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Abstract: A computational damage model which is driven by material, mechanical behavior and 

nondestructive evaluation data is presented in this study. To collect material and mechanical be-

havior damage data, an aerospace grade precipitate-hardened aluminum alloy was mechanically 

loaded under monotonic conditions inside a Scanning Electron Microscope, while acoustic and opti-

cal methods were used to track the damage accumulation process. In addition, to obtain experi-

mental information about damage accumulation at the laboratory scale, a set of cyclic loading 

experiments was completed using 3-point bending specimens made out of the same aluminum alloy 

and by employing the same nondestructive methods. The ensemble of recorded data for both cases 

was then used in a post-processing scheme based on outlier analysis to form damage progression 

curves which were subsequently used as custom damage laws in finite element simulations. Specifi-

cally, a plasticity model coupled with stiffness degradation triggered by the experimentally defined 

damage curves was used in custom subroutines. The results highlight the effect of the data-driven 

damage model on the simulated mechanical response of the geometries considered and provide an 

information workflow that is capable of coupling experiments with simulations that can be used for 

remaining useful life estimations. 

 

Keywords: Data-driven model, Damage Mechanics, Acoustic emission, Digital Image Correlation, 

Remaining Useful Life  
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1. Introduction  

Damage is a multiscale, spatially distributed, stochastic process bridging nucleation and growth that 

varies significantly among different material types. The damage process spans four distinct stages 

including incubation, microstructurally-small initiation, physically small growth and extensive 

growth processes [1, 2]. In fact, it has been reported that the incubation, nucleation and microstruc-

turally-small growth regions consume most of the material’s life particularly in high cycle fatigue 

loading schemes [1]. During this significant portion of material life, local microstructural features, 

which for example in metals include grain size and orientations, inclusions, voids etc. play a domi-

nant role which might not be detrimental, however, it may lead to conditions that favor the subse-

quent development of known catastrophic failure modes such as cracks. From an engineering per-

spective, this fact has been recently leveraged by investigating innovative sensing methods [3-5], as 

well as new materials design approaches [6] in order to make a transition from damage monitoring 

to damage precursor identification and understanding [7-10]. 

Damage models discussed in the literature generally focus on defining material degradation 

due to damage using phenomenological approaches that target the analytical description of the 

particular role of individual mechanisms. In several cases, a damage variable, D, is defined as the 

ratio between the damaged and the total area of a reference volume. If damage is isotropic a scalar 

damage variable is defined; anisotropic damage leads to the adoption of a second order damage 

tensor. The damage parameter has a value of zero in the undamaged state and a value of one when 

final material failure has occurred [11]. In this context, Kuna and Wippler [12] used a unified 

Chaboche model derived from a free energy potential which was enhanced to account for void 
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growth. A thermodynamic approach was used in Richard et al. [13] to model damage in quasi-brittle 

materials. Other efforts have brought a more physics-based approach to the definition of damage. 

For example, Liu and Zheng [14] provided a review of damage modeling techniques in composite 

laminates including the use of phenomenological damage tensors in continuum damage models and 

multiscale finite element methods that derive their damage parameters via stochastic analysis of the 

underlying micro-mechanisms. Moreover, Rinaldi et al. [15] introduced a microstructure-aware dam-

age parameter in two-dimensional lattice models that is related to the coherence length between 

microcracks. For an overview of microstructure-sensitive computational models with an application 

to fatigue crack growth, the authors refer to McDowell and Dunne [1] and references therein. 

Several characterization and experimental methods have been employed to quantitatively 

monitor damage from microscale samples [4, 16-22] to full scale structures [23, 24]. In the case of 

precipitate-hardened alloys which is the material used in this article, damage has been reported to 

initiate at intermetallic inclusions resulting from the alloying process which lead to early crack 

nucleation followed by growth [25, 26]. In addition to image-based characterization, nondestructive 

evaluation (NDE) techniques have been proven useful in monitoring the damage processes at the 

material level. For example, Digital Image Correlation (DIC) methods are currently routinely used 

in experimental mechanics to track full field deformations; localizations observed in such datasets 

have been successfully linked to ductile fracture [24, 27], twinning [19, 28-30], and particle fracture 

[4, 31-33]. Additionally, Acoustic Emission (AE) has proven useful in detecting microscale damage 

such as dislocation motion and particle fracture [4, 34, 35], as well as macro scale damage such as 
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crack growth [27, 36-40]. Additional NDE methods reported to monitor material damage including 

infrared thermography [41-43], electromechanical impedance [44-46] and ultrasonic testing [47-49]. 

