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Toward an Optimal PRNN-Based Nonlinear Predictor

Danilo P. Mandic and Jonathon A. Chambesgnior Member, IEEE

Abstract—We present an approach for selecting optimal pa- and 3) employing recurrent connections [3], [4]. In other
rameters for the pipelined recurrent neural network (PRNN) in  words, the modular structure employed by the PRNN enables
the paradigm of nonlinear and nonstationary signal prediction. memory to be embedded into the PRNN [5]-[7], as well as

g:ha:?nr}rfgetrﬁehféﬁﬁn%b:ggoﬂrnotgrhe:: |Qet:;m:1§ggl%?ng;n%se the representation of block cascaded systems, such as the

inherent features of the PRNN. We therefore provide a study of Wiener—Hammerstein system [4], [8], [9].
the role of nesting, which is inherent to the PRNN architecture. The learning algorithm which was used by Haykin and Li

The corresponding number of nested modules needed for afor the PRNN was a gradient descent (GD)-based algorithm
certain prediction task, and their contribution toward the final known as the real-time recurrent learning algorithm (RTRL)

prediction gain (PG) give a thorough insight into the way the . . .
PRNN performs, and offers solutions for optimization of its [10], [11]. However, the variant of this algorithm used for

parameters. In particular, nesting, which is a contractive function  training the PRNN suffers from some serious drawbacks. In
by its nature, allows the forgetting factor in the cost function [12] and [13], an improved RTRL-based algorithm was pre-
of the PRNN to exceed unity, hence it becoms an emphasissented, together with the extended Kalman filter (EKF)-based
factor. This compensates for the small contrlbutlt_)n of the distant algorithm for training the PRNN. Both of them outperformed

modules to the prediction process, due to nesting, and helps to th iqinall d algorith

circumvent the problem of vanishing gradient, experienced in e origina y'propose algorthm. .

RNN's for prediction. The PRNN, with its parameters chosen ~ As adaptation of parameters of the PRNN is a complex
based upon the established criteria, is shown to outperform the and demanding nonlinear optimization task, there is a need

linear least mean square (LMS) and recursive least squares (RLS) to have further insight into some inherent features of the
predictors, as well as previously proposed PRNN schemes, at n"OprNN which could yield even better performances using well-
expense of additional computational complexity. . ) . .

_ _ _ o known strategies. One way would be to find some relationships

Index Terms—Forgetting factor, nesting, nonlinear prediction, petween the parameters employed in learning [14], which is
PRNN, RNN. rather difficult for the PRNN. Hence, we analytically describe
the core of the features of the PRNN for the prediction

I. INTRODUCTION application, such as the nature and value of the forgetting

. . . factor, and the role of the number of modules in the PRNN,
CLASS of physical signals, such as speech, is gener- . . : . .
. . = _and offer a solution to obtain the best possible predictor in
ated from a nonlinear mechanism, and has statistica .
i . . . at environment.
nonstationary properties, which makes the task of their predlc—ThiS aver is oraanized in the following manner. In
tion difficult. Linear adaptive structures for prediction, such a§§ bap 9 9 '

least mean square (LMS) and recursive least squares (RL ction Il, the PRNN-based nonlinear predictor is described,

. : : o I rting from the RNN, and concluding with the Haykin-Li's
predictors do not account for the inherent nonlinearity in such__. . : .
nonlinear predictor [1]. In Section Ill, the effect of nesting,

5'9”"?"5.* and as S.UCh face d|ff|cult|_es in- providing rellabl\?vhich is inherent to the PRNN, is shown, and the influence of
prediction. A nonlinear structure suitable for nonparametnrg:estin on the outbut of the PRNN is elaborated. Furthermore
prediction of nonlinear and nonstationary signals is the ar- g P . L '
tificial neural network (ANN). In 1995, Haykin and Li [1] In Section 1V, the role of the influence of the forgetting factor
y » hay : to the gradient-based learning of the PRNN is presented,
presented a novel, computationally efficient nonlinear predic-

tor based on the pipelined recurrent neural network (PRN nd a new solution for weighting of the modules in the

; BNN is proposed. In Section V, the performance of the
The PRNN consists of a number of small scale reCUe oposed scheme is compared to the performances of known
neural networks (RNN'’s), but maintains its relatively |OV\P P P P

