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ABSTRACT 

Modified formulations of the discrete transfer and Monte Carlo methods are presented for the 

prediction of radiative heat transfer in three-dimensional, nonhomogeneous, participating media.  

Numerical solutions found with both algorithms are in good agreement with published benchmark 

results which used contemporary methods to determine the radiative transport in a unit cube.  New 

solutions in an arbitrary L-shaped geometry using a nonorthogonal, body-fitted mesh are also 

presented. The average deviation between the two methods is less than 1.2% for both the boundary 

surface flux and the divergence of radiative flux or gas emissive power within the enclosed, 

isotropically scattering media. 

 

NOMENCLATURE 

  area of subsurface i, m2 Ai

 Eg  gas blackbody emissive power, W/m2 

 Es  surface blackbody emissive power, W/m2 

  incident radiation, W/m2 G

 G Gi j  volume-to-volume total exchange area, m2 

 G Si j  volume-to-surface total exchange area, m2 

 I  intensity of radiation, W/m2 sr 

mcwm
Typewritten Text
Henson, J.C. and Malalasekera, W., Numerical Heat Transfer Part A: 
Applications, 32(1), July 1997, pp 19-36, ISSN 1040-7782.



 
J.C. Henson & W.M.G. Malalasekera 

  blackbody intensity, W/m2 sr Ib

  normal unit vector to a surface n

  incident heat flux onto a surface, W/m2 q

  emitted heat flux from a surface, W/m2 q

 q  heat flux vector, W/m2 

  net radiative heat source in a volume, W Qg

 Qs  net radiative heat flow on a surface, W 

  heat production per unit volume, W/m3 Q

 R  random number from uniform distribution 

  mean scattering path length, m s

 s  path length interval, m 

  best estimate of standard deviation sn

  unit vector in a given direction s

  radiative source function, W/m2 sr S

  best estimate of standard error Sn

 S Gi j  surface-to-volume total exchange area, m2 

 S Si j  surface-to-surface total exchange area, m2 

  volume of subvolume i, m3 Vi

 x  simulation result for a radiative quantity 

 x  mean; best estimate of true solution value 

 x y z, ,  Cartesian coordinates, m 
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Greek Symbols 

   extinction coefficient, 1/m 

   emissivity 

   absorption coefficient, 1/m 

   , ,  coordinates in local mapping coordinate system 

  ij   reception factor between two elements i and j 

   scattering coefficient, 1/m 

  n  bilinear shape functions 

   single scattering albedo 

  solid angle, sr 

 

INTRODUCTION 

The calculation of radiative heat transfer demands a numerical technique flexible enough to deal 

with the complex geometries and the nonhomogeneous radiative properties that often arise in 

practical situations.  For example, in fire and combustion systems a non-uniform distribution of 

temperature and absorbing gaseous species concentrations is often present, together with fluid flow 

and other modes of heat transfer.  In these combined mode problems, it is advantageous if the 

radiative heat transfer equation can be solved over the same non-orthogonal curvilinear meshes as 

are typically employed by most modern Computational Fluid Dynamics (CFD) solvers.  Finally, any 

numerical technique must be computationally efficient so as to minimise run-times and storage 

requirements. 

Unfortunately, there is no existing method which has been able to satisfy all these criteria and 

establish itself as a clear ‘winner’.  Several of the more popular techniques include the zonal method 

(Hottel and Cohen [1]), the Monte Carlo method (Howell [2]; Modest [3]; Farmer [4]), the discrete 

transfer method (Lockwood and Shah [5]), the spherical harmonics (P-N) method (Mengüç and 

Viskanta [6]), the discrete ordinates (S-N) method (Fiveland [7]), the finite element method 
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(Razzaque et al. [8]) , the finite volume method (Raithby and Chui [9]) and the YIX method (Tan 

and Howell [10]).  All have been successfully used to predict radiative heat transfer in both multi-

dimensional rectangular and cylindrical geometries, and practical applications where the topology 

can be fitted into a cylindrical or Cartesian geometrical framework.  However, numerical 

calculations with more complex geometries are comparatively rare.  Historically, the inherent 

flexibility of the Monte Carlo method that arises from its ray tracing basis has favoured its use with 

complex geometries [11], not possible with contemporary techniques.  Furthermore, recognising its 

ability to provide an exact solution within a statistical uncertainty, it is ideal for validating other 

numerical methods [12].  Recently, Chai et al. [13] used a ‘cell blocking’ procedure to approximate 

inclined and curved boundaries with a stepped Cartesian outline suitable for a discrete ordinates 

solution.  While, Fiveland and Jessee [14] have proposed an alternative finite element formulation of 

the discrete ordinates method suitable for multidimensional problems with irregular shaped 

boundaries.  Chui and Raithby [15] demonstrated the ability of the finite volume method to calculate 

radiative heat transfer in two-dimensional irregular geometries, which in principle, can be extended 

to three-dimensional arbitrary geometries.   

