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A theoretical analysis of billiard ball dynamics under 

cushion impacts  

S Mathavan*, M R Jackson, and R M Parkin   

Mechatronics Research Group, Wolfson School of Mechanical and Manufacturing 

Engineering, Loughborough University, Loughborough, LE11 3UZ, UK  

 

Abstract 

 

In the last two decades there has been a growing interest in research related to billiards. There 

have been a number of projects aimed at developing training systems, robots and computer 

simulations for billiards. The trajectory of the billiard ball is important for all these systems 

mentioned. The ball-cushion collision is often encountered in billiards and it drastically 

changes the ball trajectory, especially when the ball has spin. This work predicts the off-the-

cushion bounce angles and speeds, under the assumption of insignificant cushion 

deformation. Differential equations are derived for the ball dynamics during impact and are 

solved numerically. The numerical solutions together with a previous experimental work by 

the authors predict that the coefficient of restitution between the ball and cushion is 0.98. Also 

the sliding coefficient of friction between the ball and cushion is found to be 0.14. A 

comparison of numerical and experimental results indicates that the limiting normal velocity 

under which the rigid cushion assumption is valid is 2.5 m/s, which in billiards is above 

average. A number of plots that shows the rebound characteristics for given velocity-spin 

conditions are given at the end. The plots quantify various phenomena that are only explained 

in billiards literature hitherto.   

 

Keywords: impulse with friction, billiards, snooker, pool, ball trajectories, cushion rebound, 

coefficient of restitution  
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1 INTRODUCTION 

 

Snooker and pool are two popular cue sports generally known as billiards (here onwards the 

term billiards is used to refer to both snooker and pool together). Billiards is one of the first 

games to be analysed from a technical perspective. The 1835 study of famous French scientist 

Coriolis, named Théorie mathématique des effets du jeu de billard, is a pioneering work on 

sports dynamics [1]. Billiards is a classic example of dynamic concepts such as spinning, 

rolling, sliding and collisions of spheres. In recent years there is a growing interest on 

billiards related research. A number of robots have been developed to play pool and snooker 

[2, 3, 4, 5]. There are also a few initiatives on creating training systems for billiard games [6, 

7]. The research on computer billiards, which simulates the real-world billiards environment, 

also receives an increasing attention from computer scientists in creating artificial intelligence 

to formulate appropriate game playing strategies [ 8, 9, 10 ].  

 

Billiards is about accurately manipulating the balls on the table along different trajectories. 

This is performed so that all object balls are potted, in the given order, and the cue ball is left 

at an advantageous position on the table, after each shot, to play the next shot successfully. A 

player often uses cushion (or wall/rail/bumper) impacts to achieve the planned trajectories. 

Cushion impacts give a great deal of variation to the game. Ball-cushion impact, combined 

with the effects of ball spin, changes the ball trajectories dramatically, and provides the player 

a greater flexibility in his game strategy (see Fig. 1).    
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Fig. 1 Positioning the cue ball by its bounce off the cushion, by imparting it with different 

ball spins, still potting the object ball (shown in black) 

 

Up to now the ball bounces off the cushion are analysed incorporating the coefficient of 

restitution, between the ball and cushion, as the only influencing parameter. In this analysis, 

the ball velocity normal to the cushion is considered as the sole variable. According to this 

theory, referring to Fig. 2, once the ball bounces off the cushion, it will have a velocity of 

eeV0sinα and V0cosα along the normal, and the directions to the cushion respectively, where ee 

is the coefficient of restitution between the ball and cushion. The analysis does not take the 

effects of ball spin and the effect of friction during the impact into account, and purely treats 

it as a two dimensional phenomenon (the plane of analysis is as given in Fig. 2). However the 

spin on the ball, both sidespin ω
S

0 and topspin ω
T

0 as shown in Fig. 2, are known to affect 

both the rebound speed and rebound angle β of the ball. The latter two quantities are vital in 

