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The efficiency and profitability of Floating, Production, Storage and Offloading platform (FPSO) terminals
depends on various factors such as LNG liquefaction process type, system reliability and maintenance
approach. This review is organized along the following research questions: (i) what are the economic
benefit of FPSO and how does the liquefaction process type affect its profitability profile?, (ii) how to
improve the reliability of the liquefaction system as key section? and finally (iii) what are the major CBM
techniques applied on FPSO. The paper concluded the literature and identified the research shortcomings
in order to improve profitability, efficiency and availability of FPSOs.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Natural Gas (NG) is considered as the cleanest fossil fuel and
holds several advantages over other energy resources such as the
low emittance of harmful products and the high calorific value. In
2014, The International Energy Agency (IEA) predicted that the
international demand for energy will increase by 37% and that the
demand for Natural Gas (NG)will bemore than 50% higher than the
2014 levels by 2040 (World Energy Outlook, 2014). The demand for
NG kept increasing annually by 2.7% over the last decade and the
global gas demand reached 3284 billion cubic meters (bcm) in
2010. NG came third behind oil and coal with a 21% share in the
global primary energy mix. The IEA categorized United states as the
first NG consumer as well as the second NG producer (World
Energy Outlook, 2011). The U.S. Energy Information Administra-
tion (EIA) estimated that there are 2587 trillion cubic feet (Tcf) of
technically recoverable NG in the U.S. This amount includes
cal and Systems Engineering,
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undiscovered, unproved, and unconventional natural gas which
could significantly change the American markets of energy supply
and use (Annual Energy Outlook, 2010). In the coming decade, NG
and nuclear power will be on top of the list of most promising
energy resources. However, the confidence of atomic based power
generation was shocked due to Fukushima nuclear accident which
hit Japan in 2011. This catastrophic accident increased the confi-
dence of NG utilization and gave NG a bigger stake on future energy
demand.

In 2013, EIA forecast that during the coming 28 years, NG will
overtake coal and will be the world's second most widely utilized
fuel after oil. EIA predicted that Liquefied Natural Gas (LNG) will
take a bigger stake in overall supply of gas. Since the price of LNG is
50% cheaper than diesel, the economic performance of converting
buses, trucks, ships to LNG is assured. Based on the Annual Energy
Outlook (AEO) 2013 report and due to the huge demand for elec-
tricity, 63% of the new electricity generating capacity from 2012 to
2040 in the Reference case will be based on NG-fired plants,
compared to 31% for renewables, 3% for nuclear and 3% for coal as
shown in Fig. 1 (Annual Energy Outlook, 2013).

The LNG liquefaction process starts by treatment of dry lean
natural gas after the steps of acid gas removal, dehydration, mer-
cury removal, heavy hydrocarbon removal, and optional feed
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Fig. 1. Electricity generation capacity addition by fuel type (Annual Energy Outlook,
2013).
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recompression. Further liquefaction processes involve the three
basic processes of NG precooling to about �30 to �40 �C, lique-
faction to about �120 to �135 �C, and subcooling to about �140
to �165 �C as shown in Fig. 2 (Bukowski et al., 2011).

The volume of LNG is about 1/600th the volume of NG. LNG is
transported to receiving terminals using large ships. The LNG is
typically off-loaded and stored into well-insulated storage tanks. In
order to supply the NG through domestic pipeline distribution
systems, the LNG must be restored to its gaseous form. The con-
version process from LNG to NG is known as “regasification” (The
Energy Department's Fossil Energy Organization).

LNG can be produced and stored in the sea and then transferred
to the world market through carriers using FPSOs. Currently, the
demand for FPSO platforms is increasing due to the increasing
demand for LNG (Gowid et al., 2013; Haid, 2010).

Liquefaction is considered as the key process on FPSO terminals.
The cost of LNG liquefaction plant ranges from 30% to 40% of the
overall cost of LNG production plant. Liquefaction system failures
may cause serious risk to FPSO terminal and its environment. To
maximize the operational availability and minimize the associated
cost of the liquefaction system on FPSO, the following factors must
be taken into consideration: (i) configuration of system redun-
dancy; (ii) applied maintenance strategy, and (iii) repair plan that
Fig. 2. Air products AP-C3MR™ LNG process (Bukowski et al., 2011).
takes into consideration that the ship is on the sea, and that spare
parts are sometimes not available onboard (Pil et al., 2008). Mixed
Refrigerant Cycle (MRC), N2 expander cycle, and Propane Precooled
Mixed Refrigerant C3MR process are the three major liquefaction
processes. The C3MR process has the highest economic perfor-
mance and is selected by the majority of FPSOs manufacturers (Li
and Ju, 2011).

The profitability of LNG production plant is directly affected by
the applied maintenance strategy and LNG liquefaction plant reli-
ability. Liquefaction plant's reliability is strongly related to system
redundancy and also to applied maintenance strategy. Hence,
reliability and maintenance strategy are the two main factors that
increase the reliability and operational availability of C3MR lique-
faction process and decrease its associated maintenance cost (Pil
et al., 2008; Gowid et al., 2014). The total maintenance cost can
be defined as the summation of shutdown cost, Preventive Main-
tenance (PM) cost and Corrective Maintenance (CM) cost.

Breakdowns in Oil and Gas production systems significantly
affect the profitability profile of plants as shutdown and mainte-
nance cost sharply increases with the increasing failure rates. Quick
repair of breakdown equipment is critical. Due to the high shut-
down andmaintenance cost during failures, CBMwas introduced to
prevent equipment breakdown. With CBM, equipment are contin-
uously monitored in an effort to decrease the repair time and to
prevent breakdown (Rienstra, 2005). Unlike preventative mainte-
nance, which is based on servicing a machine at scheduled in-
tervals, CBM is based on equipment conditions such as its operating
environment and assigned application (PuraDYN).

Since it is vital to maintain equipment before breakdown, CBM
was introduced to prioritize and optimize maintenance resources
to maintain the equipment at the right time. A CBM system de-
termines the equipment's health, and acts only when maintenance
is necessary. Ideally, CBM will minimize the cost related to spare
parts, maintenance and system downtime. Detection of potential
degradation and failure and maximization of useful life of a
component give CBM a specific advantage over other maintenance
strategies (Viktorov, 1967).

Fig. 3 illustrates the relationship between the total maintenance
cost and the different maintenance strategies and standby redun-
dancy strategy. The shutdown cost is associated with the produc-
tion stoppage due to maintenance or failure. The switchover cost is
associated with the production stoppage when the production is
switched over from a main to a standby system. To ensure that the
total maintenance cost is minimal, the standby redundancy strat-
egy should be applied together with an effective CBM system.
Hence, as the LNG liquefaction system has the highest failure rates,
this review paper will focus on the research work carried out in the
field of reliability and CBM of LNG liquefaction systems on LNG
floating platforms.

Fig. 4 illustrates the expectedmaintenance cost reduction due to
the application of different maintenance strategies. The Standby
maintenance strategy with an effective CBM system has the po-
tential of lowering the maintenance cost to its minimum as the cost
of shutdown, switchover, PM will be eliminated.

This paper is divided into five sections. The first section in-
troduces the economic importance of LNG, importance and ad-
vantageous of FPSO and CBM system, and the factors that affects the
profitability of LNG FPSO. In section two, the economic perfor-
mance of FPSO is compared to onshore plants. The cost effective-
ness of the different types of liquefaction processes on FPSOs is
identified and the liquefaction process is described. The reliability
of the existing LNG liquefaction processes is investigated and
concluded in section three. The most suitable reliability calculation
approaches for LNG liquefaction systems are investigated and
prioritized based on their performance in solving such reliability



Fig. 3. Effect of applied maintenance strategy on total maintenance cost.
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problems. Section four reviews the literature of CBM systems
applied to rotating equipment and identifies their advantages and
disadvantages. Finally the last section is a conclusion and a pre-
sentation of the research gaps that should be bridged to improve
the efficiency and profitability of FPSOs.
Fig. 4. Illustrative chart for the maintenance cost variation between the following
proposed maintenance strategies: (a) Standard maintenance strategy, (b) Standard
maintenance strategy with optimized PM, (c) Condition Based Maintenance strategy,
(d) Standby redundancy strategy and (e) Standby redundancy strategy with an effec-
tive CBM system.
2. Floating Production, Storage and Offloading platform
(FPSO)

This section contains a survey of the benefits of FPSO. FPSO is a
recent unit that can be effectively and realistically utilized for
exploitation and utilization of marginal and offshore gas fields,
where a pipeline network is not available, with a small number of
wells and with limited recoverable reserves. FPSO is a floating LNG
production plant that can produce and store LNG in the sea. The
offloading facilities on FPSO allows the transfer of LNG product to
LNG carriers and then to world markets. The LNG-FPSO is not only
compact and mobile but can also be reused in other offshore fields
(Yan and Yonglin, 2008). Fig. 5 shows a typical LNG-FPSO terminal.
The main disadvantages of current FPSOs are (a) the low LNG
production capacity (3.5 MTA), (b) the poor reliability of onboard
centrifugal equipment and (c) the inherited difficulties in operation
and maintenance logistics due to offshore location remoteness (T.



