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ABSTRACT 

Operational data of wind turbines recorded by the Supervisory Control 
And Data Acquisition (SCADA) system originally intended only for 
operation and performance monitoring show promise also for assessing 
the health of the turbines. Using these data for monitoring mechanical 
components, in particular the drivetrain subassembly with gearbox and 
bearings, has recently been investigated with multiple techniques. In 
this paper the advantages and drawbacks of suggested approaches as 
well as general challenges and limitations are discussed focusing on 
automated and farm-wide condition monitoring. 
  
KEY WORDS: Wind Turbine; Condition Monitoring; SCADA; 
Drivetrain; Machine Learning. 

INTRODUCTION 

Optimisation of maintenance is essential to further reduce the costs of 
offshore wind energy, where accessibility is restricted by weather 
conditions and the availability of transport vessels. Advanced 
maintenance strategies involve condition based decision-making while 
trying to predict the future maintenance needs before critical failures 
with significant downtimes occur. Continuous and reliable information 
of the condition of the different subassemblies and parts of the wind 
turbine are needed for effective prognosis of ongoing degradation and 
estimation of remaining life of critical parts. 
 
Supervisory Control And Data Acquisition (SCADA) data have gained 
more attention in the last five years as they are usually available 
without any additional expense in contrast to dedicated condition 
monitoring systems which can cost approx. £14,000 per turbine (Yang 
et al., 2014). The operational data recorded in a SCADA system vary 
with the turbine type, but usually include at least wind speed, wind 
direction, yaw angle, pitch angle, active power, reactive power, 
generator current, generator speed, gearbox temperature, generator 
winding temperature and ambient temperature. Comparing parameters 
over time and in relation to the operational level has helped to identify 
changes in the behaviour related to developing failure 
(Wiggelinkhuizen et al., 2008; Feng et al., 2013). Based on that, the 
main idea has been the modelling of signals, mainly temperatures, 
assuming normal conditions and revealing problems via comparing 
modelled and measured temperatures. The focus of research has been 
on data-driven training of algorithms and machine learning tools 
adapted from computer science have been proposed, e.g. artificial 

neural networks (Garcia et al., 2006; Zaher et al., 2009; Bangalore and 
Tjernberg, 2015; Sun et al., 2016), adaptive-neuro fuzzy inference 
systems (Schlechtingen et al., 2013), nonlinear state estimation 
techniques (Wang and Infield, 2012) or multivariate adaptive 
regression splines (Tan and Zhang, 2016). An overview of the progress 
in the area of condition monitoring with operational data can be found 
in a recent review of the authors (Tautz-Weinert and Watson, 2016a). 
 
Most publications on condition monitoring with operational data 
consist of a proposal for a new technique and a demonstration using 
one case study, whereas difficulties and challenges are rarely discussed. 
Yang et al. (2014) highlighted in their review of the current challenges 
in wind turbine condition monitoring that the sampling resolution of 
SCADA data is too low to monitor all aspects of a wind turbine and 
doubted the usefulness of SCADA monitoring in terms of early 
detection. The authors suggested the integration of SCADA-based 
monitoring in condition monitoring systems, however. Dienst and 
Beseler (2016) shared their lessons learned from monitoring of an 
offshore wind farm with operational data indicating e.g. that finding 
training data without errors is difficult, 2% of sensors are 
malfunctioning at any given time, using multiple models to predict a 
signal are beneficial and anomalies in models can indicate a defect but 
also unrepresentative training. 
 
This work addresses the challenges in using operational data for wind 
turbine monitoring with the approach of normal behaviour modelling of 
temperatures based on experiences with real data from four wind farms. 
Drawbacks of the individual techniques are discussed and general 
challenges highlighted regarding data quality, pre-processing, input 
selection and alarm generation.  
 
In the next section, the basic idea of normal behaviour modelling is 
introduced. The subsequent and third section summarises the properties 
of the data used. The fourth and main section addresses the challenges 
if failures are to be found retrospectively, whereas the fifth section 
gives a brief outlook if such an approach is used on-line. In the last 
section this work is concluded by summarising the key problems to be 
solved. 



