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Abstract 

Parallel beam laser vibrometers offer direct measurement of pitch and yaw vibration directly from 

rotors. This paper, intended as an essential guide for the practical parallel beam laser vibrometer 

practioner, presents exact mathematical expressions for measured angular velocity in the presence of 

inevitable misalignments and estimates the likely measurement error levels due to such misalignments 

as well as to other sources of uncertainty through numerical simulation. Cross-sensitivity to the 

orthogonal vibration component, i.e. cross-sensitivity in a pitch measurement to yaw motion and vice-

versa, is confirmed for rough rotors whereas it is shown not to be present when rotors are polished-

circular. A complementary experimental investigation of the relationship between surface roughness 

and cross-sensitivity confirms the identification of two preferred measurement configurations: from 

the side of a polished-circular rotor and from the end face of a (rough) rotor coated in retro-reflective 

tape. Rotors with surface roughness up to 50 nm satisfy the former case provided the vibration 

displacement at the rotor surface does not exceed 20% beam diameter. For surfaces with roughness of 

10 nm this can be extended to 50%. For rough rotor end face measurements, post-processing is 

required to resolve the inherent cross-sensitivity; the need for post-processing is justified 

quantitatively through numerical simulation. Further simulations incorporating typical levels of 

instrument misalignment and measurement noise are used to enable quantification of the likely errors 

in such angular vibration measurements. For measurements from the side of a polished-circular rotor, 

errors are around 1% for amplitude and 10 mrad at integer orders affected by pseudo-vibration and 

around one-third of these levels elsewhere. For measurements from a rough rotor end face, errors will 

be similar at integer orders (from 2). Errors in the rotational speed measurement, required for post-

processing, must be minimised in order to limit errors up to 2nd order while misalignments determine 

errors at around 0.4% amplitude and 4 mrad phase at orders above 2 other than at the integer orders. 

KEYWORDS: Laser vibrometry, angular, pitch, yaw, rotor, vibration measurement, surface 

roughness, misalignment, pseudo-vibration. 
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1. Introduction 

Vibration has long been acknowledged as the most effective measure of the condition of rotating 

machines [1],[2]. Translational vibration measurements dominate with widely available transducers 

including traditional piezo-electric accelerometers, newer MEMS-based devices and single beam laser 

vibrometers. Angular vibration measurements are also possible, either by combination of translational 

measurements, sometimes packaged for the specific purpose, or with dedicated devices [3]-[5]. With a 

wealth of important applications, methods for torsional vibration measurements are numerous and 

include optical sensing [6], toothed wheels [7],[8] and laser vibrometry [9]-[11]. With the exception 

of the torsional application, however, angular vibration measurements are much less commonplace 

than their translational counterparts.  

Amongst the established methods of angular vibration measurement, laser vibrometry features 

prominently. This has been achieved with a scanning (single beam) laser vibrometer through densely 

spaced measurements in modal analysis [12] and using continuous scanning with dedicated post-

processing [13] but it is the parallel beam laser vibrometer that provides direct measurement of 

angular vibration on either non-rotating [14] or rotating [15] structures. This paper examines the use 

of parallel beam laser vibrometers for measurement of the x- and y-components of angular vibration 

velocity, known as pitch and yaw respectively, directly from rotors. It follows and complements a 

recent study of radial vibration measurements directly from rotors using single beam laser vibrometers 

[16] in which the profound effect of surface roughness (or treatment) was explored in detail. 

Remote, non-contact operation and insensitivity to target shape (for rough surfaces) are recognised as 

advantages of single and parallel beam laser vibrometers for general applications but these factors are 

especially valuable for rotor applications [15],[16]. Parallel beam laser vibrometers offer the 

additional advantage of insensitivity to translational vibrations, a factor of particular value in torsional 

vibration measurements on rotors and in pitch / yaw vibration measurements from the exposed end 

face of a rotor such as the crankshaft pulley of an engine [17]. For the rotor application, however, 

there are two significant problems to overcome. The first is pseudo-vibration, a periodic noise 

associated with the laser speckle phenomenon on rough surfaces and with variations in the target 

location from which collected light intensity is centred for polished surfaces [18]. The second is a 

cross-sensitivity to yaw in a pitch measurement and vice-versa, which affects all measurements in 

which there is some degree of diffuse scatter from the surface but which can only be reliably 

estimated for surfaces coated in retro-reflective tape. Since the angular vibration measurements of 

interest in this paper are effectively differential radial vibration measurements, this cross-sensitivity 

has the same basis as that observed in radial vibration measurements. Cross-sensitivity was not 

apparent in radial vibration measurements on polished-circular rotors and the reasons for this have 

already been articulated [16]. Parallel beam laser vibrometer measurements on polished-circular 
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rotors have not been reported previously and this is part of the novelty of this paper. A focussed 

experimental investigation is presented. 

Where cross-sensitivity does occur, a resolution algorithm has been developed [19] and its accuracy 

for the pitch and yaw vibration measurement application is explored, using computational simulation 

based on typical values, in this paper for the first time. The resolution algorithm is complemented by a 

second algorithm to correct for the effect of rotor speed fluctuations; its effectiveness is also explored 

for the angular vibration measurement application, again, for the first time. Finally, the measurement 

uncertainties associated with speed measurement error, measurement noise and inevitable instrument 

misalignment are all quantified individually and jointly (as would be the scenario in a typical real-

world measurement) all for the first time in this paper. The overall aim of the paper is to provide 

practical guidance to the laser vibrometer practitioner in the form of recommended measurement 

configurations, to isolate certain intended angular motion components, with likely measurement 

uncertainties quantified for those configurations. 

 

2. Surface velocity and measured velocity 

The velocity measured by a parallel beam instrument in a rotor application incorporating full, six 

degree-of-freedom motion was first described by Bell [15]. More recently, a universal framework for 

modelling measured velocity has been proposed [20] and this will be used here, for the first time, to 

model measurements made with dual parallel beam instruments. An advantage of the new approach is 

the ease with which inevitable misalignments can be incorporated and this will set out in this section. 