The discrete transfer method, a hybrid of the Monte Carlo, zonal and discrete ordinates methods, 

is particularly suited to complex geometries, since it combines the ray tracing basis of the former 

stochastic method with the faster deterministic nature of the later two methods.  Murthy and 

Choudhury [16] and Meng et al. [17] have both presented discrete transfer calculations on two-

dimensional irregular grids, the later study using an unstructured triangular mesh.  In addition, cases 

with isotropically scattering media were considered, with verification against previous discrete 

transfer solutions by Carvalho et al. [18] and other numerical methods on a regular Cartesian grid.  

Haidekker et al. [19] compared Monte Carlo and discrete transfer solutions for absorbing and 

emitting media contained within three-dimensional arbitrary geometries discretised with curvilinear 

grids.  Further cases have been presented by Malalasekera and James [20] with validation against 
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exact solutions and other methods.  However, there appears to be no reported calculations using the 

discrete transfer method in three-dimensional, scattering media.   

This paper therefore focuses on examining the applicability of the discrete transfer method to 

radiative heat transfer in scattering media, particularly in nonorthogonal geometries.  Detailed 

numerical solutions for a three-dimensional L-shaped geometry containing an absorbing, emitting 

and isotropically scattering media are presented.  This geometry, previously studied by Malalasekera 

and James [20] is particularly interesting because of its body-fitted mesh together with the 

shadowing effects that arise from the bend, and is further enhanced by considering a 

nonhomogeneous extinction coefficient.  Comparisons are made with calculations from a hybrid 

zonal/Monte Carlo code to ensure a valid set of numerical solutions, and both numerical methods are 

first verified against solutions by Hsu and Farmer [21] and Burns et al. [22] for an orthogonal cubic 

geometry. 

 

GOVERNING EQUATIONS AND SOLUTION PROCEDURE 

Detailed descriptions of the discrete transfer and Monte Carlo methods can be found in 

Lockwood and Shah [5] and Farmer and Howell [23, 24] respectively, so only aspects of the 

algorithms relevant to the issues addressed in this paper are considered.  With both methods the 

geometry is discretised into control volumes.  For complex geometries this involves fitting a 

curvilinear coordinate system to the boundary such that the surface mesh description incorporates all 

the geometrical detail.  Both methods are then built on a ray tracing concept,  but differences arise 

from the nature in which the ray directions are chosen and the quantities evaluated along their path.  

 

The Discrete Transfer Method 

The discrete transfer method solves for the intensity distribution along representative rays between 

two boundary surfaces with the recurrence relation: 

  (1) I I e S en n
s


  1 1 *

( )s *
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where n and n+1 designate successive cell boundary locations, separated by a distance   s s * / , 

as the ray passes through each control volume. The source function, S, and the extinction coefficient, 

, are both assumed constant over the interval, s.   In the solution procedure, rays are emitted from 

the centre of each boundary subsurface, P, in directions determined by discretising the 2 

hemispherical solid angle above the surface into N finite solid angles,  .  Eq. (1) is then applied in 

the direction QP (see Fig. 1) along each ray, and summing the radiative heat flux contributions for 

each solid angle gives the incident flux for the subsurface.  i.e. 

  (2) q I j j
j

N




  ( )  s n s( )
1

j

An initial intensity value I qo   /   is used for each subsurface, where the emitted flux, q+ is given 

by: 

 q q Es   ( )1    (3) 

Since  depends on the value of q , an iterative solution is required, unless the surfaces are black.  

The net radiative heat flow for each subsurface, area A , is then: 

q 

  (4) Q A q qs   ( )

Solution of Eq. (1) also requires a value for the source function S, where with isotropic in-scattering: 

 S I Ib i   ( ) ( )1
4 4

 d i


 

s   (5) 

When the single scattering albedo,  is equal to zero, the source expression simplifies to the 

blackbody intensity, Ib.  However, for a non-zero albedo, augmentation due to in-scattering along  

occurs and this incident radiation, G, is discretised as: 

s i

 G I d
I

i i
i

i

  i


( )
( )

s
s





4

4



 


