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Abstract - New block-based blind 
equalization algorithms are introduced 
based upon the cost function underlying 
the recently proposed soft constraint 
satisfaction blind equalization algorithm. 
The derivation of these .algorithms is 
based on mapping the original constrained 
optimization problem in CN into a much 
simpler optimization problem in W2. 
Versions of the new algorithms are also 
developed for fractionally-spaced 
equalizers. Simulations on a baud-spaced 
and a fractionally-spaced channel support 
the potential of the resulting block-based 
techniques. 

I. INTRODUCTION 
When digital data are transmitted over a finite 
bandwidth analogue channel by means of 
discrete pulse-amplitude modulation schemes, 
the number of detectable levels that can be 
supported is essentially limited by intersymbol 
interference. Intersymbol interference arises 
because of the spreading of the transmitted pulse 
caused by the dispersive nature of the channel 
together with filtering in the transmitter and 
receiver. An effective method. to minimize the 
system degradation is to connect an equalizer in 
cascade with the channel, so that the latter can 
model the inverse channel characteristics. The 
combined action of the channel and the equalizer 
is then, in the zero channel noise situation, 
essentially an identity operation [l]. This is the 
objective of linear equalization; where a linear 
filter, that is the equalizer, is applied to the 
received signal, in order to improve the 
probability of correct symbol detection. 
Blind equalization is unsupervised adaptation of 
the tap-coefficients of the equalizer to find the 
approximate inverse of the channel impulse 
response. Blind algorithms are conventionally 
implemented either in a baud-spaced (T-spaced) 

or a fractionally-spaced (F-spaced) setting. In a 
T-spaced implementation, the channel output is 
sampled at the signalling rate, whereas in an F- 
spaced setting, a higher sampling rate is used 
dependent upon the pulse shaping. Much work 
has considered the advantages of fractionally- 
spaced equalization [2,3]. In both T- and F- 
spaced cases, the decision-directed . [4] (DD), 
Sat0 [5 ] ,  Godard [6] and constant modulus [7] 
(CMA) adaptive blind equalization algorithms 
and the decision feedback configuration can be 
used. In this paper we consider the recently 
proposed soft constraint satisfaction (SCS) 
algorithm [l], which attempts to mitigate the 
problem of undesirable local solutions in the 
CMA cost function. We address the slow 
convergence of the sequential SCS algorithm by 
the provision of a novel block solution based 
upon mapping the origmal optimization 
formulation into a problem in Ai2. 
The following notation is employed: vector 
quantities appear in bold, I - I is the absolute 
value, sgn (-) is the signum function, E [ . ] is the 
statistical expectation operator, Re [ . ] and Im [ . 
] are respectively the operators which extract the 
real and imagnary part of a complex quantity. 
The +norm, transpose and the Hermitian 
transpose of a vector or matrix are respectively 
denoted by 11 - lip, ( . )T and ( - )H. The Moore- 
Penrose pseudo inverse of a matrix is indicated 
by ( . )#. The discrete time index is k. The 
equalizer vector ok E c Ne and input vector Xk 
E C N e  are defined respectively as 

Xp = [xk xk.l  and the equalizer 

output is yk = xPO,. 

0: =[e,,, Ok.1 .*.e,.,,.,1 and 

11. FUNDAMENTALS 

A. Problem Statement 
Consider the baseband representation for a 
digital transmission structure shown in Figure 1, 
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where C(z) and @z) represent respectively the z- 
transforms of the impulse response of the 
channel and equalizer, ak is the channel input 
with ak E { _+ 1 k j }, namely a complex Bernoulli 
sequence, vk is statistically independent additive 
channel noise, and Xk and Y k  are respectively the 
equalizer input and output. The objective for the 
equalizer, in the noise free case, is to achieve a 
pure delay operation, i.e. where C(z)@z) = e' '~~~.  
We desire the recovered symbol i i k  to be identical 
to ak up to some constant delay, 6, and phase 
shift, 8. 

. 