By combining experimental and simulation methods a different class of data-driven damage 

models has been reported. For example Barbero, Abdelal and Caceres [50] proposed a second order 

damage tensor that is formed and evolved with model parameters defined through experimental 

data. In addition, Kompalka, Reese and Bruhns [51] used successive model updating to refine an 

initial polynomial approximation of a damage parameter used to define the damage evolution at a 

number of integration points in FEM simulations. Moreover, Zárate et al. [52] predicted fatigue 

crack growth from AE data in a probabilistic model that provides predictions of the stress intensity 

factor. More recently, Loutas et al. [53] used a machine learning protocol to incorporate AE data 

features into a damage model for composites that is agnostic to the particular damage mechanisms 

for the specific material used in experiments. 

Given this state of the art, this article presents a novel damage model that leverages micro-

structural level material information along with mechanical behavior and NDE data to define dam-

age evolution curves. A computational workflow is then developed to use such data-defined damage 

information into simulations of both monotonic and cyclic behavior. 

2. Experimental and Computational Approach 

2.1 Material Characterization Data 

An aerospace grade precipitate-hardened aluminum alloy, Al 7075-T6351, rolled to 2.5 mm thickness 

was used in the as-received condition. The primary alloying element is Zinc (6.1-6.1%) with traces 

of Silicon (0.4%), Iron (0.5%), Copper, (1.2-2.0%), Manganese (0.3%), Magnesium (2.1-2.9%), and 
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Chromium (0.18-0.28%) according to literature [54] and verified by Energy Dispersive Spectroscopy 

(EDS). The addition of these elements increases the yield and ultimate strength of the material, 

however, these same strengthening elements have been shown to be nucleation points of damage [4, 

55], particularly at the larger particles that form from the alloying process [2, 56]. A Scanning 

Electron Microscope (FEI XL30 ESEM) equipped with an EDAX Electron Backscatter Diffraction 

(EBSD) camera was used to obtain the microstructural information shown in Fig.1. The data plotted 

in Fig. 1a-b reveal a nearly equiaxed grain structure with an average grain size of 60 μm. The 

presence of a rolling texture was also observed in the pole figures in Fig. 1c where the [100] axis is 

aligned with the rolling direction in a 1.5 x 1.5 mm2 area.  

 

Fig. 1: Texture information: (a) Inverse pole figure map showing predominantly equiaxed grains, 
(b) histogram showing grain size distribution, and (c) pole figure revealing a rolling texture. 
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2.2 Experimental setup and mechanical data 

Experiments were conducted using a micro-tensile stage (GATAN) capable of applying up to 2100N 

inside an SEM microscope as shown in Fig. 2a and 2b. Additionally, NDE data including full field 

strain and acoustic emission activity were recorded similar to previous work by the authors [4, 5]. 

Specifically, AE monitoring was achieved inside the SEM microscope by use of a BNC (Bayonet 

Neill–Concelman) pass-through on the custom SEM load stage door shown in Fig. 2a.  In this 

investigation, two broadband PICO sensors with a frequency range from approximately 150 to 

750kHz, shown in Fig. 2c, were used. The sensor frequency response is shown in Fig. 2d. Signals 

were recorded from the sensors with a sampling rate of 10 million samples per second using a peak 

definition, hit definition, and hit lock out time of 100, 500, and 500 μs, respectively. A 25 dB 

threshold was used for the test based on eliminating ambient signals collected while no load was 

applied. Fig. 3 shows the specimen geometry used which has a reduced area gage section to ensure 

the specimen fractures inside the monitored region, while providing sufficient space to attach the 

AE sensors.  