Fig. 5. Sanha e World's first LNG FPSO Terminal (Yan and Yonglin, 2008).
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N. O. I. A. (OLF), 2011).
Yan and Yonglin, 2008 and Haid, 2010 reported the potential

benefits of LNG FPSO and compared it to onshore LNG plants. It was
concluded that the FPSO is cost effective and favorable for LNG
production. In summary, the benefits of using the onshore LNG
plants against the offshore FPSO terminals were compared and the
researchers highlighted the extra benefits of using FPSO in current
LNG industry. The cost and operational effectiveness of offshore
terminals were demonstrated. The following points conclude the
benefits of FPSOs (Gowid et al., 2013; Haid, 2010):

(i) up to 40% cost saving
(ii) shorter time to market
(iii) high utilization flexibility
(iv) compact in size
(v) Early production
3. LNG liquefaction system processes

This section provides a survey of the type and reliability of LNG
liquefaction system processes. The section is organized into major
LNG liquefaction process, Section 3.1 and LNG liquefaction system
reliability, Section 3.2.

3.1. Major LNG liquefaction system processes

Liquefaction is the key process on floating LNG platforms and
the profitability of FPSOs is directly affected by the availability of
this system. There are three major LNG liquefaction processes
namely Propane Pre-CooledMixed Refrigerant cycle (C3MR), Mixed
Refrigerant cycle (MR) and Nitrogen Expander cycle (N2 expander).
Although of the numerous advantages of N2 expander system, the
C3MR process remains on top of the list of most utilized process
due to its high economic process performance. Further research
should be made to develop an LNG liquefaction process that com-
bines the advantages of both of C3MR and N2 liquefaction
processes.

In a research study by Li and Ju (2011), three major LNG lique-
faction processes were analyzed and systematically assessed. In the
study, the C3MR, MR and N2 expander processes were investigated
for the special offshore associated gases in South China Sea. These
processes were analyzed and compared considering factors like
performance parameters, economic performance, layout, sensi-
tivity to motion, suitability to different gas resources, safety and
operability, accounting for the features of the floating production,
storage and offloading unit for liquefied natural gas (LNG-FPSO) in
marine environment. A typical pre-cooled mixed refrigerant pro-
cess is shown in Fig. 6. The process starts by lowering the raw
natural gas pressure and temperature via a turboexpander (E). The
low pressure mixed refrigerants are compressed by a centrifugal
compressor (P-1) and then precooled via a simple propane cooling
system (P-2). The natural gas is then cooled down through four
huge series LNG heat exchangers (H-E1, H-E2, H-E3 and H-E4) to a
very low temperature of approximately�165 �C. The liquefied form
of natural gas is achieved when the output of the heat exchangers is
throttled to the storage pressure. The booster/turbo expander set is
employed in this system and the work recovered from the tur-
boexpander (E) is utilized to drive the booster (B). The pipes lines
are numbered according to the normal sequence of processes.

The result indicated that C3MR has the highest economic per-
formance. The process based on N2 expander has the highest en-
ergy consumption and the poorest economic performance.
Irrespective of these two points, the process has much more ad-
vantages over C3MR andMR for offshore application as it is simpler
and more compact. The N2 expander requires less deck area, less
sensitive to LNG FPSO motion, has better suitability for other gas
resources, has higher safety and is easier to operate. Fig. 7 illustrates
that, although the various benefits of N2 expander process, the
C3MR and C3MR/split MR (precooled MR) remained the most
popular liquefaction process in 2013, accounting for 66% of the total
capacity of on service LNG trains (WorldLNG report, 2014).

Based on the World LNG report, the pre-cooled MR processes
such as C3MR and Dual Mixed Refrigerants (DMR) have the highest
process efficiency while the N2 process has the lowest process ef-
ficiency. In terms of production capacity, the precooled MR process
has the largest capacity that normally ranges from about 1 to
5 þ MTPA. While the capacities of other liquefaction processes are
limited to about 1e2 MTPA per train. The advantages of the N2
process is that it uses entirely nonflammable refrigerant and is
insensitive to vessel motions which makes it the safest LNG
liquefaction process (Bukowski et al, 2013). It can be concluded
from the previous research that there are various LNG liquefaction
processes such as C3MR, MR, DMR, N2 expander and Cascade are
currently utilized (Li and Ju, 2011; Bukowski et al, 2013). The C3MR
and DMR LNG liquefaction processes have the highest economic
performance, and most of land-based LNG facilities use this type of
process in the production of LNG.

The summary of the previous related work reviewed in this
section is as follows:-

- The cost and operational effectiveness of FPSOs make it more
preferable than onshore plants

- The features that affect the selection of FPSO LNG liquefaction
processes are (a) process efficiency, (b) production capacity, (c)
safety and (d) impact of vessel motion.

- C3MR liquefaction process has the highest process efficiency
and most of LNG onshore plants utilize this process in the pro-
duction of LNG.

- N2 liquefaction process is the safest LNG liquefaction process as
the N2 refrigerant is nonflammable and the process is not sen-
sitive to vessel motions.



Fig. 6. C3MR LNG liquefaction process (Li and Ju, 2011).

Fig. 7. Liquefaction capacity by LNG process type (WorldLNG report, 2014).
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3.2. LNG liquefaction system reliability

The reliability of LNG liquefaction plant is of high importance as
it directly affects both profitability and safety on FPSOs. Failure rates
of liquefaction systems on LNG floating platform are high (OREDA,
2009) and the repair times for these failures takes longer time than
onshore repairs. All liquefaction system components are exposed to
wear out which results in increasing the failure rates with time if no
maintenance is carried out (Rausand and Hyland, 2004). The
research papers that are summarized below (in Section 3.2.1)
introduced reliability analysis as used in the oil and gas industry for
a number of different types of terminals and discuss the different
reliability analysis methods utilized to calculate the reliability of
systems. This sets the context for the reliability work later in this
paper, as does the comparison of Markov versus Fault Treemethods
which follows in Section 3.2.2.

3.2.1. Reliability in oil and gas industry e state of art
Many authors have considered applying reliability analysis to

the oil and gas industry. For example, a number of books introduce
the subject (Calixto, 2012; Peters, 2014). Researchers from
academia and industry have also shown an interest in the areawith
papers addressing both the system level issues (Pil et al., 2008;
Aven, 1987; Cheng et al., 2009; Gu and Ju, 2011) and issues with
particular components in the industry such as gas turbines (Sarkar
et al., 2012), compressors (Miranda and Meira, 2008), induction
motors (Thorsen et al., 1995), pipelines (Yuhva and Datao, 2005),
and bearings (Caroni, 2002). However, many of these studies are
indirectly relevant to this study.

Although there are a large number of researches investigated
the reliability in different areas, a research gap is observed in
studying the reliability and in introducing the redundancy to LNG
liquefaction systems. Pil et al. (2008) assessed the reliability of Boil-
off Gas (BoG) Systems on LNG carriers with a focus on maintenance
strategies and redundancy optimization. The objectives of the work
were to: (i) consider and asses the feasibility, reliability and oper-
ational availability of the usual LNG re-liquefaction plant options
for installation on a large LNG carrier; (ii) evaluate the financial
benefits for either total or partial redundancies of the re-
liquefaction plant and confirm the preferred option for large LNG
carriers, and (iii) offer the basic strategy for establishing a main-
tenance policy for the LNG re-liquefaction plant. A typical lique-
faction and re-liquefaction plant diagram is shown in Fig. 8. The
figure shows the BoG (solid line) exciting the cargo tank and
entering the preparation system, where the mist droplets are
eliminated before compression. The BoG is cooled, if it need be. The
BoG is then compressed and sent to the BoG liquefaction, in this
case, a cold box, where the BoG is liquefied after indirect contact
with cooled nitrogen gas in a cryogenic heat exchanger. To mini-
mize the investment cost, efforts were made in combing the LNG
re-liquefaction plant with a Gas Combustion Unit (GCU) rather than
introducing various redundancies in the LNG re-liquefaction plant.
Results showed that in the assumption of no repair on board, the
redundant systemwasmore economical and efficient than the GCU.
The argument for choosing the redundant systemwas reinforced by
the fact that the implantation of full onboard corrective mainte-
nance is most likely impossible. Regarding the maintenance stra-
tegies, results showed that both the Preventive Maintenance (PM)
and the Corrective Maintenance (CM) cost were significantly higher
than flaring. The reason for this was that the system availability is
relatively high evenwithout introducing the redundancy on the N2
compressor system. It is clear that this type of approach could be
extended to the LNG liquefaction systems.

