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Abstract: Different skin pigments among various ethnic group people have an impact on
spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG)
signals, a multi-wavelength opto-electronic patch sensor (OEPS) together with a schematic
architecture of electronics were developed to overcome the drawback of present PPG sensor.
To perform a better in vivo physiological measurement against skin pigments, optimal illuminations
in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture
a reliable physiological sign of heart rate (HR). A protocol was designed to investigate an impact
of five skin types in compliance with Von Luschan’s chromatic scale. Thirty-three healthy male
subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the
OEPS system. The results show that there is no significant difference (p: 0.09, F = 3.0) in five group
tests with the skin types across various activities throughout a series of consistent measurements.
The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination
characteristics, could open a path in multiple applications of different ethnic groups with cost-effective
health monitoring.

Keywords: multi-wavelength; auto adaptive adjustment; opto-electronic patch sensor (OEPS);
skin pigments; Von Luschan’s chromatic scale (VLCS)

1. Introduction

Pigments in various human skin types could affect signal quality in photoplethysmography
(PPG) and could even make physiological measurements invalid. The quality of PPG-based in vivo
physiological monitoring is attributed to melanin concentration of skin and its related pigments of skin
types [1]. Thereby, melanin in human skin is known to highly attenuate incident light with relevant
wavelength illuminations [2]. Some researchers reported anecdotal errors (3–5%) in black skin [3].
In addition, modelling and simulations were conducted and errors due to various pigments were
reported [3,4]. Ink on skin and nail polish could cause errors during measurements [5]. Four different
wavelength illuminations have attempted to optimize the measurements of heart rate (HR) by using
a customized PPG setup on 23 healthy subjects with various skin types on PPG system [6]. The results
showed that the 520 nm wavelength (green) illumination provided a significantly greater (p < 0.001)
ability to detect HR. Increasing levels of melanin, or darker skin type (Type V) showed a decreasing
trend with insignificant change (p < 0.067). Moreover, it has been widely confirmed that other forms of
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medium or material, i.e., fingerprinting ink and henna, could bring some issues to optical absorption
and thus produce errors during the measurements. Some kinds of wrist tattoos could also interfere
with PPG sensors on the back of smart watches, resulting in errant watch functionalities with users [7].

The skin of the human body is comprised of three main layers: epidermis, dermis and
subcutaneous. Melanin only plays an essential role in skin color and is responsible for a wide variety
of skin color complexions. At present, Von Luschan’s chromatic scale (VLCS) and Fitzpatrick scale
(FPS) are applied in skin classification. Usually, VLCS [8] is applied to establish racial classifications of
populations based upon skin colors. In contrast, FPS is considered [9] for classification of individual
skin type, as introduced in 1975, to describe sun-tanning behavior. FPS distinguishes several separate
skin tones that culturally fall under “white,” or Caucasian, and does not make an adequate distinction
on the darker side of human skin color gradient [10]. Hence, VLCS was applied in this study to better
describe the actual varieties of skin colors within these ethnic group people. The majority of skin types,
in corresponding regions, are defined in Table 1.

Table 1. Human skin types and associated region [8].

Type Color/Description Sun-burning VLCS Region/Area

I & II Light/White Often/Usually 1–10 Caucasus/Europe
III Medium, white to light brown Rarely 11–15 Asia
IV Olive, moderate brown Rarely 16–21 Middle East
V Brown, dark brown Very rarely 22–28 Africa

Meanwhile, it would be useful to reveal human tissue optical properties in order to better
understand the interaction of illumination to tissue with physiological variations. Skin absorption
rates are usually various when the skin is illuminated by different wavelength illuminations.
Figure 1 illustrates an optical window of human tissue in which the illumination is greatly absorbed
by melanin within the ultraviolet band (10–400 nm), whereas the water substance is strongly absorbed
in the range of longer wavelength. Generally, the optical window (405–1064 nm) is often chosen for
opto-physiological measurements [11], such as a typical application of pulse oximeter.
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In addition, the illumination wavelength of PPG is usually determined based on the absorption
of oxyhemoglobin (Hb) and deoxyhemoglobin (HbO2) associated with blood volume changes in
peripheral and capillary arterial vessels. Namely, the illumination associated with specific wavelengths
to skin with rich peripheral blood vessels are preferable to surface skin layers where there is no
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arterial blood or scattering. Table 2 shows the wavelengths of optical radiation reaching a certain
penetration depth.

Table 2. Approximate penetration depth of optical radiation in skin tissue [13].