 (6) 

where I  is the arithmetic mean of the entering and leaving radiant intensities of each ray passing 

through the subvolume within the finite solid angle i.  In contrast with the previous 

implementations (e.g. Meng et al. [17]), the summation is weighted by the solid angle, since this 

gives a more conservative approximation for G.   
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The divergence of the radiative heat flux, q  is presumed constant in each subvolume and can 

be determined directly from the gas blackbody intensity, Ib, and incident radiation function, G, as: 

   q  (4 )I Gb  (7) 

This term is used in the energy transport equation to couple the radiative heat transfer with other 

transport phenomena.  The net radiative heat source within each subvolume is then: 

 Qg   ( )q V  (8) 

where V is the element volume.  Alternatively, Lockwood and Shah [5] evaluated the total source in 

a subvolume by summing the energy contribution from each ray passing through it, but for the 

calculations in this paper, the approach in Eqs. (6)–(8) was found to give slightly better predictions. 

For a uniform heat generation,  in each subvolume, Q q  is replaced by  in Eq. (7) and 

substitution into (5) gives the radiative source function for an isotropically scattering medium as: 

Q

 S
Q

G













1

4 


 (9) 

Finally, note that an iterative solution is required with both scattering and source prescribed 

problems due to the dependence of the source function on G. 

 

The Monte Carlo Method 

A Monte Carlo ray tracing method is used to simulate radiative heat transfer by randomly 

releasing a statistically large number of energy bundles and tracking their progress through the 

participating medium.  Several algorithms have been proposed as described by Farmer [4] and this 

implementation uses a computationally efficient version with essentially three distinguishing 

features:  

(i) The power content of a bundle is partitioned into the subvolumes along its path such that the 

absorbed fraction in any volume is: 

 Absorbed fraction   1 e s  (10) 

where s  is the path length in each subvolume with homogeneous absorption coefficient, .  
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(ii) The probable distance a bundle travels before a scattering collision is determined from a 

cumulative distribution function.  A random number R is selected from a uniform distribution 

between 0 and 1 to determine the scattering path length as: 

 s R 
1


ln   (11) 

In nonhomogeneous media the scattering coefficient,  varies along the bundle path, although 

usually its value is presumed constant over each subvolume.  A summation is then taken for each 

subvolume, n, through which the bundle travels such that a scattering collision only occurs when: 

  (12)  n n
n

s   ln R

(iii) The absorption calculation in Eq. (10) is only performed as a bundle exits a subvolume.  When 

multiple scattering events occur within a single subvolume, the path length is accumulated, rather 

than evaluating the expensive exponential term after each collision, resulting in a significant speed-

up.   

Other aspects of this pathlength-based algorithm, such as modelling the bundles’ emission and 

scattering behaviour, are identical to the traditional collision-based Monte Carlo method and can be 

found in [3, 25].  However, as this study is concerned with applying the Monte Carlo technique to 

nonorthogonal geometries, special treatment is required to select the bundle emission points within 

the irregular subsurfaces and subvolumes that arise from the curvilinear coordinate system.  A finite 

element parametric mapping technique is used to map points selected in a square or cubic master 

element to the corresponding irregular subregions in the physical geometry.  First, random numbers 

( , , )    are chosen for each coordinate direction from a uniform distribution and these are then used 

to derive bilinear shape functions,    n( , , )  appropriate for the master element shape.  The 

emission location  is then interpolated from either the surface or volume nodal coordinates 

 using the expression: 

( , , )x y z

( , ,x y zn n )n

    (13) x xn n
n

     ( , , )
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where the other two coordinates are found by replacing x in Eq. (13) by y or z.  Furthermore, the 

initial energy of each bundle must be adjusted to counter the effects of the nonuniform mapping and 

ensure the correct distribution of radiant energy over the area or volume of the physical element.  

This adjustment is made by weighting the bundle energy by the determinant of the Jacobian of the 

transformation calculated for each starting location. 

Since the convergence and accuracy of the Monte Carlo method depends on the randomness of 

its sampling technique, this implementation uses a recent random number generator algorithm by 

Marsaglia [26] which can rapidly produce random 32 bit sequences with a very large periods (i.e. 

2250).   

As bundles are traced through the geometry, the total exchange areas between the surface and 

volume elements are automatically determined as follows: 

 Surface-to-surface:  S S Ai j i i ij    

 Surface-to-volume: S G Ai j i i ij    

 Volume-to-surface: G S Vi j i i i ij 4    

 Volume-to-volume: G G Vi j i i i ij 4    (14) 

where ij  is the fraction of the total energy released by element i, that is absorbed by element j, both 

directly and indirectly after scattering interactions along the bundle paths and reflection at the 

surface elements.  Therefore if the surface and gas black body emissive powers are denoted by Es 

and Eg respectively, a radiative energy balance for each of the N subsurfaces is given by: 

