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Highlights

• A new approach to predict variability of friction-damped turbine blades is
presented;

• The method uses Maximum Entropy to estimate a PDF of the friction describing
function;

• Computationally expensive Monte Carlo simulations of the nonlinear system
are avoided;

• Comparisons with numerical and experimental tests show generally good agreement;
• The results highlight the need for accurate characterisation of uncertainty;
• The method enables rapid estimates of the response distribution.

Abstract

Predicting the response of gas turbine blades with underplatform friction dampers
is challenging due to the combination of frictional nonlinearity and system uncer-
tainty: a traditional Monte Carlo approach to predicting response distributions re-
quires a large number of nonlinear simulations which is computationally expensive.
This paper presents a new approach based on the principle of Maximum Entropy
that provides an estimate of the response distribution that is approximately two or-
ders of magnitude faster than Monte Carlo Harmonic Balance Method simulations.
The premise is to include the concept of ‘computational uncertainty’: incorporating
lack of knowledge of the solution as part of the uncertainty, on the basis that there
are diminishing returns in computing precise solutions to an uncertain system. To
achieve this, the method uses a describing function approximation of the friction-
damped part of the system; chooses an ignorance prior probability density function
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for the complex value of the describing function based on Coulombs friction law;
updates the distribution using an estimate of the mean solution, the admissible
domain of solutions, and the principle of Maximum Entropy; then carries out a
linear Monte Carlo simulation to estimate the response distribution. The approach
is validated by comparison with HBM simulations and experimental tests, using an
idealised academic system consisting of a periodic array of beams (with controllable
uncertainty) coupled by single-point friction dampers. Comparisons with two- and
eight-blade systems show generally good agreement. Predicting the response statis-
tics of the maximum blade amplitude reveals specific well-understood circumstances
when the method is less effective. Predictions of the overall blade response statistics
agree with Monte Carlo HBM extremely well across a wide range of excitation am-
plitudes and uncertainty levels. Critically, experimental comparisons reveal the care
that is needed in accurately characterising uncertainty in order to obtain agreement
of response percentiles. The new method allowed fast iteration of uncertainty pa-
rameters and correlations to achieve good agreement, which would not have been
possible using traditional methods.

Key words: nonlinear vibration, uncertainty, localised nonlinearities, turbine
blades, maximum entropy, friction damping, underplatform dampers, mistuning,
localisation

1 Introduction

Underplatform friction dampers are an ideal solution for reducing high ampli-
tude vibration in the harsh operating conditions of gas turbines [1]. However,
predicting the response of friction damped systems can be challenging due
to nonlinearity and uncertainty: nonlinearity arises predominantly from the
frictional interfaces; and there is uncertainty associated with the underlying
structural and frictional properties [2].

There is a need for efficient methods that can predict the response of friction-
damped structures and which take uncertainty into account, without requiring
computationally demanding Monte Carlo simulations of the nonlinear system.
There are two main strategies: develop computationally efficient modelling
methods so that Monte Carlo studies become feasible (e.g. [3,4]); and / or
develop methods for handling uncertainty that require a minimal number of
nonlinear simulations (e.g. [5]).
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The Harmonic Balance Method (HBM) has emerged as one of the most suc-
cessful and efficient methods for predicting the nonlinear response of friction
dampers [6]. The response can be predicted highly effectively using HBM with
just the fundamental frequency retained [6]: in this case the nonlinearity can be
characterised in terms of a describing function. It is noted that more recently
there has been a shift towards using the Multi-Harmonic Balance Method
(e.g. [7]). The multi-HBM approach has two main benefits: increasing solution
accuracy and also allowing prediction of more complicated phenomena that
are sometimes observed: for example, it has been found that single harmonic
HBM is not able to accurately capture severe events such as friction-damper
separation, or multiple equilibrium positions [7]. Nevertheless it remains the
case that using a single harmonic is remarkably effective and the associated
speed-accuracy trade-off is explicitly investigated in [8].

Despite the intrinsic efficiency of single harmonic HBM, it remains compu-
tationally expensive to use it for Monte Carlo simulations for predicting the
effect of uncertainty [4]. There is a need for modelling approaches that include
the effects of uncertainty explicitly or which reduce the number of nonlinear
simulations that need to be run. There have been some interesting recent de-
velopments in this general area. In the context of probabilistic uncertainty,
Peherstorfer et al. [5] use importance sampling together with a combination
of surrogate models and high fidelity models to obtain an efficient estimate
of the response statistics. Nevertheless, there is still a need for multiple sim-
ulations of a high resolution model and the approach requires specification
of two models of differing complexity. Fuzzy arithmetic is an interesting ap-
proach to non-probabilistic types of uncertainty, but as described by Moens
and Hanss [9] the efficiency of fuzzy arithmetic methods is still limited by the
number of simulations needed to estimate response bounds for different levels
of uncertainty membership. This is because the response bounds are found
by optimisation, or for the upper bound ‘anti-optimisation’: in other words
numerical optimisation is used to search the admissible set of parameters for
the extreme responses.

An alternative approach to finding response bounds was presented in [10]: the
approach has some similarities with fuzzy arithmetic but rather than speci-
fying bounds in terms of the system parameters, higher level constraints are
chosen such that the optimisation loop only requires linear simulations to be
carried out. Analytic solutions have also been found for common examples of
nonlinearities [11], and the concept of ‘equivalent linear bounds’ was shown
to be useful for response metrics dominated by contributions from the fun-
damental excitation frequency: the assumptions of equivalent linear bounds
are the same as for single harmonic HBM. The ‘equivalent linear bounds’ ap-
proach was applied to friction-damped systems in [12,13], where it was shown
to be effective for predicting response bounds of a two- and eight-beam system
coupled by a friction damper, with uncertainty associated with the frictional
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interface. The bounds were shown to be somewhat conservative for typical
levels of uncertainty, motivating research into probabilistic methods.

A method that has started to received significant attention is the use of Poly-
nomial Chaos Expansion (PCE): the fundamental theoretical work was devel-
oped in [14], but it has only more recently begun to be applied in engineering
applications [15]. The core approach is to describe the uncertain input param-
eters and response distribution in terms of a truncated set of orthogonal basis
distributions, then solve the system of equations for the coefficients of the
output distribution basis. This can be achieved either by Galerkin projection
(referred to as an ‘intrusive’ method in the sense of changing the system of
equations to solve), or by least squares solution using point-wise observations
from the original simulation code (referred to as a ‘non-intrusive’ method).
The intrusive methods are computationally faster but more complex to im-
plement [16]. This class of uncertainty propagation method can be very effi-
cient and applicable to nonlinear systems: the approach has been combined
with multi-frequency HBM using both intrusive [17] and non-intrusive ap-
proaches [18], and also with a nonlinear normal mode framework [19]. The re-
sults in each study show a great deal of potential, accounting for uncertainty of
strongly nonlinear systems with multi-stable frequency response curves. Nev-
ertheless there are several underlying challenges associated with PCE methods
in general: in particular, that simulation time scales poorly with the number
of uncertain parameters which currently limits the complexity of system that
can be tackled.

Another method that has received increasing attention in the context of struc-
tural dynamics is the principle of Maximum Entropy (or ‘MaxEnt’). Given
limited information about a random variable, Jaynes [20] shows that the ap-
propriate, or least biased, probability density function (PDF) is taken to be
the one that maximises its entropy subject to any constraints that incorpo-
rate known information, such as a mean value of the PDF. Soize [21] has
applied this principle to systems with random matrices. In this approach the
system matrices (mass, stiffness and damping) are taken to be uncertain, with
their mean represented by deterministic values and probability density func-
tion assigned using Maximum Entropy. Response distributions can then be
calculated efficiently for linear systems. One challenge with this approach is
the difficulty of interpretation: the admissible set of system matrices is not
necessarily constrained by physical arguments. For example, the ensemble of
possible uncertainties can include systems where remote parts of the system
are directly coupled, leading to non-physical results [22]. In itself this is not a
failing of Maximum Entropy, rather that the approach does not readily lend
itself to including physical constraints. In addition, this approach is mainly
focused on uncertainty associated with the underlying linear system rather
than nonlinear interactions.
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The method presented in this paper applies the principle of Maximum En-
tropy, but from a different perspective. A novel method is described for esti-
mating the response distribution of friction-damped gas turbine blades subject
to a probabilistic parametric description of uncertainty, that only requires one
nonlinear simulation (or equivalent computational cost). The method still uses
Monte Carlo sampling to propagate uncertainty, but the central concept is to
deliberately not compute the nonlinear solution for each sample and instead
include ‘computational uncertainty’ as part of the overall uncertainty. This
additional uncertainty means that the results are generally slightly conserva-
tive (but not overly so), and only the linear response of the system needs to be
computed for propagating the uncertainty. This results in a dramatic reduc-
tion in computational cost, without significant loss of accuracy in predictions.
The computational uncertainty is included using the principle of Maximum
Entropy.

