

implementation area, plus N+ 1 EXOR gates required for the parity correction. (where

N is the output bit width from the binary function.)

6.4.2 Arithmetic Coding

The architecture used here is also similar to behavioural synthesis except that the

generation of the output codes is achieved by circuitry which is itself self checking as

shown in Figure 6.4. This circuitry is based upon the residue checking arithmetic as

described in chapter two.

T bits trJ
~--~~~p_m~.~_S_et_E_xn __ w_.oo __ ~_,~ ___ ~r-~i~~ T bits

F bits

Residue
Function

~""I""'=t=!===;-.... F bits

Comparator

Key:

RG Residue
Generator

MA Modular
Adder

Figure 6.4 - IFIS Cell re-design using Residue Coding

91

CHAPTER SIX IFIS CELL DESIGN STUDY

If an incorrect code is detected by the residue checker, a signal is sent to the IFIS

output code generation logic which thus causes the output data to assume an incorrect

parity. This is then detected as the incorrect parity will cause a system wide halt to

occur. The advantages of such a system are :

• The area overhead of the circuit is small in comparison to the binary

function, provided the function is non-trivial.

• As a degree of self checking is incorporated into the calculation of

the !FIS output code, the output data generation is sensitive to a set

of faults which can be detected by the comparator which checks the

validity of the residue codes.

The disadvantages of such a system are :

• The low cost residue code employed cannot be guaranteed to cover

all the single stuck-at faults which may occur. Although the modulo-

3 residue code exhibits a Hamming distance of 2 between codes,

this does not guarantee the coverage of all single stuck-at faults in

the functional block.

• A more substantial speed penalty is incurred since the generation of

the residue code is required to validate the function or otherwise.

• Although it is possible to generate residue codes for Boolean

algebra functions, the complexity overhead can be significant in

comparison to the area overhead incurred for arithmetic functions.

• This design method does not guarantee fault detection, but relies on

the probability of detection inherent in the coding technique.

• The output of the comparator is a single point of failure as a fault on

the comparator output line would render the residue code in

effective.

92

CHAPTER SIX IFIS CELL DESIGN STUDY

The hardware overhead has been shown in Russell (1989) to be considerable for non

arithmetic functions. As the function block design is aimed at being as generic as

possible, this limits the effectiveness of this solution. Finally, the single point of

failure from the comparator to the parity generating EXOR gate, could cause the entire

system to fail, since a stuck-at good value on this line would be undetectable.

6.4.3 Duality

The hardware redundancy method of duplication was also considered as a solution to

the IFIS cell redesign problem. Figure 6.5 shows the block diagram of the considered

architecture.

,-- ,-

TBits tr1 ~ TBits 6 .. Function .. 0 •

:::0 :::0

\\ T 'T
,,-/

.. Function
F Bjt

F Bits
s

Figure 6.5 - IFlS Cell re-design using Duality

With this architecture both function blocks process identical data. The inputs are

decoded by EXOR gates, and the parity extracted from the IFlS data bits. The outputs

from the function blocks are then re-encoded by use of the parity data to form the

output IFlS code. The advantages of this system are :

93

CHAPTER SIX

- -----------

IFIS CELL DESIGN STUDY

• The speed penalty incurred is minimal as both functions operate in

parallel. Consequently, the only additional delay is from the single

level of EXOR gates which determine the parity set.

• If a single stuck-at fault is manifested and propagated to the output

of either function block, the corresponding IFIS code will be

incorrect and thus detectable.

• This architecture is generic in that it can be applied to any Boolean

or arithmetic function.

• Minimal checking logic is required which avoids complex self

checking checker designs and implementations.

However, the disadvantages of this approach are:

• The hardware overhead for this architecture is immediately double

that of the binary equivalent.

Although the hardware overhead is considerable, the removal of the self checking

checkers simplifies the design of the IFIS function block considerably and thus may be

a valid trade off.

6.4.4 Time Redundancy

The final re-design method uses time redundancy to produce the final IFIS output

code. As with the dual architecture discussed before, the IFIS inputs are decoded to

ensure that the 'P' bit input data is identical to the 'T' bit input as shown in Figure 6.6.

94

CHAPTER SIX IFIS CELL DESIGN STUDY

parity set extraction TBits
T Bits 2n

o
""F~B""it""S--2n---''''''-+ll

1

Double system
clock frequency

'T'
Type

Function 2n

Figure 6.6 - IFIS Cell re-design using Time Redundancy

During the first clock period, the 'F' bits are applied to the function, and the result is

stored in a synchronous register. During the second clock period, the shifted 'T' bits

are applied to the function, and the result is adjusted according to the input shift and

parity set decoded during the first clock period. At the end of the second clock period,

both 'T' and 'F' bits are output from the cell. If a single fault has been manifested,

there is a high probability that only one of the consecutive operations will be affected

as different paths are traversed by the input data. This is similar to recomputation with

shifted operands as discussed in chapter two. The advantages of this architecture are:

• The generation of the 'T' and 'F' bits are not closely related, and

consequently it is unlikely that any single stuck-at fault would affect

more than one of the 'T'/,F' bit pair. Consequently, there is a high

probability of any manifested single stuck-at fault being detected by

the protocol.

• The complexity of this architecture is not significantly increased in

comparison with conventional binary functions as long as the binary

function itself is non-trivial.

However, the disadvantages of this architecture are:

95

CHAPTER SIX IFIS CELL DESIGN STUDY

• A local clock generator is required to produce the double system

clock frequency needed by the internal operation of the architecture.

• Since time redundancy is employed, the data throughput is

effectively half that of other methods for the same clock frequency.

• It is possible that there are faults which affect both the output of the

function and the output of the shifted inputs in the same manner,

thus causing an undetectable fault.

• This technique is suitable primarily for arithmetic operations, and

cannot be arbitrarily extended to any Boolean function.

The final disadvantages makes this technique difficult to effectively implement as

many of the functions in an IFIS system would be non-arithmetic. Consequently, this

technique seems less attractive.

6.S Summary of Results

A summary of the different function block architectures is given in Table 6.1. The

possibilities presented include pure behavioural synthesis, time redundancy, hardware

redundancy and the information redundancy scheme of residue coding. From the

discussions presented, it can be seen that the dual architecture is the only generic

structure which can be easily realised from a conventional binary design. The residue

and pipeJined architectures must be carefully designed from the initial specification

and cannot easily be realised from conventional binary functions. This makes them

less generic and thus less attractive approaches. The pipe lined architecture also suffers

from a reduction in data throughput to one half that of conventional binary data

throughputs, although this could be disguised by a higher internal clock frequency.

Also, the residue and pipelined architecture are extremely difficult to design for non

arithmetic functions. This severely limits their use as a function block architecture

which can be used as a building block for IFIS cell designs. Finally, the behavioural

synthesis approach is quite unfavourable since the resultant structure of the IFIS cell is

96

--- -

CHAPTER SIX IFrS CELL DESfGN STUDY

left entirely to the logic synthesiser and optimiser. This results in an architecture

which is difficult to control and reproduce.