: . . : s]phemes [1], [12], [13], and it is shown that the proposed
computational complexity considering the entire number § : - :
Scheme substantially outperforms the existing ones. Finally,

neurons in its architecture. In addition, the PRNN architecture : ) X
. o . IN Section VI, the main results presented in the paper are
helps to circumvent the problem of vanishing gradient [2], due :
i X : ; summarized.
to: 1) creating a spatial representation of a temporal pattern,
2) putting time delays into the neurons or their connections,
II. THE PIPELINED RECURRENT NEURAL NETWORK (PRNN)

Manuscript received January 15, 1998; revised January 26, 1999 and Jun§he PRNN is a modular neural network, and consists of a
29, 1999. i ) i i

D. P. Mandic is with the School of Information Systems, University of Eascf\erta_In _numbeM of RNN's as its modules, with .eaCh mOdU|.e
Anglia, Norwich NR4 7TJ U.K. consisting of N neurons. The structure of a single RNN is

J. A. Chambers is with the Communications and Signal Processing Reseablown in Fig. 1. The RNN consists of three layers:
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back to form the input vector, in the further analysis, only the

; case of all the neurons being visible will be considered.

Fee‘dback In the PRNN configuration, thé4 modules, which are
FCRNN's, are connected as shown in Fig. 2. The uppermost

module of the PRNN, denoted b/, is simply an FCRNN,

whereas in modulegM —1, - - -, 1}, the only difference is that
* Outputs the feedback signal of the uppermost neuron output within the
y modulem, denoted byy,, 1, m =1, ---, M — 1, is replaced

with the appropriate output signal,,+1 1, m = 2, ---, M
from its left neighbor modulen + 1. The(p x 1) dimensional
external signal vectos®'(n) = [s(n — 1), ---, s(n — p)] is
delayed bym time steps £~™I) before feeding the module
m, wherez=™, m =1, ---, M denotes then-step time delay
operator, and is the (p x p) dimensional identity matrix. The
weight vectorsw;, of each neurork, are embodied in afp +

N +1) x N dimensional weight matri = [wy, - -+, wx],
with V being the number of neurons in each module. All

External :

Inputs
s(n-p) et , the modules operate using the same weight ma&ix The
eedforw Processing layer of K )
VO layer rnd hidden and output overall output signal of the PRNN ig.,(n) = 31,1(n),
connections pemons i.e., the output of the first neuron of the first module. A
Fig. 1. Single recurrent neural network. full mathematical description of the PRNN is given in the
following equations:
- output layer. i, k(n) = (v, x(n)) (5)
For each neuroit, k& € {1, N}, the elements;, i € {1, p+ pHN+1
F + 1}, of the input vector to a neuroa (4), are weighted, v; x(n) = Z wy, 1(n)uq, 1(n) (6)
then summed to produce an internal activation function of a =1
neuronv (3), which is finally fed through a nonlinear activation u?(n) =[s(n —4), ---, s(n —i —p+1), 1,
function <I> Q), Fo form the'output of théth neurony;, (2)_. Yirr1(n), vi2(n—1), -+, yi n(n— 1)]
The function® itself, is typically a monotonically increasing .
: . L . . o ; for 1<i<M-1 (7)
sigmoid logistic function, whose amplitude lies in the interval
(0, 1), and is given by uy(n) =[s(n— M), -, s(n—M—p+1), 1,
1 ym, 1 —1), yar2(n — 1), -,y n(n — 1))
®(v) = T exp(—fv)" (1) for i= M. (8)
For the kth neuron, its weights form dp + F' + 1) x 1  Given the input vectors;(n) for each module, i € [1, M]
dimensional weight vectow; = [w, 1, -, wk ptyr41], at the time instant, the outputs of all the neurons in the
wherep is the number of external inputs ardis the number network can be calculated using the equations given above.
of feedback connections, one remaining element of the weightAt the time stepn, for each module:;, ¢ = 1, ---, M,

vector w being for the bias input weight. The feedbackhe one-step forward prediction erref(n) associated with
connections represent the delayed output signals of the RNINmodule, is then defined as a difference between the desired
In the case of the network shown in Fig. 1, we hdVe= F. response of that modulgn — i + 1), which is actually the
Such a network is called a fully connected recurrent neunaéxt incoming sample of the input speech signal, and the actual
network (FCRNN). For more details about recurrent neuralitput of theith moduley; 1(n), of the PRNN, i.e.,