The parallel beam models can be constructed conveniently as developments of the single beam 

models previously derived for radial vibration measurement from both polished-circular and rough 

rotors [16] as set out in the remainder of this section.  

2.1. Review of single beam models 

When the rotor surface is rough (i.e. the surface roughness is at least comparable with the laser 

wavelength), the measured velocity for a single beam measurement is written as follows: 

Um = !b̂in " VO*
! "!!

+
"
! # r0
!"
!OO*
! "!!!!

( )( )  (1) 

in which b̂in  is the direction of laser beam incidence, VO*
! "!!

 is the velocity of a reference point fixed to 

the rotor centre-line, r0
!"

 is a vector defining an arbitrary known point along the beam and OO*
! "!!!!

 

describes the displacement of reference point O* from its original position O which also serves as the 

origin of the global coordinate system and is as shown in Figure 1a. Equation (1) holds when the 
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scattering of light is diffuse such that the dominant contribution to the collected light originates from 

the geometric centre of the Gaussian laser beam as indicated by the upper ray within the laser beam in 

Figure 1b. 

The angular velocity vector, 
!
! , includes both angular vibration velocities around the three coordinate 

axes, [ ]Tzyx θθθ  , and the continuous target rotation at angular frequency ! . This continuous 

rotation occurs around an axis, defined by the unit vector ẑR  as shown in Figure 1b, that is itself 

affected by the angular oscillations of the target. This is written in terms of an initial z-orientation 

modified by pitch and yaw vibration displacements, enabling a full expression for angular velocity to 

be written as: 

Rẑ' Ω+=ωω


 (2a) 

in which 

[ ][ ]Tzyxzyx θθθω ˆˆˆ' =  (2b) 

and 

[ ][ ][ ][ ] [ ][ ]Tyxxyx
T

xyR zyxxyzyxz θθθθθθθ coscossinsincosˆˆˆ100,,ˆˆˆˆ −==  (2c) 

On combining equations (1) and (2a), it is the cross-product ( )*ˆ OOzR ×Ω  that introduces a cross-

sensitivity in the radial measurements to y-radial vibration in a measurement of x-radial velocity and 

vice-versa.  

In a measurement from a polished-circular rotor, there will be a tendency for incident light that is not 

on a line passing directly through the centre of rotation to be reflected away from the vibrometer’s 

collecting aperture. This represents a shift in the effective centre of the laser beam away from the 

geometric centre. Figure 1b shows a second ray within the incident laser beam, incident on the 

displaced rotor (radius R) at point P’’. This ray intersects the rotor centre-line at point Q and, for a 

polished-circular rotor, it represents the part of the incident laser beam that instantaneously dominates 

the collected light intensity. For this case, the measured velocity is written as follows: 

( )( )*'ˆ
0* OOrVbU Oinm −×+⋅−≈ ω  (3) 
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Polished-circular rotor measurements do not display the same cross-sensitivity encountered in rough 

rotor measurements and equation (3) shows how this has been eliminated; the equivalent cross-

product here is ( )*' OO×ω  in which there is clearly no dependence on either !  or ẑR . 

2.2. Extension to parallel beam models 

Extending the model to the parallel beam arrangement is straightforward in the new universal 

framework. Parallel beam instruments measure the differential velocity, mUΔ , between the two 

individual beams. Vectors for the arbitrary known points for each beam, 01r  and 02r , can be chosen, 

without any loss of generality, such that the vector d , where 0201 rrd −= , is perpendicular to both 

beams as shown in Figure 2.  

For the rough rotor model, the measured differential velocity can then be written as: 

( )( ) ( )( )( ) ( )ωωω

.ˆ**ˆ

02*01* dbOOrVOOrVbU inOOinm ×=−×+−−×+⋅−=Δ  (4a) 

while for the polished-circular rotor model, the differential velocity can be written: 

( )( ) ( )( )( ) ( ) '.ˆ*'*'ˆ
02*01* ωωω dbOOrVOOrVbU inOOinm


×=−×+−−×+⋅−≈Δ  (4b) 

The simplicity of the final expressions of equations (4a&b) reveals several key attributes of the 

parallel beam measurement of angular velocity. Firstly, the insensitivity to target shape associated 

with the single beam rough rotor measurement is obviously retained and, secondly, insensitivity to 

translational vibration (i.e. no dependence on VO*
! "!!

 or *OO ) is also apparent in both measurements. 

Known points along the path of the beam are not required; measured velocity depends only on the 

orientation of the beams, the plane in which they coincide and their perpendicular separation. 

Expression as an angular velocity is achieved by simply dividing the differential velocity by d


. 

Isolation of the x-component of angular velocity (pitch) requires that neither b̂in  nor d  has an x-

component. Practically, this means any beam arrangement in which the plane of the laser beams is 

parallel with the yz-plane is acceptable; this allows for incidence along the side of and on the face of 

the shaft. Similarly, to isolate the y-component of angular velocity (yaw) requires that neither inb̂  nor 

d  has a y-component, in this case allowing for any beam arrangement in which the plane of the laser 

beams is parallel with the xz-plane; again, this includes incidence along the side of or on the face of 

the shaft. Finally, in the same way, to isolate the z-component of angular velocity (torsional or roll 
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vibration) requires that neither inb̂  nor d  has a z-component, allowing for any beam orientation in 

which the plane of the laser beams is parallel with the xy-plane. Here the ideal alignment is on the side 

of a shaft only as a face measurement will always contain unwanted components of pitch and / or yaw 

vibration. 