Direct Yes Yes 100% Low No ne

Synthesis

Residue Yes Poor ",100% + Statistically Sli ght

constant High Dec rease

Duality Yes Yes >200% Guaranteed No ne

High

Pipelined Yes Poor "'100% + Low Hal ved

constant

Table 6.1 - Summary of different IFIS function block architectures

With the vanous IFIS cell architectures explored and comparisons made, some

conclusions as to the re-design of the IFIS cell internal blocks can be made.

6.6 Conclusions

The IFIS cell re-design has been attempted with the three redundancy techniques

identified in chapter two and the additional technique of behavioural synthesis. The

summary highlighted the problems of targeting the pipelined and residue architectures

to non-arithmetic functions, and also the reduced throughput inherent in using time

redundancy. The in-ability of the pipelined and residue architectures to protect non

arithmetic functions is a major disadvantage, and effectively discounts them both as

potential solutions.

97

CHAPTER SIX IFIS CELL DESIGN STUDY

The dual architecture is a generic structure capable of being realised directly from

conventional binary circuits, with the other architectures requiring extensive design

effort from the onset. Although the dual architecture can be directly translated from a

conventional counterpart, the increase in hardware of up to 120% is a significant

disadvantage. However, the benefits from using the dual architecture are a high fault

coverage, a reasonably generic solution and negligible loss in performance.

Finally, the behavioural synthesis architecture is difficult to control and reproduce,

with the architecture being highly dependant upon the synthesis tool and the RTL

coding style adopted by the designer. This makes the behavioural synthesis

architecture difficult to justify as it does not lead to a generic solution. However, the

advantages of the behavioural synthesis solution are a small increase in hardware and

little or no performance penalty.

The duality solution is consequently selected for further investigation due to it being a

generic solution and the negligible performance loss, along with the guaranteed high

fault detection.

98

CHAPTER SEVEN

IFIS FEASIBILITY STUDY

7.1 Objectives of Chapter

The objective of this chapter is to investigate the feasibility of the IFIS concept

through the re-engineering of a commercial UART. This will give an indication as to

the suitability of the IFIS methodology for commercial adoption, and also an

indication as to how the IFIS methodology scales with increased circuit complexity.

7.2 Motivation

The on-line test arena has many different methodologies available for implementation.

However, the circuits implemented are generally of very modest complexity with no

indication as to how the methodology scales with the increased circuit complexity

seen in contemporary ASIC designs. Although a UART only consists of

approximately 1,000 NAND gate equivalent cells, it does contain a wide variety of

design elements, namely state machines, parallel to serial converters, registers and

translation units representative of the components found in ASIC designs. This should

allow a thorough concept feasibility study to be undertaken, and also give an

indication as to the scalability of the IFIS methodology.

99

CHAPTER SEVEN IFlS FEASIBILITY STUDY

7.3 Design Partitioning of The IFIS UART

The most efficient processing rule and encoding scheme for processing data using the

IFIS methodology have been identified in previous chapters. Using the results, the

UART can be partitioned and designed accordingly. Figure 7.1 shows the resulting

design partitioning of the IFIS UART.

FEIDBACK
TO CPU {IFIS)

~ ~,rr-~--=~_-~_-__ --t' __ ~IF.~M:~==<l>.==,====~
1 ~,- 1 feedback"'" J 1 <I>,~ - ~ -

---------- FEEOII4.CK
FROM CPU OFIS)

~
PARALLEL DATA I: 1 ~ f"""'LEl DATA
FRQMCPU IIFOI I ~ 0 H-""!IS:"DA",,,-TA-:-_~'~ ~.,",~""--l'" "IFIS ... DA'"1A"-lr-.....;·~"'1 ~ "'11- ~I 10. CPU IIFIS DATA)

.rh, ---I ,~I .rh2 1 .rh .rh
"'" "" '¥o CONTROLLER 1 "!1 <.') <.') "!1

1 ~ 1 1 ~ ~ 1
L- 1 Data"'" . .. •.. ~ ~ 1

1 1 <I>. 1 PREG_l: <I>. 1
1 ,Ir _I 1 I... ~ I ""VlLMlA
I...:;.. I •U .. , A""'" -. ~ r STATUS FlAGS

""""""'" ~I ,-~- -
::2: L...J!1Fl'-IS .. DA"'1A~ __ -lL~: 'ori" 10 • ~ fP 1

Pa:~~ 10 en I I· Parallel • "'" 2: I
~ •• w

~ _L-_-r-:--_--' ~ ~ ~ .,.: :.' .:,' _ _ _ _ ~
..

SERIAL DATA IN (NON-IFI5)

Figure 7.1 - Partitioning of the !FrS UART

Figure 7.1 shows the partitioning of the IFIS UART into the Transmitter, Controller

and Receiver blocks, along with the receiver FIFO (First In, First Out) registers and

the local serial-to-parallel translation block (for the receiver) and the parallel-to-serial

block (for the transmitter). The control block is a state machine responsible for

interrupt generation and for co·ordinating the movement of data within the receiver

and transmitter blocks. The receiver block is responsible for accepting a conventional

serial bit stream, and performing a translation into a parallel IFIS word. Similarly, the

transmitter block is responsible for accepting a parallel IFIS word and performing a

translation into a conventional serial bit stream ready for transmission. The

partitioning of the IFIS UART corresponds directly to the in-elastic processing rule

investigated in chapter four. The reset condition of the IFIS UART ensures that each

100

CHAPTER SEVEN IFIS FEASIBILITY STUDY

block is initialised to a parity set which is opposite to the parity set of the surrounding

blocks. Each block thus 'sees' inputs of a consistent parity set and is permitted to

process. Figure 7.1 also shows the reset parity set information for each block. It can be

seen that upon reset each block has consistent parity set inputs as shown by the phases

<PI and <P2. This ensures that the parity sets alternate along the data path and is a

requirement for the implementation of the in-elastic processing rule.

7.3.1 U ART Controller Design

The UART controller is a state machine responsible for the generation of interrupt

request signals and for controlling the movement of data through the transmitter and

receiver FIFO registers. As the IFIS protocol requires an alternation of the parity set

for each consecutive computation, the state machine design must also cater for this.

Unfortunately, adherence to the IFIS protocol immediately prevents the use of a state

machine which contains self transitions. Any self transition would yield an output

whose parity did not alternate across a clock edge and thus violate the protocol. This

indicates that any conventional state machine design must undergo a translation to

IFIS equivalent before implementation can occur. The translation must map

conventional state transitions onto IFIS state transitions which start and finish at states

with different parity. Fortunately, when visualised as a state transition diagram, the

mapping becomes a reasonably simple graph theory problem whose solution is well

known amongst computer scientists. Hadlock (1975), Sahni (1976) and Bolchini

(1996) have explored this and similar problems, and state that the solution results in a

'bi-partite' (or two colourable) graph where each conventional state is mapped into

two IFIS states, with one state for each parity set. The state transitions can thus be

modified to ensure accordance to the IFIS protocol while still retaining the

functionality of the original state machine. Duplicating each state to satisfy the IFIS

protocol results in a state machine which is twice as large as the conventional

counterpart. However, by placing two conventional state machines side-by-side and

interconnecting appropriately, the IFIS equivalent state machine can be obtained. The

resulting circuit structure is then very similar to the generic approach identified in

101

CHAPTER SEVEN IFIS FEASIBILITY STUDY

chapter six for the design of the IFIS cell internals, and can be realised without

extensive design effort.