 

MONITORING BY NORMAL BEHAVIOUR MODELLING 

Normal behaviour modelling is a way of building a virtual clone of a 
system which always represents the healthy state. The model generates 
a time series of the target signal, which can be compared with the 
measured signal to detect anomalies. Due to the complexity of wind 
turbine systems such models cannot be built analytically, but are data-
driven. In a training period, where the turbine is assumed to operate 
normally, the relationship between input signals and the target signal is 
learnt by the algorithms.  
 
Adequate target signals and corresponding inputs have to be selected to 
achieve a model which is useful in failure detection. Simple models 
predicting a signal with a sensor signal of the same type at the same 
location might help for monitoring the sensor itself. More advanced 
models can be used to monitor mechanical parts which are affected by 
wear: drivetrain bearings and gears. Wear will change the efficiency of 
a part and result in increased thermal losses which should become 
visible in the form of changed thermal behaviour (Feng et al., 2013). To 
monitor wear-related parts, temperature signals are commonly 
modelled with other temperatures of surrounding parts, signals 
describing the turbine’s load level such as power output, electrical 
currents, rotational or wind speeds and/or signals representing the 
environmental background such as the nacelle or ambient temperature. 

CASE STUDY 

Records from four wind farms are used to highlight the challenges in 
condition monitoring with operational data. SCADA data are 
retrospectively analysed aiming to detect failures in advance. Although 
the turbines are from different manufacturers, all turbines are geared, 
variable speed and pitch controlled. The turbines cover the 1.5 MW and 
the 2-3 MW class. The investigated records range from only half a year 
to nearly five years and from 11 to 102 turbines in a farm. Reports of 
replacements are available for three of four farms. Although records 
from farm A are not supported by sufficient reports for failure detection 
analysis, normal behaviour modelling can be tested and compared 
based on the SCADA data. The key features of the data used are 
summarised in Table 1. 
 
Table 1. Wind farm data used in this study 

Farm Location Power 
(MW) 

Number 
of 

turbines 

Length 
of data 
(years) 

Service 
report 

A USA 1.5 108 0.5  Stoppages 
only 

B UK 2-3 12 2.5 Stoppages 
and 
replace-
ments 

C Europe 2-3 25 3.0 Replace-
ments 

D Europe 2-3 11 4.7 Replace-
ments 

 

CHALLENGES IN RETROSPECTIVE ANALYSES 

The challenges in using operational data for condition monitoring can 
be divided into: data quality, monitoring setup, proposed modelling 
techniques, comparing modelling techniques, modelling capabilities 
and alarm generation. 

Data quality 

Retrospective failure detection based on operational data is conducted 
with two main types of information: SCADA records available in a 
SQL database or spreadsheets and a service record in a spreadsheet. 
 
SCADA data. Although signals in SCADA records are usually named, 
the labelling of the signals is not necessarily sufficient for clear 
identification of the sensor properties. As there is neither a common set 
of available signals nor a generally accepted taxonomy, different 
SCADA systems use different names and abbreviations. Although 
unambiguous signals like the power output, wind speed, blade pitch 
angle etc. are always easily identifiable, other signals require more 
details for complete identification. In particular, the location of 
temperature sensors is often insufficiently described. In the investigated 
data the labelling ranged from only numbering all temperature sensors 
(e.g. temperature 2, farm B), giving the name of the subassembly (e.g. 
gearbox temperature, farm A), specifying a part type in a subassembly 
(e.g. gearbox bearing temperature, farm C) to providing approx. 
location of the sensor at a part (e.g. gearbox bearing high speed shaft 
gearbox [vicinity / side], farm D). Even in the farm with the most 
detailed labelling, the locations are open to interpretation: e.g. there are 
two generator bearing sensors labelled 1 and 2 or oil temperatures are 
labelled basis, level 1 and 2. Detailed knowledge of the turbine 
configuration or a technical drawing including the sensor locations 
would certainly ease the analysis but has not been available for this 
work. Reasons can be found in insufficient documentation and 
confidentiality issues applicable to academic studies with commercial 
data. 
 
