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ABSTRACT Kalman filter with the NG on-line algorithm, proposed 

A combined Kalman filter (KF) and natural gradient 
algorithm (NGA) approach is proposed to address the 
problem of blind source separation (BSS) in time-varying 
environments, in particular for binary distributed sig- 
nals. In situations where the mixing channel is non- 
stationary, the performance of NGA is often poor. Typ- 
ically, in such cases, an adaptive learning rate is used to 
help NGA track the changes in the environment. The 
Kalman filter, on the other hand, is the optimal min- 
imum mean square error method for tracking certain 
non-stationarity. Experimental results are presented, 
and suggest that the combined approach performs sig- 
nificantly better than NGA in the presence of both con- 
tinuous and abrupt non-stationarities. 

1. INTRODUCTION 

Blind source separation has recently received much re- 
search attention, due to its wide range of potential ap- 
plications, which include wireless communications, geo- 
physical exploration, speech and image processing, and 
medical signal processing [l. 2, 31. It is concerned with 
recovering the original source signals (sources) , given 
only the observed signals (sensors), which arise when 
the sources are mixed by an unknown medium. When 
dealing with signals recorded in a real environment, 
BSS is complicated by additive noise, propagation de- 
lays, time-varying environments, and non-stationary 
sources. To make the problem more tractable, it is 
common practice to assume that stationary sources are 
instantaneously mixed by a constant environment, and 
that the mixtures are not corrupted by noise. In this 
paper, the problem of BSS in non-stationary environ- 
ments, when the sources have binary distributions, is 
addressed. To this end, we propose to combine the 
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by Amari et al. [4]. The main advantage of NGA is 
that it has equivariant property, which implies that its 
asymptotic convergence properties are independent of 
the condition number of the mixing matrix and scaling 
factors of the source signals [l, 41. Nevertheless, most 
of the research effort devoted to extending NGA to the 
time-varying case has been oriented toward the formu- 
lation of adaptive algorithms that update the step-size 
parameter, so-called learning of the learning rate. Al- 
though an adaptive learning rate does give better per- 
formance in non-stationary situations, simulation re- 
sults show that the tracking performance of NGA re- 
mains limited in such cases. The Kalman filter, on the 
other hand, is the optimal filter for tracking certain 
non-stationarity, provided the dynamics of the envi- 
ronment it attempts to track can be modelled by the 
state evolution equation [5, 61. The BSS problem, for 
the time-varying channel case, is introduced in section 
2. The combined approach is explained in section 3,  
together with a brief description of the KF and NGA 
techniques. The performance of the proposed approach 
is shown by simulation in section 4, while conclusions 
are drawn in section 5. 

2. PROBLEM STATEMENT 

When n real sources are mixed by an instantaneous 
non-stationary channel, and no noise is present, the 7n 
observed signals are given by [l] 

(1) x ( k )  = A(k)s(k) 

where x(k) = [ z l ( k ) ,  . . . , xm(k)lT is the m-dimensional 
vector of observed signals, s ( k )  = [ s l ( k ) ,  . . . , sn(k) lT is 
the vector of source signals which are assumed to be 
zero-mean and mutually independent, and [ . I T  denotes 
vector transpose. A(k) is an unknown, full column 
rank, mxn mixing matrix, and typically it is assumed 
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. . _. . .. that there are a t  least as many sensors as sources, that 
is m 2 n. The sources are recovered using the following 
linear separating system 

Y ( k )  = W(k)x(k) (2) 

where y ( k )  = [yl(k) ,  . . . , yn(k)IT is an estimate of s ( k ) ,  
and W(k) is the nxm separating matrix. However, it 
is only possible to recover the sources up to a mul- 
tiplicative constant, and their order cannot be pre- 
determined. These ambiguities are inherent to the BSS 
problem, and imply that the exact inverse of the mixing 
matrix cannot be obtained, so that perfect separation 
is achieved when the global mixing-separating matrix, 
defined as 

P(k) = W(k)A(k) (3)  

tends toward a matrix with only one non-zero term in 
each row and column [l], and is given by 

P(k) = JD (4) 

where J is an nxn permutation matrix which models 
the ambiguity relating to the ordering of the sources, 
and D is an nxn diagonal matrix which accounts for 
the indeterminacy of scaling. 
In addition to  the statistical independence of the sources 
and the non-singularity of the mixing matrix, BSS also 
assumes that at most one source has Gaussian distri- 
bution because, for Gaussian random variables, uncor- 
relatedness corresponds to  independence [7]. In this 
paper we also assume that the sources have binary dis- 
tribution. This assumption allows us to introduce ad- 
ditional a priori information about the source signals, 
which will help the tracking of the Kalman filter. 

