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Abstract 

This paper deals with the tribological performance of carbon nanoparticles dispersed in 

polyalphaolefin PAO6 oil. Stribeck curves are obtained under various operating conditions, 

using a fully instrumented pin-on-disc tribometer under controlled conditions. A detailed 

multi-physics thermal fluid flow model with Lagrangian low concentration discrete solid 

phase and Eulerian multi-phase fluid with cavitation represented by modified Rayleigh-

Plesset and vapour transport equation is presented. The numerical predictions under identical 

conditions to the experiments show good conformance with the measurements, and provide a 

fundamental understanding of the role of nanoparticles. Results show improved heat transfer 

from the contact with the presence of nanoparticles even at low levels of concentration. The 

analysis shows that this leads to higher lubricant viscosity, load carrying capacity and 

reduced friction. Furthermore, a resulting small region of cavitation at low volume fraction 

does not unduly affect the enhanced heat transfer of nanoparticles. This combined 

experimentation and detailed numerical analysis has not hitherto been reported in literature.  

Keywords: Multiphase flow; Lagrangian model; Cavitation; Nanolubricant (Nanofluid); 

Sliding contact; Friction; Heat transfer 

Nomenclature 

A   Apparent contact area 

cC   Cunningham slip correction factor  

pd   Diameter of nanoparticles 

*E   Young’s modulus of elasticity 

bf   Boundary friction 
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tf   Total friction 

vf   Viscous friction 

H   Enthalpy 

mh   Minimum film thickness 

h   Heat transfer coefficient  

k   Oil thermal conductivity 

atmp   Atmospheric pressure 

satp   Cavitation (vaporisation) pressure 

hp   Hydrodynamic pressure 

Re   Reynolds number 

s   Integration variable 

0S   Temperature-viscosity index 

t   Time 

V


  Velocity vector 

u , v   Components of velocity in Cartesian coordinates 

x , y   Cartesian coordinates 

Z   Pressure-viscosity index 

Greek symbols 

0α , 0β   pressure/temperature–viscosity coefficient 

ijδ   Kronecker delta 

ζ   Number of asperity peaks per unit contact area 

η   Oil dynamic viscosity 

0η   Oil dynamic viscosity at atmospheric pressure 

κ   Average asperity tip radius 

http://dx.doi.org/10.1016/j.triboint.2016.12.048


Tribology International, 29 Dec. 2016, DOI: http://dx.doi.org/10.1016/j.triboint.2016.12.048 
(Accepted version) 

λ    Mean molecular free path 

sλ   Stribeck’s film ratio parameter 

ς   Pressure coefficient for boundary shear strength of asperities 

ρ   Oil density 

pρ   Nanoparticle density 

0ρ   Oil density at atmospheric pressure 

τ   Shear stress 

0τ   Eyring shear stress 

Γ   Diffusion coefficient  

T   Temperature 

Abbreviations 

CFD  Computational fluid dynamics 

MSDS  Material Safety Data Sheets 

PAO  Poly-alpha-olefin 

RMS  Root Mean Square 

RPM  Revolutions per Minute 

1. Introduction 

Nanofluids are essentially stable and durable colloidal suspensions made of nanoparticles 

with sizes usually in the range 1-120 nm, dispersed in the base fluid. When the base fluid is 

an oil, the resultant colloidal suspension is referred to as a nano-lubricant or nano-oil. The 

mechanisms involved in reducing friction and wear are mostly dependent on the 

characteristics of nanoparticles including size, shape, and volumetric concentration. For 

tribological applications, the nanoparticles should generally have lower friction coefficient, 

high dispersion properties, act as extreme pressure (EP) agents, and enhance thermal 

conductivity. At intense thermal loading and heat fluxes, the nanofluids assume an important 
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role in heat transfer. To produce nanolubricants, nanoparticles are dispersed in the base fluid 

using mechanical stirring and ultrasonic agitation to form a stable suspension. 

