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Abstract: This study investigates how the number and geographical distribution of solar installations may reduce aggregate
irradiance variability and therefore lessen the overall impact of photovoltaic (PV) on grid distribution. The current distribution of
UK solar farms is analysed. It is found that variability is linked to site clustering. Other factors may include distance and direction
between sites, proximity to coast, local topography and weather patterns (i.e. wind, cloud etc.). These factors do not operate in
isolation but form a complex and unpredictable system. The UK solar farm fleet currently comprises a range of system sizes
which, when viewed en masse, reduces temporal variation in PV generation. The predominant southwest–northeast direction of
solar farm groups is also beneficial in reducing output variability within grid supply point areas.

1 Introduction
The installed solar energy base in the UK has increased rapidly in
recent years. A total capacity of 10.8 GWp of photovoltaic (PV)
power was recorded in July 2016 [1], with installation being
expected up to 13 GWp by 2020. This results in the perception that
increasing PV deployment could place an overall stress on the
power system. National Grid has warned that incorporating more
than 10 GWp of solar electricity would adversely affect the
transmission system [2]. Concern about operational security and
possible power outages has already caused one distribution
network operator (DNO) to refuse grid connection to new large-
scale renewable projects in the southwest (SW) for at least 3–6
years [3]. These decisions are largely based on worst-case
assumptions that all systems’ instantaneous power output will
follow the same trend. However, studies in the USA, Germany and
Australia suggest that the impact of PV on national electricity
distribution systems is related to the number and geographic
distribution of installations, rather than the capacity of individual
systems. Spatial dispersion of solar systems reduces the variability
of energy generation, which arises primarily from smoothing cloud
movements.

This paper analyses how size, number and spatial distribution of
solar farms mitigate the effects of irradiance variation on the grid
in a maritime climate such as the UK. A demonstration of
smoothing due to the geographic distribution of PV sites is
presented. Having shown the impact of site location on generation
output, the current pattern of UK site dispersion is investigated. A
5 year trend in solar farm location is studied, together with possible
drivers of this trend, with a view to predict the long-term impact on
the transmission network.

2 Current knowledge of influence of PV system
distribution
Several studies have demonstrated that high irradiance variability
at a single site will be reduced when the surrounding group of sites
is included. Torpey [4] reports a substantial reduction (61%) in
standard deviation over a short distance for 1 min data between one
site and six sites 1–10 km apart in California. He establishes that
many small systems in a distribution system are unlikely to be
problematic, because no single generator can significantly impact
system voltage. On the other hand, in the case of single large
systems, or groups of relatively large systems, output variability
can be an issue.

Similar findings were reported for large areas. International
Energy Agency photovoltaic power systems (IEA PVPS) 14 [5]
describes smoothing by aggregate PV systems in six regions
around the world at various time scales. Variability reduction (VR,
i.e. variance in irradiance over time at one site divided by the
variance of the average of several sites) ranged from 1.0 to 3.9.

It maybe seen from these studies that much more capacity can
be installed without harmful consequences for the grid if the fleet is
considered in aggregate. Previous authors [4–14] have verified that
increasing spatial dispersion and number of sites reduces
variability in incident irradiation and PV generation. Yet the same
number of sites covering the same geographical area may form
different patterns, e.g. linear, circular etc.; and this feature may
exert a considerable effect on variability smoothing. To date,
accurate point pattern or cluster analysis for the PV fleet has not
been considered and the basis of their effect is given here.

Categorisation of cluster shapes is useful in many disciplines
(e.g. epidemiology [15], criminology [16] and disaster analysis
[17]). It helps to explain the relationship between data records and
suggest reasons for their geographic position. Nonetheless, very
little research has been done generally in the field of cluster shape
analysis. There is neither agreed terminology for patterns or
shapes, nor are there any classification algorithms.