Although missing, invalid and poorly processed data hinder the 
analysis, the most serious problems are caused by inconsistencies. Any 
change in the behaviour of a sensor might be interpreted as a change of 
the monitored part. In data from farm D, several changes of the 
maximum occurring values can been observed as shown for example in 
Fig. 1. Sensor specifications or detailed information about the operation 
are not available. It is assumed that this event could be caused by a 
sensor drift, unreported maintenance or a change in control and 
operation. An actual change of the performance of the monitored part 
without any interaction by the operator is unlikely due to the rapid 
change. Additionally, the temperatures in the illustrated example are 
lower after the step, i.e. the losses would be reduced which is contrary 
to the effects of wear. To allow analysis if inconsistencies occur, data 
should be split into windows without steps which are investigated 
separately. A systematic way of detecting steps is required for 
automated splitting and applying the training and testing procedure of 
normal behaviour modelling. Comparing monthly maximums and 
percentiles resulted in adequate detection of steps. 

 
Fig. 1. Example of sensor inconsistency in a bearing temperature with a 
maximum temperature of 78° C before and 73° C after the step (farm 
D) 
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Service record. Insufficient documentation plays a major role if  
monitoring techniques are evaluated with real data. The service record 
consisted in the investigated case study of a list of stoppages in the best 
case (farm B). Comments were added only for major replacements or 
occasionally for other maintenance actions describing the reason for the 
stoppage time. Assumed reasons for replacements and interpretations of 
alarms, stoppages and inspections were generally missing.  
Accordingly, the list of replacements is not a list of failures. 
Replacements could have been done as preventative interventions or 
after a failure which had caused the turbine to stop. Additionally, the 
time of replacement is not necessarily the time of the failure or the 
detection of the failure. For the other investigated data, the failure 
record consisted only of a list of replacements (farm C and D) or was 
not available at all (farm A).  
 
Although it can be assumed that the operator or service provider has 
always full access to all reports, the shortcoming of incomplete or 
incomprehensible service reports is widely acknowledged. 
Accordingly, service providers are currently focussing on the 
digitisation of reporting and implementation of procedures to improve 
the data quality e.g. by using mobile devices for documentation. 
 
Monitoring techniques based on operational data have to be developed 
and tested with real data. It is very rare to get data of good quality and 
complete information in terms of turbine and sensor specifications or 
operation and maintenance reports. As this will similarly be true for 
industrial application, any modelling technique has to cope with 
incomplete information. However, the impact of data quality problems 
should be carefully considered when findings are generalised. 

Monitoring setup 

The detailed configuration of the monitoring setup consists of multiple 
choices in terms of the model architecture, input selection, pre-
processing and training length. 
 
Model architecture. A model using other signals to predict the target 
can be denoted as full signal reconstruction (FSRC) (Schlechtingen and 
Santos, 2010). Modelling could use the signal of the same time as the 
target or from previous time-steps to account for the inertia of the 
system. Using the latest history of the target itself could also be chosen 
to form an autoregressive model. If the history of the target is combined 
with other inputs, the model can be denoted as autoregressive with 
exogenous input (ARX). Although ARX models are more accurate in 
predicting the target, the prediction is likely to adapt to new behaviour, 
which might hinder failure detection. 
 
Input selection. Selecting the inputs for modelling has commonly been 
done based on the physical understanding of the system also called 
domain knowledge (Schlechtingen and Santos, 2010; Wang and Infield, 
2012; Bangalore and Tjernberg, 2015; Sun et al., 2016) or by 
correlation analyses between possible inputs and the target (Zaher et al., 
2009; Tautz-Weinert and Watson, 2016b). Although most domain 
knowledge approaches have been based on the basic idea of the heat 
transfer in the drive train, the reasons for the manual choices of inputs 
have not been documented thoroughly. The limitation of possible inputs 
is additionally in contrast to the idea of using machine learning to find 
complex relationships. Using automated correlation analyses to build 
the model has the risk of selecting multiple similar inputs, e.g. 
generator currents 1-3.  
 