Nanoparticles made of different materials, added to various types of lubricants, have been 

investigated in the recent past in order to find their influence in reducing friction and wear in 

various contacts. Greenberg et al [1] investigated the effect of nested inorganic fullerene-like 

(IF) metal dichalcogenide WS2 nanoparticles, added to various base oils in reducing friction 

under different regimes of lubrication. They used three different tribometers including a flat-

on-flat, roller-on-rib and ball-on-flat configurations. They observed a 50% reduction in the 

coefficient of friction in mixed regime of lubrication. They presented their results for 

coefficient of friction in the form of a Stribeck curve covering all regimes of lubrication from 

hydrodynamic to boundary. They hypothesised that the mechanism through which a 

reduction in the coefficient of friction occurs is the formation of tribo-films of WS2. Wu et al 

[2] investigated the effect of CuO, TiO2 and nano-diamond nanoparticles as additives in a 

base oil as well as in an API-SF engine oil, in reducing friction and wear. They used a TE-77 

reciprocating sliding tribometer. Reductions of 18.4% and 5.8% were observed by adding the 

CuO nanoparticles to the engine lubricant and the base oil respectively. However, they 

observed relatively small reduction in friction when the nano-diamond particles were used. 

The friction reduction properties of CuO nanoparticles added to polyalphaolefin PAO6 on 

coating of NiCrBSi were investigated by Battez et al [3]. The reduction in friction because of 

nanoparticles was attributed to two main parameters; firstly the nanoparticles acting as third-

body nano-bearings, and secondly formation of tribofilms through their adsorption to the 

coating material. 

Using a disc-on-disc tribometer, Lee et al [4] and Ku et al [5] employed fullerence (C60) 

nanoparticles added to mineral oils to investigate their tribological performance. Ku et al [5] 

used a volume fraction of 0.1%, whilst Lee et al [4] changed the volume fraction from 0.01% 

to 0.5%. They showed their results for coefficient of friction in the form of Stribeck curves. 

Lee et al [4] found that the volume fraction (VF) of fullerence was an important factor in 

reducing the coefficient of friction, whilst Ku et al [5] observed a more effective nanoparticle 

performance with lower viscosity base oils. Furthermore, using a disc-on-disc tribometer, Lee 

et al [6] produced Stribeck curves to study the performance of graphite nano-lubricants. They 

found that the nano-lubricant with 0.5% VF of graphite produced the least coefficient of 

friction. 
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Wan et al [7] investigated the use of boron nitride nanoparticles in commercial lubricating oil 

(SE 15W-40). Optimal size and concentration of particles were found to be ~120nm and 0.1 

wt%, reducing friction by as much as 77% with respect to the base oil. Oleic acid was used as 

a dispersant to ensure suspension stability. A high shear homogeniser was used for dispersing 

the particles. However, Wan et al [7] did not observe any difference between viscosity of the 

base oil and that with the inclusion of nano-lubricants with different levels of concentration. 

The above studies and many other similar investigations have shown the advantages of using 

nanoparticle in reducing friction in various contacts, particularly using various tribometers. 

However, they do not provide an in-depth analysis of the underlying mechanisms involved in 

flow dynamics of the nanoparticles within the bulk lubricant. It is important to ascertain in a 

fundamental manner the key roles which particle shape, size and concentration play through 

use of multi-phase flow dynamics.  

There is a relatively a large volume of reported analysis, but confined to the effectiveness of 

nanoparticles in the promotion of additional heat transfer to or from fluid flows. A review of 

these studies can be found in Godson et al [8] or Kaymar et al [9]. There are no reported 

analyses of nanoparticle performance in fluid flows through tribological conjunctions.  

Therefore, the current study includes a fluid dynamics analysis, where the nanofluid flow is 

defined as a combination of a continuous liquid phase and a dispersed solid particle phase. 

The Eulerian–Lagrangian approach is used in the solution of Navier-Stokes equations. The 

Eulerian description assumes a continuum medium for the fluid phase with conservation laws 

for the liquid phase, whilst detailed particle motion is described through use of Lagrangian 

dynamics. The particle-particle interaction forces are neglected in the current study due to the 

relatively low concentration of the nanoparticles in the base oil. The result of analysis 

conforms well to the experimental measurements using a pin-on-disc tribometer under a 

broad range of regimes of lubrication. Such an approach has not hitherto been reported in 

literature. 

2. Experimental Measurements 

An in-house pin-on-disc tribometer is used to simulate the flow of a nano-lubricant in a 

typical converging-diverging sliding contact. Furthermore, the tribometric tests provide 

means of validation for numerical predictive method. 