! 1 %  n I 

Fig. 1. Baseband model of a digital 
communications system 

A linear, causal and finite impulse response 
(FIR) model of length Nc is assumed for the 
channel: 

m=O 

The T-spaced equalizer of length Ns,  @z)  and 
the combined space S(z) are also linear, causal 
FIR and defined respectively as 

m=O 

m=O 

Note that c,, 8, and s, are the complex impulse 
response coefficients and that Ns= Nc+ N e -  1 .  

B. Existing Approaches to the Bjind Equalization 
Problem 
The generic update equation of the existing 
Bussgang-type blind equalization algorithms is 
P I  

where Hyk) is a zero-memory non-linearity 
(ZNL) and Hyk) - Y k  is the error function. 
Godard's algorithms[6]: Godard proposed to 
minimize the family of cost functions defined by 

@ k + l  = 0, + p ( w ( y k  ) - y k  ) x k  = 07 1 7 * * *  (4) 

(5 )  
where R, = 

The most frequently utilized member of this 
family is the Constant Modulus (CM) Algorithm 
and corresponds to the case where p = 2 [7]  The 
corresponding update equation is the following 

Normalized CM (NCM) algorithms[9,10]: Hila1 
and Duhamel proposed a normalized algorithm 
for constant modulus signal constellations. For 
the constant modulus algorithm defined above, 
they showed that the fastest convergence rate 
occurs if the update equation is modified to 
include a normalization term 

1 2 
@k+l  = @k + T ( s g n ( y k ) - l y k l  ) Y k X k  (7) 

I IXk  112 

The same algorithm has been proposed in [ 113 as 
a link between blind equalization and classical 
adaptive equalization where a desired (or 
training) signal dk is available. The NCM 
algorithm has been formally derived from the 
exact solution of 

1 
but the underlying cost function suffers from 
undesirable local solutions [ 11. 
Sequential SOB Constraint Satisfaction 
Algorithm[ 11: The SCS algorithm follows the 
formulation of the blind equalization problem for 
a complex input alphabet as 

subject to X ~ O k + l ~ ~ + , X k  = R2 (9)  

where the optimization problem in (9 )  is 
motivated by the principle of minimum 
disturbance together with the enforcement of a 
constraint upon the updated equalizer weight 
vector. The SCS algorithm is based upon 
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softening the enforcement of the constraint 
during adaptation as the constraint may be 
inappropriate when the equalizer weight vector is 
far from a desired solution. 
The derivation of the SCS algorithm has been 
based upon a gradient descent interpretation; the 
update equation of which is given by 

- 

In this work, however, we investigate the direct 
solution of the constrained optimization problem 
represented by (9), motivated by the potential 
improved convergence properties of a block 
estimator. 

111. NEW BLOCK APPROACH 

An exact block solution to the constrained 
optimization problem posed by (9)  is presented. 

A. The Minimization Solution 
The following vector definitions are adopted 

I 

- z = [::]E RZNe g = [ i f ] t  R2Ne ( 1 1 )  

where zR = R e [ z ] ~  Ai Ne and z1 = Im[z] E Ai N0 . 
Some useful identities that will be employed are 
z H z = z T z ( 1 2 ) ,  X H O =  X T @ + j X T @ ( 1 3 ) ,  - 

OH X = X' 0 - jx' - 0 ( 14), - X T  X = O ( 1 3 ,  

and 11z11: = 11Z"l: + llzlll: = lw: + llzll: (16)- 
Using (16), (13) and (14), the optimization 
problem (9)  can be rewritten as 

min$@k+l Ok+, - @ k  11:) 
subject to (17) 

&@,+I r + k : @ k + l  r = R2 

Let 
Y = [X'&,]E RZNex2 (18) 

so that we can write 
% + I  = y77 + Y 

for some q E Ai2 and some y belonging to the 
null space of Y, i.e. YE '3 (Y). 
From (15) and (16) we get 