3 Effect of size, number and cluster shape on
irradiance smoothing for selected groups of PV
sites
3.1 Sourcing and calculating PV site data

The solar installations information utilised in this analysis are from
the Department of Energy and Climate Change Renewable Energy
Planning database, renewable energy planning database (REPD)
2015 (575 × 1−50 MW installations at September 2015). Average
hourly global horizontal irradiance for 10 years (2005–2014) was
interpolated [18] from UK Met. Office ground station readings [19]
for each system.

3.2 Experiment with existing solar farm locations

The literature indicates that the irradiance variability of one large
site maybe ameliorated when included with readings from
surrounding smaller installations. It was decided to test this finding
with real solar farm locations in the UK. Six large solar farms were
identified (Fig. 1). A number of systems around each large farm,
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equivalent in net capacity to the major installation, were selected to
test the impact of variability. These solar farm groups have various
numbers of members and cluster shapes [Table 1 (see Fig. 2)]. 

The average hourly irradiance for 2014 (5019 daylight hours
recorded across all UK Met. Office ground stations) was analysed
for each major site and averaged for the systems comprising the
group. About 5019 h is the total number of hours all UK Met
Office ground stations recorded an irradiance of at least 0.278 
Wh/m2 (1 kJ/m2). That is, Lerwick in Scotland might record a
value at 4 am on 2 June 2014 but not Camborne in Cornwall.
Another day, the opposite might occur. All ground stations are used
in the irradiance interpolation algorithm. No inverter cut-off is used
in PV output calculations but low values contribute very little.
Standard deviation and variance for each major site and group were
calculated.

Three of the groups exhibit the anticipated decrease in
variability (as compared with the larger single site). That is, the
percentage reduction in standard deviation between the main single
site of the group and the average of the group is positive [(1)]. VR
is >1 [(2)], meaning that irradiance variability is less. The VR
range of 0.997–1.005 compares well with IEA PVPS 14 [5] results.
These authors obtained a VR of 1.3 for 2013 hourly data acquired
from 18 weather stations throughout the UK with an overall radius
of 600 km. The cases explored here are distributed over much
smaller areas, as detailed in Table 1 (Fig. 2). Relatively low
variability is expected for the UK (compared with other less windy
worldwide locations) and for longer time intervals [5], owing to
cloud speed

% σ reduction =
σMain − σGroup

σMain
× 100 (1)

VR =
σMain
σGroup

(2)

Radius covered by the sites and number of sites does not appear to
influence variability, since these differ between groups with high
and low VRs. This is in contrast to findings from other researchers
in Australia [4], whose site groups had similar radii.

On the other hand, it is notable that the three groups with VR > 
1 have low mean distances between group members. The small
mean distance values are caused by the spatial layout of the groups.
They are multipart with two or three sets of points. The points in
each set are close together and the other set or sets in the overall
group are at two or three times the intra-set distance. Thus,
incoming weather systems pass over first one, and then consecutive
sets in each group.

Since weather fronts generally approach the UK from the SW, it
was expected that the long, linear SW–northeast (NE) Norfolk site
would show most smoothing. On the other hand, the irradiance is
already fairly constant across this flat, low-lying region. Irradiance

changes less on an hourly basis in Norfolk than in the SW
(Fig. 3a). Standard deviation of hour-to-hour irradiance change for
2014 daylight hours is 89 Wh/m2 for the main group site in
Cornwall and 84 Wh/m2 for the main site in Norfolk. The Cornish
Peninsula is more subject to cloud formation due to the proximity
of the sea. 

The relationship between irradiance changes and wind direction
differs in Norfolk and Cornwall (Fig. 3b). In Norfolk, the majority
of all types of hourly irradiance change occur when the wind is
from the SW. In Cornwall, large irradiance rise is associated with a
southerly wind direction. This often brings warm, dry weather in
the UK. Large hour-to-hour irradiance falls happen when the wind
is northwesterly. This direction is equated with showery conditions.
Lesser changes are linked to the SW wind.