networks, refer to the landmark paper by Williams and Zipser . p

[10]. The following equations fully describe the FCRNN: ci(n) =s(n =i+ 1) —yi1(n). ©)
Since the PRNN consists df modules, a total of/ forward

uk(n) = ®(vi(n)), kel N] ) prediction error signals are calculated. The goal is to minimize
p+N+1 . .
(n) = Z (n)uua(n) 3) some measure of the error in the entire PRNN, termedst
URI = L Tk AT function which was originally proposed as a weighted sum
T =t of all the error signals from individual modules [1]. In such
w; (n) =[s(n = 1), -, s(n—p), 1, a performance criterion, forgetting factor\, A € (0, 1], is
vi(n—1), v2(n—1), -, yn(n—=1]  (4) introduced which determines the weighting of the individual

where the(p + N + 1) x 1 dimensional vectom comprises modules. Thus, the overall cost function of the PRNN becomes

both the external and feedback inputs to a neuron, with vector M i1 o

u having “unity” for the constant bias input. Although the E(n) = Z X ei(n) (10)
general network shown in Fig. 1 contains hidden neurons, =1

whose outputs are not visible in the network output, but fesheree;(n) is defined in (9).
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Fig. 2. Pipelined recurrent neural network.

Since the predictor operates on the nonstationary input data, with the updated external signal inpsf(n + 1) =
a learning algorithm has to be chosen which, at each time step, [s(n — i+ 1), ---, s(n — i —p + 2)].
calculates the weight correction fact&’W in order to update  The output of the PRNN was then fed into the LMS filter in
the weight matrixW. Hence, the updated weight matrix abrder to produce the predicted signal of the nonlinear predictor.
time-step(n + 1) can be calculated as As our aim is to improve the performance of the PRNN part,
and the LMS linear predictor was shown to contribute with
W(n+1)=W(n)+ AW(n). (11 approximately 2 dB toward the total prediction gain [12],

The merit of a pipelined recurrent neural network as comparkgpl: We shall concentrate on the PRNN part of the nonlinear

to a single fully connected recurrent neural network is that iRiedictor only.

computational complexity is considerably reduced for the same

total number of neurons. Let an FCRNN contain a totalNof lll. THE EFFECTS OFNESTING

neurons; ifA/ FCRNN's constitute modules of the PRNN, then The PRNN architecture provides nesting of the nonlinear-
the total number of neurons in the PRNNJi§x V. Having in  jties comprised in the modules of the PRNN. That being the
mind that the computational complexity of an FCRNN trainegase, the functional dependence of the output of the network
with the gradient descent algorithm increases wihiv*) y1.1(n) can be expressed as

[10], then the PRNN approach reduces the computational

complexity of an entire network containilf x N neurons 51(n) =y1,1(n)
to a mereO(M x N*) [1]. Another advantage of the PRNN =0(s(n—1), y2,1(n))
over an FCRNN is its increased capability of tracking time =®(s(n — 1), ®(s(n — 2), y3.1(n))

varying nonlinearity, and therefore the associated higher order

statistics (HOS) of the probability density function (pdf) of the

underlying process, owing to the connection /df modules =®(s(n — 1), &(s(n —2), ---,

containing FCRNN's as their architectural components. O(s(n — M), ypr,1(n— M))--)  (12)

where it was assumed that all the neurons in the network
operate with the same activation functidén and for the sake
The original approach was to combine the PRNN as ¢ simplicity, the functional dependence of the weight matrix
nonlinear part of an entire nonlinear predictor, which feedg to the nested nonlinearities was omitted. The result given in
the LMS linear predictor to obtain the predicted data. Thai2) gives the PRNN its enhanced computing power compared
procedure was composed of the three following subtasks. to the conventional RNN. Indeed, it is a universal approx-
 Prediction: Compute the one-step forward nonlinear prémator in the sense that a PRNN with appropriate training
diction errors of the PRNN at the time instamt using can approximate any nonlinear autoregressive moving average
the procedure described above and (9). (NARMA) process to any desired degree of accuracy, provided
« Weight Updating:A learning algorithm uses the suitablythat a sufficient number of hidden neurons is available [15],
chosen overall cost functio®'(n) (10) in order to cal- [16]. The nested nonlinearity principle for an example of the
culate the weight matrix correction factakW which logistic nonlinearity is shown in Fig. 3. As shown in Fig. 3,
updates the weight matri¥v, as shown in (11). due to contractivity of the nonlinear activation function and
« Filtering: Using (5)—(8) the output of the PRNN is com-modularity of the PRNN [17], the nesting process introduces
puted. The updated input signaj(n+1) to every module a deteriorating effect in the relative amplitude of the output
i, 1 <4 £ M is formed by substituting the external signal; 1, ¢ = 2, ---, M of a distant module, when progressed
input (speechk;(n) = [s(n —4), -+, s(n —i—p+1)] through the PRNN. Thus, the relative contribution of the