(19) 

and consequently 

(x~ok+l>* + (&:ok+l>2 = ~ ~ x k ~ ~ ~ ~ ~ ~ ~ ~ ~  (22) 
Hence a solution ek+l of the initial minimization 

problem is given by = Y q + y where 

7 and y solve 

A A  

7,lER- 10, - yq - yllf : 11q112 = R ~ ~ x k ~ ~ ~ 2 )  ( 23 )  
Y € l % Y )  

The given vector Okcan be written as 
0, =ay +fly for unique ay E % ( Y )  and 

fly E' %(Y) . Since these are orthogonal 

projections we have ay = Y ( Y # o , )  and 

Py = ( Z  - YY')>o, (24). Therefore, the 
minimization problem can be further expressed 
as follows 

YELRiY)  

since ay - YqE %(Y)  and Py - ye' %(Y) 

where the minimising y is y = fly 

The above analysis has reduced the original 
minimization on C to a minimization problem 
on Ai2, which is easier to solve. In fact, this 
problem can be solved by geometry. From the 
above derivation it follows that YTY = IIXk11:Z2, 
hence from (24) 
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Hence, the unconstrained global minimizer of 

llay - Yqll: with respect to q E R2 is = Y#@, . 
The contours and the feasible set for the 
constraint 11q112 = R ~ ~ X , ~ ~ ~  are as shown on 
Figure 2. It can be deduced that the unique 
constrained globally optimal q for (9) is the 
multiple RI(X, 11;' of the normalised dlrection 

2 

Fig. 2. Contours used in the minimization 
problem 

Hence the unique 
minimization problem (9) is 

that solves the initial 

e,+, = Y q  + y = Y (Y%, )jlY%,lJ: RIIX, 11;' + 
( I  - W")O, (28) 

Equation (28) can be simplified by evaluating the 

pseudo-inverse Y' = (YrY)-'YT = YTllXpll: 

and Y " e ,  = (YrY) - 'Yrek  = (YTe,)IIxkll:. 
This provides the basis for the new proposed 
block algorithm 

(29) 
B. Developed Block Algorithms 
The solutions, which are obtained by the SCS 
algorithm, correspond to the points of zero 
gradient of the following cost function 

It has been shown in [l] that this cost function 
has identical global minima to those of the CMA 
cost function. In [12] the global solutions of 
CMA are demonstrated to be close to those 
predicted by the Wiener filter: Therefore, we 
propose to introduce averagng to the block- 
based algorithm (29), which gives an exact 

solution €or a block of data, in order to obtain 
solutions that will also approximate those of the 
Wiener filter. To this end the following simple 
schemes are proposed: 
The first implementation recalculates the 
equalizer weight vector for each new block of 
data, which is offset by one sample from the 
previous block, with length equal to that of the 
equalizer. The most recent weight vector is 
averaged with the previously obtained one. This 
approach is termed Allw3. The second 
implementation is similar to Allw3 but the 
averaging is performed over the three most 
recent weight vectors. This is referred to as 
Allw4. Centre tap initialisation is used to 
initialise 0,. These two averaging schemes 
have been chosen because they provide fastest 
convergence, other schemes can be found in [13]. 
The averaging in these schemes is in a sense 
counteracting the solution given by (29); but to 
approach a solution defined by the Wiener filter, 
more richness in the data is necessary than that 
used to formulate (29). This must be offset, 
however, by allowing the new information 
contained within the most recent solution of (29) 
to dominate the dynamics of the algorithm, hence 
such short averagmg as posed by the Allw3 and 
allw4 algorithms is postulated as the best 
approach for fast initial convergence. 

IV. FRACTIONALLY-SPACED 

EQUALISATION 

An equivalent multichannel model for a 
fractionally-spaced equalizer is described in [3], 
for the case of two channels and a T-spaced 
source. The source sequence is subdivided into 
even and odd T-spaced counterparts of relative 
delay T/2, so that c? = c2,, and Cnodd = ~ 2 n + l  for 
n = O,l,.. . and in a similar manner we have Wen 
= 9, and 0"dd = an+,. Therefore, we have two 
branches each having the equivalent of a channel 
and an equalizer. 
To derive a block-based solution for the 
equalizers in the T/2 multichannel model the 
minimization problem can be formulated as 
follows 
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min subject to 

(3 1) 

and the block solution gwen by (29) can be 
easily adapted to solve the above by 
concatenating the equalizer weight and channel 
outputs of the two sub-branches. 