The three VR > 1 sites are closer to the coast where weather is
more changeable. From the findings so far, it is surmised that
irradiance variability is affected by either: (a) a pattern of site
layout and intra-site distance or (b) proximity to coast.

3.3 Experiment with potential solar farm locations

The results obtained using actual current solar farm locations
differed to those of other researchers and it was therefore decided
to further examine the concept of grouping sites to reduce
irradiance variability. More tests changing the radius, number and
pattern of sites were considered necessary. This was achieved by
studying hourly global horizontal irradiance calculated for potential
future (simulated) solar farms, rather than existing installations as
reported above. Realistic positions for the potential sites were
identified as described in the next section. Section 3.2.2 details
how representational cluster shapes and distributions were
simulated. Two scenarios were envisaged. Both consist of one large
solar farm surrounded by varying numbers and patterns of smaller
farms. However, in the first scenario, all the sites are positioned in
the SW, because this area is coastal and exhibited the greatest
decrease in group variability for existing solar farms. In the second
scenario, the cluster of sites is placed near Oxford, because this
locality is relatively far from the sea and receives fairly high solar
irradiation (by UK standards).

3.3.1 Identification of potential solar farm location: Potential
locations for future solar farms were selected by excluding
unsuitable areas and examining the remainder. The checklist of
criteria to be filtered out was drawn up from several solar
consultancy websites. The following electronic maps were
combined using a geographical information system: national parks,
urban regions and woodland regions from ordnance survey (OS)
Strategi 1 : 250,000 scale vector [20]; less favoured areas
(mountainous areas) from Defra [21]; moorland line from Rural
Payments Agency [21]; and larger areas from the Environment
Agency Flood Zone 2 Map [22]. The countryside left was judged
appropriate for large-scale solar installation. Fig. 4 illustrates this
process applied to the SW of the UK. Dartmoor (in the centre of
the map) and Exmoor National Parks (peninsula N coast) are
clearly visible, as is the Somerset Levels flood plain to the NE. 

3.3.2 Numbers and cluster patterns for groups of potential
solar farms: To simulate authentic impact on the grid, the decision
was taken to locate each potential solar farm group within a single
grid supply point (GSP) (400 kV) area. GSP positions were
obtained from National Grid. Since the area feeding into each GSP
is unknown, supply point areas were devised by creating Thiessen
polygons. This involves constructing a triangle for each supply
point by drawing straight lines as follows. First, two lines are
drawn between the GSP at point A and each of the two GSPs
nearest to it, B and C. Second, the triangle is closed by a third line
from B to C. Next, the perpendicular bisector of all three edges of
the triangle is drawn. Finally, a set of polygons is formed from the
connection of bisectors (Fig. 5a). 

The number and distribution of existing solar farms within each
GSP area were examined. There were found to be between zero
and 53 solar farms in each GSP area (Fig. 5b). Ignoring zero

Fig. 1  Groups of UK solar farms for smoothing analysis. Largest of each
group marked with white star

 

IET Renew. Power Gener., 2017, Vol. 11 Iss. 5, pp. 550-557
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

551



occurrences and counts of <3 (too low for analysis of group
effects), 4–9 was the most frequent interval (Fig. 5c).

Having ascertained feasible numbers, the patterns of solar farms
in each GSP area were classified. As already noted, there is no
agreed standard methodology for this process. Modern computer
algorithms offer a number of classification possibilities including
neural networks or self-organising maps (SOMs) and several other
machine learning techniques (decision trees, K-means and
hierarchical clustering). For instance, SOMs have been applied in
the identification of clusters in spatial data [23, 24], whilst
evolutionary algorithms have been used to select monitoring
locations [25]. Land use change analysis has been carried out with
cellular automata models and decision tree machine learning [26].
Also relevant to the current research is trajectory prediction with a
machine algorithm [27]. However, some of these techniques only
offer a choice of pre-defined patterns. Others define their cluster by
a centre-point, leading to a tendency for circular or elliptical
clusters. Owing to these reasons and because a comparatively small

amount of data was involved (only 145 GSP areas have more than
one solar farm), solar farm patterns in each area were categorised
manually by direct cartographic analysis. It is recognised that this
is subjective, depending on both the author's interpretation and
level of map resolution (1 : 500,000 was used). Notwithstanding,
this is the first known attempt at classifying site cluster patterns.

