
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A hybrid algorithm for removal of eye blinking artifacts fromA hybrid algorithm for removal of eye blinking artifacts from
electroencephalogramselectroencephalograms

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© IEEE

VERSION

VoR (Version of Record)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Shoker, Leor, Saeid Sanei, and Jonathon Chambers. 2019. “A Hybrid Algorithm for Removal of Eye Blinking
Artifacts from Electroencephalograms”. figshare. https://hdl.handle.net/2134/5614.

https://lboro.figshare.com/


 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



0-7803-9404-6/05/$20.00 ©2005 IEEE 1014

1

A Hybrid Algorithm for Removal of Eye Blinking Artifacts

from Electroencephalograms
Leor Shoker Member, IEEE, Saeid Sanei Senior Member, IEEE, and Jonathon Chambers Senior Member, IEEE

Centre of Digital Signal Processing, Cardiff School of Engineering,

Cardiff University Queen’s Building, PO Box 925, Cardiff, CF24 3AA, U.K.

Tel: +44(0)29 2087 5946 Fax: +44(0)29 2087 4716 e-mail: {shokerl,saneis,chambersj}@cf.ac.uk

Abstract— A robust method for removal of artifacts such as eye blinks

and electrocardiogram (ECG) from the electroencephalograms (EEGs)

has been developed in this paper. The proposed hybrid method fuses

support vector machines (SVMs) based classification and blind source

separation (BSS) based on independent component analysis (ICA). The

carefully chosen features for the classifier mainly represent the data

higher order statistics. We use the second order blind identification

(SOBI) algorithm to separate the EEG into statistically independent

sources and SVMs to identify the artifact components and thereby to

remove such signals. The remaining independent components are remixed

to reproduce the artifact free EEGs. Objective and subjective results from

the simulation studies show that the algorithm outperforms previously

proposed algorithms.

Index Terms— Eye blinking artifact, blind source separation, support

vector machines, electroencephalogram and electrooculogram.

I. INTRODUCTION

In EEG analysis ocular artifacts (OAs) pose a significant problem

to the clinician. OAs such as eye blinks generate a signal that is on

the order of ten times larger in amplitude than cortical signals and

can last between 200 to 400ms. The eyeball can be considered as a

dipole rotating in a socket. This means that as the eye rotates, the

cornea remains at a potential 0.4 to 1 mV positive with respect to

the retina. Rotations of the eyeball in saccadic eye movements cause

large external field variations that can contaminate EEG readings [1].

Due to the magnitude of the blinking artifacts and the high resistance

of the scalp, OAs can contaminate the majority of electrodes.

Principal component analysis (PCA) and singular value decompo-

sition (SVD) [2] have been used in the past by some researchers

to remove OAs. These methods assume that the underlying sources

within EEG data are algebraically orthogonal, an assumption which

from a physiological perspective is believed to be untrue. Therefore,

PCA type methods will not completely remove the OAs. Application

of adaptive filtering has also been investigated [3]. This, however,

has limited success since it ignores the mutual information between

the electrodes. There are several techniques that use independent

component analysis (ICA) to separate the EEG into its constituent

independent components (ICs) and then manually cancel the ICs that

are believed to contribute to the OAs [4].

An automated method for removing OAs from EEGs has been

described in [5]. The authors used a BSS algorithm based on

second order statistics, to separate the EEG and measured EOG into

statistically independent sources. The separation is then performed a

second time on the raw EEGs but with a selection of EOG channels

inverted. The ICs which have been found after inversion are compared

with the ICs of the previous separation and those which invert are

removed. In addition, the ICs that are above a threshold of correlation

with the measured reference are removed, as are the ICs with high

power in the low frequencies. The main drawback of this method

is that it is restricted to having the reference EOG channels, which

may not be available if one would like to process previously recorded

data.

In this paper we therefore demonstrate the use of BSS to extract the

separated sources and use an SVM to identify and thereby eliminate

the sources contributing to the eye blinking artifacts.