To write expressions for any laser beam orientation requires an initial (arbitrary) choice of orientation 

with desired final orientation achieved by an appropriate series of rotations. For example, Figure 3 

shows an initial laser beam orientation of !b̂in = x̂ , followed by a first rotation by β around the y-axis 

and a second rotation by γ around the z-axis. Figure 4 shows vector d
!"

 based on the same initial beam 

orientation, i.e. with !b̂in = x̂ , but with a first rotation by α around x̂ . The same rotations applied to 

beam orientation can subsequently be applied to d
!"

. This approach will deliver totally general 

expressions but this paper is specifically concerned with the misalignments that inevitably accompany 

real-world measurements. Consequently, the initial orientation chosen is the ideal orientation with 

misalignments then added as follows: angular misalignment of d  around the axis coinciding with the 

ideal laser beam incidence, followed by misalignment of both inb̂  and d by rotations around the two 

orthogonal axes. This is a strategy that can be applied consistently for any orientation. 

For a pitch measurement from the side of a shaft, the ideal alignments are ybin ˆˆ ±=−  and zdd ˆ




=  

combined with a rotation around the x-axis of any value. Choosing the ybin ˆˆ +=−  option:

[ ][ ][ ] [ ][ ]TT
in zyxxzyxb ααα sincos0ˆˆˆ010,ˆˆˆˆ ==−  (5a) 

[ ][ ][ ] [ ][ ]TT zyxdxzyxdd ααα cossin0ˆˆˆ100,ˆˆˆ −=−=


 (5b) 

xddbin ˆˆ 
=×  (5c) 

While the individual vectors are affected by α , their cross product is not unless misalignments are 

incorporated in which case:  

[ ][ ][ ][ ]Tin xzzyxb 010,,ˆˆˆˆ αγ=−  (6a) 

[ ][ ][ ][ ][ ]Tyxzzyxdd 100,,,ˆˆˆ −= βαγ


 (6b) 

[ ][ ]Tin zyxddb βαβγ −+≈× sin1ˆˆˆˆ 
 (6c) 



 8 

Equation (6c) shows that minimising α  helps to reduce the influence of misalignments. With this in 

mind (i.e. keeping α  small), pitch measurements from the face of a shaft have ideal alignments of 

zbin ˆˆ ±=−  and ydd ˆ±= . Modified by misalignments, the zbin ˆˆ +=−  configuration is written as:  

[ ][ ][ ][ ] [ ][ ]TT
in zyxxyzyxb 1ˆˆˆ100,,ˆˆˆˆ αβαβ −≈=−  (7a) 

[ ][ ][ ][ ][ ] [ ][ ]TT zyxdzxyzyxdd αγγαβ 1ˆˆˆ010,,,ˆˆˆ −≈=


 (7b) 

[ ][ ]Tin zyxddb βγ −≈× 1ˆˆˆˆ 
 (7c) 

The approximations shown in equations (6c) and (7c) enable identification of critical misalignments 

but later simulations use full expressions and are without approximation. 

The same considerations apply to yaw measurements. For a yaw measurement from the side of a 

shaft, the ideal alignments are xbin ˆˆ ±=−  and zdd ˆ


±= . Choosing the xbin ˆˆ +=−  alternative and 

modifying for misalignments:  

[ ][ ][ ][ ]Tin yzzyxb 001,,ˆˆˆˆ βγ=−  (8a) 

[ ][ ][ ][ ][ ]Txyzzyxdd 100,,,ˆˆˆ αβγ


=  (8b) 

For a yaw measurement from the end face of a shaft, the ideal alignments are zbin ˆˆ ±=−  and 

xdd ˆ= . Modified by misalignments, the zbin ˆˆ +=−  configuration is written as:  

[ ][ ][ ][ ]Tin xyzyxb 100,,ˆˆˆˆ αβ=−  (9a) 

[ ][ ][ ][ ][ ]Tzxyzyxdd 001,,,ˆˆˆ −= γαβ


 (9b) 

In the absence of misalignments, combining equation (6c) or (7c) with equations (4a) and (2a-c) and 

expressing as an angular velocity gives the pitch measurement as: 

yxyxxmx θθθθθ Ω+≈Ω+=Ω  sincos  (10a) 

Similarly combining equations (8a&b) or (9a&b) with equations (4a) and (2a-c) gives the yaw 

measurement as: 
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xyxymy θθθθ Ω−≈Ω−=Ω  sin  (10b) 

This pair of equations for the measurement of pitch and yaw vibration shows the significant cross-

sensitivity to the orthogonal motion component in measurements when !" 0 . With the small angle 

approximation included, they are similar to those found in equivalently arranged radial vibration 

measurements [16] and can therefore be resolved for the parameters of interest in the same way. This 

resolution procedure will be described in section 4. 

The ideal alignments for measurements from the side of the rotor are also suitable for the polished-

circular rotor application. While the influence of misalignments prevails through identical expressions 

for beam geometry, equation (4b) results in absence of the cross-sensitivity that affects the rough rotor 

measurement. This has not been explored experimentally previously and will be confirmed in this 

paper. Provided that the plane of the rotor face is sufficiently perpendicular to the beam orientation, 

measurements will also be possible from a polished rotor face. Without the surface curvature that 

results in the change in the effective centre of the incident beam, equation (4a) should apply, however, 

and cross-sensitivity in the form of equations (10a&b) should be found. This will be investigated for 

the first time in this paper.  

3. The effect of surface roughness and treatment on cross-sensitivity 

As shown in Figure 1b, for single beam measurements of radial vibration from the side of a rotor, a 

transition has been demonstrated in the effective centre-line of the beam from the line following the 

geometric centre of the laser beam for a rough rotor to a (nearly) parallel line passing through the 

rotor centre for a polished-circular rotor [16]. This same transition will occur for each of the 

individual beams in the parallel pair and this will be confirmed in this experimental investigation, 

concentrating on polished surfaces and surfaces coated in retro-reflective tape. This is in line with the 

key finding of the radial vibration study, which was that reliable measurements were only possible 

from such surfaces, and consistent with the overall aim of this study which is to provide practical 

guidance to the user.  