The case studies show that e.g. for an ambient temperature a low 
correlation with a bearing temperature results in an exclusion as input, 
but less seasonal error is observed if the ambient temperature is 

selected as input. Selecting inputs only based on their correlation to the 
target is accordingly not necessarily the best option. Using all possible 
inputs and an algorithm to select inputs based on their relevance for 
accurate prediction has been proposed by Dienst and Beseler (2016)  in 
applying the Least Absolute Shrinkage and Selection Operator 
(LASSO). 
 
Pre-processing. Pre-processing of inputs should include a validity 
check to exclude data acquisition errors and time-steps with missing or 
erroneous data have to be removed completely. Additionally, scaling 
and lag removal might be necessary depending on the modelling 
technique and input selection (Schlechtingen and Santos, 2010). 
Focussing on data when the turbine is operating might ease the 
modelling and failure detection and can be implemented by filtering 
with a power threshold (Sun et al., 2016). 
 
Training length. There is no consensus about the necessary training 
time under (assumed) healthy conditions. The proposed lengths range 
from 3 (Schlechtingen and Santos, 2010) to 14 months (Bach-Andersen 
et al., 2016). A length of one year is obviously beneficial to cover the 
full seasonal variation, but such a long training time is probably not 
always achievable. Other work has tried to concentrate data from a 
longer period in a shorter, representative training set (Wang and Infield, 
2012; Bangalore and Tjernberg, 2014; Tan and Zhang, 2016), although 
there is not necessarily a benefit in terms of the modelling accuracy. 
 
Tests in the case study reveal that the required training length depends 
on the turbine specific operation and behaviour. Even one month 
training results in acceptable accuracy for some turbines. Future work 
should address the sensitivity to the training length in more detail. 

Proposed modelling techniques 

Several models have been proposed for the required regression task of 
normal behaviour modelling. 
 
Multi-linear regression (LIN).  LIN trained by a least square algorithm 
is a simple way of modelling the system. Although this assumes 
linearity, the prediction can have a similar level of accuracy compared 
with more complex tools (Schlechtingen and Santos, 2010; Tautz-
Weinert and Watson, 2016b). Slight improvements have been proposed 
such as allowing selected polynomial terms up to ninth order 
(Wilkinson et al., 2014), interactions, i.e. products of the inputs (Tautz-
Weinert and Watson, 2016b) or added features such as squares, roots 
and logarithms (Dienst and Beseler, 2016). 
  
Artificial Neural Networks (ANNs). ANNs have been widely applied 
to extend the modelling capabilities to non-linearity. A basic setup uses 
a feed-forward backpropagation network with one input, one hidden 
layer with a small number of neurons and one output layer with a single 
linear output.  Past research has involved a range of configurations, 
though authors do not always describe in detail the set up used, Zaher et 
al. (2009) found that 3 neurons in one hidden layer provide the best 
results in an ARX approach to model the gearbox bearing. In contrast, 
Bangalore and Tjernberg (2014) use two hidden layers with 13 neurons 
in the first layer and one neuron in the second layer in a FSRC 
approach for gearbox monitoring. Sun et al. (2016) state that the 
number of neurons has to be selected for each turbine individually 
ranging from 2 to 10. L. Wang et al. (2016) claim that so called deep 
ANNs are better with three hidden layers of 100 neurons. Tan and 
Zhang (2016) highlight the difficulty in selecting  a configuration when 
randomly varying the number of neurons and the type of transfer 
function and trying to select the best of 200 ANNs.  
 



 

Tests in the case study show that using more neurons generally 
improves the accuracy, but there is no significant advantage of deep 
ANNs with three layers of 100 neurons. Varying the number of neurons 
and their transfer function randomly does not counterbalance the worse 
performance of some turbines if using a fixed configuration. 
 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS). ANFIS as a way 
of learning a fuzzy system with ANN approaches have been proposed 
by  Schlechtingen, Santos and Achiche (2013). Two inputs were used 
per target with generalised normal distribution membership functions 
and hybrid gradient descent and least squares estimation learning. The 
main advantage over straight ANNs was given as the reduced training 
time.  
 