estimating the trajectory of the ball off the cushion. Even though Marlow [11] has tried to 

address these issues, the approach of the analysis involves unnecessary parameters like the 

impact time between the cushion and ball for which the values were not known. Other 

assumptions such as taking sliding directions as constant do not seem correct (it is shown later 

that these keep changing, throughout impact).  
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In this paper a 3-dimensional analysis of the cushion-ball impact, is presented. For a given 

input conditions the analysis enables the calculation of rebound conditions. This work will be 

useful for robotics research on billiards that involves trajectory calculations for the ball 

motion. The trajectory estimation is also necessary for the systems that train amateur billiard 

players, as they need to instruct the player how a given shot (with a given speed and spin) will 

change the configuration of the balls on the table. Also the computer simulations, when 

incorporated with the knowledge from this 3 dimensional impact analysis, would give the 

user a more realistic experience of the game. This work will also be of interest to the 

researchers that work on the physics of billiards (for an exhaustive list of publications on 

billiard physics see Alciatore [11]). 

 

 

Fig. 2 Billiard ball prior to collision with a cushion 

 

 

2 THEORY 

 

The billiards cushion is made out of pure gum rubber that has good rebound properties. The 

cross section of a typical billiard cushion is shown in Fig. 3. Usually a slope is provided in the 
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cushion such that its contact point on the ball is always above the horizontal great circle of the 

ball, in order to prevent the ball from leaping up in the air after impact. Here, the cushion is 

assumed not to change its geometry during the impact with the ball. This assumption may not 

be valid at high ball speeds, as the normal ball velocity at the contact point, I (see Fig. 3), will 

deform the tip of the cushion. Also a point contact is always assumed between the ball and 

cushion, which again may not be true at high ball speeds, as the ball will start to ‘sink’ more 

into the rubber cushion.     
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Fig. 3   The forces acting on the ball at the moment of collision – a side view along the 

cushion at the table level  

  

In Fig. 2, the height of the contact point at the rail (i.e. I) is h. In both snooker and pool 

h=7R/5, where R is ball radius. At the contact point with the cushion, the common normal line 

Z’ makes an angle of θ with the Y axis. Thus,
5

2
=θsin .  
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Fig. 4 The forces on the ball during impact (a part of the cushion is shown) 

 

2.1 General equations of motion for the ball 

Referring to Fig. 3, for the ball, along X, Y and Z directions respectively, 

G
C

x
I

x xMFF &&=+                                                                                                    (1a) 

G
C
y

I
'yI yMFsinFcosF- &&=+− θθ                                                                                        (1b) 

GC
I
'yI zMMgFcosFsinF- &&=−++ θθ                                                                                (1c) 

During the period of impulse, at any time instant t, consider a time period of t∆ . Now, let ∆P 

denote the impulse due to the action of a general force F over ∆t. Also the accumulated total 

impact up to time t is denoted as P (and assuming the impact started at t=0), now, it could be 

written that, 

∫
+

=
tt

t

dt.FP

∆

∆                                                                                                                            (2a) 

and, 
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∫∑ ==
t

dt.FPP

0

∆                                                                                                                 (2b) 

The impulse-momentum relationship in conjunction with (2a), along the above directions 

results in the following equations.  

G
C

x
I

x xMPP &∆∆∆ =+                                                                                                               (3a) 

G
C
y

I
y'I yMPsinPcosP- &∆∆θ∆θ∆ =+−                                                                                  (3b) 

GC
I

y'I zMPcosPsinP &∆∆θ∆θ∆ =++−                                                                                 (3c) 

In equation (3c), it should be noted that the impact component due to the mass of the ball mg 

is absent. According to de la Juarez [12], in the limit ∆t→0, the non-diverging forces, such as 

the weight mg, will have a negligible contribution, thus will not influence the increase in 

momentum. In (3c) it should also be noted that due to the physical sloped shape of the 

cushion the vertical motion of the ball is constrained. Hence, 0=Gz&∆ . Equation (3c) could 

be rearranged as, 

θ∆θ∆∆ cosPsinPP
I

y'IC −=                                                                                                  (3d) 

