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Video-aided model-based source separation in real
reverberant rooms

Muhammad Salman Khan, Student Member, IEEE, Syed Mohsen Naqvi, Member, IEEE, Ata-ur-Rehman, Student
Member, IEEE, Wenwu Wang, Senior Member, IEEE, and Jonathon Chambers, Fellow, IEEE

Abstract— Source separation algorithms that utilize only audio
data can perform poorly if multiple sources or reverberation
are present. In this paper we therefore propose a video-aided
model-based source separation algorithm for a two-channel
reverberant recording in which the sources are assumed static.
By exploiting cues from video, we first localize individual speech
sources in the enclosure and then estimate their directions.
The interaural spatial cues, the interaural phase difference and
the interaural level difference, as well as the mixing vectors
are probabilistically modeled. The models make use of the
source direction information and are evaluated at discrete time-
frequency points. The model parameters are refined with the well-
known expectation-maximization (EM) algorithm. The algorithm
outputs time-frequency masks that are used to reconstruct the
individual sources. Simulation results show that by utilizing the
visual modality the proposed algorithm can produce better time-
frequency masks thereby giving improved source estimates. We
provide experimental results to test the proposed algorithm in
different scenarios and provide comparisons with both other
audio-only and audio-visual algorithms and achieve improved
performance both on synthetic and real data. We also include
dereverberation based pre-processing in our algorithm in order
to suppress the late reverberant components from the observed
stereo mixture and further enhance the overall output of the algo-
rithm. This advantage makes our algorithm a suitable candidate
for use in under-determined highly reverberant settings where
the performance of other audio-only and audio-visual methods
is limited.

Index Terms— Source separation, reverberation, spatial cues,
expectation-maximization, time-frequency masking

I. INTRODUCTION AND RELATED WORK

The objective of source separation systems is to separate
individual sources from acoustic mixtures, a task at which
humans are adept. The most promising approaches for source
separation in the audio-only domain are: frequency-domain
convolutive blind source separation (BSS) within which the au-
dio recordings are modeled at each frequency as instantaneous
mixtures of the unknown speech sources but the separated
signals commonly suffer from the scaling and permutation
(arbitrary order of sources) problems; beamforming techniques
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which tackle the separation problem from a spatial point of
view extracting a signal from a specific direction and reducing
signals from other directions, but these normally require a
greater number of sensors in the array for an improved perfor-
mance; and methods from the field of computational auditory
scene analysis (CASA) in which monaural and binaural cues
such as pitch, onset/offset, interaural level difference (ILD),
interaural time difference (ITD) are used to enhance source
segregation [1]. Time-frequency (TF) masking is a technique
used for audio-only source separation motivated both in CASA
and BSS which relies on the assumption of signal sparseness
i.e. the majority of the TF samples of each signal are almost
zero and thus the sources rarely overlap [2]. The TF approach
can therefore, unlike conventional BSS algorithms, handle the
under-determined problem where the number of sources is
greater than the number of sensors, such as in this paper where
only two microphones are employed.

Humans, however, perceive sound as a multi-modal process
[3], [4] and therefore the authors in [5] proposed a multi-
microphone audio-video source separation method showing
improvement over audio-only and video-only schemes, but
only in an over-determined setting. Sodoyer et al. in [6] also
proposed to separate an acoustic source by utilizing the coher-
ence with the speaker’s lip movements but experimented with
mixtures containing only two sources. In [7] they extended
this work and utilized audio-video coherence within classical
BSS algorithms. They provided separation results for multi-
source mixtures but admitted that robustness was limited if
the phonetic complexity increased. Their algorithms did not
address separation of convolutive mixtures. Rivet et al. in
[8] presented the combination of audio-visual coherence and
BSS to extract speech from convolutive mixtures. Their audio-
visual statistical model exploited the relationship between two
basic lip visual parameters and the acoustic parameters to
solve the indeterminacy problem. They considered only the
case of two sources and mixtures. In [9] the authors proposed
to separate sources given the facial video of the sources and
a synchronous single-microphone recording. They provided
separation results for only two sources speaking in front of
the camera with limited reverberation. New methods to exploit
the visual modality in source separation are therefore required
for multi-speaker highly reverberant environments such as
teleconferencing or meeting rooms.

Hence, we propose a new source separation algorithm for
stereo reverberant mixtures by exploiting cues from video.
We model the ILD and the interaural phase difference (IPD)
following the approach in [10] and include a model for
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the mixing vectors as in [11] where the mean parameter is
estimated by utilizing speaker location information obtained
from video. The parameters of the probabilistic models are
updated iteratively with the EM algorithm. Since the EM
algorithm is sensitive to initialization we initialize the direction
vector parameter with the location information of the speakers
obtained through vision. We compare our method with two
audio-only algorithms requiring only two microphones and
three other audio-visual algorithms using solely localization
cues for separation. We do not make comparison with the
methods in [6]–[9] as they require full-frontal close-up views
of the speakers’ faces, which are not required in our approach.
To the best of our knowledge, our algorithm is the first that
fuses vision with a CASA-type framework producing time-
frequency masks used for speech separation in realistic multi-
speaker environments.

In Section II we give an overview of the algorithm and the
probabilistic models. Section III explains the video processing
and how it is incorporated in the probabilistic speech separa-
tion model. In Section IV we discuss the model parameters
and the expectation-maximization algorithm. In Section V
we provide a variety of simulation results and comparisons
confirming the robustness and consistency of our proposed
algorithm.

II. OVERVIEW OF THE PROPOSED ALGORITHM

An audio-visual source separation algorithm is proposed.
Given binaural reverberant mixtures containing at least two
sources, the ILD, IPD, and the mixing vectors are modeled
probabilistically. The sources are localized in the room us-
ing the video process detailed in Section III and the 3-D
location estimates are utilized in the probabilistic modeling
of the mixing vectors. The optimum model parameters are
estimated by the EM algorithm as described in Section IV. Soft
time-frequency masks are then formed from the probabilistic
modeling to reconstruct each source. The remainder of this
section describes the audio processing and the probabilistic
models.