2.1. Preparing the nano-lubricant samples 
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The base oil used is PAO6 with the properties listed in Table1. Carbon nanoparticles with 

0.02% volume fraction are suspended in the base oil with mechanical stirring. The main 

reason for the 0.02% solution is that this particular concentration provides a very stable 

mixture, not encountering any separation problems. Upon examination of samples with 

various concentrations it was found that solutions produced with this particular concentration 

of particles remained stable for well over a year. 

Diamond nanoparticles (DND) were initially produced in the USSR during the 1960s by 

detonation of carbon containing explosives, usually with a negative oxygen balance. In recent 

years, these particles have become the topic of extensive studies due to their excellent 

mechanical and optical properties, low toxicity compared with other carbon nanoparticles, 

high surface area and tuneable surface structure. Owing to these characteristics their use for a 

number of different applications is being researched, including their use as a lubricant 

additive. 

The blending process is performed using a standard mechanical mixer. The produced 

mixtures also include a relatively small amount of molybdenum phosphorodithioate (no 

exceeding 0.1% wt.). Molybdenum phosphorodithioate is present as an additive that can 

further enhance the performance of the end product through synergistic effect. 

Table1: Properties of the base oil (PAO6) 

Parameter Value Unit 

Viscosity at 40○C 30 mPa.s 

Viscosity at 100○C 6 mPa.s 

Density 826 kg/m3 

Thermal conductivity 0.144 W/(mK) 

Specific heat capacity 2.303×103 J/(kgK) 

 

Lubricant viscosity was measured using Brookfield Rheometer DV-II+ Pro, equipped with a 

RV-1 spindle. The data related to the thermal properties of the lubricant, including thermal 

conductivity and specific heat capacity were extracted from the Material Safety Data Sheets 

(MSDS). The thermal properties of the lubricant including thermal conductivity and specific 

heat capacity were also measured.  
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2.2. Preparing pin and disc samples 

The pin and disc samples are both made out of steel. The disc was turned on a lathe and the 

pin was made using a milling machine. Both pin and disc were polished using a PM5 

(Precision Lapping and Polishing System). A scaled rotating fixture was used to create a 

symmetric parabolic wedge profile on the pin sample to create an inlet wedge for the 

entrainment of the lubricant into the contact through hydrodynamic pressure rise. Surface 

profile of the pin sample was measured using an Alicona Infinite Focus microscope with the 

vertical resolution of ±1 nm and horizontal resolution of 0.175 µm. Figure 1 shows the 

measured pin profile, as well as the fitted curve to the measured profile, which is used in the 

numerical analysis. The effect of surface roughness on the tribological performance of the 

contact particularly in boundary regime of lubrication is included through use of measured 

roughness parameter and by removing the surface form from the measured data. 

 

Figure1: Pin sample profile 

Surface topographical data for both the pin and the disc samples are listed in Table 2. 

Table 2: Surface topography parameters for both pin and disc samples 

Parameter Description Value (pin) Value (disc) Unit 

Sa Average roughness 0.104 0.138 µm 

Sq RMS roughness 0.136 0.198 µm 

Ssk Skewness -0.188 0.254 - 

Sku Kurtosis 4.444 3.809 - 

Spd Peak density 4833 6138 mm-2 

Spc Peak average curvature 711 918 mm-1 
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According to Table 2, the distribution of roughness in both the samples somewhat deviate 

from a normal (Gaussian) distribution. In the case of the pin sample, the valleys are slightly 

predominant, whilst in the case of the disc, roughness peaks are slightly predominant.  

2.3. Experimental set up and running procedure 

Rotational speeds for the disc were 50, 100, 150, 200, 320, 600, 1000 and 1100 RPM. These 

correspond to average contact sliding speeds of 0.2, 0.4, 0.6, 0.8, 1.3, 2.4, 4 and 4.5 m/s 

respectively. The applied normal load on the pin was set at 5 and 10 N. Considering a line 

contact between the pin and the disc at the apex of the parabola and using Hertzian contact 

theory, the deflection for an elastic line contact of small, but finite width becomes [10]: 

𝛿𝛿 = 𝑃𝑃′

𝜋𝜋𝐸𝐸∗
�ln �𝐿𝐿

2𝜋𝜋𝐸𝐸∗

2𝑅𝑅𝑃𝑃′
� + 1�        (1)  

Localised deformations of 6 and 11 nm are predicted for the contact loads of 5 and 10 N 

respectively. This indicates that under the applied loads, no significant local elastic 

deformation occurs in the conjunction. This chosen range of speed and load is to ensure a full 

sweep of various regimes of lubrication from hydrodynamic to boundary, which are typically 

demonstrated in Stribeck curves. 