Wavelength (nm) 500 600 700 800 1000 1200

Depth (µm) 230 550 750 1200 1600 2200

Various skin pigments are highly correlated with spectrometric illumination on skin surface, thus
impacting the quality of the PPG measurements as shown in Table 2. In addition, different optical
radiation wavelengths can reach different penetration depths of skin tissue. Hence, this study aims
to investigate measurement effectiveness of multi-wavelength illumination based on opto-electronic
patch sensor (OEPS) against skin pigments using new electronic architecture with auto adaptive
adjustment of signals.

2. Materials and Methods

2.1. OEPS Configuration

An OEPS (physical size: 18 mm × 18 mm × 0.1 mm), as shown in Figure 2, consisted of (1)
16 light-emitting diodes (LEDs, JMSIENNA Co., Ltd., TouFen, Taiwan) as illumination sources [14].
Their peak wavelengths were 525 nm (green), 590 nm (yellow), 650 nm (red) and 870 nm (IR)
respectively, and (2) A Si-photodiode (PD) with a large active area (1.69 mm2, S10625, Hamamatsu
photonics K. K., Hamamatsu City, Japan) as a photodetector. The PD and LEDs were mounted
side-by-side (reflection mode PPG). The PCB routing and footprints were allocated by PADS (Pads PCB
PADS Standard, Wilsonville, OR, USA). A layer of clear epoxy medical adhesive was also used to
protect the optical components.
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Figure 2. Schematic diagram of opto-electronic patch sensor (OEPS). The multi-wavelength illumination
sources of OEPS comprises (1) channel 1 with four green light-emitting diodes (LEDs); (2) channel 2
with four yellow LEDs; (3) channel 3 with four red LEDs and (4) channel 4 with four IR LEDs.

2.2. Electronic Composition

The OEPS system, with a microcontroller DsPIC (dsPIC33FJ64GS610, Microchip Technology Inc.,
Chandler, AZ, USA), has multi-functional control and plays an interfering role. Figure 3 shows a block
diagram of OEPS to multiplex and change LED light intensity through a power control. A Bluetooth
module (CC2541F256, Texas Instruments Inc., Boulevard Dallas, TX, USA) driven by DsPIC processor.
A pre-amplifier (Pre-Amp), a Multiplexer (MUX), a differential amplifier (DA) and a low-pass filter
(LPF) are the main parts of analogue front-end (AFE) electronics in the system.



Biosensors 2017, 7, 22 4 of 12
Biosensors 2017, 7, 22  4 of 12 

 
Figure 3. Block diagram of the OEPS circuit with six individual functional modules: (1) DsPIC MCU: 
microcontroller (dsPIC33FJ64GS610); (2) LPF: low-pass filter (fc = 15 Hz); (3) DA: differential 
amplifier; (4) MUX: multiplexer; (5) Pre-Amp: pre-amplifiers; and (6) BT Module: Bluetooth module. 

Since an alternative component (AC) is 2–5% of the static component DC [15], thus the raw 
signal from the PD needs to be amplified by the Pre-Amp. The MUX is also used as a demultiplexer, 
as the output of the PD is a pulse train of multi-wavelength illuminations. The common mode 
rejection of the differential amplifier (DA) is driven to a LPF to eliminate a high frequency (HF), such 
as power supply frequency and electromagnetic. In addition, the LPF is playing an important role 
for preventing the aliasing components from being sampled. Then the signal from the LPF is moved 
to the DsPIC processor, and is then converted to a digital form through an analogue-to-digital 
convert (ADC). The wireless transmission is achieved by a Bluetooth module that receives the digital 
PPG signals from the central processor, through the USART protocol, to then send the signals to a 
PC and/or a smartphone device. 

2.3. Execution of OEPS System 

Three main functionalities operating the OEPS system are outlined as follows: 

(1) Time sequence of multiplexing LED and demultiplexing signals from the PD. 

A time multiplexing algorithm is employed in DsPIC to asynchronously switch the LEDs to 
“ON” and “OFF”. The four channel illuminations (green, yellow, red and infrared LEDs) are 
multiplexed at the frequency of 1 kHz. Figure 4 is a schematic diagram of time switching for 
multiplexed illumination of four LED channels and demultiplexing of the signals from the 
photodiode. The time sequence is implemented a timer interrupt for accurate performance. DsPIC is 
used to switch the LEDs, alternating them between two states (“OFF”, “ON”) and provides only a 
single wavelength LED illumination at a time. 

