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Abstract— Intrusion prediction is a key task for forecasting
network intrusions. Intrusion detection systems have been
primarily deployed as a first line of defence in a network,
however; they often suffer from practical testing and evaluation
due to unavailability of rich datasets. This paper evaluates
the detection accuracy of determining all states (AS), the
current state (CS), and the prediction of next state (NS) of
an observation sequence, using the two conventional Hidden
Markov Model (HMM) training algorithms, namely, Baum
Welch (BW) and Viterbi Training (VT). Both BW and VT were
initialised using uniform, random and count-based parameters
and the experiment evaluation was conducted on the CSE-CIC-
IDS2018 dataset. Results show that the BW and VT count-
based initialisation techniques perform better than uniform and
random initialisation when detecting AS and CS. In contrast,
for NS prediction, uniform and random initialisation techniques
perform better than BW and VT count-based approaches.
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I. INTRODUCTION
Cyber-attacks through intrusions have become widespread that

detection of such intrusions is paramount. Currently, an Intrusion
Detection System (IDS) remains a mandatory line of defence and is
crucial in protecting critical networks from intrusions [1]. IDSs can
either be anomaly-based or signature-based. The former leverages a
model of the system under normal behaviour and, thereby, detects
any potential deviations from normality, whereas the latter uses
a database with signatures of known attacks to detect malicious
activities [2]. Commercially, signature-based IDSs are widely used,
but on the other hand, anomaly-based IDSs have the potential to
detect unknown attacks. However, in general, anomaly-based IDSs
have low detection and high false positive rates [3]. To enhance
IDSs in detecting novel attacks, efficient adaptive Machine Learning
(ML) algorithms are often used.

Hidden Markov Model (HMM), is a ML technique widely used
for detection and prediction of cyber-attacks. Essentially, HMMs
have been leading in both intrusion detection and multi-stage attack
prediction [4]. Among other merits, HMM can detect unknown
intrusions, predict potential future steps of an the intruder, and
process data streams on-the-fly in realtime applications [5].

In this work, Snort IDS [6], a popular open-source signature
based IDS [7], has been used to trigger alerts from the CSE-
CIC-IDS2018 [8]. To the best of the author’s knowledge, limited
work has been done on the CSE-CIC-IDS2018 dataset unlike the
CICIDS2017 [9], [1] dataset which is becoming popular. These
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two datasets have identical attack scenarios; however, the CSE-
CIS-IDDS2018 simulates a 10 day attacking period using 50 attack
machines, 420 victim machines and 30 servers. The CICIDS2017
dataset was simulated over 5 days, with one day of normal activity,
and four days of both attack and normal activity.

The rest of the sections in this paper are organised as follows. In
Section II, relevant research work on generating sequential network
attacks and evaluating prediction of IDSs is presented. A theoretical
background on HMM and related concepts is given in Section III.
The experimental methodology which includes the presented HMM
design and experimental setup is described in Section IV. In Section
V, the results are presented and discussed and, finally, conclusions
and future work are given in Section VI.

II. RELATED WORK
Diverse work on HMM and intrusion detection and prediction

has been conducted based on outdated datasets. Two recent public
datasets, CICIDS2017 [10] and CSE-CIC-IDS2018 [8] are currently
available. They contain normal traffic, popular and modern common
attack scenarios including heartbleed, Brute-force, Botnet, and
Denial of Service (DoS). Despite being publicly available, limited
work has been done to utilise these datasets for evaluation, testing
and tuning of real-time IDS deployments.

Authors in [11] conducted a comprehensive analysis of the
CICIDS2017 dataset. They explored the flaws in this dataset and
consequently relabelled it to address the high class imbalance
problem. Their focus was on the dataset design for effective
implementation in intrusion detection and prediction. In [12], an
evaluation of the efficacy of various unsupervised anomaly detection
techniques in flagging multiple attack types was performed.

In [13], an adaptive anomaly-based IDS using genetic algorithm
and profiling is proposed. Using the CICIDS2017 dataset, a detec-
tion and false positive rate of 92.85% and 0.69% respectively was
achieved, and the technique succeeded to iteratively adapt to new
attacks.

More closely related work is conducted in [14], where a multi-
layer HMM IDS is developed. Feature selection and creation is
applied on CICIDS2017 dataset, thereafter singular vector decom-
position is used on principal component analysis for feature extrac-
tion and reduction. Vector quantisation using K-means clustering
was then used prior to HMM parameter estimation to create cluster
labels.

