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Abstract

Trusted Computing introduces the Trusted Platform
Module (TPM) as a root of trust on an otherwise untrusted
computer. The TPM can be used to restrict the use of cryp-
tographic keys to trusted states, i.e., to situations in which
the computer runs trusted software. This allows for the dis-
tribution of intellectual property or secrets to a remote party
with a reasonable security that such secrets will not be ob-
tained by a malicious or compromised client. We model a
specific protocol for the distribution of secrets proposed by
Seving et al. A formal analysis using the NuSMV model
checker shows that the protocol allows an intruder to give
the client an arbitrary secret, without the client noticing.
We propose an alternative that prevents this scenario.

Keywords:
checking

Trusted Computing, protocol analysis, model

1. Introduction

The current computing landscape is plagued by a variety
of software-based attacks and threats such as viruses, phish-
ing attacks, and trojan horses. It is becoming increasingly
difficult to find suitable countermeasures to all these mali-
cious activities. Trusted Computing promises to improve
the security of today’s computer systems. With the Trusted
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Platform Module (TPM), a hardware device is available that
allows cryptographically qualified and tamper-proof state-
ments on the software configuration of a machine. The full
potential of such platforms becomes apparent on the Inter-
net, as the TPM enables a remote party to decide on the
trustworthiness of a host. Recently, the TPM has been in-
tegrated in a number of cryptographic network protocols to
provide a whole suite of security functionalities [8, 15, 21].

However, the design of cryptographic protocols is a de-
manding task and indeed many vulnerabilities have been
discovered in various protocols [1, 20] . With protocols in-
tegrating the TPM, it is tempting to rely on the hardware-
based security features. Yet, similar problems as with con-
ventional protocols may still occur, for instance the compo-
sition of an insecure protocol from secure components [7].
While it is still common to rely on best-practices and man-
ual cryptanalysis to determine the absence of security risks,
progress in the formal and partially automated analysis of
security protocols has been made in the last years.

General purpose cryptographic protocols have been the
subject of formal analysis for many years [17] using differ-
ent tools such as Mury [18] or ProVerif [4]. Basin et al. [3]
propose the OFMC symbolic model checker and incorpo-
rate it in the AVISPA [2] tool. Zhang et al. [22] showed that
it is feasible to model check the basic Needham-Schroeder
public-key authentication protocol in SMV. Lomuscio [16]
extends NuSMV to support ARCTL and models the din-
ing cryptographers problem with it. In the field of Trusted
Computing, Bruschi et al. [6] model the authentication ses-
sion that is performed between the local application and the
TPM module in the Spin model checker [13]. Lin [14] for-
mally analysed parts of the TPM APL
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pendent of a specific usage-control application” [19]. The
protocol “ensures that the server only distributes given se-
cret data to trusted clients.” It does not, however, ensure that
the secret received by the client does indeed come from the
server. This property is not mentioned in [19], but we argue
that it is important in some applications, such as when deci-
sions are based on the contents of the secret. We show the
absence of this property using a model checker and suggest
an improvement of the protocol which does not suffer from
the same drawback.

This paper is organised as follows: In Section 2 we de-
scribe Trusted Computing based on the TPM, introduce the
protocol we analyse, and outline the fundamentals of Model
Checking. Section 3 describes our model of the protocol
and the attacker. Section 4 presents the results of the analy-
sis and also suggests enhancements to improve the security
of the scheme. Finally, we draw conclusions in Section 5.

2. Preliminaries
2.1. Trusted Computing

The Trusted Computing Group' has specified the Trusted
Platform Module. Much like a smartcard, the TPM fea-
tures cryptographic primitives, but it is physically bound to
the main device. A tamper-resistant casing contains hard-
ware primitives for public-key cryptography, key genera-
tion, cryptographic hashing, and random-number genera-
tion. With these components the TPM is able to enforce se-
curity policies on hierarchies of secret keys to protect them
from any remote attacker.

The TPM implements high-level functionality such as re-
porting the current system state and providing evidence of
the integrity of this measurement, known as Remote Attes-
tation. This is done with the help of the Platform Configu-
ration Registers (PCRs), that can only be written to with the
Extend Operation. A PCR with index ¢ in state ¢ is extended
with input x by setting

PCR!™ = SHA-1(PCR!||x).

