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ABSTRACT

Partial updating is an effective method for reducing computational

complexity in adaptive filter implementations. In this paper adap-

tive partial update channel shortening algorithms in impulsive noise

environments are proposed. These algorithms are based on updat-

ing a portion of the coefficients at each time sample instead of the

entire set of coefficients. These algorithms have low computational

complexity whilst retaining essentially identical performance to the

sum-absolute autocorrelation minimization (SAAM) algorithm due

to Nawaz and chambers. Simulation studies show the ability of the

deterministic partial update SAAM (DPUSAAM) algorithm and the

Random Partial Update SAAM (RPUSAAM)algorithm to achieve

channel shortening and hence an acceptable level of bitrate within a

multicarrier system.

1. INTRODUCTION

In multicarrier modulation systems (MCM), such as asymmetrical

digital subscriber line (ADSL) transceivers, each symbol consists of

samples to be transmitted to the receiver plus a cyclic prefix (CP) of

length v [1]. The CP is the last v samples of the original N samples to

be transmitted. The CP is inserted between blocks to combat inter-

symbol interference (ISI) and inter-channel interference (ICI). The

length of the CP should at least be equal to the order of the channel

impulse response. At the receiver the CP is removed, and the remain-

ing N samples are then processed by the receiver. To combat ISI, the

impulse response of the channel must be of length v + 1 or shorter

than a CP of length v. Since the efficiency of the transceiver is re-

duced by the introduction of the CP it is therefore desirable either to

make v as small as possible or to choose a large N. Selecting large N

will increase the computational complexity, system delay, and mem-

ory requirements of the transceiver. Also the length of the channel’s

impulse response varies from channel to channel, so to achieve rea-

sonable efficiency a large v and large N have to be chosen. To over-

come these problems a short time-domain equalizer (TEQ), usually

an FIR filter, is typically placed in the receiver. The purpose of this

filter is to shorten the impulse response of the effective channel. The

impulse response of the effective channel needs to be shorter than

the length of the CP. The length of the shortened impulse response

filter and CP are usually fixed a priori and not changed from channel

to channel. A low complexity blind adaptive algorithm to design a

TEQ, called sum-squared auto-correlation minimization (SAM) was

proposed in [2] which achieves channel shortening by minimizing

the sum-squared autocorrelation terms of the effective channel im-

pulse response outside a window of a desired length. The drawback

with SAM is that it has a significant computational complexity,and it

is not robust to impulse noise, whereas the SAAM algorithm is more

robust to impulse noise by minimizing the sum of the absolute val-

ues (instead of sum of squared values) outside a window of desired

length [3]. But SAAM did not reduce the computational complex-

ity of SAM. In this paper, we propose new partial update algorithms

in which the filter coefficients that are updated every iteration are

selected in a deterministic way and also at random, with much re-

duced computational complexity. Simulation studies confirm that

little performance degradation results from the proposed computa-

tionally efficient algorithms.

2. SYSTEM MODEL

The system model is shown in Figure (1). The input signal x(n) typ-

ically drawn from a finite constellation is the source sequence to be

transmitted through a linear finite-impulse-response (FIR) channel h

of length (Lh + 1)taps. r(n) is the received signal, which will be

filtered through an (Lw +1)-tap TEQ with an impulse response vec-

tor w to obtain the output sequence y(n). We denote c = h ∗ w as

the shortened or effective channel assuming w is in steady-state. We

also assume that 2Lc < N holds. The signal v(n) is a zero-mean,

i.i.d., noise sequence uncorrelated with the source sequence which

has variance σ2

v . The received sequence r(n) is

r(n) =

Lh∑

k=0

h(k)x(n − k) + v(n)

Channel h TEQ w

Adaptive
Algorithm

x(n) r(n)

noise v(n)

y(n)

c = h * w

+

Fig. 1. System model for blind adaptive channel shortening.

and the output of the TEQ y(n) is given by

y(n) =

Lw∑

k=0

w(k)r(n − k) = w
T

rn
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w
k+1 = w

k − μ×
∑Lc

l=v+1

[
sign

{∑(k+1)N−1
n=kN

y(n)y(n−l)
N

}
×

{∑(k+1)N−1
n=kN

(
y(n)r(n−l)+y(n−l)r(n)