The lubricant was supplied into the conjunction by a Harvard Apparatus 11 Elite syringe 

pump to ensure a continuous and controlled inlet supply rate.  

3. Numerical Model 

A Lagrangian discrete phase model (Euler-Lagrange approach) is used in the current study. In 

this approach, an Eulerian method is used to treat the flow field whilst a Lagrangian approach 

describes the motion of the discrete elements (i.e. the nanoparticles) suspended in the fluidic 

continuum. 

3.1. Equations of motion for the fluid phase 

The fluid phase is treated as a continuum by solving the Navier-Stokes equations [11]: 

0. =∇+ V
Dt
D 

ρρ           (2)

Fp
Dt

VD
ij




+∇+∇−= )(. τρ         (3) 
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where, DtD  is the material covariant derivative, ρ  is the lubricant density, p  is  pressure, 

V


 is the velocity vector and ijτ  is the viscous shear stress tensor: 
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where, η  is the lubricant viscosity ijδ  is the Kronecker delta. 

Although negligible in this particular case, the body forces in the fluid, F


, are also included 

for the sake of generality. 

3.2. Thermal analysis 

To take into account the rise in lubricant temperature in the contact due to frictional heating, 

the energy equation is solved in the flow domain. Energy conservation equation in the 

general form can be stated as [11]: 

qTk
Dt
Dp

Dt
DH




+∇∇+= ).(ρ         (5) 

where, H  is the fluid enthalpy, T is temperature, k  is the lubricant thermal conductivity, and 

the source term q  represents the generated heat in the contact. The frictional heating 

originates from the viscous shear of the lubricant in the contact, as well as through the direct 

contact of asperity tip on the counter face surfaces (i.e. the pin and the disc) due to generated 

boundary friction. Therefore, the source term can be obtained by calculating the frictional 

power losses in the contact due to both viscous shear of the lubricant and also the direct 

contact of the asperities. 

To evaluate the contact temperature more accurately, the heat conduction equation is solved 

for both the pin and the disc as: 

02 =∇ T           (6) 

In this model, the transient effects are ignored and hence the steady-state form of the 

governing equations for heat transfer in the sliding bodies is considered. 
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3.3. Equations of motion for the nanoparticles 

Lagrangian dynamics is used to solve the equations for the dispersed discrete phase (i.e. the 

nanoparticles), in which a large number of particles are tracked individually throughout the 

flow field. In this method, the dispersed phase can exchange momentum, mass, and energy 

within the fluid phase. This approach is made considerably simpler when particle-particle 

interactions are neglected. Considering the relatively low concentration of the nanoparticles 

in the studied lubricant (0.02% by volume), this simplification is expected not to affect the 

results significantly. Nevertheless, a thorough analysis method may need to incorporate such 

interactions. Using this method, the particle trajectories are computed individually at 

specified intervals during the fluid phase computations. 

 

Figure 2: Forces acting on a single particle 

The trajectory of a discrete phase particle is predicted by integrating the balance of forces 

acting upon it (figure 2), which is written in a Lagrangian frame of reference. This force 

balance equates the particle inertial force (Newton’s second axiom). Assuming that the 

nanoparticles are spherical and considering that the Reynolds numbers in lubrication 

problems are generally low, the equation of motion for a small particle can be formulated 

using modified Basset–Boussinesq–Oseen equation, governing momentum transfer between 

the fluid and a particle as [12]: 
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where, subscript p stands for nanoparticle, pd  is the diameter of a nanoparticle, pρ  is the 

density of nanoparticles and pV


 is the velocity vector for nanoparticles. In this equation, the 

left hand side represents the inertial force of the particle. The right hand side of the equation 

comprises a number of forces. The first term represents the steady-state Stokes’ drag force. 

The second term accounts for the non-viscous Froude-Krylov force, which is due to the 

pressure gradient in an unsteady flow field. The third term is the unsteady force due to the 

added (or virtual) mass effect, which can be interpreted as the force required for accelerating 

a volume of fluid, surrounding a particle. The fourth term indicates the unsteady Basset 

viscous force originating from the acceleration of a particle in the fluid media and subsequent 

lagging in the development of the associated boundary layer due to any change in relative 

velocity. The fifth term represents the non-viscous buoyancy force due to difference in 

density of the particle and that of the fluid. Finally, the last term on the right hand side of the 

equation is for other forces acting on the particle in the fluid such as the Brownian force. 