An idealised academic benchmark system has been chosen to test the method,
which is described in Section 2: this consists of an experimental test rig with
single-point friction couplings to represent the friction dampers (Section 2.1–
2.4). Benchmark nonlinear solutions are found using the Harmonic Balance
Method (Section 2.5). The framework for estimating the response distribution
is described in Section 3 and comparisons with Monte Carlo experiments and
simulations are presented in Section 4.

2 Academic benchmark system

An idealised test system has been chosen in order to investigate the funda-
mental issues associated with friction-damped gas turbine blades within a
laboratory setting. The key design requirements of the system were that it
should: (1) be periodic to represent the periodicity of bladed disks; (2) in-
clude frictional couplings between periodic elements; and (3) allow deliberate
introduction of mistuning and other uncertainties. With this starting point,
an experimental test rig was designed that consisted of a periodic array of
tunable beams coupled by single-point friction dampers. The intention was to
choose a system that included some of the key modelling challenges (nonlinear
friction and uncertainty), while also retaining simplicity to make the analysis
more tractable. This intermediate complexity rig aims to provide a benchmark
for assessing new methods in a relatively controlled setting.

Experimental modal analysis was carried out to obtain a modal representation
of the dynamic response of the structure. The Harmonic Balance Method was
used to predict the deterministic response of the system based on the exper-
imentally identified modal representation, in order to provide a benchmark
reference for validation purposes.
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2.1 Experimental test rig overview

A photograph of the overall experimental test rig is shown in Fig. 1(a) where
the beams are an idealised representation of turbine blades and will be re-
ferred to as Beams 1–8 from left to right. A close up of the friction damper
assembly is shown in Fig. 1(b). Figure 2 shows an annotated diagram for (a) a
nominal beam and (b) a friction coupling arm. The beams have been water-jet
cut from a single sheet of steel to form a comb-like structure of eight nomi-
nally identical beams connected at their base for straightforward alignment.
The base is bolted between two heavy clamping beams each 25 mm thick to
minimise coupling between the beams via the base. Each beam has height
290 mm, width 40 mm, and thickness 3 mm. This results in the dynamic re-
sponse being dominated by low frequency out-of-plane bending modes. The
top of each beam is folded over to provide a horizontal surface of length 31 mm
for sliding contact when the beams vibrate out-of-plane. Each beam is coupled
by a single-point friction damper acting between the top platforms. In order
to maintain approximately constant normal force during large amplitude os-
cillations, a small steel wedge was secured onto the beam platform to provide
the frictional contacting surface at an angle of approximately 3 degrees.

The friction couplings consist of an aluminium arm securely attached to the
top of each beam with a hemispherical steel pin contact with the wedge plat-
form on the neighbouring beam. A mass was suspended from a soft elastic
bungee in order to provide an approximately constant normal force at the
frictional contact. The damper arm is split in the centre, and joined by a thin
(0.2 mm) sheet of spring steel, to provide an approximate pinned boundary
condition about the bending axis perpendicular to the plane of the rig, while
maintaining a high torsional stiffness about the other two axes.

Excitation is provided by a non-contact coil-magnet arrangement at Position
(3) (see Fig. 2). The electromagnetic coils (120 m, 21 awg) were fixed to the
base structure, and the neodymium cylinder magnets (diameter 10 mm, length
20 mm) were attached to each beam, positioned within the coils. Calibrated
measurements of the current input into these coils provide a surrogate for
the input force to each beam. The excitation pattern into the set of eight
coils could be specified to allow for effective engine order (EO) excitation of
the beams. Further instrumentation is provided by accelerometers at approxi-
mately the mid-point (Position 2) and near the top (Position 1) of each beam.

There is some variation in the frictional couplings between the beams due to
differences in the friction properties and effective coupling stiffness between
each pair of beams. Additional controllable mistuning is introduced by masses
clamped to either side of the beam (in pairs of 70 g), which can be moved in-
dependently on each beam: the irregular cut-out provides 20 discrete notches
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(a)

(b)

Fig. 1. Experimental test rig: (a) eight-beam test rig; (b) close up of friction damper
assembly
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Fig. 2. Diagram showing dimensions (not to scale) of (a) a single beam within the
array and (b) details of a friction coupling arm.
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in which the masses can be positioned, numbered 1 to 20 from top to bottom
(they will be referred to as tuning locations in this paper). These masses al-
lowed the natural frequencies and mode shapes of each beam to be deliberately
perturbed.

The full eight-beam response is rather complicated, so some tests were carried
out using a two-beam subsection of the full rig. While this is a simple case,
it allows for a controlled discussion of the influence of different parameters
before moving onto the full eight-beam system. To achieve this, the dampers
connecting the two beams to the remainder of the rig are disconnected and
the unused beams are damped out using foam to prevent the dynamics of the
unused beams influencing the response.

2.2 Single beam characterisation

A linear characterisation of an isolated beam with friction dampers discon-
nected (but not removed) was carried out using standard modal analysis tech-
niques (e.g. [23]). For this process the tuning mass was placed in tuning lo-
cation 8 on the beam (within the set of 1–20 discrete notches) which will be
referred to as the ‘nominal tuned location’ throughout this paper. For these
modal analysis measurements the input excitation was an instrumented ham-
mer. The results were calibrated and mass-normalised modal amplitudes were
identified. Tables 1 and 2 show the identified modal parameters for Beams 5
and 6 for the first five modes of each beam: frequency; damping factor; and
modal amplitude (MA). The modal amplitudes are presented for three key
positions on the beam:

(1) The response of the accelerometer at the beam tip (Position 1).
(2) The response of the accelerometer at half the beam height (Position 2);
(3) The excitation location (Position 3);

Table 1
Modal fits for Beam 5 with mass at tuning location 8 (MA refers to the Modal
Amplitude).

Mode
Count

Type Frequency
(Hz)

Damping
ratio

MA1

(kg−
1
2 )

MA2

(kg−
1
2 )

MA3

(kg−
1
2 )

1 Bending 16.20 0.0017 2.55 1.04 0.33

2 Bending 105.8 0.0071 -2.12 1.70 1.16

3 Torsion 151.7 0.006 -0.6 0.32 0.31

4 Bending 275.5 0.017 1.36 0.19 2.82

5 Bending 550.9 0.013 -0.15 2.13 -1.58
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Table 2
Modal fits for Beam 6 with mass at tuning location 8 (MA refers to the Modal
Amplitude)

Mode
Count

Type Frequency
(Hz)

Damping
ratio

MA1

(kg−
1
2 )

MA2

(kg−
1
2 )

MA3

(kg−
1
2 )

1 Bending 16.94 0.0021 2.55 0.99 0.48

2 Bending 110.5 0.0032 -1.84 2.18 1.42

3 Torsion 159.2 0.0036 0.27 0.21 -1.04

4 Bending 270.5 0.0068 0.80 0.44 2.5

5 Bending 542.4 0.02 0.06 0.72 -0.68

Modes 1, 2, 4 and 5 correspond to the first four bending modes of each beam.
Mode 3 is a torsion mode of the beam at 159 Hz but it only makes a small
contribution to the response over the frequency range of interest and the re-
sponse measurements are made on the beam centre line, so it is not included
in subsequent analysis. An example fit to the measured transfer function for
a single beam using these parameters is shown in Figure 3, which shows a
good fit below 150 Hz and a more approximate fit at higher frequencies. The
intention was to accurately model the system for 0-150 Hz (to include the
two passbands), without attempting to accurately model frequencies higher
than 150 Hz. In practice it turned out that including a fit of just the first two
modes does not give good response predictions in the range 0-150 Hz due to
the tails of the higher frequency modes, which was corrected by including a
very approximate fit of the next two bending modes.

Some peaks are visible near 240 Hz that were not fitted: these are likely to
be modes of neighbouring beams in the rig making a small contribution from
the weak coupling through the clamped base of the assembly. Attempts to
isolate individual beams for these tests were made by damping neighbouring
beams with foam inserts, however complete isolation in all cases was difficult
to achieve. It was also found that the clamped boundary condition for the
beams was not introducing unwanted nonlinearity: releasing the beam from
rest at a large amplitude and measuring the decaying response revealed only
a very weak dependence of frequency and damping on amplitude (not shown),
and no significant harmonics.
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Fig. 3. Example driving point transfer function from input force to output acceler-
ation for Beam 6 at Site 3 (shaker, near base). Solid lines are experimental results
with dashed lines showing the reconstructed transfer function from modal parame-
ters

The mistuned rig will be discussed in more detail in Section 2.3, however it is
worth highlighting here the increased sensitivity of the modal parameters to
any small imperfections between the beams for higher frequency modes of a
given beam. In particular the modal parameters for the first and second modes
on both beams are fairly similar, but by the fifth mode differ significantly. The
natural frequencies show a smaller variation, while the damping shows a much
more marked difference between the beams. The variation in damping is likely
due to variation in the clamped lower boundary of the beams, which is very
difficult to achieve consistently across the width of the rig. The uncertainty
resulting from the clamped boundary condition is considered within the overall
uncertainty of the beams.