 Q A E S S E S G Esi i i si i j
j

N

sj i k
k

K

gk  
 
 

1 1

 i N1,2,...  (15) 

where Qsi is the net radiative heat flow on the surface with area A  and emissivity i  i .  Similarly, an 

energy balance for each of the K subvolumes, gives the net radiative heat source, Qgi as: 

 Q V E G S E G Ggi i i gi i j
j

N

sj i k
k

K

gk  
 
 4

1 1

 E i K1,2,...  (16) 
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Therefore, the net heat source in each subvolume can be determined directly for a known gas 

emissive power.  However, for an applied source condition, the resulting system of equations must 

be solved using an iteration scheme, matrix inversion or some other matrix solution technique, to 

determine the gas emissive powers.  The present method employs a successive-over-relaxation 

(SOR) iterative solver [27] to speed-up computation, particularly when the exchange area matrices 

are large. 

It is noteworthy that after the total exchange areas have been determined by Monte Carlo 

simulation, they can be used repeatedly to quickly calculate new radiative heat transfer solutions for 

various temperature or heat source conditions, depending on the problem type.  The optical 

properties (i.e. gas extinction coefficient, surface emissivity) must be temperature-independent, and 

therefore probably gray as well, but there are no restrictions on the optical thickness or isotropy of 

scattering with this hybrid Monte Carlo/zonal method [4].  A new Monte Carlo simulation is then 

only required when the geometry or optical properties are modified. 

 

The Ray Tracing Algorithm 

The major computational effort in both the discrete transfer and Monte Carlo methods is spent 

tracing the ray or bundle paths through the mesh subvolumes in the discretised radiation space.  

Since only the path length information is required by both formulations a common algorithm is used 

in the coding of both methods.  Optimisation of this algorithm is essential to maximise the overall 

efficiency of each method.  Furthermore, ray tracing through a curvilinear mesh requires a robust 

approach able to handle any distortion in the subvolumes or precision problems [28] that can arise 

from floating-point errors, particularly when edge intersections occur.  The first difficulty can be 

overcome by representing all non-planar faces as triangles, such that each face of a hexahedral 

element is considered as two triangles.  A review of several ray-polygon intersection techniques 

found that an algorithm by Bodouel [29] is extremely fast for finding ray-triangle intersections.  
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Essentially Bodouel determines the intersection point in terms of the triangle’s barycentric 

coordinates (, ) as shown in Fig. 2. 

As an added advantage, in the authors’ implementation of this algorithm these coordinates are 

also used to detect edge intersections (i.e.   0, 0) .  In this event, the intersection point is 

moved infinitesimally away from the edge to avoid floating-point imprecision and speed-up the 

search procedure for the next intersection.  Finally, it should be noted that this ray tracing algorithm 

would be equally effective for geometries meshed with tetrahedral elements and in unstructured 

arrangements after appropriate modification of the indexing procedure. 

 

RESULTS AND DISCUSSION 

An assessment of the error in the Monte Carlo and discrete transfer numerical results must be 

available before a useful comparison can be made.  With insufficient spatial and angular 

discretisation of the radiation space, inaccuracies can arise with the discrete transfer method from so-

called ‘ray-effects’, while the statistical scatter between Monte Carlo simulations can become 

unacceptably large.  Conversely, excessive run-times will result if the discretisation is made too fine.  

For the problems analysed below, 400 solid angle divisions per subsurface have been used with the 

discrete transfer method.  Prior investigations found this was sufficient to give solution values within 

1% of their converged value, achieved only with very fine discretisation (i.e. 1600+ solid angle 

divisions) for the mesh sizes used. 

An advantage of the Monte Carlo method is that, since it is a sampling technique, its solution 

accuracy can be estimated statistically.  Several independent simulations must be conducted, each 

with a unique set of random numbers.  Then, if each of these n simulations gives an estimated result, 

x, for a radiative quantity (i.e. surface heat flux, divergence of radiative flux or gas emissive power), 

the best estimate of the true solution value is their arithmetic mean, x .  The accuracy of this 

estimate, and hence the solution accuracy, is called the standard error.  Applying the central limit 

theorem, the estimated standard error, , is given by Barford [30] as: Sn
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 S x
s x

n n n
x xn

n
i

i

( )
( )

( )
( 


1

1
2)   (17) 

where  is the best estimate for the standard deviation of the sample distribution of x.  It is found 

that  decreases only as 

sn

nS 1 n  (for large values of n), so the computational effort is often better 

spent improving the intrinsic accuracy of each sample result x, embodied in the quantity s , by using 

a larger number of energy bundles per simulation.  Furthermore it is important to use these bundles 

efficiently by releasing more in regions with a higher radiative emission.  Hence, in the current 