Before executable code is invoked, the caller computes
the code’s hash value and extends a PCR with the result. In
this way a chain of trust is built, starting from the BIOS,
covering bootloader, kernel, system libraries, application
code, etc. Ultimately, the exact configuration of the plat-
form is mapped to PCR values. If such a system state ful-
fills the given security or policy requirements, we refer to it
as a trusted state.

Upon request, the TPM signs the current values of the
PCRs. It can also sign the policy for a given key pair, thus
informing a third party that, for instance, a certain key will

http://www.trustedcomputinggroup.org
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not be revealed outside the TPM. To protect the platform
owner’s privacy, the unique Endorsement Key of the TPM is
not used for this signature. Rather, a pseudonym is used: an
Attestation Identity Key (AIK). The authenticity of an AIK
can either be certified by a trusted third party, named Priva-
cyCA, or with the group-signature-based DAA scheme [5].

Another high-level feature of the TPM is that it can bind
data (often a symmetric key) to a platform by encrypting
it with a non-migratable key. Such a key never leaves the
TPM’s protected storage unencrypted. An extension to this
is Sealing. A key may be sealed to a specific (trusted) value
of the PCRs. A sealed key will not leave the TPM and is
only used by the TPM if the PCRs hold the same values
which were specified when the key was sealed. Thus, use
of the key can be restricted to a trusted state of the computer.

2.2. Protocol

Seving et al. proposed a scheme to securely distribute
a secret using trusted computing functionalities [19]. The
setting is that the server does not trust the client platform
but only the TPM residing at the client’s end. It is possible
for the server to ascertain with the help of the PCRs that the
client platform is in a trusted state. Then, the server can
expect the client platform to function in the desired manner,
rather than (intentionally or unintentionally) running some
malicious activity.

Protocol Flow. Table 1 shows the flow of the protocol.
To avoid confusion, we stick to the numbering used in [19].
Additionally, we make some abstractions. For instance, we
do not explain the local TPM functions in detail (steps 5—
7 are left out). The interested reader can find a thorough
description in [19].

1 C — S REQ

2 C <« S Vper, N

3 TPM — C Veer

4 TPM generate (K, K )

8 TPM <+ C N

9 TPM — C Sig 41 (Veer, N, K)
10 C — S Sigix(Vper, N, K)
11 S check certificate
12 C «— S Enck(SECRET)
13 TPM +« C Enck (SECRET)
14 TPM assert trusted state
15 TPM — C SECRET

Table 1. Key Distribution Protocol

There are three participants in the protocol, the client’s
TPM, the client, and the server. First the client sends a re-
quest (REQ) to the server. The server replies by sending
values for PCRs (Vpcr) which define the trusted state, and
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a nonce (V). In the third step, the client asks the TPM to
create a key which is sealed to the required PCR values.
Next, the client asks the TPM to certify the key. The TPM
signs the key, the PCR values to which it is sealed, and the
nonce N with an AIK. This certificate is sent to the server.
Now the server verifies the certificate and asserts that the
key K is non-migratable and sealed to the correct PCR val-
ues (step 11). Subsequently it encrypts the secret with K.
The encrypted message is then sent to the client which asks
the TPM to decrypt it. The TPM checks if the client is in
the trusted state. If yes, the secret is revealed to the client.

Security Targets.
rity targets:

We identify the following three secu-

1. An intruder never learns the secret.

2. The client learns the secret only if it is in a frusted

state.

A client in the trusted state either learns the (real) se-
cret, or discovers that an attack has taken place.

Seving et al. state that the main goal of the protocol is to
ensure the confidentiality of the secret, i.e., neither an in-
truder nor a client in an untrusted state may learn the secret.
This corresponds to our first two security targets. The third
target, not mentioned in [19], ensures that one of the fol-
lowing cases always occurs: (1) An honest client is capable
of successfully completing the protocol and thus learns the
secret, or (2) the client is able to detect that some malicious
activity occurred, e.g. a signature is invalid. Below, we for-
malise these security targets and verify them using a model
checker.