Similarly for the rotational motion of the ball about the X axis, the following equation could 

be derived, with angular velocity being denoted by ω, 

( ) x
C
y

I
y' IRPP ω∆∆∆ =+                        

Where, the moment of inertia of the ball, 
5

2 2MR
I = . The above equation could be written as,   

x
C
y

I
y'

MR
PP ω∆∆∆

5

2
=+                                                                                                       (4a) 

Similarly about Y and Z axes, 

y
C

x
I

x

MR
PsinP ω∆∆θ∆

5

2
=−                                           (4b) 

z
I

x

MR
cosP ω∆θ∆

5

2
=−                                                             (4c) 
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2.2 Impact dynamics at points I and C 

At the contact point with the cushion, I, generally it could be said that the ball is slipping on 

the rail (the rolling could be treated as a special case of slipping, where the slipping velocity 

is zero). The slip will take place on the XY’ plane (i.e. the tangential plane), also noting that 

the axis Y’ is in the YZ plane. Let the slip speed of the ball at I, be s(t) at an angle Φ(t) from 

the X axis. The instantaneous value of the normal impulse PI   according to equation (2b) will 

always be positive as FI is always positive. PI monotonously increases with time t within the 

interval of impact. Hence generally it is taken as an independent variable, instead of time t 

[13]. See Stronge [13] for an elaborative explanation on this and on other principles used 

within the subsection 2.2. The slipping velocities along X and Y’ axes are given by, 

respectively, 

( ) ( )( )III PcosPsx Φ=&                                                                 (5a) 

( ) ( )( )III PsinPs'y Φ=&                                                                  (5b) 

But I'y& could be written as, 

θθ coszsiny'y III &&& +−=                                                                  (6) 

Using the Amontons-Coulomb law of friction, for 0>s , also noting that the friction 

forces/impulses are opposite to the direction of sliding, friction impulses along X and Y’ are 

( )( ) IIw
I

x PPcosP ∆Φµ∆ −=                                                                    (7a) 

( )( ) IIw
I
'y PPsinP ∆Φµ∆ −=                                                                                                      (7b) 

Where, wµ is the coefficient of friction between the ball and cushion.  

From (3d) and (7b), the normal reaction from the table surface to the ball is given by, 

( )( )( ) IIwC PcosPsinsinP ∆θΦµθ∆ +=                                                                                   (8) 

Using the earlier argument, for the impact at C, the instantaneous impulse value PC should be 

chosen as the independent variable. But equation (8) shows that the value of PC directly 

depends on the value of PI. Hence for the impact at C also, PI  could still be considered as the 
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independent variable. This makes it possible to have PI  as the independent variable for all the 

impulse forces involved in this analysis. 

 

For the impact at C, the slip takes place on the XY plane. Let s’ be the slip speed, and Ф’ be 

the direction of slip measured from the X axis. Now, the components along X and Y 

directions are, 

( ) ( )( )IIC P'cosP'sx Φ=&                                                                        (9a) 

( ) ( )( )IIC P'sinP'sy Φ=&                                                                         (9b) 

Hereafter the independent variable PI  is omitted from all equations for the sake of simplicity. 

When 0>'s , the impulse forces along X and Y directions, also using equation (8), can be 

written as 

Cs
C
x P'cosP ∆Φµ∆ −=              

         ( ) Iws Pcossinsin'cos ∆θΦµθΦµ +−=                                                             (10a) 

Cs
C
y P'sinP ∆Φµ∆ −=                               

       ( ) Iws Pcossinsin'sin ∆θΦµθΦµ +−=                                                                     (10b) 

Where sµ  is the coefficient of friction between the ball and table surface. 