3. COMBINED KF AND NGA APPROACH 

The proposed approach uses NGA as the basic BSS 
block. This updates adaptively the separating matrix, 
thus estimating the source signals. Algorithm tracking 
ability is provided by the KF technique, which uses the 
recovered sources and the observed signals, to estimate 
the mixing matrix. 

3.1. Kalman Filter 

Using a similar method as in [5], the following cost 
function is minimised 

J K F  = E{llh(k) - h K ( k ) l l ; l x ( ~ ) )  (5) 

where h ~ ( k )  represents the estimate of the vector h ( k ) ,  
x(k) is the observation vector, and 11.112 denotes the 2- 

Figure 1: Structure of combined KF and NGA ap- 
proach. 

norm. This leads to the following expressions, describ- 
ing KF [6] 

hP,(k) = Th>(k- 1) (6) 
M(k) = TM(k- l)TT+ Q (7) 

~ ( k )  = ~ ( k ) ~ ~ ( k ) ( ~ ( k )  + ~ ( k ) ~ ( k ) W ( k ) ) @  
hk(k) = hpK(k) + K(k)(x(k) - H(k)ha) (9) 
M(k) z= (I - K(k)H(k))M(k) (10) 

where h; (k) and hk ( k )  denote respectively the pre- 
dicted and corrected estimate of the vector h(k). H(k) 
and T are, respectively, the known observation matrix 
and state transition matrix, Q and C(k) are respec- 
tively the covariance matrices of the process noise, and 
of the measurement noise. The Kalman gain is the 
matrix K(k), M(k) represents the parameter error co- 
variance matrix, and I is the identity matrix. 

3.2. Natural Gradient Algorithm 

The natural gradient algorithm update equation is given 
by the following expression [4, 11 

where I, is the identity matrix, f(y(k)) is an odd non- 
linear function of the output y ( k ) ,  called the activa- 
tion function, and ~ ( k )  is a positive learning param- 
eter. Usually the learning rate is assumed to be a 
very small positive constant which is either fixed or 
decreases exponentially to  zero [8, 13. However, when 
the algorithm is required to track a time-varying envi- 
ronment, neither approaches are suitable. In [8], the 
learning rate is self-adaptive, and changes according to  
a non-linear function of the mean values of the gradient 
components: 

2770 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 09:10 from IEEE Xplore.  Restrictions apply. 



where 0 < p1 < 1, 0 < p2 < 1, and ,f3 > 0 are fixed 
coefficients, g ( k )  = -(In - f(y(k))yT(k))W(k), is the 
gradient at  time k ,  and (P(llg(k)ll) is a non-linear func- 
tion defined in [8] as qh(llg(k)ll) = (l/m)Czl Igi(k)l 
or d ( l l g ( k ) l l )  = t a n h ( ( l / n )  Cy=l g ; ( k ) ) ,  which is in- 
troduced to limit the maximum value of the gradient. 

3.3. The Combined Approach 

The Kalman filter, used to estimate the mixing matrix 
coefficients, requires the knowledge of a vector repre- 
senting the desired response, and an observation ma- 
trix. Thus, the vector of sensor measurements x(k) is 
taken as the desired response of the filter and, in the 
absence of a known observation matrix, the source es- 
timates generated by NGA, are quantised to 2~1,  and 
fed to I<F, as shown in Fig. 1. The use of a quantiser 
implies that we take advantage of a przorz knowledge 
about the sources, which is found to improve signifi- 
cantly the performance of the Kalman fiiter. For our 
implementation, we re-arrange the mixing matrix into 
an mn-dimensional column vector, defined as 

h(k) = vec(AT(k)) (14) 

y(k) = W(k)x(k) (15) 

(16) 