7.4 UART Verification

As the IFrS methodology is a new on-line test methodology and is targeted to a

reasonably complex IC design, it was considered appropriate to verify the operation of

both the IFIS methodology and the UART once the FPGA had been configured. Due

to hardware/software availability and the independence between the reference model

and circuit behaviour, it was decided that 'c' would be the behavioural modelling

language used. It was also decided that the 'c' model should produce output data of

the same format as that accepted as input by the VHDL testbench. This is because the

VHDL testbench was designed so that it accepts files containing expected circuit

output values in addition to circuit stimulus. This allows the simple comparison of

expected values against the values obtained from the circuit outputs during simulation.

Furthermore, the file format is the same as that accepted by the Lab View/FPGA test

rig. The 'c' model can thus be used to provide expected output values for the circuit,

whether the stimulus is applied via a VHDL testbench to a design database or to an

FPGA via LabView. The 'c' modelling of the UART was partitioned in the same

manner as the design. This means that 'c' models of the Controller, Transmitter and

Receiver were created. The advantages of this approach are :

• An appropriate model can be used to test each of the major design blocks.

• The models can be developed in parallel.

• The models can be combined, and thus the code re-used during the top

level design validation stage.

• It is possible to generate debugging information at the block level.

The disadvantages of utilising 'C' as a modelling language include a potential to

generate unreadable code. In an attempt to reduce this possibility, it was decided to

102

CHAPTER SEVEN IFIS FEASIBILITY STUDY

specify a standard method of modelling. The following standards were adopted for

circuit modelling within the UART project:

o The 'make' compilation strategy was used. This ensured that the compiled

code was representative of the associated source code.

o Each model was written as a self contained function. This ensured that the

model could be combined with other related models at a later date.

o During local code debugging, a local 'socket' was used to test each

function. This was a requirement for each block model before simulation.

o A common format header file was used which defines block data

structures, vector file input/output structure and debugging flags. This was

intended to ease the model combination phase for top-level UART

modelling.

o A '#include' file containing all referenced sub-functions was also used to

aid readability.

The main advantages of this approach are twofold stemming from the high re-usability

of the 'C' source code. Consequently:

o The functions themselves were independently debugged and tested. This

guaranteed the resulting model structures were comparable to the circuits

which they described.

• The overall development time of the top-level model is kept to a minimum

as the block models can be developed in parallel.

However, as 'C' is not a language orientated towards parallel simulation, care must be

taken when generating the final top-level UART model. As the Controller block

generated the RESET signals for the other blocks, some elements of which were

synchronously reset, it was important that the Controller signals were generated before

the other blocks were simulated. However, as there was no inter-block communication

between the Receiver and Transmitter, the execution order of these blocks was not

important. With the modelling of the UART completed, a random IFIS test vector set

was applied to the 'c' models and the responses collected. The same test vector sets

103

CHAPTER SEVEN IFIS FEASIBILITY STUDY

were then also applied to the FPGAs containing the IFIS and non-IFIS UART designs,

and a comparison performed between the 'C' models expected output and the actual

response from the device being tested. This easily led to a pass/fail decision as to the

validity of the 'C' model and the device under test. The UART design and the 'C'

reference model both received 50,000 test vectors to verify the correctness of both the

model and the design, all of which passed successfully. Due to the independent

development of the UART and the 'C' model and the successful verification, it can be

concluded that the UART design functions correctly and also obeys the IFIS protocol,

hence proving the feasibility of designing with IFIS.

7.5 Fault Injection

The design of the IFIS UART also included the means of injecting faults into the

controller to show the effect of stuck-at-O faults within the internal blocks. This was

achieved by the insertion of an 'AND' gate into the netlist at pre-defined points. The

effect of stuck-at-l faults could also be shown by replacing each fault 'AND' gate

with an 'OR' gate. However, this was not undertaken as the results would be identical

to the stuck-at-O counterparts. Bridging faults were also not injected, as any bridging

fault would immediately violate the IFIS protocol thus initiating a halt.

With the method of fault injection established, three fault sites were identified and

investigated. These injected fault sites included function block faults, faults on IFIS

feedback lines and faults in the IFIS data paths. These fault sites were considered

representative as the effect of faults on the interconnection of IFIS cells needs to be

established, as does the effect of a fault within an IFIS cell. The data path and

feedback faults investigates the effect of interconnection faults, while the function

fault investigates the effect of faulty IFIS cells. The fault injections were performed

using the configured FPGA and consequently represent real output traces and not

simulations. All of the injected faults resulted in the IFIS sections of the UART

halting as shown in Figure 7.3, Figure 7.4 and Figure 7.5.

104

CHAPTER SEVEN IFIS FEASIBILITY STUDY

• Points I and 2 (Figure 7.2) show the IFlS UART Transmitter and Receiver

data busses respectively during fault free operation .

."

lACK

'"' FS_T_IN

F8_' _IN

TX_F_ElUS

DATA_FLT

IRQD ~
IRQl

PAR_ERR -;;-;;-;;;;]

FFlAr.t_ERR :uyyuJ

r

~':~~=:::U~~oooO~§"~~~~§3~~~ RX_F_SI.JS ~
F8_T_OUT ~

FS_F_OI.JT

. " .. , '" '"

Figure 7.2 - FPGA trace showing fault free operation of the IFIS UART

• Points 3 and 4 (Figure 7.3) show the activation and de-activation of the

injected fault on a data path within the controller (DATA_FLT). Point 5 shows

the IFlS UART receiver data bus. It should be noted that the even after the

injected fault is de-activated (Point 4). the data bus remains halted.

Figure 7.3 - FPGA trace showing IFIS UART halting following fault injection on a

controller data path

105

CHAPTER SEVEN IFIS FEASIBILITY STUDY

Figure 7.3 shows that following a fault injection, the RX_T_BUS and RX_F _BUS

both halt. As the IFIS protocol is violated, the halting of the RX_T_BUS and

RX_F _BUS remains even after the fault is removed (Point 4). In a system designed

using the IFIS methodology alone, this would also trigger the halting of all the other

components until a system wide halt was established.

elK [WC±!
RRO [W[±l

S_CLOCK llilGl f====~~~~:X~
SDI [§JliIi
I/I,CK WJ[±I L..,.~~~~-.,--J L.....~~~

:::,-" :~ ~::;:;::;::~~;r==;:::z=L;;EC;fi:D~ I
TX_T_BU [EJ[!J

'"
IRQD

J
511< 61K 711<

Figure 7.4 - FPGA trace showing halting of the IFIS UART following a controller

feedback fault injection

• Points 6 and 7 (Figure 7.4) show the activation and de-activation of the

injected fault on a feedback path within the controller (FEOP _FLT). Point 8

shows the IFIS UART receiver data bus. It should again be noted that the

even after the injected fault is de-activated (Point 7), the IFIS UART receiver

data bus remains halted.