The effect of vibration amplitude relative to beam diameter is also of interest and will be investigated. 

The Polytec OFV400 used in this study has three recommended stand-off distances: 200 mm, 400 mm 

(preferred) and 600 mm, with corresponding beam diameters of 550 (predicted), 520 (measured) & 

605 (measured) µm, respectively. 

3.1. Experimental investigation 

The cross-sensitivity ratio, R, has been defined in the radial vibration study [16]. With constant 

rotation speed, pitch vibration at frequency, !v , and nominally zero yaw vibration, the equivalent 
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cross-sensitivity ratio for this study is calculated based on pitch and yaw vibration measurements as 

follows: 

[ ]
[ ]

v

v

mx

my
v

FT

FT
R

ω

ωω

Ω

Ω

Ω
=100  (11) 

where FT [ ]!v
 signifies the Fourier transform of the velocity evaluated at frequency !v . Angular 

vibration measurements on rotors with their surface coated with retro-reflective tape have been 

investigated previously [19] and will return a ratio of 100%, in accordance with the theory presented 

in section 2.2. Measurements without cross-sensitivity would, conversely, return a ratio of zero.  

3.2. Experimental setup 

As shown in Figure 5, a small, unloaded, nominally-balanced test rotor is driven by a DC motor via a 

flexible belt. The rig has been specifically developed for this investigation and the rotor exhibits 

minimal self-induced vibration. Rotors with different surface roughness / treatment can be mounted in 

the rig. The entire rotor / DC motor assembly has a reasonable static balance so as to minimise the 

load on the electromagnetic shaker which excites a nominally sinusoidal angular vibration of the rotor 

through a pushrod and ball joint. Some harmonic distortion of the angular vibration occurs but this 

does not affect the analysis performed which is based on pitch and yaw measurements made at 

identical frequencies. Test rotors have diameter 15 mm, length 30 mm and, as set out in Table 1, have 

roughness between Ra 11 nm and Ra 44 nm for side of rotor measurements, a value of Ra 6.5 nm for 

the rotor end face measurements and treatment with retro-reflective tape for both side and face 

measurements. 

The experimental arrangement of the laser beams and the rotor for the measurement scenario in which 

the cross-sensitive (yaw) measurement is made from the side of the rotor is shown in Figure 5 while 

that for the measurement scenario in which the yaw measurement is made from the rotor end face is 

shown in Figure 6. Both measurement scenarios are also shown schematically for completeness in 

Figure 7. In both cases, the genuine (pitch) measurement was made from the side of the shaft; this was 

simply a matter of convenience. In both cases, careful alignment is important. For the rough rotor 

measurements, sufficient collected light intensity is relatively easy to achieve but ideal alignments as 

set out in section 2.2 are vital. Angular misalignments are minimised by maximising the measured 

amplitude in the pitch measurement and minimising it in the yaw measurement, without rotation. For 

polished-circular rotors, alignment as above is again required but is assisted by ensuring that the 

reflected stripes of light sit centrally over the vibrometer aperture, as shown in Error! Reference 

source not found.. With reference to equations (8a&b), minimisation of α is achieved by ensuring 

that the stripes are directly above one another, minimisation of β requires the stripes to be centred on 
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the front of the instrument and minimisation of γ is achieved when the stripes pass across the points 

visible on the aperture and through which the laser beams emerge from the instrument.  

The cross-sensitive (yaw) measurements were taken at each of the three stand-off distances while the 

genuine (pitch) measurement was always taken at 400 mm stand-off distance. Tests were conducted 

for a number of combinations of rotation frequency (up to 25 Hz), vibration frequency (up to 37.5 Hz) 

and vibration velocity (generally from 50 to 500deg/s); these levels are intended to be representative 

of those typical in ‘real-world’ measurements. Vibration frequencies were always nominally midway 

between integer multiples of rotation frequency to avoid coincidence with pseudo-vibration related 

components which are concentrated at integer multiples of rotation speed [18].  

3.3. Cross-sensitivity: effect of surface roughness, vibration displacement and beam diameter  

Attention was focussed on those rotors conforming to the polished-circular rotor model from the 

radial vibration study [16] (Ra ≤ 50 nm and out-of-roundness ≤	 10 µm) with surfaces treated with 

retro-reflective tape as the rough rotor option, as listed in Table 1. Conformance to the polished-

circular model was also dependent on the vibration displacement remaining below a specific 

percentage of beam diameter. Manufacturing constraints continue to prevent a study of rotor out-of-

roundness so the rotors chosen for the side measurements all have similar, low out-of-roundness, as 

also listed in Table 1.  

Figure 9a shows the cross-sensitivity ratios calculated for the measurements taken from the side of the 

rotor at 400 mm stand-off for rotor A2 (Ra 11 nm). When the laser beams are positioned equi-distant 

from the centre of the axis around which the pitch vibration occurs (dashed line), the cross-sensitivity 

ratio is low (around 10%) but not as low as is desired for the assumption of no cross-sensitivity to be 

reliable. When either of the beams is aligned with the axis around which the pitch vibration occurs 

(round dot and square dot lines), much lower cross-sensitivity values are obtained at low 

displacements. With either of these two arrangements, the surface displacement at one of the beams is 

negligible and correspondingly larger at the second beam. Why this should lead to such a favourable 

outcome relative to the arrangement where there is some surface displacement at both beam 

incidences is not clear but the outcome that minimum cross-sensitivity ratio is found when one of the 

beams is aligned for minimum surface displacement was repeatable for this and for other rotors. This 

low cross-sensitivity is maintained until the largest of the surface displacements at either beam 

reaches approximately 50% of beam diameter, beyond which cross-sensitivity grows substantially. 