2.3. Model Checking

Model checking is used to formally prove or disprove
that certain properties hold for a given model. For example,
we prove that given security properties hold for a protocol.
A model checker is a tool that takes a finite model and a
specification (set of properties) as input and returns true if
and only if the model satisfies the specification. If the model
does not satisfy the specification the model checker returns
false. Most model checkers are able to give a counterexam-
ple showing why the model does not satisfy the specifica-
tion. Figure 1 illustrates the main idea of model checking
and how it is applied in our setting.

In the following, we will shortly describe the models, the
specification language, and the model checker we use.

Models. Our models are Finite State Machines (FSMs)
or more formally Kripke structures. Let AP be a set of
atomic propositions. A Kripke structure is a tuple K =
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Model Specification
(Protocol)  (Security Properties)

i |

Model Checker
(NuSMV)

|

true
_or
false with counterexample

Figure 1. Model Checking

(S,T, S0, A, L), where S is the finite set of states, T C
S x S is the complete transition relation, Sy C S is the set
of initial states, A = 247 is the alphabet and L : S — A is
the labelling function, which associates to every state the set
of propositions that hold in that state. An infinite sequence
of states m = sps152 ... is apath of K if Vi. (s;, 8;41) € T
A path is a run of K if additionally, it starts with an initial
state. The corresponding word o = L(sg)L(s1)L(s2)...1s
an infinite sequence of letters from the alphabet A, defined
by the labelling function. In order to reason about proper-
ties of the set of words a Kripke structure defines we next
introduce a specification language.

Specifications. The specification language we use is
Computation Tree Logic (CTL) [10]. The logic is defined
over a finite set of propositions, A P, the same set we used to
define the labelling of Kripke structures. If we fix a Kripke
structure, a CTL formula is satisfied by a set of states. We
now define the syntax of CTL inductively and give a brief
overview of its semantics. Let s be a state. If p is an atomic
proposition, and ¢ and v are CTL formulas, the following
are also CTL formulas: p (meaning that p € L(s)), AX
(meaning that ¢ holds for all successors of s), AF ¢ (mean-
ing that for every path starting in s, ¢ holds eventually),
AG ¢ (meaning that for all paths starting in s, ¢ holds in all
states), and A ¢ U1 (meaning that on all paths starting in
s, ¥ holds eventually and ¢ holds in all prior states). We
can use Boolean connectives to obtain ¢ A i, ¢ V 1, and
-, with the usual meaning. We say that a formula holds
for a Kripke structure if the formula is satisfied by all initial
states.

Model Checker. We use the NuSMV model checker [9].
Given a Kripke structure and a CTL specification, it is able
to decide if the specification holds for the Kripke structure.
The NuSMYV modelling language allows for a very easy de-
scription of Kripke structures and the CTL model checking
functionality is based on a fast symbolic algorithm. For the
subset of CTL that interests us, NuSMYV produces a coun-

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on December 16, 2009 at 04:48 from IEEE Xplore. Restrictions apply.



terexample whenever the model violates a formula. A coun-
terexample for an AG ¢ formula consists of a single run of
the model where  does not always hold. A counterexample
for an AF ¢ formula consists of a run of the model where ¢
never holds.

3. Modelling the Protocol

In order to model check the protocol, we need a Kripke
structure that represents the protocol flow. It consists of
four FSMs, one for each party of the protocol (client, TPM,
server, intruder).” The states of these FSMs represent the
steps of the protocol and the content of the messages, mod-
elled as shared variables. Thus, the state of the overall sys-
tem determines (1) the current step of the protocol for each
party, (2) the content of the messages sent so far, and (3) the
current knowledge of each party.

In order to describe the model of the intruder, we will
first lay down some assumptions on the capabilities of the
intruder.

3.1. Assumptions

Cryptography. Our assumptions on security and intruder
capabilities are based on the considerations of Dolev and
Yao [12]. We assume that the underlying cryptographic
primitives are perfect and that keys and message fields are
atomic. Thus, an intruder can read an encrypted message
if and only if it knows the correct key. Similarly, an in-
truder can only create signed messages with signature keys
it knows. An intruder is not able to learn partial information
of a secret key or message, thus the intruder either knows it
completely or not at all. Our model therefore does not cover
attacks like statistical analysis or differential cryptanaly-
sis, nor attacks based on mathematical or number-theoretic
properties of the underlying cryptosystems.
We further assume that all parties know all public keys.