Consider a stereo-recorded speech signal with the left and
right sensor (ears or microphones) mixture signals denoted as
l(ts) and r(ts). The mixtures are sampled with the sampling
frequency fa (sampling period Ta = 1/fa) and hence are
available at discrete time indices ts for processing. Assuming
that the number of sources I in the mixture is known a priori,
the convolutive mixing model for both the sensors, as shown
in Fig. 1, can be written as l(ts) =

∑I
i=1 si(ts) ∗ hli(ts),

and r(ts) =
∑I

i=1 si(ts) ∗ hri(ts), where si(ts) denote the
speech sources, hli(ts) and hri(ts) are the impulse responses
associated with the enclosure from source i to the left and right
sensor respectively, and ∗ denotes the discrete time convolution
operation. The time domain signals are then converted to the
TF domain using the short-time Fourier transform (STFT).
The interaural spectrogram is obtained by taking the ratio of
the STFT of the left and right channels at each time frame
t and frequency ω [10] as, L(ω,t)

R(ω,t) = 10α(ω,t)/20ejϕ(ω,t),
where α(ω, t) is the ILD, measured in dB, and ϕ(ω, t) is the
IPD. The IPD observations are constrained to be in the range

[−π, π). We model a source positioned at a certain location
with a frequency-dependent interaural time difference (ITD)
τ(ω), and a frequency-dependent ILD inspired by [10]. The
recorded IPD, ∠(L(ω,t)

R(ω,t) ) for each TF point, can not always
be mapped to the respective τ due to spatial aliasing. The
model also requires that τ and the length of h(t) should
be smaller than the Fourier transform window. Any portion
of h(t) over one window length is considered part of the
noise. We adopt the top-down approach described in [10]
which makes it possible to map a τ to a recorded IPD at any
desired group of frequencies. The phase residual error, the
difference between the recorded IPD and the predicted IPD
(by a delay of τ samples), in the interval [−π, π) is defined
as, ϕ̂(ω, t; τ) = ∠(L(ω,t)

R(ω,t)e
−jωτ ).

Fig. 1. Signal notations. The left and right sensor convolutive mixtures are
transformed to the TF-domain to obtain L(ω, t) and R(ω, t), and x(ω, t) is
formed by concatenating L(ω, t) and R(ω, t) as shown.

The phase residual is modeled with a Gaussian distribu-
tion denoted as p(·) with mean ξ(ω) and variance σ2(ω)
that are dependent on frequency, p(ϕ(ω, t)|τ(ω), σ2(ω)) =
N (ϕ̂(ω, t; τ)|ξ(ω), σ2(ω)). The ILD is also modeled with
a Gaussian distribution with mean µ(ω) and variance
η2(ω), p(α(ω, t)|µ(ω), η2(ω)) = N (α(ω, t)|µ(ω), η2(ω)).
The STFTs of the left and right channels are concatenated
to form a new mixture x(ω, t) as shown in Fig. 1. Assuming
the W-disjoint orthogonality (WDO) property [12] of speech
signals, the signals are sparse in the TF domain and only
one source is dominant at each TF point, the STFT of the
recordings x(ω, t) at each time t and frequency ω can be
written as [11],

x(ω, t) =
I∑

i=1

hi(ω)si(ω, t) (1)

and approximated as

x(ω, t) ≈ hd(ω)sd(ω, t) (2)

where hd(ω) = [hld(ω), hrd(ω)]
T is the mixing vector from

the dominant source sd(ω, t) to the left and right sensor at
that TF point, assumed to be time invariant. To eliminate the
effects of source scaling the vector x(ω, t) is normalized such
that its Euclidean norm is unity and this is performed for each
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ω and t. The mixing vectors are modeled for each source with
a Gaussian model as [11], [13]

p(x(ω, t)|di(ω), ς
2
i (ω)) =

1

πς2i (ω)
exp

(
− ∥x(ω, t)− (dH

i (ω)x(ω, t)).di(ω)∥2

ς2i (ω)

) (3)

where di(ω) is the direction vector of the direct-path of
the source signal which will be obtained from the video
measurements, ς2i (ω) is the variance of the model, (·)H is
the Hermitian transpose, and ∥ · ∥ indicates the Euclidean
norm operator. In [11], [13] and [14] the authors proposed
the use of an eigen decomposition of a sample covariance
matrix to define unit norm vectors di(ω) to represent the
source directions in the probabilistic modeling of the mixing
vectors. This approach, however, will be sensitive to estimation
errors due to short data lengths, statistical non-stationarity
in the audio scene and background noise. In contrast, in
our proposed method the direction vectors are found through
vision on the basis of a plane wave assumption, as discussed
in Section III-B which thereby overcomes these shortcomings.
The resulting TF masks for all sources that are found through
the probabilistic modeling will then be improved as explained
in Section IV-B. We next explain the video processing and the
estimation of the parameter di(ω).

III. VIDEO PROCESSING

We are proposing an automated audio-visual speech separa-
tion algorithm that tracks moving speakers in a room environ-
ment and separates their speech mixtures when they are judged
to be physically stationary. The moment the speakers enter the
monitored environment the video tracker is initialized, and it
is then used to automatically follow the speakers to provide
the estimates of their locations, and to determine when the
sources are essentially static.

For localization of the speakers in a room environment we
use at least two fully calibrated color video cameras with over-
lapping field of view to determine the approximate geometric
locations of the speakers. Cameras are calibrated by the Tsai
calibration (non-coplanar) technique [15] and synchronized by
the external hardware trigger module and frames are captured
at the rate of fv = 25 frames/sec [16]. One may argue that
audio localization could be used instead of video localization.
But in a scenario where multiple speakers are simultaneously
active and the environment is highly reverberant the audio
localization scheme can fail. Similarly, localization for a
single active speaker based only on audio is also difficult
because human speech is an intermittent signal and contains
much of its energy in the low-frequency bins where spatial
discrimination is imprecise, and locations estimated only by
audio are also affected by noise and room reverberations [17].
Thus, the visual modality with multiple camera integration is
chosen as the most suitable approach for speaker localization;
combination of audio and video localization is outside the
scope of this work. Moreover, the novelty in this paper lies
in system integration and the main contribution is to provide
video-aided time-frequency masking based speech separation,
specifically in under-determined highly reverberant scenarios.

A. Speaker Tracking
The state of each speaker i, where i = 1, ..., I , in an image

at discrete time k is represented as ui
k = [xik, ẋ

i
k, y

i
k, ẏ

i
k],

where xik and yik are respectively the x and y coordinates in
the image, while ẋik and ẏik are the respective velocities. The
combined state of all the I speakers is Uk = [u1

k, . . . ,u
I
k].