The 1.3 x 2.5 x 3 mm gage section ensures that there are approximately 10,000 grains in the 

gage and 200 grains in the cross section which is sufficient to obtain the bulk material behavior. 

Prior to testing, specimens were ground and polished to a 0.05 μm surface finish to minimize the 

effects of surface defects in the damage evolution of the material. In addition, ink toner, with speckle 

size of approximately 8 μm, was applied to the surface to provide sufficient contrast for DIC imaging 

in a Field of View (FOV) of 1.3 x 2.5 mm, which indicated by the gray field in the center of the 

specimen in Fig. 3. The specimen was then loaded at a rate of 0.1 mm/min until failure while images 
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were captured via live video monitoring using a 4-frame average at 30 frames per second. Fig. 4a 

shows the load versus measured axial strain curve along with full field deformation maps at the 6 

locations marked in Fig. 4a. 

 

Fig. 2: (a) Mechanical and nondestructive test setup in a FEI XL30 SEM, (b) GATAN Stage inside 

the SEM showing the BSE Detector, (c) PICO Sensor used for AE monitoring, (d) PICO sensor frequency 

response. 

In order to obtain experimental information in a fatigue setting, a set of cyclic loading 

experiments was also completed. For these experiments, a prismatic beam of dimensions 200×50×19 

mm was loaded under 3-point bending tensile cyclic conditions ( 0.1R  ) for 50 cycles. During the 

experiment, AE and DIC information was collected and a similar procedure to the monotonic case 

was followed. 
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Fig. 3: Hourglass-type specimen dimensions and placement of the acoustic emission sensors. The shaded 
area indicates the FOV for DIC measurements. 

 

Fig. 4: (a) DIC snapshots in the macroscopic stress-strain response curve, (b) strain evolution in the moni-
tored by DIC region. 

2.3 Acoustic Emission data and microstructural evidence 

Real time recorded AE activity was passed through a frequency filter that matched the range of the 

sensors. Thirty-two AE features were extracted; selected AE features were correlated with the load 

in Fig. 5, revealing a spike of AE activity at the onset of yielding. Fig. 5a shows that most of the 

recorded AE signals have amplitudes below 40dB with the exception of the activity near the yielding 
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point and the final failure of the specimen. Further, a clear distinction between signals with higher 

peak frequencies, above 400 kHz, and lower peak frequencies, below 200 kHz, is observed in Fig. 5b. 

Further, the amount of energy within the higher frequency range (400-600 kHz) called Partial Power 

3, is shown in Fig. 5c to be decaying after yielding. This observation agrees with the trends seen in 

Fig. 5d where the majority of count activity happens around the yield point where the cumulative 

hits and energy start to increase.  Specifically, the energy appears to instantly jump at yielding 

while the hits gradually increase.  

Examining the specimen post mortem allows for the identification of damage mechanisms as 

shown previously by the authors [4, 27, 37] such as cracking and particle fracture. Specifically, Fig. 

6 shows the presence of several damage mechanisms observed by ex-situ microscopy and while the 

specimen was still in the load frame inside the SEM both near, (i.e. within 1mm) and further away 

(further than 1mm) from the crack tip.  These micro mechanisms which include precipitate fracture, 

microcracks and slip lines are possibly related to the large amount of AE activity, particularly, the 

higher amplitude hits in Fig. 5a and the jump in AE energy in Fig 5d that appear at the onset of 

yielding.  
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Fig. 5: Acoustic emission features plotted for the entire duration of the in-situ tension test: (a) amplitude, 
(b) peak frequency, (c) partial power 3, (d) counts, cumulative hits, and cumulative absolute energy. 

 

Fig. 6: (a) Post-mortem SEM image of the crack, microdamage identification near the crack (b) and away 
from the crack (c) in the forms of precipitate fracture (red), micro-cracks (red) and slip lines (green). 
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2.4 Outlier Analysis 

A normalized subset of the extracted AE features was determined by using the correlation and 

variance within all 32 features available. A complete list of the available AE features that can be 

extracted in recorded AE activity and their definition is given in ASTM E1316-17a. The correlation 

between each feature and all others used the data from the experiment and a correlation matrix. 

