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It is commonplace to replicate critical components in order to increase system lifetimes and reduce 

failure rates. The case of a general N–plexed system, whose failures are modelled as N identical, 

independent nonhomogeneous Poisson process (NHPP) flows, each with rocof (rate of occurrence of 

failure) equal to (t), is considered here. Such situations may arise if either there is a time–dependent 

factor accelerating failures or if minimal repair maintenance is appropriate. We further assume that 

system logic for the redundant block is 2–out–of–N:G. Reliability measures are obtained as 

functions of  which represents a fixed time after which Maintenance Teams must have replaced any 

failed component. Such measures are determined for small (t), which is the parameter range of 

most interest. The triplex version, which often occurs in practice, is treated in some detail where the 

system reliability is determined from the solution of a first order differential–delay equation (DDE). 

This is solved exactly in the case of constant (t), but must be solved numerically in general. A 

general means of numerical solution for the triplex system is given, and an example case is solved 

for a rocof resembling a bath–tub curve. 
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1.   Introduction 

In safety critical situations such as the rail, aerospace and automotive
1–4

 and medical and 

nuclear
5,6

 industries it is quite common to replicate components important to the safety of 

a system in a redundant block. Such components are run in parallel so that a failure of 

one does not prevent the overall system from continuing to function correctly. Often the 

configuration of the block is triplex (three parallel units) or quadruplex (four parallel 

units). The well known Triple Modular Redundancy (TMR), which involves three 

parallel components together with a voting system, is a simple example of such systems. 

Complete system failure of a triplex configured system only occurs when all three 

components are simultaneously failed, however the system may be regarded as „unsafe‟ 

with two failed components. In this case the remaining functioning component allows the 

system to be closed–down safely for a complete system repair, generally for which it will 

be taken out of service. This situation with two failed components corresponds to what 

might be called an operational failure rather than a (much more dangerous) full system 

failure and corresponds to 2–out–of–3:G logic. A variety of software control systems also 
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work in a similar manner; for example HP‟s NonStop server
7
 or the Space Shuttle‟s 

quad–redundant network
8
, in which respectively three and four identical, independent 

boards perform the same calculations and at the end compare notes to see if any board is 

out of line with the rest. The aim of such redundancy is that faults may be identified and 

then isolated. HP‟s literature claims 99.99999% up–time for NonStop server running the 

TMR option
7
. Availability estimates such as these naturally require assumptions 

regarding the failure rates of the redundant components and the manner in which they are 

repaired. 

 

As a simple example of what we are considering in this paper, suppose that a 

subsystem reliability block, consisting of three microcontrollers, is implementing a 2–

out–of–3:G procedure
9
 whilst being cooled by a fan. It is also supposed that the 

controllers are simple to replace (component repair) and if one fails, for whatever reason, 

it may be replaced within some small time period . It is assumed that the operation 

performed by the controllers is of sufficient importance that running the entire system 

with only one functioning microcontroller is thought to be too dangerous, so that the 

system would be shut down in such circumstances and undergo a complete repair (system 

repair). Thus, this particular mode of system failure will be deemed to have occurred 

when two of the three microcontrollers are failed simultaneously, leading to the 2–out–

of–3:G logic. If the fan‟s function starts to degrade, so that its cooling effect on the 

controllers reduces, then the temperature of the controllers will increase and many of 

their failure modes will be accelerated. In some ways this is equivalent to what happens 

during a progressive accelerated life test (PALT), and we may describe component 

failures by a time–varying force of mortality on the controllers, according to some 

function (t). To be clear, (t) is defined such that the probability of each of the 

controllers failing in the (small) time interval (t, t + dt), whether for the first time or not, 

given it is functioning at time t, is equal to (t)dt + O(dt
2
). Two further things are 

assumed here: the first is that such failures are assumed not to be common cause failures, 

they are accelerated by the same common mechanism (increasing temperature here), but 

the actual failures of the three controller remain quite independent, although the failures 

occur at an accelerated rate. In other words, (T) is a function of the local temperature 

T(t), and this temperature is varying with time. The second assumption is that the age of 

the controllers does not contribute to the time–varying mortality so in this regard the 

replaced components are neither necessarily as–good–as–new nor as–bad–as–old, but 

merely as–good–as–the–others. The distinction here being that a new replacement and a 

resuscitated old component act in the same manner as their force of mortality is 

determined by the fan, and not by their own age. Such a situation may arise if replacing 

the fan is not a realistic option, through being too costly or too involved a procedure. 

Component ageing may be neglected by implementing a preventative maintenance 

schedule that requires components to undergo an initial burn–in process off–line and also 

requires them to be replaced before they age significantly, a version of the standard age 

replacement preventative maintenance policy
9
. This ensures each component operates at 



2–out–of–N:G systems with NHPP flows     3 

 

the (assumed) flat bottom of their bathtub curve. As a maintenance policy this is not 

unreasonable, if the purpose of the redundant components is sufficiently important to the 

system that it is worth the cost of the policy‟s implementation. 