A. The Haykin—-Li's Nonlinear Predictor

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 15, 2010 at 06:25 from IEEE Xplore. Restrictions apply.
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] 075 Notice, that the maximum value fab(v;), i = 1, ---, M is
208 2 o7 0.25 as shown in (13). Hence, the upper bound of an estimate
g & of Sy becomes
F06 2065
§0.4 E 06 C omax (SN =@ wi] =025 wiTL (16)
% 5 PMINSP<PMaX ’
E02 2055
o o ’ 05 Iln our:.expe.riments, the values@f | were such thaiw; 1| <
argument argument 1 W ICh gIVGS
068 — 0865 sup(Syhl) = 0.25F, (17)
@ 0.67 S R ﬁ
2 068] 5 066 For M = 5, sup(SyL',) = 0.25* = 0.0039 which is the
%’o,ss é upper bound of the influence of the amplitude wf; 1 to
2o6s £ 0655 the amplitude ofy; ;. That is a numerical measure of the
Eogal i S B nesting effect, shown in Fig. 3. That is also the explanation
0.62 ; 0.65 why Haykin and Li [1] could not achieve remarkably improved
T e o ° O e 0 prediction gains while increasing the number of modules
for M > 5. It is to be noticed that the above result (17)
Fig. 3. Nestedogistic nonlinearity. does not depend on the forgetting factdr Since speech

output of the fourth module to the total amplitude at the outpift @ heavily correlated signal, although nonstationary, and
of the PRNN, when that information reaches the first modutBe computational complexity of the PRNN grows with the
of the PRNN, has an amplitude (0.65, 0.665), which has increase in the number of its modules, fhe M — 1 external

only a small impact on the final value of the predicted samplaput speech samples in the PRNN are in most feasible cases
at the output of the PRNN. On the other hanéstingdoes such thatp + M — 1 < 10, otherwise the network grows too
not have any influence on the values of the gradient of t§@mplex, since its computational complexity increases with
activation function®, when progressed through the PRNNO(M x N*). We can assume that the-A/+-1 speech samples

which means that the dynamics of the learning process are Rgtong to a section of speech over which piecewise stationarity
in any way affected by nesting, as shown in Fig. 3. can be assumed. Moreover, there is an information flow

Now, let us provide insight into the values of the gradieri€tween modules of the PRNN, where less distant modules
for the nonlinear logistic activation function (1). The firsccept information of a predicted value of speech from their
derivative of the logistic function, which represents a gradiefgighbor module. Therefore, it seems reasonable to increase

of the activation function in terms of the learning algorithméhe influence of the distant modules to the learning process,
based upon (1) is given by more than allowed by the cost function (10), especially with

Be—ie M low. Hence, there is a need to find another way to make the
'(z) =

— 3 (13) distant modules play their full role in the nonlinear predictor.
(1+er) There are two ways of how a distant module can make an
The maximum value of the function (13) for the commonnfluence to the overall output of the PRNN.
choice of 3 = 1 is 0.25. As the nested structure from (12) 1) Through its output amplitude, due t@sting.
actually comprises the weight matri®¥, the output of the 5y Through the learning process, since the overall correc-
PRNN, which is in effect a conditional mean predictor, can 54 AW to the common weight matri¥¥ is calculated
be expressed as over all modules, according to thest functionof the
51(n) =wy1,1(n) = (s(n — 1), W(n), y2,1(n)) network.
=®(s(n — 1), W(n), ®(s(n — 2), W(n), y3 1(n))  Since nothing can be done to improve the influence of a
—&(s(n — 1), W(n), ®(s(n —2), ---, dista}nt module amplitude to the outpgt of thg PRNN through
o M v nesting it appears that the only way of improving the influence
(s(n — M), W(n), ya,1(n = M))---). (14) o gistant modules to the prediction process is through the
In order to measure the influence of the output of a distagst functionof the PRNN (10), i.e., through the process of
moduley; 1(n), ¢ = 2, ---, M of the PRNN to its overall learning.
outputy; 1(n) (Fig. 2), let us observe the derivative of the
y1,1 With respect toy; 1,7 = 2, ---, M, i.e., Qy1.1/0y; 1.