The equivalent cross-sensitivity ratios for rotors B (Ra 24 nm) and C (Ra 44 nm) can be seen in 

Figure 9b, again for side of rotor measurements at 400 mm stand-off; the data for rotor A2 are 

repeated in this figure for completeness. For all three rotors, the data shown are for the arrangements 

where the “bottom” beam is aligned for minimum surface displacement. The higher roughness of 
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rotors B and C results in a low cross-sensitivity ratio at low displacements but it is higher than for 

rotor A2, consistent with the equivalent findings in the radial vibration measurement study [16]. Rotor 

C has lower cross-sensitivity ratios than rotor B despite higher surface roughness but no special 

significance is being given to this. Single roughness values summarise complex variations in 

roughness and the key point is that cross sensitivity is higher for rotors with Ra of a few tens of nm 

compared to rotors with Ra of around 10 nm. A second important finding for these less polished 

rotors is that surface displacements must now be limited to around 20% of beam diameter to keep 

cross-sensitivity ratios acceptably low.  

Figure 10 shows the cross-sensitivity ratios for rotor A2 (11 nm) as a function of surface displacement 

for various stand-off distances. Two sets of data are shown for the 400 mm stand-off (520 µm beam 

diameter) set-up, one taken at the beginning of the set of experiments and the second taken after the 

200 (550 µm beam diameter) and 600 mm (605 µm beam diameter) datasets had been acquired, i.e. 

after significant experiment reconfiguration. As stand-off distance increases, the vibration amplitude 

at which sufficient light intensity is collected should decrease. This is apparent in the 605 µm beam 

diameter data where cross-sensitivity ratios begin to rise at about half the value of surface 

displacement as a percentage of beam diameter as that which they do for the measurements made at 

lower stand-off distances. Very little difference is apparent, however, between the datasets for 200 

mm and 400 mm stand-off. Once light is reflected beyond the vibrometer aperture, light collection by 

diffuse scatter dominates and cross-sensitivity ratios rise. Measurements under these circumstances 

are sometimes difficult to obtain and inconsistent data points such as the 600 mm stand-off data point 

for surface displacement between 70 and 80% beam diameter is an example of this. 

For side of rotor measurements with retro-reflective tape treatment (rotor G2), the cross-sensitivity 

ratio was always close to 100% (100.9% (0.48%) – four measurements with vibration displacement as 

a percentage of beam diameter up to 10 were made) as expected. The same was true for measurements 

on the rotor face treated with retro-reflective tape (rotor J; 100.2% (0.54%)). These are shown in 

Figure 11 alongside measurements from a polished end face (rotor H (Ra 6.5 nm)) which also shows 

cross-sensitivity close to 100% (97.5% (2.52%)). This interesting outcome for the polished end face 

measurement scenario is a valuable finding, confirming the suggestion made in section 2.2 and 

presented for the first time in this paper. 

4. Resolution of vibration components in rough rotor measurements 

Resolution and correction algorithms, previously described [16] and demonstrated [19] for radial 

vibration measurements, can also be used with the pitch / yaw vibration in order to resolve the 

measured signals. In the (practically unlikely) absence of any fluctuations in the shaft rotation speed, 

the resolution algorithm alone enables complete resolution (apart from at the synchronous frequency). 
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In the presence of speed fluctuations, iterations through the correction algorithm are applied to yield 

improved estimates of vibration amplitudes.  

For the case of parallel beam instruments, the resolution algorithm is formulated in terms of the 

alternating components of the measured signals, !!mx  and !!my , and is implemented on a frequency-

by-frequency basis as follows: 

!!x !n( ) =W !n( )FT !"mx #" !"my0

t
$ dt%

&'
(
)*!n

 (12a) 

!!y !n( ) =W !n( )FT !"my +" !"mx0

t
# dt$

%&
'
()!n

 (12b) 

where W !n( )  is a frequency dependent weighting factor given by: 

( ) ( )222 Ω−= nnnW ωωω  (12c) 

There is a subtlety in this application of the resolution algorithm to angular vibrations relative to its 

use for radial vibrations [16] in that, here, resolution requires the mean value of the shaft rotation 

speed, ! , rather than the mean value of the total velocity around the z-axis, !tot  (=!+ !!z ), as is 

the case for radial vibrations. Practically, a significant effect is not expected. 

Simulating equal amplitude, harmonic pitch and yaw radial vibrations with 36 random values of phase 

difference (in the range –π to π) emphasises the significance of this cross-sensitivity and the 

importance of post-processing. Without misalignments or measurement noise, Figure 12a shows the 

apparent error in the measured velocity as a percentage of genuine velocity for the pitch measurement. 

This apparent error is a function of phase and the figure shows the maximum and minimum errors 

across the rotation order range. The mean error is not shown for clarity in the figure but it varies 

between approximately 1000% at very low orders to just below 10% around 10th order. After 

resolution, mean errors are very small for amplitude and phase. The maximum and minimum 

amplitude errors after resolution are also shown in Figure 12a, confirming that resolution always 

reduce errors in this simulation which includes simultaneous pitch and yaw vibrations at the same 

order with amplitudes of 2.5 mrad s-1 / rad s-1. This corresponds to a 5 mm s-1 difference across beams 

with 8 mm separation at 2500 RPM. As shown in Figure 12b, the error data before resolution are 

independent of velocity amplitude but the errors after resolution grow with vibration amplitude, 

approximately in proportion to the square of the increase in vibration amplitude, because of the small 

angle approximation inherent in equations (10a&b). Mean error (again not shown) is still at least 
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several hundred times lower after resolution than that before resolution. Data for yaw vibration are 

very similar and so not shown for the analysis in this section. 

At first order, Ω=nω , the weighting function W !n( )  is seen to be infinite and the bracketed 

functions in equations (12a&b) evaluate to zero. The resolved velocity cannot be determined and all 

resolved velocities including Figure 12 do not show data points at first order. This is a fundamental 

limitation of the use of laser vibrometry for this application and not a consequence of the post-

processing method [19]. 