 

2.3 Velocity relationships 

The velocity of any point on sphere’s surface could be written, in vectorial notation, as  

V=VG  + ωΛR          

Hence, 

∆V=∆VG  + ∆ωΛR                                                                                                                  (11) 

From (11), resolving components along the axes appropriately, slip velocities along any axis 

can be expressed in terms of the centroid velocities of the ball.  

At point I, 

θω∆θω∆∆∆ cosRsinRxx zyGI −+= &&                                                                                 (12a) 
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Rcoszsiny'y xGGI ω∆θ∆θ∆∆ ++−= &&&                                                                                 (12b) 

At point C, along the X axis, 

Rxx yGC ω∆∆∆ −= &&                                                                                                               (13a)             

Along the Y axis, 

Ryy xGC ω∆∆∆ += &&                                                                                                              (13b)             

 

In equation (3a), when substituting the expression for I
xP∆ and C

xP∆  from equations (7a) and 

(10a), Gx&∆ , which is the increment in the centroid velocity in the X direction Gx& , can be 

expressed in terms of all the instantaneous velocities by, 

( )[ ] IwswG Pcossinsin'coscos
M

x ∆θΦµθΦµΦµ∆ ++−=
1

&                                             

When 0→IP∆ this equation could be written as, 

( )[ ]θΦµθΦµΦµ cossinsin'coscos
MdP

xd
wsw

I

G ++−=
1&

                                                (14a) 

The differential equation in (14a) together with other 5 similar equations for centroid 

velocities { Gy& ,….., zω } describe the motion of the ball completely. An analytical solution 

does not exist. However, a numerical solution is possible.  

 

 

3 A NUMERICAL SOLUTION 

 

As seen earlier the solution warrants a numerical solution. The numerical solution requires 

initial conditions, the conditions for motion transitions like sliding to rolling, and numerical 

values for the parameters involved in the equations such as µs.     

  

3.1 Initial conditions 

Referring to Fig. 2, the initial conditions for the centroid velocities of the ball are, 
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( ) αcosVxG 01
=& , ( ) αsinVyG 01

=& , ( ) 0
1
=Gz& , ( ) αωω sinS

x 01
−= , ( ) αωω cos

S
y 01

= , and 

( ) T
z 01

ωω = , 

and the initial slip speeds, 

( ) ( )[ ] [ ]200

2

0000 αωθαθωθαωα sinRsinsinVcossincosRcosVs TST −−+−+=  

( ) TRV's 000 ω−= . 

 

3.2 Friction coefficients and the condition for rolling 

When rolling occurs slip speed s (or s’ for the sliding on table-felt), becomes zero. At this 

instance the relative motion between bodies stop at their contact point along the common 

tangent; the friction forces become zero.  

 

1) When s=0, the ball will be rolling on the cushion at the contact point I. 

0== I
'y

I
x PP ∆∆ , and from (3c), 0=CP∆ . Hence, 0== C

y
C

x PP ∆∆                                   (16a)                                                        

2) When s’=0, the ball will roll on the table surface, and 

0== C
y

C
x PP ∆∆                     (16b) 

 

In a previous work by these authors, high-speed camera based measurements were used to 

determine the sliding coefficient of friction for a snooker ball and table-felt; the sliding 

coefficient of friction, µs, was found to be between 0.178-0.245 [14]. Marlow [15] suggests a 

value of 0.2 for pool. Since the authors of this work have obtained an experimental plot for 

the cushion-ball impact in snooker, parameter values found in snooker could be easily 

obtained [14]. Hence here onwards the numerical values found in snooker are used for the 

calculations. µs is taken as 0.212, as an average value. In snooker, M=0.1406 kg, R=26.25 

mm.  
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3.3 The coefficient of restitution and impact mechanics  