II. METHODS

A. Blind Source Separation

BSS generally relies on the fundamental assumption that the

source signals, s(t) = [s1(t), s2(t), . . . , sN (t)]T are statistically

independent and zero mean, where t is the discrete time index and

N is the number of sources. The mixtures can be modeled by

x(t) = As(t) + v(t) (1)

where A is the M × N full column rank mixing matrix, M is the

number of observed electrodes, x(t) = [x1(t), x2(t), . . . , xM (t)]T

contains the linear mixtures observed at the electrodes and v(t) =
[v1(t), v2(t), . . . , vM (t)]T is the additive zero mean sensor noise. We

assume that the sensor noise is spatially uncorrelated with the sensor

data i.e. E{x(t)v
T (t)} = 0. The output of the ICA system (i.e. the

estimated sources) is given by

y(t) = Wx(t) (2)

where y(t) = [y1(t), y2(t), . . . , yN (t)]T is the vector of the esti-

mated sources, W is the N × M separation matrix.

We used a gradient based BSS algorithm that exploits the temporal

structure of EEGs as in [6] to process the EEGs. The goal of the

proposed algorithm in [6] is to jointly diagonalize a set of output

covariance matrices RY (k) , E{y(t)yT (t + k)} k ∈ 1, 2, . . . , K ,

where K is the maximum time lag. We use multiple time lags instead

of a single time lag, as in the AMUSE algorithm [7], to minimize

the chance of the time lagged covariance matrix having duplicate

eigenvalues [8] and hence the separation to fail. It is sufficient

that only one of the time lagged covariance matrices has unique

eigenvalues for successful separation, hence the algorithm is more

robust at the slight cost of increased computational complexity [8].

The output covariance matrix RY (k) is given by,

RY (k) = W[RX(k) − RV (k)]WT
(3)

where RX(k) is the time lagged covariance matrix of the signal

mixtures and similarly RV (k) is the covariance matrix of the sensor

noise. Since we assume that the noise is spatially white and tempo-

rally uncorrelated, RV (k) will be a diagonal matrix for k = 0 and

RV (k) = 0 for k 6= 0 [9].

RX(k) − RV (k) = ARS(k)A
T − RV (k) (4)

where RS(k) is a diagonal covariance matrix of the independent

source signals. A suitable practical cost function is therefore defined

based upon minimizing the off-diagonal elements for multiple lagged

covariance matrices, as

Wopt = arg min
W

K�
k=1

JM (W, k) (5)
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and

JM (W, k) = ||RY (k) − diag(RY (k))||2F (6)

where diag(·) is an operator which zeros the off-diagonal elements

of a matrix. To implement this approach we use a gradient decent

algorithm to find Wopt iteratively, which is given by

W(κ + 1) = W(κ) + ∆W(κ) (7)

where κ is the iteration number and

∆W(κ) = −µ

K�
k=1

∂JM (W, k)

∂W

�����
W=W(κ)

(8)

where µ is the learning rate and
∂JM (W,k)

∂W
is the gradient of the cost

function in (5) evaluated at W = W(κ). The non negative parameter

µ is typically ≪ 1 and W(0) = I. In reality the algorithm can only

approximately jointly diagonalize the matrices as the linear model

in (3) may not accurately describe the generation of the sources and

due to the estimation errors in the sample covariance matrices.

B. Feature Extraction

The four most effective features we have found which efficiently

discriminate the artifact signal from the normal EEG are as follows:

1) Feature 1: A large ratio between the peak amplitude and the

variance of a signal suggests that there is an unusual value in the data.

This is a typical identifier for the eye blink because it causes a large

deflection on the EEG trace. The equation describing this feature is

given by

f1 =
max(|un|)

σ2
u

n = 1, . . . , N (9)

where un is one of the N ICs, max(·) is a scalar valued function that

returns the maximum element in a vector, σu is the standard deviation

of un and | · | is the absolute value applied element-wise in (9).

The normal EEG activity is tightly distributed about its mean value,

therefore a low ratio is expected for it in contrast to ICs containing

eye blink sources where a high value is expected.

2) Feature 2: This feature corresponds to a third order statistic of

the data. The normalized skewness for each IC is given by

f2 =

���� E{u3
n(i)}

σ3
u

���� n = 1, . . . , N (10)

for zero mean data. An EEG containing eye blinks typically has

a positive or negative skewness since the eye blinking artifact

increases locally the asymmetry of the signal segment. Hence we

take the absolute value of the skewness. Significance of this feature

in the overall classification is high since the eye blink signal has

larger skewness than that of normal EEGs, which are approximately

symmetrically distributed.