2.3 Mistuning characterisation

The movable masses visible in Fig. 1 allow the natural frequencies and mode
shapes for each beam to be varied. As a result there are two sources of vari-
ability in the rig:

(i) The natural variability between each beam due to manufacturing imper-
fections, in both the beam and friction damper properties;
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(ii) The controllable variability in the beam properties due to the movable
masses.

Initially the beam variability from the tunable masses is characterised by a set
of linear modal tests, to identify modal amplitudes and natural frequencies as
in Section 2.2. The variability in a single beam is considered by modal testing
for each tuning location (discrete mass position) of a single beam: in this case
Beam 5.

The variability in the first two modes is summarised in Table 3. When using
masses to intentionally mistune the rig, the second mode shape is significantly
more sensitive to the tuning location than the first mode. This proves useful
as it will give two distinct levels of variability within the rig. The higher
modes have not been carefully characterised in terms of uncertainty, however
estimates suggest the levels of uncertainty are a similar order of magnitude to
the second mode.

Table 3
Mean and variation in natural frequency and modal amplitudes (MA) due to tuning
mass movement on Beam 5. Modal amplitude subscript corresponds to position
number on the beam.

Parameter Mean %Std Dev

Mode 1 Natural Frequency (Hz) 16.2 4.7

Mode 1 MA1 ( kg− 1
2 ) 0.36 8.0

Mode 1 MA2 ( kg− 1
2 ) 1.04 3.8

Mode 1 MA3 ( kg− 1
2 ) 2.56 3.4

Mode 2 Natural Frequency (Hz) 103 5.8

Mode 2 MA1 ( kg− 1
2 ) 1.05 24

Mode 2 MA2 ( kg− 1
2 ) 1.55 25

Mode 2 MA3 ( kg− 1
2 ) -1.98 39

Transfer functions of Beam 5 were measured for each tuning location. This
ensemble is summarised in Fig. 4, which shows the percentiles of the measured
transfer functions, along with the percentiles of the reconstructed transfer
functions using the modal data. The percentiles of the reconstructed transfer
functions are not computed directly from the individually fitted cases, but
rather using natural frequencies and mode shapes from Gaussian distributions
based on the measured mean and variance: this was to simulate that input
uncertainty is often specified in terms of a mean and variance rather than as a
known distribution. Additionally the higher modes were also randomised using
the variances measured for the second beam bending modes, as the variance
was not measured above the second mode because the response distribution
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over the range 0–150 Hz did not require an accurate characterisation of the
uncertainty for modes above 150 Hz. The results of this process provide a
good fit over the range from 0–400 Hz. Randomly generated systems drawn
from the parameters in Table 3, will be used as a starting point in the MaxEnt
verification in Sections 4.2 and 4.4.

(a) (b)

(c)

Fig. 4. Percentiles of the ensemble of uncertain transfer functions for Beam 5 at (a)
Site 3 (beam tip); (b) Site 2 (mid-beam); and (c) Site 1 (shaker site). Dashed lines are
experimental results with solid lines showing reconstructed transfer functions from
random realisations of the modal parameters for a measured mean and variance.
The three lines represent the 5th, 50th and 95th percentiles.

2.4 Coupling characterisation

To estimate the coupling properties of the friction arms, two parameters are re-
quired: the coefficient of friction and the coupling stiffness between the beams.
Measurements of the coefficient of friction for steel-on-steel have been carried
out on an independent pin-on-disc test rig described in [24], which provided a
mean value of µ0 = 0.5.

The inter-beam tangential coupling stiffness was measured by isolating adja-
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cent pairs of beams coupled by a single friction damper. The remainder of
the dampers were disconnected and the inactive beams were also damped us-
ing foam padding. A normal preload N0 = 0.96 N was applied to the active
damper with input excitation F0 = 0.018 N which was found to result in fric-
tion coupling that was approximately at the linear ‘fully sticking’ limit. Given
that the uncoupled mode shapes of the beams and natural frequencies are
known, the frequency spacing between the first and second mode in the first
pass band of the coupled pair can be used to determine the coupling stiffness
between the beams using a standard linear analysis.

The results of this process for every friction damper are given in Table 4.
Damper 5 in Table 4, corresponds to the beam pair that will be used in the
‘two-beam’ experiments presented in Section 4.2, which couples Beams 5 and
6. The most apparent characteristic of these values is that they are orders
of magnitude lower than would be expected of a local contact stiffness at
the friction site. This is due to the lowest stiffness in the coupling arm being
associated with the steel flexure, which is in series with any contact stiffness.
As a result this stiffness becomes the limiting stiffness for the experimental
rig. Although it means that the friction model does not include a strict contact
stiffness, it fulfills the same role dynamically and does not affect the validation
of the MaxEnt method that follows. The physical effect of the low coupling
stiffness is that the passbands are slightly narrower than would be otherwise
expected.

There is significant variation in the coupling stiffness between the beams, and
more than would be expected in a gas turbine. The variation is because each
coupling arm is assembled as a collection of parts, and these assembly details
are not tightly controlled: the arm is glued onto the folded section of the
beams, the spring steel flexure is bolted to the two sections of the arm, and
the pin itself is threaded and glued into the end of the arm. However, these
factors were simply considered as part of the variability of the test rig and did
not limit the validity of the later comparisons.

Table 4
Coupling stiffness parameters between rig beams

Damper Number 1 2 3 4 5 6 7

Coupling Stiffness (Nm−1) 7200 4500 6500 7200 4800 8000 7000

2.5 Harmonic Balance Method

The Harmonic Balance Method (HBM) is commonly used for predicting the
response of friction damped turbine beams, e.g. [25]. The solution is approx-
imated as a truncated series of harmonic terms with fundamental frequency
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usually chosen to be the input forcing frequency, and the numerical precision of
predictions increases with the number of terms included in the expansion [26].
This is a robust and well-understood method, and it has been found that sat-
isfactory (albeit more approximate) predictions can be achieved even when
only the fundamental frequency is retained in the expansion [6]. This appar-
ently severe assumption still gives useful results because for friction damped
systems it is usually the case that the output displacement response is dom-
inated by the fundamental excitation frequency. The approach represents a
form of linearisation and the nonlinear system is characterised by an ampli-
tude and frequency dependent ‘describing function’. This first-order approach
is used in the present study as the intention is to focus on the effects of un-
certainty rather than to achieve high accuracy deterministic predictions, and
there are diminishing returns in accurately predicting a specific response in
the presence of uncertainty. Nevertheless it is recognised that some kinds of
dynamic response require a multi-HBM approach, but these cases fall beyond
the scope of the present work.

The frequency-domain system representation is summarised in Fig. 5. The
total force F acting on the beams is the sum of external forces Fext and
internal nonlinear friction forces Fnl. The linear structural dynamics can be
characterised by the Frequency Response Function (FRF) matrix D(ω) such
that the output response is given by Y = DF. A subset of these output
states Ynl are associated with the nonlinear friction dampers, and these states
provide the input to the friction describing function K(ω,Ynl). An output
metric is defined by a mapping M , and is simply an output quantity of interest
chosen by the user.

K(𝜔, Ynl)

D(𝜔)

Fext

+

+ 

Linear

Describing 

Function

M M

e.g.

• peak 

displacement

• kinetic energy

• RMS quantities

• …

M(Y)

Mapping

Y

YnlFnl

F

Fig. 5. Summary of friction-damped system representation using describing function
K to characterise the behaviour of friction dampers.

The friction model used is Coulomb’s law with a coefficient of friction µ0

and normal pre-load N0 in series with a tangential contact stiffness kc as per
the macro slip model of [6]. A schematic of the model is shown in Fig. 6.
This is a very simple model, and there are two main reasons that we do not
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include other friction models in this study: (1) the focus is on the approach
to uncertainty modelling, which is demonstrated using Coulomb friction with
contact stiffness, but is not intrinsically limited to this choice; and (2) it is a
commonly used model in this context, where it often serves as the underlying
law within distributed-contact Finite Element models.

It is convenient to define a non-dimensional parameter s:

s ≡ µ0N0

kcA
. (1)

where A is the relative displacement amplitude between a given pair of con-
tacting surfaces, i.e. yn+1 − yn = A cosωt.

Fig. 6. Schematic of the friction model used for a single damper, consisting of a
contact stiffness in series with a Coulomb friction sliding contact.

The describing function K for a single damper can be written as a function
of s:

K = Kr(s) + iKi(s), (2)

where

Kr =
kc
π

(
arccos (1− 2s)− 2(1− 2s)

√
s(1− s)

)
(3)

Ki =
4kc
π
s (1− s) , (4)

which is valid for 0 < s ≤ 1. When s → 0 then K → 0 which corresponds to
large relative amplitude (the fully slipping limit), and when s = 1 then K = kc
which corresponds to small relative amplitude (the fully sticking limit). These
results were derived in [6], and the expressions presented here use notation
consistent with the present study.