According to Stronge [13], the energetic coefficient of restitution ee, is independent of friction 

and the process of slip. ee
2
 is the negative of the ratio of the work done by the impulse force 

during the restitution phase to that during the compression phase. Work done at the contact 

point I, along the axis Z’, is  

∫ ∫
+ +

==
tt

t

PP

P

IIII'Z

II

I

I
dP'zdt'z.FW

∆ ∆

∆ &&  

The equivalent numerical form is,  

( ) ( ) ( ) ( )[ ]
2

1

1

nInI

In'Zn'Z

'z'z
PWW

II

&& +
=− +

+
∆                                                                          (17a) 

Where I'z&  is the relative velocity in the direction of the common normal at the contact point I 

(here it is assumed that the cushion did not move large enough to affect a change in the 

relative velocity i.e. the cushion is treated as a rigid body), and IF is the normal force from 

the cushion on the ball. When f
IP , 

c

IP  denote the accumulated impulse at the termination of 

impulse, and at the termination of compression, respectively, it could be shown that [13],  

∫

∫−
=

c
I

f
I

c
I

P

II

P

P

II

e

dP'z

dP'z

e

0

2

&

&

             

This is rearranged as,                                                              

( ) ( ) ( )c
I'Ze

f
I'Z PWePW

II

2
1−=                                                                                                 (17b) 

The termination of compression occurs when the normal component of relative velocity 

becomes zero, i.e.   

( ) 0=c
II P'z&                                                                                                                            (17c) 

 

According to Marlow [15], the coefficient of restitution between the cushion and ball ee , is 

0.55 for pool. However, the authors of this work have obtained an experimental plot for the 
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ball-cushion impact in snooker, where a snooker ball, under the conditions of rolling (ω
T

0 = 

V0/R) and no sidespin (ω
S

0 = 0), was shot to collide with the cushion perpendicularly (α=0), 

and tracked using a machine vision camera [14]. The incident vs. rebound speed plot obtained 

was used to conclude that the equivalent coefficient of restitution, for a rolling ball 

perpendicularly colliding with the cushion, has a value of 0.818, on average; the experimental 

plot is shown in Fig. 5. However, it should be noted that this value of 0.818 incorporates the 

effects of friction and the 3-dimensionality of the impulse configuration, and only stands as a 

representative value for the coefficient of restitution.     

 

3.4 The numerical algorithm  

The equation (14a) and 5 other differential equations could be written in numerical form as, 

( ) ( ) ( ) ( ) ( )[ ]{ } InwnsnwnGnG Pcossinsin'coscos
M

xx ∆θΦµθΦµΦµ ++−=−+

1
1

&&              (15a) 

where, using equation sets (12) and (13), 

( )
( ) ( ) ( )

( ) ( ) ( ) θωθω

ωθθ
Φ

cosRsinRx

Rcoszsiny
tan

nznynG

nxnGnG

n −+

++−
=

&

&&
  

and ( )
Rx

Ry
'tan

yG

xG
n ω

ω
Φ

−

+
=

&

&
 

 

The numerical scheme is written in MATLAB
®
 programming language. The values of 0V , 

T
0ω , S

0ω , α  are the inputs to the scheme. The smaller the value of the increment in 

impulse IP , i.e. IP∆ , in (15a), the more accurate the results will be. The aim is to find the 

centroid velocities of the balls at the final accumulated impulse value f
IP .  

 

The algorithm starts by calculating the increments in the centroid velocities of both balls by 

using equation (15a) and 5 other simultaneous equations. Using these and equations (12a), 

(12b), (13a) and (13b) the new slip velocities are calculated. The code is designed to 



 14 

incorporate the necessary modifications necessary, when a rolling condition is reached at 

either of the sliding contacts, as given in equations (16a) and (16b). The values of all physical 

parameters involved in the dynamics are saved as arrays, including the work done at I along 

the Z’ axis, 
I'ZW , calculated from (17a). The latest parameter values are appended to these 

arrays once each IP∆  is applied. 