Monte Carlo algorithm the number of energy bundles released in a subvolume is directly 

proportional to the absorption coefficient and emissive power within the volume.  Table 1 shows the 

total number of energy bundles and number of simulations used for the problems considered.  In 

each case, the best estimate of the standard error has been calculated and is quoted with the solution 

values in Tables 2, 3 and 5.  This enables confidence limits to be determined for each Monte Carlo 

result.  For example, with 68% confidence the true solution value lies within the limits 

n

x Sn , or 

with 99% confidence within x n 2 58. S .  The run-times and average relative differences between 

values from the Monte Carlo and discrete transfer solutions are also summarised in Table 1 for each 

problem.  Since both methods are executed on a HP-9000/750 machine, with identical compiler 

options, these run-times should be directly comparable.  Note that the run-times increase for the 

discrete transfer method when the scattering albedo is non-zero since several iterations are required 

to establish the incident radiation, G, from in-scattering as defined in Eq. (6).  Conversely, Monte 

Carlo run-times decrease with increased albedo because the scattering tends to spread out the bundle 

paths improving the uniformity of emission.  Therefore less bundles per simulation are required to 

achieve comparable intrinsic accuracy.  Finally, note that in the problems considered all the 

calculated surface heat fluxes are negative, but to simplify the presentation only positive values are 

shown. 
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Case 1: Verification Against Benchmark Solutions 

Numerical solutions employing the Monte Carlo and YIX methods [21], together with 

subsequent finite element comparisons [22], are used to verify the present Monte Carlo and discrete 

transfer formulations.  The problem geometry is a unit cube enclosing an isothermal, absorbing, 

emitting and isotropically scattering medium.  All the surfaces of the enclosure are cold and black so 

there is no emission or reflection from the boundaries.  Radiative properties in the medium are 

influenced by a shaped optical thickness for which the extinction coefficient varies according to the 

relation: 

     ( , , ) . .x y z x y z    0 9 1 2 1 2 1 2 01  [1/m] (18) 

where the coordinate origin lies at the cube centre and   0 5 0 5. ( , , ) .x y z  is the domain of 

computation.  Assuming unity blackbody emissive power in the medium, results are sought for a 

single scattering albedo of   0 (i.e. pure absorption) and   0 9. .   

To obtain solutions with the present methods, the geometry is discretised with a 999 

orthogonal mesh of cubic subvolumes each with a side length of 1/9.  The volume centres are then 

located symmetrically about the principal coordinate axes at ( , , ) ( , , , , )x y z     0 1 9 2 9 3 9 4 9 .  

At each position the extinction coefficient is evaluated from Eq. (18) and presumed constant over the 

surrounding subvolume. 

Tables 2 and 3 summarise the results determined with the present methods together with 

published solutions [21, 22] for the boundary surface flux and divergence of radiative flux in the 

medium respectively.  Both tables show results for pure absorption and a single scattering albedo of 

  0 9. .  When comparing the solutions it should be noted that in contrast to the other methods, the 

finite element formulation allows for the variation in radiative properties across each subvolume.  

Therefore, for verification purposes a fair comparison is only reasonable between the other four 

methods which all assume homogeneous elements, although the finite element results have been 

included in acknowledgement that they represent a slightly more accurate solution.  Examination of 
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the tables clearly show that the results from the present formulations are in excellent agreement with 

the YIX and Monte Carlo results provided by Hsu and Farmer [21].  The maximum deviation 

between all four methods is less than 2.2% for both the flux divergence and surface flux values 

(where the relative difference of each value was determined with respect to the finite element value). 

A solution was also determined with the discrete transfer method for a 272727 mesh to verify 

that with greater spatial discretisation the formulation is able to capture more of the variation in 

radiative properties and more closely match the finite element solution.  Table 4 shows a comparison 

of the new discrete transfer solution with corresponding finite element and YIX solutions [22] for the 

pure absorption problem.  As anticipated, the deviation between the 999 finite element results and 

the 272727 discrete transfer results for the surface heat flux is now under 0.70% of the finite 

element result compared to 2.55% previously.  This improvement is comparable to the closer 

agreement achieved with the 272727 YIX method.  Finally, to take full advantage of the better 

spatial discretisation with the discrete transfer method, a finer angular discretisation should be used.  

A solution with 1600 solid angle deviations per subsurface further reduced the maximum deviation 

with the finite element result to under 0.51%. 