  

The above example is obviously somewhat contrived, and perhaps a more realistic 

case would be that of the multiplexing of brake actuators on railway sets where a train‟s 

workload may act as the factor accelerating actuator failures. Likewise the failure modes 

of a variety of electrical systems may be accelerated by workload (for example current 

density accelerating Electromigration failures), mechanical stress, temperature or even by 

the weather (e.g. humidity)
10

. It is important to reiterate that the failures are accelerated 

(or perhaps even decelerated) by these changing conditions, still independent, but 

occurring at a rate which is changing in time. They are not common cause events which 

would imply that the probability of components failures are statistically dependent on one 

another.  

 

A second case, which is covered by the same analysis, is that of a 2–out–of–3:G sub–

system operating under a minimal repair maintenance policy
9
, where the actuators (for 

example) are merely quickly patched up and put back into service. In this maintenance 

scheme components are repaired rather than being replaced. Their failure rate after repair 

is assumed to be the same as it was just before the failure. If the repair time is relatively 

small, then the failure rates of all components may be assumed to be equal. In this system 

the components are assumed to each fail according to an independent nonhomogeneous 

Poisson process (or NHPP), determined by the same parameter (t). To be definite, by 

(t) we mean the instantaneous rate of change of M(t), the expected value E(n(t)) of the 

number n(t) of failures of a given component in the time interval (0, t], i.e. the failure rate 

of the process
11

. As simultaneous failures of a given component can be assumed not to 

occur, the probability of failure of a particular component in the time interval (t, t + dt) is 

given by (t)dt + O(dt
2
), Ref. 11. In addition the process is assumed to be a regular one 

(continuous M(t) and possessing independent increments, i.e. for any j, k, Pr{n(t) = k| t  

A} is independent of Pr{n(t) = j| t  B} if A  B = , see for example Ref. 12) so that 

(t), the rate of occurrence of failure (rocof), is identical to the force of mortality of the 

first failure time
10

. Thus, if a component is working at time t, the probability of it 

working throughout the interval [t, t+s), i.e. its conditional survival probability at time t + 

s, is  
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where RC(t) is the absolute reliability (= RC(t|0)) of the component, assuming it was 

working at time t = 0. Eq. (1) will be used throughout (e.g. eqs. (12) – (15)), in general 

though it will be useful to condition on, for example, the time of the most recent 

component failure. 
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In a minimal repair policy the repair time is ignored
9
 (i.e. the repairs are treated as  

Instantaneous and the process is a point one), however this idealisation is generally 

assumed to be valid if the repair time is sufficiently small. Strictly applied, our 2–out–of–

3:G redundant system with minimal repair would fail with probability zero. Consequently 

to be realistic we assume here that the repair time  is small enough that minimal repair 

remains roughly valid, and with it the use of three identical, independent NHPP failures 

flows, however we shall be interested in how the reliability measures for the system vary 

with this (small) repair time. This mild contradiction only arises in the minimal repair 

case and not in the accelerated failure case. So, when modelling minimal repair, it will be 

important to be precise in the statement of any results. The likelihood is though that, 

provided (t) does not change appreciably on a timescale of  (e.g. if |(t+) –  (t)| << 

(t) or roughly  |dlog((t))/dt| << 1), our results will give accurate results in both cases.   

 

If safety of the system is paramount, and if the components are simple to replace, it 

will be useful for the Maintenance Engineers to work within some timeframe , which is 

the maximum allowed interval for component replacement from the time of failure. We 

assume, as a worst case, that all repairs take exactly the allowed time  and ask the 

question: How do system reliability measures depend upon the (now deterministic) repair 

time ? As well as being useful information for the defining of repair schemes, it is rather 

more realistic than assuming exponentially distributed repair time, yet avoids the need to 

specify a particular distribution. To summarize, our assumptions are that:  

(1) the reliability of the triplex block is determined by three independent failure 

flows described by identical NHPP flows with rocof (t). The time–dependence 

of the rocof could be either due to a time–dependent acceleration factor or due to 

component ageing in a minimal repair system; 

(2) each component repair completes (as a worst case) exactly a time  after the 

component failed. Note that the time  includes the transportation time as well as 

the actual repair once an engineer is on site. 

Assumption 2 needs some clarification and is assumed here to apply irrespective of the 

number of components in repair. For example in a 2–out –of–N:G system, in this worst 

case calculation, if two items are in repair, having failed at times t1 and t2 (where 

necessarily t1  t2  t1 + ), a maintenance team is assumed to repair the first failed item at 

t = t1 +  and a second team repairs the second item at time t = t2 + . Such repairs may 

occur sooner, but as safety is presumed to be paramount this worst case is taken. This 

necessarily means that there are two maintenance teams available for the repairs of a 

quad system and N – 2 teams in the general N–plexed case. Using the language of 

Queuing Theory
13–15

, the general N–redundant system is modelled by 2–out–of–N:G 

logic, with an M(t)/D/N–2 queue. In addition we assume: 

(3) the system is completely observable, so that repairs begin immediately; 
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(4) repairs are conducted in–service provided that there are at least two functioning 

components. Should only one component be functioning the system is shut 

down and an operational system failure is said to have occurred. 