Similarly, combined measurements of all the positions of
speakers are Yk = [y1

k, . . . ,y
I
k].

In Bayesian tracking the main objective is to calculate the
posterior probability distribution p(Uk|Y1:k) of the combined
state Uk at discrete time index k. Monte Carlo estimation of
the posterior distribution p(Uk|Y1:k) can be represented as

p(Uk|Y1:k) ≈
1

Ns
p(Yk|Uk)

Ns∑
n=1

p(Uk|Un
k−1) (4)

where p(Yk|Uk) is the likelihood which expresses the mea-
surement model while p(Uk|Uk−1) is the prior which ex-
presses the state model and Ns is the number of particles
[18].

The Markov chain Monte Carlo based particle filter
(MCMC-PF) is used for speaker tracking. The MCMC-PF
performs better than the generic PF in multiple speaker
tracking scenarios due to the improved sampling efficiency
[16], [19]. Multiple speakers can be tracked with a single
MCMC-PF while multiple generic particle filters [20] are
required to track multiple speakers. The MCMC-PF follows
two steps: in the first step we predict a particle to estimate
the posterior distribution of the next state and the second step
is a refinement step in which we move to accept or reject the
predicted particle. The prediction step involves a state model
and a suitable proposal distribution, while the refinement step
requires a measurement or likelihood model.

1) State Model: To estimate the translation motion of the
moving speakers, a constant velocity model [21] is used. The
same model is used as a proposal distribution. A rectangular
region (patch) which contains the speaker’s head is manually
selected for each source in the initial frame for which the
sources are present in the environment. The pixel in the center
of the patch is considered as the location of the mouth.
Horizontal and vertical locations of this pixel are tracked
in each frame. A 2-D motion of a moving speaker can be
described by the constant velocity model [22]

ui
k+1 = Aui

k + qk (5)

where qk is the measurement noise and the matrix A is defined
as

A =

[
1 Tv 0 0
0 1 0 0
0 0 1 Tv
0 0 0 1

]
where Tv is the frame sampling interval.

In multiple speaker tracking the simple MCMC-PF may fail
when a speaker is occluded. Therefore an improved interaction
model can also be used to overcome tracking failures and
complete details can be found in [23].

2) Likelihood Model: In an MCMC-PF it is very important
to have a strong likelihood model. Predicted particles are
accepted or rejected on the basis of acceptance ratio α. The
likelihood model used is based on the combination of color and
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Algorithm 1 Video processing for speaker localization
Input: Video sequences
Output: 3-D speaker locations

1: for each camera run the following MCMC-PF do
2: Input 2-D positions of the center of the heads and reference patch for each head in the previous frame
3: Initialize Ns particles for I number of heads {Un

1}
Ns
n=1

4: for k = 2, ...,K do
5: Randomly select a particle r from the posterior distribution of the state Uk−1 and use this particle and the motion

model q(·) to predict the initial state of all the targets at time step k
U1

k ∼ q(Uk|Ur
k−1)

6: for n = 2, ..., Ns +B (where B is the number of burn in particles) do
7: Randomly select another particle U

′

k−1 from the posterior distribution at time k − 1
p(Uk−1|Yk−1)

8: Propose a new particle using the proposal distribution Q(·) and the randomly selected particle U
′

k−1

U
′

k ∼ Q(Un
k |U

′

k−1)

9: Compute the measurement likelihoods p(Yk|U
′

k) and p(Yk|Un−1
k ) with respect to the proposed particle U

′

k and
the previous particle Un−1

k respectively
10: Compute the acceptance ratio

α = min

(
1,

p(Yk|U
′
k)

p(Yk|Un−1
k )

)
11: Draw a point j from a uniform distribution
12: if j < α then
13: Un

k = U
′

k

14: else
15: Un

k = Un−1
k

16: end if
17: end for
18: Discard the first B particles and keep the remaining of Ns particles.
19: end for
20: end for
21: Take the estimated 2-D position of the head of speaker i from camera c i.e. ui(c) = [xi, yi].
22: Transform ui(1) = [xi, yi] and ui(2) = [xi, yi] to 3-D real world Cartesian coordinates Zi with the help of camera

calibration parameters.

gradient histograms [23]. Color histograms are widely used in
the literature [22], [24], [25] to exploit the uniqueness of the
skin color to track the heads. Scaled versions of red (R), green
(G) and blue (B) colours are used in our work. R-G and G-
R are used to represent the chrominance information while
R+G+B is used to represent the luminance information [26].

Reference histograms Href are created for all the speakers’
heads with the help of the patches selected in the initial frame.
For the predicted particles, histograms Htarget are created
by selecting a patch with the predicted state as its center.
The Bhattacharyya coefficient ρ between the reference and
the target color histograms is calculated by their bin-wise
multiplication

ρ(Href ,Htarget) =

E∑
j=1

√
Hj

ref ×Hj
target (6)

where E represents the number of histograms bins. Bhat-
tacharyya distance [27] between two histograms is defined as

d(Href ,Htarget) =
√
1− ρ(Href ,Htarget) (7)

The likelihood with respect to the color cues, as in [22] is
calculated as

Lc(y
i
k|ui

k) ∝ exp

(
−
d(Hc

ref , H
c
target)

2σ2

)
(8)

where σ2 is the measurement noise variance.

Using only the color histograms is insufficient for tracking
purposes because the color based tracker fails when there
is something else with a similar color around the speaker.
Integration of the gradient histograms [22] helps to overcome
such problems. Gradient histograms are created for reference
and target patches for the purpose of edge detection. The
likelihood with respect to these histograms is calculated by
using the Bhattacharyya distance with the help of the following
equation

Lg(y
i
k|ui

k) ∝ exp

(
−
d(Hg

ref ,H
g
target)

2σ2

)
(9)

where the overall likelihood is then calculated as

p(yi
k|ui

k) = νLc(y
i
k|ui

k) + (1− ν)Lg(y
i
k|ui

k) (10)
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and ν is the weighting coefficient, which is used to weight the
two video cues.