Due to minute size of the particles, some other forces of hydrodynamic origin are not 

included in equation (6). These mainly include the Saffman lift force [13] produced by 

rotation of the particle caused by the velocity gradient in the viscous layers. In addition, the 

Faxen viscous force, which arises in the non-uniform flow field [12], is also neglected. 

For sub-micrometre particles, the effects of Brownian motion can also be included. This is 

envisaged in the equation as bF


. The components of the Brownian force are modelled as 

independent random white noise processes with a Gaussian distribution, having spectral 

intensities of ijnS ,  given by Li and Ahmadi [14] as: 

ij
cpp

B
ijn Cd

TkS δ
ρp
η

522,
216

=          (8) 

in which, Bk  is the Boltzmann constant considered to be 1.38×10-23 J/K and cC  is the 

Cunningham factor given by: 
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3.4. Cavitation model 

The lubricant is expected to cavitate in the diverging wedge of the conjunction (at the outlet 

of the contact). Various methods exist to treat the cavitation phenomenon in numerical 

models. However, the majority impose certain predefined conditions at the points of lubricant 

film rupture and subsequent reformation. Shahmohamadi et al [15-17] have shown that the 

cavitation phenomenon in tribological contacts can be treated in a more accurate manner, 

using a two-phase flow model which predicts the occurrence of cavitation inherently without 

the need for imposing any predefined boundary conditions. For this purpose, the cavitation 

model proposed by Singhal et al [18] is used, where the growth of cavities are confined in a 

gap of finite size. The transport equation for the vapour mass fraction is expressed as: 

cevvvv RRfVff
t

−+∇Γ∇=∇+
∂
∂ )(.)(.)(


ρρ       (10) 

where, Γ is the diffusion coefficient and 𝑓𝑓𝑣𝑣 is the vapour mass fraction. In addition, 𝑅𝑅𝑒𝑒 and 𝑅𝑅𝑐𝑐 

are the source terms accounting for the rates of generation and condensation of vapour phase, 

respectively. Singhal et al [18] defined these phase change rates based on the generalised 

Rayleigh-Plesset equation as: 
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where, subscripts l  and υ  refer to liquid and vapour phases, satp  is the saturation pressure, 

chV  is the characteristic velocity obtained as the local relative velocity between the liquid and 

the vapour phases. Since it is assumed that there are no dissolved gases in the lubricant at the 

start, the bubble pressure and vapour saturation pressure at any given temperature are 

considered to be the same. The empirical constants 𝐶𝐶𝑒𝑒 and 𝐶𝐶𝑐𝑐 are specified by Singhal et al 

[18] to be 0.02 and 0.01 respectively. 
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3.5. Lubricant rheology 

Two most important rheological properties of the lubricant; density and viscosity are 

functions of the operating temperature and pressure. Therefore, these need to be evaluated at 

the operating conditions.  

For variations of density with pressure a modified version of the original model of Dowson 

and Higginson [19] by Yang et al [20] is used to take into account the effect of both pressure 

and temperature as: 

[ ])(1065.01
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)(100.61 0
3
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0 TT
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atm −×−
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where, atmp  is the atmospheric pressure and 0ρ  and 0T  are the reference density and 

temperature respectively. 

To take into account the variations of lubricant viscosity with pressure and temperature, the 

modified version of the Roelands’ equation [21] by Houpert [22] is used: 
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where, 0η  is the lubricant dynamic viscosity at atmospheric pressure and reference 

temperature 0T . Z  and 0S  are given by [10]: 
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in which, 0α  and 0β  are constants. 

Details of the lubricant rheological properties are listed in Table 1. 