The resolved pitch / yaw velocities are affected by a fluctuating component in ! , i.e. ! =!+"! , 

such that the resolution algorithm outputs, given in equations (12a&b), are no longer equal to just the 

intended measurement vibration velocities, ( )nx ωΘ  and ( )ny ωΘ , but include additional terms. 

Equations (12a&b) are modified as follows: 

( ) ( ) ( )
nn

dtFTWdtFTW
t

xynnx

t

mymxn
ωω

θθωωω ⎥⎦
⎤

⎢⎣
⎡ ΔΩΩ+ΔΩ+Θ=⎥⎦

⎤
⎢⎣
⎡ ΩΩ−Ω ∫∫ 00

~~   (13a) 

( ) ( ) ( )
nn

dtFTWdtFTW
t

yxnny

t

mxmyn
ωω

θθωωω ⎥⎦
⎤

⎢⎣
⎡ ΔΩΩ−ΔΩ−Θ=⎥⎦

⎤
⎢⎣
⎡ ΩΩ+Ω ∫∫ 00

~~   (13b) 

Compared to the radial vibration case, there is no sensitivity to radial offsets here but the error in the 

resolution algorithm outputs due to the combination of !"  and the vibration displacements remains 

and must again be minimised. Improved estimates of the resolved velocities, !!x,m+1  and !!y,m+1 , can 

be obtained by (repeated) iterations through the correction algorithm, the outputs of which are given 

by: 

!!x,m+1 !n( ) = !!x,1 !n( )"W !n( )FT #$!y,m +$ #$!x,m0

t
% dt&

'(
)
*+"n

 (14a) 

!!y,m+1 !n( ) = !!y,1 !n( )+W !n( )FT "#!x,m $# "#!y,m0

t
% dt&

'(
)
*+"n

 (14b) 

The improved estimates are, as can be observed, derived from the first estimates of the resolved 

velocities (i.e. the resolution algorithm outputs), !!x,1  and !!y,1 , and the mth estimate of the resolved 

angular vibration displacements in the time domain (with the exception of the synchronous frequency 

component), !x,m  and !y,m . 
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The effect of speed fluctuation on the resolved outputs is demonstrated in Figure 13. Equal amplitude, 

harmonic pitch and yaw vibrations with 16 random values of phase difference, combined with 16 

independent broadband speed variations (RMS level of 2% of rotation speed), are simulated. Figure 

13a shows that the RMS error in resolved amplitude is between 0.1% and 1% at lower orders but 

small elsewhere. As shown in Figure 13b, the corresponding phase difference error is in the region of 

1 to 10 mrad at lower orders, falling to 0.1 mrad at higher orders. Error increases as the RMS 

broadband speed variation increases. 

After a first iteration through the correction algorithm (m=1), Figure 14 shows how the error across 

the order range is reduced to around 3% of its uncorrected level for both amplitude and phase 

difference. After a further iteration, this figure shows that there is a further reduction to around 0.15% 

above first order. As in the case of radial vibration measurements, there is little further improvement 

with further iterations and routine addition of two iterations through the correction algorithm is, 

therefore, recommended as a good compromise between error reduction and post-processing time. 

Smaller reductions are seen below first order for the second iteration. Here errors are dominated by 

the inherent small angle approximation as seen in Figure 13a. 

5. Simulation 

This section presents simulations that demonstrate the relative effect of each source of error in rough 

and polished-circular rotor measurements. The error calculated at each rotation order is a consequence 

of simultaneous pitch and yaw vibrations at that same order with amplitudes of 2.5 mrad s-1 / rad s-1, 

unless stated otherwise. In all cases, realistic values for misalignments (see Appendix A) are used 

based on the authors’ experience but the reader must be mindful that predicted errors are obviously 

very dependent on these chosen values. The paper has, however, presented the full theoretical basis to 

these simulations, enabling another investigator to model their specific scenarios and predict likely 

error levels.  

Generally, only pitch error spectra are presented as the corresponding yaw data are identical. In 

addition, for the most intensive simulations, the resolution in the plots is made finer in the more 

rapidly changing regions of the spectra, i.e. close to the synchronous frequency, and left coarser 

elsewhere. Only ‘good’ setups contribute to the data presented; in real measurements excessive DC 

angular velocity is indicative of angular misalignment and is therefore routinely minimised. From the 

authors’ experience, DC angular velocity can be reduced to levels around 1% of rotation speed. 

Simulations include a check to exclude individual setups that would be rejected in real measurements.  

The effect of pseudo-vibration is shown in Figure 15. In simulated measurements from the side of a 

rotor, 32 random values of phase difference between the radial vibrations (in the range –π to π) are 
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combined with 64 independent measurement noises (with RMS levels of 0.3 mrad/s / rad/s over the 

first 10 orders for the rough rotor and a quarter of this level for the polished-circular rotor [16]), 

equating to a total of 2048 scenarios. For the rough rotor simulation, amplitude errors of around 5% 

appear at the integer orders where periodic speckle noise occurs and 0.1% to 0.01% elsewhere. Phase 

difference errors of around 60 mrad appear at the integer orders and 1 to 10 mrad elsewhere. The 

polished-circular rotor simulation reflects the lower noise levels encountered while the advantage of 

there being no need for resolution brings significant benefit around the synchronous frequency. In 

both cases, errors change in inverse proportion to any change in vibration amplitudes i.e. a tenfold 

increase in vibration amplitude results in a tenfold decrease in errors. Measurements on the end face 

of a rotor result in lower noise levels. This is advantageous in the case of the rough rotor where 

pseudo-vibration errors are roughly one-tenth of those shown in Figure 15. It is less advantageous for 

the polished-circular rotor because cross-sensitivity is encountered in end-face measurements 

requiring resolution. 