Nonlinear State Estimation Technique (NSET). NSET has been 
proposed by Y. Wang and Infield (2012) as a way of modelling based 
on a state matrix and a weighting vector determined by a least square 
approach and a Euclidean distance operator. NSET includes the target 
signal in the state matrix and for determining the weighting vector. It is 
accordingly comparable to an ARX approach.  To find a good 
compromise of better accuracy for more states and reasonable 
computational effort for fewer states, a data selection algorithm was 
proposed. The algorithm selects states, if they are less than the defined 
distance ߜ away from a regular grid of 100 sections of the normalised 
input. However, the algorithm allowed multiple states for the same grid 
point which resulted in a high numbers of states. Reproducing the 
approach in the case studies shows that it was impossible to get a 
similar number of states for different turbines with one selected ߜ. 
However, Guo, Infield and Yang (2012) defined the algorithm to select 
only one state per grid point. Testing this approach results in a 
dramatically lower, but more regular number of states for different 
turbines.  
 
Multivariate Adaptive Regression Splines (MARS). MARS have been 
applied to wind turbine normal behaviour modelling by Tan and Zhang 
(2016) allowing a maximum of 21 basis functions. Each basis function 
can be a constant (for the intercept), a hinge function or a product of 
hinge functions.  
 
Further well known techniques such as Gaussian Process and Support 
Vector Machine could also be used for the regression task. However, 
first case study results could not demonstrate any advantage in using 
these techniques (Tautz-Weinert and Watson, 2016b). 

Comparing modelling techniques 

The proposed modelling techniques and different input choices are 
compared with configurations as detailed in Table 2. A comparison of 
different modelling techniques should consider two main features: 
effort and accuracy. 
 
The evaluation of the effort can be expressed in the simplicity of the 
model and the computational effort in training. The simplicity is here 
evaluated based on the subjective experience of implementing the 
technique in MATLAB 2015b. Computational effort is easily 
comparable in terms of the runtime. Example numbers are given using 
a common desktop PC (64-bit operating system with a four core CPU 
with 2.8 GHz clock rate and 32 GB memory).  
 

Table 2. Modelling setups for comparison 

Technique Properties 

General - Data from farms A-D, pre-processed including non-
operation filtering, turbines with known failures 
excluded. 

- Modelling target: Gearbox (bearing) temperature 
- Modelling inputs: 

a) 2 inputs, b) 3 inputs selected based on correlation 
c) power and rotational speed, d) power, rotational 
speed and ambient temperature 

- 3 months training, 3 months’ blind testing 
LIN Linear terms and interactions. 

ANN FSRC feed-forward network with 20 neurons in 
hidden layer. 

ANFIS 2 generalised normal distribution membership 
functions per input. 

NSET One state per grid point, ߜ ൌ 	0.001. 

MARS Maximum of 21 basis functions. 

 
There are internal MATLAB functions for all discussed methods, 
except MARS for which a toolbox is available online (Jekabsons, 2016) 
and NSET which has been implemented according to Wang and Infield 
(2012). LIN does not require any detailed configuration and is 
consequently the easiest method to implement. In contrast, settings 
have to be chosen for ANNs, ANFIS and MARS. The default settings 
and main approaches in the literature might be useable for configuring 
MARS and ANFIS, but in particular the choice of the architecture of 
ANNs appears to be surprisingly random. 
 
The major advantage of linear models is the low computational effort 
required as shown in Table 3. Training of ANNs also requires relatively 
low computational effort with approx. 1-3 s per turbine, but training 
deep ANNs or repeating the training hundreds of times is highly time 
consuming. ANFIS modelling is done in about five seconds for up to 
three inputs, but can take up 30 min per turbine if seven inputs are used. 
Training NSET in this configuration requires usually 1-12 s with longer 
runtime for more inputs. MARS training is more expensive and can 
take more than a minute per turbine depending on the complexity of the 
model. 
 
Evaluating the accuracy is feasible if the normal operation prediction is 
assessed. The error of prediction and actual measurement should be as 
small as possible and mean absolute errors, root mean squared errors, 
standard deviations or the coefficient of determination (ܴଶሻ can be used 
as metrics.   
 
