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Abstract: This paper presents a new stacking-sequence optimization method for 

composite laminates using a multicriteria objective function with buckling, strength 

and continuity constraint subject to in-plane normal compressive loads. The objective 

function combines a critical buckling load factor function and a critical failure load 

function into a single function to maximizes in which the relative influence of a 

stacking sequence and number of ply orientations is reflected. The buckling-load and 

failure-load factors are sorted from maximum to minimum respectively in a sequential 

permutation table. A sequence-design strategy and a ply-orientation selection strategy 

are developed to identify the ply orientation of each stacking position and number of 

ply orientations of the stacking sequence involving continuity constraints based on the 

sequential permutation table. A benchmark problem is presented to illustrate the 

accuracy and effectiveness of the method; the detailed results are compared with 

various heuristic methods.  

Keywords: Sequential permutation table; Stacking sequence optimization; Laminates; 

Mechanical properties; Buckling;  
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1. Introduction 

   Composite materials provide unmatched potential and large freedom in design to 

reduce their weight and/or to improve their performance. Thickness, a stacking 

sequence and ply orientations are often set as design variables to tailor global levels of 

stiffness and strength of composite laminates [1, 2]. A discrete set of ply laminates 

makes it a non-convex, nonlinear and high-dimensional complex mixed-discrete 

optimization problem [3] with many local optima, thus bringing new challenges for 

the design and optimization process.  

    Though the stacking-sequence optimization is a mixed-discrete and 

high-dimensional optimization problem with discrete variables, modern mathematical 

optimization methods combined with specific techniques appears to be capable of 

providing efficient solution to this problem. Buckling is one of the most important 

constraints in composite structural optimization since it is one of the most common 

failure forms of composite structures [2, 4]. A variety of optimization methods were 

applied to this problem [5, 6]. The most popular method, namely a genetic algorithm 

(GA) [7-9], is used in stacking-sequence design with buckling, strength and continuity 

constraints. The problem, described in [7], of optimization of the buckling load factor 

by changing the ply orientations, attracts many researchers developing a variety of 

heuristic methods [8-20]. In particular, a permutation GA with a repair strategy was 

developed [12] for continuity constraints. Furthermore, a bi-level optimization 

scheme based on the permutation GA is proposed for the composite wing box design 

[14, 15]. An integrated approach, combining a shape optimization process with the 
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GA was proposed in [21] for shape optimization and stacking-sequence design of 

composite laminates. Another popular method is evolutionary algorithm (EA), used in 

multiobjective optimization of composite laminates [22] and tapered composite 

structures [23]. More recently, a permutation search (PS) is proposed in [24], where a 

buckling load factor was expressed as discrete forms of function of ply orientations to 

reduce computational cost. 

On the other hand, optimization of multi-panel composite structures is more 

difficult due to blending of adjacent panels and nature of ply drops in design. The GA 

coupled with a response surface method was used in [18] to optimize both 

single-panel and two-patch design examples. In recent years, a stacking-sequence 

table (SST) scheme was specialized for EA-based blending optimization [23]. 

Recently, a global shared-layer blending (GSLB) [25] method was proposed based on 

a shared-layer blending (SLB) method [26] for blending design.  

    Although, various heuristic methods are applied to the stacking-sequence 

optimization problem, they are sensitive to initial values and predefined parameters. 

For specific optimization problems, the predefined parameters should be adjusted 

properly to find the optimal solutions. Unsuitable initial values or predefined 

parameters may result in a low convergence rate or even fail to find the optimum. 

Additionally, the design space increases exponentially with the increasing number of 

design variables, making heuristic methods computationally expensive for solving 

optimization problems of large-scale composite structures. In order to overcome these 

limitations as well as concerns of convergence difficulties and of problem size of 
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heuristic methods, a specific method is motivated by previous study for 

stacking-sequence optimization. 

    It is suggested that a stacking sequence of the laminate can be designed based on 

the classical laminate theory employing a specific designed algorithm [24, 27, 28]. In 

[27], a two-level method was developed to determine the feasible region of the 

lamination parameters. Recently, a bi-level optimization scheme for finding an 

optimal stacking sequence of composite laminates subjected to mechanical, blending 

and manufacturing constraints was developed in [28]. In this paper, based on a theory 

of lay-up optimization [27, 28], a sequential permutation table (SPT) method was 

proposed for stacking-sequence optimization. 

    The remainder of this paper is arranged as follows: in Section 2, an optimization 

problem is formulated. Then, the SPT method is developed in Section 3. In Section 4, 

performance of the method is compared with several heuristic methods via a 

benchmark problem. Finally, some conclusions and suggestions are provided in 

Section 5. 

2. Statement of optimization model 

   Buckling analysis of a symmetric and balanced composite plate simply supported 

on four edges (Fig. 1a), can be formulated using an analytical method [16]. The 

classical plate theory of composite laminate is briefly summarized in Appendix A. 

Considering an orthotropic plate, where D16 = D26 = 0, buckling of the plate into m 

and n half-waves (along the x and y directions) occurs when the load amplitude factor 

λb reaches the following value [16]: 
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where Fx and Fy are the normal compressive loads applied to the plate in x and y 

directions, respectively. Substituting Eq. (A.1) into Eq. (1)  
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In Eq. (2), λcb is expressed as the sum of (λcb)k, which is a linear function of the 

flexural stiffness parameters (Dij)k. Obviously, for a specified stacking position k, the 

ply orientation θk is the only design variable in the optimization of flexural stiffness 

parameters and, thus, superposition principles are suitable for evaluation of the 

buckling load factor λcb [24]. As a result, the maximizing of λcb is equivalent to 

identification of the ply orientation θk at stacking position k. To simplify the 

optimization and design processes, the buckling load factor is formulated as a linear 

function of the stacking sequence [24, 28], therefore, the stacking sequence can be 

designed linearly, significantly reducing the computational cost. 

Based on the aforementioned analysis, several important features of 

stacking-sequence design for the maximum buckling load can be summarized:  

(I) At each stacking position k, the optimal orientation θk can be identified separately.  