Figure 16 shows the effect of typical instrument misalignments. 84035 ‘good’ misaligned setups are 

simulated (from initial consideration of 117649 setups) with 16 random values of phase difference 

between the radial vibrations, producing over 1.3 million scenarios. For the rough rotor simulation, 

amplitude errors of around 0.3% appear at frequencies away from synchronous, rising to 3% close to 

synchronous. Similarly, phase errors of around 3 mrad appear at frequencies away from synchronous, 

rising to 60 mrad close to synchronous. Comparable data for the polished-circular rotor show 

expected error levels at 0.3% for amplitude and 3 mrad for phase. Vibration amplitude does not affect 

these levels. Angular misalignments around y- and z-axes are critical in the pitch measurement, as 

indicated in equation (6c). Correspondingly, angular misalignments around x- and z-axes are critical 

in the yaw measurement. 

Speed measurement error is the subject of Figure 17. Errors from -2.5% to 2.5%, in steps of 0.5% are 

considered in combination with 32 random values of phase difference between the radial vibrations (a 

total of 352 scenarios). This error is unique to the rough rotor measurement; amplitude error is close 

to 2% at low frequencies, rising to 20% near synchronous before falling to around 1% at second order 

and 0.1% by tenth order while phase error rises from 1 mrad at very low frequency to 100 mrad near 

synchronous before falling to less than 10 mrad at second order and almost 1 mrad at tenth order. 

There is no effect of vibration amplitude on this error. 

In the presence of pitch and yaw vibrations only, these three sources of error are dominant. Figure 18 

shows their combination (16 independent measurement noises, 9375 misaligned setups, speed errors 

from -2.5% to 2.5% in steps of 0.5% and 16 phases between the angular vibrations resulting in over 

26 million scenarios). Speckle noise dominates the rough rotor measurement at integer orders from 2 

upwards. Away from the integer orders, speed measurement error dominates up to around fifth order 



 17 

after which misalignments become the significant effect. Errors associated with the speed variations 

considered in Figure 13 and Figure 14 are at least an order of magnitude lower than these levels and 

so are negligible. Nonetheless, this simulation was repeated for the same set of 26 million scenarios 

but with the addition of four iterations around the correction algorithm which confirmed that there are 

no adverse effects on these error levels associated with its use. For the polished-circular rotor 

measurement, pseudo-vibration dominates at integer orders with misalignment determining error 

levels elsewhere. 

6. Conclusions 

This paper has combined an experimental study of the cross-sensitivity encountered in parallel beam 

laser vibrometry measurements of rotor pitch and yaw vibration with a quantitative evaluation of 

measurement errors based on simulation. The evaluation of the effects of misalignments, for both 

rough and polished-circular rotors, was made possible by a recently developed framework for a 

comprehensive mathematical prediction of measured velocity that is without approximation [18]. 

From this study, it can be concluded that rotors with surface roughness up to 50 nm and out-of-

roundness below 10 µm adequately satisfy the polished-circular rotor definition (side of shaft 

measurement), provided vibration displacement does not exceed a specific threshold related to beam 

diameter. For a rotor with Ra around 10 nm, measurements are straightforward provided that surface 

displacement at either beam location does not exceed 50% of beam diameter. For rotors with Ra up to 

50 nm the corresponding figure is reduced to around 20% of beam diameter. In both cases there is an 

advantage if surface displacement can be minimised at one of the beams. Measurements are also 

possible on the polished end face of a rotor but the absence of surface curvature makes cross-

sensitivity 100%. Resolution is then necessary in the same way as for measurements on the side or 

end face of a rotor with retro-reflective tape surface treatment, which satisfies the rough rotor 

definition.  

End face measurements are advantageous from the point of view of minimising errors due to pseudo-

vibration. These factors combine to make recommendations to the vibration user straightforward. If 

measurements can be made from the side of a rotor that is polished and circular then low noise 

measurements without cross-sensitivity can be made. If this not possible then end face (or flange) 

measurements with the surface coated in retro-reflective tape are the next best option. There is no 

advantage to measurement from a polished end face which will also be affected by the temperamental 

nature of measurements made on a rotating polished surface. End face measurements with retro-

reflective tape will be tolerant of shape variations but will require the use of resolution and correction 

algorithms.  
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The essential requirement for post-processing of the rough rotor measurement has been demonstrated 

quantitatively, as has the effectiveness of the resolution algorithm. In the presence of speed 

fluctuations, the value of a complementary correction algorithm has also been confirmed and two 

iterations through the algorithm are now recommended wherever speed fluctuation (including 

torsional vibration) is present.  

Measurement errors can be readily predicted for any specific measurement scenario. For equal 

amplitude pitch / yaw vibrations, data have been generated for typical misalignments, measurement 

noise and speed measurement errors to provide typical error levels for the user to have in mind when 

interpreting data from such measurement scenarios. For measurements from the side of a polished-

circular rotor, errors are around 1% for amplitude and 10 mrad at integer orders and around one-third 

of these levels elsewhere. For measurements from a rotor end face treated with retro-reflective tape, 

errors will be similar at integer orders (from 2). Speed measurement errors must be minimised to limit 

errors up to 2nd order and misalignments determine errors at around 0.4% amplitude and 4 mrad 

phase at orders above 2 other than at the integer orders. 

This study of the effects of surface roughness, instrument misalignments and measurement noise 

delivers an essential practical guide for the laser vibrometer user.  
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Appendix A: Misalignment values used in simulations 

For side of rotor measurements 

Pitch:  

misalignment around x-axis takes values from -0.6O to 0.6O in steps of 0.2O 

misalignments around y- and z-axes take values from -0.3O to 0.3O in steps of 0.1O 

Yaw: 

misalignments around x- and z-axes take values from -0.3O to 0.3O in steps of 0.1O 

misalignment around y-axis takes values from -0.6O to 0.6O in steps of 0.2O 
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Table captions 

Table 1. Roughness and out-of-roundness of rotor samples. 