3.6. Asperity contact model 

In the mixed regime of lubrication, it is postulated that the instantaneous applied contact load 

is carried by a combination of lubricant hydrodynamic reaction and any direct asperity 

contact forces. Thus: 

𝐹𝐹 = ∫∫𝑝𝑝𝑝𝑝𝑝𝑝 + ∫∫ 16√2
15

𝜋𝜋(𝜉𝜉𝜉𝜉𝜉𝜉)2�𝜉𝜉 𝜉𝜉⁄ 𝐸𝐸′𝐹𝐹5 2⁄ (𝜆𝜆𝑠𝑠)𝑝𝑝𝑝𝑝    (16) 
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where, the first term on the right hand side of the equation is the generated hydrodynamic 

reaction obtained through integration of the hydrodynamic pressure distribution, whilst the 

second term represents the normal reaction at the tip contact of an opposing asperity pair, 

calculated according to Greenwood and Tripp [23]. This term was originally developed for 

fairly smooth surfaces with a Gaussian distribution of asperity heights. Various rather 

laborious models exist which extend the application of the Greenwood and Tripp model for 

non-Gaussian surfaces such as those by Leighton et al [24, 25] for elastic interaction of 

asperities, Kogut and Etsion [26] for elasto-plastic adhesive dry contact and Chong et al [27] 

for wet asperities subjected to elastic deformation and adhesion.  

Table 2 shows that roughness of the surfaces in the current study does not completely 

conform to a Gaussian distribution and hence ideally a more accurate model needs to be 

developed. However, for the sake of simplicity and to avoid further complexity, the 

conventional Greenwood and Trip model is adopted for the current study. 

The statistical function 𝐹𝐹5 2⁄ (𝜆𝜆𝑠𝑠) takes into account the probability of asperity contacts at any 

given nominal gap between the two surfaces and is based on their Gaussian (normal) 

distribution. This is originally defined by Greenwood and Tripp [23] through the following 

statistical relationship: 

( ) ( ) ( )dsssF
s

s
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25

25 φλλ
λ
∫
∞

−=         (17) 

where, *φ  is the standardised height distribution and 𝜆𝜆𝑠𝑠 = ℎ 𝜉𝜉⁄  is the film ratio. For further 

information on details of surface analysis the reader is referred to [24]. For a Gaussian 

distribution it is shown in [28] that a polynomial-fit function can be used to approximate the 

statistical integration as: 
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where, 𝜆𝜆𝑐𝑐𝑐𝑐 ≅ 3 is the critical value of film ratio, specifying the onset of mixed regime of 

lubrication. 

3.7. Conjunctional friction 

The total friction under mixed regime of lubrication is obtained as [10]: 
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𝑓𝑓𝑡𝑡 = ∫∫ 𝜏𝜏�̅�𝑖𝑖𝑖𝑝𝑝𝑝𝑝 + 𝜋𝜋(𝜉𝜉𝜉𝜉𝜉𝜉)2 ∫ ∫�𝜏𝜏0𝜋𝜋𝐹𝐹2(𝜆𝜆𝑠𝑠) + 𝜍𝜍 16√2 15⁄ �𝜉𝜉 𝜉𝜉⁄ 𝐸𝐸′𝐹𝐹5 2⁄ (𝜆𝜆𝑠𝑠)�𝑝𝑝𝑝𝑝 (19) 

where, the first integral represents the viscous component of friction created by bulk lubricant 

rheology and the second integral takes into account the boundary component of friction 

composed of direct dry asperity contact as well as the non-Newtonian shear of pockets of 

lubricant entrapped between the asperity summits. In the equation above, ς  is the pressure 

coefficient for boundary shear strength of asperities. This is obtained using Lateral Force 

Microscopy (LFM) as described by Buenviaje et al [29] and Styles et al [30]. The limiting 

Eyring shear stress [31] of the lubricant used is 0τ =2 MPa as is the case for the majority of 

engine lubricants. In addition, the statistical function )(2 sF λ  is given in polynomial form as 

[28]:  
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3.8. Flow and thermal boundary conditions  

The thermal and flow boundary conditions are shown in Figure 3. Continuity of heat flux and 

compatibility of temperature at the lubricant-solid interfaces are assured. As the lubricant is 

entrained into the contact, its temperature rises due to shear as well as heat generated because 

of any asperity contact. The generated heat is transferred away through mass convection by 

the passing lubricant, as well as through conduction to the adjacent contacting solid surfaces. 