(a)

(b)

Fig. 2. Images from two cameras with three speakers tracked with an
MCMC-PF with an ellipse formed on their heads. The center of the ellipse
is assumed to be the approximate 2-D location of the speaker’s mouth. The
2-D locations from the images of the two cameras are transformed to 3-D
real world Cartesian coordinates. The 3-D coordinates are then used for the
di parameter calculation. Note that in this work the cameras are conveniently
located at a high level in the corners of the room; we remark, however, that
similar advantage in video localization could be obtained when the cameras
are placed close to each other (and in a similar height to human body), for
instance, as in a robotics application, and this topic is an interesting area for
future research.

3) 3-D Speaker Location Estimation: The output of the
above MCMC-PF based tracker is the approximate position
of the lips of the speaker. The center of the ellipse in image
coordinates ui(c) = [xi, yi], where c represents the camera
index, c = 1, 2, is assumed to be the approximate 2-D
position of the speakers as shown in Fig. 2. The 2-D position
information, from images of at least two cameras, are trans-
formed to 3-D real world Cartesian coordinates. In 3-D space
each point in each camera frame defines a ray. Intersection
of both rays is found by using multi-view geometry, which
finally helps in calculation of the location for a speaker
Zi = [pxi , pyi , pzi ] in 3-D real world coordinates [28]. This
3-D geometric information of each speaker is used for di

calculation. The video processing for speaker localization is
summarized in Algorithm 1.

B. Parameter di Calculation

After estimating the 3-D position of each speaker i,
the elevation (θi) and azimuth (ϕi) angles of arrival
to the center of the sensors are calculated as θi =

tan−1
(

pyi
−p

′
yc

pxi
−p′

xc

)
and ϕi = sin−1

(
pyi

−p
′
yc

ri sin(θi)

)
, where ri =√

(pxi
− p′

xc
)2 + (pyi

− p′
yc
)2 + (pzi − p′

zc)
2, while p

′

xc
, p

′

yc

and p
′

zc are coordinates of the center of the microphone array.
The direct-path weight vector di(ω) for frequency bin ω and
for source of interest (SOI) i = 1, ..., I , can be derived [29]
as:

di(ω) =


exp(−jκ(sin(θi). cos(ϕi).p

′

x1
+ sin(θi).

sin(ϕi).p
′

y1
+ cos(θi).p

′

z1))

exp(−jκ(sin(θi). cos(ϕi).p
′

x2
+ sin(θi).

sin(ϕi).p
′

y2
+ cos(θi).p

′

z2))

 (11)

where p
′

xj
, p

′

yj
and p

′

zj for j = 1, 2 are the 3-D positions of
the microphones and κ = ω/cs and cs is the speed of sound
in air at room temperature. The vector di(ω) is normalized to
unity length before it is used in the model.

To form an accurate time frequency mask for each static
source the IPD and ILD models, and the model for the mixing
vectors that utilize the direct-path weight vector in (11) ob-
tained with the aid of video are used in conjunction. Since the
sources are differently distributed in the mixture spectrograms,
in terms of their IPD, ILD and their mixing, the parame-
ters of the above models cannot be obtained directly from
those mixtures. It is a hidden maximum-likelihood parameter
estimation problem and thus the expectation-maximization
algorithm is employed for its solution. Considering the models
to be conditionally independent, we combine them given their
corresponding parameters as

p(α(ω, t), ϕ(ω, t), x(ω, t)|Θ̃) = N (α(ω, t)|µ(ω), η2(ω))
. N (ϕ̂(ω, t)|ξ(ω), σ2(ω))

. N (x(ω, t)|d(ω), ς2(ω))
(12)

where Θ̃ denotes all of the model parameters. We emphasize
that it is only the noise in the measurements of ILD and IPD
that is assumed to be conditionally independent and we adopt
this same assumption as in [10] for the measurement related
to the source direction vector. However, the conditional inde-
pendence assumption offers particular advantage in algorithm
development; namely, at each iteration of the EM algorithm,
the parameters can be updated separately. As in [10], the
dependence between ILD and IPD is introduced through prior
assumptions on the mean values of the model parameters.
Since the ILD and IPD may have dependence on source
direction, the assumption of the conditional independence
amongst the noise components may only be an approximation.
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Modeling such dependence is beyond the scope of this study,
but is an interesting point for further investigation.

IV. MODEL PARAMETERS AND
EXPECTATION-MAXIMIZATION ALGORITHM

A. Model Parameters
All of the model parameters Θ̃ can be collected as a

parameter vector

Θ̃ = {µi(ω), η
2
i (ω), ξiτ (ω), σ

2
iτ (ω), di(ω), ς

2
i (ω), ψiτ} (13)

where µi, ξiτ , and di and η2i , σ2
iτ , and ς2i are respectively

the means and variances of the ILD, IPD, and mixing vector
models. The subscript i indicates that the parameters belong to
the source i, and τ and ω show the dependency on delay and
frequency. We include di(ω) since it is used within the EM
algorithm but highlight that since it is obtained from the video
it remains constant throughout the algorithm. The parameter
ψiτ is the mixing weight, i.e. the estimate of the probability
of any TF point belonging to source i at a delay τ . Note that
ψiτ is obtained from the hidden variable ziτ (ω, t) [10] that
qualifies the assignment of a TF unit to source i for the delay
τ . The hidden variable is an important variable and is unity
if the TF point belongs to both source i and delay τ and zero
otherwise.

The log value of the likelihood function (L) given the
observations can be written as

L(Θ̃) =
∑
ω,t

log p(α(ω, t), ϕ(ω, t), x(ω, t)|Θ̃)

=
∑
ω,t

log
∑
i,τ

[ N (α(ω, t)|µi(ω), η
2
i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω))

. N (x(ω, t)|di(ω), ς
2
i (ω)). ψiτ ]

(14)

and the maximum likelihood solution is the parameter vector
which maximizes this quantity.

