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ABSTRACT 
Conditions for Global Asymptotic Stability (GAS) of a non- 
linear relaxation process realized by a Recurrent Neural Net- 
work (RNN) are provided. Existence. convergence, and ro- 
bustness of such a process are analyzed. This is undertaken 
based upon the Contraction Mapping Theorein (CMT) and 
the corresponding Fixed Point Iteration (FPI). Upper bound- 
s for such a process are shown to be the conditions of con- 
vergence for a commonly analyzed RNN with a linear state 
dependence. 

1. INTRODUCTION 

Numerous problems in engineering can be forinulated as 
optimization problems with or without constraints. The real- 
world problems cast into such a framework include the trav- 
elling salesman. transportation. network flow, and associa- 
tive memory problems 1 I]. Neural networks have also been 
successfully applied in: solving systems of linear equation- 
s, nonlinear programming, dynamic programming. and net- 
work Flow computations [2. 31. 
In most applications, there is a need for a robust method 
that works efficiently across a broad spectrum of optimiza- 
tion problems. Global Asymptotic Stability (GAS) and ro- 
bust GAS theory, which have been widely considered in the 
context of linear systems, have been shown to provide such 
robustness. In engineering, formulation of the GAS state- 
ment stems from a general Autoregressive Moving Average 
(ARMA) linear system equation for the case of a zero ex- 
ogenous input vector. 
Within nonlinear systems, such as Recurrent Neural Net- 
works (RNN)s3 the corresponding general Nonlinear AR- 
MA, NARMA(p,q) system is given by [4] 

z ( k )  = e ( k )  + h ( ~ ( k  - I) ,  . . . , z ( k  - p ) ,  

e ( k  - I), . . . , e ( k  - 4 ) )  (1)  

where p denotes the order of the Autoregressive (AR) part, 
q denotes the order of the Moving Average (MA) part, with 

some nonlinear function / I ( . ) .  

Traditionally, the analysis of neural networks for optimiza- 
tion has been based on the Lyapunov stability theory of dy- 
namic systems. Recent developments in  neural networks 
for constrained optimization include Lagrangian relaxation, 
and a connection with the theory o f  chaos. 
Here. we einbark upon the results from [SI, and provide the 
conditions of convergence of a relaxation process when re- 
alized by a recurrent neural network. Uniformity. and inher- 
ent robustness, of such a GAS process is preserved based 
upon the contractivity of the logistic activation function of 
a neuron and the fixed point iteration around a current point 
in  the state space of a recurrent neural network. 

2. RECURRENT NEURAL NETWORKS 

The structure of a fully connected RNN is shown in Figure 
I .  The N neurons (nodes) are depicted by circles. and incor- 
porate the operation ( ~ 1 ~ 7 7 ~  of inputs ) .  For the nth neu- 
ron. its weights form a ( p  + N + 1) x 1 dimensional weight 
vector w: = [w,~, , ,  . . . , I L ’ , ~ . ~ + N + I ] ,  where p is the num- 
ber of external inputs s? and N is the number of feedback 
connections. one remaining element of the weight vector w 
being the bias input weight. The weight vectors are encom- 
passed in the weight matrix W. Such a network is called a 
Fully Connected Recurrent Neural Network (FCRNN) [6]. 
The following equations fully describe the FCRNN 

where the ( p  + N + 

@(?J7z(k) ) ,  71 = 1 , 2 , .  . . , N 
p + N + 1  

r=i 
~ U f I . l ( k ) W ( k )  

[Yl(k - I), . . . , Y N ( k  - I), 1, 
s ( k  - l),  . . . , s ( k  - p ) ]  

(2) 

1) x 1 dimensional vector U comprises 
both the external and feedback inputs to a neuron, with vec- 
tor U having “unity” for the constant bias input. 
Depending on the particular application, the network has 
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Figure I : Single recurrent neural network 

one or more output neurons. In signal processing, dynamic 
neural networks are mostly designed to have only a unique 
equilibrium point, being globally stable, so as to avoid the 
risk of spurious responses or the problem of local minima. 
The system given in (2), with only one output, can be writ- 
ten in the state space form as 