In the conducted experiments with the pin-on-disc tribometer all the extremities of both the 

pin and the disc are exposed to the ambient air, apart from the bottom surface of the disc, 

resting upon its mounting. Therefore, it is expected that convection cooling would take place 

at all the exposed surfaces to the ambient. All thermal and lubricant flow boundary conditions 

are shown in figure 3. 
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Figure 3: Schematic representation of the lubricant flow and thermal boundary conditions  

4. Solution Procedure 

A 2-dimensional thermal flow dynamics model is developed using the Ansys Fluent 14.5. For 

the grid generation, the pre-processor Ansys Design Modeller and Meshing is used. The 

thinness of the lubricant film necessitates the use of quadrilateral grid volumes. The entire 

flow domain is meshed using 300,000 quadrilateral mesh volumes. Preliminary runs are 

conducted to ensure mesh-independency of all subsequent analyses. Lubricant flow is as 

laminar because of low Reynolds number, typical of thin-film tribological conjunctions. The 

cavitation vaporisation pressure of the lubricant is set to the atmospheric pressure at 101.3 

kPa. Atmospheric inlet and outlet pressure boundary conditions are used for the leading and 

trailing edges of the pin-on-disc contact. It is also assumed that the inlet of the contact 

remains fully flooded as in the experiments an ample supply of lubricant is made available as 

previously described. The pressure-based mixture model of Manninen et al [32] is chosen for 

the present flow analysis. The velocity–pressure coupling was treated using the Semi-implicit 

Method for Pressure-linked Equations (SIMPLE) algorithm, whilst a second-order upwind 

scheme is used for the solution of the momenta in order to reduce the discretisation-induced 

errors of calculations. The time step of simulation is in the order of 10−3. Since the flow is 

not dominated by buoyancy (i.e. low Rayleigh number), this time step is well within the 

required limit. 

 

 

http://dx.doi.org/10.1016/j.triboint.2016.12.048


Tribology International, 29 Dec. 2016, DOI: http://dx.doi.org/10.1016/j.triboint.2016.12.048 
(Accepted version) 

5. Results and Discussion 

Comparison of coefficients of friction for the base oil and that containing nanoparticles at two 

different disc rotational speeds of 600 rpm and 1000 rpm is obtained experimentally and also 

through numerical analysis as shown in figure 4. The coefficient of friction rises with 

increased disc speed because of a higher shear rate, which is an expected outcome. With the 

presence of nanoparticles the coefficient of friction is higher than that with the base oil at 

both sliding speeds. The reason for this is that a thicker film is formed at lower contact 

temperature, with higher viscosity. The dominant viscous shear stress in the contact is  𝑈𝑈𝑈𝑈
ℎ

 , 

therefore the increase in viscosity at lower contact temperature because of nanoparticles is the 

predominant reason for reduced viscous shear, thus friction compared with the base oil alone. 

Therefore, there is a higher heat transfer due to the presence of nanoparticles.  

 

Figure 4: Comparison of coefficient of friction for base oil alone and that with nanoparticles: 

measured and predicted  

Figure 5 shows constructed Stribeck curves for both the base oil and that containing 

nanoparticles at two different applied loads. The coefficients of friction for both applied loads 

of 5 and 10 N dramatically decrease from 0.11 and 0.2 to 0.01 and 0.02, when the sliding 

speed is increased up to 0.6 and 1.4 m/s respectively, since the flow operates in the mixed 

regime of lubrication. At higher speeds and lower loads, due to the converging-diverging 
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profile of the slider, prevalence of a hydrodynamic film is expected and as a result the 

coefficient of friction remains quite low. Nevertheless, in hydrodynamic regime of 

lubrication and at a constant load, viscous shear increases proportially with the sliding speed 

as it can be observed from figure 5. Therefore, under hydrodynamic regime of lubrication the 

coefficient of friction remains almost the same with or without the presence of nanoparticles 

in the base oil. The results in figures 4 and 5 show that the main effect of nanoparticles is 

under mixed regime of lubrication with occurece of thinner films. 