 

Figure 4. Schematic diagram of time switching in multiplexed illumination of LEDs and 
demultiplexed signals from a photodiode. 

On the other hand, the switching time between these illumination sources is crucial to 
distinguish between different LED wavelengths, otherwise the PD produces only interference pulse 
trains with a combination of multi-wavelength illuminations. The output of PD requires 
demultiplexing where one specific wavelength illumination is extracted from these combined 
signals at a certain time. After cancelling the effect of ambient light and common mode rejection, the 

Figure 3. Block diagram of the OEPS circuit with six individual functional modules: (1) DsPIC MCU:
microcontroller (dsPIC33FJ64GS610); (2) LPF: low-pass filter (fc = 15 Hz); (3) DA: differential amplifier;
(4) MUX: multiplexer; (5) Pre-Amp: pre-amplifiers; and (6) BT Module: Bluetooth module.

Since an alternative component (AC) is 2–5% of the static component DC [15], thus the raw signal
from the PD needs to be amplified by the Pre-Amp. The MUX is also used as a demultiplexer, as the
output of the PD is a pulse train of multi-wavelength illuminations. The common mode rejection of
the differential amplifier (DA) is driven to a LPF to eliminate a high frequency (HF), such as power
supply frequency and electromagnetic. In addition, the LPF is playing an important role for preventing
the aliasing components from being sampled. Then the signal from the LPF is moved to the DsPIC
processor, and is then converted to a digital form through an analogue-to-digital convert (ADC).
The wireless transmission is achieved by a Bluetooth module that receives the digital PPG signals
from the central processor, through the USART protocol, to then send the signals to a PC and/or
a smartphone device.

2.3. Execution of OEPS System

Three main functionalities operating the OEPS system are outlined as follows:

(1) Time sequence of multiplexing LED and demultiplexing signals from the PD.

A time multiplexing algorithm is employed in DsPIC to asynchronously switch the LEDs to “ON”
and “OFF”. The four channel illuminations (green, yellow, red and infrared LEDs) are multiplexed at
the frequency of 1 kHz. Figure 4 is a schematic diagram of time switching for multiplexed illumination
of four LED channels and demultiplexing of the signals from the photodiode. The time sequence is
implemented a timer interrupt for accurate performance. DsPIC is used to switch the LEDs, alternating
them between two states (“OFF”, “ON”) and provides only a single wavelength LED illumination
at a time.
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On the other hand, the switching time between these illumination sources is crucial to distinguish
between different LED wavelengths, otherwise the PD produces only interference pulse trains with
a combination of multi-wavelength illuminations. The output of PD requires demultiplexing where
one specific wavelength illumination is extracted from these combined signals at a certain time.
After cancelling the effect of ambient light and common mode rejection, the signals from these
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individual LED illuminations are acquired respectively and passed through a LPF (fc = 15 Hz) where
they are converted to digital signals inside the DsPIC processor.

(2) Auto adaption for LED illumination intensity.

Different user skin color pigmentation as well as skin and fat thickness lead to various light
absorptions. A constant intensity, i.e., driving LEDs in conventional methods [16], could easily cause
an unexpected saturated response from the PD or limited signal amplitude. When the intensity of
LEDs illumination is unexceptionally adjusted with different types of skin pigments, raw signals
from the PD could sometimes be saturated. Hence, AC amplitude that extracted from the raw signals,
is insignificant with a highly limited dynamic range. In this study, the auto-intensity calibration was
fulfilled with these requirements. Three DAC values of LED illumination intensity are pre-set as
(1) desired signal level, (2) lower threshold, and (3) upper threshold. When a raw signal from any
illumination channel is either smaller than the lower threshold or larger than the upper threshold,
an optimal adaptation of illumination current is implemented as designated. An optimal adaptation
period of two to three seconds sets the LED current to an optimal value resulting in the received signal
approaching the desired value. The auto-control procedure is used to automatically adjust the LED
currents following a large step-change in the received signals.

For the OEPS to work accurately under different conditions, it is necessary to optimize the desired
signal level and/or the thresholds as shown in Figure 5. While the system is initialized, the LED
voltage is powered by the microcontroller through an interface serial port (ISP), and then a series of
time switch for multiplexing LED illuminations is established. The raw signal is captured by the PD to
be then converted to a digital signal via ADC. The output of the analog signal circuit is connected to the
ADC channel of the dsPIC. One ADC sample is taken during each LED’s ON-time period, the adjust
DAC values change accordingly to calibrate the LED intensity and keep the output signal level within
the microcontroller’s ADC range. Finally, an optimal value between the thresholds of saturated and
digital outputs is chosen. Once the value is set to a desired range, the programmed loop is ended
and sets the value as an output voltage of LEDs. Otherwise, the voltage flowchart is repeated till the
desired value is attained.
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(3) OEPS measurement procedures.