B. The Expectation-Maximization Algorithm
The algorithm is initialized with the estimated directions of

the speakers provided by video and the PHAT histogram. In
the expectation step (E-step) the probabilities are calculated
given the observations and the estimates of the parameters as

ϵiτ (ω, t) = ψiτ . N (α(ω, t)|µi(ω), η
2
i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω))

. N (x(ω, t)|di(ω), ς
2
i (ω))

(15)

where ϵiτ (ω, t) is the expectation of the hidden variable. In the
maximization step (M-step), the parameters are updated using
the observations and ϵiτ (ω, t) from the E-step. The IPD and
ILD parameters and ψiτ are re-estimated as in [10]. The mean
parameter of the mixing vectors di(ω) is obtained through
video as discussed in Section III-B and ς2i (ω) is updated as
[11]

ς2i (ω) =

∑
t,τ ϵiτ (ω, t).∥x(ω, t)− (dH

i (ω) x(ω, t)).di(ω)∥2∑
t,τ ϵiτ (ω, t)

.

(16)

The mixing vector model starts contributing from the second
iteration, as in the first iteration the occupation likelihood
ϵiτ (ω, t) is calculated using only the ILD and IPD models.
The initial value of ς2i (ω) is computed after the first iteration
using ϵiτ (ω, t). Since the algorithm is initialized with source
locations estimates from video and ϵiτ (ω, t) contains the cor-
rect order of the sources the permutation problem is bypassed.
The probabilistic masks for each source can be formed as
Mi(ω, t) ≡

∑
τ ϵiτ (ω, t). The time domain source estimates

are obtained by applying the TF masks to the mixtures and
taking the inverse STFT. We next experimentally verify the
efficacy of the proposed approach. A brief summary of the
proposed scheme is given in Algorithm 2.

Algorithm 2 Brief summary of the proposed audio-visual
source separation approach
Input: Synchronized audio-visual measurements
Output: Separated speech sources

1: Run Algorithm 1 to obtain the speaker locations when
the sources are judged physically stationary

2: Calculate parameter di as in Section III-B
3: Initialize certain parameters of the EM algorithm in Sec-

tion IV-B with speaker locations and the PHAT histogram
4: Run the EM algorithm as in Section IV-B to generate

time-frequency masks for all sources
5: Apply the time-frequency masks to the mixtures to recon-

struct the sources

V. EXPERIMENTAL EVALUATION IN A ROOM
ENVIRONMENT

We evaluate the performance of the proposed algorithm
in two main sets of experiments and compare it with five
other algorithms, two are audio-only and three are audio-
visual. Firstly, we simulate mixtures of two sources with
varying reverberation times (RT60s) using synthetic room
impulse responses (RIRs), different model complexities and
separation angles, and three sources with varying separation
angles utilizing real RIRs. We also conduct experiments on
the AV16.3 audio-visual corpus [30] containing real room
recordings. We provide comparisons in all of the above sce-
narios with two other state-of-the-art audio-only algorithms to
highlight the advantage of the audio-visual approach to source
separation. Secondly, we perform experiments for varying
RT60s for both two and three source mixtures and compare the
proposed method with three other state-of-the-art audio-visual
algorithms.

A. Common Experimental Settings

1) Room Layout: The room setting is shown in Fig. 3.
Experiments were performed for mixtures of both two and
three speech sources. The desired source was located in front
of the sensors at 0◦ azimuth and the interferer was positioned
at one of the six different azimuths between 15◦ and 90◦ i.e.
[15◦, 30◦, 45◦, 60◦, 75◦, 90◦] for the case of two speakers. In
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the three-speaker case the third source was located symmetri-
cally with the same azimuth, as shown for approximately 60◦

in Fig. 3.

Fig. 3. The room layout showing one of the approximate positions of the
sources and the sensors.

TABLE I
DIFFERENT PARAMETERS USED IN EXPERIMENTS

STFT frame length 1024
Velocity of sound 343 m/s
Reverberation time 565 ms (real) or

160-600 ms (image method)
Room dimensions [9 5 3.5] m or

[8.2 3.6 2.4] m (AV16.3)
Source signal duration 2.5 s (TIMIT) or 3 s (AV16.3)

Sensor spacing 0.17 m or 0.2 m (AV16.3)

2) Parameters Used In Video Processing: When processing
the video sequences from the AV16.3 corpus the total number
of particles used in the MCMC-PF is Ns = 400 with a burn
in period of B = 100. From the experimental results it is
observed that in most of the cases the color cues perform better
than the gradient cues, so more weight is given to the color
cues by setting ν = 0.7 and 16× 16× 16 histogram bins are
used for likelihood modeling. The measurement noise variance
σ2 = 0.001. These parameters were chosen empirically to
optimize performance.

3) Speech Data and Room Impulse Responses: Speech
signals from the TIMIT acoustic-phonetic continuous speech
corpus [31] were used. We randomly chose utterances to form
mixtures with different combinations i.e. male-male, male-
female, and female-female. The first (16k×2.5) samples of
the TIMIT speech sources were used and were normalized
to unity variance before convolving with the RIRs. Both real
and simulated RIRs were used. The real RIRs come from [32]
which were measured in a real classroom with an RT60 of
approximately 565 ms. We used the center location in our
experiments and the sensor-to-speaker distance of 1 m. The
simulated RIRs were generated by the image method [33] to
evaluate our algorithm for varying RT60s.

4) Evaluation of Separation Performance: The signal-to-
distortion ratio (SDR) as in [34] was used to evaluate the
performance of our algorithm in cases where the original
speech sources were available. For the AV16.3 corpus since

only the real microphone (mixture) measurements are available
and we do not have access to the original speech sources,
the performance can not be evaluated using [34]. We thus
use pitch as a feature to compare separation performance
[35], considering the fact that speech sections at different
time slots have different pitches [36] and given that the
original sources do not have substantially overlapping pitch
characteristics. The pitch difference is given as, pdiff (t) =√∑

i ̸=j(pi(t)− pj(t))2, i, j = 1, · · · ,m, and t = 1, · · · , Tp,
where Tp is the number of time slots. If the pitch difference
is greater than a threshold pthr at a certain time slot, the
mixed signals are considered separated at that time slot and the
separation status sep status(t) is set to unity, otherwise zero.
The separation rate is then calculated to evaluate the separation
performance as separation rate =

∑
t sep status(t)

Tp
. The sep-

aration performance improves as the separation rate increases.
It is highlighted that objective evaluations for real mixtures
can not portray the true quality of the separated speech
signals, although they can be used to compare the separation
performance of different separation methods. We therefore also
conduct listening tests and provide mean opinion scores (MOS
tests for voice are specified by ITU-T recommendation P.800
which are followed in our evaluation) for the AV16.3 dataset.