Of the 28 GSP areas containing more than 7 solar farms, 17
exhibited a linear pattern and 7 had wedge-shaped clusters. Half of
the linear patterns pointed from SW to NE, just one ran NW–SE
and the rest had an E–W direction. There were single occurrences
of a circle, ellipse, lower and upper semi-circle pattern. It maybe
surmised that the most frequently occurring linear SW–NE pattern
is dictated by the shape of the SW Peninsula (and its power lines)
where most existing solar farms are located.

With a view to realism, sets of numbers and patterns were
chosen for potential solar farms in the SW scenario as listed in
Table 1. Four sets are illustrated in Fig. 6. The linear SW–NE
pattern was then tested in the Oxford scenario to ascertain whether

Fig. 2  Details of UK solar farm groups and results of smoothing analysis
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variability decreases as a result of proximity to coast rather than the
spatial relationship between sites. 

3.3.3 Irradiance smoothing results for potential solar farm
locations: The smoothing analysis for the SW and Oxford
scenarios is summarised in Table 1.

As in the case of the existing solar farms, the findings for
potential large-scale solar installations suggest that there is no
relationship between irradiance variability and number of sites or
radius of cluster (inconsistent results between groups with higher
and lower VRs).

Variability was found to be linked to low mean distance for
existing sites. Due to the fact that potential sites are being
investigated here, it is possible to vary attributes and study the
effect. The Oxford location has fewer constraints for location of
solar farms and allowed greater flexibility in positioning. So, the
low mean distance/variability relationship was not always observed
with potential locations. There is a greater reduction in standard
deviation between the main site group and the average of the group
for group Ox-5A as compared with Ox-5B. Yet, the converse is
observed between Ox-5A and Ox-5C. The mean distance measure
hides the fact that some potential groups have an even distribution
(e.g. all sites 2.5 km apart) whilst others have an uneven
distribution (e.g. all sites an average of 2.5 km apart). It was found
that an even distribution reduced variability (Ox-5B has an even
distribution). Also, closer proximity of the majority of group sites
to the main site is advantageous (Ox-4A has two sites 2.5 and 5 km
from the main site; Ox-4B has all sites more than 10 km from the
main site).

Moving on to look at cluster patterns, the V-23 potential group
is similar in layout to the actual Cornwall group (despite having
more members), being a wedge comprising three diagonal lines
SW–NE. They are both in the Alverdiscott substation area.
Nevertheless, variability was found to be decreased for Cornwall
but not for V-23. Therefore, though the site layout pattern is having
an effect, this is not consistent. The same phenomenon is noted
with the most common linear SW–NE pattern. This has a
smoothing effect in the fictitious SW and Oxford scenarios but not
for the actual Norfolk example. Like Norfolk, the Oxfordshire
countryside is flat, though, in general, the fields are smaller. The
landscape in the SW is gently rolling. One explanation is that local
topography is having an influence. The open landscape of Norfolk
has adverse consequences for variability.

Direction of site grouping is also causing some effect. For the
potential sites, an E–W direction had a lower VR than SW–NE
direction. For the actual sites, the Cornwall SW–NE group had a
higher VR than the Hampshire E–W group. As noted above, this is
not the case with the Norfolk group. Proximity to coast with more
variable weather was found to be an important factor for ‘real’
solar farms, whereas for the potential scenarios, the inland Oxford
sites have greater variability.

