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Abstract: Reliability theory deals with the effect of mean time to repair upon overall 
system failure rates, but for critical systems such calculations are not what is 
required because an important performance criterion relates to operational failures, 
which are fundamentally different to unsafe failures: essentially they are the result of 
the system-level response to avoid unsafe failures. This paper introduces the 
particular problem for critical systems in general, presents an analysis of some of the 
relevant conditions and provides some simulation results in the context of a railway 
active suspension application that illustrate the overall effects and trends.   
Copyright © 2006 IFAC 
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1. INTRODUCTION 
 
In critical systems parallel/functional redundancy is 
used to ensure continued operation in the present of 
faults, the objective being to accommodate faults 
such that they don’t cause unsafe system failures, 
probabilistically determined to be consistent with the 
specified safety integrity level (BSI 2002, Jesty and 
Hobley 2000). In practice fault monitoring is 
included such that remedial action is taken to avoid 
unsafe conditions, for example when one more fault 
would cause a system failure – i.e. an aircraft landing 
at the nearest airport, a train running at reduced 
speed or stopping completely, an adaptive cruise 
control system in a car identifying the problem and 
handing responsibility back to the driver.  All these 
can be classified as “operational failures” because 
the intended schedule or operational state can no 
longer be sustained, and the corresponding level of 
“operational reliability” is clearly an important 
system-level performance indicator. 
 
It is therefore necessary to distinguish between the 
mean time between actual (i.e. unsafe) failures 
(MTBF) and the mean time between operational 
failures (MTBOF).  The former will typically be 
required 108 – 109 hours for modern high-intensity 
systems (SIL4), i.e. so high that one would not 
normally expect to encounter such a situation within 
the working life of a particular system or set of 
systems.  The latter will inevitably be substantially 
lower and will reflect the service quality that must be 
provided. 

2. OPERATIONAL RELIABILITY DEFINITION 
 

In practice, if a single fault causes an unsafe 
condition then some level of functional replication or 
redundancy is essential. This will usually ensure a 
satisfactory level of safety but always compromises 
reliability in some manner.  The well known formula 
MTBF/(MTBF + MTRR) takes account of repair 
time to predict system availability, but this is 
different from operational availability because for a 
fault-tolerant system with redundancy operation 
continues while the repair is being effected.  With a 
duplex system, if either of the channels fails then this 
then represents an operational failure for a safety 
critical system – unless of course the probability of 
the second channel failing before the first channel 
has been repaired is sufficiently low to meet the 
specified probability of an unsafe failure.  In practice 
triplication is required, in which case the following 
paragraph defines the problem to be solved: 
 

A system consists of three identical and 
independent units, each of which is working 
under the same conditions.  Each unit has a 
constant failure rate.  When any one unit fails, 
it is repaired in a fixed timeτ.  An operational 
failure occurs if, after any unit has failed, a 
second unit fails within a time τ, such that then 
there would only be one of the three units left 
operating (and is therefore potentially unsafe). 
What is the mean-time until the system first 
fails? 



The paper also analyses the situation for a 
quadruplex system, in which case an operational 
failure occurs if there are two further failures before 
the first unit has been repaired. 
 
It should be emphasised that the basic elements in a 
critical system will often be so-called Line 
Replaceable Units (LRUs). In general these will not 
be repaired: there will be a stock of functioning units 
that the maintenance engineers can use to replace the 
failed unit (which may subsequently be repaired in 
the background). In this paper we have continued to 
use the word “repair”, even though in practice it will 
usually mean “replace”.   
 