N

)}]
(1)

w
k+1 = w

k − μ × Mk×
∑Lc

l=v+1

[
sign

{∑(k+1)N−1
n=kN

y(n)y(n−l)
N

}
×

{∑(k+1)N−1
n=kN

(
y(n)r(n−l)+y(n−l)r(n)

N

)}]
(2)

w
k+1 = w

k − μ × Rk×
∑Lc

l=v+1

[
sign

{∑(k+1)N−1
n=kN

y(n)y(n−l)
N

}
×

{∑(k+1)N−1
n=kN

(
y(n)r(n−l)+y(n−l)r(n)

N

)}]
(3)

where rn = [r(n) r(n − 1) · · · r(n − Lw)]T and w is the im-

pulse response vector of the TEQ w = [w0 w1 w2 · · ·wLw
]T ,

and (.)T denotes vector transpose.

3. THE NOTION OF THE SAAM ALGORITHM

The idea of SAAM is based on minimizing the (non-negative) auto-

correlation of a channel for lags v+1. The cost function, Jv+1 based

on the sum of absolute values of the autocorrelation of the effective

channel is suggested [3]. The reasons for taking absolute values have

been explained in [3]. This is in contrast to the cost function of [2]

based on the sum of squared autocorrelation values for the same lags.

The autocorrelation sequence of the effective channel, c is given by

Rcc(l) =

Lc∑
k=0

c(k)c(k − l)

when the effective channel c has zero taps outside a window of size

(v + 1), and for a shortened channel, it must satisfy,

Rcc(l) = 0, ∀ |l| > v

Then the cost function Jv+1 in SAAM is defined based upon mini-

mizing the sum-absolute autocorrelation terms, i.e.,

Jv+1 =

Lc∑
l=v+1

|Rcc(l)|

The update equation for SAAM can be written as in (1). The algo-

rithm approaches the maximum shortening SNR (SSNR) solution of

[1] under additive white Gaussian Noise (AWGN) condition, and is

also robust to non-Gaussian impulsive noise environments.

4. DPUSAAM

As in any partial update algorithm, the aim of partial updating is to

update a portion of the coefficients instead of the entire set of coef-

ficients. Our proposal here is to apply the partial update method to

the channel shortening algorithm (Blind, Adaptive Channel Shorten-

ing By Sum-absolute Auto-Correlation Minimization SAAM) algo-

rithm and achieve the same performance whilst reducing the com-

putational complexity, the proposed algorithm is called the Deter-

ministic Partial Update SAAM algorithm (DPUSAAM). In this al-

gorithm the coefficients in the middle (in our simulation case eight

will be the middle) are updated NB − 1 times, that is achieved by

introducing a vector which contains ones in the middle and zeros

remainder, then at the NBth time the outside ones are updated. The

new vectors called “mask1” and “mask2” are created as Mask1

= [0000111111110000] Mask2 = [1111000000001111]. We define

matrices Mk = diag(Maskk), where k = 1, 2. The determinis-

tic partial-update SAAM (DPUSAAM) algorithm can therefore be

written as in (2). In this work NB = 5, so that for the NB − 1
times Mk = M1 otherwise Mk = M2. The proposed algorithm

essentially achieves the same performance as the SAAM algorithm

in terms of higher bit rates and shortening the channel as will be

shown in the simulation results, the advantage of the proposed al-

gorithm is that it essentially achieves the same performance whilst

updating only half of the coefficients at each iteration which implies

less computational complexity.

5. RPUSAAM

Our proposal here is to improve the deterministic partial update scheme

to exploit improved convergence of random selection [4], and achieve

performance close to SAAM. The set of indices of the coefficients of

the adaptive filter is given by {1, 2, ...Lw + 1}. This set is split into

P different disjoint subsets denoted Si,i = 1, .....P . Then, at each

iteration one of these subsets is selected at random with probabil-

ity 1/P , and only those coefficients within the adaptive filter having

indices from that subset are updated. The update equation can be

written as in (3), where Rk is a diagonal with unity elements on the

principle diagonal corresponding to the chosen subset Si and zeros

elsewhere; and w(0) is initialized as for SAAM.