Gowid et al. (2014) assessed and optimized the system reli-
ability and preventive maintenance intervals of propane pre-cooled
mixed refrigerant (C3MR) liquefaction system on FPSO. The authors
developed a Markov model for the C3MR liquefaction system,



Fig. 8. Typical liquefaction and re-liquefaction plant diagram (Pil et al., 2008).

Table 1
Comparison between FTA and MA results accuracy (Andrew and Ericson, 2000).

Consideration FTA MA

1. Models undesired events √ Partially
2. Models probability √ √
3. Models unavailability √ √
4. Series system √ √
5. Parallel system √ √
6. Sequence parallel system Approx. √
7. Full monitor system Approx. √
8. Partial monitor system Approx. √
9. Standby redundancy system Approx. Difficult
10. Repair √ √
11. Latency √ √
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optimized the associated preventive maintenance cost and intro-
duced system redundancy. The cost analysis demonstrated the cost
effectiveness of introducing a 100% standby system for the primary
liquefaction system. The application of such redundancy scheme
will increase the system availability from 85.30% to 97.81% as well
as it will increase the annual profitability by 187.65 million USD
(from 1279.5 million USD to 1467.15 million USD and based on an
LNG price of 50 USD/Mt). The results of this study needs to be
supported by further studies on the reliability and cost effective-
ness of the introduction of redundancy to LNG liquefaction plants.
Further researches should be carried out to study the reliability and
redundancy introduction to all LNG liquefaction systems.
12. Large models Approx. √
13. Dependencies √ No
14. Coverage √ √
15. Easy to follow model √ No
16. Easy to document process √ No
3.2.2. Reliability calculation methods
Markov Analysis (MA) and Fault Tree Analysis (FTA) are twowell

proven analysis techniques that are utilized in systems reliability
calculation. Complexity of design and accuracy of results are the
major parameters that should be taken into account before
deciding the most suitable analysis technique for the system (The
Energy Department's Fossil Energy Organization).

MA is a technique developed by Andrei Markov to calculate the
availability and reliability of systems with dependent components.
The analysis is based on state transition diagram that identifies all
system discrete states as well as all possible transitions between
these states. MA model is time dependent and considers the tran-
sition rates which make this method favorable for calculating the
reliability of time dependent systems (Pukite and Pukite, 1998). FTA
is an analytical logic technique developed in Bell Telephone Labo-
ratories to calculate the availability and reliability of systems. The
analysis is based on fault tree diagramwhich is built top-down and
takes system discrete state as top event and components states as
basic events. Logic gates (AND and OR) are then utilized to inter-
connect the events and conditions (Stamatics, 2014). Although this
technique does not consider the transition time from one state to
another, its simplicity in modeling and calculating the reliability of
complex system makes it preferred than MA.

Andrew and Ericson (2000) compared the accuracy of reliability
calculation techniques. Table 1 shows that Fault Tree Analysis (FTA)
and Markov Approach (MA) yielded the same result for series,
parallel and hot standby systems. The MA and FTA reliability
equations for full monitoring, sequence parallel, and cold/warm
standby systems were different, making the result of FTA an
approximation. Although it was believed that MA produces more
accurate results than FTA, this work stated that the FTA is accurate
and that, for many design complexities, FTA produces similar re-
sults accuracy as MA. In addition, the authors observed that FTA is
much easier in modeling large systems and yielded acceptable re-
sults. Table 1 concludes the summary of results.

Norm Fuqua (2003) observed that fault trees and reliability
block diagrams are widely utilized in predicting safety of complex
systems, maintainability and reliability but they cannot accurately
model the behavior of dynamic systems. The author found that the
MA technique is best in analyzing dynamic systems and referred
this to the capability of MA technique in analyzing complex, faults
tolerant, highly distributed and dynamic systems. The conclusion of
Andrew and Ericson (2000) and Norm Fuqua (2003) is in agree-
ment and showed that the effectiveness of both techniques de-
pends on the size and type of system. The studies concluded that
FTA is easier in modeling large systems and that Markov gives a
better accuracy in calculating the reliability of dynamic systems
such as sequential and cold/worm standby systems.

Ridley and Andrews (1999) presented an improved model for
reliability calculation of standby dependencies and sequential
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systems using FTA and MA. Two new gates were introduced into
the fault tree diagram to allow reliability calculation of standby and
sequential systems using MA. Both FTA and MA were utilized to
outline the new model. The authors extended the FTA to allow an
accurate reliability calculation for both standby and sequential
systems. The main disadvantage of FTA is that it gives an approxi-
mation when used to calculate reliability of dependent systems
while the main disadvantage of MA is the complexity of the con-
struction of Markov state transition diagram. The new model
overcame the drawbacks of both FTA and MA by improving the
accuracy of FTA and by significantly reducing the complexity of MA.
Pil et al. (2008) modeled the BoG and N2 compressor systems using
Markov approach. For each of these two systems, a redundant
standby system of the same type is added. Because of the unique
ability of MA in handling dynamic cases, it was used to calculate the
reliability of the system. Cheng et al. (2009) selected the FTA
technique to calculate the reliability of the Emergency Shutdown
System (ESD). The authors found that FTA is widely utilized for
providing logical functional relationships between system com-
ponents and subsystems and for identifying the root causes of the
undesired system failures. Pil et al. and Cheng et al. utilized the MA
and FTA approaches in modeling the BoG and ESD systems. Kwang
et al. used the MA in modeling the BoG system taking into account
the time dependent transition rates (dynamic systems) while
Cheng et al. utilized the FTA approach because of its proven effec-
tiveness in modeling complex and big system.

The summary of the previous related work reviewed in this
section is as follows:-

- The introduction of a 100% standby system to BoG liquefaction
process significantly improved the system reliability.

- Markov chain approach is preferred over FTA in calculating the
reliability of time dependent (dynamic) systems such as
sequential and standby redundancy systems but the complexity
of the construction of Markov state transition diagram makes it
difficult to implement on big systems.

- There are a very few research papers addressing the reliability
optimization of C3MR LNG liquefaction plants. A research gap
was identified in investigating the system reliability of MRC and
N2 expander LNG liquefaction plants on FPSOs.

4. Condition based maintenance of rotating equipment

This section contains a survey of the recent techniques and re-
sults of CBM systems. The section is organized into typical CBM
systems, value and challenges, Section 4.1, model based diagnostics
technique, Section 4.2.1 and signal based diagnostics technique,
Section 4.2.2 and features selection techniques, Section 4.3.

Condition based monitoring is a process that utilizes the most
appropriate technology and sensors to record a number of char-
acteristics or parameters of equipment. Condition Based Mainte-
nance (CBM) is a maintenance strategy that utilizes the monitoring
process to decide what kind of maintenance should be carried out.
This can be achieved by analyzing various measurable data in
relation to operating machines. CBM detects early changes in
characteristics, parameters and trends, to identify the deteriorating
component's state prior to failure. This helps to enable rectification
without incurring the disadvantages resulting from loss of pro-
duction due to unplanned shutdowns. In contrast, fault diagnostic
processes identify the faulty component along with the cause of the
fault after the occurrence.

Many authors have considered developing CBM systems for
rotating machinery. A number of these research papers assessed
the suitability of implementation of various condition based
maintenance techniques to the fault detection of rotating
equipment such as sound, vibration, process information and AE
and are summarized below (in Sections 4.2.2.1 and 4.2.2.2). Other
research papers investigated on the advantages of utilizing mutli-
fault detection techniques and these research papers are summa-
rized in Section 4.2.2.2. However, no researchers have developed a
“lookup table” that characterizes the best techniques and signal
features for the fault detection of rotating equipment. Automated
features selection process has a key role in CBM systems and come
next to the selection of the most appropriate fault detection tech-
nique. Therefore, as summarized in Section 4.3, many researchers
have developed different approaches to select the best sets of signal
features to improve the detection of faults and to decrease the
developing cost and time of the features selection process. How-
ever, the existing features selection approaches still in need of
development in terms of accuracy and development time.

4.1. Typical CBM systems, value potential and challenges

Maintenance cost is a significant part of the operating cost of
production or manufacturing plants. Depending on particular in-
dustry, maintenance cost can represent 10e40% of the cost of final
product. Distinct from preventive maintenance strategy, Condition
Based Maintenance helps to reduce or eliminate unnecessary re-
pairs, increase the profit by reducing maintenance cost and prevent
disastrous machine failures (Hurdle et al., 2009; Lampis and
Andrews, 2009). CBM relies on mechanical condition's regular
monitoring of different trains of actual equipment. Operating effi-
ciency of equipment trainwill guarantee maximum repair intervals
andwill lower the cost and frequency of unscheduledmaintenance.
Significant improvements may be achieved in: unexpected ma-
chine failures, maintenance cost, repair downtime, and spare parts
inventory. In fact, CBM is a condition-driven preventive mainte-
nance approach that minimizes the maintenance cost and maxi-
mizes the operational availability of systems (IAEA-TECDOC-1551,
2007). Thus, an ongoing effort is made to shift from PM to CBM.