Y ( k  + 1) = + ( Y ( k ) ,  W ( k ) , s ( k ) )  
Yl(k) = HY(k) (3 

and hence ( 1 )  can be approximated by an RNN with 12 be- 
coming an activation function of the neuron, which is most 
commonly the logistic function denoted by 

1 
1 + e-pv @(,U) = ____ (4) 

and will be assumed in (2). The Bounded Input Bounded 
Output (BIBO) stability of (2) for afinite gain /3 is preserved 
due to the saturation type nonlinearity in (4). 
When applying the RNN given in Figure I in the GAS re- 
laxation, the goal is to re-iterate (3) for a fixed external in- 
put vector s and weight matrix W, until  reaching the fixed 
point. In order to provide the conditions of stability and 
convergence of such a procedure, i t  is important to intro- 
duce the concepts of contraction mapping and fixed point 
iteration. 

3. LOGISTIC ACTIVATION FUNCTION AND 
CONTRACTION MAPPING 

The logistic nonlinear activation function of a neuron is shown 
to provide a contraction mapping on [a, b] E E% for 0 < 

/3 < 4 [ 5 ] .  Using the Contraction Mapping Theorem (CMT), 
an optimization problem F(<)  = 0 can be iteratively solved 
as < ( k )  = f ( [ ( k  - l)), whose solution is a fixed point 
[* = f([*). Such a process is called a fixed point itera- 
tion (FPI). 

Definition 1 X* E Rd is said to be afiwed point of F : 
Rd + E%d i f F ( x * )  = X*. 

The dynamics of either an associative or hierarchical neural 
network can boil down to the discovery of a fixed point (a 
stable equilibrium) or contraction to the already established 
fixed point in  a discrete dynamical system. The domain of 
attraction of a stable equilibrium point of a dynamical sys- 
tem and the convergence rates are also of interest in  control 
theory, and associative memories. Based upon the domain 
of attraction, it  is possible to analyze various types of stabil- 
ity, such as asymptotic stability and global asymptotic sta- 
bili ty. 

4. CONDITIONS FOR CONVERGENCE OF RNN 
RELAXATION 

GAS relaxation for a recurrent perceptron is provided in 
[ 5 ] ,  where the condition was derived based upon the 1 1  . 11 1 

norm of the weight vector and the value of the slope ,B of 
the nonlinear activation function @. An RNN optimization 
model describes the process by which a system changes it- 
s state, e.g. Y ( k )  + Y(k + 1). Let @ ( k , k o , Y o )  de- 
note the trajectory of a GAS state change for all k > ko,  
with @(ko,ko ,Yo)  = YO. If @ ( k , k o , Y * )  = Y* for all 
k 2 0, then Y* is called an equilibrium point. The largest 
set D ( Y * )  for which this is true is called the dorriuirz of at- 
traction of the equilibrium Y * .  If D ( Y * )  = Rn and if Y* 
is asymptotically stable, them Y * is said to be asymptoti- 
cally stable in  large or globall! asyrnptoricall~~ Jtable. 
The following theorem gives the necessary condition for the 
existence of a fixed point. 

Lemma 1 (Brower's Fixed Point Theorem [7]) Let H 7L = 
[a,  b]" be a closed subset of E%" arid f : H" + H" be a 
continuous vector-valued function. Then f has at least one 
j x e d  point in H " .  