Table 4 compares the normal behaviour modelling accuracies based on 
the mean absolute error for the different modelling techniques, input 
selection cases a)-d) and the farms A-D. Due to the limitations in the 
service reports, the turbines in the study might be affected by further 
problems which could change the modelling performance, but the 
selection of the median value from all turbines should give a good 
indication of the accuracy. It can be seen, that NSET modelling is most 
accurate with mean absolute errors as low as 0.10 °C. This is due to the 
autoregressive nature of this technique. Using fewer inputs is better 
here, which can be explained by the stronger impact of the target signal 
in this case. All FSRC techniques are similarly accurate with slight 
advantages of ANN, ANFIS and MARS over LIN modelling. Using 
three instead of two inputs based on correlation usually improves the 
performance for FSRC techniques. Using only power and rotational 
speed to predict the drive train temperature is less accurate. Adding the 
ambient temperature as a third input improves the prediction in most 



 

cases. Comparing the different farms, prediction is most accurate in 
farm D, but similar low errors can be found in farms B and C. 
Prediction in farm A is less accurate, in particular in input case c). 
Possible reasons are manifold, but most likely the differences in the 
measurement setup and turbine operation of different manufacturers 
play a major role.  
 
Table 3. Training time in seconds given as median values of all 
evaluated turbines and cases a) – d) 

Technique Farm A Farm B Farm C Farm D 
LIN 0.02 – 

0.02 
0.02 – 
0.02 

0.01 – 
0.02 

0.02 – 
0.02 

ANNs 1.73 – 
3.02  

1.41 – 
2.00 

1.58 – 
1.99 

1.70 – 
2.93 

ANFIS 4.42 – 
5.70 

4.40 – 
5.42 

4.39 – 
5.43 

4.40 – 
5.48 

NSET 1.27 – 
1.94 

2.40 – 
6.64 

1.90 – 
5.09 

3.00 – 
11.52 

MARS 23.81 – 
71.82 

5.44 – 
25.42 

1.37 – 
18.77 

0.78 – 
11.00 

 
Table 4. Accuracy in modelling normal behaviour given as median 
value of the mean absolute error (°C) of all evaluated turbines 

Technique Case Farm A Farm B Farm C Farm D 

Used 
turbines 

 102 8 18 6 

LIN a) 2.24 1.22 0.98 1.07 
b) 2.03 0.96 0.91 0.85 
c) 11.41 1.62 1.39 1.53 
d) 3.07 1.29 1.06 1.45 

ANNs a) 2.27 1.12 0.87 0.89 
b) 2.00 0.89 0.86 0.82 
c) 9.47 1.58 1.39 1.19 
d) 3.21 1.27 1.41 1.49 

ANFIS a) 2.16 1.14 0.93 0.97 
b) 1.94 0.88 0.88 0.82 
c) 10.65 1.60 1.39 1.16 
d) 2.92 1.22 1.20 1.19 

NSET a) 0.23 0.33 0.38 0.91 
b) 0.25 0.27 0.35 1.09 
c) 0.18 0.10 0.10 0.13 
d) 0.25 0.77 1.53 0.52 

MARS a) 2.18 1.08 0.87 0.93 
b) 2.11 0.86 0.85 0.82 
c) 10.23 1.58 1.39 1.15 
d)  3.07 1.26 1.09 1.14 

 
Accurate normal behaviour prediction does not necessarily imply good 
failure detection in terms of early and reliable alarms. Comparing the 
residual of modelled and measured temperatures before a known failure 
should give an insight in possible early warnings. However, displaying 
unfiltered residuals from a long period is not feasible due to the high 
number of samples per month and strong fluctuations.  
 
In Fig. 2 – Fig. 6  the fortnightly moving averages of the residuals are 
given for 1.5 years’ period before a gearbox replacement in farm B for 
LIN, ANN, ANFIS, NSET, MARS, respectively. Although most 
techniques and input selection cases show rising values in the last three 
months before the replacement, trends of a similar magnitude can be 
seen during the previous year. It is obvious that the smoothed residual 

is not an ideal indicator for failures and dedicated alarm generation 
techniques are required (which will be discussed below). However, 
ANN, NSET and MARS modelling with input case a) seem to give the 
most prominent increase directly before the replacement. Noticeably, 
case d) shows a trend from June to December which differs from the 
other cases in four of five modelling techniques. Future studies are 
required to better understand the impact of the input selection. 
 