 

A study of the time–to–first–(system) failure (TTF) is analytically equivalent to the 

case of a similar system without system repair. Consequently, it makes sense to discuss 

the first system failure in terms of a system hazard function hS(t), a TTFF failure 

distribution fS(t) and a („non–repairable‟) reliability function RS(t). The time–to–second–

failure of the system (and indeed all future failures) may be obtained from this, e.g. the 

reliability function for second failure, given the first occurred at t = t1, is 

 

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t
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1

du)u(hexp
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)t(R
)t|t(R  (2) 

Consequently, our aim in this paper is to obtain the distribution of the time–to–first–

failure of the system as a function of the allowed (component) repair time  and in 

addition expressions for RS(t) and hS(t). As a special case we also consider the important 

case when the failures are described by homogeneous Poisson process (HPP), i.e. where 

the rocof is constant ((t) = ). The mean TTFF (or MTTFF), equal to the mean time 

between failures (MTBF), is then also of particular interest. If we label the hazard 

function with HPP failures by hS0(,), we wish also to compare the values of hS(t) and 

hS0((t),) (i.e. the HPP result with  replaced by (t), the rocof for the NHPP) as it has 

been suggested that, under certain conditions, including the small  limit assumed here, 

they should be the same
16

. Specifically, the region of parameter space closest to what 

might be expected of a system in which safety is paramount, is that of small (t), i.e. fast 

repair. In the HPP case of (t) =  (say), then in the limit   0, asymptotic reliability 

theory (see e.g. Refs. 16–21; in particular the review article Ref. 20) demonstrates, using 

renewal theory, that the TTFF distribution is asymptotically exponential with some 

system hazard rate hS0 = hS0(,). In addition, Solov‟yev and Zaytsev have studied
16

 the 

k–redundant cold standby problem, with a non–stationary (NHPP) flows (t), in a 

particular asymptotic limit. To avoid anomalous behaviour
†
 they were forced to take the 

small (t) limit in the following rather unusual manner. Unable to take the general limit 

(t)  0, they introduce a small parameter   0, and two fixed functions, 0(t) and 0, 

independent of  so that 0(t)0  ~ O(1). They then consider the limit (t)   as ~ 

0(t)/
k
 and   0 as ~ 0

k+1
, so that (t) = 0(t)0  0. In this case they show, for the 

k–redundant system (with a time varying (t)), that the failure rate at time t, may be  

 
† In Ref [16] a partition of the interval [0, t) is first defined and the conditional system reliability is bounded in 

each of the resulting sub–divisions. This introduces a second limit, in addition to the limit   0, as the norm on 

the partition must also be allowed to approach zero. Difficulties arise with this method since it is necessary to 

swap the order of these limits, and the conditions imposed on (t) and  above are required in order to make this 

legitimate. Without such conditions, it is possible that when the dt   0 limit is taken the result may not be 

Riemann–integrable.  
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obtained from the instantaneous value of the exponent obtained from the stationary 

problem, i.e. from hS(t) = hS0((t),). They conjecture that this may be a general result, 

but add that it will probably require additional conditions on (t) (such as the condition 

here that (t) = 0(t)/
k
   in the   0 limit)

16
.  

 

2.   The Triplex (2–out–of–3:G) System 

Despite the NHPP flows, the system may be described by a state label k equal to the 

number of components in repair. The state transition diagram in the triplex case (i.e. 2–

out–of– 3:G here) is shown in Fig. (1)
22

. At time t = 0 we assume the system has no failed 

items and is consequently in state k = 0. If at time t the system makes its first transition 

from state k = 1 to state k = 2 then it fails and the TTFF is t. As it is the distribution of 

TTFF that we seek here, there is no system repair from state k = 2 to k = 0. The analysis 

is more complicated that standard analysis based on Markov chains, as the state k = 1, 

which has a single component in repair, is a parameterised state with parameter x equal to 

the remaining repair time. As a result, the complete state of the system is described by k, 

and if k = 1, by the remaining repair time x also. Note that it is possible to unravel the k  

= 1 state, approximately, into a large number M (say) of states, denoted by the set S1 = 

{(k = 1, x = m/M)} for 1  m  M. It is clear that the unravelled set of states S = {(k = 

0)}  S1  {(k = 2)} has the Markov property that for any set of strictly increasing times  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1) The state transition diagram for the case of a constant failure rate. State k = 1 is a parameterized state 

indexed by x, the remaining repair time. After a failure x = ; if no further failures occur, x will gradually be 

reduced to 0 and the system returned to state k = 0. A second failure will cause the system to fail, state k = 2. 
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tj, Pr{s(tj+1) = sj+1| s(tj) = sj, s(tj-1) = sj-1, …, s(t0) = s0} = Pr(s(tj+1) = sj+1| s(tj) = sj} for any 

sk  S. In the limit of large M, the mean value of the exponentially distributed sojourn 

times, in each state in S1, ~ /M,  0 and the states in S1 all become instantaneous. We 

proceed slightly differently maintaining the continuous parameter x, however the 

probabilities Pk(t), that the system is in state k at time t, remain the main interest. When k 

= 1 we also define a density function over x  [0, ], labelled p1(t,x), such that the 

probability that the system is in state k = 1 at time t, and has an item in repair with a 

remaining repair time in the range (x, x + dx), is given by p1(t,x)dx. Then 

P1(t) is the integral of p1(t,x) over all x  [0,]. If a single component in a fully 

functioning system fails at time t the system will enter the state k = 1 and will have an 

item with a remaining repair time of . Thus p1(t,)dx, the probability of being in state  

k = 1 with an item with a remaining repair time in the range ( – dx, ), will be 

determined both by P0(t) and by the probability 3(t)dx that one of the three NHPPs 

generates a failure in the time interval (t, t + dx). Thus p1(t,)dx = P0(t)  3(t)dx or  