The mean correlation value for each feature was then calculated and the features with the lowest 

values below a correlation value of 0.25 where selected. Choosing the least correlated features ensures 

that most of the information in the recorded AE signals is preserved while using the smallest number 

of features to parametrically represent them. In this case, 5 features (namely the decay angle, re-

verberation frequency, initiation frequency, FFT peak frequency, and peak frequency) were deter-

mined to be sufficient to represent the AE data. 

A damage curve was then generated from the AE data using an outlier analysis based on the 

Mahalanobis Squared Distance (MSD) formally defined as 

 ( ) ( )μ μ1T

MD
-= - -X S X   (1) 

where X is, in this case, a n x 5 matrix where each column represents each feature and each row 

represents a single AE signal, S is the covariance matrix of the feature values and μ is defined as 

the baseline defined by noise AE signals (i.e. by using those signals recorded before loading was 

applied). The diagonal of the resulting matrix represents the MSD value and the normalized in a 

scale between 0 and 1 cumulative sum of all the points produces the damage curve shown in Fig. 7, 

which is plotted as a function of the to the specimen’s life fraction defined using the total strain 

reached in the experiments. Interestingly, the MSD curve presents a sharp increase near the onset 
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of the plateau region in the stress-strain curve of Fig. 7 while it continues to grow with a decreasing 

rate until final failure. It should be noted also that at peak stress the MSD shows a ~60% remaining 

useful life (RUL) demonstrating that this parameter can provide a quantitative way to estimate it 

based on input data from the NDE setup. Furthermore, the fact that the MSD curve was defined 

as a function of measured strain allows its connection to model parameters as explained next.  

 

Fig. 7: Cumulative MSD for monotonic Al 7075 specimens taken from the transverse direction dur-
ing in-situ experiments. 

The same procedure used to examine the AE and DIC data for the in situ monotonic tension 

case was used to process the data obtained during the 3-pt bending fatigue test. Fig. 8 shows the 
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overlaid with the evolution of the maximum longitudinal strain value observed by DIC.  Similar 

behavior occurs in this condition as for the in situ monotonic loading case where a concentration of 

hits with peak frequencies above 400 kHz occurring early in the specimen’s life and decaying as more 
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large cluster of “high” amplitude and “high” frequency hits occurs. Interestingly there is no signifi-

cant increase in any of the AE features plotted once the onset of strain localization is observed.  Fig. 

8d shows the location of this localization and its size at the end of the test.  

 

Fig. 8: Acoustic emission features plotted for the entire duration of the fatigue bending test: (a) 
amplitude, (b) peak frequency, (c) counts, hits, and absolute energy all overlaid with the maximum loading 

strain, (d) the damage location and size at the end of the test. 

Similar to the results in Fig.7, the MSD curve was obtained for the cyclic data of the 3-point 

bending tests and the results are shown in Fig. 9. Here the damage parameter is plotted with respect 

to the structure’s life fraction where the value of 1 corresponds to the presence of a crack such as 

the one shown in Fig. 8d.  
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Fig. 9: Normalized cumulative MSD for a 3-point bending beam under cyclic loading. 

2.5 Computational approach 

The experimental information obtained through the multiphysics experiments and the subsequent 

outlier analysis was implemented in a computational framework in order to study the damage ac-

cumulation trends in specimens of various geometries. Specifically, an isotropic hardening scheme 

was selected to describe the plasticity effects under monotonic and cyclic conditions in the tensile 

regime. This was coupled with a continuum local damage law based on stiffness degradation that 

characterizes void nucleation and growth, and implements the MSD information into the FE do-

main. To this aim, a user subroutine (UMAT) was developed and the MSD curve previously derived 

was used in a user hardening (UHARD) subroutine similar to previous work by the authors [57]. 