For the system under consideration (3 ) ,  the fixed points of 
the function Y(k + 1) = @ ( Y o ( k ) ,  W, s) = + ( Y ( k ) )  are 
the equilibrium points of the system for a given input s and 
the connection weight matrix W. Since the logistic func- 
tion is a continuous, bounded function, the existence of the 
equilibrium points of the system is then obtained using the 
above Lemma. In the sequel, we provide the conditions of 
convergence of the GAS process ( 3 )  towards a fixed point. 
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5. GAS FOR FULLY CONNECTED RECURRENT 
NEURAL NETWORKS 

Let Y ,  = [yi, . . . ,&IT  be a vector comprising the outputs 
of an RNN at iteration i .  Then, by a CMT in RN , an iterative 
process applied to the general RNN converges, if there is a 
hypercube M = [a, bIN C RN such that 

i) + : M t M  

ii) If for some norm 1 )  . I), 3y < 1, such that 
II +(XI - W Y )  II< 7 II x - Y 11, VX,Y E M 
the equation x = 9(x) has a unique solution in M, 
denoted by x*, and the iteration x,+1 = 9(xL) con- 
verges to X* for any starting value xg E M. 

Actually. since the function 9 in this case is a multivariate 
function, 9 = diwg(@l, .  . . , @ N ) ,  for the ith iteration of 
( 3 ) ,  we have a set of mappings 

y; = $1 (UT-,Wl) 

( 5 )  - T g& - @ N  (Ui- iWN) 

As the convergence under contraction mapping depends on 
the choice of norm, to circumvent that, we look for the con- 
dition of convergence based upon the features of the nonlin- 
ear activation function +. 
Extending the approach from [SI, let us denote the Jacobian 
of 9 by J. If M E B" is a convex set, and 9 is continu- 
ously differentiable on M = [a, b] E RN , and satisfies the 
conditions of the CMT, we have 

This stems from the scalar case. where by the intermediate 
value theorem. for the conditions of the CMT on [a, b] E 
R, there is a point < E ( a , b )  such that I@(b) - @(a)[  5 
z ' (<) lb-a) .  As for the logistic function maxzEw(@'(x)) = 
7, the conditions for a GAS relaxation for a recurrent per- 
ceptron [5] can be extended to the multidimensional case, 
as follows. 

Claim 1 The GAS relaxation based upon a RNN realiza- 
tion converges, i f jor  the lctk neiiroti ( I C  = 1, . . . , N ) ,  arid 
zth iteration, and wk.3 E w, I C ,  j = 1,. . . , N 

The proof follows naturally from the above discussion, and 
the fact that the condition of convergence for the (a: i = 
1, ... , N  i s@'  5 y < 1. 
However, although the previous Claim gives the conditions 
of convergence, i t  does not establish the conditions for uni- 
form convergence. Notice that i t  is the uniform convergence 
that preserves robustness of an iterative approach. 

Theorem 1 For the FPI process (3) to converge uniformly, 
it is necessary that 

N 

which for  the logistic activation function corresponds to 

(9) 

and 

Proof: 
In order to prove Theorem 1, recall that for the case of a s- 
ingle recurrent perceptron, the condition for a uniform GAS 
was CjZ1 1w31 < 8 wj(J w $ = &. However, 
for a network of N neurons, it is possible to have a conver- 
gent FPI, even if some of the neurons violate the previous 
conditions. When it  comes to the uniform convergence, it 
is important that the processes at every neuron converge u- 
niformly. This means that lwi,j( < 1 for each *La* 
neuron i = 1 , 2 , .  . . , N .  As the FPI process (3) is auto- 
regressive, for the uniform convergence at every particular 
neuron, i t  is only the diagonal weights which are related to 
the slope pi in the particular nonlinear activation function 
aL i = 1,. . . , N and have an influence on the conver- 
gence in the FPI sense. 0 

N 

5.1. Influence of the Number of External Input Signals 

It is important to see whether the number of external input 
signals has an influence on the GAS. 

Claim 1 The rate of convergence of relaxation in RNNs 
does not depend on the number of external input signals. 