 )t(P)t(3),t(p 01   (3) 

Likewise a system in state k = 1 at time t, which has an item with a remaining repair time 

in the region (0, dt), will make a transition to the state k = 0 within the time interval (t, t + 

dt) and this will tend to increase P0(t), thus  

 dt)0,t(p)dt)t(31)(t(P)dtt(P 100   (4) 

or 

 )0,t(p)t(P)t(3
dt

)t(dP
10

0   (5) 

Similarly the probability of being in state k = 1 at t + dt, with an item in repair with a 

remaining repair time in the range (x – dt, x – dt + dx), is determined by the probability 

that it was in the state k = 1 at time t, with a remaining repair time in the range (x, x + 

dx), provided that a second component failure did not occur in the interval (t,t + dt). I.e. 

 )dt)t(21(dx)x,t(pdx)dtx,dtt(p 11   (6) 

or, from Taylor‟s theorem, 

 )x,t(p)t(2
x

)x,t(p

t

)x,t(p
1

11 








 (7) 

With no system repair from state k = 2, we have simply 

 




0

122 dx)x,t(pdt)t(2)t(P)dtt(P  (8) 

or 
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 )t(P)t(2dx)x,t(p)t(2
dt

)t(dP
1

0

1
2  



 (9) 

Integrating eq. (7) over 0 ≤ x ≤  and adding the result to eqs. (9) and (5), and using the 

result from eq. (3), demonstrates the conservation of probability, P0(t) + P1(t) + P2(t) = 1.  

 

For a general 2–out–of–N:G system, states k = 1, 2, …, N – 2 will be similarly 

parameterised (only with k parameters), while the states k = 0 and k = N – 1 will not. 

Generally the factor of three in eqs. (3) and (5) will be replaced by N, and a partial 

differential equation (pde) such as eq. (7) will be required for the parameterised states. In 

the triplex case here eq. (7) can be integrated along the characteristic  = t – x (or merely 

by substitution of eq. (10) into eq. (7)) to give 

 )t(R)xt(Cdu)u(2exp)xt(C)x,t(p 2
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where eq. (1) has be used for RC(t). Note that as p1(t,x) is a continuous function of its 

arguments, eq. (10) implies that C(t) is also. It will now useful to define a function Q(t) = 

C(t)/3(t)RC(t). Then using eq. (3), P0(t) = Q(t)R
3

C(t), and in eq. (5), with p1(t,0) = 3( t – 

)RC(t – )Q(t – )R
2
C(t), we finally obtain 

 )t(Q
)t(R

)t(R)t(3
)t(Q

dt

d

C

C 


  (11) 

Assuming that the initial system is in state k = 0 at t = 0, it is clear that Q(t) = 0 for t < 0, 

and Q(t) = 1 for all 0  t  . Note that setting (t) = 0, RC(t) = 1 and Q(t) = 0 for -  t < 

0, Q(0) = 1 as the history for eq. (11) and integrating also gives this result and this latter 

will be the chosen as the start condition for the numerical integration discussed below. 

We wish to set up the system equations for a general 2–out–of–N:G system and it is with 

this in mind that the triplex system has been solved in the manner that it has. However 

there are other, simpler routes to eq. (11) which will help to justify the method. For 

example, as for this TTFF calculation, there are no in–service repairs from state k = 2, the 

system may only be in the state k = 1 at time t if it was in state k = 0 at time t1 (such that 

t1 > t – ), an item failed at that time and the other two devices survived from t1 to t. I.e.  

 





t

t

110

1
2
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12

t

t
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2
C

111 dt)t(P
)t(R

)t(3
)t(R)t(P

)t(R

)t(R
dt)t(3)t(P  (12) 

which is essentially eq. (10) integrated over all x. Similarly the only way the system can 

be in state k = 0 at time t is if it has always been in state k = 0 or if it last returned from 

state k = 1 at time t1 and has remained there ever since. If it returned from k =1 at time t1, 

then it must have been in state k = 0 at time t1–, at which point a failure occurred, the 
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two remaining devices survived from t1– to t1, and finally the three good devices 

survived from t1 to t, thus 

 







t

1

1C1
2
C

1
10

3
C

3
C0 dt

)t(R)t(R

)t(3
)t(P)t(R)t(R)t(P  (13) 

Consequently, changing variables in the integral, 

 
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1
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Differentiating eq. (14) then gives eq. (11). 

 

Eq. (11) is a differential–delay equation or a differential–difference equation (DDE). 