Figure 7 shows two projections of the describing function K using parameters
based on the experimental test rig described in Section 2.4: kc = 4800 Nm−1,
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µ0 = 0.5 and N0 = 0.48 N. Four points have been identified by a ‘×’ indicating
relative beam amplitudes of 10−5, 10−4, 10−3, and 10−2 m. When a friction
damper between a pair of beams is fully sticking, the relative displacement
between beams is small and the coupling is given by a purely real value equal
to the contact stiffness kc. As the relative amplitude increases, the friction
dampers begin to slip, leading to a complex value of K which follows the arc
shown. At high amplitudes, the friction coupling becomes insignificant and
K → 0 + 0i. Although friction is still present, its relative effect on the system
dynamics starts to become insignificant.

-5

-4

lo
g 10

(a
m

pl
itu

de
)

-3

1000

Im{K} (Nm-1)

-2

4000

Re{K} (Nm-1)

2000
0 0

(a)

0 1000 2000 3000 4000 5000

Re{K} (Nm-1)

0

500

1000

1500

Im
{K

} 
(N

m
-1

)

(b)

Fig. 7. Complex value of describing function K: (a) real and imaginary parts of Ki

as a function of relative amplitude between beam pairs; and (b) projection of real
and imaginary parts of K.

Eq. (2) represents the describing function for a single damper, so the response
of N dampers is parameterised by the vector s = [s1 s2 · · · sN ]T corresponding
to the diagonal matrix of describing functions K (see Fig. 5). The solution
procedure adopted was to:

(1) guess a vector of values strial
(2) compute the corresponding diagonal describing function matrix K using

Eq. (2)-(4):

K =



K1 0 · · · 0

0 K2 0
...

. . .
...

0 0 · · · KN


(5)

(3) find the response Y = (I−DK)−1DFext

(4) compute sout, with sout,j = µ0,jN0,j/kc,jAj, and Aj being the relative
displacement amplitude across the jth friction damper computed from
Y

(5) iterate until the residual difference is zero: R ≡ strial − sout = 0.
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The numerical solution was found using Matlab’s fsolve function.

The HBM model is used as a benchmark reference model to valide the MaxEnt
method, described in the next section. For any given comparison, the bench-
mark response percentiles were computed using an ensemble size of N = 1000
simulations. This was empirically found to give adequately converged esti-
mates for the 5th and 95th percentiles of the response.

2.6 Validation of HBM with experimental results

The linear structural dynamics are well understood and accurately charac-
terised over the bandwidth of interest of 0–150 Hz. Introducing the frictional
coupling makes predictions much more challenging due to both nonlinearity
and uncertainty. As a starting point, two beams (5 and 6) were effectively
isolated from the rest of the assembly, rather than starting with the full eight-
beam friction-coupled test rig. To isolate this pair of beams, all the friction
dampers were disconnected except for the one connecting Beams 5 and 6. This
effectively decoupled the other beams because the base was tightly clamped
by a thick steel beam. However, some small residual coupling was observed
(due to finite stiffness of the clamping structure), so damping was added using
foam inserts to further reduce the effect of the other beams. This was found
empirically to be sufficient to observe the expected behaviour for a two-beam
system.

A sinusoidal input force excitation was applied to Beam 5 at Position (3)
and the output acceleration response was measured at Position (2). A slow
continuous frequency sweep was used for the input spanning 10–150 Hz. Con-
vergence checks on the rate of change of frequency were carried out to ensure
that unwanted transient effects were not significant (not shown). Figure 8
shows a comparison between HBM predictions and experimental results for
(a) input excitation amplitude F0 = 0.18 N and (b) F0 = 0.72 N. The dashed
line shows the experimental results and the solid line is the HBM prediction,
showing the response for the driven beam. The coefficient of friction was in-
dependently measured to be µ0 = 0.5. It can be seen that overall there is
reasonable agreement, with very good agreement in the range 0–100 Hz. This
range includes the first two peaks at 17 Hz (beams in-phase) and 40 Hz (beams
out-of-phase) corresponding to the first bending mode of the beams, i.e. the
first passband of the coupled system. As expected the friction damper does
not significantly affect the in-phase mode (17 Hz) where there is theoretically
no relative motion between the beams, but it has an increasing affect on the
out-of-phase mode (40 Hz) where there is significant relative motion between
the beams.
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The level of agreement is more approximate in the second passband in the
range 100-150 Hz: the two peaks again correspond to the in- and out-of-phase
modes, in this case for the second bending mode of the beams. The reason for
the larger discrepancy here is likely to be because the second modes of the
beams are not tuned as accurately as the first modes of the beams (due to
manufacturing and assembly details), while the HBM model assumes identical
beams for these tests. These are details that could all be characterised in
more detail, but the emphasis of this study is on predicting the response
distribution arising from uncertainty rather than high fidelity modelling of the
deterministic components, so correction of these details has not been carried
out in this study.
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Fig. 8. Two-beam sub-assembly: comparison of HBM predictions (solid) with ex-
perimental swept-sine tests (dashed): (a) input force amplitude F0 = 0.18 N; and
(b) F0 = 0.72 N.

A similar comparison was carried out for the full eight-beam assembly. In
this case the excitation was applied to all eight-beams (rather than just one)
in a pattern corresponding to the experimentally identified third passband
mode of the assembly: this approximately corresponds to Engine Order 2
excitation, which has two nodal diameters and theoretically should only excite
the corresponding passband mode for a perfectly tuned assembly.

Figure 9 shows the eight-beam comparison between HBM predictions and
experimental results. In order to simplify the figure the maximum response
across the eight beams is shown at any given frequency. It can be seen that
the results are qualitatively in broad agreement: peaks are at approximately
the correct amplitudes, and the passband modes are more lightly damped for
the lower excitation in (a) than in (b). However, there are significant differ-
ences in the details: this is wholly representative of how difficult it can be to
obtain good agreement for assembled structures with frictional interfaces, and
motivates the need for an approach that incorporates uncertainty intrinsically.
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Fig. 9. Eight-beam full assembly: comparison of HBM predictions (solid lines) with
experimental swept-sine tests (dashed): (a) input force amplitude F0 = 0.18 N; and
(b) F0 = 0.72 N.

3 Theoretical framework of MaxEnt approach

This section presents the MaxEnt method that has been developed, together
with the supporting theoretical results that underpin the approach.

3.1 Overview of Method

The new approach is based on the assertion that the computational cost of
finding the exact solution for each sample of a Monte Carlo simulation is too
great, and that expending computational effort on finding exact solutions for
a system with uncertain parameters leads to diminishing returns, i.e. there
is little point finding accurate solutions to a system that is imprecisely de-
fined. Therefore, the choice is made to not attempt to solve the full nonlinear
equations for each Monte Carlo sample and instead include computational
uncertainty alongside structural and frictional uncertainty by sampling the
describing function K(s) using a suitable probability density function (PDF).
The phrase ‘computational uncertainty’ is defined here to be the uncertainty
introduced by not knowing (or choosing not to compute) the HBM solution
to the system shown in Fig. 5. Specifically this is represented as a PDF in the
non-dimensional parameter s defined in Eq. 1 which determines the operating
point of each friction damper. The core idea is that the HBM solution is itself
unknown and is therefore uncertain, because it is infeasible to compute (for
many samples in a Monte Carlo simulation).

The PDF is estimated using the principle of Maximum Entropy: this is a
two-step process that requires identifying an ‘ignorance prior’ that represents
complete lack of knowledge of the solution, then updating the prior subject to
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additional information (the mean solution) using MaxEnt. The ignorance prior
is a subjectively chosen PDF that aims to characterise no prior knowledge.
For example, the ignorance prior distribution for throwing a dice is usually
taken to be a uniform distribution across the six possible outcomes; if many
experiments were carried out it may be discovered that the mean solution was
not consistent with this, and it would be possible to apply MaxEnt to update
the PDF with this additional information.

The initial choice of the PDF for the ignorance prior of complex values of
the describing function K(s) falls to engineering judgement. In [12] a uniform
distribution was applied to the real and imaginary parts of each Ki over an
admissible space which allowed the uncertainty to include friction-model un-
certainty. But it has been found that Coulomb’s friction law appears to be a
useful approximation of friction-dampers, which specifies a different constraint
that each Ki(si) must lie on a defined curve in the complex K-space. An ex-
ample of the describing function was shown in Fig. 7 using parameters based
on the experimental test rig. The describing function is conveniently param-
eterised by the non-dimensional variable s which takes the range 0 < s ≤ 1
describing fully slipping through to fully sticking.

The ‘ignorance prior’ PDF m(si) for a given damper is chosen based on the
‘Principle of Indifference’ (see Jayne’s [20]), which for continuous distributions
leads to a uniform distribution. Therefore the ignorance prior m(si) is chosen
to be a uniform distribution over the normalised operating point si of each
damper such that 0 < s ≤ 1 where si = 0 and si = 1 correspond to slipping
and sticking limits respectively.

Additional information can be used to update the PDF of the normalised op-
erating point si of the describing function for each damper: a force saturation
limit that discards any solutions that exceed the Coulomb friction force; and
an estimate of the mean solution which can be found in several ways, e.g. by
using the solution from one HBM simulation based on a nominal or ‘mean’
set of model parameters.