106

CHAPTER SEVEN

'"
""

IFIS FEASIBILITY STUDY

S_CLOCK []][±lr~33~~~~~~~~~~~~~~~~~ 501 []][±l

lACK [§J[±I
TMS []]GJ
,,-,-" @@

"-·-'"@@~:&=··:/ TX_T_BU 1El1i1 00

"
>00

IROO

J
1>(IlK 21K J1I< 41K 51K ~lK 71K

9

Figure 7.5 - FPGA trace showing halting of the IFIS UART following a fault injected

into the controller function block

• Finally, points 9 and 10 (Figure 7.5) show the activation and de

activation of an injected fault within the controller function block

(FUNC_FLT). Point 11 again shows the IFIS UART receiver data bus.

Once again the data bus remains halted even after the injected fault is

de-activated (Point 10).

From the traces, the IFIS methodology can be seen to be fully operational, halting the

system immediately a protocol violation is detected. The halting spreads with each

clock cycle until all IFIS sections of the system are halted. The system can only be

restarted if the fault is removed and a system reset is applied.

7.6 The Impact of The IFIS Methodology

To obtain comparative results, the IFIS UART and conventional UART designs were

targeted to the XILINX 4013 FPGA. Comparisons where then drawn from a logic

synthesis engine (LOGSYN) and the XILINX place and route toolset (XACT). The

controller block of the IFIS UART was implemented purely in IFIS, with the Receiver

and Transmitter implemented as a mixture of IFIS and conventional logic. However,

all implementation data is shown for completeness. Table 7.1 shows the complexity

107

CHAPTER SEVEN IFIS FEASIBILITY STUDY

overhead inherent with using the IFIS on-line test methodology. The XACT column

shows the completely used / partially used CLB (Configurable Logic Block) data,

where it can be seen that the hardware overhead is similar to duplication with

comparison at 120%.

IFIS 301 101167

Controller Conventional 135 47/30

Ratio 2.23 2.15/2.23

IFIS 375 1551106

Receiver Conventional 183 74/49

Ratio 2.05 2.09/2.16

IFIS 148 72/45

Transmitter Conventional 87 37121

Ratio 1.70 1.95/2.14

Table 7.1 - Complexity Overhead inherent with using the IFIS Methodology

Due to the IFIS 2 encoding scheme used within the IFIS methodology, the saturated

encoding scheme permits the transmission of a new datum with each clock cycle.

Consequently, the data throughput remains equivalent to that of the conventional

design.

Finally, the XACT place and route toolset allows an estimation of the maximum

frequency achievable with the UART designs composite blocks (as each block design

was carried out separately). Table 7.2 shows the critical delay through each block, and

the corresponding maximum frequency achievable by the design.

108

CHAPTER SEVEN IFIS FEASIBILITY STUDY

Controller IFIS III 9.01

Conventional 83 12.05

Receiver IFIS 106 9.43

Conventional 106 9.43

Transmitter IFIS 62 16.13

Conventional 54 18.50

Table 7.2 - Operational Speed Impact from using the IFIS Methodology

Table 7.2 shows the impact of the IFIS methodology upon the performance of a real

electronic design. The table shows that the IFIS implementation of the UART causes

an increase in the critical delay, and consequently a decrease in the maximum

frequency the design can attain. Table 7.2 also shows that the greatest impact upon

performance occurs within the IFIS UART controller, where the use of the IFIS

methodology causes a decrease in the maximum frequency by 25%. Similar decreases

can be seen for the transmitter although to a lesser extent due to the lower proportion

of IFIS components. The critical path through the receiYer block is via components

which were implemented in conventional binary logic, and consequently no change

occurred.

7.7 Scalability of the IFIS Methodology

The design of the IFIS controller requires the doubling of the number of states within

the state machine. This can be realised using a generic duplication technique similar to

the approach discussed in chapter six, and placing two conventional state machine

designs in parallel. Any IFIS state machine thus immediately requires twice the

hardware to implement. Consequently, the design of any sequential or combinational

circuitry can be translated directly into an IFIS equivalent before implementation. For

the UART design, the hardware overhead was seen to be approximately 120%, and

109


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--- --

CHAPTER SEVEN IFIS FEASIBILITY STUDY 

was expected due to the design architecture adopted. For large designs it can be seen 

that the IFIS technique scales reasonably well, requiring a similar hardware overhead 

to duplication. However, it should also be noted that for small designs with moderate 

or little functionality, the IFIS technique does not fare so well. For designs with little 

functionality at the IFIS cell level, the constant overhead from the IFIS technique can 

outweigh the hardware required to implement the function. The overhead for the 

system is thus comprised mainly of IFIS protocol checking hardware and rises 

accordingly. 

7.8 Summary oflFIS UART Case Study 

The partitioning of the IFIS UART has been described along with the design of the 

UART controller and a method of design verification. A means of injecting faults into 

the final design netlist has also been detailed, and the effect of the injected faults on 

the operation of the UART has been shown. FPGA traces showing fault free and fault 

injected UART operation have been shown, proving the halting properties of the IFIS 

design methodology. The impact of IFIS upon the complexity, maximum frequency 

and data throughput of a realistic lC design has been explored, and results presented to 

allow comparisons between IFIS and conventional implementations of the same 

UART design. The feasibility of designing with the IFIS methodology has been 

explored and the scalability of the IFIS methodology on 'realistic' lCs has been 

shown. 

The feasibility and scalability of the IF!S methodology have been demonstrated with 

the design of a commercial UART. The UART design addressed several issues 

including the design of complex IFIS state machines, the design of IFIS combinational 

circuitry and the interfacing of IFIS designs with non-IFlS environments. Moreover, 

the IFIS UART represents one of the most complex designs implemented using an on

line test methodology to date. 

116 



CHAPTER SEVEN IFIS FEASIBILITY STUDY 

7.9 Conclusions 

The feasibility of the IFIS methodology has been explored with the design of a 

'realistic' contemporary IC, and verified using an independently written 'C' model. 

The UART and 'C' model both received 50,000 vectors, and the responses were then 

compared to verify the correctness of operation. As the UART design contains several 

different design elements commonly seen in contemporary IC design (including state 

machines, FIFOs, serial-parallel and parallel-serial converters), it can be concluded 

that the design of systems using the IFIS methodology is feasible, and that both 

sequential and combinational circuitry can be realised. 

The impact of designing with the IFIS methodology has been shown for the 

commercial UART design, and leads to a hardware overhead of 120% which is 

comparable with duplication. For any design containing state machines which require 

a translation to IFIS equivalent, a similar overhead will be created. This can also be 

seen for combinational circuitry where the dual architecture adopted in chapter six 

leads to a hardware overhead which is again comparable to duplication. The 

scalability of the IFIS methodology has been shown to favour designs with large 

amounts of functionality as this offsets the constant IFIS overhead accordingly. 

However, with increased complexity becoming common-place, the overhead of IFIS is 

expected to be negligible in comparison to the functions performed in contemporary 

ASIC designs. The IFIS methodology could thus offer an attractive alternative, 

provided the duplication overhead can be tolerated. 