Overall quantity of irradiation received is not indicative of
variability. The SW groups received an hourly maximum of 932 
Wh/m2 at the main (largest) site in 2014 and have a lower
variability than the Oxford groups which received an hourly
maximum of 901 Wh/m2 at the main site in 2014. When evaluated
on a daily basis, variability was found to be greatest in spring and
autumn. This is likely due to more dynamic weather.

Thus, the inference is that irradiance variability is caused by a
complex combination of locational, topographical, seasonal and
weather elements, summarised in Table 2. Not all of these come
into play at any one time. The radii of site clusters are small
enough for latitudinal effects to be ignored. All sites within each
cluster are also situated on the same type of terrain, i.e. flat or
slightly undulating countryside. There is no sudden change to
mountains, sand dunes etc. within groups. 

Finally, it must be noted that all effects are subtle. If the VR is
presented as an integer, all the groups studied exhibit an increase in
variability in comparison with a single site.

Fig. 3  Changes in irradiance in Cornwall and Norfolk
(a) Hourly irradiance change in Cornwall and Norfolk, (b) Wind direction frequencies
for hourly irradiation variation bins (2014) (from [19]) in Norfolk and Cornwall

 

Fig. 4  Potential solar farm locations in the SW produced by elimination of
unsuitable areas. Exclusion zones – black. Potential locations – white
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4 Current pattern of UK solar farm dispersal and
associated grid stresses
This investigation, as well as others, has concluded that stress on
the grid as a whole is mitigated where there are many small sites or
a single large site surrounded by smaller sites (rather than clusters
of large sites) (Microgrid analysis is not within the scope of this
paper.). Fig. 7 summarises the current installations of solar farms in
the UK, showing a large variance in size and distribution. 

It maybe seen that Cornwall has only one major (over 30 MW)
but many smaller installations. This suggests that the grid in
Cornwall may not be as affected by power fluctuations as
elsewhere. The output will be smoothed by the mix of system sizes.
However, following an imaginary line in Fig. 7 from the Bristol
Channel to the NE, two clusters of high-capacity systems are
identified. The substations and high-voltage lines they feed into are
listed in Table 3 (Note: Fig. 7 is presented in simple point form for

brevity. The clusters have been proven to be significant with two
geostatistical tools: Anselin Local Moran's I [28] and Getis-Ord
Gi* [29, 30]. These algorithms have previously been used to
analyse weather data [31] and site distribution [32].). 

On the whole, the distribution of solar farms in the UK
currently displays a combination of adjacent small systems or
alternatively large and small adjoining. The few exceptions are
given in Table 3. This bodes fairly well as far as impact on the grid
is concerned. The next section explores the likelihood of future
change.

5 Trends in solar farm location
Analysis of the 5 years data of the REPD reveals that total number
of solar farms is increasing in all areas. The rest of England and
Wales is beginning to encroach on the huge lead of the SW in
terms of percentage.

Mean size of solar farm has increased exponentially throughout
the country (Fig. 8a), by an average of 23% per year. In 2014, there
was a 43% increase in mean installation size. 

While sizes are increasing in all areas, the SW has one of lowest
mean sizes (Fig. 8b). The largest installations are found in
Oxfordshire and Norfolk.

6 Trend drivers
It has been shown that the trend is for bigger farms and that the
largest installations are located in the southern and eastern DNOs.
Fig. 9a reveals that the solar resource, administrative regime and
land rents play a role in deciding installation size. 

The greater the solar resource, the larger the size (Fig. 9b).
Similarly, the lower the land rent, the larger the size (Fig. 9c).