6. ALPHA-STABLE NOISE MODULE

The impulsive noise can be represented by a model called the α-

stable distribution [5]. This distribution also shares several desirable

properties with the Gaussian model, such as the stability property

and generalized form of the Central Limit Theorem [6]. α-stable

distributions also include the Gaussian density as a special case and

have other useful properties. A random variable x is said to have

a stable distribution, denoted by x ∼ Sα(γ, β, a), if the Fourier

Transform of its pdf, also called its characteristic function, has the

following form [5].

ϕ(t) = exp{jat − γ|t|α[1 + jβsign(t)w(t, α)]} (4)

where

w(t, α) =

{
tanαπ

2
, if α �= 1

2
π

log|t|, if α = 1

sign(t) =

⎧⎨
⎩

1, if t > 0
0, if t = 0

−1, if t < 0
(5)

Thus the four parameters −∞ < a < ∞, γ > 0, 0 < α ≤
2, − 1 ≤ β ≤ 1 describing the stable distribution are [5]

• α which is called the characteristic exponent and determines

the thickness of the tails of the distribution. Smaller values

of α correspond to heavier tailed distributions and vice versa.

An α = 2 corresponds to a Gaussian distribution. Another

special case is the Cauchy distribution when α = 1 and β =
0.

• γ which is a scale parameter called the dispersion. It is sim-

ilar to variance of a Gaussian distribution and equals half the

variance in the Gaussian case.

556 Proc. of the 2007 15th Intl. Conf. on Digital Signal Processing (DSP 2007)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on December 9, 2009 at 04:28 from IEEE Xplore.  Restrictions apply. 



• β which is a symmetry parameter. When β = 0, it corre-

sponds to a symmetric distribution. The resulting distribution

is called a Symmetric α-Stable (SαS) distribution.

• a which is the location parameter. It is the mean if 1 < α ≤ 2

and the median if 0 < α < 1.

7. SIMULATION RESULTS

The Matlab code at [7] was extended to simulate DPUSAAM, and

RPUSAAM in impulsive noise environments (α-stable noise). The

cycle prefix was 32, the FFT size Nfft = 512, the TEQ had 16

taps and the channel was the test ADSL channel CSA loop1 avail-

able at [8]. The geometric-SNR (G-SNR) definition is used instead

of the standard SNR definition, due to infinite variance of SαS dis-

tribution [9], a total of 75 OFDM symbols was used. The step size

used was 0.0007. The dispersion of the noise for a given value of α

is changed and the quasi achievable bit rate (quasi because the same

bit rate calculation, to a first approximation, on the basis that the

impulses occur infrequently, is used. These results are for an impul-

sive contribution of 1% only) is calculated. In figures (2) and (3) the

impulsive response of the original and the shortened channel with

different values of α (α=1.95, 1.9, these values are between the less

impulsive case of Gaussian noise when α=2 and the more impulsive

Cauchy case when α=1 [5], these values were chosen to show the

robustness of the proposed algorithms) show that all algorithms are

confirmed to be effective. Quasi achievable bits per second as a func-

tion of the averaging block number are plotted at α=1.95 and 1.9 and

is shown in figures (4) and (5), it can be seen that the proposed al-

gorithms are robust to the impulsive noise as SAAM algorithm with

half of the coefficients being updated. Careful inspection of figures

(4) and (5) reveals the improved final performance of the random

update selection scheme.

8. CONCLUSION

New partial update blind channel shortening algorithms in impulsive

noise environments have been proposed. The proposed algorithms

PUSAAM and RPUSAAM have proven to be robust in impulsive

noise environments. The proposed algorithms essentially achieve

the same result in terms of reducing the effective channel length as

SAAM with half the complexity,
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where alpha=1.95.
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Fig. 5. Quasi-achievable bit rate versus averaging block number

where alpha=1.9.
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