Figure 6 is the outline of the OEPS measurement procedures against the effect of skin pigments.
When one of the LED channels is lighted on, the raw signal is captured by the PD to be then digitized,
and stored as a record or dataset. Since there are four LED channels with four individual wavelength
illuminations, the same operation is executed four times, and four records of each individual channels
are stored simultaneously. After these four records are compared, the optimal wavelength illumination
of a specific LED channel is implemented in the measurement against skin pigments.

Biosensors 2017, 7, 22  6 of 12 

(3) OEPS measurement procedures. 

Figure 6 is the outline of the OEPS measurement procedures against the effect of skin pigments. 
When one of the LED channels is lighted on, the raw signal is captured by the PD to be then 
digitized, and stored as a record or dataset. Since there are four LED channels with four individual 
wavelength illuminations, the same operation is executed four times, and four records of each 
individual channels are stored simultaneously. After these four records are compared, the optimal 
wavelength illumination of a specific LED channel is implemented in the measurement against skin 
pigments. 

 
Figure 6. The flowchart against the effect of skin pigments. 

2.4. Experimental Protocol 

The OEPS system against these skin types was performed by evaluating four different types of 
physical activity [17]: (1) resting, (2) walking at 3 km/h, (3) jogging at 6 km/h, and (4) running at 9 
km/h. Thirty-three male subjects between the ages of 18 and 41 participated in the experimental 
protocol with the approval of the Loughborough University Ethics Committee. Prior to recording, 
each subject’s body mass index (BMI: 18.7–33.3) and blood pressure (108/62–147/79) were 
documented, as well as room temperature (23–26 °C) and humidity (22–36%). The 33 subjects were 
also divided into four groups according to their skin type. They were asked to perform, having the 
OEPS attached to their palm, a variety of designated similar activities within a 60 s duration for each 
activity i.e., resting, walking, jogging and running. Whilst individual recordings for each subject 
were taken, the signal processing for heart rate (HR) was performed by MATLAB (MathWorks Inc., 
Natick, MA, USA) via these two procedures: (1) filtration condition of band-pass filter, LPF and 
high-pass filter (HPF) and (2) HR readings obtained from Fast Fourier Transform (FFT). The signal 
processing for the HR was carried out every 15 second sampling. Specifically, at resting, the HR 
values were shown on the resting on electrocardiogram (ECG) screen in real time and they were 

Data process

Find the optimal Wavelength illumination of specific 
channel LEDs and switch on/off periodically

Switch off the other wavelength LEDs

A/D

Turn on/off LEDs 
sequentially

PD captured the raw signs 

Determine if the value of digital 
signals are in a desired range 

Setup the initial voltage 
by ISP

No

Yes

End

Start

Store results

Compare the store four results

n=4

Figure 6. The flowchart against the effect of skin pigments.

2.4. Experimental Protocol

The OEPS system against these skin types was performed by evaluating four different types of
physical activity [17]: (1) resting, (2) walking at 3 km/h, (3) jogging at 6 km/h, and (4) running at
9 km/h. Thirty-three male subjects between the ages of 18 and 41 participated in the experimental
protocol with the approval of the Loughborough University Ethics Committee. Prior to recording,
each subject’s body mass index (BMI: 18.7–33.3) and blood pressure (108/62–147/79) were documented,
as well as room temperature (23–26 ◦C) and humidity (22–36%). The 33 subjects were also divided into
four groups according to their skin type. They were asked to perform, having the OEPS attached to
their palm, a variety of designated similar activities within a 60 s duration for each activity i.e., resting,
walking, jogging and running. Whilst individual recordings for each subject were taken, the signal
processing for heart rate (HR) was performed by MATLAB (MathWorks Inc., Natick, MA, USA)
via these two procedures: (1) filtration condition of band-pass filter, LPF and high-pass filter (HPF) and
(2) HR readings obtained from Fast Fourier Transform (FFT). The signal processing for the HR was
carried out every 15 second sampling. Specifically, at resting, the HR values were shown on the resting
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on electrocardiogram (ECG) screen in real time and they were recorded every 5 seconds, then their
mean HR value was calculated to be compared with the HR extracted from PPG signals.

