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ABSTRACT: LED solar simulators have a high potential for high quality characterisation of solar cells. One of the 
main challenges is to achieve a close spectral match to the AM1.5 solar spectrum from 350nm to 1300nm. The main 
sources of measurement uncertainty are the spectral mismatch, the non-uniformity of light and the reference cell. The 
spectral mismatch can increase the measurement uncertainty significantly. In order to minimize a major uncertainty 
factor a close spectral match needs to be acquired. It will be shown that the usage of LEDs, which are narrow 
wavelength emitting light sources, can improve the measurement accuracy of the solar simulator by accurately 
matching the solar spectrum. The process of choosing the best combination of wavelengths and the LED population 
per wavelength is a complex, dual optimization problem. This paper evaluates the optimisation algorithms chosen and 
examines the influence of different fitness functions in acquiring a Class A+ spectral match.  
Keywords: Light Emitting Diodes (LEDs), Solar Simulator, Characterisation, Spectral match. 
 

 
1 INTRODUCTION 
 

It is being argued that LEDs are excellent candidates 
as light sources in solar simulators as they have the 
potential to result in a Class AAA LED system, regarding 
the IEC standards [1]. It will be shown that one of the 
many advantages in using LEDs as main light sources in 
a solar simulator is their capability to achieve a close 
spectral match to the AM1.5 solar spectrum, which 
improves the measurement accuracy of the solar 
simulator. They could also be regulated to meet any other 
desired AM as long as realistic intensities are required. 
Their effectiveness in achieving variable light intensities 
and variable output spectra provides more flexibility in 
reproducing realistic environmental conditions in the 
solar simulator [2]. Minimising the uncertainties 
introduced due to spectral mismatch improves the overall 
measurement accuracy of the solar simulator and can 
improve the characterisation of multi-junction solar cells 
and the energy yield prediction in general. In order to 
match the current of different stacked cells, the spectral 
output of the solar simulator needs to be adjusted to the 
spectral response of each junction. Also, the elimination 
of the spectral mismatch under various spectra provides 
more accurate measurements which lead to a precise 
energy yield prediction of various PV technologies. 

According to the IEC standards [1], a Class AAA 
solar simulator needs to match the AM1.5 solar spectrum 
between 400nm and 1100nm in 6 bins. The first 5 bins 
are 100nm wide and the last bin is 200nm wide. The 
spectral match in each interval needs to be between 0.75 
and 1.25 to meet the Class A i.e. the spectral mismatch 
can be up to 25%. Also, the non-uniformity and the 
temporal stability need to be less than or equal to 2% to 
reach Class A. This paper focuses on the spectral match 
Classification. However, a wider spectral range from 
350nm to 1300nm was chosen to account for the spectral 
response of different PV technologies. 

Identifying which LEDs should be used to better 
match the solar spectrum is a very complex dual 
optimisation problem. Elaborate optimisation algorithms 
needed to be identified and used to better solve the 
problem. Those algorithms are the genetic algorithm and 
CVX which is an open source modelling package for 

convex optimisation used in Matlab. The chi-squared is 
used as the error criterion. Different fitness functions 
were used to determine their influence to acquiring a 
Class A+ spectral match between 0.9 and 1.1, i.e. 10% 
mismatch. The comparison between the results obtained 
by the different fitness functions will determine the 
wavelengths of LEDs and the quantities of each 
wavelength that need to be used to best match the AM1.5 
solar spectrum. It will also be shown how this result 
compares to the spectra of other types of lamps. 
 
2 SIMULATION SET-UP 
 
2.1 Choice of LEDs 

LEDs offer many advantages when used as light 
sources in solar simulators. They are narrow wavelength 
emitting light sources with a specific central wavelength, 
FWHM (Full Width at Half Maximum) and maximum 
power output. Their intensity distribution is described by 
a Gaussian distribution.  

A selection of LEDs available on the market was 
chosen to set the initial wavelengths that cover the 
350nm-1300nm spectral range. Figure 1 shows the 
FWHM and radiant flux distribution of those LEDs. 