 

Case 2: L-shaped Geometry Enclosing An Isothermal, Participating Medium 

The problem geometry is discretised with a 2077 body-fitted mesh of hexahedral elements as 

shown in Fig. 3.  All the surfaces are black with an emissive power, Es  0 25.  and enclose an 

isothermal, absorbing, emitting and isotropically scattering medium with unity blackbody emissive 

power.  An arbitrary optical thickness distribution has been chosen such that most of the radiation is 

emitted from a dense region centred on the corner diagonal away from the boundaries.  The variation 

in extinction coefficient is given by the expressions: 

 x y  :            0 9 15 1 2 1 2 15 01. . . .x y z y  [1/m] 

 x y  :            0 9 1 2 25 1 2 25 01. . .x y z x .  [1/m] (19) 
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Sample surface heat flux values calculated along the two lines A-A and B-B (see Fig. 3) are 

given in Table 5.  Results have been determined for both purely absorbing and isotropically 

scattering (  0 9. ) media, and the corresponding contours for the divergence of radiative flux at 

 are shown in Figs. 4a and 4b respectively.  These plots clearly reveal the strong influence from 

the variation in extinction coefficient, with a high radiative source from the optically thick central 

region which then gradually decreases towards the boundaries.  Only one set of contour plots are 

reproduced from both methods, since the differences between the divergence values are 

indistinguishable when displayed graphically.  This is not surprising, as the average deviation 

between each pair of divergence solutions is only 1.15% and 0.13% for the pure absorption and 

scattering problems respectively (see Table 1). 

z  0

 

Case 3: L-shaped Geometry Enclosing A Participating Medium With A Volumetric 

Heat Source 

The problem geometry and variation in extinction coefficient is identical to that specified in   

Case 2.  However, now all surfaces are cold and black and a volumetric heat source is prescribed in 

the medium so the variation in gas emissive power and radiative surface flux is sought.  Considering 

the L-shaped as two volumes separated along the corner diagonal (i.e. at x y  ), heat sources  

and  are specified in the smaller and larger volumes respectively.  Results have been determined 

for a uniform source in the entire medium ( ) and for a discontinuous source across the 

corner diagonal ( ).  In both problems a single scattering albedo of 

 Q1

Q2

  Q Q1 2 1

 ,  . Q Q1 21  0 5   0 5.

 0

 was 

arbitrary chosen, although only the gas emissive powers are effected by this choice, since the surface 

heat fluxes are independent of the scattering albedo for isotropically scattering media.  Table 5 

presents sample surface heat flux values along the two lines A-A and B-B (see Fig. 3) from both 

solutions.  The average deviation between the Monte Carlo and discrete transfer flux values is 

slightly higher for the discontinuous source problem at 1.14% as compared with a deviation of 

1.11% with the uniformly distributed heat source.  The gas emissive power contours at z  are also 
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plotted for each problem in Figs. 5a and 5b.  The shape of the contours for the problem with a 

uniform heat source (Fig. 5a) closely resemble those in Case 2 for the variation of the divergence of 

radiative flux in an isothermal medium.  Clearly this arises from the strong influence of the 

nonhomogeneous extinction coefficient such that a colder dense central region is surrounded by 

hotter gas near the boundaries.  A similar variation in temperature is observed in the medium with 

the non-uniform volumetric source (Fig. 5b).  However, the contours are now strongly asymmetric, 

particularly in the central region, as a result of the abrupt discontinuity in source values across the 

corner diagonal.  A numerical comparison of all the gas emissive power values calculated by both 

methods showed an average deviation of only 0.5% for both problems. 

 

CONCLUDING REMARKS 

Formulations for both the discrete transfer and pathlength-based Monte Carlo methods have been 

presented for three-dimensional radiative transport in nonhomogeneous participating media.  Results 

from these formulations are in good agreement with previously published data using the YIX and 

Monte Carlo methods.  However, finer discretisation or appropriate modifications are required to 

match slightly more accurate solutions achieved with the finite element method which accounts for 

the variation of radiative properties in a subvolume.  Farmer [4] has proposed schemes for the Monte 

Carlo method to accommodate nonhomogeneous volume elements in both emissive power and 

attenuation, but clearly longer run-times result from the additional calculations.  A new set of 

numerical solutions has been calculated for a three-dimensional L-shaped geometry enclosing 

isotropically scattering, nonhomogeneous media.  In the four problems considered, the average 

deviation between each pair of solutions from the Monte Carlo and discrete transfer methods is less 

than 1.2% and as low as 0.13%.  This comparison is based on values for both the surface heat flux 

and the divergence of radiative flux or gas emissive power within the temperature or source 

prescribed media. 

16 
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The speed and simplicity of the discrete transfer method favours its selection for radiative heat 

transfer calculations in the large complex geometries that often arise in fire and combustion systems.  