B. Results and Comparison With Other Audio-Only Algo-
rithms

Extensive experiments were conducted to test the robustness
and consistency of our proposed algorithm. The common
parameters used in all experiments are given in Table I. As
mentioned earlier, to emphasize the advantage of our mul-
timodal approach over audio-only methods in realistic multi-
speaker environments we compare our results with [10], which
we refer to as Mandel, and [14], which we term Alinaghi.
Note that in the simulations where speech from TIMIT is
convolved with RIRs to generate the speech mixtures, we
have avoided using the information from the video system,
in order to perform comparison with other methods. In the
“ideal” case, referred to in the results as “Ideal d”, the exact
locations of the sources and the microphones, which were
used in the generation of the RIRs, are used to calculate the
exact direction of arrival (DOA) of each source to the center
of the microphone array. From the localization results by the
video tracking algorithms [16], [37], as described in Section
III-A, we have observed that the DOA information estimated
from the video recordings would contain estimation errors.
Therefore, in the case of simulated room environments where
the mixtures are generated using the sources from TIMIT,
video information was not used. Instead, in the “Proposed”
method we use the exact DOAs of the sources perturbed
by zero-mean Gaussian noise with a standard deviation of 3
degrees, which corresponds approximately to the average of
that for the three speakers given in Fig. 5 of [37]. Such a
simulation set-up applies to the results in Figures 4-6, 8, and
10.

Different model complexities, for ILD and IPD, were eval-
uated similar to [10]. For instance, the ILD and IPD model
complexity of Θ00 will have no ILD contribution and an IPD
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model with zero mean and a standard deviation that varies only
by source, whereas Θ11 will have a frequency-independent
ILD model and an IPD model with a frequency-independent
mean and a standard deviation that varies by source and τ ,
while ΘΩΩ uses the full frequency-dependent ILD and IPD
model parameters. And ΘG

ΩΩ has parameters similar to ΘΩΩ

but includes a garbage source and an ILD prior as described
in [10].
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Fig. 4. Comparison of performance at different RT60s. The interferer was
located at 75◦ azimuth. Synthetic RIRs using [33] were used to simulate
varying RT60s. The Θ11 (a) and Θ00 (b) modes are under consideration.

In Fig. 4, the two model complexities Θ11 and Θ00 for
two sources were simulated with an interferer at 75◦. The
speech files from the TIMIT dataset were convolved with the
RIRs generated using the image method [33] to obtain the
reverberant mixtures. The RT60 was varied to evaluate perfor-
mance of the algorithms at different levels of reverberation. A
curve that corresponds to the model which uses the ideal di

vector found from the known source locations has also been
included in the results. The curve provides an upper bound
for performance improvement for the algorithm. The results
indicate the improved performance of our proposed technique

over [10] and [14]. In Fig. 4(a), for RT60 of 210 ms our
algorithm gives an output of 12.98 dB, Mandel’s algorithm
gives 12.37 dB and Alinaghi 12.41 dB. As the RT60 increases
our algorithm still performs best, for example at 565 ms it
is 6.11 dB, which is 1.16 dB higher than Mandel and 0.87
dB higher than the method by Alinaghi. In Fig. 4(b), with a
simpler model Θ00, at an RT60 of 210 ms our method outputs
13.57 dB, compared to Mandel, 13.35 dB, and Alinaghi, 13.05
dB. At the maximum RT60 of 565 ms our algorithm gives an
output of 5.43 dB, 1.05 dB higher than Mandel and 0.52 dB
higher than Alinaghi. The ILD cues fade away with increasing
reverberation and thus the direct-path direction vector obtained
by video information in the proposed algorithm contributes to
better model the mixing vectors and improve the separation
performance.
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Fig. 5. In (a) the performance at different model complexities Θild ipd for
two sources with the interferer at 30◦ azimuth is shown. The graph in (b)
indicates results at different separation angles for model Θ11. The position of
the interferer was varied in steps of 15◦ between 15◦ to 90◦. Real binaural
RIRs from [32] were used. Results were averaged over five random mixtures.
Our proposed method yields a considerable improvement at all modes and
separation angles.

In Fig. 5 (a) our proposed algorithm was evaluated for all
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the model complexities. Real RIRs from [32] were utilized to
form acoustic mixtures in this set of experiments. The results
indicate that our algorithm’s performance is consistently better
than the compared methods for all models. In [14] the authors
reported that their algorithm showed significant improvement
over [10] with simpler models but the improvement diminished
with the increasing model complexity as confirmed in Fig. 5
(a), specifically when the ILD model started contributing. In
contrast, the performance of our algorithm is clearly shown not
to deteriorate with increasing complexity and shows consistent
improvement over all the models. The average improvement
across the models in the Alinaghi method over the Mandel
method is 1.53 dB, whereas for our method is 2.39 dB. In Fig.
5 (b) the SDR as a function of the separation angle between
the speakers for the Θ11 model is shown. Comparatively, over
all angles our algorithm that utilizes the estimate of the source
direct-path direction vector, by exploiting visual information,
yields an average improvement of 1.53 dB whereas Alinaghi’s
method gives 0.75 dB over Mandel’s method.
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Fig. 6. Results of the three-speaker case at different separation angles using
the real RIRs at the ΘΩΩ mode. The interferers were located symmetrically
to both sides of the target source. Results indicate that our proposed method
performs best at all separation angles.