It can be observed that there is a wide range of LEDs 
with different characteristics depending mainly on the 
material of their dies. The 500nm-600nm visible range 
can also be represented by the usage of warm white 
LEDs which have a broader power distribution with a 
peak around that area. It can be observed in Figure 1 that 
the availability of LEDs in the 1100nm to 1300nm range 
is very limited. They all come in a variety of power 
outputs. Some of them are really powerful due to the 
usage of multiple dies that construct the chip.  

The cost and wavelength availability of the LEDs 
does not allow for the usage of an infinite number of 
them to best fit the AM1.5 solar spectrum. Therefore, the 
best combination of wavelengths and the number of 
LEDs for each wavelength needs to be determined. The 
goal is to find the minimum number of different 
wavelengths (i.e. LED types) that best match the AM1.5 
solar spectrum allowing for a spectral mismatch of 10% 
instead of 25% specified in the standards [1]. This 
problem is a complex dual optimisation problem. The 
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first objective is to determine the best overall 
combination of wavelengths out of the overall range of 
them and the second objective is to calculate the best 
possible agreement for a given set of LED types. The 
number of possible wavelength combinations increases 
exponentially with the number of available LEDs as it 
can be seen in Figure 2. It becomes clear that this 
problem cannot be solved analytically as it is 
computationally intensive and time consuming. 
Therefore, the usage of optimisation algorithms is crucial 
to reach a close to optimum solution.  
 

 
Figure 1: The FWHM and radiant flux distribution of 
different off the shelf LEDs across the 350nm-1300nm 
spectral range. 

 

 
Figure 2: The number of possible combinations increases 
exponentially with the number of LEDs. 
 
  
2.2 Optimisation algorithms 

The main objective is to minimize the difference 
between the theoretical AM1.5 solar spectrum and the 
spectrum constructed by the LEDs in order to achieve a 
10% spectral mismatch by using as fewer LEDs as 
possible. The standards take into account the 400nm-
1100nm wavelength range and specify a Class A spectral 
match if it is within the 0.75-1.25 range, i.e. up to 25% 
mismatch for 5 different 100nm bins and a 200nm bin. 
The optimisation process described in this paper 
calculates the spectral mismatch across the 350nm-
1300nm wavelength range. Two different optimisation 
techniques need to be followed to solve different aspects 
of the problem. The first one is the determination of the 
best combination of wavelengths and the second one is 
the determination of the number of LEDs per wavelength 
for a given set of wavelengths. They both depend on each 
other. The first optimisation method chooses a 

combination of LEDs for every iteration and then the 
second optimisation method determines how many of 
those LEDs should be used and what the best possible fit 
to the target spectrum could be. 
The accuracy of the result depends on the precision of the 
algorithm used. Therefore, a robust optimisation method 
should be used to determine the optimum solution. The 
optimisation method chosen for the first objective is the 
genetic algorithm while the optimisation method chosen 
for the second objective is the cvx, an open source 
modelling package for convex optimisation in Matlab 
with the chi-squared as the error criterion. These 
algorithms were chosen for their speed, accuracy and 
reliability. 

The genetic algorithm is an optimisation method 
which uses techniques of biological evolution to 
converge to an optimal solution. It starts off with an 
initial population and through means of natural selection 
such as mutation and crossover it creates new solutions 
called offspring which perform better until a satisfactory 
solution is obtained. The criterion that determines which 
solutions are better is called a fitness function. The 
fitness function is calculated for each individual of a 
population and the fittest survive. Different fitness 
functions were used to determine their influence on the 
result. These are the spectral ratio as specified by the 
standards, the spectral ratio in 100nm intervals across the 
350nm to 1300nm spectral range and the error value of 
chi-squared. Therefore, the genetic algorithm will try to 
minimise the difference between the two spectra, the 
solar and the one synthesized by the LEDs, giving 
priority to the solutions that have the best fitness 
function. 