3) Feature 3: For the third feature we find the correlation between

the IC and a data set containing eye blinking artifact from six

electrodes including the frontal electrodes close to the eyes (FP1,

FP2, F3, F4) and the electrodes on the occipital lobe (O1, O2). This

will make the classification more robust by introducing a measure

of the spatial location of the eye blinking artifact. We average the

maximum value of cross-correlation between each of the electrode

locations and the IC

f3 =
1

6

6�
i=1

max
τ � �� E{x0

i (t)un(t + τ)}
�� � n = 1, . . . , N (11)

where un(t) is the nth independent component and x0
i (t) are eye

blinking reference signals, where i indexes each of the aforemen-

tioned electrode locations. The value of this feature will be larger

for ICs containing eye blinking artifact, since they will have a larger

correlation for a particular value of τ in contrast to ICs containing

normal EEG activity, the maximum τ ≈
√

TB .

4) Feature 4: The fourth feature is the statistical distance between

the probability density function (PDF) of an IC and the PDF of a

reference IC known to contain OA. Here we assume that the PDF of

the IC containing the artifact will be identical to that of the reference

signal containing artifact. To measure the statistical distance between

the two PDFs we used the Kullback-Leibler (KL) distance, given by

f4 = KL(P (un)||P (xref ))

= � P (un) ln
P (un)

P (xref )
dun n = 1, . . . , N (12)

where P (un) and P (xref ) are the PDFs of one of the N ICs and

a previously measured artifact, respectively. When the IC contains

OAs the KL distance between its PDF and the PDF of the reference

IC will be approximately zero, whereas the distance to the PDF of a

normal EEG signal will be larger. Since the KL distance is related to

the mutual information it reflects effectively the information shared

between the IC and the reference.

C. Classification

We use an SVM as our classification method, due to its generaliza-

tion performance, and its established empirical performance [10]. The

goal of an SVM is to find an optimal separating hyperplane (OSH)

for a given feature set. The OSH is found by solving the following

constrained optimisation,

minz,b,γi=1,...,l � 1
2
||z||2 + C � l

i=1 γi �
s.t. qi(z · gi − b) + γi ≥ 0 i = 1, . . . , l (13)

where ||z||2 = z
T

z is the squared Euclidean norm and (·) is the dot

product. The parameter z determines the orientation of the separating

hyperplane, γi is the i-th positive slack parameter, gi is a vector

containing the features gi = [f1(i) f2(i) f3(i) f4(i)]
T . Here, l is

the number of training vectors and qi ∈ {±1} are the output targets.

The non negative parameter C is the (misclassification) penalty term,

and can be considered as the regularization parameter and is selected

by the user. A larger C is equivalent to assigning a higher penalty to

the training errors. The parameter C is usually set to a high value to

avoid any training error. SVs are the points from the dataset that fall

closest to the separating hyperplane. Any vector gi that corresponds

to a non-zero αi is a support vector (SV) of the optimal hyperplane. It

is desirable to have the number of SVs small to have a more compact

and parsimonious classifier. The OSH (generally nonlinear) is then

computed by solving (II-C) using Karush-Kuhn-Tucker conditions

[11] as a decision surface of the form

f(g) = sgn 	 Ls�
i=1

qiαiK(g
s
i , g) + b 
 . (14)

In this formula sgn(·) ∈ {±1}, g
s
i are SVs, K(g

s
i , g) is the nonlinear

kernel function (if K(g
s
i , g) = g

s
i · g the SVM is linear). A Kernel

for a nonlinear SVM projects the samples to a feature space of

higher dimension via a nonlinear mapping function. Among nonlinear

kernels the radial based function (RBF) defined as K(gi, g) =
exp(−|g−gi|

2/(2ρ)), where the adjustable parameter ρ governs the

variance of the function, is widely used due to having quasi-Gaussian

distribution for datasets of large samples.

III. EXPERIMENTS

A. Dataset for analysis

The data were provided by King’s College Hospital, London U.K.

and are available from our website [12]. The data represent a wide
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TABLE I

THE PERFORMANCE OF THE CLASSIFIER BASED ON THE AVERAGE

NUMBER OF CORRECTLY CLASSIFIED POINTS. THREE KERNELS ARE

COMPARED IN THE CLASSIFICATION.

Kernel Average classification rate (%) (s.d.)