Results in Fig. 6 show SDR as a function of separation
angle i.e. between 15◦ and 90◦ for mixtures of three speakers
with the most complex frequency-dependent mode ΘΩΩ using
real RIRs. The two interferers on either side of the target
were positioned symmetrically with the same azimuth. The
interferer to the left was simulated by reversing the order of the
sensors. At the minimum separation angle of 15◦ our algorithm
gives an output of 2.16 dB, whereas Mandel, 0.9 dB, and
Alinaghi, 1.43 dB. The results indicate that the method in [14]
offers improvement over [10] at smaller separation angles from
15◦ to 45◦ but no significant improvement at larger separation
angles. Our proposed algorithm, in contrast, shows consistent
improvement over all separation angles, specifically in the
difficult scenario with smaller separation angles, over both
[10] and [14] in the three-speaker reverberant case confirming
the suitability of our audio-visual approach in multi-speaker
realistic settings, and the value of adding visual information

in audio source separation.
1) Results for the AV16.3 Corpus: The AV16.3 audio-visual

corpus [30] has indoor multi-speaker recordings of real human
speakers. We used data from the case where three speakers
were seated and were simultaneously active. The direction
vector di(ω) was obtained as explained in Section III-B, which
relies upon using the speaker tracking described in Section III-
A, and was used in the model. Speech mixtures from the third
and seventh sensor of the microphone array 1 as in Fig. 7
were utilized. The mixtures have a duration of eight minutes
but we used only the time slots when all the three speakers
were active and we selected three seconds data from it. Table
II summarizes the pitch-based separation rates and MOSs (six
people participated in the listening tests) for the proposed
algorithm compared with [10] and [14]. In results, for instance,
over the time slot 214-217 s the proposed algorithm has a
separation rate of 0.223 and an MOS of 4.2, higher than [10],
0.216 and 3.9, and [14], 0.220 and 4.0, confirming that our
proposed algorithm improves the separation performance on
real room recordings.

C. Comparison with Other Audio-Visual Methods

We next compare our approach with three other audio-visual
algorithms, the beamforming based method in [16] which we
refer to as Naqvi, the technique in [17], which we term as
Maganti and the scheme in [38] using robust beamforming,
which we refer to as Naqvi2. Similar to our work, these audio-
visual methods employ the visual modality to estimate the
speaker locations which are then utilized within the algorithms.
For evaluation on the sequences from the AV16.3 corpus,
the speech mixtures from the third and seventh sensor of the
microphone array 1 as in Fig. 7 were utilized for evaluation of
our approach and mixtures from all eight sensors of the same
array were used for the above mentioned three beamforming
based audio-visual techniques.

The multimodal approach to blind source separation [16]
uses the visual modality to enhance the separation of both
static and moving sources. The speaker positions estimated
by a 3-D tracker are used to initialize the frequency domain
BSS algorithm for the physically stationary speakers and
beamforming if the speakers are moving. The algorithm’s
performance is reasonable at low reverberation when the direct
path signal is strong but deteriorates at higher RT60s when the
direct-to-reverberant ratio (DRR) is low. The beamformer is
also generally limited to the determined and over-determined
cases and achieves improved performance with larger number
of audio sensors.

In [17] an audio-video multi-speaker tracker is proposed
to localize sources and then separate them using microphone
array beamforming. A postfiltering stage is then applied after
the beamforming to further enhance the separation. The overall
objective of the system is automatic speech recognition which
lies outside the scope of our work, thus, we compare the
output of the speech enhancement part, which we implemented
ourselves.

In [38] a robust least squares frequency invariant data inde-
pendent beamformer is implemented. The MCMC-PF based
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Fig. 7. Image from camera 1 on the right and camera 2 on the left. All the three speakers are seated and simultaneously active for the time slots under
consideration. Mixtures from the third and seventh sensor of the microphone array 1 were utilized.

TABLE II
SEPARATION RATES AND MOSS FOR DIFFERENT TIME SLOTS OF THE AV16.3 CORPUS FOR THE THREE-SPEAKER CASE.

Time slot Mandel Alinaghi Proposed
(seconds) Separation rate MOS Separation rate MOS Separation rate MOS
214-217 0.216 3.9 0.220 4.0 0.223 4.2
218-221 0.093 3.7 0.080 3.7 0.096 3.9
230-233 0.260 3.9 0.253 3.9 0.266 4.1
247-250 0.340 3.9 0.353 4.0 0.363 4.3

tracker estimates the direction of arrival of the sources using
visual images obtained from at least two cameras. The robust
beamformer, given the spatial knowledge of the speakers,
uses a convex optimization approach to provide a precise
beam for the desired source. To control the sensitivity of the
beamformer a white noise constraint is used. The scheme
provides significant improvement at lower RT60s but the
performance degrades as reverberation increases. We employ
the original code used in [38] in our comparison.

In contrast, in [6] a speech source is separated by utilizing
its coherence with the speaker’s lip movements. Parameters
describing a speaker’s lip shape are extracted using a face
processing system. The authors provide results for separation
of simple vowel-plosive combinations from other meaningful
utterances and acknowledge that separating complex mixtures
would be increasingly difficult. In the extension of their
work in [7], the spectral content of the sound that is linked
with coherent lip movements is exploited and assessment is
provided on two audio-visual corpora, one having vowel-
plosive utterances similar to their previous work and the other
containing meaningful speech spoken by a French speaker.
They discuss the determined case and the under-determined
case with two sensors and three sources but reported that
performance was limited as the phonetic complexity increased.
These works, as in [8], [9], require the speakers to be right
in front of the camera(s), with the face clearly visible so that
facial cues can be observed. Our approach is more general,
in that only head localization information is required and
therefore audio-visual recordings with low resolution (such as
the AV16.3) can be processed, as in Fig. 2 and Fig. 7. Hence
we do not include the methods in [6]–[9] in our comparison.

1) Pre-processing for Dereverberation: To reduce the ef-
fects of reverberation from the observed mixture, we also
employ a pre-processing stage based on spectral subtraction
before applying our proposed algorithm and include its results

in the comparisons. This dereverberation scheme is based on
the RIR modeling proposed for the single-channel case in
[39], which was extended to the binaural context in [40]. We
implement the first stage of [40] ourselves that suppresses the
effects of the late reflections. This pre-processing suits our
algorithm well, since it explicitly preserves the binaural cues,
ILD and IPD, that are exploited in our proposed separation
algorithm. The spectral gain smoothing as in [40] is applied
since musical noise is introduced in the processing. All the
parameter values were chosen as proposed by the authors of
the original paper. We do not estimate the reverberation time
in this work and assume it is known.
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Fig. 8. Comparison of SDR (in decibels) performance as a function of RT60
using the proposed algorithm with and without dereverberation utilizing two
microphones and the Naqvi, Maganti and Naqvi2 methods employing two,
four and eight microphones for mixtures of two sources.