The yield function for the isotropic hardening model adopted in this study is given by  
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 ε ε
1 2

0

2
,

3

t
p pp pdt p

æ ö÷ç= = ÷ç ÷ç ÷è øò     ,    (3) 

where p  is the equivalent plastic strain rate and εp  is the plastic strain rate tensor. Plastic strain 

increments were determined based on the following plastic flow rule 

 σ
ε

3

2
p

e

p
s
¢

=   , (4) 

where es  is the effective stress, defined as 

 σ σ
1 2

e
3
:

2
s

æ ö÷ç ¢ ¢= ÷ç ÷ç ÷è ø
 .                                                     (5)  

The elastic strain and stress increments were also determined and all field quantities (stress compo-

nents, effective plastic strain) were updated at the end of each increment. 

Next, a criterion was implemented to initiate the stiffness degradation. Specifically, the total 

accumulated strain at each integration point of the computational domain was compared to an a 

priori defined critical value cre . If this critical value is reached or exceeded, a stiffness degradation 

approach was followed. Specifically, for those elements that exhibit a higher accumulated strain at 

any of their integration points, the corresponding stiffness matrix C and applied load (stress) σ  is 

reduced according to the following relations 

 ( ) ( )σ σ1 , 1 ,D D= - = -C C  (6) 

where C  is the initial element stiffness, σ  is the effective (‘undamaged’) stress tensor and D is an 

overall (scalar) damage variable. The stiffness and load reductions alter the local stress-strain re-

sponse. The response of the scalar damage parameter D with respect to the applied strain to the 

tested specimen is shown in Fig. 7. For applied strain up to 0.1, the behavior corresponds to the 
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elastic regime of the stress-strain curve, and therefore damage accumulation was not considered for 

this strain range. Stiffness degradation was initiated after yielding and then followed the response 

of Fig. 7. The damage variable evolution (Fig. 7) was then mathematically approximated as a 

function of accumulated strain given by the polynomial expression 

 ( ) 6 2 20.0595 0.35 0.48 0.35 0.0102 0.203 0.339D e ee e e e= ⋅ + ⋅ - + - . (7) 

Given this development, the computational procedure developed is described as a pseudocode in 

Fig. 10. This workflow is used to find values of stress, elastic and plastic strain, stiffness components, 

and damage parameter for every time increment at each integration point in the model. 

 

 

Fig. 10: Pseudocode for implementation of the damage law in a finite element code. 

In this study, an implicit integration scheme based on the radial return method was adopted 

that begins with a selection of a trial stress increment and the determination of a trial yield function. 

Determine if 
actively yielding

Determine effective plastic strain 
increment, plastic and elastic & 

increments

Update all quantities at the end 
of time increment 

Determine consistent Jacobian

yes

Determine elastic trial stress and 
trial yield function

update hardening

Plasticity

Damage

no
Δ 0

Determine if 

yes

1 ̅ , 1 ̅
no

0
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The trial stress state is compared to a yield criterion, in this case an experimentally defined value 

of the von Mises stress, and determines if the material is actively yielding. If yielding does not occur 

( )0f < , the algorithm updates all field quantities and returns them to the solver along with the 

consistent Jacobian. If yielding occurs ( )0f > , the effective plastic strain increment and the di-

rection and magnitude of the plastic flow were identified through a Newton’s iteration scheme. A 

subroutine (UHARD) was used to calculate the hardening for the current yield state based on 

tabulated stress-plastic strain experimental data imported into the code (see Fig 7). For the i-th 

increment, the hardening is evaluated as 

 ( )
1

1

i i
y yi
p p
i i

r p
s s

e e

-

-

-
=

-
 , (8) 

where i
ys , p

ie  and 1i
ys
- , 1

p
ie -  are pairs of yield stress and plastic strain values at the current and 

previous increments respectively. In the next step, the total strain at any integration point is com-

pared to the damage initiation criterion. If the criterion is met, the current value of the damage 

variable D is calculated according to Eq. (7) and the element stiffness and load is updated using Eq. 

(6). If the damage criterion is not yet met, no changes are made to the stiffness or stress tensors. 

Finally, the material tangent stiffness matrix is calculated and returned to the finite element solver. 