Overall Normal Eye Blinks

Cubic Polynomial 94.50 (1.92) 91.15 (2.31) 97.91 (2.04)

Linear 99.00 (1.15) 99.24 (1.11) 99.21 (0.97)

Gaussian RBF 98.50 (1.00) 98.26 (1.17) 99.03 (1.35)

range of patients and therefore gives a comprehensive set of data for

the evaluation of our method. The scalp EEG was obtained using

Silver/Silver-Chloride electrodes placed at locations defined by the

10-20 system. The data were acquired using a Beekeeper Telefactor

EEG amplifier, sampled at 200Hz and bandpass filtered with cutoff

frequencies of 0.3Hz and 70Hz. We obtained the independent com-

ponents by applying BSS to blocks of data, 10 seconds in length.

We assumed that the number of sources is the same as the number

of electrodes (i.e. N=M). Then, we extracted the features from each

of the ICs. The classifier was trained using the ICs from different

patients.

B. Testing the Features

In our study we tested the features using 200 ICs; 100 ICs

containing eye blinks and 100 free of artifact. The classifier was

tested using a variety of kernels, for which the error results are shown

in Table I. The value chosen for the parameter C was 64 and in the

case of the RBF kernel the value of ρ was empirically found as 0.75.

For each kernel the average error values were estimated with 4-fold

cross validation (CV) i.e. using 75% of the data as training examples

and 25% for testing with no overlapping. The cross-validation was

performed 10 times, each time the data were randomly rearranged,

in order to yield a better estimate of the error.

The average number of support vectors found when using the

RBF kernel was 37% of the training examples. In the case of cubic

polynomial and linear kernels the number of support vectors found

were 18% and 3.3% respectively.

The training error was found by using the training data to test the

SVM. The training error was found to be 0.5% (av) and the test error

was 0.7% (av). This avoids any overfitting since the training error is

close to the training error.

The classifier was further evaluated by plotting the distribution of

the classifier output. It is calculated by applying the classification

function in (14) without the sgn(·) function. The result from the test

data using the linear kernel is shown in Fig. 1. The ICs containing

eye blinks are clustered around and above the +1 value and the

ICs containing normal EEG activity around and below the -1 value.

There is minimal overlap in the classifier output, indicating that the

proposed features are significant to the detection of eye blinking

artifacts for the test datasets.

For our dataset mainly due to reasonably separable classes there are

no significant differences between the results using different kernels.

However, the linear kernel requires far fewer SVs in calculating the

OSH, hence the linear kernel will be used to classify eye blinks in

the following experiments.

We applied the BSS-SVM algorithm to 10 real EEG datasets, each

were 7 minutes long. The performance of the algorithm can be seen

by comparing the EEG data obtained at the electrodes (see Fig. 2)

and the same segment of data after being processed by the proposed
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Fig. 1. A histogram plot showing the distance to the separating hyperplane
using the linear kernel.

algorithm (see Fig. 3). The significance of our results was justified by

clinicians at King’s College Hospital. The proposed algorithm was

compared to a manual artifact rejection, i.e. manually identifying and

canceling the artifact by calculating the cross correlation between the

BSS-SVM and the manually reconstructed EEG. The average value

of cross correlation is 0.92 (s.d. 0.02). In a number of trials the

effect of ECG has been automatically detected and removed, where

as the complete removal has not been achieved with the method based

on the manual selection. This had a detrimental effect on the cross-

correlation measure since the BSS-SVM output will be less correlated

with the manually reconstructed outputs, but has a positive effect on

the output since there is less artifact present in the output.

As a second criterion for measuring the performance

of the overall system we selected a segment of EEG,

xseg , and the reconstructed EEG, x̃seg , which doesn’t

contain any artifact and measured the waveform similarity,

εdB = 10 log � 1/M � M

i=1 (1 − E{(xi,seg[n] − x̃i,seg[n])})  .

When the value of εdB is zero, the original and reconstructed

waveforms are identical. From ten sets of EEGs the average

waveform similarity was εdB = −0.009dB (standard deviation

10−4dB). These results suggest that the observations have been

faithfully reconstructed both in terms of subjective visual inspection

and objective performance metrics.

IV. CONCLUSION

Based on our experimental results, the BSS-SVM algorithm ef-

fectively removes the effect of eye blinking artifacts on the EEGs.

The experiments herein demonstrate that for the test dataset the eye

blinking artifacts are effectively classified by using the introduced

features especially when the linear kernel is used for the SVM.

The EEGs are separated using the time lagged SOBI algorithm and

the identified artifacts are autonomously canceled, then the EEG is

reconstructed from the remaining ICs.
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