V. EXPERIMENTAL RESULTS 

The complex Bernoulli sequence { uk+jbk} was 
applied to the channel, with the real random 
variables uk = f 1 and bk = f 1 with zero mean 
and unit variance. The impulse response of the 5- 
tap channel is described by a raised cosine c = 
[0.3149 0.2194 1.0 0.2194 0.31491. In order to 
facilitate the comparison, constellation plots that 
present the output of the Allw3 and SCS 
algorithms, when the signal to noise ratio (SNR) 
is 30 dB can be found in Figure 3. 

& r t  

* *.! 
Fig. 3. Comparison of the output constellations 
from an SCS and an Allw3 7-tap equalizer 

A careful observation of these constellation plots 
reveals that the Allw3 algorithm has slightly 
denser constellation groupings than the SCS 
algorithm. We can calculate the average 
deviation of the obtained constellation points 
from the ideal constellation points; this is done 
by calculating the Euclidean distance between 
each obtained point and its closest transmitted 
constellation point and then averaging over all 
such points. In the 7-tap case, SCS gives a 
deviation of 0.1032 while Allw3 yields 0.09 16. 
In our experience the block approaches are 
consistently found to have improved initial 
convergence, as seen on Figure 4 for the Allw3 

and Allw4 algorithms, obtained from 200 Monte 
Carlo trials, and the more tightly packed 
constellation suggests reduced steady-state error. 
For fractionally-spaced equalization, the two F- 
spaced channels which are used are CO = [ 0.24 - 
0.20 -0.16 0.14 0.15 ] and ce = [ 0.21 0.51 
0.85 0.53 0.31 1. These channels have a more 
degrading effect but still no common zeros, [3], 
the locations of the zeros of these channels being 
1.0178 f j0.5135 and -0.6011 f j0.3459 for CO, 

and -0.9243 f j1.2215 and -0.29 f j0.7383 force. 
In Figure 5, the corresponding output 

constellations for the SCS and Allw4 algorithms 
are shown when the S N R  is 30 dB. Figures 5(a) 
and (c) show the output constellations for the 
entire simulation of length 10000 whilst Figures 
5(b) and (d) display only points after 3000 
iterations when the SCS algorithm is in steady 
state. It is clear that the constellation densities are 
considerably denser in the latter case. 

Leamina NNBS of the SCS. "2 ard AUw4 mualiers '4th 

Fig. 4. Squared error performance for the SCS, 
Allw3 and Allw4 equalizers for the first 30 
iterations 

VI. CONCLUSION 

New block-based blind equalization 
algorithms have been shown to exhibit much 
improved convergence characteristics than the 
SCS algorithm. This improvement in 
performance can be seen for both baud-spaced 
and fractionally-spaced equalizers. An exact 
solution to the optimization problem is used in 
order to derive the block-based algorithms, 
which with the introduction of averaging of the 
given solutions is also made sequential. The 
experimental results support the theoretical 
findings. Tuning the algorithm by careful choice 
of the averaging methods it uses, further 
improves the performance. The increased 
computational complexity posed by equation 
(29) could be avoided in a real-time application 
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if the block-based scheme is used for the first 
iterations before the pure sequential SCS 
algorithm takes over. A real-time implementation 
is worthy of investigation as a continuation and a 
possible practical extension to this research. 

+ *  

Fig. 5. Comparison of the output 
constellations (a) and (b) from an SCS 5-tap 
equalizer and those of an Allw4 5-tap equalizer 
(c) (d); (a) and (c) correspond to the entire 
simulation of length 10000 whilst (b) and (d) are 
only for points after discrete time 3000 
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