Model Restrictions. Our model introduces some further
restrictions. First, we only model one run of the proto-
col. Thus, we do not consider replay or interleaved attacks.
Furthermore, since the server trusts only the client’s TPM
but not the client itself, our model includes some malicious
client behaviour. We do not model the complex API of the
TPM. We thus assume that it is impossible to circumvent
the TPM’s security policies by abusing the API. We, how-
ever, allow the client to pass arbitrary values from its knowl-
edge to the TPM during the protocol run. Due to these re-
strictions, our model cannot be used to obtain a proof that

>The NuSMV input files with the models we created and the results of
running NuSMV on them are available for download at http://
www.laik.tugraz.at/aboutus/people/hofferek/
SSB_protocol_NuSMV_models.zip.
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the protocol under investigation is secure under all circum-
stances.

Apart from these restrictions, our model of the intruder
is quite powerful. We assume the intruder to be a classical
man in the middle: the intruder can intercept all messages
between the client and the server. Messages between the
client and the TPM cannot be intercepted by the intruder.?
If the intruder knows the correct key, it learns the content
of the message and adds it to its knowledge. The intruder
can also alter messages or introduce new messages which
are composed of items in its knowledge.

3.2. Model Details

The model of the client, the server, and the TPM is a
straightforward implementation of the protocol. Whenever
a party is supposed to send a message, it fills the fields of the
corresponding (global) variable and then sets a flag that the
message has been sent. Then the sender remains in an inac-
tive state until the received flag of the response message
becomes true. When the receiver has received the message
(possibly after the intruder has changed it), it can perform
checks such as whether all expected fields in the message
are non-empty, whether the message is signed with the ex-
pected key, etc. If all checks pass, the protocol continues
until the state COMPLETED is reached. If a check fails, the
party enters a state ATTACK_DETECTED and remains there
forever.

We observe that the number of keys and other interest-
ing items such as nonces in the protocol is limited. Thus,
we represent them by a finite number of symbolic constants
(NONCE, CLIENT_KEY, SECRET, etc.), in addition to the
constant ARBITRARY, which represents “any other value”.

The knowledge of the intruder is stored as an array of
Boolean values, where each entry corresponds to one sym-
bolic constant. The entry is true if and only if the intruder
knows the information represented by the corresponding
constant.

An encrypted message simply contains a field which
stores the key with which the message should be decrypted.
When the intruder sees the message, it checks whether it
knows the key. If not, it can not perform any actions that
require knowledge of the key. For example, without the key
it can not add the content of the message to its knowledge.
The same goes for signatures. If an intruder does not know
the signature key of a message, it can not change the con-
tent of the message. However, note that the intruder is al-
lowed to create a completely new message, either unsigned
or signed, with another, known key.

The actions of the intruder are modelled according to
the restrictions outlined above. Whenever the sent flag

3Eavesdropping on this channel would require physical access to the
client’s machine or access to the inter-process communication on it.
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of a message is true, the intruder can start to operate on the
message. It nondeterministically chooses to either leave the
message as it is, or to construct a new one based on its cur-
rent knowledge. When constructing a new message, the ac-
tual values of the fields are also chosen nondeterministically
from the overall intruder’s knowledge. The CTL model
checker analyses all possible (nondeterministic) combina-
tions. Thus, without explicitly modelling all choices in the
state machine, they are all taken into account when check-
ing the specification. After the intruder has dealt with a
particular message, it sets its received flag to true. This
indicates that the receiving party may continue its opera-
tion. It also prevents the intruder from making any more
changes to the message. Note that the intruder still has read
access to the message, which allows it to decrypt and use a
message if it learns the corresponding key later on.

4. Results
4.1. Model Checking

When formalising the security targets given in Sec-
tion 2.2 we obtain the following CTL properties:

1. AG(—IntruderKnowledge[SECRET))

The intruder never knows the secret.

AG((Client.state # Vpcr)
— =Client Knowledge[SECRET))

If the client is not in the trusted state, which is de-
scribed by the PCR values Vpcr then it does not know
the secret.