Such equations have been studied in the Number Theoretical context of sieve methods as 

a means of eliminating primes, e.g. Ref. 23. There are very few analytical, and no simple, 

solutions to such equations. In principle they may be solved using Bellman‟s Method of 

Steps
24

. This solves eq. (11) for Q(t) on the time interval t  (n, (n+1)] using, on the 

right–hand–side, values from the interval t  ((n–1), n]. Thus, for example, integrating 

eq. (11) with Q(0) = 1 and Q(t < 0) = 0, gives Q(t) = 1 on t  (0, ], and integrating again 

 
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t
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)t(R

)t(R)t(
31)t(Q  (15) 

on t  (, 2]. The Method of Steps demonstrates that a solution to eq. (11) exists, and, 

with the continuity of C(t) and hence of Q(t), that that solution is also unique. However 

the need for repeated integration makes it difficult to generate a solution with this method 

except in the very simplest of cases, unless either the repair time  is large compared to 

typical values of 1/(t), or t is of the order of a few . Neither condition is likely to be of 

interest here; and in addition a solution valid for long times is important. We have 

assumed in the above description of the system that the rocof (t) is not state–dependent, 

i.e. one failed item does not alter the rocof of the others. This is not strictly necessary, 

and different values of (t) may easily be introduced into eqs. (5) and (7). 

 

In systems in which safety is important it is expected that the allowed repair time will 

be small compared to typical values of 1/(t). First order DDEs with constant coefficients 

(i.e. , eq. (11) with (t) constant) have been considered by Driver et al.
25

, with a small 

delay time . They find that for certain conditions on these constant coefficients, 

corresponding here to the value of   3exp() < exp(1), the asymptotic behaviour of 

the solution of an equation such as eq. (11) is the same as that obtained by taking the first 

Taylor approximation  
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dt

)t(dC
)t(C)t(C   (16) 

It is well known (e.g. Ref. 26) that such approximations are not generally valid, and 

certainly any hopeful attempt at increasing the accuracy of the solution, for larger  

values, by using higher order Taylor series, may fail through the introduction of 

oscillatory behaviour. However it is certainly worthwhile considering a similar 

approximation here, when eq. (11) in terms of C(t) reduces to the ordinary differential 

equation (ODE),  

 )t(C
)t(

1

dt

d
2

))t(31(

)t(

dt

dC




























  (17) 

This may be integrated without any further approximation to give  

 
















  )t(31

)t(3
logdt

))t(31(

)t(2
)clog()t(Clog

t

0

 (18) 

If we use the normalisation constraint that fS(t) should integrate to one, rather than say the 

behaviour at t = 0 to determine the integration constant, a simple analysis shows that c = 

1/. In this case the cumulative distribution function FS(t) and the reliability RS(t) are then  

 

















 

t

0

2

SS 'dt
)t(31

)t(6
exp)t(F1)t(R  (19) 

2.1.   Constant  

If the rocof is constant, i.e. the failure flows are generated by HPPs, an exact solution to 

eq. (11) may be obtained, although the notation is simplified by introducing the 

dimensionless parameter  = 3exp(), then with RC(t) = exp(–t), eq. (11) becomes 

 )t(Q)t(Q
dt

d
  (20) 

If the initial state is k = 0, the initial data is Q(0) = 1 and Q(t) = 0 for –  t < 0, as above. 

Then the Laplace Transform )s(Q
~

of Q(t) is  

 



/)sexp(s

1
)s(Q

~
 (21) 

The zeros of the denominator are determined by the Lambert W–function
27

, defined such 

that w = W(z) if z)wexp(w  . The poles of )s(Q
~

occur at  /)(Wss mm , where m 

is the branch index of the Lambert function. The residue values are obtained in the usual 

manner to be (1 + sm)
–1

. Note as  is real, properties of W(x) ensure that sm and s–m are 

complex conjugates
27

. Consequently, from eq. (21) the failure time pdf is 
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for t > 0. The t = 0 value of the infinite series in eq. (22) must be understood to represent 

the limit t  0+; the sum of the series for Q(t) obtained by setting t = 0 before 

performing the sum will give an erroneous value of ½ rather than 1. The expression in eq. 

(22) is dominated by the first term corresponding to m = 0. The „exact‟ distribution 

(including terms in the sum up to m = 400) is shown as the solid curve in Fig. (2), for  

= 0.1. Also shown in the same figure is the dominant (m = 0) term (dotted curve) and 

only those terms in eq. (22) corresponding to m = 0, 1 (dashed curve). It is clear from 

Fig.(2) that, to capture the behaviour for t close to 0, requires a large number of terms 

from the sum, but only a small number (one or perhaps two terms) is enough for the 

majority of the time. It is this behaviour, that dictated the manner in which c was chosen 

in eq. (18).  

 

Examining the pole behaviour as  is decreased demonstrates that the real pole 

closest to 3 dominates the failure time distribution, Fig. (3). In the case of fast repair, 

i.e. small , the dominant pole (s0 = W0(3exp()) comes from the m = 0 branch, 

where, for small z, W0(z) ~ z – z
2
 + 3z

3
/2. Thus s0 ~ 3 – 6

2


2
 + 24

3


3
, which leads 

to a dominant term in eq. (22) of 6
2
(1 – 4) exp(–6

2
(1 – 4)t). This analysis is also 

consistent with work on fast repair in reliability problems which predicts that, in the limit 

of small repair times, the failure time distribution should be asymptotically exponential
16–

21
. The value of 1/MTTFF in this case is clearly 6

2
(1 – 4) in the small  limit. We  

  