The force constraint effectively defines the admissible domain of the PDF
of s. The ‘mean’ estimate provides a set of si,mean values that can be used to
update the ignorance prior using Maximum Entropy. The underlying principle
of MaxEnt is that it provides a method for updating an ignorance prior using
new information in a way that introduces no additional bias, in other words
it includes additional information in a way that makes no extra assumptions.
When the mean is known then the effect of applying MaxEnt is to re-weight
the ignorance prior by an exponential function over the admissible domain, as
shown in the next section. This is readily implemented by assigning weightings
to the original samples drawn from the ignorance prior.
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The proposed method is summarised in Fig. 10 and is as follows: generate
an uncorrelated ensemble of describing function values specified by the nor-
malised operating point si for each damper; generate a parallel ensemble of
uncertain parameters from a set of input distributions that describe the sys-
tem uncertainty; combine the samples pairwise and discard those that exceed
the Coulomb friction force limit; estimate the mean solution si,mean, e.g. us-
ing an HBM simulation of the ‘mean’ model; re-weight the samples using an
exponential distribution to achieve a mean set of si,mean as given by the mean
estimate; and propagate each sample to an output metric of interest.

0 1

0 1

Ignorance prior Input uncertainty

K ensemble D ensemble

Compute response ensemble:

Compute percentiles:

Apply force constraint

Estimate mean smean

Apply MaxEnt

Fig. 10. Summary of MaxEnt approach.
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3.2 Maximum Entropy

The principle of Maximum Entropy for a continuous random variable is based
on maximising the relative ‘information entropy’ H:

H(p,m) = −
∫
D
p(s) log

p(s)

m(s)
ds (6)

where p(s) is the multivariate probability density function that is sought, D
is the domain of admissible values of s, and m(s) is the ‘ignorance prior’ that
is required to satisfy invariance of H under a change of variables s→ f(s).

If the mean normalised operating point si,mean of the describing function of
each damper is specified then there is a constraint function for each friction
damper: ∫

D
sip(s)ds = si,mean (7)

and an overall normalisation constraint:∫
D
p(s)ds = 1 (8)

Equation 7 defines the marginal expectation si,mean ≡ E[si], the integration
is taken to be over the region D (valid values of each si parameter) and
ds ≡ ds1ds2 . . . dsi . . . dsN−1dsN .

The problem of maximising Eq. 6 subject to Equations 7 and 8 can be ex-
pressed as a variational problem using Lagrange multipliers λn to enforce the
constraints. This is achieved by defining a functional U as follows:

U =H(p,m) + λ0

[∫
D
p(s)ds− 1

]
+

N∑
i=1

λi

[∫
D
sip(s)ds− si,mean

]
(9)

=
∫
D
F (p, s)ds− λ0 − λisi,mean (10)

where N is the number of friction dampers and F (p, s) is defined to be:

F = −p(s) log
p(s)

m(s)
+ λ0p(s) +

N∑
i=1

λisip(s) (11)

The functional U does not depend on the derivative of p, so the maximum
occurs when:
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∂F

∂p
= 0 (12)

∂U

∂λ0
= 0 (13)

∂U

∂λi
= 0 (14)

These three equations give:

− log
p(s)

m(s)
− 1 + λ0 +

N∑
i=1

λisi,mean = 0 (15)∫
D
p(s)ds− 1 = 0 (16)∫

D
sip(s)ds− si,mean = 0 (17)

The Maximum Entropy PDF p(s) is therefore:

p(s) = m(s)eλ0−1
N∏
i=1

eλisi (18)

The factor eλ0−1 is simply a normalising constant such that the total integral
is unity, and the Lagrange multipliers λi are exponential weightings such that
the marginal expectations of each describing function parameter si are equal
to the HBM mean solution.

3.3 Methods for estimating the mean solution

Conceptually the simplest method for obtaining an estimate of the mean solu-
tions si is to assume that it is given by the HBM solution of the ‘mean model’,
i.e. the system with nominal parameter values. However, it could be argued
that this is a poor choice because it may represent an extreme case such as a
perfectly ‘tuned’ set of turbine beams. This will not result in a good estimate
of the mean solution of an ensemble of mistuned systems. A better estimate
could be obtained by taking a subset of HBM simulations and computing the
mean from that: but this comes with a computational cost.

By way of illustration Fig. 11(a) shows a set of mean s-values calculated using
N = 1, 10 and 1000 HBM simulations: this is for a representative two-beam
test system with an intermediate level of forcing F0 = 0.3 N. The frequencies
where s = 1 correspond to the damper fully sticking, while the frequencies
where s < 1 correspond to the friction dampers being active. This shows that
the dampers are slightly active near 17 Hz (s=0.96) and more active near 40 Hz
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(s=0.91): these correspond to the in-phase [1 1] and out-of-phase [1 −1] modes
of the first passband. The second passband shows a wider range of frequencies
where the dampers are active (90-140 Hz): this is because the uncertainty in
this frequency range is sufficiently large that the two passband modes are not
always distinct. It can be seen that using a single HBM simulation gives a
poor estimate of the ensemble mean (dotted line). The y-axis does not show
the full range of this case, with s = 0.27 and s = 0.66 at the two off-axis
minima. Using 100 HBM simulations produces the dot-dashed estimate which
is noisy but in the right vicinity of the N = 1000 reference (solid).
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Fig. 11. Estimating s-values using (a) a subset of N HBM simulations with N = 1
(dotted),N = 100 (dot-dashed),N = 1000 (solid); and (b) using the self-consistency
method (dot-dashed) compared with the N = 1000 (solid) reference.

An alternative approach is to use a self-consistency argument. Rather than
solving the HBM equations for each system sample, the solution si,mean = E[si]
is sought that results in the expected value of the residue function being zero:

E[Ri] = E[si]− E[s2,i] (19)

Figure 11(b) shows a comparison between the estimated mean compared with
the reference mean from N = 1000 HBM simulations. Although the estimate
is imperfect, with an apparently consistent bias, it has been found that output
distribution is insensitive to the exact value for the mean, and this method
has been found to be effective and efficient. The self-consistency approach can
be made faster by using a subset of ensemble systems, with a similar trade-off
as for HBM in (a). For subsequent simulations N = 100 has been found to be
effective. Note that this does not carry the same computational cost as 100
HBM simulations: this ensemble only affects the computation of the residual
in Eq. 19 (which is fast), not the iterative solution (which is the limiting factor
in HBM).
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4 Results and comparisons

The results are presented in four parts: Section 4.1 shows the two-beam com-
parison between MaxEnt predictions and Monte Carlo HBM simulations; Sec-
tion 4.2 shows the comparison with two-beam experimental results; Section 4.3
presents the eight-beam comparison between MaxEnt and Monte Carlo HBM;
and Section 4.4 shows the eight-beam comparison with experimental results.

4.1 Two-beam comparison: MaxEnt and HBM

The nominal system parameters identified from the two-beam experiment that
have been used for HBM simulations are summarised in Table 5. The input
excitation for the two-beam case was just applied to Beam 5 using the shaker
near the base (Site 3).

Table 5
Nominal properties of experimental test rig.

Coefficient of friction, µ0 0.5

Damper coupling stiffness, kc (Nm−1) 4800

Beam natural frequencies, fn (Hz) [16.94, 110.5, 270.5, 542.4]

Beam damping factor, ζn [0.0020, 0.0032, 0.0068, 0.020]

Normal force (N) 0.48

To illustrate the behaviour of the nominal tuned system, Fig. 12 shows a
set of frequency response curves of the driven beam for different amplitudes
of input force, with F0 ∈ [0.01 0.03 0.1 0.3 1 3 10] N. The response
has been normalised by the input force to compress the dynamic range of
the y-axis. It can be seen that over this range of input forces the response
transitions from a linear ‘fully-sticking’ limit at F0 = 0.01 N (thin line) to a
linear ‘fully-slipping’ limit at F0 = 10 N (bold line). At the low-amplitude limit
the first two peaks correspond to the first passband (first bending mode of the
beams) and the next two peaks correspond to the second passband (second
bending mode of the beams). The two peaks within each passband are the
[1 1] and [1 − 1] modes. At intermediate levels of input force the friction
damper becomes active, and this is the regime of operation for which they are
designed. As the input force amplitude increases, the damper suppresses the
second peak of each passband until the beams become effectively uncoupled.

In order to test the MaxEnt approach, uncertainty is applied simultaneously
to the coefficient of friction µ0, the damper contact stiffness kc, the beam
natural frequencies fn, and the beam damping factors ζn. For each variable
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Fig. 12. Sequence of frequency responses for two-beam system for a range of input
force amplitudes F0 ∈ [0.01 0.03 0.1 0.3 1 3 10] N: lines weighted according
to force input level, with increasing line weight corresponding to increasing force
amplitude.

the uncertainty is chosen to be independently normally distributed with mean
given by the nominal parameters in Table 5 and standard deviation σp defined
as a percentage of the mean. A Monte Carlo set of 1,000 HBM simulations
was carried out for comparison with the MaxEnt predictions. Figure 12 shows
an example set of distributions for these parameters for the case σp = 10%.