In order to identify the influence of different skin types on the HR, the average value of HR and
a standard deviation SD were calculated referring to the five different skin type groups during the four
types of exercises. A two-way analysis of variance (ANOVA) was executed to determine whether there
were any statistically significant differences between the mean values of the skin type group to the
four groups of exercises, i.e. resting, walking, jogging and running.

3. Results

The evaluation of the HR readings between two measurement techniques, i.e., OEPS and
three-lead resting ECG (AT-10 Plus, Schiller UK Ltd., Bellshill, UK) were performed using unpaired
t-test. Pearson’s correlation analysis was also used to correlate quantitative variables (r ≥ 0.98),
as an indicator of two techniques evolving in parallel, as shown in Figure 7. The test showed that there
was no significant difference since there is a probability value of (p = 0.99) with a condition of (p < 0.05).
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The Bland–Altman method was used to compare the values of the HR obtained between the
OEPS and the commercial ECG devices. Figure 8 indicates the bias B: 0.04 bpm, standard deviation
SD = 2.37 bpm, lower and upper limits of agreement, −4.60 bpm and +4.68 bpm respectively.
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Thirty-three healthy male subjects, with five different skin types divided in four ethnic groups,
were selected to participate in the implementation of the experimental protocol. The average value
range (AVR, bpm) and the standard deviation range (SDR, bpm) of these five skin types of subjects,
during the four activities, are summarized in Table 3. In resting, the AVRs of HR were from 57 to 94
and SDRs were from 1.0 to 5.9. Whilst running, the AVRs of HR were increased from 98 to 170 and the
SDRs from 3.1 to 21.9 bpm. The largest value of SDR was at 21.9 bpm.

Table 3. Ranges of Average value and standard deviation of human skin types across activities.

Skin Type Resting Walking: 3 km/h Jogging: 6 km/h Running: 9 km/h

I & II (n = 11)
62~92 77~133 100~139 104~170

(1.0~4.3) (1.7~5.4) (4.2~11.9) (4.6~12.8)

III (n = 10)
57~94 71~132 87~144 113~170

(1.3~3.4) (1.3~7.2) (1.9~10.2) (6.1~20.8)

IV (n = 7)
62~93 78~133 99~147 98~163

(1.7~5.1) (1.3~6.3) (2.4~8.1) (3.6~21.9 *)

V (n = 5)
73~90 106~116 122~123 131~154

(3.7~5.9) (1.9~4.1) (5.4~10.4) (3.1~5.3)

* The largest value of SDR in all activities; n is number of subjects

The mean HRs and the lower and upper limits of HR in the four exercise conditions
(resting, walking, jogging and running) were obtained referring to the skin types as shown in Figure 9.
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Figure 9. HR measurement results of different skin types at four types of exercises, i.e., resting, walking,
jogging and running. (a) Mean HR and range (skin type I & II); (b) Mean HR and range (skin type III);
(c) Mean HR and range (skin type IV); (d) Mean HR and range (skin type V).

The results through the two-way ANOVA execution displays that p1 ≈ 0 (for activities) and
p2 = 0.09 (for skin types) as obtained from the list in Table 4.
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Table 4. Average value of HR and standard deviation with four skin types under exercises (n is number
of subjects).

Skin Type Resting Walking: 3 km/h Jogging: 6 km/h Running: 9 km/h

I & II (n = 11) 74(2.2) 93(3.5) 112(7.1) 124(8.8)
III (n = 10) 72(2.3) 96(3.1) 117(5.0) 136(13.4)
IV (n = 7) 74(2.6) 97(4.9) 115(5.1) 134(9.4)
V (n = 5) 77(4.8) 100(3.0) 116(7.9) 131(4.2)

Figure 10 presents signals from one subject before and after auto adaption gain for different
exercises, i.e., resting, walking and jogging.
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Figure 10. (a) resting without auto adaption; (b) resting with auto adaption; (c) walking without
auto adaption (3 km/h); (d) walking with auto adaption (3 km/h); (e) jogging without auto adaption
(6 km/h); (f) jogging with auto adaption (6 km/h). The green line stands for the response from the
green LED illumination; the orange line stands for yellow LED illumination; the red line stands for red
LED illumination; the brown line stands for the peak value illumination.
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4. Discussion