(II) For each part of the laminates, the stacking sequence can be formulated as 

independent variable. In other words, the stacking sequence can be designed block by 

block.  

(III) Compared to the plies near the mid-plane, the outermost plies make a major 
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contribution to the buckling performance. 

The above features imply that the sequence of the laminate can be designed 

linearly from the mid-plane to the outermost layer by selecting the proper ply 

orientation for maximizing the buckling load factor. 

On the other hand, the failure load of the plate can be evaluated with the first-ply 

failure approach based on the maximum strain criterion [16]. Principal strains in the 

kth layer of the plate are related to the loads by the following relations 
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where λ is the load factor, εx , εy and γxy are the global strain components. The strains 

for each orientation are given as 
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where ε1, ε2, and γ12 are local strains of each orientation.  

The strength failure load factor λcf is taken to be the largest load factor λ given by 

Eq. (3), which corresponds to the critical value when one of the local strains ε1, ε2, 

and γ12 of all layers reaches the ultimate allowable strain value: 
1 2

=0.008, =0.029ua uaε ε  

and 
12 =0.015uaγ  with a given safety factor 1.5 [29]. Therefore, the failure load factor λcf 

can be evaluated as 
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ε1max, ε2max and γ12max are the maximum strains and the safety factor q = 1.5. 

To prevent failure, the objective function should be taken to the maximum of the 
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smaller critical load factor = min( , )c cb cfλ λ λ  [16]:  

=max( min( , ))c cb cfλ λ λ                       (6) 

   The objective of this work is to develop a method to maximize the critical load 

factor λc by changing the ply orientations. The continuity constraints are also applied 

to the optimization, limiting the continuous number of plies of the same orientations 

to 4 to avoid matrix cracking. 

3. Sequential permutation table method  

3.1 Design criterion 

   It is observed that feasible regions of lamination parameters are convex and their 

values reach a vertex with one ply orientation at all stacking positions [27, 28]. Such 

rules can be applied to flexural stiffness thanks to their linear dependence on 

lamination parameters. Furthermore, the buckling load factor λcb is a linear function of 

flexural stiffness parameters and reaches an extreme value with one ply orientation at 

all stacking positions. Therefore, λcb can be designed to vary linearly by changing the 

orientation ply by ply. The expression λcb(θ) denotes the buckling factor λcb (Eq.(2)), 

with all stacking positions setting as θ. 

Since λcb is a convex-hull function of the ply-orientation variable θ (Fig. 2a), the 

optimal stacking sequence for the maximal buckling load factor λcb can be easily 

obtained [28]. On the contrary, the optimum number of the ply orientations for the 

maximal failure load factor λcf is a non-convex hull function of the number of ply 

orientations (Fig. 2b). To obtain the optimal sequence of the laminate with buckling 

and strength constraints, these two load factors are coupled via the objective function 
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(Eq. (6)), thus, the optimal stacking-sequence can be designed under the control of 

linear regularity of λcb (Fig.2c). 

Accordingly, a sequential permutation table (SPT) method is proposed as follows. 

Assume that there are M orientations {θ1,θ2,…, θM} in a symmetric and balanced 

laminate with a total of N plies. First, set the ply orientation to be the same θ at all 

stacking positions if θ = 0° or 90°; Otherwise, θ and –θ should be a half (due to 

balance requirement) in the laminate and a pair of ±θ should stack together (Fig. 3). 

As shown in case 2 of Fig. 3, the buckling load factor and failure load factor of the 

stacking sequence are equal to that of setting all of the orientations to be θ because 

these factors are even functions of ply orientation. Thus, there are [ / 2] 1M + cases of 

different load factors by setting different ply orientations θ ∈{θ1,θ2,…, θM} to be the 

same in the laminate. The values of λcb and λcf can be evaluated for all cases according 

to Eq. (2) and Eq. (5) respectively, and sorted in two columns in Table 1. The first 

column is sorted by the value of λcb from maximum to minimum, where λcb(αmax) >…> 

λcb(α)>…>λcb(αmin); The second column is sorted by the value of λcf from maximum to 

minimum, where λcf(βmax) >…> λcf(β)>…>λcf(βmin). Note that only a half of the 

number of plies n=N/2 is used to characterize the symmetric and balanced laminate 

with N plies.  

    Additionally, if ply orientations are not given or produced at random, the best 

orientation for maximizing λcb should be identified first. Since λcb is a convex function 

of ply orientations of stacking positions, a numerical optimization method (e.g. a 

bisection method) can be applied to find the best orientation for maximizing λcb. If the 
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best orientation θmax is found, candidate orientations should be set as {θmax-90, 

θmax-45, θmax, θmax+45}. The candidate orientations are decided by the number of the 

orientations set in design, set here as M and M = 4. Thus, the SPT can be obtained by 

evaluation of λcb and λcf for each candidate orientation. In engineering, the candidate 

orientations are often set as {0°, 45°, −45°, 90°} or {0°, ±15°, ±30°, ±45°, ±60°, ±75°, 

90°}, so the SPT can be easily obtained. 

The sequential permutation table is a guide for the sequence-optimization process, 

it will be used in the sequence-design and ply-orientation selection strategies. 

3.2 Sequence-design strategy 

In case of all constraints of buckling, strength and continuity involved 

simultaneously, (λcb)max can decrease because of variations of the number of the ply 

orientations and the stacking sequence. Consequently, strategies to optimize the 

stacking sequence and select ply orientations should be developed. First of all, assume 

that the ply orientations are given as {θ1, θ2, …, θM} and the corresponding ply 

numbers are (Nθ1, Nθ2, …, NθM) in one half of the laminate, respectively. Thus, the 

stacking position number � = ∑ ��� = � 2⁄

��� , then, the optimal sequence providing 

the maximum buckling load factor can be obtained [28]:  

minmax

max max min min[ / ... / / ... / / ... / / ... / / ... / ]

i

i i s

NN N θθ θ

θ θ θ θ θ θ
�������������� �����

          (7) 

where, the plies with the same orientation are adjacent to the ply with number Nθi (1≤ 

i ≤ M) and λcb(θmax)> …> λcb(θi) >…>λcb(θmin). However, the continuity constraint is 

always violated in Eq. (7), thus, an appropriate adjustment should be made in the 
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sequence. The repair strategy given in [24] is applied here to deal with continuity 

constraints. The sequence-design strategy with given numbers of each orientation is 

described in detail as following and an example is shown in Fig. 4.  