Fig. (2). The system failure distribution for  = 0.1. The solid curve is essentially the exact result (up to the m 

= 400 terms), the dashed curve consists of only the terms corresponding to m = 0 and m = 1 in eq. (22), and the 

dotted curve is only the dominant exponential term (m = 0). 
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may check this as moments of the distribution (MTTFF, etc.), may be obtained from the 

Laplace Transform of fS(t) which, from eq. (21) and the definition of Q(t), is 

 )))2s(exp(1(
2s

)3s(Q
~

6)s(f
~ 2

S 



  (23) 

Thus the MTTFF is given (exactly, and also to O() approximation) by  

 
 

)(O
6

41

)2exp(13

1

2

1

ds

)s(f
~

d
MTTFF

2

0s

S















 (24) 

As to O(), (1 – 4) ~ (1 + 4)
–1

 this agrees with the MTTF discussed above, see also 

for example Ref. 18. Values of MTTFF values for  = 0.1, are shown Fig.(4). 

2.2.   Nonhomogeneous Poisson Process NHPP 

For the non-stationary process eq. (11) must be solved with time–varying RC(t) and (t). 

A familiar step in reliability analysis might be to consider, say, the case of a Weibull 

distribution as a source of the time–varying rocof, essentially choosing RC(t) for its 

simplicity, and to solve for fS(t) in that case. However, in view of the sophistication of the 

analysis, it is perhaps more expedient to progress in a slightly different way. Define first 

the intermediate function 

 
)t(R

)t(R)t(3
)t(

C

C 
  (25) 
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Fig. (3). Poles structure of )s(Q
~

for 0.02    2. The marker „o‟ corresponds to  = 2, while „x‟ corresponds 

to  = 0.02. 

This is in line with the value of  define earlier for the HPP case. With eq. (25), eq. (11) 

may now be written in terms of (t) as the pair 
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)t(Q)t(
dt
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dt
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 (26) 

The equation in RC(t) is an advanced–DDE while that in Q(t) is a retarded–DDE. The 

pair, eqs. (26), come from adjoint classes, and have been analysed
28–32 

(in pairs) for a 

variety of functions (t). The background to this work is again that of the Number 

Theoretical analysis of prime numbers in which the DDEs developed relate to sieve 

methods. 
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Fig. (4). MTTFF for exponential failures. The solid curve represents the exact expression, eq. (24) while the 

circles represent the single exponential approximation from eq. (22). 

  

If, instead of RC(t) or (t), it is (t) that is now chosen for expedience, so that eqs. 

(31) are most easily solved, the adjoint nature of eqs. (26i) and (26ii) allows the single 

component reliability function RC(t), that gives rise to that (t), (and through that (t)) to 

be solved at the same time as Q(t). However analytical solutions to eqs. (26) only exist in 

a small number of special cases
28–32

. Bradley and others
29–32

 have considered the case 

 
at

b
)t(


  (27) 

which corresponds to a rocof (t) decreasing with time roughly as b/(t + a + b), while de 

Bruijn has analysed
28

 the case )texp()t(  which gives rise to a roughly linearly 

increasing (t). The complexity of the analysis in each case (respectively Refs 29–32, and 

Ref. 28) demonstrates clearly that finding analytical solutions to even the most trivial 
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differential-difference equations (DDEs) is extremely difficult. In addition, the form of 

the solutions obtained is not simple. As a result numerical techniques offer the best 

options. Such problems can also be difficult to solve numerically, however Shampine
33,34

 

has developed a MATLAB programme (ddesd) devoted to the solution of DDEs. 

Shampine‟s programme uses standard Runge–Kutta methods and proceeds in time–steps 

controlled by the current estimate of the size of the residual error. 

 

Eq. (11) may be written in terms of C(t) and fS(t) as the matrix equation 

 )t(
0)t(R)t(2

0)t(3
)t(

)t(2
)t(

)t(
)t(R)t(2

0)t(
)t(

)t(

dt

)t(d
2

2















































 



 (28) 

where (t) = [C(t), fS(t)]
T
. This must be solved with the initial history condition of (t) 

= [0, 0] for –  t < 0 and (0) = [3(0), 0]. For the case of HPPs there is no 

distinguishable difference between the solution from the DDE solver and from eq. (22). 

For a perhaps more realistic example we give the numerical solution for a bath–tub like 

rocof, defined by  

 























t200
200

/t

416

7

200t125416/7

25t0
)25/t3(104

175

)t(  (29) 

which is shown, together with the associated single component reliability RC(t), in Fig. 

(5). The repair time  is nominally 7 days and at the bottom of the bath–tub curve the 

rocof is 1/416 days
-1

, values consistent with the active suspension example introduced in 

ref [22]. The code required to run the MATLAB function ddesd is 

 

opts = ddeset('AbsTol',10^-7,'RelTol',10^-6); 

sol = ddesd(@ddeeqn,@delay',@history,[0, 800],opts); 

t = sol.x*tau;fs=sol.y(2,:)/tau; 

 

A function history is required to set up the value of (t) in the range –  < t  0; 

 

function ph=history(u); 

ph=[0;0]; 

if u == 0, 

   ph=[3*lambda(0)*tau;0]; 

end; 

 

while the function delay describes the delays in eq. (28) in units of , 
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Fig. (5).  Single component failure rate (t) given in eq. (29), and the appropriate single component reliability 

function RC(t). 