Proof 
Notice that for every neuron, during the FPI (3), for the ( k  + 
1)th iteration, we have 

gi(k + 1) = @i (yi (IC) + C) , i zz 1 , 2 , .  . . , N ( I  1) 

where C embodies all the terms {wi,j*sj} and {wi,jyj},j  # 
i .  Since the external inputs s and weights W are kept con- 
stant, the number of the external inputs does not have an in- 
fluence on the convergence process of the GAS relaxation. 
It only deterpines the value of the fixed point, but not the 
rate of convergence. Therefore, the convergence properties 
of the iteration 

Yi+1 = @(Yi,s,W) (12) 
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do not depend on the number of external input samples. 0 
The rate of convergence is defined by the ratio l , ~ ~ ~ ~ \ ~ - y ~ ~  

From the CMT, the rate of convergence of uniform GAS is 
linear with the convergence rate defined by the norm of the 
Jacobian of +. This means that, say for neuron j ,  its con- 
vergence rate is defined by @’(y;). 

Claim 2 The convergence of a uniform GAS, when per- 
formed by a FCRNN, is linear; with the convergence rate 
defined by the norm of the Jacobian of the nonlinear activa- 
tion function +. 

1 -  

Y1 0.478783 0.5069 19 0.56450 I 
Y2 0.476030 0.50307 I 0.553442 
Yz 0.474018 0.501753 0.553435 

6. UPPER BOUNDS FOR GAS RELAXATION 
WITHIN AN FCRNN 

Y4 
Ys 

Systems of the form 

0.473603 0.501644 0.553351 
0.473534 0.501627 0.553338 

x ( k  + 1) = Ax(k) + Bc [Wx(k) + S ]  = f ( ~ ( k ) )  (13) 

Ys 
Y7 __ 

have been widely considered [8]. Here, x is the state vector 
of the network, and c(.) is a vector of nonlinear activation 
functions. The weight matrix W of (3) can be split up into 
the feedback part (index a) and the feedforward part (index 
h) ,  w h i c h g i v e s Y ( k t 1 )  = +(W,Y(k) + Wbs(k)). Ob- 
viously, this can degenerate into the form (13). Namely, for 
a contractive activation function a, the relation 

0.473522 0.501625 0.553336 
0.47352 I 0.50 I625 0.553336 

@ ( a  + b) < @ ( a )  + +(b) < a + @ ( b )  (14) 

holds, which is also used in the analysis of a posteriori al- 
gorithms 191. Therefore, widely available results for system 
(13) provide the upper bound for the system described in 
this article. providing also the measure of robustness of the 
GAS relaxation. 

Example 1 Show, that the GAS relamtion for  afiilly con- 
riected RNN krith three rieur-ori~ mid six e.rter-nul iiiput sig- 
rials coriverges to a,fi.red point in the FPI sense. 

If the initial values S O  and W are chosen at random, the it- 
eration process converges towards a unique fixed point Y = 
[0.473205,0.501625,0.553336], as shown in Table 1 .  The 

Table 1 : Fixed point iterates for a fully connected RNN 
I States I y1 1 Y2 1 Y3 

I Yn I 0.211518 I 0.999116 I0.153604 I 

iteration process for each of the three neurons in the RNN is 
shown in an appropriate column in Table 1 .  For every neu- 
ron, the iteratifin process converges, and the output neuron 
reaches its fixed point last. 

7. CONCLUSIONS 

Understanding the fixed point potential of recurrent neural 
networks (the number, stability, and bifurcations of fixed 
points) brings some light into practical realizations of op- 
timization problems. We have provided the relationships 
between the number of neurons in the RNN, the slope in the, 
activation function p, and some features of W ,  which guar- 
antee convergence of a relaxation process realized by fully 
connected recurrent neural networks. The results obtained 
can be applied when recurrent neural networks are used as 
computational models, in particular, as optimization model- 
s. The results can also be used as stability analysis tools for 
some classes of nonlinear control systems. 
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