III. OVERVIEW OF HIDDEN MARKOV MODEL
HMM is a probabilistic ML framework that has two intertwined

processes, namely, states and observation. Unlike Markov chains,
where states have defined transition probabilities, the states in HMM
are concealed, thus the term “hidden”. However, the modelled
process also generates observations, which can be leveraged to infer
the state from which the observations have been emitted, as seen



in Fig. 1. The figure demonstrates a left-right model where any
observation can be emitted from one or more states. Commonly
used notations and definitions for HMM are as follows [5], [14]:

• V : Set of M distinct observation symbols,
V = {v1,v2, ...vM}

• Q: Set of distinct N hidden states, Q = {q1,q2, ...qN}
• O: Observation sequence, O = {o1,o2, ...,ot , ...,oT }
• S: Set of hidden states, S = {s1,s2, ...,st , ...sT }
• A: State transition matrix, A = {ai j},1 ≤ i ≤ N,1 ≤ j ≤ N,

where ai j = P(qt+1 = s j|qt = si), is the probability of transi-
tioning from state si at time t to s j at time t +1

• B: Observation probability distribution, {b j(vk)}, where
b j(vk) = P(ot = vk|st = q j),1 ≤ k ≤ M, is the probability that
symbol vk is observed in state s j at time t

• π: Prior state probability distribution, π = {πi}, where πi =
P(s1 = qi|t = 1), is the initial state probability for state i.

For A, B, and π , each row sums to unity. For real world
applications, three fundamental HMM problems that conventionally
have to be solved are:

1) Training or Learning: This estimates the best parameters
that represent the HMM, while maximising P(O|λ ). Con-
ventionally, Baum Welch (BW) algorithm, an Expectation
Maximisation (EM) based approach, specifically formulated
for HMM, is used as a de-facto training technique.

2) Decoding: This attempts to obtain the most likely state
sequence, given an observation sequence, O, and HMM,
λ . The Viterbi algorithm is commonly used to address this
problem.

3) Evaluation: This problem determines the P(O|λ ) given an
observation sequence, O, and model, λ . The forward algo-
rithm is used to compute the confidence of being in any state
at time, t. It uses the forward variable, αt(i), which is the
probability of observing a sequence, O = {o1,o2, ...ot} and
knowing the state st = qi, as follows:

αt+1( j) = b j(ot+1)
N

∑
i=1

αt( j)ai j (1)

IV. EXPERIMENTAL METHODOLOGY
A. CSE-CIC-IDS2018 Data Processing

The CSE-CIC-IDS2018 dataset, adopted in this work, comprises
seven modern attack scenarios over a large network for 10 days.
The attack scenarios are Brute-force, Heartbleed, Botnet, DoS,
DDoS, Web attacks, and infiltration of the network from inside.
To acquire observations from this dataset, Snort version 2.9.11.1
was used to first obtain alerts and later process these alerts before
feeding into an HMM. Snort IDS standard configuration and default
rules are aggregated using PulledPork 0.7.4 [15], a Perl script that
consolidates Snort rules. MATLAB release R2019a was used to
extract fields from the alerts file prior to training and evaluation.
Table I shows the number of alerts obtained from Snort using the
default rules and the alert’s corresponding state.

B. Experimental Design and Setup
The various attacks in Table I were aggregated sequentially into

six stages of a left-right model. In total, 21 distinct observation

Fig. 1. A left-right HMM process

TABLE I
ALERTS TRIGGERED BY DEFAULT SNORT RULES FOR

CSE-CIC-IDS2018 DATASET

Attacks based on pcap files Number of
alerts

HMM
state

FTP & SSH Brute-force 282784 1
DoS GoldenEye & Slowloris 8185 2
DoS SlowHTTPTest 8139 2
DoS Hulk 205 2
DDoS LOIC HTTP & UDP 151 3
DDoS LOIC UDP 136 3
DDoS LOIC HOIC 329 3
Brute-force Web &XSS,
SQL injection 630 4
Infiltration 4196 5
Botnet 152818 6

types were obtained from Snort IDS and these observations would
appear in different states. In each attack stage, the training and
evaluation datasets were constructed by including 70% and 30%
of the samples, respectively. Training was performed using BW
and Viterbi Training (VT) algorithms in MATLAB software. The
former, updates all possible paths from each node, whereas the latter
updates only the best (Viterbi) path from each node of a trellis.