That is a measure of sensitivity of the output of the PRNN to IV. AN ANALYSIS OF THE INFLUENCE OF THE
the output of itsith module, denoted by, . FORGETTING FACTOR TO THE TOTAL PREDICTION GAIN
w1 9P(s1, W, O(sp, -+, O(si, mi1) - ) The cost function for the PRNN has traditionally been
Sy = 0yi 1 defined as
. (91}1 . (91}2 . avi_l
=d(vy) D (vg - Dy Mo
Y21 Jys3 1 i1 E(n) = Z N2 (n). (18)
=<I>(111)w171<1>(112)w171 ""I)(Ui_1)ZU171. (15) =1
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Hence, the elements of the correctidéW (n) to the weight of distant modules to the dynamics of the PRNN should indeed

matrix updateW (n + 1) can be calculated as be amplified by some constant greater than unity.
M On the other hand, the forgetting factbis RLS motivated,
g i here the cost function i&(n) = >."_,A"e*(n — 1), with
Ay, = —p— Ai—lg2 w =0 ,
w,1(n) 778wk,l(n) <; i (n)> 0 < A < 1. In the case of the PRNN, however, the forgetting
M factor is introduced along the modules. Realizing that
= — 2772 )\Flc‘(n)aeii(n). (29)
=1 dwy,1(n) y1,1(n — 1) #y2,1(n)
Having in mind the nature of the elements of the sum (19), it yz2,1(n = 1) #ys,1(n)
can be seen as a weighted sum of the correction factors due
to individual modules, namely Yym—1),1(n — 1) #yns, 1(n), (22)
M
Awy 1 (n) = —n a Z ATLe2(n) i.e., the outputs of the modules in the PRNN are not real-
’ Qw,1(n) \ ’ izations of the same stochastic process, we can introduce an
M emphasis factor, which is a linear weighting factor, rather than
S 2772 )\i—lAwiJ(n) (20) a forgetting factor.
=1
or, equivalently V. EXPERIMENTAL RESULTS
M Three different speech signals, denoted diy s2 and s3
AW(n) :Z NTLAW,(n) (21) Were used to test the nonlinear predictor. Sigral was
P identical to that used in [1], wherea$, s2, ands3 were used

‘ in [12]. The content of the speech signals used in simulations
whereAw;, , represents the correction factor of a single weighfas as follows.

wy, ¢ due to each individual module 1 < ¢ < M, andAW; « s1: Speech sample “Oak is strong and,” length 10 000,

represents the corresponding weight matrix correction due to sampled at 8 kHz.

module:. Therefore, the total correction to the weight matrix , . Speech sample “When recording audio data”

‘W, can be bigger in magnitude than any of the individual length 10000, sampled at 8 kHz.

corrections making the sum (20). We have already seen thaj s3: Speech sample “I'll be trying to win..," length

the nesting process (12) affects the contribution of the relative 10000, sampled at 11 kHz.

amplitude of the output of a distant module to the over

output of the networky; 1, but does notaffect the learning

process. Moreover, it is the forgetting factarthat has an

influence on the learning process. As seen from (21), althou

every module of the PRNN has to calculate its full contributio

AW, to the overall correction of the weight matrida W,

it becomes further scaled by multiplying witki—. For the

Mth module, e.g.M = 5, its contribution to the correction .9

of the overall weight matrix is multiplied by*, which for R, 210 logy, <0—52> dB (23)

A = 0.9, as in the Haykin—Li's paper [1] equals 0.6561. Te

Hence, not only the amplitude of a distant module does nvc\)/kerec}2 denotes the estimated variance of the speech signal

have significant influence on the amplitude of the output of t)]; s
0

/\2 . .