Step 1: Initialize the sequence according to Eq. (7) based on the numbers of ply 

orientations (Nθ1, Nθ2, …, NθM). Evaluate the initial values of λcb, λcf and λc. 

Step 2: Detect the violated positions moving from the mid-plane to the outermost ply 

(Fig. 4), and save the results in an array Vol_pos. If the numbers of violated positions 

are different, the one with fewer violated positions (Vol_pos1 in Fig. 4) should be 

chosen. On the contrary, if the numbers of violated positions are the same (Vol_pos2 

and Vol_pos3 in Fig. 4), the one close to the mid-plane (Vol_pos3) should be chosen. 

Step 3: Exchange the orientations of violated positions with different orientations and 

those close to mid-plane one by one from the outermost ply to the mid-plane until the 

sequence satisfies the continuity constraints. Evaluate λcb, λcf and λc. Particularly, 

repeat Step 2 after Step 3 since the violated positions may change after the exchange 

operation.  

In Fig. 4, the final optimal sequence is Seq9. Algorithm 1 gives the detailed 

computer program of the sequence design strategy, where angle denotes an orientation 

at a position of the sequence.  

Algorithm 1: Sequence-design algorithm 

1:  Initialize the sequence as Eq. (7) according to the ply numbers of orientations  

    (Nθ1, Nθ2, …, NθM). 

2:  For i = 1 : n 

3:    If angle( i ) violates the continuity constraints 

4:      Sign=0; 

5:      For j = i +1: n 

6:         If angle( j ) ≠ angle( i )  
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7:            Insert angle(j) to stacking position i; 

8:            Sign=1; 

9:            break; 

10:        End if 

11:     End For 

12:     If Sign==0 

13:       For j = i -1: -1: 1 

14:          If angle( j ) ≠ angle( i )  

15:            Insert angle(j) to stacking position i; 

16:            Sign=1; 

17:            break; 

18:          End if 

19:       End for 

20:     End If 

21:   End If 

22: End For 

3.3 Ply-orientation selection strategy 

   In order to maximize the objective function λc, λcb and λcf should be maximized 

simultaneously. However, Eq. (7) only gives the maximum λcb. To improve λcf, the 

number of ply orientations and stacking sequence of laminate should be adjusted 

simultaneously. Based on the analysis of Section 2, three criteria should be satisfied 

during adjustment, where αmax and βmax are the orientations in SPT (Table 1). 

(1). Since the initialization of the sequence has maximal λcb, the adjustments of the 

sequence should be as few as possible to keep λcb while improve λcf. Thus, the 

adjustments should start from the mid-plane to the outermost position.  

(2). To improve λcf, the orientation βmax with maximal λcf should replace αmax 

sequentially from the mid-plane to the outermost ply until λcf reaches and exceeds 

λcb. 

(3). To further improve λc, other orientations should be used to replace αmax and βmax 

according to the sequential permutation table at proper stacking positions. In 
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addition, the balance and continuity constraints should be considered in each 

replacement.  

On the basis of these three points, a ply-orientation selection strategy used to 

maximize the objective λc is proposed based on the sequential permutation table, 

where the levels of thickness and ply orientations are identified while the number of 

ply orientations and stacking sequence are set as design variables. The detailed 

scheme of the ply-orientation selection strategy is described as follows and the 

flowchart is demonstrated in Fig. 5. 

Step 1: Initialize the sequential permutation table (SPT) by the predefined ply 

orientations (θ1,θ2,…, θM). Set the orientation αmax at all stacking positions. Save the 

sequence as “Seq” together with its corresponding λcb，λcf and λc. According to the 

SPT, λcb > λcf in the initial sequence “Seq”.  

Step 2: Operation: Using βmax to replace αmax from the mid-plane to the outermost ply, 

set the current position as k and the current sequence as “Seq”. At each position k, the 

following two judgments should be considered.  

   Judgment a: if αmax ∈{0°, 90°} and βmax ∈{0°, 90°}, only one position needs to be 

replaced each time, then k = k - 1; otherwise, two connecting positions need to be 

replaced to satisfy the balance constraints, then k = k - 2. 

   Judgment b: if the current position violates the continuity constraints, jump to the 

next position k = k – 1; 

   After each replacement, evaluate the λcb，λcf and λc of the current sequence “Seq” 

and save the sequence with its corresponding factors.  
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Step 3: Judgment: for the current sequence “Seq” check: λcf > λcb? If it is, turn to Step 

4; otherwise, k = k – 1, turn to Step 2.  

Step 4: Set the last sequence that satisfies λcf < λcb as “Seq1” with its corresponding 

λcb1, λcf1, λc1 and (λc1)old = λc1, then turn to Step 5; Set the current sequence that 

satisfies λcf > λcb as “Seq2” with its corresponding λcb2, λcf2, λc2 and (λc2)old = λc2, then 

turn to Step 7. 

Step 5: In “Seq1”: λcf1 < λcb1, λcf1 can be improved by selecting an orientation β1 from 

the SPT, which satisfies the condition λcf1(βmax) > λcf1(β1) > λcf1(αmax). If several 

orientations satisfy λcf1(βmax) > λcf1(β1) > λcf1(αmax), β1 should be the one that 

maximizes λc1. Use β1 to replace αmax at position k. Save it as “Seq1” with its 

corresponding factors λcb1，λcf1 and λc1. Record the new λc1 as (λc1)new.  

Step 6: Compare (λc1)new with (λc1)old. If (λc1)new<(λc1)old, the replaced operation failed, 

and (λc1)old is the optimal solution. Save this optimal sequence as “Opt_seq1” and its 

corresponding factors λcb1，λcf1 and λc1, turn to Step 11; otherwise, the replacement 

operation succeeded, and the objective λc1 can be improved further. Compare λcb1 with 

λcf1. If λcb1>λcf1, k = k -1, turn to Step 5; otherwise, λcb1< λcf1, k = k -1, turn to Step 7. 