The outcome achieved from the implementation of the designated experimental protocol has
demonstrated the OEPS, with its associated electronics and algorithms. This is also able to meet
the specified skin type through comparison between commercial three-lead resting ECG and the
OEPS developed in the lab. The optimal illumination to a designated skin type can be selected by
a desired spectral wavelength from 525 nm to 870 nm, together with four channels with 16 LEDs,
through an auto-adaptive adjustment. Undoubtedly, multi-wavelength illuminations, for instance
having more LEDs attached to the OEPS, could improve the performance of opto-physiological
monitoring. A better performance microcontroller, i.e., dsPIC33FJ256MC710, could be ideal to control
these multiplexed LED drivers and to demultiplex the signals captured from the PD. However,
this could increase the complexity of the OEPS system. Thus, a better solution to optimize the trade-off
between performance and cost is developing a forthcoming OEPS architecture design. Figure 7 presents
the HR measurement between the OEPS and the three-lead resting ECG during resting in a higher
correlation (r: 0.982). As depicted in the Bland–Altman plot in Figure 8, the HR outputs recorded at
resting are most likely to be in the acceptable range of B ± 1.96 SD in the HR difference between the
three-lead resting ECG and the OEPS. From Figures 7 and 8 it can be derived that the HR measurements
obtained from the commercial ECG device and the OEPS are not only compatible but satisfactory
as well [18].

As presented in Figure 9, the HRs among the different five types of skin during the four types
of exercises, were measured by means of the OEPS. The largest value of SDR during resting and
walking is 7.2 bpm. While jogging and running, the HRs are fluctuated significantly and the largest
SDR reaches up to 21.9 bpm. The main reasons for the increase in the SDR value may be caused by
excessive strain of the OEPS sensor applied on the subject palm as well as the electrical noise from the
PD during the exercises. In addition, the HRs on different people could be varied due to individual
blood circulations. The two-way ANOVA showed that the activities have a notable factor because
p1 ≈ 0 (F = 323.2) which is less than p = 0.01, whilst the different types of skin did not have a significant
factor because p2 = 0.09 (F = 3.0) as it is more than p = 0.05.

Referring to the auto adaption effect shown in Figure 10a–f, the intensities of the PPG signals
appear to be higher with the auto gain applied compared to those without the auto gain. As depicted
in Figure 10, the auto gain is able to improve the quality of the signal-to-noise ratio (SNR) resulting in
more precise and easy-to-obtain HR measurements. Meanwhile, starting from the resting exercise to
the jogging one, the intensities of the PPG signals became higher over time. As the intensity of the
physical activity in the jogging exercise increased, the intensity of the PPG signals corresponding to
the illuminations of yellow, red and infrared LEDs was also increased significantly, whilst the intensity
of the PPG signals from the green illumination remained stable. However, the motion artifact occurred
predominantly with the increase of the physical activity resulting in imprecise HR measurements
contrary to resting or moderate activity.

Fallow, B.A. et al. [6] mentioned that four-different-wavelength illumination was used in the
assessment of HR detection (Blue 470 nm, Green 520 nm, Red 630 nm, and Infrared 870 nm). The results
showed that green illumination has greater modulation than the other wavelength illuminations
regardless of skin types. As a matter of fact, the same conclusion was reached in the utilization of the
OEPS as shown in Figure 10. Thus, the HRs were mainly attained by the green wavelength illumination
in the OEPS.

5. Conclusions

A multi-wavelength opto-electronic patch sensor (OEPS), through the implementation of
a designated exercise protocol, has been proved to effectively detect physiological signals against skin
pigments. The auto adaptation module has been realized to optimally select a suitable illumination for
the right type of skin. The study shows the approach of acquiring and processing physiological signals
that could be effectively applied in real time, such as sending signals wirelessly to a PC monitor or
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a server on a receiving end user. With a comparison measurement, the compatibility of HRs between
the ECG and the OEPS was proven to be in an acceptable range of the HR difference using the three-lead
ECG and the OEPS. Specifically, the outcome of the experimental protocol, with the participation of
33 healthy male subjects, demonstrates the OEPS ability to measure HR effectively regardless of the
skin types during various physical activities. The OEPS, with multi-wavelength illuminations, could be
extended to the scope of sport physiological monitoring application, and could be applied in various
ethnic groups for cost-effective health monitoring and assessment. Furthermore, the OEPS could be
consolidated to already available wearable and smart devices for in-line and real-time monitoring and
assessment. Nevertheless, several challenges such as different OEPS measurement locations on the
skin with relevantly rich peripheral blood vessels, optimum wavelength illuminations, motion artifact,
and even electronic noises, are to be addressed in the upcoming studies.
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