Hence, the combined approach can be formulated as 

W(k + 1) = W(k) + q ( k ) ( I  - f(k)yT(k))W(k) 

where W(k) represents the separating matrix estimated 
with NGA, and ~ ( k )  is the self-adaptive learning rate 
defined in (12)-(13). The mixing coefficient,s vector is 
then estimated by KF,  which takes the form in (6 ) - ( lo ) ,  
with the observation matrix H(k) in (8)-(10) replaced 
by the mxinn matrix S ( k ) ,  defined as 

S ( k )  = I, @3 2 ( k )  (17) 

where I, is the nr-dimensional identity matrix, and @ 
denotes the Kronecker product. B(k) is given by 

S ( k )  = g(Y(k)) (18) 

where y ( k )  is the 71x1 source signal vector estimated by 
NGA, and quantised by function g ( . ) .  The estimated 
mixing coefficient vector is subsequently re-arranged 
into the mxn matrix A K ( ~ ) ,  and its pseudo inverse, 
defined as 

Ak(k) = A$(k)(AK(k)AZ(k))-l (19) 

generates an additional separating matrix, WK ( k ) ,  that 
updates periodically, every Tp samples, the NGA esti- 
mate, i.e. if k mod Tp = 0, W(k+ 1) = W K ( ~ ) ;  else 
W(k + 1) is updated by (16). 

I I 

Figure 2: Tracking of the two columns of the mix- 
ing matrix, when the channel is non-stationary: actual 
coefficients (solid lines), estimated with NGA alone 
(dashed lines), and estimated with the combined ap- 
proach (dotted lines, coincident with the solid lines). 

4. SIMULATIONS 

In this section we present computer simulations which 
demonstrate the performance of the combined approach. 
We consider two independent Bernoulli sources, mixed 
by a time-varying mixing channel, whose elements change 
according to independent first order Gauss-Markov mod- 
els. We assume that the number of sensors equals the 
number of sources (n=m=2), and that no additive noise 
is present; the activation function in (11) is chosen as 
f(y(k)) = [yf(k), . . . , ~ ; ( k ) ] ~ ,  and the fixed parame- 
ters in (12)-(13), the learning rate update equations, 
are p l  = p2 = 0.01, and p = 0.005. The separat- 
ing matrix generated by NGA, W(k), is initialised to 
W,(k) every 10 samples, i.e. Tp = 10. Figs. 2 and 
3 show, respectively, the tracking of the two columns 
of the mixing matrix, by NGA only and by the com- 
bined approach, in the case of continuous and abrupt 
non-stationarity. The results are illustrative of the in- 
determinacy of scaling, as both techniques track the 
negative of the second column of the mixing matrix, 
whose actual values have not been plotted in either fig- 
ures for the sake of clarity. It should be noted that it 
is not possible to discriminate between the true mixing 
coefficients, and the estimates produced by the com- 
bined approach, as these are coincident on these plots. 
Thus, the combined approach is fast enough to track 
the changes in the channel that cannot be followed by 
NGA alone. The performance of a BSS method can 
also be assessed by plotting the following performance 
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3: Tracking of the two columns of the mix- 
ing matrix, when the channel is non-stationary and 
changes abruptly: actual coefficients (solid lines) , es- 
timated with NGA alone (dashed lines), and estimated 
with the combined approach (dotted lines, coincident 
with the solid lines). 

Figure 4: Evolution of the average performance index 
for NGA (solid line) and for the combined approach 
(dotted line). 

index (PI) 

where P(k) = [pij] = W(k)A(k), and m is the number 
of source signals. Generally, a low PI indicates better 
performance. Thus, we separate the sources with NGA 
and the combined approach in 30 independent trials. 
The average performance indices for the two methods 
are compared in Fig. 4. It illustrates that the combined 
approach has a much faster initial convergence speed 

than NGA, and its good tracking capability results in 
a lower PI following initial convergence. 

5 .  CONCLUSIONS 

A combined KF and NGA approach for blind source 
separation of binary distributed signals, mixed by a 
non-stationary channel has been presented. Simula- 
t,ion results have shown that the KF tracks the mixing 
coefficients quite accurately when the mixing channel 
is non-stationary, with and without abrupt changes. 
Thus, the combined approach can quickly follow the 
changes in the environment, resulting in fast conver- 
gence speed, and good tracking capabilities. On-going 
work is considering extension to arbitrary sources. 
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