 

function d = delay(u,y); 

d=u-1; 

 

Finally a function (here labelled ddeeqn) is required so that the dde algorithm may 

determine the value of )t( (i.e. dphdt) as a function of time, given the current values 

of t, )t(  and )t(  (or u, ph and ph1), from the DDE, eq. (28). Thus  

 

function dphdt=ddeeqn(u,ph,ph1); 

dphdt=[0; 0]; 

lam=lambda(u);LT=lam*tau;LTdot=lamdbadot(u)*tau;R=RC(u); 

dphdt(1)=(lTdot/lam-lamT)*ph(1)+ 3*lamT*ph1(1); 

dphdt(2)=2*LT*(R^2)*(ph(1)-ph1(1))+(LTdot/lam-2*LT)*ph(2); 

 

All that is required are functions (lambda(u) and lambda_dot(u)) defining the 

rocof (t) and its derivative and the single component reliability RC(u)defining RC(t). 

Fig. (6) shows the TTFF distribution obtained from the DDE solver. It turns out that the 

quadruplexed system is much more complex than this due to the M(t)/D/2 queuing and 

results for that case will be considered elsewhere. For now we turn our attention to 

obtaining approximate results for the general 2–out–of–N:G case for NHPP flows for the 

small (t), for which we shall regard the N = 3 case as a specific example. 
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3.   The General 2–out–of–N:G case with NHPP flows.   

In the 2–out–of–N:G system, the system is again described by the state probabilities Pk(t) 

that there are k items in repair at time t. We denote, for each state k  0, N–1, the vector 

of ordered remaining component repair times by ]x,...,x,x[x k21
)k(
 , where 

}xx...xx0|x{Xx k1k21
)k(

k
)k(

  , and define the density functions 

)x|t(p
)k(

k , such that the probability the system has k items in repair, with an associated 

emaining repair time vector in the range )xdx,x(
)k()k()k(

 , is
)k()k(

k xd)x|t(p . In this 

way the item with remaining repair time x1 is the item which will be returned to service 

first while that with xk will be last. The probability that the system is in state k, Pk(t), is 

then the integral of 
)k()k(

k xd)x|t(p over its ordered set Xk. Whilst it is perhaps more 

natural to index the pdf for (say) state k = 1 by the time of the most recent failure t1 rather 

than by x1 =  + t1 – t, the latter is chosen as the remaining repair times x1 are defined on 

the finite range [0, ] and, for small , expansions in x1 are simpler than in t – t1. This is in 

fact more important in the quadruplex case considered elsewhere [35]. 

 

In terms of these probabilities and density functions, the system state–equations are  

)t(P)t(2
dt
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






(30) 

Eq. (30i) describes the transitions out of state k = 0 and may be derived in a manner 

similar to eq. (5); (30ii) describes the balance in state k (1  k  N–3); (30iii) refers to 

state k = N – 2 (different from eq. (30ii) as there is no transition out of the failed state k = 

N–1) and may be derived in a similar manner to eq. (7); finally (30iv) describes 

transitions into the failed state, k = N–1 and plays the role eq. (9) plays for the triplex 

case. The continuity conditions at the states boundaries are  

 
3Nk1)x|t(p)t()kN(),x|t(p

)t(P)t(N)|t(p

)k(
k

)k(
1k

01







 (31) 

The first of these plays the role of eq. (3) in the triplex case. The second performs the 

same task at the other state boundaries. Eqs. (31) ensure that the system correctly enters 

state k + 1 correctly when a failure occurs in state k. The system reliability RS(t), MTTFF 

and failure time distribution fS(t) are given by, respectively, 
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Fig. (6).  Comparison of the DDE solution, using the MATLAB ddesd routine33,34, and the small repair–time 

approximate solution (eq. (41) with N = 3) for the failure distribution of a 2–out–of–3:G system, each of whose 

components have the bath–tub type failure–rate given in eq. (29). The numerical solution is represented by the 

solid line while the dotted curve corresponds to eq. (41). Also shown for comparison is the system failure 

distribution assuming a constant failure rate equal to that at the bottom of the bath–tub curve (dash–dotted line). 
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Generally for a 2–out–of–N:G system, with a fast replacement facility, i.e. small 

repair time , it will be admissible to expand )x|t(p
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 , as a Taylor series around 
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  . This yields, for 0 ≤ xk ≤ , 
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so that, integrating over the ordered set XN-2, 
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In changing from derivatives with respect to xk, to those with respect to t, we have used 

eqs. (30ii). This introduces, in the summation, terms in )|t(p
)k(

k  plus a term in (N – k) 

(pk(t|
k
) – pk(t|0,

k-1
)). This latter term is of O((t)) compared to the former and at this 

level of approximation may be ignored. We have also used repeatedly, from eqs. (31),  
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Clearly from eqs. (31i), (34) and (35), Pk(t) ~ O((t)
k


k
) and as a consequence the 

reliability may also be approximated from eq. (32i) as 
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Notice also that, from eqs. (32iii), (34) and (36), the leading term in the time derivative of 

log(RS(t)) is  –N(N-1)(t)
N–1


N–2

 and thus, from eq. (36),  

 ))t((O)t(log
dt

d
)|t(plog

dt

d
1   (37) 