Effective fault detection techniques are essential to implement
the maintenance strategy of CBM. The efficiency of these tech-
niques depends on the accuracy of identifying the correlation be-
tween fault situations and signal features using different fault
detection techniques such as machine process information, vibra-
tion, sound and acoustic emission. Many fault detection techniques
have been proposed in this field. Each technique has its own merits
and demerits. Fault diagnostic is still a challenging problem as a
numerous fault situations can possibly affect the accuracy of
detection due to the improper selection of signal features' sets or
due to the existence of fault interference and noise.

Fig. 9 shows a typical CBM systemwhich continuously monitors
the status of system components and acts only when a component
is about to fail. The process starts by reading the signals coming
from sensors through a data acquisition system. The received sig-
nals are then passed to a features extraction algorithm to extract
the best features of signals and then pass them to a fault diagnostic/
decision making algorithm. The Decision making algorithm is
trained using a set of machine fault signatures which is collected
through either signal based or model based techniques. After the
decision making algorithm being trained, the algorithm compares
the signal features of the current machine conditionwith the signal
features of the fault signature. Then, a real-time decision (faulty of
healthy) will be made based on the current condition of system
components. Effective fault diagnostic algorithms will also deter-
mine the faulty components and the fault type.

Fig. 10 illustrates the features selection process using signal
based diagnostics technique. The experimental determination of
the best features sets of different machine fault signatures consists
of three major processes. The first process is to determine the most



Fig. 9. A typical CBM system.

Fig. 10. Selection process of best features set of machine fault signal using signal based diagnostic technique.
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suitable fault detection technique or combination for diagnosing
faults in machine, the second process is to select the features type
that would give the largest differences between different fault
patterns (time domain, frequency domain or time frequency
domain feature), and the last phase is to process and analyze the
signal to select the best set of features for the automated detection
of machine condition.
4.2. Diagnostic techniques

Fault Diagnostic process is divided into four stages; detection,
diagnostic, identification and then prognosis of faults. The fault is to
be detected when a change in condition parameters is observed.
The fault diagnostic includes two main processes; the first process
is the fault identification and the second process is the fault isola-
tion to determine the location of the faulty component. The fault
can be diagnosed through a quantitative comparison between
different machine condition patterns. The fault identification pro-
cess provides information about the size of fault and the time of
fault onset while the prognosis provides a long term prediction for
industrial applications. Arguably, due to the stochastic processes
that failure events are yet to occur, the formulation of prognosis is
more complex than diagnostic (Galka and Tabaszewski, 2011). The
diagnostic technique can be effectively assessed based on the
following factors (a) detectability of fault, (b) effect of noise on fault
detection and (c) fault can be easily distinguished from other
known and unknown faults. This section reviews the major fault
diagnostics techniques of CBM systems. The section is organized
into model based technique, Section 4.2.1 and signal based tech-
nique, Section 4.2.2.
4.2.1. Model based technique
Models utilized for fault diagnostic are categorized into physics

based models, Section 4.2.1.1 and statistical models, Section 4.2.1.2.

4.2.1.1. Physics based models. Physics based models usually utilize
mathematical models that are directly related to physics parame-
ters that have direct or indirect effect on the health of system
components. The diagnostic process is based on the values of re-
siduals which are commonly generated using Kalman Filters,
Interacting Multiple Models and Parity Relations (Yan, 2015). Fig. 11
shows a typical physics based model for CBM systems. The physics
based model approach helps understanding the physics of the
system and hence enhancing the model based on the compre-
hension of system deterioration. However, the difficulties associ-
ated with this technique are that the developed model is to be
validated using a large number of actual data sets and the model
development process requires special knowledge with mathe-
matics and theories relevant to the monitored system.

Ginzinger (2010) presented amodel based conditionmonitoring
of auxiliary bearing. A multibody simulation environment was
utilized in the modeling of the rotor system shown in Fig. 12. A
number of fault simulation parameters were optimized to align the
simulation results with the measurements. Two different faults
were successfully identified based on the developed model.

Charles et al. (2008) developed two models to simulate both
wheel-rail profile and low adhesion contact. The results of the
simulation were fed into a CBM system to monitor the condition of
wheel-rail interface. Ugechi et al. (2009) proposed a model based
condition monitoring to diagnostic faults in centrifugal pumps. The
model was validated using vibration data of a centrifugal pump.
Guo and Parker (2010) developed a model based condition moni-
toring of planetary gear tooth wedging of a wind turbine system.



Fig. 11. Flowchart of a typical physics based model for CBM systems (Yan, 2015).

Fig. 12. Modeling of auxiliary bearing dynamic response (Ginzinger, 2010).

S. Gowid et al. / Journal of Natural Gas Science and Engineering 27 (2015) 1495e1511 1503
The model shown in Fig. 13 was utilized to predict vibration signals
resulting from the nonlinear tooth wedging behavior. The model
also considered back-side contact, tooth separation and bearing
clearance. It can be observed that Guo and parker verified the
analytical model using a non-verified finite element solution.
Further investigations should be carried to apply the results of this
study to an actual wind turbine system.

In real world, for all model based approaches, serious modeling
inaccuracies occurring due to parameters drift. The majority of the
developedmodels are linear and cannot handle non-linear systems.
Linearization of non-linear systems results in a significant
Fig. 13. 2D dynamic model of planetary gear lumped parameter (Guo and Parker,
2010).
effectiveness reduction of the technique. The modeling of full scale
process is difficult as it includes a number of non-linear relation-
ships which increases the computational complexity and hence
error (Venkatasubramanian et al., 2003).
4.2.1.2. Statistical models. Statistical models are based on statistical
time series measurements. In faulty conditions, statistical param-
eters such as mean and standard deviations values deviate from
their benchmark values. Multivariate statistical techniques such as
Principal Component Analysis (PCA) and Partial Least Square (PLS)
proved their effectiveness in compressing the data and in handling
correlation and noise to effectively extract true information. The
main function of these techniques is to transform a large number of
process related variables to a smaller set of uncorrelated variables
(Venkatasubramanian et al., 2003).

Hurdle et al. (2009) and Lampis and Andrews (2009) developed
two CBM approaches based on the available historical data. The first
approach was based on FTA while the second approach was based
on Bayesian Belief Networks (BBNs). Both approaches utilized the
historical data for training and then performed the detection by
comparing the current system performance to the historical data of
sensors. The BBNs approach had more advantages over FTA as it
ranked all possible faulty components based on their failure
probabilities while FTA identified a single component only.
Although Hundle et al. and Lampis et al. demonstrated the effec-
tiveness of these FTA and BBNs, the fault diagnostic performance
was not properly determined. Shang et al. (2009) investigated
implementation difficulties of intelligent diagnostic on recipro-
cating compressors due to the lack of actual fault samples. Thus, the
authors proposed Support Vector Machine (SVM) technique that is
based on statistical learning theory in order to overcome that
deficiency and to prove a new way for diagnostic technology. The
approach was implemented into an intelligent diagnostic which
can accurately recognize faults and in a rapid way. The main
disadvantage of this work is that the model has not been verified
due to the lack of actual fault signatures. Percentage difference
between the addressed machine conditions' signals features was
not determined. Quantification of differences between machine
conditions' signal features can be utilized in measuring the cer-
tainty\confidence level of CBM approaches. Galka and Tabaszewski
(2011) utilized the lifetime historical data in diagnostics of ma-
chines. The symptom value fluctuations were utilized for machine
learning. An energy processor model was developed to verify the
results of this study. It can be observed that Galka and Tabaswewski
did not verify the developedmodel. Themain advantage of having a
model of the system is that it can allow the simulation of numerous
faults and this can help investigating the fault interference issue.

In general, statistical models are easier than explicit system
models. Although statistical models are powerful in revealing the
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presence of abnormality, the fact that they do not have a fault
signature for each fault makes fault isolation process difficult.
However, Enhanced PCA showed some improvement on the dif-
ferentiation between different process conditions (Miller, 2006).

4.2.2. Signal based technique
Several fault diagnostic systems provide real-time or continuous

monitoring of rotating plant equipment for CBM. These diagnostic
systems utilize either statistical or experimental data sets for
training. They vary from simple devices such as vibration switches
that can produce alarm signals as well as machine shutdown in-
formation, to highly sophisticated multi-channel monitoring de-
vices that include time to frequency domain conversion, expert
data analysis and features extraction algorithms in order to detect
various machine faults as well as to evaluate the severity of each
fault. These systems detect and isolate faults in order to ensure a
smooth and safe machine operation. The learning process of CBM
can be performed using either historical or experimental data.