Figure 14 shows the response percentiles using an intermediate input force
F0 = 0.3 N (in the middle of the range of Fig. 12) for two levels of uncertainty:
(a) σp = 1%; and (b) σp = 10%. The lines correspond to the 5, 50 and
95 percentiles across all beams, inferred by their sequence from smallest to
largest amplitude.

The Monte Carlo HBM results are based on 1,000 simulations which took
approximately 2,200 seconds to compute: this was the observed time taken
for the calculation (not the CPU time), utilising parallel processing on an
eight-core 3.2GHz computer. This compares with 20 seconds for the MaxEnt
simulations using the self-consistency method for estimating the mean, using
the same computer, i.e. two orders of magnitude faster. It is recognised that
comparisons of computational speed are affected by many complicating fac-
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Fig. 13. Summary of input probability density functions used for the uncertain
parameters of each beam or friction damper for the case σp = 10%: (a) natural
frequencies; (b) damping ratios; (c) coefficient of friction; and (d) coupling stiffness.

tors, nevertheless this represents a significant improvement. The increase in
speed is because the self-consistency method for estimating the mean carries
only a slightly greater computational cost compared to a single HBM simula-
tion, and the rest of the uncertainty propagation involves the prediction of a
linear response.

The choice to use an ensemble size of N = 1, 000 was empirically found to
give converged estimates of the 5th and 95th percentiles: one indicator of this
convergence is the relatively low noise levels within the predicted frequency
response percentiles.

It is clear from Fig. 14 that the MaxEnt percentile estimates are generally
very good in both cases. In (a) the small uncertainty gives very tightly de-
fined frequency response distributions, with negligible response uncertainty for
0–40 Hz and very small uncertainty at higher frequencies. For most frequen-
cies there is no visible difference between MaxEnt and HBM percentiles. Some
differences are apparent on close inspection just below 50 Hz and 120 Hz. In
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Fig. 14. Comparison of MaxEnt estimates (solid) with HBM Monte Carlo results
(dashed), showing response amplitude percentiles (5, 50 and 95% inferred by se-
quence of increasing amplitude) using a relative standard deviation of: (a) σp = 1%
and (b) σp = 10%. These results are for a two-beam system with an intermediate
level of input excitation force F0 = 0.3 N applied to one beam, using 1,000 samples
for MaxEnt and HBM.

(b) the response uncertainty is much larger and is accurately estimated by the
MaxEnt estimate across most frequencies. Some moderate differences can be
observed at the 17 and 40 Hz peaks and in the range 90–130 Hz. These differ-
ences have been carefully investigated and some of the reasons are presented
in the following discussion.

A zoom of the friction-damped 40 Hz peaks are shown in Fig. 15: it can be seen
that the percentiles agree well then suddenly deviate for a range of frequencies
before agreeing again. This is because the ‘mean’ solution is generally in the
‘sticking’ regime with s = 1, resulting in a MaxEnt PDF being a delta function
at s = 1. In other words when the mean model is sticking the MaxEnt method
does not introduce any additional uncertainty, hence there is extremely close
agreement between MaxEnt and HBM. When the mean model gives s < 1,
then MaxEnt introduces additional uncertainty in the distribution of s. It
might be expected that this distribution would be conservative with a response
distribution wider than the true distribution, but this effect is balanced by
the force constraint which reduces the admissible domain of s-values. This is
made clear by applying MaxEnt without the force constraint, which results
in Fig. 16: the predicted distribution becomes much wider than the HBM
distribution when the friction dampers are active. Overall the force constraint
has been found to be beneficial: without it the predictions are can be overly
conservative.

The results shown in Fig. 14 are representative of several persistent charac-
teristics of these MaxEnt predictions: low amplitude excitation gives accurate
predictions of uncertainty because the friction dampers are in the sticking
regime; small uncertainty results are accurately predicted because the com-
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Fig. 15. Expanded view of friction-damped peak near 40 Hz from Fig. 14.
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Fig. 16. Effect of applying MaxEnt without a force constraint: test case is otherwise
the same as Fig. 14.

bination of the force constraint and MaxEnt weighting to the mean solution
gives a tightly defined PDF for s; high amplitude excitation combined with
significant uncertainty generally results in greater discrepancies particularly
for the tails of the response distribution.

These cases with more significant discrepancies may not be particularly prob-
lematic: gas turbine blades are manufactured to extremely tight tolerances,
so uncertainty associated with structural properties is generally considered
to be small; but other properties cannot be so tightly controlled such as the
inter-blade contact stiffness which is a function of the wear-profile and start-
up conditions for the individual dampers. It is also important to be clear
as to what precision is expected of the tails of a predicted distribution: per-
centiles from Monte Carlo reference simulations are sensitive to the precise
details of uncertainty characterisation, and as will be seen there is a practical
limit as to the precision of this input uncertainty characterisation. This means
that Monte Carlo HBM will also be an approximation to the actual response
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statistics of the blades because the input uncertainty distributions may not
be known accurately, so care is needed before discounting MaxEnt as a fast
estimate of response distributions when there are relatively small differences
compared with HBM.

Nevertheless, the reasons for the high-amplitude and high-uncertainty discrep-
ancies have been investigated in detail. In summary there are two primary
reasons for discrepancies that have opposite effects on the response distribu-
tion predictions: (1) computational uncertainty; and (2) nonlinearity-induced
localisation. As already discussed, the additional ‘computational uncertainty’
introduced by the method tends to give a conservative prediction of distribu-
tion tails and a reasonably good estimate of the mean. The effect of localisation
is that for some members of an ensemble of systems, high response amplitudes
are associated with a small number of beams with corresponding s values close
to 0, despite a mean s much closer to 1. This means that very few samples
are generated within the MaxEnt algorithm that have the specific conditions
needed for localisation to be represented in the estimated distribution, result-
ing in an underprediction of the response. In other words smooth exponential
distributions of s are not a good representation of the response when localisa-
tion occurs, and the discrepancy is specific to when the friction dampers are
active as the sticking limit is well represented by MaxEnt even if localisation
is present.

Figure 17 shows the full Monte Carlo HBM solutions associated with the two-
beam example of Fig. 14(b), taking an excitation-frequency snapshot at (a)
f = 40 Hz and (b) f = 120 Hz. The plots show the response amplitudes of
each beam against their corresponding s-values (calculated by HBM), with the
driven beam shown as crosses and the undriven beam as circles. It can be seen
in (a) at 40 Hz that the solutions are reasonably tightly distributed around
s = 0.9. In (b) at 120 Hz the solutions are more broadly scattered in the range
0.5 < s ≤ 1 and for smaller values of s the directly driven beam response is
much larger than the second beam. This is an example of localisation and the
sampling strategy adopted here for MaxEnt does not reliably capture the tails
of this s-distribution that correspond to high amplitude localised response.
Some effort has been made to explore different sampling strategies in order
to more reliably capture the tails of the s-distribution and it is expected that
further improvements are possible, but this remains a challenge for future
work.

4.2 Two-beam comparison: MaxEnt and Experiment

Initial experimental verification of the MaxEnt method is performed on a two-
beam subset of the full experimental rig. This is achieved by disconnecting all
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Fig. 17. Frequency snapshots of Monte Carlo HBM solutions for (a) f = 40 Hz; (b)
f = 120 Hz. Test case corresponds to Fig. 14; crosses show the directly driven beam
solutions and circles show the second-beam solutions.

the friction dampers except one and damping all other beams in the rig using
foam inserts. The beams chosen for the two-beam experiment are Beams 5
and 6. The two-beam system illustrates many of the important physical char-
acteristics and provides a highly controlled case to highlight the importance
of having a solid model of the uncertainty in the system.

Experimental data was collected for excitation into a single beam (Beam 5)
at three amplitudes, using a single normal force. An ensemble of 50 random
systems was generated by moving the masses on both Beams 5 and 6, and all
the data presented in this section will be shown as percentiles of the response
across the ensemble. Percentiles will be presented at the 10, 50 and 90th
levels: slightly tighter than the numerical results due to the smaller size of
the experimental ensemble compared with HBM simulations. As identified in
figure captions, percentiles may be for the full set of data across both beams,
or only the maximum of the response at a particular beam location.

The full set of parameters used in the two-beam experiment not already in-
troduced elsewhere is given in Table 6.

Table 6
Experimental parameters for two-beam tests

Parameter Value

Excitation Force (N) [0.18, 0.36, 0.72]

Normal Force (N) 0.48

Coupling Stiffness Nm−1 4800
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4.2.1 Fitting uncertainty

The initial uncertainty model used in the MaxEnt comparisons is based on
the results from Section 2.3, and Table 3. The uncertain parameters used as
inputs to the MaxEnt method were taken to be the beam natural frequen-
cies and mode shapes. Uncertainty in the coupling stiffness parameters and
coefficient of friction were small and did not significantly change the predic-
tion percentiles. Two response metrics are presented in the figures that follow:
(i) percentiles based on the maximum response across the beams at Site 2
(mid-beam) for each case and (ii) percentiles based on all beam responses at
Site 2.