However, a principal limitation of the discrete transfer formulation is its restriction to problems 

involving diffusely reflecting boundaries and isotropically scattering media.  As the problem 

complexity increases the inherent flexibility and power of the Monte Carlo method tends to 

compensate for its large computational requirement.  In principle, exact simulation of all important 

physical processes is possible, including the radiative behaviour of real surfaces and Mie scattering.  

As a final point, the performance of both the discrete transfer and Monte Carlo methods can be 

expected to significantly improve with the new generation of massively parallel machines to which 

their ray tracing methodology is easily adapted. 
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Table 1 Comparison of CPU run-times and average relative differences for each problem, together 

with the number of simulations and total number of energy bundles used in each Monte 

Carlo solution. 

CASE  Scattering 

albedo,  

DT  CPUa  

 time [s] 

MC  CPUa 

time [s] 

MC no. of 

simulations

 MC total no.b

of bundles

ARDc of 

Q As s  [%] 

ARDc of 

qor Eg  [%]

C1.1 0.0  50  24621 30 9.954·107 0.64 0.66 

C1.2 0.9  245  2943 30 1.062·107 0.51 0.08 

C2.1 0.0  66  25300 10 9.746·107 0.96 1.15 

C2.2 0.9  460  2492 10 8.663·106 1.04 0.13 

C3.1 0.5  520  22965 10 8.605·107 1.11 0.47 

C3.2 0.5  520  22960 10 8.605·107 1.14 0.50 

 

 

 

 

 

 

 

aCPU run-times on HP-9000/750.      

bMC total number of energy bundles = bundles/simulation  number of simulations. 

cAverage relative difference: ARD DT MC MC 1 n ( )  for n values (i.e. N surfaces fluxes or K 

 volumetric quantities). 
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Table 2 Surface heat fluxes at (-0.5,0,z) for case C1. 

CASE C1.1  ( C1.2  ( 

z MC DT(400) MCd YIXd FEe MC DT(400) MCd YIXd FEe 

±4/9 0.10857 0.10967 0.10959 0.10872 0.10743 0.01213 0.01217 0.01219 0.01214 0.01193

±3/9 0.14012 0.14107 0.14125 0.14171 0.13759 0.01573 0.01574 0.01564 0.01589 0.01536

±2/9 0.16566 0.16645 0.16729 0.16619 0.16255 0.01867 0.01870 0.01892 0.01877 0.01826

±1/9 0.18468 0.18543 0.18552 0.18569 0.18049 0.02104 0.02094 0.02103 0.02107 0.02037

0 0.19239 0.19286 0.19260 0.19291 0.18760 0.02176 0.02182 0.02202 0.02192 0.02120

  MC:  < 0.00050 (all values on surface)  Sn  MC:  < 0.00008 (all values on surface) Sn

 

 

 

 

 

 

 

 

 

 

dHsu and Farmer [21]. 

eBurns et al. [22]. 
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Table 3 Divergence of the radiative heat fluxes at (x,0,0) for case C1. 

CASE C1.1  ( C1.2  ( 

x MC DT(400) MCd YIXd FEe MC DT(400) MCd YIXd FEe 

±4/9 0.72336 0.72860 0.72910 0.72219 0.72502 0.07914 0.07921 0.07974 0.07912 0.07916

±3/9 1.37701 1.38099 1.38739 1.37209 1.38007 0.15748 0.15751 0.15866 0.15739 0.15750

±2/9 1.96893 1.96458 1.98360 1.95658 1.97318 0.23496 0.23495 0.23673 0.23482 0.23506

±1/9 2.51700 2.52182 2.53635 2.49628 2.52438 0.31191 0.31202 0.31433 0.31163 0.31205

0 3.07462 3.08144 3.09813 3.03664 3.08571 0.38894 0.38911 0.39192 0.38842 0.38916

  MC:  < 0.00035 (all values on plane) Sn  MC:  < 0.00001 (all values on plane) Sn

 

 

 

 

 

 

 

 

 

 

 

dHsu and Farmer [21].   

eBurns et al. [22]. 
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24 

Table 4 Surface heat fluxes at (-0.5,0,z) for problem C1.1 with YIX and discrete transfer methods 

for finer spatial discretisation. 