4.2.2.1. Condition based maintenance using sound, mechanical vi-
bration and process information techniques. The previous research
on condition based maintenance using sound levels, mechanical
vibration and process information is reviewed in this section.
Toprak and Iftar (2007) utilized the sound pressure level to di-
agnose machine faults. The authors studied five faults of com-
pressors that are among the most common faults. A Multilayer
Perceptron Network (MLPN) was proposed to identify the five
faults. TheMLPNwas trained using the back propagation algorithm.
Training and testing data were obtained by Sound Pressure Level
(SPL) measurements of ten selected compressors. Recordings and
measurements were carried out in a semi-anechoic sound test
roomwith 12 microphones. Two different techniques were utilized
in data analysis. In the first approach, the weighted average of all 12
microphones' measurements was used. The second technique
separately used all data from individual microphone; this means
larger data files and more computation time for the MLPN training,
when compared to the first approach. As shown in Table 2, each
fault was precisely identified using the second approach when a
sufficient training was performed.

Toprak and Iftar's research stated that separate utilization of
each microphone data technique is more accurate than using the
weighted average SPL of the 12 microphones if sufficient training is
performed. The authors managed to demonstrate their proposed
approach but the high ratio between the training and testing
datasets and the high computing time and cost were the main
disadvantage of this work.

Condition based maintenance using vibration signatures is one
of the major fault detection techniques. Spectral and time domain
features are the main vibration signal analysis methods. Vibrations
of machines usually result from dynamic forces due to moving
Table 2
Summary of the experiments results (Toprak and Iftar, 2007).

Analysis # of Training data set

1st Approach 1 30
2 60
3 30
4 54
5 54

2nd Approach 6 30
7 30
8 54
9 54

10 54
11 54
structures and parts. Different machine conditions can be detected
by identifying their corresponding fault symptoms, for example,
mechanical vibration, changes in process parameters such as tem-
perature, efficiency and air borne noise (Scheer, 2014). Detections
in vibration analysis show a repetitive motion of the surfaces on
rotating or oscillating machines. This repetitive motion may be
caused by an unbalance, a misalignment, a resonance, electrical
effects, rolling element bearing faults, or any number of other
causes. To determine the current and future operating condition of
the machine, it is vitally important to know the previous degra-
dation pattern and the history of the machine. The major vibration
characteristics of rotating equipment are displacement, velocity
acceleration, Frequency, and phase angle (IAEA-TECDOC-1551,
2007). In vibration spectra, “low” and “high” frequency ranges
can be observed. The various types of vibration frequencies in a
rotating machine are directly related to the geometry and the
operating speed of the machine. By knowing the relationship be-
tween the frequencies and the type of defect, vibration analysts can
define the cause and severity of faults or problem conditions. The
low vibration range contains component frequencies produced by
rotational motion (harmonics). While the high vibration range
contains component frequencies resulting from the interaction
between fluid-flow system and medium flow. In a power steam
turbine, blade frequency range (latter) is typically from a few
hundred hertz to about 10e20 kHz, depending on the turbine
design (Boller et al., 2009; Orlowski, 1989). Shang et al. (2009)
introduced a SVM-based intelligent diagnostic system for recipro-
cating compressors. This approach was utilized due to the lack of
actual fault signatures of the different fault situations for com-
pressors. The main disadvantage of this approach is that the dif-
ference in values between the addressed machine condition
signals' features is unknown. The quantification of differences be-
tween machine condition signals' features can be utilized in
determining the certainty/confidence level of CBM approaches.
Wang and Hu (2006) utilized the vibration technique to investigate
ambiguities and uncertainties that exist among pump failures and
faults symptoms. A new approach for solving the existing problems
of pump fault diagnostic was presented. Fuzzy logic was used to
model the ambiguity and uncertainty relationship between
different pump faults, analyze the fuzzy at different phases of fault
diagnostic, and determine the frequency spectrum that represents
the addressed pump faults. Analysis of the vibration signals of the
pumpwas made to extract the diagnostic features from the spectra.
The fuzzy membership function, that was necessary for the pump
fault diagnostic, was then created using condition variables based
dynamic signal processing. Fig. 14 shows two vibration spectra for
the faulty device. The authors concluded that the addressed faults
were detected according to de-fuzzy diagnostic criteria and
through a fuzzy comprehensive discrimination. It can be concluded
that the traditional spectral vibration signature technique is a
# of Test data set # of Success # of Failures

30 30 0
6 6 0

30 14 16
6 3 3
6 3 3

30 20 10
30 19 11
6 6 0
6 6 0
6 6 0
6 6 0



Fig. 14. Two frequency spectra represent (a) sample fault, (b) second fault with the
same sample fault on the second inlet valve (Wang and Hu, 2006).
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difficult approach for the diagnostic of pump faults. The difficulty
comes from the fact that the differences between various faults
symptoms and events are uncertain. Thus, the authors established a
new fuzzy membership function in order to address the interfer-
ence problem. However, the accuracy of the proposed technique is
not quantified and it is not clear whether the proposed approach
completely addressed the problem. Furthermore, the work did not
investigate the problem of faults interference that strongly affects
the vibration signals.

Liao and Huang (2010) observed that windowing the signals in
Fourier Transfer causes misrepresentation of vibration signals and
frequency distribution spectra were not clear enough for shock
vibration. Furthermore, it was difficult to extract good spectral
features because of the distribution of frequency sidebands in fre-
quency modulation. Auto-Regressive analysis (AR) was utilized to
analyze the signals in time domain. The differences between AR
coefficients were calculated by deducting the AR coefficients of
faulty centrifugal compressor signals from healthy centrifugal
compressor signal. Neural network was trained to model the rela-
tionship between faults and AR coefficients differences. The diag-
nostic results obtained by using neural network with difference of
AR coefficients were better than the results of neural network with
AR coefficients and distance approaches. It can be concluded that
time series analysis has advantages over frequency domain analysis
and that the accuracy of neural network with differences of AR
coefficients is better than the accuracy of neural network with AR
coefficients. The detection accuracy was not reported in numeric
and no concurrent faults were emulated to investigate the fault
interference issue.

Condition based maintenance using process information
demonstrated its effectiveness in diagnosing a number of machine
faults. The fault detection performance is directly affected by the
selection of proper information in addition to the utilization of an
effective decision making algorithm such as decision table and
Fuzzy logic based algorithms (Hafaifa, March 2010; Elha et al.,
March 2010). Zanoli et al. (2010) proposed a fault detection
method for a compression process that is built in the Integrated
Gasification and Combined Cycle (IGCC) part of a refinement plant.
Single and multiple faults were considered that may cause sensor
reading errors in the process actuators. Principal Component
Analysis (PCA) is used in a multivariable data-driven approach to
monitor chemical process performance. A procedure to determine
number of principal components ANOVA was proposed. Faults
detection and isolation were tested and validated on the plant.
Hafaifa (2010) presented a method for compression system fault
diagnostic using Fuzzy Fault Detection and Isolation (FDI). It is an
alternative to the compression systems supervision task using
model-based FDI along with self-tuning of surge measurements
with appropriate corrective actions. By combining this approach
with fuzzy logic, it was possible to devise a fault-isolation system
based on a given incidence matrix. The experimental results
confirmed the effectiveness of the proposed approach. Elha et al.
(2010) studied practical usage of two different CBM techniques.
Namely, Dynamic Cylinder Pressure (DCP) and crankshaft Instan-
taneous Angular Speed (IAS). Conventional transducers for ma-
chine monitoring were utilized in their experiments. The authors
proposed a monitoring technique for valves faults detection in
reciprocating compressors. DCP and IAS were used to build two
truth tables that show the cases in which each method can be
applied. The two truth tables were merged into one decision table.
This combination provided a unique and reliable method of
detection and diagnostic of each individual fault in the compressor.
Zanoli et al. (2010), Hafaifa (2010) and Elha et al. (2010) utilized the
process information technique to detect faults in machines. The
authors addressed the selection of signal features and decision
making algorithm through different approaches. Namely PCA, fuzzy
logic and a decision table approach based on two truth tables. The
disadvantages of Hafaifa et al. and Elhaj et al. ‘s researches are that
they did not consider multiple faults and hence they did not
investigate the issue of fault interference. Elha et al. (2010) did not
determine the fault diagnostic performance of the proposed diag-
nostic approach. In addition, this approach was validated for use
with compressor valves but it is not known whether it will accu-
rately diagnose main compressor faults such as bearing faults.