111 



CHAPTER EIGHT 

CONCLUSIONS 

8.1 Objectives of Chapter 

The objective of this chapter is to draw conclusions about the IFIS on-line test 

methodology from the experiments performed in previous chapters. This will allow 

the suitability of the IFIS methodology for use within the on-line test arena to be 

appraised, complete with inherent benefits and penalties. 

8.2 Review Of Thesis Objectives 

The main objectives of this thesis were stated in chapter three. To re-iterate, the 

objectives were: 

To understand how the different encoding scheme's and feedback systems impact on 

data throughput and error halting ability of systems using the IFIS methodology. 

To identify the combination of encoding scheme, feedback structure and processing 

rule which gave the greatest benefit in terms of data throughput, error halting ability 

and lowest implementation overhead. 

To evaluate IFIS cell designs and identify a generic solution which yields the least 

complexity overhead. 

112 



CHAPTER EIGHT CONCLUSIONS 

To evaluate the feasibility of the IFIS methodology using a substantial commercial 

design re-engineered using the IFIS methodology. 

8.3 Experimental Investigations 

The objectives were satisfied by four experiments. The first experiment was an 

investigation into the encoding schemes, processing rules and feedback systems 

incorporated within the IFIS methodology. The investigation was a study into how the 

different encoding schemes, processing rules and feedback systems impacted on data 

throughput and error halting ability of designs using the IFIS methodology. 

The second experiment implemented the different combinations of encoding schemes 

and processing rules into hardware. This helped identify the combination that gave the 

greatest benefit in terms of data throughput, error halting ability and lowest 

implementation cost. This experiment also used data obtained from the first 

experiment to choose the most efficient combination. 

The third experiment used several different implementation schemes identified in 

chapter two to discover a more efficient solution for designing IFIS cells. 

Implementation data from the various re-designs of IFIS cells was compared to help 

identify a more efficient and more generic design solution. 

The final experiment was a feasibility study using a commercial DART re-engineered 

using the IFIS methodology. This study drew together the results from the previous 

experimental chapters to aid the DART design. The experiment gave valuable 

information as to how the IFIS methodology scales with design complexity, and an 

insight into the different design problems associated with using the IFIS methodology 

for 'real-life' designs. 

113 



CHAPTER EIGHT CONCLUSIONS 

8.4 Main Conclusions 

Chapter four explored several different processing rules, feedback structures and 

encoding schemes which were all candidates for implementation using the IFIS 

methodology. These schemes were evaluated using the metrics of halting ability and 

data throughput. The conclusion was reached that the successor feedback structure 

was superior in terms of data throughput, while still achieving the required halting 

upon the detection of a protocol violation. A preliminary conclusion was also reached 

that the IFIS 2 encoding scheme was likely to provide the most efficient hardware 

implementation. 

Chapter five detailed the implementation of an FIR filter using the successor feedback 

structure identified in chapter four. This allowed an investigation into the IFIS 

encoding schemes and processing rule combinations which control the movement of 

data through the system. The chapter concluded that the in-elastic method of data 

processing together with the IFIS 2 encoding scheme was the most efficient 

combination as this required the least hardware to implement. However, although the 

IFIS 2 encoding scheme and in-elastic processing rule together with the successor 

feedback structure represent an efficient means of implementing the IFIS 

methodology, the hardware overhead was seen to be a substantial 370%. 

Chapter six discussed the reasons why the implementation of the IFIS methodology 

resulted in such a large hardware overhead, and detailed an experiment designed to 

identify ways of reducing the hardware overhead through the efficient redesign of IFIS 

cells. The chapter concluded that the most efficient design solution for the IFIS cells is 

that of duality. This can be easily realised from conventional binary implementations, 

can be used for arithmetic and non-arithmetic functions, and also results in negligible 

performance degradation. 

Chapter seven discussed the design of a commercial UART re-engineered using the 

IFIS methodology as a feasibility study. The cell design identified in chapter six was 

employed, along with the feedback structure, processing rules and encoding schemes 

114 



CHAPTER EIGHT CONCLUSIONS 

identified in chapter four and chapter five. The UART was successfully tested using 

an FPGA and a PC running LabView as proof of functionality. The chapter concluded 

that the design of systems using the IFIS methodology is feasible. However, the 

implementation overhead could prove to be prohibitive for applications which contain 

little or moderate functionality, as this increases the proportion of hardware required 

by !FIS with respect to the function performed by the circuit. 

Although the hardware overhead required by the IFIS methodology has been 

considerably reduced with the re-design of the individual IFIS cells, the overhead for 

the UART is still comparable to duplication. This is the best overhead possible using 

the duality solution, and arises because the function block within each IFIS cell is 

duplicated. If the ratio of the function block complexity to IFIS overhead is small, 

then the total system overhead will increase accordingly. Consequently, the IFIS 

methodology could be considered unsuitable for circuit designs which contain 

moderate or little functionality for this reason. 

Chapter six introduced the internal re-design of the IFIS cells. From this it can be seen 

that each IFIS cell currently contains a single point of failure, that being the 

multiplexor selector output from the IFIS data control block. If the selector was faulty, 

the multiplexors would always offer the output data from the function block to the 

storage elements. The cell would thus continue to operate even if instructed to halt by 

other cells. Consequently, this represents a limitation to the current version of the IFIS 

methodology. 

Finally, the IFIS methodology does not tolerate any disruption of the encoding scheme 

at all. This could be considered a disadvantage as several on-line test systems 

implement a 'rollback' strategy where calculations are re-tried several times in an 

attempt to recover from transient faults. The IFIS methodology cannot support this, 

and as such is more fault intolerant. 

115 



CHAPTER EIGHT CONCLUSIONS 

8.5 Measures of Success 

The work contained within this thesis was successful in that the objectives stated in 

chapter three were reached with the experiments performed. The first objective was to 

investigate how the different encoding schemes and feedback systems impacted upon 

the data throughput and error halting ability of circuits designed using the IFIS 

methodology. This was successfully answered with the experiment described in 

chapter four as the data throughputs and error halting abilities were shown for several 

feedback structures. These feedback structures included self feedback, successor 

feedback, greater than successor feedback and a hybrid of self feedback and successor 

feedback. The results showed the impact of feedback structure on the halting ability 

and data throughput of designs employing the IFIS methodology. 

The second objective was to identify which combination of feedback structures, 

encoding schemes and processing rules gave the greatest benefit in terms of data 

throughput, error halting ability and lowest implementation cost. The experiment 

described in chapter five implemented two encoding schemes and two processing 

rules with the best feedback structure identified in chapter four. The results allowed 

the identification of the most efficient combination of feedback structure, encoding 

scheme and processing rule, and thus also fulfilled the objective. 

The third objective was to identify the factors which caused the significant hardware 

overhead within the IFIS cells, and re-design the internal circuitry such that this 

overhead was reduced. Four possible methods were identified which could be used as 

alternative architectures within the IFIS cell. The most generic solution of duality was 

selected for future use, which resulted in the hardware overhead dropping by almost a 

factor of two thereby fulfilling the objective. 