Step 7: In “Seq2”: λcf2> λcb2, λcb2 can be further improved by selecting the orientation 

α1 from SPT which satisfies λcb2(αmax) > λcb2(α1) > λcb2(βmax). Use the orientation α1 to 

replace βmax without identifying the sequence. Calculate the new λcf2. Record the new 

λcf2 as (λcf2)new. 

Step 8: If (λcf2)new < (λc2)old, the replacement operation failed. Delete the candidate 

orientation, turn to Step 10; otherwise, (λcf2)new > (λc2)old, save the number of the ply 
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orientations, turn to Step 9.  

Step 9: Using the sequence-design strategy to optimize the sequence, where the 

number of ply orientations was identified. Save all the optimized sequences. Select 

the sequence with the maximal λc, save the sequence as “Seq2” with corresponding 

λcb2，λcf2 and λc2. Record the new λc2 as (λc2)new. 

Step 10: Compare (λc2)new with (λc2)old. If (λc2)new<(λc2)old, the replacement operation 

failed, and (λc2)old is the optimal solution. Save this optimal sequence as “Opt_seq2” 

and its corresponding factors λcb2, λcf2 and λc2, turn to Step 11; otherwise, the 

replacement operation succeeded. Compare λcb2 with λcf2. If λcb2 < λcf2, k = k – 1, turn 

to Step 7; otherwise, λcb2> λcf2, k = k – 1, turn to Step 5.  

Step 11: Two optimal solutions “Opt_seq1” and “Opt_seq2” are obtained. The 

sequence-design strategy is applied to these two sequences to overcome the continuity 

constraints. Compare the values of λc, if (λc)Opt_seq1 > (λc)Opt_seq2, the optimal sequence 

is “Opt_seq1”; otherwise, (λc)Opt_seq1 < (λc)Opt_seq2, the optimal sequence is “Opt_seq2” 

Algorithm 2 gives the detailed computer program of the ply-orientation 

selection strategy, where angle denotes an orientation at a position of the sequence.  

Algorithm 2: Ply-orientation selection algorithm 

1:  Initialize the SPT by predefined ply orientations {θ1,θ2,…, θM}.  

2:  Set the orientation αmax at all stacking positions. 

3:  k = n; 

4:  While k >= 1 

5:     If αmax ∈{0°, 90°} && βmax ∈{0°, 90°} 

6:        If  angle( i ) doesn’t violate the continuity constraints 

7:           Use βmax to replace αmax at position k. 

8:           k = k - 1; 

9:        Else  

10:          k = k - 1; 

11:       End If 
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12:    Else 

13:       If  angle( i ) doesn’t violate the continuity constraints 

14:          Use a pair of βmax to replace a pair of αmax at position k and k - 1. 

15:          k = k – 2;     

16:       Else 

17:          k = k - 1; 

18:       End If 

19:    End If 

20:    Evaluate λcb，λcf and λc of the current sequence “Seq”. 

21:    If  λcf >= λcb 

22:        Set the last sequence which satisfies λcf < λcb as “Seq1” and get its λcb1,   

           λcf1, λc1 and (λc1)old = λc1; 

23:        Select an orientation β1 in SPT: λcf1(βmax) > λcf1(β1) > λcf1(αmax). 

24:        β1 = max{ β1∈{λcf1(βmax) > λcf1(β1) > λcf1(αmax)}}. 

25:        Use β1 to replace αmax at position k.  

26:        Save it as “Seq1” with its corresponding factors λcb1, λcf1, λc1 and  

           (λc1)new = λc1. 

27:        If (λc1)new < (λc1)old 

28:           The replacement operation failed, (λc1)old is the optimal solution.  

              Save this optimal  

29:            sequence as “Opt_seq1” and its corresponding factors λcb1，λcf1 and 

              λc1, turn to row 67;  

30:        Else  

31:            If  λcb1 > λcf1 

32:               k = k – 1; 

33:               Turn to row 22. 

34:            Else  

35:               k = k – 1; 

36:               Turn to row 40. 

37:            End If 

38:        End If  

39:    Else 

40:        Set the last sequence which satisfies λcf > λcb as “Seq2” and get its λcb2,  

           λcf2, λc2 and (λc2)old = λc2; 

41:        Select orientations α1 in SPT: λcb2(αmax) > λcb2(α1) > λcb2(βmax) 

42:        Use the orientation α1 to replace βmax without identifying the stacking  

           sequence. 

43:        Calculate the new λcf2 according to the number of ply orientations and  

           (λcf2)new = λcf2. 

44:        If (λcf2)new < (λc2)old 

45:          The replacement operation failed and delete the candidate  

             orientation α1, turn to row 54;      

46:        Else 
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47:           Save the number of ply orientations. 

48:        End If 

49:        Call Algorithm 1 to optimize the sequence with the obtained number  

           of ply orientations. 

50:        Save all the optimized sequence. 

51:        Select the sequence with maximal λc, save the sequence as “Seq2” with  

           corresponding λcb2, λcf2,  

52:        λc2 and (λc2)new = λc2. 

53:        If (λc2)new<(λc2)old 

54:           The replacement operation failed and (λc2)old is the optimal  

              solution. Save this optimal    

55:           sequence as “Opt_seq2” and its corresponding factors λcb2, λcf2 and  

              λc2, turn to row 67. 

56:        Else 

57:           If λcb2< λcf2, 

58:             k = k – 1,  

59:             turn to row 22;  

60:           Else  

61:             k = k – 1,  

62:             turn to row 40. 

63:           End If  

64:        End If 

65:    End If 

66: End While 

67: Call Algorithm 1 to optimize the sequence “Opt_seq1” and “Opt_seq2”.  

68: If (λc)Opt_seq1 >(λc)Opt_seq2 

69:   The optimal sequence is “Opt_seq1”; 

70: Else 

71:   The optimal sequence is “Opt_seq2”. 