Condition based maintenance using two or more combined
techniques demonstrated a better performance in detecting ma-
chine faults. Schulthesis et al. (2007) studied different techniques
used in machine heath condition monitoring. They compared the
online versus periodic monitoring and proven versus effective
techniques. The following techniques were found to be effective:
ultrasound vibration, mechanical vibration, temperature, rod run
out, and pressure velocity measurements. The measurements on
the crankshaft case and on the crosshead piece of each cylinder
were proven to be effective. For gas leaks, ultrasonic vibration
measurement was preferable over mechanical vibration. The online
monitoring was effective in decreasing the chance of catastrophic
failures and maintenance and shutdown cost. It can be concluded
that the combination of two or more monitoring techniques max-
imizes the efficiency and accuracy of diagnosing faults in recipro-
cating compressors. Moreover, the appropriate fault detection
technique must be selected based on the type of fault.

The summary of the previous related work reviewed in this
section is as follows:-

- Utilization of Sound pressure, ultrasound vibration, mechanical
vibration, and process information techniques such as temper-
ature, rod run out, pressure velocity techniques are effective in
detecting rotating machinery faults.

- Vibration spectral features are utilized for detecting faults in
rotating equipment

- Uncertainties and ambiguities between fault symptoms and
events of rotating equipment such as pumps made the diag-
nostic information harder to isolate off the vibration signal.

- Combination of two or more CBM techniques maximizes the
accuracy of diagnosing faults in reciprocating compressors.
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4.2.2.2. Condition based maintenance using acoustic emission tech-
nique. Currently, the majority of current CBM systems utilize the
vibration technique in detecting faulty components although most
of fault vibration signatures change with load and speed and are
affected by strong harmonics and interferences. Thus, CBM systems
usually result in false indication of faults or in an inaccurate
severity assessment for an existing fault. Themain concerns of most
CBM studies are the accuracy of the evaluation of machine condi-
tion, the identification fault severity, and the prediction of machine
remaining life under a broad range of machine operating states. The
relationships that exist between machine conditions and machine
process, vibration and Acoustic Emission (AE) can be integrated
into machine fault models during fault identification to assess fault
severity.

AE is defined as the science that deals with the generation, the
transmission, the reception and the effects of sound. It is the
demonstrable physical or air-borne sound that can manifest itself
as; a signal on mechanical objects, the pressure waves associated
with leaking vapor or gasses, or the humming of electrical equip-
ment. Acoustics technology includes frequencies that can be as low
as 2 Hz or that can be as high as mega-Hertz range. Acoustic testing
which includes sensor selection, signal filtration and amplification
and low and high pass filters can be used to diagnose machine
condition (IAEA-TECDOC-1551, 2007). AE provides indicative data
on levels of friction, rubbing, random impacting, and energy pro-
duced by the machine at the location of sensor. Ultrasonic moni-
toring is useful as a first line defense instrument as the collection of
information is relatively fast and inexpensive. Ultrasonic moni-
toring detects the onset of faults in comparison with other tech-
niques (Rienstra, 2005; UE Systems INC). Hence, ultrasound is
utilized to perform preliminary diagnoses and to alert changes in
machine condition. It should be noted that surface defects such as
cracks and scratches attenuate Rayleigh waves. Moreover, the sur-
face finish of metals can also influence attenuation (Mba and Rao,
2006). AE sensors cover a wide frequency range from 40 kHz to
1 MHz. The time domain waveforms associated with AE is of two
types; burst and continuous. A continuous AE signal refers to a
waveform where transient bursts are not differentiable. Both
waveform types are associated with rotating machinery. For
instance, a continuous type emissionmay be as a result of turbulent
fluid flowwithin a pipe while a burst type could be associated with
transient rolling action of meshing gears (Miller and Mclntire,
1994).

For rotating machinery, typical background operational noise is
of a continuous type. Themost commonlymeasured AE parameters
for diagnostic are amplitude, Root Mean Square (RMS), energy,
kurtosis, Crest Factor (CF), counts and events. Observations of the
frequency spectrum, whilst informative for traditional non-
destructive evaluation, found to have a limited success in ma-
chinery monitoring. This is primarily due to the broad frequencies
associated with the sources of generation of AE in rotating ma-
chinery. For example, the transient impulse associated with the
breakage of contacting surface asperities experiencing relative
motionwill excite a broad frequency range (Mathews,1983). Unlike
mechanical vibration technique, AE technique is less affected by
noise and detects the faults in their early stages such as friction in
bearing. High frequency AE signals are produced by rotating ma-
chinery due to frictional forces and are often masked by low fre-
quency vibrations and ambient plant noise (Mathews, 1983). As the
defect size increased, AE RMS, maximum amplitude and kurtosis
values increased, however, observations of corresponding param-
eters from vibration measurements were disappointing (Al-Ghamd
and Mba, 2006). Tandon and Nakra (1990) investigated the suit-
ability of AE peak amplitudes and counts method for the detection
of bearing outer race defects using a resonant type transducer. The
AE counts increased with rotational speed and load. However,
although AE peak amplitudes provided an indication of defects
irrespective of the defect size, AE counts didn't provide any indi-
cation when the defect was less than 250 mm in diameter. The
authors disagree with Al-Ghamd and Mba (2006) regarding the
effect of defect size on the AE maximum amplitude. The research of
Al-Ghamd and Mba was more detailed and the authors emulated
different crack sizes and observed the increase in AE amplitudes.
Rogers (1979) utilized the AE technique for monitoring the condi-
tion of slow rotating anti-friction slew bearings in cranes. The AE
CBM techniquewas found better than vibration CBM technique as it
gave better results. Grinding of the metal fragments in the bearing,
rubbing of the crack faces and impacts between the damaged parts
and the rolling elements in the loaded zone were identified as
sources of detectable AE signatures. Schoess (2000) presented re-
sults of an assessment of six different but relevant technologies for
onboard monitoring of a railcar bearing. It was concluded that the
AE technique offered the highest potential advantage. Rogers and
Schoess demonstrated the potential advantage of AE based condi-
tion based maintenance technique for the fault detection of bear-
ings. However, Rogers focused on kurtosis parameter only and did
not investigate the other time domain and frequency domain signal
analysis methods.

Neill et al. (1997) described how AE techniques could be
implemented as a condition-based maintenance strategy to
monitor the inlet and outlet valves of reciprocating compressors.
AE sensor required very little space and was non-intrusive, which
was a major benefit in hostile conditions. The results revealed the
practical deployment of AE sensors for condition monitoring ap-
plications. Alfayez and Mba (2005) presented a case study on the
application of high frequency acoustic emissions as a means of
detecting early stages of loss of mechanical integrity in low speed
Rotating Biological Contactor (RBC). RBC was used for sewage
treatment in small communities and rotates at approximately
1 rpm. The stub shaft of RBC was fractured. The potential of AE for
diagnosing serious mechanical defects was demonstrated while
vibration technique was found ineffective. Gill et al., Alfayez and
Mba highlighted the effectiveness of AE based fault detection
techniques for the detection of both reciprocating compressor and
mechanical integrity faults. AE technique was found more infor-
mative than vibration technique. The study did not investigate nor
compare other time domain parameters. Dane (1998) discovered
that ultrasonic flow measurement offered significant advantages
over the widely utilized turbine instruments. These instruments
were known to be positively biased by at least 5% due to the
inherently nonlinear aerodynamics. The response of AE signal to
velocity fluctuations is not affected by the rotor inertia of turbine
due to the fact that the nonlinear aerodynamics doesn't affect the
AE signals. Puttmer (2006) proved that AE sensors could play an
important role in condition monitoring of machinery. The author
developed a CBM system for reciprocating positive displacement
pumps and stated that the AE technique was found better than the
vibration technique, in particular in noisy environment. Schulthesis
et al. (2007) showed that the ultrasonic is the preferred approach in
valve condition analysis. Ultrasonic energy is often associated with
gas leaks, so a valve that leaks is a strong generator of ultrasonic
energy. Ultrasonic measurements are usually taken in conjunction
with compressor pressure-volume analysis. Goodman (2010)
referred the effectiveness of ultrasonic to the fact that most
leakage problems in addition to all operating equipment produce a
broad range of sound. High frequency ultrasonic components of
these sounds are extremely short wave in nature. These short wave
signals are directional and it is relatively easy to determine their
exact location. This can be achieved by separating these signals
from operating equipment and background plant noises. Moreover,



Fig. 15. ANN optimization design parameters.
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the directional nature of ultrasound allows these potential warning
signals to be detected on the onset of faults and before they are
detected by infrared or vibration techniques. Dane, Puttmer,
Schulthesis et al. and Goodman demonstrated that AE based CBM
systems are effective in detecting a number of machine faults. The
authors demonstrated that the AE technique responds well to flow
velocity fluctuations and gas leaks.