The final objective was to evaluate the feasibility of the IFIS methodology using a 

commercial UART as a vehicle. The results obtained showed the IFIS methodology 

was feasible and could be used as an on-line test methodology provided the hardware 

overhead of 120% could be tolerated. As the UART was selected as being a realistic 

116 



CHAPTER EIGHT CONCLUSIONS 

and commercially available IC, the results can also be considered as realistic thereby 

fulfilling the objective. 

The feasibility of the IFIS methodology has been demonstrated with the design of a 

commercial UART. The UART design has also addressed several issues including the 

design of complex state machines, combinational circuitry and the interfacing of IFIS 

designs with non-IFIS environments. Consequently, the IFIS UART represents one of 

the most complex on-line test designs investigated to date. 

8.6 Limitations of the Work 

The work presented within this thesis is limited in that only a small number of 

possible coding options were explored due to time restrictions upon the project. Also, 

the level at which the data encoding takes place could be seen to be a limitation as an 

information redundancy of 100% is immediately introduced. Consequently, the 

hardware implementation of this coding also exhibits similar properties with a 

overhead of 120% which is comparable to duplication with comparison. 

The inability of the IFIS methodology to recover from transient faults where many 

other on-line test methodologies adopt a 're-try' approach could also be considered a 

limitation, as could the single point of failure within the IFIS cells due to the 

multiplexor selection line. 

The IFIS cell re-design chapter detailed four possible solutions to the hardware 

overhead problem. These four solutions represent a limited set of possible solutions, 

but again due to time constraints the options had to be limited. 

Finally, the IFIS UART could not be implemented to an ASIC cell library as the tools 

were not available. Consequently, ASIC characteristics for the IFIS UART could not 

be obtained and would indeed be of considerable interest. These points represent 

limitations of the current work and are worthy of further investigation. 

117 



CHAPTER EIGHT CONCLUSIONS 

S.7 Further Work 

Further work that could be undertaken is a re-design of the IFIS data control block 

such that the output of the multiplexor is implemented as a two-rail design. This 

would eliminate the single point of failure from the IFlS cell and consequently lead to 

a more fault intolerant (i.e. better) design methodology. 

Other work which could be undertaken is to improve the cell design such that the 

hardware overhead at the IFlS cell level is reduced even further. This should make the 

IFlS methodology more attractive for implementation in contemporary designs. Also, 

the implementation of the IFlS UART to an ASIC cell library could be undertaken to 

obtain ASIC characteristic values. 

Finally, the methodology of IFlS lends itself very well to fault location as the parity 

and sequence in which the system outputs halt can uniquely identify the location of a 

fault to the IFlS cell boundary. This is also worthy of considerable attention, as the 

identification of an optimal algorithm for fault location within IFlS systems would be 

of great value should the IFIS methodology be adopted. 

S.S Summary of Thesis 

This thesis has evaluated a novel parity based on-line test methodology designed to 

detect 'in the field' errors occurring from transient and permanent faults. The various 

encoding schemes, feedback structures and processing rules of this methodology have 

been evaluated, and the most efficient configuration chosen for implementation. This 

implementation has resulted in the design and test of a 'real life' UART design which 

has highlighted the feasibility and scalability of the IFlS methodology for digital 

systems design. 

118 



REFERENCES 

[Abadir, 1983] 

[Aitken, 1991] 

[Asaad, 1996] 

[Ashjaee, 1977] 

[Audet, 1996] 

[Avizienis,1971] 

[Avra,1993] 

[Bahram, 1992] 

[Berger, 1961] 

[Beuc1er,1984] 

[Blaum, 1988] 

M. S. Abadir and H. K. Reghbati, "LSI Testing Techniques", 
IEEE Micro, February 1983, pp 34-51. 

R. C. Aitken, "Fault Location with Current Monitoring.", 
Proceedings ofthe IEEE International Test Conference, 1991, 
pp 623-632. 

H. A. Asaad, 1. P. Hayes and B. T. Murray, "Design of 
Scaleable Hardware Test Generators for On-Line BIST.", 2nd 
IEEE International On-Line Test Conference, July 1996, pp 
164-168. 

M. J. Ashjaee and S. M. Reddy, "On Totally Self-Checking 
Checkers for Separable Codes.", IEEE Transactions on 
Computers, Vol. C-26, No. 8, August 1977, pp 737-744. 

D. Audet, N. Gagnon and Y. Savaria, "Quantitative 
Comparisons of TMR Implementations in a Multiprocessor 
System.", 2nd IEEE International On-Line Test Conference, 
July 1996, pp 196-199. 

A. Avizienis, "Arithmetic Error Codes: Cost and Effectiveness 
Studies for Application in Digital Systems Design.", IEEE 
Transactions on Computers, Vol. C-20, No. 11, November 
1971, pp 1322-1331. 

L. J. Avra and E. J. McCluskey, "Synthesising For Scan 
Dependence in Built-In Self-Testable Designs.", International 
Test Conference, 1993, Paper 35.1. 

N. K. Bahram and D. Chakravarty, "ASIC Design Methodology 
Trends.", Electro/92, Vol.1,May 1992, pp 163-168. 

J. M. Berger, "A Note on Error Detection Codes for 
Asymmetric Channels.", Information and Control, Vol. 4, 1961, 
pp 68-73. 

F. P. BeucIer and M. J. Manner, "HILDO : The Highly 
Integrated Logic Device Observer.", VLSI Design, June 1984, 
pp 88-96. 

M. Blaum, "Systematic Unidirectional Burst Detecting Codes.", 
IEEE Transactions on Computers, Vol. C-37, No. 4, April 
1988, pp 453-457. 

119 

/1 ........ 



[Bleeker, 1993] 

[Bolchini, 1996] 

[Borden, 1982] 

[Bose, 1985] 

[Bose, 1986] 

[Brown, 1960] 

[Burns, 1992] 

[Chang, 1996] 

[Cheema, 1992] 

[Corno, 1996] 

[David, 1995] 

--------- -----

H. Bleeker, "An Economic, Hands-On Start to Boundary Scan 
Testing.", Philips Industrial Electronics BV, Eindhoven, The 
Netherlands, Microprocessors and Microsystems, Vol. 17, No. 
5, June 1993, pp 299-303. 

C. Bolchini, F. Salice and D. Sciuto, "Design of Totally Self
Checking Checkers for a class of Hanuning distance Codes.", 
2nd IEEE International On-Line Test Conference, July 1996, pp 
150-153. 

J. M. Borden, "Optimal Asynunetric Error Detecting Codes.", 
Information and Control, Vol. 53, 1982, pp 66-73. 

B. Bose and D. J. Lin, "Systematic Unidirectional Error
Detecting Codes.", IEEE Transactions on Computers, Vol. C-
34, No. 11, November 1985, pp 1026- 1032. 

B. Bose, "Burst Unidirectional Error-Detecting Codes.", IEEE 
Transactions on Computers, Vol. C-35, No. 4, April 1986, pp 
350-353. 

D. T. Brown, "Error Detecting and Correcting Binary Codes for 
Arithmetic Operations", IRE Transactions on Electronic 
Computers, September 1960, pp 333-337. 