In terms of existing approaches, one way is to 
identify the most critical component in the system, 
and then calculate the probability of failure of the 
system with this component removed.  However this 
gives a pessimistic assessment of reliability because 
it does not allow for repair and therefore is not 
considered further in this paper. In general the 
problem comes under the category of "k out of N" 
reliability problems in which of N units, N - k units 
are redundant, e.g. (Moustafa 2001).  Two scenarios 
are considered here: 
 
(i) After a unit fails it takes some time τ to be 
repaired. This standard view models the situation in 
which the train is still operational while the repairs 
are being undertaken. If other units fail 
during this time the overall system may become 
operationally unsafe. Repair times are assumed to 
follow some general distribution f(τ). We also 
consider the specific examples of (a) the exponential 
distribution, which has been considered by many 
authors and may be solved by the Chapmann-
Kolmogorov technique, e.g. [3], (b) the case of fixed 
replacement times where τ is constant. Triplex and 
quadruplex systems i.e. 2 out of 3 and 2 out of 4 
systems, are sufficiently simple to allow a general 
analysis.  
 
(ii) Additionally we consider the case of a fixed 
maintenance schedule in which maintenance periods 
are scheduled at intervals of time T, during which the 
train is assumed to be non-operational. It is assumed 
that all existing failures are fixed during this down–
time.  
 
This latter case is probably more realistic in practice 
and provides an interesting alternative to the more 
usual methods. 
 
3. ANALYSIS 
 
This section presents the operational reliability 
calculation techniques.  It has been carried out for 
both triplex and quadruplex systems, the former 
resulting in a closed form solution, the latter 
requiring a numerical solution of the equations.  Both 
analyses have been validated by means of simulation, 
which also shows the failure probability distribution 
with time. In all cases a constant failure rate giving 
an exponential distribution has been assumed, 

although the analyses can readily be conducted for 
other failure scenarios. 
 
3.1 Triplex system 
 
We consider first the case of a triplex system in 
which the failures of each unit are described by 
independent, identical (iid) exponential distributions 
with a constant failure rate λ. Two classes of  repair 
strategy are considered. The first assumes that repair 
times for the three units are described by the same 
general iid probability distribution function (pdf)f(τ); 
specific examples also considered here are the well 
known case of an exponential repair time distribution 
of constant repair rate µ, and the case of a constant 
repair time. Of particular interest to the current work 
is the case in which repair times are generally much 
smaller than failure times. 
 
3.1.1 Arbitrary repair time distribution. 
 
The system is described by a state machine with 
parameter S, equal to the number of units currently in 
repair. The system starts, at time t = 0, in state S = 0, 
with all units operational, Fig. (1). When a 
component fails it moves to state S = 1 with a repair 
time of τ. Provided that there are no further failures it 
will progress through this state returning to S = 0 
after a time τ. If a further failure occurs it will 
progress to the failure state S = 2.   
 
The state diagram approach works because the 
MTBOF can be conditioned, on the first and then 
subsequent failures. Suppose that the pdf for the 
system failure time is ftf(tf), the pdf for the system 
failure time given that the first failure occurred at t1 
is ftf(tf | t1) and the pdf for the time of the first failure 
is ft1(t1). The MTBOF may then be written generally 
as 
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Now, if the failure rate is fixed, it is clear that the 
value of ftf(tf | t1) depends upon tf  and t1 only through 
terms in z = (tf  – t1), the additional time to system 
failure after the failure of the first unit. Thus 
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As ft1(t1) = 3λexp(-3λt) in this case, the first term in 
eqn (2) is simply (3λ)-1, while the second term is the 
expected additional time to failure, after the first unit 
fails. If we suppose that the repair time for the failed 
unit is τ, then with probability exp(-2λτ), there will 
be no more failures in the time interval (0, τ) and the 
system will be restored to state S = 0 after the extra 
time τ. Alternatively if there is another failure, the 
system will enter the state S = 2 of operational 
failure. This will occur with probability 1 – exp(–
2λτ). Given that a failure occurs in that interval, the 
expected extra time to failure (given repair time τ) is 
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Combining eqns (2) and (3) we obtain 
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Fig. 1 State transitions for the triplex system.   
 