72: End If 

 

4. Numerical experiments 

A benchmark problem proposed by Le Riche and Haftka [7], which was optimized 

with various methods in [8-11, 13, 16, 19, 20], is used here to validate the SPT 

method. The material properties of a graphite-epoxy plate are given [7] as: E1= 127.59 

GPa, E2= 13.03 GPa, G12= 6.41 GPa, t = 0.0127 cm, υ12=0.3. In this work, four 

additional load cases with the aspect ratio a/b = 0.125 and 64 layers are added (Table 
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2). Furthermore, to verify the efficiency of this method, the orientations are expanded 

to 12. The sets of orientations for 4 and 12 are introduced as (0°, 45°, −45°, 90°) and 

((0°, ±15°, ±30°, ±45°, ±60°, ±75°, 90°), respectively. At the same time, a comparison 

between the results of λc for 4 and 12 orientations is made. 

    The optimization results for 4 and 12 orientations are given in Tables 3 and 4 

respectively, and their searching process is shown in Fig. 6. To clarify the searching 

process of the SPT method, the load case 2 with 4 orientations (0°, 45°, −45°, 90°) is 

chosen as the example to demonstrate the sequential permutation table method in 

Appendix B. A comparison of the optimal results of 4 and 12 orientation is 

demonstrated in Fig. 7. The searching process of the SPT method starts from the 

maximal vertex of the buckling load factor [27] instead of from different initial points. 

In Tables 3 and 4, the optimal results demonstrate that same orientations prefer to 

stack together and those not close to them are adjusted to satisfy the continuity 

constraints. The number of evaluations of the load factors does not exceed 70, and it 

is noticed that the evaluations of λcb and λcf are different. This is caused by deletion of 

orientations at Step 8 of the ply-orientation selection strategy since no better solutions 

can be obtained for these orientations. In Fig. 6, only the results of evaluations of λcf 

and its corresponding λcb are presented, while those for the factors in the SPT and the 

number of evaluations for any single factor are not included since the objective value 

λc requires evaluations of λcf and λcb simultaneously. Furthermore, it is observed that 

λcb decreases slowly, while λcf increases fast at the initial stages of evaluation because 

the adjustments start from the mid-plane, having minor influence on λcb while 
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improving λcf fast. Then, the values of load factors cross, other orientations are added 

to improve the objective λc with the ply-orientation selection strategy. By comparing 

the results in Tables 3 and 4, it is noticed that as the ply orientations increase, the λc 

increases, as shown in Fig. 7. At the same time, as the orientations increase, the design 

space is increased exponentially, while the number of evaluations does not increase 

significantly. This demonstrates the potential of the SPT method in solving 

optimization problems for large-scale composite structures. 

   Then, at the next stage of our analysis, the first three load cases, that were also 

studied by using various methods [8-11, 16, 19, 20], were selected to validate 

efficiency of the proposed method in terms of computational cost and reliability. The 

convergence rate of GA is sensitive to the predefined parameters, such as: population 

size, genetic operators, crossover rate and mutation rate. The crossover rate is often 

given large in design to produce more different child strings while maintaining their 

parents’ characteristics. On the contrary, the mutation rate is often set small to bring 

in completely new combinations to protect population against uniformity [9]. 

Moreover, since the stacking-sequence design problem have many local optimums, 

the population size is important for search of GA. If the population size is too small, it 

may prematurely converge to a local optimum; otherwise, if the population size is too 

big, it is expensive to converge to a global optimum [7]. The accuracy and efficiency 

of different methods is apparent from results given in Table 5. The reliability is 

defined as performing 100 optimization runs and checking how many of these runs 

reached the optimum at any given point. In general, the optimal results of λc as well as 
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the efficiency are comparable for most of these heuristic methods. The AGATLA 

method performs much better than other existing methods in finding the optimal 

sequence. Also, the AGATLA method can provide superior results since the design 

space is expanded (without the constraint of two layers stack together). Compared to 

the AGATLA method, the proposed SPT method not only has a higher convergence 

speed (about 3 times that of the AGATLA method and about 10 times those of other 

methods) but also has the highest reliability. The SPT method generally has 100% 

reliability, which is superior to all of other methods. Since the SPT method is 

executed step by step, and the optimum is obtained by comparison of two factors – λcb 

and λcf, it is stopped automatically. For the three load cases here, compared with the 

previous best results, the objective value λc was improved by 12.39%, 0.45% and 

2.94%, respectively.  

To decrease the design variable space, in [8-11, 16, 19], it was assumed that two 

layers were stacked together. In contrast, however, the AGATLA [20] and the SPT 

methods can release this assumption, which, as a result, increased the design space. 

Table 6 gives the data for the design space with the corresponding stacking positions 

and numbers of evaluations in the SPT method. As the stacking position increase from 

48 to 64 and orientations increase from 4 to 12, the design space increases from 424 to 

12
32

, while the number of evaluations in SPT method increases from some 10 to 70. 

The remarkable reduction of the evaluations is due to the fact that in SPT method the 

load factor is maximized by designing the stacking sequence linearly from the 

mid-plane to outermost position.  
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5. Conclusions 

In this work, a sequential permutation table (SPT) method is proposed to 

optimize the stacking sequence of the composite laminate with buckling, strength and 

continuity constraints. The ply orientations are set to be the same with the predefined 

values at all stacking positions. The corresponding sequences are saved in a table, 

sorted according to the buckling load and failure load factors respectively. 

Corresponding sequence-design and ply-orientation selection strategies are also 

developed to design the stacking sequence, which is obtained by adjusting 

orientations from the mid-plane to the outermost position sequentially, based on the 

information of the sequential permutation table.  

A benchmark problem was chosen as a test case to validate the performance of 

the proposed method. It is demonstrated that the SPT method not only can 

considerably reduce the number of evaluations but also can remarkably increase the 

reliability of the results. The developed method has a great potential in solving 

high-dimensional discrete-variables stacking-sequence optimization problems for 

composites structures.  
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Appendix A Classical plate analysis  

Mechanics of laminates (see an example) in Fig. 1a can be described with the 
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classical plate theory [1],  
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where F and M are the resultant force and moment vectors, respectively; ε and κ  

are the mid-plane strain and curvature vectors, respectively. The matrices of 

extensional, coupling and bending stiffnesses can be expressed as 
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where hk and hk-1 are the vertical positions of upper and lower surfaces of the kth ply 

(Fig. 1b). [ ]
k

Q  are the transformed reduced stiffnesses and N is the ply number.  