As a starting point, a Gaussian uncertainty model approximately based on
Table 3 was used as the input for MaxEnt: the standard deviation for the
natural frequencies was taken to be σp = 5%, and σp =5% for the first mode
amplitudes and σp =30% for the remaining modes. Figure 18(a,b) shows a
comparison of the MaxEnt predicted percentiles (solid) with the experimental
results (dashed), with (a) showing the response distribution across all beams;
and (b) showing the response distribution of the maximum beam response.
It can be seen that the overall level of agreement is good for both metrics:
the main features and corresponding uncertainty are broadly captured by the
MaxEnt predictions. In particular the two distinct modes at 17 and 40 Hz are
predicted, including the higher level of friction-damping for the out-of-phase
mode at 40 Hz. The broader ‘peak’ corresponding to the second passband is
also present and the MaxEnt approach captures how the two modes can no
longer be distinguished, which is also true for the experimental results.

However some details differ, for example the 10th percentile in the 60–100 Hz
region (a) and (b), and the high frequency ‘tail’ of the second passband above
120 Hz is not accurately captured. Another apparent discrepancy is the differ-
ence between the 50th percentiles in (a) at 25 Hz where the MaxEnt method
completely misses the antiresonance. This is in fact a post-processing artefact
particular to the two-beam system: the metric in (a) includes the response
of both beams but only one of the beams has an antiresonance, so the 50th
percentile algorithm can arbitrarily switch between the selected beams. Also
of note in (b) is a peak in the experimental 50th percentile just below 120 Hz
that is not present in the MaxEnt prediction. This feature is not present in (a)
when considering the metric of all the beams, which highlights how the met-
rics involving the maximum of the response tend to highlight extreme features
that are less well captured by the MaxEnt method.

While these comparisons are generally good, careful consideration of the un-
certainty model allows for improvements. The initial guess for an uncertainty
model assumed a Gaussian distribution of the parameters. However the mis-
tuning characterisation of the linear rig shows that a uniform distribution for
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the natural frequencies is more representative as the tuning locations of the
masses were randomised uniformly. More significantly it is apparent from the
linear characterisation that the natural frequencies and mode shapes are cor-
related. As the mass is moved from tip to base of the beam the first natural
frequency increases while the second natural frequency decreases. Further, the
magnitude of the second modal amplitude at the tip of the beam increases as
the natural frequency decreases, while the modal amplitudes of the second
mode shape at the excitation location and mid beam decrease before increas-
ing again. Investigation has shown the most important of these effects is the
correlation of the second mode shape and second natural frequency, so the
effect of the MaxEnt fits as a result of this additional correlation is shown in
Figure 18(c,d): (c) shows the response distribution across all beams and (d)
shows the maximum response distribution.
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Fig. 18. Comparison of MaxEnt predicted percentiles (solid) with experimental re-
sults (dashed) for the two-beam system with an intermediate input force amplitude
of F0 = 0.36 N: (a,b) show MaxEnt predictions using a Gaussian input uncertainty;
(c,d) uses a uniform distribution for the natural frequencies correlated with modal
amplitude uncertainty.

There are two significant changes caused by the change to a uniform distribu-
tion that can be seen in Fig. 18(c,d). Firstly the edges of the second passband
particularly at the 90th percentile level are noticeably sharper and this is
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also apparent in the 50th percentile, as the uniform distribution tightens up
the range of natural frequencies across the numerical ensemble. Perhaps most
striking is that the 10th percentile line is much less conservative than in (a,b).
The 90th percentile is still somewhat conservative for the maximum of the
response, but when considering the percentiles of all the beams (c) this is far
less apparent, and the fit with experiment is generally very good. It can also
be seen that the 50th percentile prediction is improved for both metrics (c)
and (d).

4.2.2 Other two-beam comparisons

For completeness Fig. 19 shows a comparison of MaxEnt predictions with the
experimental results for input excitation amplitudes of F0 = 0.18 N and F0 =
0.72 N (the case F0 = 0.36 N was presented above). The uncertainty model is
chosen as the final model involving correlated mode shapes corresponding to
Fig. 18(c,d). It is encouraging that the quality of the fits are broadly similar
to the previous case.

In summary these results suggest that a very careful model of the uncertainty
in the system is required to recover close agreement between the experimental
and MaxEnt results. This highlights how uncertainty propagation tools can
only be as good as the input uncertainty characterisation. In practice, some
sources of uncertainty are epistemic in nature and are not necessarily associ-
ated with an ensemble of instances. Therefore care is needed when comparing
results, and when interpreting predictions.

4.3 Eight-beam comparisons: MaxEnt and HBM

The nominal system parameters identified from the eight-beam experiment
were used for HBM simulations and are summarised in Table 7. The difference
from the two-beam case is the damper contact stiffnesses, which have been
individually estimated. The MaxEnt method does not rely on knowing values
for these individual coupling stiffnesses, but this detail was included as the
data was readily available. It is clear that there is considerable variability
across the dampers such that even if the beams were perfectly tuned there is
still mistuning due to the coupling variability. This is likely to be a factor in
gas turbines, where the blades themselves are manufactured to a very tight
tolerance so the variability in contact configuration of the dampers may be
the dominant cause of mistuning.

The input force excitation pattern across the beams for the following tests is
taken to be the ideal mode shape associated with the first mode of a passband
that involves relative motion between the beams (i.e. Mode 2 of the passband
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Fig. 19. Comparison of MaxEnt predicted percentiles (solid) with experimental
results (dashed) for the two-beam system with input force amplitude of (a,b)
F0 = 0.18 N and (c,d) F0 = 0.72 N. The MaxEnt input uncertainty model uses
a uniform distribution for the natural frequencies correlated with modal amplitude
uncertainty.

Table 7
Nominal properties of experimental test rig.

Coefficient of friction, µ0 0.5

Damper Contact stiffness, kc (N/m) [7200, 4500, 6500, 7200, 5000, 8000, 7000]

Beam natural frequencies, fn (Hz) [16.94, 110.5, 270.5, 542.4]

Beam damping factor, ζn [0.0020, 0.0032, 0.0068, 0.020]

Normal force (N) 0.48

for a tuned system which has a single nodal line between Beams 4 and 5). In
the linear sticking-limit for a perfectly tuned system this has the effect of only
exciting the corresponding mode from each passband, but in the presence of
uncertainty and mistuning then this forcing pattern excites all modes.

Figure 20 shows two sets of frequency response curves of the maximum re-
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sponse across all beams for different amplitudes of input force, with F0 ∈
[0.01 0.03 0.1 0.3 1 3 10] N. The response has been normalised by the in-
put force to compress the dynamic range of the y-axis. The first case shown in
(a) is for the idealised perfectly tuned system with all contact stiffnesses equal
kc = 4800 Nm−1; case (b) shows the results using the parameters in Table 7.
It can be seen in both cases that the friction damper has most visible effect
on the first passband response (15–60 Hz). At low input amplitudes, (a) shows
that the Mode 2 excitation pattern only excites the corresponding mode as
expected. As the input force increases and the friction dampers become active,
then damping increases and eventually the frequency response transitions to
an effectively uncoupled response with natural frequency at fn = 16.94 Hz.
For the mistuned system in (b) the response is more complicated: at low in-
put force eight modes are visible in the frequency response function with the
dominant mode corresponding to the excitation pattern, as the dampers be-
come active at higher amplitudes some of these are affected more strongly
than others, until at high amplitudes the response tends to nearly a single
peak at 16.94 Hz. For the subsequent comparisons with MaxEnt the mistuned
case (b) will be presented.
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Fig. 20. Sequence of simulated frequency responses using HBM for eight-blade sys-
tem using a range of input force amplitudes F0 ∈ [0.01 0.03 0.1 0.3 1 3 10] N: (a)
tuned system; (b) mistuned system. Lines weighted according to force input level,
with increasing line weight corresponding to increasing force amplitude.

Figure 21 shows a comparison between MaxEnt and HBM of the response
distribution percentiles (5th, 50th and 95th) for a sequence of cases: the plots
on the left (a,c,e) show σp = 1% and on the right (b,d,f) show σp = 10%; with
pairs (a,b), (c,d) and (e,f) corresponding to increasing input force F0 = 0.1,
0.3, and 1 N. These excitation amplitudes span a range of representative cases
for which the friction dampers are active. It can be seen that in general agree-
ment is good: at low amplitudes (a,b) when the beams are in the ‘sticking’
regime then agreement is exact as before; at intermediate amplitudes (c,d)
then the MaxEnt method gives slightly conservative predictions; while for
high amplitudes then the localisation effect dominates and (e,f) show small
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under-prediction. For all excitation levels there is good agreement when un-
certainty is small: this is closer to realistic levels of uncertainty in precision gas
turbine blades, suggesting that this method could be extremely valuable for
fast estimates of response distributions during the design phase of a turbine.
The relative contribution of each uncertain parameter to the response vari-
ability has not been calculated here: this falls beyond the scope of the present
study and is left for future work.