In the special case that all repair times are equal,  

τ |t12  is independent of τ and 1212 t |t =τ . Thus 
eqn (4) gives 
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Notice that in the limit of τ → ∞ we obtain the 
expected result that λ= 6/5t12  and in the limit of 
small τ → 0 
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In the case of more general repairs with repair time 
distribution f(τ) we obtain 
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where is the Laplace Transform of f(τ). In 
particular, for the exponential repair case of 
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which can be confirmed using the usual imbedded 
Markov methods and the Chapmann-Kolmogorov 
equations, see e.g. Rausand and Hoyland.  
 
Expanding the Laplace Transform around small 
repair times 
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eqn (7) becomes approximately 

 ( ττλ+τλ+
τλ

=
τλ−τλ

τλ+
λ /31

6
1

22
3
1

~t 2
22f ) 

            (10) 
which agrees with eqn (6) for a fixed repair time, i.e. 
f(τ) = δ(τ - τ0).  
 
 

3.1.2 Defined maintenance schedule 
 
As a comparison we consider also the case of a fixed 
maintenance schedule. This assumes that units are 
working continuously between maintenance periods 
regularly spaced T days apart. This strategy is more 
representative of what occurs in many practical 
situations and, provided that repairs are conducted 
during these periods, requires no specific knowledge 
of the repair time distribution. It is a simple matter to 
allow the schedule periods to be stochastic and is 
useful as it allows us to see the effect, on the 
MTBOF, of missed maintenance periods. To do this 
we condition the MTBOF on the length of time T 
before the next scheduled maintenance. Thus, in 
general, 
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where G(tf|T) is the mean time to failure given that 
the next maintenance is in time T. 
 
As all units are assumed to be fixed during the 
maintenance period, our concern is only whether or 
not the system fails in time t. If it does not then it is 
returned to state S = 0 at time t which will occur, if 
the failure rate is constant, with probability p = exp(-
3λt) + 3exp(-2λt)(1 – exp(-λt)). Failure occurs with 
probability (1 – p) and occurs after a time  
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Thus we can write in a similar fashion to eqn (4) 
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Again in the case that T is constant

ff t)T|t(G =  and 
eqn (13) may be rearranged to give 
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Clearly in the limit of T → ∞ we again obtain the 
expected result that 6/5tf =λ  and in the limit of 
small T 
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Finally, with a stochastic maintenance schedule, 
combining eqns (11) and (13) yields 
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S=0 

Repair time = dt 
Repair time = 0 

S=1 S=2

Repair time = τ 
Repair time = τ - dt 



where F~ is the Laplace Transform of fT(T).  
 
Suppose, for example, that 10% of the maintenance 
periods are missed so that 
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which decreases the MTBOF by around 25%.  
 
3.2 Quadruplex system 
 
For quadruplex systems the analysis is much the 
same, although now the system can continue running 
in the state S = 2. In the case of fixed repair times, 
failing units go into and come out of repair in the 
same order, while for a general repair time 
distribution this may not be the case. The state 
representation is still appropriate although, except for 
the case of exponentially distributed repair times 
with constant repair rate μ, the Markov method 
cannot be used as the transition rates between states 
also depend upon the remaining repair times for 
those objects still in repair. The state transition 
diagram is shown in Fig. 2 and is of M/G/2 type 
(Cassandras and Lafortune). This is more complex 
than the triplex case as H(y1, y2), the additional time 
to failure given that two units are in repair with 
remaining repair times y1 and y2, is also required. 
Note that the parameterized states S = 1 and S = 2 
have been condensed for the sake of brevity. In 
reality the state S = 1 is identical to that in Fig. 1, 
while the state S = 2 is a two dimensional version 
and would be represented by a checker board using 
the same sort of representation.  
 

     
 

Fig. 2 State-transition diagram for quad–system. 
 