Modelling capabilities 

These types of models are unlikely to be able to predict uncommon 
features in a signal. It has been observed that some abrupt increases in a 
bearing temperature in farm C cannot be modelled by any of the 
modelling techniques. These spikes occur only when the turbine power 
is rapidly increasing as shown in Fig. 7. 
 

 
Fig. 2. Residuals from LIN modelling before a gearbox replacement  

 
Fig. 3. Residuals from ANN modelling before a gearbox replacement  

 
Fig. 4. Residuals from ANFIS modelling before a gearbox replacement  
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Fig. 5. Residuals from NSET modelling before a gearbox replacement  

 
Fig. 6. Residuals from MARS modelling before a gearbox replacement  

 

Fig. 7. Example of unpredicted spike in a bearing temperature when 
power is rapidly increasing (farm C, modelling with ANNs) 

Alarm generation 

The idea behind normal behaviour modelling is the use of the residual 
of measured minus modelled temperature to act as an indicator of 
potential failure. Different approaches have been proposed for 
generating alarms based on the residual time series. 

 
Absolute threshold. The simplest way of generating alarms is by 
defining an absolute threshold for the residual. This can be by  
confidence bands (Garcia et al., 2006), with a defined threshold based 
on experience (Schlechtingen and Santos, 2010; Wilkinson et al., 2014) 
or a certain probability to occur derived from the error distribution in 
training, as e.g. less than 0.01 % (Schlechtingen et al., 2013). The 
reliability of the absolute threshold can be increased by using a daily 
average (Schlechtingen and Santos, 2010). 
 
Mahalanobis distance. A Mahalanobis distance is a metric to condense 
the correlation of multiple variables and their distribution to a single 
number. Bangalore and Tjernberg (2015) proposed using a 
Mahalanobis distance of the residual and target referenced to the 
training distribution to detect anomalies. Alarms were raised if averages 
of three days were smaller than a distance with a probability of 1 % 
defined by a Weibull distribution fitted to the training results. 
 
Exponentially weighted moving average control chart (EWMA). 
EWMA has been proposed to consider cumulating effects by Wang et 
al. (2016). Compared to the simple absolute threshold for the error, here 
a recursive statistic is built from the current error and the statistic in the 
previous time-step. A weighting of 0.2 for the current error and 0.8 for 
the previous statistic was used. 
 
Abnormal level index (ALI). Sun et al. (2016) developed a numeric 
index to describe the abnormality of monitored signals. The index is 
calculated as a daily sum of penalties for residuals significantly bigger 
than the expected based on the training period. The penalty was defined 
as 5 and 3 for a penalty exceeding 97.5 and 75 % cumulative 
probability, respectively, or 1 else. After normalising, the index 
provided values between 0 and 1, with smaller values for less 
abnormality. 
 
Discussion. Failure detection accuracy can be assessed in terms of the 
true positive and false positive alarms compared to the number of 
failures. Additionally, the advance time of detection before failure is a 
key measure. Comparing the failure detection capabilities is hindered 
by the above mentioned difficulties with the service reports. A 
thorough comparison of the modelling and the alarm generation 
techniques is out of the scope of this paper.  
 