In practice, the generalization capacity outside the training fault
signature is considered as a limitation of signal based technique
(Venkatasubramanian et al., 2003). Fault interference is one of the
major disadvantages of the signal based technique. Thus, the sig-
natures of faults change and sometimes the fault is masked due to
the interaction between different fault signals. This issue can be
solved by avoiding talking decisions if there are no similar fault
patterns in that region or by increasing the number of samples/fault
patterns to specify all possible faults explicitly including the com-
bination and degradation of all fault conditions, which is consid-
ered very difficult. However, in case of no similar fault patterns and
in case of multiple faults, this technique will effectively detect ab-
normalities in operation but with a limited ability to classify the
unique fault.

The summary of the previous related work reviewed in this
section is as follows:-

- The issues of fault interference and noise represent the main
obstacles in implementing CBM systems.

- AE is more effective than mechanical vibration technique in
detecting faults at their early stages such as friction in bearing.
Also, it is less affected by noise and by nonlinear aerodynamics
of rotors.

- AE proved its effectiveness over the mechanical vibration
technique in detecting the size of cracks.

- Most commonly measured AE parameters for diagnostic are
amplitude, RMS, Energy, kurtosis, crest factor, counts and
events.

- The collective utilization of several fault detection techniques
and signal features improve the accuracy of fault diagnostic.

4.3. Features selection techniques

Currently, the majority of fault diagnostic systems are based on
two features selection techniques. The first technique is based on
the traditional time and frequency analyses while the second
technique is based on Artificial Intelligence (AI) which takes neural
network method as a representative. The traditional techniques
have a reasonable performance in detecting faults but need a prior
knowledge in addition to a numerous fault samples. The artificial
intelligence techniques also have a reasonable performance but
need a high computational time and cost and the accuracy of the
results are always dependent on various design parameters and
these design parameters should be set based on the training and
testing sets. The global structure of the generally used monitoring
system can be divided into the following three main sequential
processes: data collection, followed by data acquisition which in-
cludes the calculation of statistical functions and values in both
time and frequency domains and ending up by automated fault
diagnostic. The automated fault diagnostic is the most difficult
phase and is still under development. Fault diagnostic approaches
should undergo continuous development to adapt to the neces-
sities of industrial applications and to avoid the dependency on
operators (Scheer et al., 2003). Frequency domain signal analysis
technique is essential when using vibration or AE based moni-
toring. For vibration based monitoring, the magnitude of vibration
signal is basically utilized for establishing the severity of the vi-
bration while the frequency content is utilized for identifying the
cause or origin. The AE based method is widely used for monitoring
the condition of rotating machinery. Compared to traditional vi-
bration based methods, the high frequency approach of AE has the
advantage of a significant improvement in signal to noise ratio
(Wang, 2008).

Since the Artificial Neural Network (ANN) architecture and
connections weights significantly affect the performance of the
ANN network, it is desirable to identify the best possible set of ANN
design parameters. As shown in Fig.15, the performance of the ANN
technique is directly affected by the following major design pa-
rameters (a) type and size of the training algorithm in addition to
the values of the training algorithm parameters, (b) number of
training cycles (Epochs) and (c) the number of hidden NN layers in
addition to the number of neurons in each layer. Although one
hidden layer is always sufficient to approximate any continuous
function, the use of two hidden layers can improve the general-
ization in complex problems (Lima et al., 2012).

Chan and Gu (2012) investigated the accuracy of Adaptive
Neuro-Fuzzy Inference System (ANFIS) and ANN AI approaches and
observed that the accuracy increased when the design parameters
were optimized in terms of number of training epochs, number of
Membership Functions (MF) of ANFIS per input, number of ANN
neurons, and type of transfer function for ANN. The values of these
design parameters were obtained by over 50 runs and with final
fuzzy if-then rules of 81 for ANFIS based turbine cycle model.
Saxena and Saad (2006) proposed the utilization of Genetic Algo-
rithm (GA) with ANN for identifying near optimal feature set for
ANN fault diagnostic systems. Nine bearing health conditions were
simulated; eight bearings with different crack sizes in addition to a
healthy bearing. The cracks were constructed using an Electric
DischargeMachine (EDM). Three accelerometers and one AE sensor
were utilized. Five features options were set as inputs for the GA
namely statistical features, statistical on sum and difference signals,
spectral features and all features together. The FFT analysis was
based on 32 values for each signal. The results showed that the
technique of using GAs for selecting an optimal feature set for a
classification application of ANNs is powerful and that the collec-
tive use of all features is at its best. The GA optimized the best
combination based on the performance obtained directly from the
success of classifier and the mean classification success was 99.94%.
Based on Chan and Gu's investigation and on the Fuzzy Interference
System (FIS) structure and parameters adjustment theory, the
ANFIS is complex as the number of membership function, number
of training cycles (epochs) and number of rules must be set. The
accuracy of prediction mainly depends on the design parameters
which usually depend on the training and testing data sets. Hence,
every time the training data sets change, the design parameters
should be adjusted to ensure the maximum accuracy. Conse-
quently, this increases both complexity and computation time and
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cost of AI based approaches. The algorithm developed by Saxena
and Saad included the FFT in the analysis but it doesn't change the
number of segments to better distinguish the fault. The number of
segments should be automatically changed based on the number of
faults and based on the difference between the values in order to
optimize the detection of different faults. Moreover, the FIS algo-
rithm was not tested for the diagnostic of simultaneous faults. The
authors did not investigate the effectiveness of the proposed al-
gorithm in selecting the best feature set for multiple-fault classifier
and in investigating the issue of fault interference.

The Support Vector Machine (SVM) is an artificial intelligence
method based on the principle of statistical learning theory and
was utilized for both feature selection and classification processes.
The SVM method is utilized for both feature selection and classi-
fication (Vapnik, 1999). Meng et al. (2012) presented a new con-
dition monitoring and analysis method for small samples studies
such as reactor coolant pump based on SVM. The data were passed
through a multi-band FIR filter to eliminate the noise and useless
frequency. Kernel principal component analysis was utilized to
decrease the dimension of the vector, processing time and accuracy.
This method is used as multiple- classifier and can separate the
different machine conditions successfully. Gryllias et al. (2009)
developed an SVM based features selector for the selection of
optimal features due to the lack of actual experimental data. The
input features were divided into two groups: (a) Time domain
statistical features such as RMS, SK, VAR and kurtosis, (b) spectral
features such as energy values calculated at specific frequency
bands of the demodulated and measured signals. The main
contribution of this work is that the SVM training was based on a
model that considers the dynamic behavior of defective rolling
element bearings. This enabled the SVM to select a set of good
features without the need of having experimental data of defective
bearings. The approach developed by Meng and Feng was not
validated for the detection of simultaneous faults (unbalance and
friction faults). The authors did not investigate the effectiveness of
the proposed technique in distinguishing machine multiple faults.
Gryllias et al. did not consider the fault interference problem and
only studied the occurrence of a single fault. Finding the dynamic
equation of each component is difficult and consumes time. The
performance of the proposed CBM approach was not verified
experimentally. Moreover, this approachwill not helpminimize the
development cost and time of CBM systems.

Samhouri et al. (2009) proposed a new approach based on the
combination of the axial vibration time signal features of carnallite
surge tank pump namely RMS, variance, skewness, kurtosis, and
normalized sixth central moment. These features were utilized as
inputs to both Adaptive ANFIS and ANN. Three different faults with
three different fault codes were simulated. A total of 92 runs were
conducted; 73 runs for training and 19 runs for testing. The com-
parison showed that the adoption of the time rootmean square and
variance features achieved the minimum fault prediction errors for
both ANFIS and ANN. The trapezoidal membership function in
ANFIS achieved a fault prediction accuracy of 95%, while the
cascade forward back-propagation ANN achieved a better fault
prediction accuracy of 99%. Gupta and Wadhwani (2012) proposed
a robust Genetic Programming (GP) based feature selector for the
selection of best features from large features data set for bearing
fault classification. ANN classifier was utilized for the recognition of
fault patterns. Vibration time domain features were extracted from
the statistical measures of Median, RMS, crest factor, histogram
Lower Bound (LB), histogram Upper Bound (UB), Entropy (ENT),
Skewness (SK), Kurtosis (KT), Variance (VAR), Shape Factor (SHF),
Impulse Factor (IMF), and Clearance Factor (CLF). Experimental data
were collected for four bearings conditions namely healthy,
defective outer race, defective inner race and defective ball fault
condition. The algorithmwas utilized to effectively select a smaller
subset of features. All of the eight features were selected by GP and
yielded a detection accuracy of 99.99%. Zhao et al. (2010) addressed
the limitation of existing spectral feature selection algorithms in
handling redundant features. Since redundant features can have
significant adverse effect on learning performance, the authors
proposed a novel spectral feature selection algorithm of an
embeddedmodel. The proposed algorithm evaluated the utility of a
set of features jointly and efficiently removed redundant features.
The algorithm was based on sparse multi-output regression with
L2;1-norm constraint. The algorithm yielded an average feature
selection redundancy rate of 0.24. This rate is much less than the
redundancy rates of the existing spectral features algorithms.
Samhouri et al. observed the effectiveness of the ANN technique
over the ANFIS technique. The authors neither addressed the fault
types nor utilized the spectral analysis technique as one of the
major vibration analysis techniques. As no multiple-fault simula-
tions were carried out, the effectiveness of the proposed approach
in distinguishing simultaneous faults is not demonstrated. Zaho
et al. demonstrated that the existing spectral features selections
algorithms such as Laplacian Score, Fisher score and trace ratio
failed to handle the problem of redundant features identification. It
can be observed that the existing algorithms evaluate features
individually and cannot identify redundant features.