AG((Client.state = Vpcer) N ~AttackDetected)
— AF(ClientKnowledge[SECRET))

If the client is in the trusted state and no attack has
been detected then the client should eventually know
the (real) secret.

We feed our model and these properties to the NuSMV
model checker. Within just a few seconds NuSMV finds
the first two properties true and thus satisfies the specifica-
tion given in [19]. The third property, however, is found to
be false. An examination of the counterexample reveals a
security issue.

Security Issues. The intruder is able to replace the last
message from the server to the client. This message only
consists of the encrypted secret. Thus the intruder can
choose any arbitrary content it knows, encrypt it with the
client’s public key, and send it to the client. The client has
no means of knowing whether the message has been altered
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or not. It can correctly decrypt the message, but instead of
the secret it only learns the arbitrary content chosen by the
intruder.

This prevents the two parties from establishing a shared
secret. The secret value should not only remain confidential
to just the server and the client, but it should also be as-
sured that the client and server share the same secret in the
end; yet this is no longer the case due to the aforementioned
possibility of the intruder.

In certain scenarios this weakness does not cause a prob-
lem. Imagine a scenario in which the SECRET is a key to
access some copyrighted intellectual property. If the client
receives a faked secret, it will be unable to perform the nec-
essary decryption operation, but otherwise no harm is done.
This is no more dangerous than a denial-of-service attack.

Consider, however, another setting.  Suppose the
SECRET is a symmetric session key, which client and
server want to use for confidential communication. After
the protocol has been completed, the client uses the session
key to encrypt confidential information (i.e. bulk data) and
send it to the server. The client would think that (except
for itself) only the server knows the session key. However,
the session key is actually a faked one, sent by the intruder.
Thus, the intruder is able to decrypt the message and learn
the confidential content. The server would detect this at-
tack, because the client’s message is not encrypted with the
expected session key. However, at this point it is too late:
confidentiality has already been compromised.

4.2. Enhancements

The underlying problem is that the scheme only consid-
ers the security from the server’s point of view. Indeed there
is no authentication from the server to the client, neither in
message 2 nor message 12.

The aforementioned attack can be prevented if the server
signs the message in step 12 with its own key S. We
also suggest to include the nonce N into message 12, so
that it is uniquely linked to a particular protocol session:

12 C S Sigs(Enck (SECRET), N)

Now, if the intruder changes the content of the message
the client can detect this, because the signature would be
invalid. After we made this modification, NuSMV proved
all three of our security properties to be true. However, we
caution that the model checker cannot prove overall correct-
ness of the protocol. It can only prove the correctness of the
model of the protocol (with its limitations) with respect to
the specified security properties.

Another possible enhancement is to have message 2
signed by the server. This allows the client to check whether
or not Vpcor has been altered by the intruder. Without this
signature an intruder would be able to obtain a TPM-signed
message over whose content it has partial control. This

«—
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could help the intruder in cryptanalysis of the AIK in use.

5. Conclusions

Like any other security technology, Trusted Computing
is no silver bullet, it does not magically remove or resolve
every security issue present. Best practices for protocol de-
sign must still be adhered to, otherwise vulnerabilities in
protocols may still exist.

In this paper we have formally modeled and analysed
a scheme for the distribution of secrets with the NuSMV
model checker. The main design goal of the scheme is to
securely distribute a secret. We have shown that despite
TPM-based encryption of secrets, the lack of authentication
leads to a weakness in the cryptographic protocol, allowing
an attacker to supply the client with a secret of its choice.
We have modified the protocol and shown that the problem
does not occur in our enhanced version.

Our experience shows that creating a model forces one to
formalize all informal assumptions. Forgetting assumptions
usually makes the model checker produce counterexamples,
from which it is very easy to determine which additional
checks are necessary. This helps the designer to gain con-
fidence in the design and allows her to verify that changes
actually lead to the desired improvements. Thus we propose
to use model checkers in the spirit of unit-testing, assisting
also the early design and specification phase of protocol cre-
ation.

In future work we desire to extend our method to more
complex Trusted Computing protocols also considering the
emerging field of analysis of security APIs [11].
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