 

Again f
IP can not be found analytically and has to be obtained numerically using the 

equations (17a) and (17b). The numerical scheme is initially be stopped when 0=I'z& (i.e. 

when the compression phase has ended), and the corresponding value of work done is 

obtained from the array containing 
I'ZW , which will be ( )c

I'Z PW
I

. Now, using (17b), the 

value ( )f
I'Z PW

I
 can be calculated, given that ee is known. Now the numerical process can 

resume and when ( )f
I'Z'Z PWW

II
= , the numerical process is terminated. The rebound velocity 

values of the ball centroid are the last entries in the arrays of the respective velocity 

components. 

 

Note: In order to assume a reasonable value for IP∆  to start the numerical scheme with, an 

approximate value for 
f

IP could be taken as ( ) αsinMVee 01+ , the value of the normal 

impulse to the cushion, had the ball without spinning collided into a solid flat wall. 

Approximately for N iterations, 
( )

N

sinMVe
P e

I

α
∆ 01+

= . Obviously the values of 
c

IP and 

f

IP will decide the actual number of iterations that have taken place in the scheme. An initial 

N of 5000 worked satisfactorily for the scheme. 

 

3.4 Estimating ee and µw 

The experimental plot in Fig. 5 was obtained under the conditions of ω
S

0 = 0, α = 0, and ω
T

0 = 

V0/R, on a Riley® Renaissance type snooker table that is also the official table brand of the 
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World Snooker Association and is used in all its professional tournaments. It is known that 

0<ee≤1. For each of the experimentally obtained incident speed values (i.e. V0) in the speed 

range of V0<1.5 m/s, the numerical algorithm was run for values of ee starting from 0 to 1 in 

the increments of 0.01, and the rebound speed ( )f
IG Py&  was obtained; higher speeds were not 

considered as the assumption of rigid cushion may not be applicable for those values. The 

value of ee that minimises the RMS value of all errors between the experimental and 

numerically predicted rebound speeds should be the actual value for the coefficient of 

restitution between the cushion and ball. Calculations showed, that ee=0.98 and µw=0.14.   

 

Numerically obtained rebound speed values for ee=0.98 and µw=0.14, are plotted in Fig. 5 

together with experimentally obtained values. As seen in Fig. 5(b), numerically obtained 

values of incident speed deviate from the experimentally obtained values for speeds V0>2.5 

m/s. Quite possibly, this could be the velocity limit beyond which the no deformation 

assumption for cushion would not be valid anymore. But V0=2.5 m/s is a considerably high 

speed as far as snooker is concerned. For oblique shots, the ones for which the normal 

component of incident velocity of less than 2.5 m/s, would only be analysed using the 

numerical algorithm described in 3.4. 
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Fig. 5 Rebound speed versus incident velocity, obtained experimentally and numerically 
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4 RESULTS AND DISCUSSION 

 

 

The results obtained from the numerical algorithm are given in Fig. 6, 7, and 8. Once the ball 

is struck by the cue stick the ball generally slides, where ω
T

0 ≠ V0/R, but quickly the rolling 

condition of ω
T

0 = V0/R is brought about by the action of the friction between the ball and 

table (an interested reader could see the plots given in [14]). Hence the balls before they 

impact the cushions in billiards are generally in the rolling state, possibly with some sidespin.  