Figure captions  

Figure 1. Laser beam orientation showing a) the incident point on the displaced rotor and b) the points 

used in the vector polygons. 

Figure 2. Parallel laser beams incident on a vibrating rotor. 

Figure 3. Laser beam orientation, defining angles β and γ. 

Figure 4. Orientation of parallel beam separation, defining angle !. 

Figure 5. Experimental arrangement for which the cross-sensitive measurement was taken from  

the side of the rotor also showing the rotor rig assembly. 

Figure 6. Experimental arrangement for which the cross-sensitive measurement was taken from  

the end face of the rotor. 

Figure 7. Laser beams arrangement relative to rotor for side and end face cross-sensitivity 

measurements; in both cases the intended, genuine measurement is the x-angular (pitch).  

Figure 8. Back-scattered light on front of vibrometer for a polished-circular rough rotor. 

Figure 9. Effect of displacement amplitude (520 µm beam diameter – 400 mm stand-off) for rotor A2 

(Ra 11 nm) for side of rotor measurements; also showing the impact of beam alignment relative to 

oscillation centre. 

Figure 10. Effect of stand-off distance (and therefore beam diameter) for rotor A2 (Ra 11 nm) for side 

of rotor measurements. 

Figure 11. Effect of displacement amplitude (520 µm beam diameter, 400 mm stand-off) for rotor end 

face measurements. 

Figure 12. Maximum and minimum errors in measured angular velocity prior to resolution (dashed 

lines) and after resolution (solid lines) a) 2.5 mrad s-1 / rad s-1 b) 25 mrad s-1 / rad s-1. 

Figure 13. RMS error in resolved angular velocity as a result of broadband speed variation; a) pitch 

(solid line) and yaw (dashed line) amplitudes and b) phase difference. 

Figure 14. Relative error in resolved velocity following m iterations through the correction algorithm 

(*) m =1, solid line m =2, (+) m =4; a) pitch amplitude and b) phase difference. 

Figure 15. RMS error in resolved angular velocity as a result of pseudo-vibration for polished-circular 

(solid line) and rough (*) rotor model; a) pitch amplitude and b) phase difference. 
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Figure 16. RMS error in resolved angular velocity as a result of misalignments for polished-circular 

(solid line) and rough (*) rotor model; a) pitch amplitude b) phase difference. 

Figure 17. RMS error in resolved angular velocity as a result of speed measurement error for rough 

rotor model; a) pitch amplitude b) phase difference. 

Figure 18. RMS error in resolved angular velocity as a result of the combined effects of pseudo-

vibration, misalignments and speed measurement error for polished-circular (*) and rough (+) rotor 

model; a) pitch amplitude b) phase difference. 
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Tables 

Table 1. Roughness and out-of-roundness of rotor samples. 

Rotor 
ID 

Measurement 
location 

Roughness Ra  
(nm) 

Out-of-roundness 
(µm) 

A2 Side 11 6.7 
B Side 24 4.5 
C Side 44 6.5 
G2 Side Retro-reflective tape n/a 
H End face 6.5 n/a 
J End face Retro-reflective tape n/a 
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Figures 

a) 

b) 

Figure 1. Laser beam orientation showing a) the incident point on the displaced rotor and b) the points 

used in the vector polygons.  
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Figure 2. Parallel laser beams incident on a vibrating rotor.  
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Figure 3. Laser beam orientation, defining angles β and γ.  
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Figure 4. Orientation of parallel beam separation, defining angle !. 
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Figure 5. Experimental arrangement for which the cross-sensitive measurement was taken from  

the side of the rotor also showing the rotor rig assembly.   
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Figure 6. Experimental arrangement for which the cross-sensitive measurement was taken from  

the end face of the rotor.   



 31 

    

Figure 7. Laser beams arrangement relative to rotor for side and end face cross-sensitivity 

measurements; in both cases the intended, genuine measurement is the x-angular (pitch).  
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Figure 8. Back-scattered light on front of vibrometer for a polished-circular rough rotor.  
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a) 

b) 

Figure 9. Effect of displacement amplitude (520 µm beam diameter – 400 mm stand-off) for rotor A2 

(Ra 11 nm) for side of rotor measurements; also showing the impact of beam alignment relative to 

oscillation centre.  
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Figure 10. Effect of stand-off distance (and therefore beam diameter) for rotor A2 (Ra 11 nm) for side 

of rotor measurements.  
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Figure 11. Effect of displacement amplitude (520 µm beam diameter, 400 mm stand-off) for rotor end 

face measurements.  
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a) 

s

b) 

Figure 12. Maximum and minimum errors in measured angular velocity prior to resolution (dashed 

lines) and after resolution (solid lines) a) 2.5 mrad s-1 / rad s-1 b) 25 mrad s-1 / rad s-1.  
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a) b) 

Figure 13. RMS error in resolved angular velocity as a result of broadband speed variation; a) pitch 

(solid line) and yaw (dashed line) amplitudes and b) phase difference.  
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a) b) 

Figure 14. Relative error in resolved velocity following m iterations through the correction algorithm 

(*) m =1, solid line m =2, (+) m =4; a) pitch amplitude and b) phase difference.  
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a) b) 

Figure 15. RMS error in resolved angular velocity as a result of pseudo-vibration for polished-circular 

(solid line) and rough (*) rotor model; a) pitch amplitude and b) phase difference. 
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a) b) 

Figure 16. RMS error in resolved angular velocity as a result of misalignments for polished-circular 

(solid line) and rough (*) rotor model; a) pitch amplitude b) phase difference.  
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a) b) 

Figure 17. RMS error in resolved angular velocity as a result of speed measurement error for rough 

rotor model; a) pitch amplitude b) phase difference.  
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a) b) 

Figure 18. RMS error in resolved angular velocity as a result of the combined effects of pseudo-

vibration, misalignments and speed measurement error for polished-circular (*) and rough (+) rotor 

model; a) pitch amplitude b) phase difference. 

 