S. W. Burns and N. K. Jha, "A Totally Self-Checking Checker 
for a Parallel Unordered Coding Scheme.", IEEE VLSI Test 
Symposium, Paper 7.3, 1992. 

W. F. Chang and C. W. Wu, "A TSC Berger-Code Checker for 
2r'!-Bit Information.", 2nd IEEE International On-Line Test 
Conference, July 1996, pp 158-161. 

M. S. Cheema and P. K. Lala, "Totally Self-Checking CMOS 
Circuit Design for Breaks and Stuck-On Faults.", Journal of 
Solid-State Circuits, Vol. 27, No. 8, August 1992, pp 1203-
1206. 

F. Corno, P. Prinetto and M. S. Reorda, "Coupling Genetic 
A TPG and Synthesis of Pattern Generations for Deterministic 
BIST.", 2nd IEEE International On-Line Test Conference, July 
1996, pp 78-81. 

I. David, R. Ginosar and M. Y oeli, "Self-Timed is Self
Checking.", Journal of Electronic Testing: Theory and 
Applications, 6, 1995, pp 219-228. 

120 



[Dean, 1991] 

[Dean, 1994] 

[Dong, 1984] 

[Ferguson, 1991] 

[Fertsch, 1991] 

[Freiman, 1962] 

[Fujiwara, 1983] 

[Gaitanis, 1996] 

[Garner, 1966] 

[Goel, 1981] 

[Golstein, 1979] 

M. E. Dean, T. E. Williams and D. 1. Dill, "Efficient Self
Timing with Level-Encoded 2-Phase Dual-Rail (LEDR).", 
Advanced Research in VLSI, 1991, pp 55-70. 

M. E. Dean, D. 1. Dill and M. Horowitz, "Self-Timed Logic 
Using Current-Sensing Completion Detection (CSCD).", 
Journal ofVLSI Signal Processing, Vol. 7, 1994, pp 7-16. 

H. Dong, "Modified Berger Codes for Detection of 
Unidirectional Errors.", IEEE Transactions on Computers, Vol. 
C-33, No. 6, June 1984, pp 572-575. 

F. J. Ferguson and T. Larabee, "Test Pattern Generation for 
Realistic Bridge Faults in CMOS IC's.", Proceedings of the 
IEEE International Test Conference, 1991, pp 492-499. 

M. T. Fertsch, S. H. Lee, J. Rioux, K. B. Sweetland, J. E. 
Watrous and P. N. Bompastore, "Design Considerations for 
CrossCheck Foundations and Libraries.", Proceedings of the 
Fourth Annual IEEE International ASIC Conference and 
Exhibition, PI1-5/l-4. 

C. V. Freiman, "Optimal Error Detection Codes for Completely 
Asymmetric Binary Channels.", Information and Control, Vol. 
5,1962, pp 64-71. 

H. Fujiwara and T. Shimono, "On the Acceleration of Test 
Generation Algorithms.", IEEE Transactions on Computers, 
Vol. C-32, No. 12, December 1983, pp 1137-1144. 

N. Gaitanis, P. Kostarakis and A. Pashalis, "A Three Rail 
Totally Self-Checking Error Indicator.", 2nd IEEE International 
On-Line Test Conference, July 1996, pp 50-52. 

H. 1. Garner, "Error Codes for Arithmetic Operations", IEEE 
Transactions on Electronic Computers, Vol. EC-15, No. 5, 
October 1966, pp 763-770. 

P. Goel, "An Implicit Enumeration Algorithm to Generate Tests 
for Combinational Logic Circuits.", IEEE Transactions on 
Computers, Vol. C-30, No. 3, March 1981, pp 215-222. 

1. H. Go1dstein, "Controllability / Observability Analysis of 
Digital Circuits.", IEEE Transactions on Circuits and Systems, 
Vol. CAS-26, No. 9, September 1979, pp 685-693. 

121 



[Gossel, 1993] M. Gossel and E. S. Sogomonyan, "Code Disjoint Self-Parity 
Combinational Circuits for Self-Testing, Concurrent Fault 
Detection and Parity Scan Design.", International Conference 
on Very Large Scale Integration, Sept. 1993, Vo!. A-42, pp 
103-111. 

[Haider, 1993] N. S. Haider and N. Kanopoulos, "Efficient Board Interconnect 
Testing using the Split Boundary Scan Register.", Journal of 
Electronic Testing: Theory and Applications, Vol. 4, 1993, pp 
181-189. 

[Hadlock, 1975] F. Hadlock, "Finding a Maximum Cut of a Planar Graph in 
Polynomial Time", SIAM Journal on Computing, Vol. 4, No. 3, 
September 1975, pp 221-225. 

[Hana, 1986] H. H. Hana and B. W. Johnson, "Concurrent Error Detection in 
VLSI Circuits using Time Redundancy", Proceedings of the 
IEEE Southeastcon 1986 Regional Conference, 1986, pp 208-
212. 

[Hellerbrand, 1996] S. Hellebrand, H. J. Wunderlich and A. Hertwig, "Mixed Mode 
BIST using Embedded Processors.", 2nd IEEE International 
On-Line Test Conference, July 1996, pp 82-85. 

[Jha, 1993] N. K. Jha and SJ. Wang, "Design and Synthesis of Self
Checking VLSI Circuits", IEEE Transactions on Computer
Aided Design ofIntegrated Circuits and Systems, Vol. 12, No. 
6, June 1993, pp 878-887. 

[Johnson, 1988] B. W. Johnson, J. H. Aylor and H. H. Hana, "Efficient Use of 
Time and Hardware Redundancy for Concurrent Error 
Detection in a 32-bit VLSI Adder.", IEEE Journal of Solid
State Circuits, Vo!. 23, No. 1, February 1982, pp 208-214. 

[Jones, 1991] S. Jones and D. W. Lloyd, "Digital Test Methodology.", UK 
patent No. 9225327.8, 1991. 

[Khakbaz,1984] J. Khakbaz and E. J. McCluskey, "Self-Testing Embedded 
Parity Checkers.", IEEE Transactions on Computers, Vol. C-
33, No. 8, August 1984, pp 753-756. 

[Konemann,1979] B. Konemann, J. Mucha and G. Zwiehoff, "Built-In Logic 
Block Observation Techniques.", IEEE Test Conference, 1979, 
Session 2, pp 37-41. 

[Kothari, 1993] R. D. Kothari and D.S. Ha, "Experimental Results on Aliasing 
Errors in Circular BIST Design.", Proceedings of the ETC 93, 
Third European Test Conference, IEEE Computer Society 
Press, April 1993, pp 466-474. 

122 



[Larabee, 1989] T. Larabee, "Efficient Generation of Test Patterns Using 
Boolean Difference.", International Test Conference, 1989, 
Paper 35.1. 

[Li,1992] J. Li and E. E. Swartzlander, "Concurrent Error Detection in 
ALU's by Recomputing with Rotated Operands", 1992 
International Workshop on Defect and Fault Tolerance in VLSI 
Systems, 1992. 

[McCluskey, 1985] E. J. McCluskey, "Built-In Self-Test Techniques.", IEEE 
Design and Test, Vol. 2, No. 2, April 1985, pp 21-28. 