 

The simplest case of rolling with no sidespin is shown in Fig. 6. The plot of rebound speed 

versus incident angle for different incident ball speeds tells that the rebound speed increases 

with the incident speed. The second plot in Fig. 6, suggests that the rebound angle is only 

influenced by the incident angle, for a rolling ball with no sidespin prior to the impact.  
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Fig. 6 Rebound speed and rebound angle versus incident angle for different rolling velocities 

with no sidespin (ω
T

0 = V0/R, ω
S

0=0) 
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According to Fig. 7, the amount of top spin a ball has affects the ball rebound speed by up to 

15%. The speed loss is the largest for ball incident angles around 30°. For over-spinning ball 

the speed loss is generally low. The rebound angles are not greatly affected by the topspin of 

the ball as seen in the second plot of Fig. 7. 
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Fig. 7 Rebound speed and rebound angle versus incident angle for different topspins of the 

ball, ω
T

0 = kV0/R , and V0=1 m/s with no sidespin (ω
S

0=0) 
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Fig. 8 Rebound speed and rebound angle versus incident angle for different sidespins of the 

ball, ω
S

0 = kV0/R , and V0=1 m/s with the ball rolling (ω
T

0 = V0/R) 
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The Fig. 8 presents some very interesting results. When the ball has right spin (according to 

billiards terminology, ω
S

0 as marked in Fig. 2 is called right spin, the opposite of which is left 

spin), the rebound speed the exceeds that value of the incident speed. Also for higher values 

of left spin, at higher incident angles towards 90°, the rebound velocity exceeds the value of 

the incident ball speed. The second plot in Fig. 8 suggest that when the ball has left spin 

(k<0), and for incident angles values close to 90°, the ball bounces back to the side that it 

approached the cushion from (see Fig. 9). This effect has been described by Walker [16] for 

billiards, and by Cross [17] in a general context for the bounce of ball. Cross [17] also 

presents some experimental values for a tennis ball bouncing on a rough surface. 

 

ωS
0

αC
u
sh

io
n

β

 

Fig. 9 Ball bouncing back to the same side under left spin conditions for α’s close to 90° 

 

A plot of sliding speeds against the instantaneous impulse value is shown in Fig. 10. The 

change in slip directions as indicated by the plot suggests that the assumption of uni-

directional slip can not be true. 
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Fig. 10 Slip-impulse curves for V0=2 m/s, α=45°, ω

S
0 = 2V0/R and ω

T
0 = 1.5V0/R 

(s and Φ are for the slip at the cushion, and s’ and Φ’ are for the slip at the table ) 

 

 

5 CONCLUSIONS     

A 3-dimensional impact analysis for the collision of a spinning billiard ball into a cushion is 

presented. Differential equations are derived for ball dynamics during the time of impact and 

then the solutions are found numerically.  

 

Combining some previous experimental results from the authors and the numerical solutions 

the coefficient of restitution for the ball-cushion collision is determined as 0.98. In the same 

way, the value for the sliding coefficient of friction is found to be 0.14.  

 

The rebound angles and speeds are given as plots against the incident angles and speed for 

different velocity and spin conditions. Under excessive sidespin conditions the rebound 

speeds are found to exceed the incident speeds. Under these conditions the ball is also found 

to bounce back on the same side as it approached the cushion.   

 

Although this analysis provides the quantification for many phenomena involved with 

cushion collisions that are described in billiards related literature, it is expected to be 
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validated by tracking spin of a billiard ball. A colour pattern drawn on a white Cue ball may 

be used for this purpose.   
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Notation  
 

ee    coefficient of restitution between the ball and cushion 

F    force 

I     moment of inertia of the ball 

M   mass of the ball  

N    Number of iterations 

P    accumulated impulse at any time during impact 

P
c
I  accumulated impulse at the termination of compression 

P
f
I  the final accumulated value of impulse 

R    radius of the ball 

s     slip speed 

V0   incident speed of the ball 

W   work done due to impulse force  

 

α     ball incident angle with cushion 

β     rebound angle 

∆P  impulse during a time of ∆t 

θ     the angle that the common normal of the ball-cushion contact point makes with the 

horizontal    

µs    coefficient of sliding friction between the ball and table 

µw   coefficient of sliding friction between the ball and cushion 

Φ    slip direction 

ω    angular velocity of the ball 

ω
T

0   top spin of the ball at incidence 

ω
S

0   side spin of the ball at incidence 

 