   Considering a symmetric and balanced laminate, the coupling stiffness [B] can be 

neglected, and the extensional stiffness [A] and flexural stiffness [D] can be expressed 

as 
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where Ui (i=1,…,5) are the material constants, the lamination parameters are  
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where θk is the kth ply orientation, k denotes the laminate position from the middle 

plane to the outermost ply (Fig. 1b). Substituting Eq. (A.4) into Eq. (A.3):  
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Note that in Eq. (A.5), Aij (i, j=1, 2, 6) are interrelated to the number of the ply 

orientations, but independent of the stacking sequence. In Eq. (A.6), Dij (i, j=1,2,6) 

are expressed as the sum of those parameters at each position (Dij)k, which are 

proportional to the product of the stacking position function 3 3( ( 1) )k k− − and the 

trigonometric functions of ply orientation θk. 

Appendix B Example of SPT method  

    The detailed searching process of load case 2 with 4 orientations (0°, 45°, −45°, 

90°) is shown below, where the orientations in red are the positions to satisfying the 
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continuity constraints, the orientations in blue are the replaced positions and the 

orientations in green are the positions that will be replaced. 

Step 1: Initialize the sequential permutation table, then choose orientation αmax = 45° 

with maximal λcb = 13640.46, set the initial “Seq” as [(±45)12]s;  

Table B.1 Sequential permutation table of load case 2 with 4 orientations (0°, 45°, 

−45°, 90°) 

Steps Sequence λcb λcf Sequence λcb λcf 

Step 1 

[(±45)12]s 13640.46 5952.00 [024]s 5906.23 25600.00 

[9024]s 12320.80 8837.31 [9024]s 12320.80 8837.31 

[024]s 5906.23 25600.00 [(±45)12]s 13640.46 5952.00 

Step 2: According to Table B.1, choose the orientation βmax = 0° with the maximal λcf. 

Use βmax to replace αmax from the mid-plane to the outermost ply, set the current 

position as k and the current sequence as “Seq”. The replacement process is shown in 

Table B.2. 

Step 3: Compare λcb with λcf after each replacement operation in Step 2. 

Table B.2 Replacement process from Step 2 to Step 4 

Steps Sequence λcb λcf λc Compare 

Step 2 to 

Step 4 

[(±45)9/45/-45/45/-45/45/-45]s 13640.46 5952.00 5952.00 λcb > λcf 

[(±45)9/45/-45/45/-45/0/0]s 13635.99 6942.16 6942.16 λcb > λcf 

[(±45)8/45/-45/45/0/0/-45/0/0]s 13581.19 8925.79 8925.79 λcb > λcf 

[(±45)7/45/-45/45/0/0/0/0/-45/0/0]s 13459.19 10886.20 10886.20 λcb > λcf 

[(±45)6/45/-45/0/0/45/0/0/0/0/-45/0/0]s 13186.17 12818.44 12818.44 λcb > λcf 

[(±45)6/0/0/0/0/45/0/0/0/0/-45/0/0]s 12778.86 14716.06 12778.86 λcf > λcb 

Step 4: In Table B.2: the last sequence that satisfies λcb > λcf is set as Seq1= 

[(±45)6/45/-45/0/0/45/0/0/0/0/-45/0/0]s, and λcb1 = 13186.17, λcf1 = 12818.44, λc1 = 

12818.44, (λc1)old = 12818.44, turn to Step 5; The sequence that satisfies λcf > λcb is set 

as Seq2= [(±45)6/0/0/0/0/45/0/0/0/0/-45/0/0]s, λcb2 = 12778.86, λcf2 = 14716.06, λc2 = 
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12778.86 and (λc2)old = 12778.86, turn to Step 7.  

Step 5: In “Seq1”, λcf1 < λcb1, thus λcf1 can be improved by selecting the orientation β1 

in SPT. To improve λcf1, select the orientation satisfies: λcf1(0°) > λcf1 (90°) > λcf1 

(±45°). So β1 = 90°，using two 90° plies to replace a pair of ±45°. Evaluate the values 

of λcb1 = 13116.67 , λcf1 = 12678.78, λc1 = 12678.78 and set (λc1)new = 12678.78. 

Step 6: Compare (λc1)new with (λc1)old : because (λc1)new < (λc1)old , an optimal sequence 

is obtained Opt_seq1=[(±45)6/45/-45/0/0/45/0/0/0/0/-45/0/0]s. Step 5 to Step 6 is 

shown below; 

Table B.3 Replacement process from Step 5 to Step 6 

Steps Sequence λcb λcf λc Compare 

Step 5 

to 

Step 6 

[(±45)6/45/-45/0/0/45/0/0/0/0/-45/0/0]s 13186.17 12818.44 12818.44 (λc1)old = 12818.44 

[(±45)6/90/90/0/0/45/0/0/0/0/-45/0/0]s 13116.67 12678.78 12678.78 (λc1)new = 12678.78 

Opt_seq1= 

[(±45)6/45/-45/0/0/45/0/0/0/0/-45/0/0]s 
13186.17 12818.44 12818.44 

(λc1)new<(λc1)old and  

(λc)Opt_seq1 = 12818.44 

Step 7: In “Seq2”, λcf2> λcb2, thus λcb2 can be further improved by selecting the 

orientations α1 in the sequential permutation table that satisfies λcb2(45°)> 

λcb2(90°) >λcb2(0°). Using the ply with orientation 90° to replace the one with 0° 

without identifying the sequence. The number of the ply orientations (0
◦
 ,45

◦
 ,−45◦ ,90

◦
) 

changes from (10,7,7,0) to (9,7,7,1). Calculate the new λcf2 according to the number of 

the ply orientations: λcf2 = 13678.03. Record the new λcf2 as (λcf2)new. 