2) Results: The experimental results in Fig. 8 provide the
average SDR (dB) as a function of RT60 for ten random
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mixtures of two sources for the proposed method and the three
other audio-visual methods i.e. Naqvi, Maganti, and Naqvi2.
The masker was positioned at -15 degrees azimuth i.e. the
minimum and most challenging separation angle in the earlier
simulations. The other algorithms were each evaluated with
two, four and eight microphones at all RT60s. The proposed
algorithm with and without the pre-processing gives better
separation, using only two microphones, than all the other
algorithms at all RT60s except at 160 ms where the Naqvi2
outperforms the proposed method with four microphones and
the proposed algorithm with the pre-processing, Proposed-
derev, with eight microphones. The Naqvi and Maganti meth-
ods adopt the general trend by improving the separation as
the number of microphones is increased, since the increased
number of filter coefficients provides better interference re-
moval. The postfiltering stage in Maganti’s scheme refines
the output further from its previous beamforming stage by
exploiting sparsity of the speech sources. Masking postfilters
are obtained by retaining the maximum filter output values at
each frequency bin. The final postfilter is then applied to the
beamformer output. This scheme considerably improves the
performance over that of Naqvi for all number of microphones
and all RT60s in terms of the SDR, but introduces musical
noise which we observed when we listened to the recon-
structed source. In the Naqvi2 method the designed unmixing
filters we use are frequency invariant and data independent
thus the source statistics and RT60 are not considered. Also,
since the physical separation between the sources is only 15◦,
the increased spatial selectivity of the Naqvi2 design appears
to deteriorate the separation performance at higher RT60s.
In summary, among the other three competing techniques,
“Naqvi2 8-mics” has the best performance for RT60 below
450 ms and “Maganti 8-mics” performs best for RT60 over
450 ms.

The results in Fig. 10 show the average SDR (dB) as a
function of RT60 for ten random mixtures for the proposed
method and the three other audio-visual methods when sepa-
rating three sources. Each of these three algorithms was run
by using four and eight microphones. Having three sources
in the mixture, the case of only two-microphones becomes
under-determined and solution is not possible through the
beamformers in Naqvi, Maganti, and Naqvi2, unlike the
proposed algorithm which can handle the under-determined
case too. The separation performance of the Proposed-derev is
clearly better than the other algorithms at all the RT60s except
for the Naqvi2 at RT60 of below around 210 and 250 ms
with four and eight microphones respectively. The improved
spatial selectivity of the Naqvi2 design again explains this
advantage but this degrades with increasing RT60. All the
algorithms follow this general trend of degraded performance
with increased RT60. For 160 ms and 210 ms utilizing the
eight microphones mixture Naqvi2 performs best. This is the
strength of the Naqvi2 method that at lower RT60s, with
reduced reflections, and hence fewer reflections from the
interfering source and overall reverberation leak through the
precise beam formed for the desired source, the separation
performance is greatly enhanced. This behavior changes as
the RT60 increases beyond 300 ms, where even increasing

the number of microphones does not stop the deterioration
in the separation performance of the beamformer. In Fig. 9,
as an example, the beam pattern for the Naqvi2 beamformer
is provided using four and eight microphones for the case of
three sources. The sources are positioned at −45◦, 0◦, and 45◦.
The beam towards the desired source becomes more precise
as the number of microphones is increased. Note, that for Fig.
8 the masker is at −15◦ which explains why separating three
sources can be better with beamforming.

(a)

(b)

Fig. 9. Beam patterns achieved by the beamformer in Naqvi2 with four
microphones in (a) and eight microphones in (b) for the case of three sources.
It is clearly visible that as the number of sensors is increased the beam
for the desired source becomes more precise strictly allowing the desired
source and forming a null towards the interferer. With fewer microphones the
interferers and reverberation leak through with the desired source degrading
the separation performance.

3) Results for the AV16.3 Corpus: The results of the
experiments on the AV16.3 dataset can be seen in Table III
where similar to Section V-B.1 all the audio-visual algorithms
are evaluated according to their pitch-based separation rates
(S.R.) and MOSs. In terms of the S.R., the proposed method
without pre-processing performs better than all the other
algorithms over all the considered time slots. The Proposed-
derev algorithm performed second best for the first and last
time slot, while the Naqvi approach is the second best for
the second and third slots. The Naqvi2 was consistently
ranked fourth, and although Maganti did a fair job in isolating
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Fig. 10. Comparison of SDR (in decibels) performance as a function of RT60
using the proposed algorithm with and without dereverberation utilizing two
microphones and the Naqvi, Maganti and Naqvi2 methods employing four
and eight microphones for mixtures of three sources.

the sources it performed worse in this pitch-based objective
measure. We believe that the spectral postfiltering within
Maganti’s scheme disturbs the pitch information, giving a zero
in the time slots from 214-217 s and 230-233 s, for the pitch
based evaluation metric. In the Proposed-derev algorithm, we
believe, the spectral gain smoothing [40] applied to reduce the
musical noise produced due to the spectral subtraction at the
pre-processing, holds the pitch cues intact helping it to perform
second best for the first and last time slots and third for ranges
218-221 s and 230-233 s. The weakness of the pitch based
evaluation metric is that it decides the separation performance
solely on the pitch content of the separated speech, which if
distorted can not give a full picture of how well the sources
separated. Unlike the pitch based S.R.’s, the MOS results did
not fluctuate much from the algorithms’ behavior on synthetic
data, making it a more consistent measure compared with the
pitch based evaluation. The separation by the Proposed-derev
algorithm clearly did better in reducing the reverberation and
smoothing the musical noise. Separation by the Maganti was
strongly affected by musical noise, although the sources were
fairly isolated. Separations by Naqvi and Naqvi2 followed
each other closely and were consistent exploiting mixtures
from eight microphones.

VI. CONCLUSION

By utilizing information from video, we have confirmed
that more accurate TF masks can be obtained which give
improved source estimates, particularly in highly reverberant
multi-speaker environments. We have experimentally tested
our proposed system in a variety of settings including for
the first time real audio-visual data confirming its robustness
over two other audio-only methods and three similar audio-
visual algorithms in both the two-speaker and three-speaker
cases. We emphasize that this study was to demonstrate the
advantage of exploiting information from video in CASA-type
time-frequency audio source separation with a fixed number of

microphones; complexity issues and real-time implementation
fall outside of the scope of this study.

Future work will focus on improving the dereverberation
based pre-processing used for the suppression of late rever-
berant components in the observed mixture, fusing the audio-
visual modalities in tracking moving speakers, and processing
a changing number of sources within the monitored environ-
ment.
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