As an example, the detection of the above discussed gearbox failure in 
farm B modelled with ANNs in case a) is given in Fig. 8. All alarm 
generation techniques require a defined threshold for raising the alarm. 
The proposed probabilities of occurrence determined from the training 
data are not necessarily the optimal choice for new cases. A threshold 
defined by a probability of > 0.01 % for the residual leads to vanishing 
alarms in the investigated case studies. The limits are defined with a > 2 
% probability of occurrence for the absolute daily threshold, > 1 % 
probability for the Mahalanobis distance, 6ߪ in the EWMA and the ALI 
as proposed. It can be seen that this selection of thresholds results in an 
increasing number of alarms in the two months before the replacement.  
However, a significant number of alarms occur far ahead of the 
replacement, in particular with the Mahalanobis distance. These alarms 
have to be considered as false alarms. The number of false alarms can 
be reduced by requiring several alarms in a row or in a specific time 
window as e.g. a week (Schlechtingen et al., 2013). By applying a limit 
of at least two days of alarms in one week and adapted thresholds the 
number of possibly false alarms can be reduced, as shown in Fig. 9. In 
this example, there is no significant difference between the first reliable 
detection of the different alarm generation techniques. However, the 
Mahalanobis distance and EWMA technique have a higher number of 
alarms after the first alarm than the absolute threshold and can be seen 
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as more reliable accordingly. The fuzzy indicator provided by ALI 
shows a clear upward trend, but has two previous peaks which have to 
be assumed to be false alarms. A calibration of alarm thresholds with 
one turbine in the farm without replacements has been tested, but 
resulted in unsatisfactory results as many false alarms occurred.  
 
The comparison of alarm generation techniques highlights that the 
adequate definition of thresholds has a higher impact than the 
differences in the detection approach. Future work has to address this 
problem in more detail. 

 
Fig. 8. Testing different alarm generation techniques (gearbox 
replacement at the end of time axis, ANNs modelling, case a), farm B) 

 

Fig. 9. Using a weekly filter for different alarm generation techniques 

(gearbox replacement at the end of time axis, ANNs modelling, case a), 
farm B) 

FUTURE CHALLENGES IN ON-LINE MONITORING 

Retrospective analyses of failures are of interest in an academic project 
of finding suitable tools for monitoring, but in industrial reality wind 
turbines are to be monitored on-line. Depending on the data 
management system this could be with new data every day, every ten 
minutes or even more frequently.  
 
Most challenges which occur in retrospective analyses are also valid 
here, as e.g. SCADA data quality problems and model definitions. 
Problems with missing maintenance information are probably less 
severe in industrial on-line monitoring as a wind farm operator is aware 
of ongoing maintenance. However, insufficient or misleading 
maintenance reports occur in industrial practice too. The requirement 
for minimal computational effort for modelling will be even greater for 
on-line monitoring. Additionally, computational environments other 
than MATLAB are common in industry and will require adapted 
implementations. On-line monitoring will require adequate re-training 
of models after significant changes in the system or operation, as 
briefly discussed by Bangalore and Tjernberg (2013). 
 
The main challenge of on-line monitoring is the required accuracy of 
monitoring in to allow decisions to be made about whether or not to 
send a maintenance team. A balance needs to be struck between 
providing early warnings whilst avoiding false alarms in order to 
minimise maintenance costs and maximise turbine availability. In the 
first months of operation of a new farm, there should be an iterative 
process of training and model evaluation until confidence in the results 
is achieved.  
 
A combination of monitoring based on operational data and common 
vibration-based condition monitoring systems might be desirable to 
increase the reliability. 
 

CONCLUSIONS 

Based on analyses of case studies on four wind farms, the challenges in 
using operational data for wind turbine condition monitoring can be 
summarised as: 

 Poor SCADA data documentation and quality, 
 Insufficient maintenance documentation, 
 The absence of best practice in selecting modelling 

techniques and settings, 
 Isolated behavioural features which are difficult to model, 
 The difficulty in defining sensible alarm thresholds which 

give sufficient notice of early genuine problems but minimise 
false alarms. 

 
First findings indicate that ANN, ANFIS and MARS are similar 
accurate FSRC modelling techniques with the least computational 
effort for ANN. However, linear modelling is only slightly less accurate 
and possibly preferable due to its simplicity. NSET modelling is more 
accurate than all other techniques because of its autoregressive nature. 
 
A brief comparison of smoothed residuals from all techniques before a 
gearbox replacement indicated that good modelling accuracy does not 
necessarily coincide with straightforward failure detection. Selecting 
inputs based on correlation or based on the physics seem to result in 
different residual trends, which are not fully understood yet. 
 



 

If the different proposed alarm generation techniques are compared, no 
clear advantage of any approach is directly visible. A weekly filter of 
alarms is desirable to increase the certainty of results. 
 
Future work will address the challenges in more detail and thoroughly 
evaluate the capabilities of failure detection with operational data. 
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