The spectral ratio is defined as the ratio between the 
spectral response of the LEDs and that of the AM1.5 
across the specified bin. The error value of chi-squared is 
used for fitting and it minimises the sum of the squares of 
the difference between the actual value of the solar 
spectrum and the value predicted by the synthesis of the 
LEDs’ wavelengths. Therefore, 
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All the components are expressed in the form of matrices. 
The error is e and expresses the difference between the 
theoretical and the modelled spectrum. 𝑆𝑅𝑡ℎ is the 
theoretical AM1.5 solar spectrum, L is the spectrum of all 
the LEDs combined and 𝐿1, 𝐿2,.., 𝐿𝑁 are the spectra of 
each individual LED. N is the number of different LED 
types used and a is a matrix that contains the quantities of 
each LED to be used, i.e. how many times an LED 
should be used to best match the solar spectrum. The 
least squares calculation of the error is as follows: 
 
 𝐽 = 𝑒𝑇𝑒 = (𝑆𝑅𝑡ℎ − 𝐿𝑎)𝑇(𝑆𝑅𝑡ℎ − 𝐿𝑎) = 𝑆𝑅𝑡ℎ𝑇𝑆𝑅𝑡ℎ −
𝑆𝑅𝑡ℎ𝑇𝐿𝑎 − 𝑎𝑇𝐿𝑇𝑆𝑅𝑡ℎ + 𝑎𝑇𝐿𝑇𝐿𝑎 = 𝑆𝑅𝑡ℎ𝑇𝑆𝑅𝑡ℎ +
𝑎𝑇𝐿𝑇𝐿𝑎 − 2𝑎𝑇𝐿𝑇𝑆𝑅𝑡ℎ 
 



The above equation expresses mathematically the error 
criterion for this problem.  
 
3 RESULTS 
 
 Three different fitness functions were used in the 
genetic algorithm to determine which one would give the 
most reliable results. These are the spectral ratio in 
100nm intervals across the 350nm to 1300nm spectral 
range, the spectral ratio as specified by the standards, and 
the error value of chi-squared.  
 The spectral ratio calculated in 100nm bins over the 
350nm to 1300nm spectral range did not result in Class 
A+ due to the lack of a wide variety of LEDs in the range 
between 1100nm and 1300nm. The algorithm was trying 
to give priority to solutions that would have the best 
spectral match in 100nm bins. However, the 1200nm to 
1300nm range could never be reduced enough to give a 
Class A+ spectral match due to the poor availability of 
LEDs in that range. As a result, the algorithm always 
ended in worse Classifications than the desired A+ when 
that fitness function was used and therefore that method 
was not considered further. 
 Then the spectral ratio in bins specified by the 
standards was used as a fitness function. The spectral 
ratio had a value between 0.056 and 0.059, i.e. 5.6% to 
5.9% mismatch when 24 to 30 different wavelengths 
were used to match the solar spectrum which meets the 
desirable criterion of Class A+ spectral mismatch better 
than 10%. However, the area between 1100nm and 
1300nm was discarded by the algorithm since it was not 
set in its fitness function. As a result the genetic 
algorithm prioritised the solutions that resulted in good 
spectral match up to 1100nm as this allowed it to use less 
LEDs and still return a result within the specifications of 
the fitness function. This can be seen in Figure 4. 
 

 
 
Figure 3: Spectral ratio and chi-squared error for 
different numbers of wavelengths, for different fitness 
functions. 

 
The third fitness function considered was the chi-

squared error. This proved to be the best fitness function 
of the three since it was the only one returning results that 
included LEDs across the entire specified range of 
350nm to 1300nm. However, the Classification is A+ 

only for the bins specified by the standards and not for 
the 1100nm to 1300nm range which is again due to the 
lack of availability of LEDs in that range. 