In recent years, several studies on bearing fault diagnostic using
wavelet analysis were conducted. Lin (2000) used the wavelet
analysis and varied the shape factor of the Morlet wavelet to ach-
ieve the minimum wavelet entropy for bearing fault feature se-
lection. Qiu et al. (2006) used the Shannon entropy and singular
value decomposition to optimize the wavelet entropy and kurtosis
parameters. Bozchalooi (2007) introduced the smoothness index to
guide the parameter selection of the complex Morlet wavelet for
de-nosing bearing fault signal. Wang et al. (2013) proposed a novel
Adaptive Wavelet Stripping Algorithm (AWSA) to extract the
simulated transients from bearing fault signals. A comparison be-
tween periodic multi-transient model and AWSAwas carried out to
show that the proposed approach is better in selecting the random
characteristics of real transients. An enhanced AWSA was also
developed to reduce the computing time. Shen et al. (2010) pro-
posed an automated sensory feature selection method to reduce
the development time and cost of condition based monitoring
systems for machining operations. Force, acceleration, sound and
acoustic emission sensors were utilized for the detection of high-
speed milling operations. Time domain, frequency domain and
wavelet analysis techniques were employed to analyze the
measured signals. Gradual tool wear was used for evaluating the
proposed self-learning automated sensory feature selection
method. The results showed that the proposed method can be
applied through an automated and self-learning monitoring pro-
cess for the selection of the most suitable sensors. Gowid et al.
(2015) proposed an automated FFT based features selection
approach. In comparison to the existing AI features selection tools,
this algorithm managed to significantly increase the detection ac-
curacy as well as to reduce the development time and cost. The
approach is based on a smart segmentation algorithm which di-
vides the frequency spectrum into a number of equal segments. The
segment number and size are calculated to maximize the differ-
ences between different fault signatures. The algorithm yielded a
detection accuracy of 100% and managed to reduce both of
computation time and development time to a few seconds. It can be
concluded that Lin, Qu, Wang et al. and Shen et al. proposed
effective bearing fault detection techniques based on wavelet
analysis technique while Gowid et al. proposed an automated
features selection approach based on AE spectral features with a
confidence level that quantifies the percentage differences between
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the selected features of different fault patterns.
The complexity of ANN technique comes from the fact that its

performance is significantly affected by a large number of design
parameters (Lima et al., 2012). The development time and cost of
ANN based CBM technique is high due to the need for the optimi-
zation of all design parameters which should be customized based
on the training data sets and the accuracy is not guaranteed to be
100%. There is no quantitative factor that can be utilized to measure
the percentage difference between different fault patterns and
hence to better evaluate the certainty of the classification. Many
approaches such as SVMAWSA and GAwere utilized to improve the
accuracy of ANN based features selection algorithm and to reduce
its computing time.

The summary of the previous related work reviewed in this
section is as follows:-

- The majority of the existing automated features selection tools
utilize artificial intelligence methods such as ANN, ANFIS, GA
and SVM while other tools utilize various spectral feature se-
lection algorithms.

- The main disadvantages of the artificial intelligence based
methods are the high computing cost and the high developing
time. The detection accuracy of these methods is strongly
related to the values of their various design parameters.

- Existing spectral features selection algorithms cannot identify
the redundant features which negatively affects the learning
process as well as the accuracy of fault detection.

- The FFT analysis is key in vibration and acoustic based moni-
toring. With exception to the research done by Gowid et al.
(2015), a research gap was identified in developing an effec-
tive automated, non-artificial intelligence, fast and systematic
FFT-based features selections algorithms for CBM systems.

5. Conclusion and research directions

Reviewing the previous related work, it is apparent that there is
a considerable research effort on the importance of FPSO, LNG
liquefaction process performance, BoG system reliability, reliability
calculation approaches, fault diagnostic techniques and automated
features selection algorithms. The work highlighted the short-
comings and identified research gaps that adversely affect the
performance of existing FPSOs. The followings conclude the major
findings of the review:

1. The cost and operating performance of FPSOs demonstrated the
effectiveness of FPSO over LNG onshore plants (Sections 1 and
2).

2. Most of LNG plants utilize the C3MR LNG liquefaction process
for its high economic performance (Section 3.1).

3. There is a research gap in investigating the reliability of C3MR
LNG liquefaction plant on FPSOs (Section 3.1).

4. Markov chain approach is preferred over FTA for calculating the
reliability of time dependent system such as standby redun-
dancy systems but the approach is more difficult due to the fact
that MA takes into account the time dependent transition rates
(Section 3.2).

5. Due to the various advantages of CBM systems, there is an on
ongoing effort to shift from PM to CBM (Section 4.1).

6. There are few studies that compared the major fault detection
techniques for the condition based maintenance of high speed
centrifugal equipment (Section 4).

7. For developing an effective CBM systems for LNG Liquefaction
plants, the followings should be considered:
a) Although the physics based model helps to understand the

physics of the system, serious modeling inaccuracies would
occur due to parameters drift. Linearization of non-linear
systems results in a significant effectiveness reduction of
the technique.

b) Statistical models are easier compared to physics based
models. They are powerful in revealing the presence of ab-
normality. Nevertheless, the non-existence of fault signa-
tures for each fault makes the fault isolation process difficult.

c) The generalization capacity outside the training fault signa-
tures is considered as a limitation of signal based technique.
Fault interference issue is one of the major disadvantages of
this technique.

d) As frequency domain signal analysis technique is key in vi-
bration and acoustic based monitoring. There is a research
gap in developing automated, non-artificial intelligence,
robust fast and systematic FFT-based features selections al-
gorithms (Section 4.3).

e) CBM strategy proved its effectiveness in maximizing the
profitability and availability of plants (Section 4.1).

f) Mechanical vibration, ultrasound vibration, temperature, rod
runout and pressure velocity measurements techniques are
utilized in detecting the faulty components/units. The
inherited issue of faults interference and noise represent the
main drawbacks in implementing the CBM strategy (Section
4.2.2.1).

g) AE is more effective than the mechanical vibration technique
in detecting faults at their early stages such as friction in
bearing. In addition, AE is less affected by noise (Section
4.2.2.2).

h) AE is more effective than mechanical vibration technique in
detecting gas leaks (Section 4.2.2.1).

i) AE proved its effectiveness over the mechanical vibration
technique in detecting the size of cracks (Section 4.2.2.2).

j) The most commonly measured AE parameters for fault
diagnostic are amplitude, RMS, Energy, kurtosis, crest factor,
counts and events (Section 4.2.2.2).

k) The combination of several fault detection techniques and
signal features improves the diagnostic accuracy of faults
(Section 4.2.2.2).

l) The existing automated features selections techniques either
select redundant features which affect the learning process
or have high development cost and time as the majority of
these techniques are based on non-systematic complex
artificial intelligence approaches such as SVM, ANN and
ANFIS. Moreover, the utilization of such approaches needs a
prior theoretical and rule base knowledge and gives different
accuracies based on the values of various optimization pa-
rameters such as the number of training data sets, the
number of membership functions, the number training cy-
cles (epochs) and the classification rules (Section 4.3).

Further research should be carried out to develop an enhanced
LNG liquefaction system that capitalize the advantages of both
C3MR and N2 liquefaction systems or by improving the economic
performance of the N2 liquefaction process. The reliability and
redundancy introductions to various offshore liquefaction systems
should undergo further studies to increase the availability, and
hence, the profitability of LNG floating plants. Further development
of CBM systems is needed to reliably and efficiently diagnose all
machine conditions. Fault interference issue needs more research
efforts. False alarms are a common problem of current CBM sys-
tems. Thus, more studies on the isolation of noise and on the
combination of two ormore fault detection techniques and features
will help ensure the robustness of the CBM algorithm. The features
selection algorithm should undergo more research to enhance and
automate the selection of best features set. Alternative methods to
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ANN based features selection and fault diagnostic methods should
be introduced to overcome high development and high computing
time and cost. Otherwise, an automated optimization algorithm
should be proposed to significantly decrease the development time
and effort of ANN based algorithm and to decrease the computing
time and cost as well.
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