Combining eqs. (32iii), (34), (36) and (37) 
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Integrating this then gives 

 



































 





t

0

1N

2N22
S du

)u(N1

1N

)u(2
1)u(

)1N(Nexp)))t((O1()t(R  (39) 

The first factor in eq. (39) represents the fact that eq. (36) is only accurate to O((t)) 

and also absorbs the second term in eq. (38). It is clearly possible to ignore this factor 

when t/MTTFF is significantly greater than around (t). In this case the system may be 

described by an instantaneous hazard rate of 
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The analysis presented so far is in line with that of Solov‟yev and Zaytsev who 

suggested
16

 that, for systems with sufficiently small repair times , if the system 

reliability RS(t) behaves as exp(–hS0(,)t) for constant  (i. e. MTTFF = 1/hS0(,) as in 

eq. (12)) then it can be expected that, for time varying (t), RS(t) 
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0S du)),u((hexp as in eq. (10). The hazard function hS0(,) is a function of  

and  appropriate to the particular problem under consideration. Here, as opposed to Ref. 

16, however, it is clear that that the requirement is only for (t) to be small.  

Compared with triplex, eq. (39) with (t) constant agrees with eqn (24) to O(
2


2
), 

and represents a slightly more accurate result than that of eq. (19). It may in fact be 

derived by retaining the second order term in 2/)t(C2  in eq. (16). We should note that it 

has been assumed here that the Taylor series for C(t – ) can be truncated after the first 

two terms. This requires a relatively slowly changing function C(t) over intervals of 

length . Indeed )t(C is only small compared to C(t), from eq. (17), with small (t), 

provided that )t( /
2
(t) ~ O(1). Thus, the method of Diver

25
 is expected to fail for failure 

rates which change too rapidly. The DDE solution for the triplex TTFF distribution is 

compared with the approximate solution obtained above, eqs. (39) and (40), in Fig.(6). 

Also shown is the exponential distribution with a constant rocof equal to the value of (t) 

at the bottom of the bath–tub curve. The solutions are indistinguishable for this case as 

(t) is small, so that eqs. (39) and (40) are likely to represent a very good approximation 

for most realistic safety–critical (small (t)) systems.  For larger (t) the DDE solver is 

recommended.  

 

    For HPP flows in a 2–out–of–N:G system (N-plex redundancy), with small , 

MTTFFN is then given by the asymptotic expression 
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Consequently, for small , increasing the level of redundancy from N–plex to (N+1)–

plex improves the MTTFF by a factor of around (N–1)/(N+1)  ()
-1

 for large N. 

Using eq. (41) it is possible, for example, to choose the level of redundancy in the active 

suspension unit to give an MTTFF for that system which will not interfere with the 

running operation of the parent railway vehicle. Alternatively using eq. (40) one can 

choose N to ensure that the overall hazard rate is kept within some acceptable value. Thus 

if  = 1/416 days
-1

,  = 7 days and if it is required that MTTFF is 500,000 h as in Ref. 22,  

a triplex system (N = 3) will give an MTTFF of around 99,000 h while a quadruplex 

system (N=4) will give an MTTFF of around 2,900,000 h. Clearly only a quadruplex 

system will provide the required reliability. 

4.   Conclusions 

We have considered the failure of general 2–out–of–N:G systems, with component 

failures determined by a time–dependent rocof (t). The problem definition reflects two 

possible cases. The analysis corresponds to either the case that an environmental variable 

causes a common time–dependent acceleration of the single–component rocof, or the 
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components age with rocof (t) but undergo a fast, minimal repair. There is a requirement 

that Maintenance Engineers complete replacements within some maximum time  which 

includes any transportation time. As the system is assumed to be safety–critical, this 

maximum value is assumed for all repairs. In the former case, where the time–variation is 

due to an environmental change, the Maintenance Schedule must include a regular 

replacement of components so that failures due to component ageing processes may be 

excluded. Consequently their time–dependent failure rate (t) is assumed to come from 

other sources such as general degradation of irreplaceable system components placing 

additional loading onto subsystem components. In the latter case the repair time  is 

assumed sufficiently small that minimal repair is a reasonable approximation.  

 

In either of these cases, the TTFF reliability function and hazard rate are determined 

approximately by eqs. (39) and (40), while the specific case of triplex redundancy is 

considered in more detail. For a constant single component failure rate (t) =  

(constant), the triplex MTTFF is given by eq. (24) and the TTFF distribution by eq. (22). 

In the case of a more general time–dependent failure rate with NHPP flows, the failure 

time distribution is governed by the solution of a first order differential–delay equation 

(DDE), the analytical solutions of which are extremely complex even for simple cases. 

Such DDE equations are generally suitable only for numerical methods and an illustration 

case assuming a bath–tub like single component failure rate, using Shampine‟s ddesd 

function
33,34

 (written for MATLAB), is covered in some detail. Using this method the 

system hazard rate hS(t) for any (t) may be calculated and a redundancy may readily be 

chosen that will ensure that the hazard rate is kept within prescribed bounds, or that the 

MTTFF is sufficiently long. 
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