 

Figure 5: Stribeck curves for base oil and nanofluid at two different loads 

Typical pressure distribution in the pin-on-disc conjunction due to direct asperity contact is 

shown in Figure 6. This is for the case of sliding speed of 0.4 m/s (equivalent to rotational 

speed of 100 rpm) and an applied contact load of 10 N. The calculated Stribeck film ratio in 

this case is λs=1.5 (well within a mixed regime of lubrication). 
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Figure 6: Asperity pressure distribution along the contact for λs=1.5 

Average film temperature for the base oil and that with nanoparticles at different speeds is 

presented in figure 7. The average temperature in the case of the latter is lower. This is 

because of the much higher thermal conductivity of the solid nanoparticles, resulting in a 

lower contact operating temperature. Consequently, the nano-lubricant retains a higher 

viscosity than the base oil alone. This also accounts for the retention of a thicker lubricant 

film with nanoparticles (figure 8). 
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Figure 7: Average temperature of base oil and that with nanoparticles at different speeds 

 

Figure 8: Minimum film thickness for the base oil and that with nanoparticles at different disc 

speeds 

Figure 9 shows the pressure distribution along the pin width for both the base oil and that 

containing nanoparticles. It can be seen that the lubricant film ruptures earlier in the case of 

the lubricant without nano-lubricant. A small cavitation region in the nanoparticle flow 

indicates that vapour volume fraction is quite low in this case. This is another reason for the 

formation of thicker films with presence of nanoparticles as is observed in the results of 

figure 8.  
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Figure 9: Pressure distribution along the pin width 

6. Conclusions 

A combined experimental and numerical analysis of the tribological performance of a 

polyalphaolefin PAO6 base oil with 0.02% volume fraction carbon nanoparticle is carried 

out. The detailed numerical analysis comprises simultaneous solution of Navier-Stokes 

equations with discrete dispersed phase represented by Lagrangian dynamics, energy 

equation, modified Rayleigh-Plesset equations for finite gap conjunctions and vapour 

transport equation to take into account any effect of cavitated flow. A broad range of 

operating conditions from boundary to mixed and through to hydrodynamic regimes of 

lubrication, by the inclusion of asperity interactions using Greenwood and Tripp model. The 

analysis represents the most fundamental modelling approach for nano-lubricant action 

hitherto in reported in literature. Experimental work is carried out with a temperature 

controlled fully instrumented pin-on-disc tribometer with precision lubricant feed rate. 

Stribeck curves are obtained both experimentally and predicted numerically under a broad 

range of operations, indicating the effectiveness of nanoparticles in enhanced heat transfer 

from the contact domain, thus retaining a higher viscosity thicker lubricant film with reduced 

friction. Furthermore, a small cavitation region is formed at the contact exit, which indicates 

low volume fraction of cavities, insufficient to impede heat transfer from the lubricant film to 

the adjacent solid boundaries. Numerical predictions conform well to the experimental 

measurements. 
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The main findings of the paper are: 

• No significant difference in frictional performance of a PAO6 base oil with 0.02% 

concentration of carbon nanoparticles is noted.  

• The effect of nanoparticles is more pertinent in mixed and boundary regimes of 

lubrication, where slightly lower coefficient of friction is achieved due to reduced 

contact temperature. Therefore, a thicker lubricant film is attained. It is shown that 

this is due to the ability of nanoparticles in removing the heat away from the contact.   

• Existence of nanoparticles seems to produce a shift in the loci of the maximum 

pressure and lubricant film rupture point, with implication on reducing the extent of 

lubricated contact through cavitation. 

The approach expounded in this paper can be further improved both in experimentation and 

numerical predictions. In the case of the former, it would be necessary to accurately 

determine the Eyring and limiting shear stresses of the base oil and that with the inclusion of 

nanoparticles under the conditions experienced in the pin-on-disc contact, rather than a 

nominal value measured through standard viscometry, generally of low to medium shear at 

relatively low pressures. In the case of the latter a non-Gaussian, surface specific boundary 

friction model in line with the recently reported in [25] would represent prediction of 

boundary friction more faithfully. Inter-particle forces and those between the particles and 

atoms of the solid contacting surfaces would play a role in their in situ distribution in transit 

through the contact. These forces would include electrostatic repulsion as well as long range 

van der Waal interactions. They also become dominant with reduced contact load, thinness of 

lubricant film (mixed and boundary regimes of lubrication) as well as smoothness of 

contacting surfaces [10, 33]. The aggregation of nanoparticles and the attachment/adsorption 

of particles to the solid boundaries is a function of these forces, as well as the Faxen viscous 

force in their detachment, also not included in this preliminary analysis. Inclusion of these 

forces is not seen as critical at the contact loads investigated here. Nevertheless, a couple-

stress fluid model may also be considered to address the complexity of fluid flow of the 

nanolubricants caused e.g. by polar effects and the rotation of the nanoparticles. All these 

additions constitute the future direction of this research. 
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