Step 8: Compare the value of (λcf2)new = 13678.03 with (λc2)old = 12778.86 , because 

(λcf2)new > (λc2)old , save the number of the ply orientations (9,7,7,1), which will be 

used for sequence optimization latter. 

Step 9: Using the Algorithm 1 to optimize the sequence, where the number of the ply 

orientations was identified. Select the sequence with maximal λc, save the sequence as 
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Seq2 = [(±45)6/45/0/0/0/-45/0/0/0/0/90/0/0]s with corresponding λcb2 = 12999.16，λcf2 

= 13678.03 and λc2 = 12999.16. Record the new λc2 as (λc2)new = 12999.16. 

Step 10: Compare (λc2)new = 12999.16 with (λc2)old = 12778.86. If (λc2)new<(λc2)old, the 

replacement operation failed, and (λc2)old is the optimal solution. Save this optimal 

sequence as “Opt_seq2” and its corresponding factors λcb2, λcf2 and λc2, turn to Step 11; 

otherwise, the replace operation succeeded. Compare λcb2 = 12999.16 with λcf2 

13678.03. If λcb2< λcf2, k = k – 1, turn to Step 7; Otherwise, λcb2> λcf2, k = k – 1, turn to 

Step 5.  

   Thus, turn to Step 7: select an orientation that satisfies: λcb (45°) > λcb (90°) > 

λcb (0°), so use one 90° ply to replace the 0° ply. The number of the ply orientations 

(0°,  45°, −45°, 90°) changes from (9,7,7,1) to (8,7,7,2). For the number of ply 

orientations (8,7,7,2), (λcf2)new = 12678.78, (λc2)old = 12999.16；(λcf2)new < (λc2)old, there 

will be no better solution, so Opt_seq2=[(45)6/45/0/0/0/-45/0/0/0/0/90/0/0]s. 

Step 11: Two optimal solutions “Opt_seq1” and “Opt_seq2” are obtained. The 

sequence-design strategy is applied to these two sequences to overcome the continuity 

constraints. Compare the values of λc, (λc)Opt_seq1 = 12818.44 with (λc)Opt_seq2 = 

12999.16. If (λc)Opt_seq1 > (λc)Opt_seq2, the optimal sequence is “Opt_seq1”; otherwise, 

(λc)Opt_seq1 < (λc)Opt_seq2, the optimal sequence is “Opt_seq2”. In this example, the 

optimal sequence is Opt_seq2 (see Table B.4). 

Table B.4 Replacement process from Step 7 to Step 11 

Steps Sequence λcb λcf λc Compare 

Step 7 to 

Step 8 

[(±45)6/0/0/0/0/45/0/0/0/0/-45/0/0]s 12778.86 14716.06 12778.86 
(λcf2)new > (λc2)old 

Ply numbers (10,7,7,0) changes to (9,7,7,1)  13678.03  

      
Step 9 [(±45)6/45/-45/90/09]s 12999.16 13678.03 12999.16  
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[(±45)6/45/0/0/0/-45/0/0/0/0/90/0/0]s 

      
Step 10     (λc2)new > (λc2)old 

      

Step 7 to 

Step 8 

[(±45)6/45/0/0/0/-45/0/0/0/0/90/0/0]s 12999.16 13678.03 12999.16 
(λcf2)new < (λc2)old 

Ply numbers (9,7,7,1) changes to (8,7,7,2)  12678.78  

      

Step 10 
Opt_seq2= 

[(±45)6/45/0/0/0/-45/0/0/0/0/90/0/0]s 
12999.16 13678.03 12999.16 (λc)Opt_seq2 = 12999.16 

      
Step 11 Opt_seq = Opt_seq2 12999.16 13678.03 12999.16 (λc)Opt_seq1 < (λc)Opt_seq2 

Finally, in this example the number of evaluations of λcb is 8 and the evaluations of λcf 

is 9 (the first initial point in SPT is included), another two should been added for 

evaluation of the sequential permutation table, so E(λcb)=10, E(λcf) =11, as shown in 

case 2 of Table 3. 
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Figure captions 

Fig. 1 (a) Loading and geometry of laminate; (b) stacking-sequence definition 

Fig. 2 (a) Convex hull of λcb; (b) non-convex hull of λcf; (c) relationship of λcb, λcf and λc 

Fig. 3 Initialization evaluation of sequential permutation table  

Fig. 4 Illustration of rules to deal with continuity constraints for laminate with 38 plies 

Fig. 5 Flowchart of ply-orientation selection strategy  

Fig. 6 Illustrations of searching process for 7 load cases with 4 and 12 orientations 

Fig. 7 Comparison of optimal load factors for 7 load cases with 4 and 12 angles 
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Table captions 

Table 1 Sequential permutation table  

Table 2 Details of load cases considered for evaluation 

Table 3 Optimal stacking sequence using SPT with 4 orientations of (0°, 45°, -45°, 90°) 

Table 4 Optimal stacking sequence using SPT with 12 orientations of (0°, ±15°, ±30°, ±45°, 

±60°, ±75°, 90°) 

Table 5 Comparative performance of SPT and other methods 

Table 6 Efficiency of SPT method 
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Table 1 Sequential permutation table  

Case 

number 

Sorting by buckling load factor λcb Sorting by failure load factor λcf 

Stacking sequence λcb λcf Stacking sequence λcb λcf 

1 [(αmax)n]s λcb(αmax) λcf(αmax) [(βmax)n]s λcb(βmax) λcf(βmax) 

… … … … … … … 

… [(α)n]s  λcb(α) λcf(α) [(β)n]s  λcb(β) λcf(β) 

… … … … … … … 

[M/2]+1 [(αmin)n]s λcb(αmin) λcf(αmin) [(βmin)n]s λcb(βmin) λcf(βmin) 
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Table 2 Details of load cases considered for evaluation 

Case Number of plies N a (mm) b (mm) Fx (N/cm) Fy (N/cm) 