The details of the analysis of this case can be found 
in Dwyer, et al. The equivalent expressions of eqn 
(4) in the triplex case, in this case, is: 
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for w = min(y,y′). For the case of exponential repair 
)exp()(f μτ−μ=τ , Laplace Transforming eqns (19) 

and (20) provides the same result as the imbedded 
Markov method and the appropriate Chapman-
Kolmogorov equations, giving a value of MTBOF of 
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For the case of a fixed repair time eqns (19) and (20) 
combine to produce 

∫ −τλλλ−λ++

λ−+λ−−λ−λ=λ

x

0

)w(G)wexp(dw)x3exp(3
6
5

)x3exp(
3
2)x2exp(

2
3)x3exp()0(G)x(G     

       (22) 
together with the condition 
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which expresses the fact that if there is no time left 
until the repair is finished, the extra time to failure 
will be equal to the MTBOF. The closed form 
analytic solution to the integral equation, eqn (22), 
does not have a simple form (Dwyer et al). 
Moreover, the Fredholm equation is numerically 
stable and may readily be solved iteratively. For 
large values of λτ the result is the expected value of 
1/4λ + 1/3λ + 1/2λ = 13/12λ, while for small λτ we 
can expand eqn (22) to give 
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∈ (t, t + dt) w.p.  
4λexp(-4λt)dt The, validity of the numerical solution to eqn (22) 

and the accuracy of the approximation, eqn (24), is 
demonstrated in Fig. (3) 
 
Finally with the repair schedule described in section 
3.1.ii, the appropriate results are, for a fixed 
maintenance period,  

...
T16

9
T4

1~

)T3exp(3)T2exp(5)Texp(1

)T3exp(
4
3)T2exp(

12
23)Texp(

12
13

12
13

t

22

f

+
λ

+
λ

λ−+λ−−λ−+

λ−+λ−−λ−+
=λ

            (25) 
for small λT, while for a stochastic period given by 
pdf FT(T) 
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In this case missing 10% of the scheduled repair 
periods will lower MTBOF by around 35%.  
3.3 Comparison 
 
For the safety-critical systems under investigation 
here, the expected repair times, or the expected 
maintenance period, will be significantly smaller 
than the expected failure times so the region of 
interest is that of small values of ε equal to τλ  or 
λT. Comparing eqns (5, 8, 10, 15) with eqns (21, 24, 
25, 26) it is clear that, in this limit, the λMTBOF of 
triplex systems ~ 1/ τλ , while for quadruplex 
systems, λMTBOF ~ 1/ 22 τλ . For higher order 

redundancy, N-plex systems, one would expect a 
behaviour of ~ 2N2N −− τλ . For a value of ε = 0.01, 

the quadruplex system has a MTBOF of around 50 –  
100 times that of the triplex system. 
 
A scheduled maintenance scheme with a 
maintenance interval of τ√3 gives the same MTBOF 
as a scheme which fixes failures with a constant 
repair time τ. Conversely, fixing failed items with a 
constant repair time of T/√3 is equivalent to a 
proposed maintenance schedule of fixed period T.  
 

 

     

Fig. 3 Numerical solution to eqn (22) 
 
 
4. AN ENGINEERING EXAMPLE (ACTIVELY-
CONTROLLED RAILWAY BOGIE) 
 
4.1 Problem description 
 
The work described in the paper is motivated by 
research into active suspension technology applied to 
railway vehicles (Goodall et al 2005). Some types of 
active suspension are not critical systems, for 
example when they are just used to improve ride 
quality they can simply be switched off in case of a 
fault. However, when the active control technology 
is applied to control the wheels and wheelsets to 
provide steering and/or stability control of the 
running gear, a failure is likely to cause an unsafe 
condition such as derailment of the train.  A typical 
modern train will on average operate for 50,000 
hours (typically 80,000km of operation, depending 
upon the type of service) before a fault interrupts its 
operation, and so the MTBOF due to the additional 
active suspension equipment needs to be specified as 

500,000 hours or higher, i.e. such that it has only a 
marginal impact upon the overall train casualty rate. 
 
The situation has been analysed for equipment 
having a MTBF of 410 days (10,000 hours) which is 
considered typical for a function involving sensor, 
processor and power electronics. A repair time of 7 
days (i.e. a weekly maintenance schedule), is used. 
 