7 Conclusion and future work
An alternative method of investigating grid stresses, based on mix
of sizes of installations and geographical diversity, rather than
number or capacity has been presented. It was observed that
irradiance variability at a given location maybe alleviated by taking
the aggregate of neighbouring installations. Ignoring the smoothing
effect of groups of systems could lead to unnecessary grid
restrictions. Reduction in variability results from a complex

Fig. 5  Number and distribution of existing solar farms within GSP areas
(a) Construction of GSP areas using Thiessen polygons, (b) Number of solar farms per GSP area, (c) Frequency solar farms per GSP area

 

Fig. 6  Potential solar farm clusters in SW: one large and one small linear
SE–NW; one linear E–W; one wedge. Constrained areas unsuitable for
large-scale PV shown in grey
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relationship between pattern of site clustering, proximity to coast,
terrain and weather fronts. The complete set of factors may or may
not appear to exert an influence simultaneously. The precise effect
of each component and how it is triggered by the others requires
further investigation. Impacts can be very small and further
investigation with sub-hourly irradiance data will be carried out in
future work.

Current size distribution of UK solar farms maybe described as
predominantly small adjacent to small in the SW and mostly large
next to small in the rest of the country. This indicates an

Table 1 Details of potential solar farm groups and results of smoothing analysis
Abbreviation Symbol on

map
Number of

sites
Pattern Direction Mean distance,

Km
Radius of
cluster, km

Percentage
reduction in

standard deviation

VR

SW L-SWNE-9 big circle ¡ 9 linear SW–NE 5.25 21 −0.053 0.999
L-SWNE-5A small circle • 5 linear SW–NE 5.25 14 −0.022 1.000
L-SWNE-5B 5 linear SW–NE 10.5 21 −0.074 0.999

L-EW X × 8 linear EW 4.5 11.5 −0.295 0.997
V triangle ▴ 8 wedge SW–NE 5.29 23 −0.076 0.999

V-23 23 wedge SW–NE 5.25 21 −0.093 0.999
Oxfordshire Ox-8 8 linear SW–NE 2.5 8.75 0.746 1.008

Ox-5A 5 linear SW–NE 5.25 8.75 0.746 1.008
Ox-5B 5 linear SW–NE 2.5 8.75 0.947 1.010
Ox-5C 5 linear SW–NE 3.75 8.75 0.696 1.007
Ox-4A 4 linear – near SW–NE 6 8.75 0.676 1.007
Ox-4B 4 linear – far SW–NE 6 8.75 0.306 1.003

 

Table 2 Factors examined for influence on irradiance
variability
Factor Impact on variability Consistent
number of sites no yes
radius of site cluster no yes
quantity of irradiation no yes
mean distance yes no
linear SWNE shape yes no
direction SWNE yes no
coastal location yes no
local weather patterns, e.g. wind yes no
evenness of distribution yes yes
proximity to main site yes yes
local topography yes yes
season yes yes

 

Fig. 7  Location of UK solar farms (2015) and proximity to high-voltage
lines (the larger and hotter the circle, the higher the capacity of the solar
farm)

 Table 3 Parts of UK national grid subject to greatest
stresses from solar farm output
Substation
name

County Route
number

Route name

Minety Wiltshire ZF Cowley–Minety
Didcot Wiltshire 4YG Bramley–Didcote
Pelham Hertfordshire 4ZM Burwell Main–

Pelham
Burwell Cambridgeshire 4ZM Burwell Main–

Pelham
 

Fig. 8  Average capacity of solar farms in MW 2011–2015
(a) Growth of mean size of solar farms 2011–2015, (b) Average capacity of solar
farms in each DNO 2015
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attenuation of PV impact on the transmission grid. Additionally,
when solar farms are grouped by GSP, more than half of the groups
tend toward a SW–NE direction. Owing to the prevailing wind and
weather patterns, this is also an advantage in terms of balancing
grid load from PV.

In general, the PV deployment trend is skewed toward big
farms which is unhelpful as regards grid stresses. However, larger
solar installations are being positioned outside of the SW, which is
the most overloaded DNO. Size of system is being driven mainly
by land rental price.

Thus, present solar farm distribution is beneficial for reducing
PV impact by smoothing variability in the output. This is unlikely
to change in the DNO which has the highest input from
renewables.
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