1 48 50.8 12.7 1.75 0.22 
2 48 50.8 12.7 1.75 0.44 

3 48 50.8 12.7 1.75 0.88 

4 64 50.8 12.7 1.75 0.22 

5 64 50.8 12.7 1.75 0.44 

6 64 50.8 12.7 1.75 0.88 

7 64 50.8 12.7 1.75 1.75 
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Table 3 Optimal stacking sequence using SPT with 4 orientations of (0°, 45°, -45°, 

90°) 

Case Stacking sequence with continuity constraints λcb λcf λc 
Evaluations 

λcb λcf 

1  [(±45)4/-45/02/45/04/-45/04/45/02]s 15389.61 15194.05 15194.05 11 11 

2  [(±45)6/45/03/-45/04/90/02]s 12999.16 13678.03 12999.16 10 11 

3  [(±45)9/-45/02/45/02]s 10385.59 11248.13 10385.59 5 6 

4  [±45/02/-45/04/45/04/-45/04/45/04/-45/04/45/02]s 29497.00 26984.31 26984.31 17 17 

5  [(±45)3/-45/02/45/04/-45/04/45/04/-45/04/45/02]s 25322.68 25659.16 25322.68 14 15 

6  [(±45)8/03/45/04/-45/04/90/02]s 23252.48 22943.18 22943.18 11 11 

7  [904/45/904/-45/902/(±45)10]s 15349.71 15824.10 15349.71 18 16 
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Table 4 Optimal stacking sequence using SPT with 12 orientations of (0°, ±15°, ±30°, 

±45°, ±60°, ±75°, 90°) 

Case Stacking sequence with continuity constraints λcb λcf λc 
Evaluations 

λcb λcf 

1  [(±45)4/(-30) 2/302/(-15)2/02/15/04/15/02]s 15677.75 15783.45 15677.75 34 54 

2  [(±60)5/±45/±30/04/-15/04/15]s 13325.56 13403.62 13325.56 30 44 

3  [(±60)8/(±15)4]s 10603.62 10888.57 10603.62 21 29 

4  [±30/02/-45/04/45/04/-45/04/45/04/-45/04/45/02]s 28834.33 27646.04 27646.04 24 24 

5  [(±60)2/(±45)2/±30/04/-15/04/-15/04/15/04/15/02]s 26294.41 26396.86 26294.41 48 68 

6  [(±60)5/±45/±30/(±15)9]s 22983.17 23147.63 22983.17 27 35 

7  [904/-75/904/75/ (±45)11]s 15471.80 15892.31 15471.80 32 33 
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Table 5 Comparative performance of SPT and other methods 

Methods 

Load Case 1 Load Case 2 Load Case 3 

Load Factors 
Evaluations, 

Reliability 
Load Factors 

Evaluations, 

Reliability 
Load Factors 

Evaluations, 

Reliability 

Le Riche [7] - 

GA 

λcb = 14168.12 

λcf = 13518.66 

λc = 13518.66 

2163.4, 

98.8% 
- - 

λcb = 9998.19 

λcf = 10394.81 

λc = 9998.19 

2163.4, 

98.8% 

Kogiso [8] - 

Improved GA 

λcb = 14659.58 

λcf = 13518.66 

λc = 13518.66 

520, 

100% 

λcb = 12743.45 

λcf = 12678.78 

λc = 12678.78 

720, 

96% 

λcb = 9998.20 

λcf = 10398.14 

λc = 9998.20 

1646, 

46% 

Le Riche [9] - 

Improved GA 

λcb = 14659.58 

λcf = 13518.66 

λc = 13518.66 

320, 

100% 

λcb = 12743.45 

λcf = 12678.78 

λc = 12678.78 

990, 

100% 

λcb = 9998.20 

λcf = 10398.14 

λc = 9998.20 

1570, 

96% 

Pai [10] -TS 

λcb = 14659.59 

λcf = 13518.66 

λc = 13518.66 

424, 

100% 

λcb = 12743.46 

λcf = 12678.78 

λc = 12678.78 

499, 

93% 

λcb = 9992.69 

λcf = 10398.14 

λc = 9992.69 

695, 

84% 

Rao [11] -SS 

λcb = 14659.46 

λcf = 13518.67 

λc = 13518.66 

- 

100% 

λcb = 12746.93 

λcf = 12689.08 

λc = 12689.08 

- 

100% 

λcb = 9998.70 

λcf = 10403.75 

λc = 9998.70 

- 

100% 

Aymerich [16] 

-ACO 

λcb = 14659.58 

λcf = 13518.66 

λc = 13518.66 

303, 

100% 

λcb = 12743.45 

λcf = 12678.78 

λc = 12678.78 

549, 

81% 

λcb = 9998.20 

λcf = 10398.14 

λc = 9998.20 

625, 

77% 

Wang [19] - 

MCLACA 

λcb = 13818.29 

λcf = 13518.66 

λc = 13518.66 

130.4, 

100% 

λcb = 12743.45 

λcf = 12678.78 

λc = 12678.78 

515.4, 

85% 

λcb = 9998.20 

λcf = 10398.14 

λc = 9998.20 

544.8, 

94% 

An [20] - 

AGATLA 

λcb = 15359.28 

λcf = 13518.66 

λc = 13518.66 

27.75, 

96% 

λcb = 12940.93 

λcf = 13378.41 

λc = 12940.93 

31.9, 

93% 

λcb = 10089.30 

λcf = 10398.14 

λc = 10089.30 

25.64, 

97% 

SPT 

λcb = 15389.61 

λcf = 15194.05 

λc = 15194.05 

11, 

100% 

λcb = 12999.16 

λcf = 13678.03 

λc = 12999.16 

10, 

100% 

λcb = 10385.59 

λcf = 11248.13 

λc = 10385.59 

5, 

100% 

The data of references [7-11, 16, 19, 20] are getting from the original articles, respectively. 
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Table 6 Efficiency of SPT method 

Number of ply orientations Stacking position Design space Evaluations using SPT 

4 

24 (48 with 2 stack together) 4
12

=1.6777×10
7
 - 

48 4
24

=2.8147×10
14

 <15 

64 432=1.8447×1019 <20 

12 
48 12

24
=7.9497×10

25
 <60 

64 1232=3.4182×1034 <70 
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