PRNN, but also the forgetting factor in the cost function lower, Sr(vcg};d Wreedriizzzee?ri?(ﬁiesn the es“?&fi V?g:gﬁemo{h;he
the contribution of the correction to the weight matrix of a_ .. " . P - ' .a{je.(n)}. PP .

feﬁnmon of prediction gain is different from the one used in

a'lllhe signals have been made public and are available on the
World Wide Web (WWW) from the author's homepage [18].

e amplitudes of the signals were adjusted to lie in the range
the function®, i.e., € (0, 1). The measure that was used

0 assess the performance of the predictors was the forward
prediction gainf,, given by

distant module, which discards its significance in two way 1), which used the mean squared values of the signal and
However, theM/th module is the only one which is a proper ™" which u qu vaiu '9

fully connected RNN and does not involve any approximatio ror lnstead_ of app_ropnate variance estimates. The usage of
variance estimates is preferable, though, because the dc term

in its structure. It emerges therefore, that the contribution” . ; )
AW, i = 2 --- M to the total correction matrixA W contained in the mean squared values leads to biased results.
from distant modules should be somehow more evenly taken o

into account, when training the PRNN. One intuitive approadhy 1N€ Initialization

would be to amplify the contribution of distant modules to the The initialization of the weightsW was achieved via
learning process by raising the value of the forgetting fagtor epochwise training as is commonplace for neural networks
even forA slightly bigger then unity, i.e.A > 1. In that case, with fixed weights. An initial weight matrix was chosen
we will refer to A as anemphasis factorUsing the emphasis randomly. The firstL samples of the input signal were
factor, the distant modules become heavily involved in tlehosen as an input to the PRNN. Thesamples were used
learning process of the PRNN. The use of an emphasis fachor . weight updateAW calculations. Thosé. updates were
can be approved by the fact that, due to nesting, the influerszenmed to form an epoch weight updatdW.,..,. Then,

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 15, 2010 at 06:25 from IEEE Xplore. Restrictions apply.
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Pradiction gain

H i | i 5 H ; H H H L i i L
12 14 16 18 2 22 62 o4 0§ 08 1 12 14 16 18 2 2.2
Forgstting factor Forgetting factor

r i i i H
02 c4 06 08 1

Fig. 4. Relationship between prediction gditp and forgetting factor\ for speech signals2 ands3: (a) Prediction gainRp versus the forgetting factor
A for s2 and (b) prediction gainRkp versus the forgetting factok for s3.

AW poch Was used instead akW to updateW. The whole using a large number of modules in the PRNN does not
procedure was then termath epoch L was chosen to be 300, approve its usage, considering the dramatically increasing
and the number of epochs required was 200, the numbercoimputational complexity of the PRNN with increasing the
external speech inputs to a module was 4, and the number number of modules®@(M x N*)), it is not likely that one will
of neurons per module wa¥ = 2 [1], [12], [13]. The slope work with, e.g.,M > 5. Moreover, the maximum prediction
of the activation function3 was chosen to be unity, as ingain can be obtained for as small a number of modules as
the previous related work, which preserves nesting, due i = 2, in the case of the speech sigral Table | shows the
contractivity of the logistic activation function fg¥ < 4 [17]. comparison between the strategy with giving distant modules
more significance by enlarging the factdrand Haykin—Li's
) o experiment. In the first row of Table | the values of prediction
B. Experiments on Prediction of Speech gain Rp for three speech signals, when using only a sole linear
To confirm that the distant modules should be heavilyMS predictor is shown. The second row shows the prediction
involved in the learning process of the PRNN, an appropriagein for the RLS linear predictor. Furthermore, the results
experiment was undertaken. A configuration used in [1], [12)ptained in [12] and [13] are shown in the third and fourth row,
and [13] was taken as a starting point, where the numberwith SG + LMS denoting the use of the stochastic gradient
modulesM in the PRNN considered as optimal was = 5. algorithm in the PRNN, and the LMS algorithm afterwards,
Let us first consider the influence of the forgetting factor and ERLS+ RLS denoting the use of the extended recursive
to the total prediction gaiRp. Our intuitive approach was least squares (ERLS) algorithm in the PRNN, and the RLS
that, due to the effects of nesting to the contribution of distaatgorithm afterwards. The parameters used in the first four
modules to the output of the PRNN, the values fgorfor rows werep = 4, N = 2, A = 0.9, M = 5. Notice that it
a relatively small number of modules, can be even taken was found that the linear predictors used after the PRNN in
A > 1. The relationship between the prediction gdip and previous configurations, improved the prediction gain by about
the value of the emphasis factarfor speech signals2, and 2 dB [13]. In the sixth row, we show the prediction gains
s3, having the PRNN wittp = 4, M =5, » = 0.07, N = 2 obtained at the output of the PRNN, for the cdde= 5, and
is given in Fig. 4. From Fig. 4, the best value for the emphasis= 1.3 for the speech signalsl and s3, and A = 1.1 for
factor A for the speech signab2 is A,,x = 1.1, where the speech signai2. As the prediction gainkp in that case,
prediction gainfp = 13.54 dB, and A,,» = 1.3 for the according to Fig. 5, can achieve its maximum fof < 35,
speech signalk3 where Rp = 8.41 dB. The appropriate even for M = 2, the maximum values of prediction gains
value of A for the speech signall was the same as for2. obtained for the speech signals are shown in the seventh row
The experiment totally approved our expectations that forad Table I. For the signa$2 the maximum value of prediction
medium number of modules, such as typically = 5, as in gain was exactlyM = 5. The results shown in Table | show
[1] and [13], the emphasis factor whose amplitude is slightiphat for A > 1, as proposed, the corresponding predictors
greater than unity should be used. Increasing the valug ofeasily outperform the LMS predictor. Values fe2 and s3
further, i.e., A > X, leads to further deterioration in theeven outperform the corresponding SG LMS values. In
value of prediction gainkRp. The learning rate; was chosen the case where the maximal values fBp were obtained
bigger than in [1], [12], and [13], which caused the predictiofthe last row in Table 1), the PRNN predictor, as proposed,
gain Rp to be a nonmonotonic function of the number obutperforms the LMS, RLS, and S& LMS predictors [13],
modulesM. In Fig. 5, a relationship between prediction gaimvhich are the stochastic gradient based predictors, whereas as
Rp and the number of moduled/ for the speech signals compared to the ERLS- RLS predictor, it shows 2—-2.5 dB
sl and s2 is given. As expected, the prediction gap worse performance for speech signalsand s3.
showed a significant increase for up to a medium number ofA cost function with an emphasis factor > 1, provides
modules in the PRNN, whereas for a large number of moduleinultaneously both the error minimization and the penalty
since A > 1, it showed fast deterioration. Nevertheless, dsr complexity part, as desired in signal processing.
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Fig. 5. Relationship between prediction gdip and number of moduled/ for A > 1, and speech signalsl and s2: (a) prediction gainRp versus the
number of modules\! for s1 and (b) prediction gairRp versus the number of moduleg for s2.