Prior to learning of the optimum HMM parameters, both BW
and VT techniques require initialisation of parameters. Three
common ways of initialisation are uniform, random and count-
based methods. Firstly, the uniform initialisation defines each row
element of A and B as 1/N and 1/M respectively. Secondly, the
random initialisation generates stochastic numbers from a uniform
distribution between 0 and 1. Finally, the count based method [16]
uses part of the training dataset to compute B. Each element of B,
b j(k), is obtained by computing the number of occurrences of the
observation, vk, in state j.

A total of 320275 observations out of the 457550 observations
extracted from Snort IDS were reserved for training and the
remaining were allocated for evaluation. A sample window size
ranging from 50 to 1200 with increments of 50 samples, was applied
on the evaluation dataset. The analysis is iteratively performed each
time shifting the window size along the evaluation samples up to
the end of the dataset. In the end of the run of the window size
along the evaluation dataset, all generated results are averaged to
produce the detection accuracy.

V. RESULTS AND DISCUSSION

The accuracy of determining all states (AS), the current state
(CS), and predicting the possible next state (NS) was computed for
both BW and VT. Regarding AS and CS determination, the Viterbi
decoding was applied directly. NS was predicted by first estimating
the most probable observation symbol, vk, at time t + 1, while in
state j, using Eq. (2) [17].

Pt+1 (vk) =
N

∑
r=1

a jrbr (vk) (2)

The estimated symbol is then appended to the known observation
sequence before applying Viterbi decoding to recompute the most
probable state sequence. The last state of the sequence is then
considered as the most probable next state.

There is a comparable performance between AS and CS detec-
tion, and only results for CS are discussed in this work. With the



exception of VT-uniform, which had a 3.06% accuracy improve-
ment when increasing the window size from 50 to 100 samples, the
rest of the techniques are not significantly affected by increasing
the sample window size. Specifically, considering all techniques,
the changes in accuracy were trivial with window sizes larger than
150 samples. Thus, a sample window size of 150 was considered.
Figure 2 depicts both the detection and prediction accuracy of CS
and NS when using BW and VT algorithms.

Regarding AS, it can be observed that count-based initialisation
of BW and VT achieves a very high accuracy of about 97%.
The uniform initialisation is the second best initialisation technique
with about 65% and 61.8% detection accuracy for VT and BW
respectively. For NS prediction, it can be observed that the VT-
uniform had the highest performance with an average accuracy of
65%.

Contrary to AS and CS prediction, the count-based technique
did not perform better than the other techniques, with the VT-count
based method completely failing to make a feasible prediction,
regardless of any window size. A plausible explanation to this
could be that the prediction method as NS prediction relied on
next observation prediction. Nevertheless, the Uniform VT can be
a better proposed training technique. It can be deduced that a single
technique may not scale well in detecting AS, CS and predicting
NS.

VI. CONCLUSION AND FUTURE WORK
This paper has presented and evaluated the two conventional

training algorithms for HMM, namely, Baum Welch (BW) and
Viterbi Training (VT). For both of these algorithms, three standard
initialisation techniques, uniform, random and count-based, have
been evaluated and their performance discussed. For all scenarios,
the performance of the HMM was analysed based on detection of
all states (AS), current state (CS) and the next state (NS) given
an observation sequence. The experiments have been conducted
using the CSE-CIC-IDS20118, a modern dataset comprising seven
different attack scenarios over a large network environment.

Results have shown that the count-based initialisation technique
outperforms both the uniform and random initialisation when de-
tecting AS and CS. On average, count-based BW and VT have
about 97.5% and 97.0% accuracy, respectively, for AS prediction.
For CS detection, the performance is comparative to AS detection
with a minor drop of about 0.2%. The prediction of NS is around
65% for uniform and random initialisation techniques on both BW
and VT.

For all prediction approaches, regardless of the explored training
techniques, there is no significant improvement with increasing
the window sample size. In practice, the training techniques are

Fig. 2. Current and next state detection accuracy of Baum Welch and
Viterbi training using a sample window size of 150.

deployed by connecting the output of an IDS or a database
that stores alerts. These alerts are then fed to an HMM. HMM
implementation is scalable and can be applied to any dataset as
long as states and observations are clearly defined.

In future, HMM shall be applied on other anomaly detection
techniques using the CSE-CIC-IDS2018 dataset, the performance
of diverse datasets shall be examined, and a comparative analysis
of the computational complexity and success rate of state of the art
techniques shall be conducted.
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