The metric chosen for comparisons so far has been the maximum response am-
plitude across all beams. Predicting extreme-response statistics is very chal-
lenging, so it is also interesting to compare the HBM and MaxEnt distributions
across all beams. Figure 22 shows a set of comparisons using this metric for
a range of excitation amplitudes and uncertainty levels: left shows σp = 1%;
right shows σ = 10%, and force amplitudes F0 = 0.1, 0.3, and 1 N correspond
to pairs (a,b), (c,d), and (e,f) respectively. It can be seen that the MaxEnt
predictions for the overall response statistics are extremely good, providing
accurate distribution percentiles for all cases and where small discrepancies
occur the MaxEnt percentiles are slightly conservative.

Comparing Fig. 22 with Fig. 14 it may be thought that the results for the
eight-beam system are better than for the two-beam. Some care is needed here:
this comparison is not like-for-like as Fig. 22 is based on the metric across all
beams, not the extreme response as in Fig. 14. The more reliable comparison is
between Fig. 21 with Fig. 14, and the results have a similar level of discrepancy.
This highlights that MaxEnt predictions are better for estimating distribution
percentiles for the overall response than for the extreme response.
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Fig. 21. Comparison between MaxEnt and HBM Monte Carlo for a range of in-
put excitation amplitudes and uncertainty levels for the eight-beam system: (a,c,e)
σp = 1%; (b,d,f) σ = 10%; with F0 = 0.1, 0.3, and 1 N associated with pairs (a,b),
(c,d), and (e,f) respectively. The percentiles represent the response distribution for
the maximum beam response, using 1,000 samples for MaxEnt and HBM.
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Fig. 22. Comparison between MaxEnt and HBM Monte Carlo for the response
distribution across all beams. The sequence is otherwise equivalent to Fig. 21.
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4.4 Eight-beam comparison: MaxEnt and Experiment

The final characterisation of the coupled rig required for the eight-beam tests
are the engine order mode shapes across the rig. The excitation pattern for
the eight-beam tests was chosen to have similar dynamic properties to en-
gine order excitation in the true turbine, i.e. to attempt to select individual
modes from each passband. A key difference for the non-circular beam array
is that repeated frequency doublet modes are not present, so travelling wave
excitation (with shifted phase polarisations of engine order excitation) is not
necessary. To achieve the mode-selection property the excitation pattern was
chosen to be as similar as possible to one of the global mode shapes of the
assembly.

Measuring the engine order mode shapes is challenging as the coupled lin-
ear rig in a fully sticking configuration is difficult to achieve. However, esti-
mates of these mode shapes can be made using a small amplitude excitation
(F0 = 0.018 N) and a relatively high normal force (N0 = 0.96 N) applied to
the friction dampers. Excitation patterns were then chosen to best fit these
measured mode shapes. The excitation pattern for Engine Order 2 is given in
Table 8 (normalised to the peak amplitude), which has two nodal diameters
consistent with the expected mode shape. This force pattern was then used
as the deterministic input amplitude to each beam of the assembly.

Table 8
Normalised excitation force pattern (N)

Beam 1 2 3 4 5 6 7 8

EO 2 -0.29 -0.59 0.59 1.0 1.0 0.59 -0.59 -0.29

The exploration of the two-beam rig provided an understanding of the rela-
tive importance of different rig parameters for fitting an accurate response.
Although precise characterisation was needed for accurate agreement, it is re-
assuring that if the uncertainty model is too conservative and does not include
important correlations between the modal parameters then it tends to provide
a conservative estimate of the response.

To complete the experimental work, MaxEnt predictions were compared with
experimental results for the eight-beam rig. An ensemble of 50 random systems
was generated by moving the masses on all beams, and the data presented in
this section will be shown as percentiles of the response across the ensemble.
Percentiles will be presented at the 10, 50 and 90th levels. The uncertainty
model was based on the two-beam case using the correlations between parame-
ters required to give the fits given in Fig. 18(c,d). The mean modal parameters
for all beams were chosen to be the average parameters across the two beams
given in Table 6. Engine order excitation was implemented using EO2 given
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in Table 8. Excitation amplitudes were at the nominal levels of 0.18, 0.36 and
0.72 N corresponding to the maximum force input.

The results of this test for the three nominal excitation amplitudes are shown
in Fig. 23: (a,b) shows the case for F0 = 0.18 N; (c,d) F0 = 0.36 N; and (e,f)
F0 = 0.72 N. The response distribution across all beams is shown in the left
plots (a,c,e) and the maximum response distributions are shown in the right
plots (b,d,f). As for the two-beam case the fits for the percentiles based on all
beam responses (a,c,e) are generally better than those when considering the
maximum response of the beams as a metric (b,d,f). Overall, the agreement
is remarkably good: the main features in each figure are captured by the
MaxEnt predictions. Although the fit is not as good as for the two-beam case,
the greater variability in the rig between beams and coupling links means this
is not surprising.

One of the interesting characteristics of the eight-beam tests is the differ-
ent ranges of modal and statistical overlap that are apparent. Two distinct
ranges can be identified: high modal overlap across an entire passband (e.g.
90–130 Hz); and low to intermediate modal overlap where some modal struc-
ture can be identified (e.g. 14–60 Hz).

In regions of high modal overlap the MaxEnt prediction performs best and with
a slight bias towards overestimating the response, particularly at the higher
frequency edge of the pass-band. This illustrates that regions of the response
with high modal overlap seem to be less sensitive to accurate characterisation
of the details of the uncertainty model, as long as the broad level of uncertainty
is correct.

For regions of intermediate modal overlap, the quality of the fit remains good
particularly at the 50th percentile level. However, some of the peaks in the 90th
percentile are overly conservative in the MaxEnt prediction. This may indicate
that some of the details of the uncertainty model or the operating point do not
exactly match the experimental results, and as a result extreme predictions
(and particularly the maximum response), do not correlate as well between
MaxEnt and experimental results. The good agreement between the MaxEnt
predictions and benchmark HBM results (Figs. 21 and 22) suggest that the
differences are likely to be predominantly due to inaccurate characterisation
of the input uncertainty rather than being an approximation inherent to the
MaxEnt method.

In summary it is clear that it is extremely challenging to obtain good agree-
ment between the experimental and predicted ensembles of results. The good
agreement between MaxEnt and the Monte Carlo HBM simulations show that
it is not a problem with MaxEnt, but rather with the long-standing challenge
of reliably characterising uncertainty in nonlinear systems. The results pre-
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sented here are just a representative sample of cases and many more were
investigated. This highlights one of the key successes of the new MaxEnt
approach, providing the ability to carry out fast predictions using different
modelling details.

(a) (b)

(c) (d)

(e) (f)

Fig. 23. Max Ent fit to experimental data, left column contains percentiles for all
beam data, and right column shows only the maximum response across the beams.
Row 1 is for an amplitude of 0.16 N, row 2 is for an amplitude of 0.36 N and row 3
is 0.72 N.
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5 Conclusions

There is a need for efficient methods for predicting the response distribution
of friction-damped gas turbine blades, that include the effects of uncertainty
without requiring computationally expensive Monte Carlo simulations of the
full nonlinear system. This paper has presented a novel method that provides
a fast estimate of the response distribution using the principle of Maximum
Entropy. The new method is approximately two orders of magnitude faster
than Monte Carlo Harmonic Balance Method (HBM) simulations, and gives
a reliable approximation of the response statistics across a wide range of ex-
citation amplitudes and for different levels of uncertainty.

The method is based on using a describing function approximation of the
nonlinear friction behaviour, but assigns a probability density function to the
solution rather than computing individual solutions for all members of a ran-
domised system. An initial ignorance prior distribution is updated by the
principal of Maximum Entropy subject to an estimate of the mean solution
and the admissible domain of the solution set.

The method has been validated by comparison with benchmark Monte Carlo
simulations using the Harmonic Balance Method, and also by comparison
with experimental results from a carefully designed test rig. The numerical
results reveal generally good agreement between MaxEnt and Monte Carlo
HBM, with some deviations in the maximum response percentiles when there
is both high amplitude input force combined with high levels of uncertainty:
the moderate discrepancies are caused by localisation which is not accurately
represented by the MaxEnt distribution. This is not a failing of MaxEnt, and
instead reveals that more information would be needed to be able to include
this effect. When MaxEnt is used to predict the overall response statistics
across all beams rather than just the peak response statistics, then the pre-
dictions agree extremely well with Monte Carlo HBM.

The comparisons with experimental results were particularly revealing. In or-
der to obtain good agreement a great deal of care is needed to accurately
characterise the uncertainty itself, including relevant correlations between un-
certain parameter distributions. This challenge is common to all parametric
uncertainty propagation methods: the accuracy of the predicted response dis-
tribution depends on the quality of the input uncertainty data. The MaxEnt
approach here enabled iterating the input uncertainty characterisation over
several attempts in order to obtain good agreement between MaxEnt and ex-
perimental distributions. This demonstrates the effectiveness of the method
as this iterative process would not have been feasible using traditional ap-
proaches.
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