[McEuen,1991] S. D. McEuen, "IDDq Benefits.", Proceedings of the IEEE 
VLSI Test Symposium, 1991, pp 285-290. 

[Metra, 1996] C. Metra and J. C. Lo, "Compact and High Speed Berger Code 
Checker.", 2nd IEEE International On-Line Test Conference, 
July 1996, pp 144-149. 

[Muehldorf,1981] E.!. Muehldorf and A. D. Savkar, "LSI Logic Testing - An 
Overview", IEEE Transactions on Computers, Vo!. 30, No. 1, 
January 1981, pp 1-16. 

[Nigh, 1990] P. Nigh and W. Maly, "Test Generation for Current Testing.", 
IEEE Design and Test of Computers, February 1990, pp 26-38. 

[Nikolos, 1996] D. Nikolos, "Optimal Self-Testing Embedded Two-Rail 
Checkers.", 2nd IEEE International On-Line Test Conference, 
July 1996, pp 154-157. 

[Patel, 1982] J. H. Patel and L. Y. Fung, "Concurrent Error Detection in 
ALU's by Recomputing with Shifted Operands.", IEEE 
Transactions on Computers, Vo!. C-31, No. 7, July 1982, pp 
589-595. 

[Piestrak, 1996] S. J. Piestrak, "Modular Design of Self-Testing Checkers for m
out-of-n Codes.", 2nd IEEE International On-Line Test 
Conference, July 1996, pp 132-136. 

[Reddy, 1985] M. K. Reddy and S. M. Reddy, "Transistor Level Test 
Generation for MOS Circuits.", Proceedings of the 22nd Design 
Automation Conference, 1985, pp 825-828. 

[Reynolds, 1978] D. A. Reynolds and G. Metze, "Fault Detection Capabilities of 
Alternating Logic.", IEEE Transactions on Computers, Vol. C-
27, No. 12, December 1978, pp 1093-1098. 

123 



[Roth, 1966] 

[Roth, 1969] 

[Sahni, 1976] 

[Seth, 1985] 

[Shedletsky, 1978] 

[Shultz, 1989] 

[Smith, 1984] 

[Sutherland, 1989] 

[Wakerly, 1973] 

[Williams, 1983] 

[Zorian, 1993] 

J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a 
Method.", mM Journal of Research and Development, Vo!. 10, 
July 1966, pp 278-291. 

J. P. Roth, W. G. Bouricius and P. R. Schneider, "Programmed 
Algorithms to Compute Test to Detect and Distinguish Between 
Failures in Logic Circuits.", IEEE Transactions on Electronic 
Computers, Vo!. EC-16, No. 5, October 1969, pp 567-580. 

S. Sahni and T. Gonzalez, "P-Complete Approximation 
Problems.", Journal of the Association for Computing 
Machinery, Vo!. 23, No. 3, July 1976, pp 555-565. 

S. C. Seth and V. D. Agrawal, "Cutting Chip Testing Costs.", 
IEEE Spectrum, April 1985, pp 38-45. 

J. J. Shedletsky, "Error Correction by Alternate-Data Retry.", 
IEEE Transactions on Computers, Vo!. C-27, No. 2, February 
1978, pp 106-112. 

M. H. Shultz and E. Auth, "Improved Deterministic Test 
Pattern Generation with Applications to Redundancy 
Identification.", IEEE Transactions on Computer-Aided Design, 
Vo!. 8, No. 7, July 1989, pp 811-816. 

J. E. Smith, "On Separable Unordered Codes", IEEE 
Transactions on Computers, Vo!. C-33, No. 8, August 1984, pp 
741-743. 

1. Sutherland, "Micropipelines.", Communications of the ACM, 
Vo!. 32, No. 6, June 1989, pp 720-733. 

J. F. Wakerly, "Partially Self Checking Circuits and their use in 
Performing Logical Operations.", Proceedings of the 3rd Fault 
Tolerant Computing Symposium, pp 65-70. 

T. W. Williams and K. P. Parker, "Design for Testability - A 
Survey", Proceedings of the IEEE, Vo!. 71, No. I, January 
1983, pp 98-112. 

Y. Zorian and A. Ivanov, "Programmable Space Compaction 
for BIST.", Digest of Papers, FTCS-23,The twenty third 
International Symposium on Fault Tolerant Computing, IEEE 
Computer Society Press, August 1993, pp 340-349. 

124 



BIBLIOGRAPHY 

[Antoniou, 1993] 

[Bennetts, 1984] 

[Gossel, 1993] 

[Lala, 1985] 

[Mead, 1980] 

[Piestrak, 1995] 

[Rajsuman, 1992] 

[Russell, 1989] 

[Siewiorek, 1992] 

A. Antoniou, "Digital Filters - Analysis, Design and 
Applications.", McGraw-Hill International (Second Edition), 
1993, ISBN 0-07-002121-X. 

R. G. Bennetts, "Design of Testable Logic Circuits.", Addison
Wesley, 1984, ISBN 0-201-14403-4. 

M. Gossel and S. Graf, "Error Detection Circuits", McGraw
Hill International (UK) Limited, 1993, ISBN 0-07-707438-6 

P. K. Lala, "Fault Tolerant and Fault Testable Hardware 
Design.", Prentice Hall International, 1985, ISBN 0-13-
308248-2. 

C. Mead and L. Conway, "Introduction to VLSI Systems.", 
Addison-Wesley Publishing Company, 1980, ISBN 0-201-
04358-0 

S. J. Piestrak, "Design of Self-Testing Checkers for 
Unidirectional Error Detecting Codes", Institute of Cybernetics 
Engineering, Technical University ofWroclaw, 1995, ISSN 
0324-9786. 

R. Rajsuman, "Digital Hardware Testing: Transistor Level 
Fault Modelling and Testing.", Artech House, 1992, ISBN 0-
89006-580-2. 

G. Russell and L. Sayers, "Advanced Simulation and Test 
Methodologies for VLSI Design", Van Nostrand Reinhold 
(International), 1989, ISBN 0-7476-0001-5. 

D. P. Siewiorek and R. S. Swarz, "Reliable Computer 
Systems", Second Edition, Digital Press, 1992, ISBN 1-55558-
075-0. 

125 



PUBLISHED PAPERS 

[Saeed, 1996] 

[Yeandel, 1996] 

[Yeandel, 1996] 

M.Saeed, D. Thulborn, J. Yeandel and S. Jones, "IFIS - An On
Line Testing Methodology Using Dual-Rail Data Coding.", 2nd 
IEEE International On-Line Test Conference, Bairritz, France, 
July 1996, pp 68-72. 

J. Yeandel, D. Thulborn, M.Saeed and S. Jones, "Fault 
Localisation for On-Line Testable Designs Realised Using 
Dual-Rail Design Methodology.", 2nd IEEE International On
Line Test Conference, Bairritz, France, July 1996, pp 221-222. 

J. Yeandel, D. Thulborn and S. Jones, "An On-Line Testable 
UART Implemented Using IFIS.", 15th IEEE VLSI Test 
Symposium, Monterey, California, April 1997. 

126 