Those results can be observed in Figure 3 which 
shows the variation of the spectral ratio and the error 
criterion for different numbers of wavelengths. The upper 
graph refers to the fitness function determined by the 
spectral ratio specified by the standards and the bottom 
graph refers to the fitness function determined by the chi-
squared error. It can be observed that in the first case the 
value of the spectral ratio is almost the same for all cases 
whereas the error increases as the number of wavelengths 
decreases but does not follow a clear increasing trend, 
which is within the calculation error of the genetic 
algorithm. The spectral ratio stability is believed to be a 
result of the genetic algorithm trying to minimise the 
difference between the spectra and always overshooting 
in the same areas to do so. On the other hand when the 
error criterion is used as a fitness function it increases 
when the number of wavelengths used decreases showing 
that the spectra difference will always be smaller when 
more LEDs are used. However, the spectral ratio as 
calculated by the standards does not follow a trend 
showing that it can be Class A+ even if a smaller number 
of wavelengths is used since the algorithm might 
overshoot some of them resulting in a smaller spectral 
ratio. 

.

 
Figure 4: Spectral match for 26 different wavelengths 
when the fitness function is the spectral ratio specified by 
the standards. The 1100nm to 1300nm range is not taken 
into account by the genetic algorithm. 
 
Once the error criterion fitness function was determined 
to be the best, the result using 26 different wavelengths 
was adapted as it showed a smaller spectral ratio than 
other solutions and at the same time the chi-squared error 
was not too elevated when compared to other numbers of 
wavelengths. The spectral mismatch can be shown in 
Figure 5 and is equal to 10.1%. 
 

 
Figure 5: Spectral match for 26 different wavelengths 
when the fitness function is the error criterion. 
 
The LEDs chosen for this simulation had the smallest 
FWHM among the ones of the same central wavelength 
available. The same simulation was conducted using the 
LEDs with the highest FWHM and the result can be seen 

Fitness Function: spectral ratio 
as specified by the standards 

Fitness Function: chi-squared 
error criterion 



in Figure 6. The higher FWHM offers a match better 
coverage of the spectrum. 
 

 
Figure 6: Spectral match for 26 different wavelengths 
using LEDs of higher FWHM. 
 
However, the value of the spectral ratio was in the range 
of 10% as before due to the 900-1100nm spectral range 
which seems to determine the spectral ratio in all cases. 
The range between 1200nm and 1300nm still does not 
result in a Class A+ spectral match due to the lack of 
available LEDs in that range. However, LEDs still offer a 
better spectral match when compared to other light 
sources. Their spectrum was compared to the spectra of 
the light sources of two Class A+ solar simulators 
available in our lab. Figure 7 shows that the LEDs, whose 
spectrum is represented in red, cover the solar spectrum 
very accurately and better than the other light sources in 
the range up to 1000nm whereas solar simulator 2 offers 
a better coverage in the range between 1000nm to 
1300nm. 
 

 
 
Figure 7: The LED spectrum compared to the spectra of 
two solar simulators available in our labs. 
 
4 CONCLUSIONS 
 

The spectral mismatch error and the significance to 
minimise it was addressed in this paper by creating an 
experimental spectrum of Class A over the 350nm to 
1300nm. LEDs were used as light sources to produce the 
experimental spectrum due to their improved capabilities 
compared to other light sources. Elaborate optimisation 
techniques were chosen to solve the dual optimisation 
problem of how many wavelengths and how many LEDs 
per wavelength need to be used to accurately represent 
the theoretical spectrum. Different fitness functions were 
tested for their accuracy.  

It was shown that the best fitness function is the chi-
squared error criterion since it offers a solution that 
minimises the difference between the theoretical and the 
LED spectra across the entire spectral range of interest. A 
selection of 26 wavelengths results in a satisfactory class 
A+ spectral mismatch of 10% across the range specified 
by the standards and at the same time it covers the range 
between 1100nm and 1300nm as accurately as the 
availability of LEDs permits. The comparison with other 
light sources shows that LEDs offer a better spectral 

match. This shows the great potential LEDs offer as light 
sources in solar simulators to minimise the spectral 
mismatch error and improve their measurement accuracy. 
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