With a weekly schedule, the appropriate results are 
given in eqn (15) for triplex systems and eqn (25) for 
quadruplex. For λT = 7/410, eqn (15) gives 
λMTBOF =  410/21 ≈ 20, thus MTBOF ≈ 8200 days 
or around 200,000 hours. By contrast, eqn (25) gives 
λMTBOF (410/7)2/4 ≈ 860, so MTBOF ≈ 8 × 106 
hours. This implies that the reliability of a triplex 
suspension, with weekly maintenance, will affect the 
train’s overall reliability somewhat, whereas a 
quadruplex suspension will essentially have no 
impact. 
 
4.2 Results 
 
For the parameter values listed in section 4.1, the 
MTBOF values corresponding to the leading order 
expressions are listed in Table 1, and their 
corresponding numerical values for the railway 
example are given in Table 2. To facilitate 
comparison the period of the maintenance schedule is 
assumed equal to the mean repair time τ . 
 
Table 1 Expressions giving MTBOFs  
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Table 2 Values of MTBOFs 
 Triplex Quadruplex 
General τ 
Distribution 

~ 100,000 h ~ 3,000,000 h 
          

Chap-Kolm  
Mean time 1/µ 

104,257 h 3,053,245 h 

Fixed τ 102,617 h 2,933,173 h 
 

Scheduled 
Maintenance 

197,581 h 8,763,499 h 

  
The analysis discussed above does not give the 
failure probability distributions, and so a simulation 
experiment has been developed to provide the 
distributions.  The simulation uses time-stepping 
loops with an assessment being made at each time-
step as to whether an individual unit has failed (the 
failed units will then be returned to full health once 
the repair period is complete).  If, in the case of the 
triplex system, two simultaneous failures occur the 



operational failure time is recorded and the 
simulation repeated.  In this way, over many runs 
(e.g., 5000) a PDF can be built up.  Note that, the 
simulation results can also be used to confirm the 
analytical results (in terms of MTBOF). 
 
Typical PDF results for the active suspension 
example are given in Figs. 4 and 5. The profound 
effect of repairing failed units is clear from the graph 
shown in Fig.4. The simulation uses 5000 runs and 
but still will not give an exact comparison: it shows a 
MTBOF of 4681days compared with the analytical 
expression which gives 4396, about a 6% error. 
Increasing the number of simulation runs 
progressively decreases this error. 
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Fig. 4 Simulation pdfs for the triplex railway 

application with fixed repair time (Note: grey 
represents results for no repair, black with repair). 
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Fig. 5 Simulation pdfs for the quadruplex railway 

application (fixed repair time) 
 
In the quadruplex case (Fig. 5) the large difference in 
scales means that showing the results on the same 
graph is not useful – hence the two graphs. Note that 
again the simulation results match the theoretical 
value fairly closely. 
 
5. CONCLUSIONS 
 
This paper analyses the situation for fault-handling in 
high-integrity systems, in particular representing a 
realistic maintenance approach. It is focussed not 
upon the probability of an unsafe failure, but upon 
the consequent effect of the redundancy (introduced 

to assure high-integrity) upon operational reliability. 
It shows that the well-known Chapman-Kolmogorov 
equations give a good assessment if the mean value 
of the exponential distribution assumed for these 
equations is equal to the fixed repair time (although 
the failure distribution will be very different in the 
two cases). However the exponential distribution of 
repair times is not what is encountered in a practical 
maintenance situation. A fixed maintenance schedule 
is not well predicted by these equations, and the 
analysis shows that the MTBOF is favourably 
increased - by a factor of around 2 for triplex and 3 
for quadruplex systems. 
 
It is also useful to see the effect of moving from 
triplex to quadruplex, for which the MTBOF is 
typically increased by a factor of 30. 
 
The MTBOF, as opposed to the classical MTBF, is 
an idea that is practically important but seems to 
have neglected in reliability engineering. Further 
work is required to consolidate the concept and to 
refine it for more complex situations. Some of this 
work is considered in Dwyer et al. (submitted). 
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