 

C1.1 ( 

z FEe YIXe DT(400) DT(1600) 

 (999) (272727) 

±4/9 0.10743 0.10718 0.10808 0.10798 

  (-0.23%)f (0.61%) (0.51%)

±3/9 0.13759 0.14032 0.13809 0.13821 

  (1.98%) (0.36%) (0.45%)

±2/9 0.16255 0.16388 0.16361 0.16327 

  (0.82%) (0.65%) (0.44%)

±1/9 0.18049 0.18248 0.18176 0.18136 

  (1.10%) (0.70%) (0.48%)

0 0.18760 0.18946 0.18868 0.18848 

  (0.99%) (0.58%) (0.47%)

 

 

 

 

eBurns et al. [22].  

fDeviation of value as % of FE value. 
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Table 5 Surface heat fluxes at (-1.5,y1,0) & (-0.5,y2,0) for cases C2 and C3. 

 Case 2: Temperature prescribed problem. Case 3: Source prescribed problem.

 C2.1  ( C2.2  ( C3.1 ( )   Q Q1 2 1 C3.2 ( )  ,  .Q Q1 21 0 5

y1 MC DT(400) MC DT(400) MC DT(400) MC DT(400) 

-3/7 0.08767 0.08919 0.00996 0.01001 0.19044 0.19040 0.18368 0.18298 

-2/7 0.10655 0.10705 0.01199 0.01201 0.22396 0.22387 0.21637 0.21650 

-1/7 0.11905 0.12011 0.01354 0.01351 0.23962 0.24105 0.23138 0.23312 

0 0.12440 0.12474 0.01404 0.01406 0.24413 0.24227 0.23492 0.23453 

1/7 0.12096 0.12147 0.01384 0.01370 0.23808 0.23930 0.22913 0.23153 

2/7 0.10796 0.10911 0.01198 0.01230 0.22157 0.22109 0.21329 0.21388 

3/7 0.08847 0.08976 0.00987 0.01014 0.18610 0.18561 0.17754 0.17886 

y2         

7/12 0.19715 0.19587 0.02408 0.02419 0.26617 0.26751 0.14914 0.14891 

9/12 0.18887 0.18880 0.02262 0.02292 0.26676 0.26858 0.14118 0.14321 

11/12 0.17963 0.17987 0.02120 0.02166 0.26562 0.26926 0.13819 0.14047 

13/12 0.17069 0.17247 0.01976 0.02031 0.26463 0.26852 0.13610 0.13830 

15/12 0.16006 0.16138 0.01866 0.01888 0.26423 0.26627 0.13404 0.13580 

17/12 0.15028 0.15003 0.01732 0.01742 0.26107 0.26318 0.13252 0.13334 

19/12 0.13790 0.13890 0.01573 0.01592 0.25737 0.25909 0.13019 0.13069 

21/12 0.12656 0.12568 0.01423 0.01440 0.25217 0.25389 0.12665 0.12773 

23/12 0.11389 0.11424 0.01269 0.01280 0.24442 0.24506 0.12290 0.12309 

25/12 0.10035 0.10092 0.01100 0.01114 0.23191 0.23227 0.11627 0.11656 

27/12 0.08476 0.08475 0.00940 0.00932 0.21039 0.21104 0.10632 0.10585 

29/12 0.06537 0.06571 0.00719 0.00714 0.17129 0.17249 0.08637 0.08650 

  MC:  < 0.00085 Sn  MC:  < 0.00020Sn  MC:  < 0.00095 Sn  MC:  < 0.00060 Sn
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Figure Captions 

 

Figure 1 A representative geometry with ray traces from a subsurface P through the mesh. 

Figure 2 Parametric representation of the ray intersection point P with the barycentric coordinates 

 and . 

Figure 3 L-shaped geometry for cases C2 and C3 discretised using a body-fitted mesh (2077) 

geometry with uniform interpolation along each boundary and the coordinate origin 

positioned at the centre of the corner diagonal.  All dimensions are in metres.  The 

calculated surface heat flux values along A–A and B–B are tabulated in Table 5. 

Figure 4 L-shaped problem radiative flux divergence contours at (x, y, 0) for: (a) Case C2.1 (pure 

absorption); (b) Case C2.2 (  0.9). 

Figure 5 L-shaped problem gas emissive power contours at (x, y, 0) for: (a) Case C3.1 (uniform 

heat source); (b) Case C3.2 (non-uniform heat source). 

 OR use 4-figure group with following caption and modify 

references in text (page 16, 2 places) from Fig. 5a and Fig. 

5b to Fig. 4c and Fig. 4d respectively. 

Figure 4 L-shaped problem solution contours at (x, y, 0) for: (a) radiative flux divergence in case 

C2.1 (pure absorption); (b) radiative flux divergence in case C2.2 (  0.9); (c) gas 

emissive power in case C3.1 (uniform heat source); (d) gas emissive power in case C3.2 

(non-uniform heat source). 
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 (Alternative to separate Figure 4 and Figure 5  see captions page) 
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