TABLE |
COMPARISON BETWEEN PREDICTION GAINS REp
BETWEEN HAYKIN—LI'S SCHEME AND PROPOSED SCHEME

speech signal sl s2 s3
Rp[dB] LMS only 9.24 | 8.06 | 6.31
Rp|dB] RLS only 12.70 | 11.55 | 9.19 [1]
Rp|dB] SG+LMS 10.25 | 9.49 | 7.30 2]
Rp[dB] ERLS + RLS 14.77 { 13.40 | 10.90

| Modified PRNN only with A > 1 [3]
Rp|dB] SG for M = 5 10.04 | 13.54 | 8.41 4]
Rp[dB] SG 12.72 | 13.54 | 8.53

(5]

VI. CONCLUSIONS (6]

Insight into the core of the pipelined recurrent neural7]
network (PRNN) in prediction applications is provided. Since
modules of the PRNN perform simultaneously in a pipelinedg]
parallel manner, this leads to a significant improvement in the
total computational efficiency of such a predictor. Modularity!®!
in the PRNN provides embedding, which helps to circumvent
problems of vanishing gradient, experienced with RNN’g10]
It is shown, that modules of the PRNN contribute to the
final, predicted value at the output of the PRNN in twgi1j
ways, namely through the process of nesting, and through
the process of learning. A measure of the influence of t
output of a distant module to the amplitude at the output of
the PRNN was analytically found as the sensitivit§} ', i =
2, ---, M and the upper bound for it was derived. That resu i3
was confirmed graphically for the example of the logistic
nonlinearity. Furthermore, an analysis of the influence of tE&]
forgetting factor in the cost function of the PRNN to th
process of learning was undertaken, where it was found that for
the PRNN, the forgetting factor can even exceed unity in ordgr!
to obtain the best predictor, becoming therefore an emphagig
factor. The simulation on three speech signals supported that
approach, and outperformed the other stochastic gradieﬁtﬂ

stochastic gradient-based techniques for the PRNN, and even
matches the results obtained by the more powerful extended
recursive least squares (ERLS) algorithm.
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