This numerical procedure was successfully implemented in ABAQUS [58] as a user subrou-

tine, suitable for both 2D and 3D problems. It is noted that due to the nonlinearities introduced, 

the problem is either solved statically or dynamically with the aid of (artificial) damping. Two three-

dimensional geometrical configurations were used to study the incorporation of this method, a dog-

bone specimen under simple tension and a beam under 3-point bending loading. The boundary 
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conditions for both geometries are shown in Fig. 11. The height of the dogbone specimen was 152.54 

mm, its thickness equal to 3.18 mm and the reduced section width was 13.54 mm. The top and 

bottom ends were assumed rigid in accordance with the actual experimental conditions. Hence, the 

sample was fixed at the top rigid area while displacement was applied at the bottom (Fig. 11a). 

Accordingly, the beam had a total length of 200 mm, while its width and height were 50 mm and 

19 mm respectively. A half longitudinal symmetry model of the beam was used as shown in Fig. 

11b. Both models were discretized using structured meshes of linear eight-node brick elements 

(C3D8). The dogbone model consisted of ~320,000 degrees of freedom (DOF), with an average mesh 

size of 0.5 mm and the beam comprised ~240,000 DOF in a biased mesh of a minimum size equal 

to 1 mm (in the center) and 5 mm at the ends.  

 

Fig. 11: (a) Boundary conditions and loading assignment description for (a) the dogbone coupon and (b) 
the 3-point bending simulation. 
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3. Results and discussion 

3.1  Coupon-level analysis under monotonic and cyclic loading 

The data-driven damage model was first tested on a dogbone specimen subjected to monotonic 

loading to explore the effect of damage on the bulk mechanical response. Two cases were considered; 

in the first, the stress-strain response was computed using only an isotropic hardening plasticity 

scheme, while in the second the stiffness degradation step according to the process described in Fig. 

10was added. The results are shown in Fig. 12a, where the “undamaged” and “damaged” designation 

was adopted to describe the cases without and with the damage model, respectively. Also, the 

damage parameter output is plotted for the “damaged” case. To obtain the data for these curves, 

stress and strain values were averaged in a region defined by two parallel lines set at a distance of 

10 mm from the midpoint, where deformation localizations were expected to occur. It can be ob-

served that the numerical response of the “undamaged” specimen matches exactly the experimental 

data, as given in Fig. 5, which was expected as the actual stress-strain curve obtained experimentally 

was used to define the plasticity in these models.  

On the other hand, when the stiffness degradation scheme that incorporates the MSD curve 

of Fig. 7 was added, the global mechanical behavior was affected significantly. The response follows 

the undamaged material behavior up to a strain level of 4.6%e » , after which the stress gradually 

reduces with further increase in strain. It is worth noting that at an element level, damage initiates 

at earlier strain stages (after yielding), however, this local effect is not manifested immediately in 

the macroscopic stress-strain response. The rate of change in the subsequent softening branch follows 
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the behavior given by the MSD (see Fig. 7), i.e. the damage accumulates at a rapid rate up to 

12%e =  and then saturates until the ultimate specimen failure. 

The same dogbone specimen was also subjected to tension-tension cyclic conditions (using a 

load ratio of 0.1R = ) for 15 cycles and the computed stress-strain responses for both undamaged 

and damaged cases are plotted in Fig. 12b. The undamaged specimen follows the corresponding 

trend of the monotonic loading case and has generally constant drops in stress at every cycle. A 

softening effect is noticed after the sixth cycle at 7.5%e » , which is attributed to significant neck-

ing that occurred in the field of view due to large deformations in this model. The response obtained 

from this simulation can be well compared with other attempts in the literature [see e.g. 59].  

 

Fig. 12: Stress-strain response and damage parameter output for an undamaged and a damaged specimen 
following the MSD under (a) monotonic and (b) cyclic loading. 

As a comparison, the response of a specimen where the damage curve was added is given in 

the same graph. The results of this simulation follow the corresponding stress-strain curve of the 

undamaged specimen for the first three cycles. After an average strain of 4.8%e » , a softening 

behavior is obtained since the stress level achieved with further increase in strain are much lower 
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than that of the undamaged specimen. It is noted that damage initiation is observed at earlier strain 

stages at a finite element level, as shown in the damage parameter output. After the third loading 

cycle, a drop of almost constant slope is noticed. The limited capacity of the specimen to undertake 

load is also noted since after the fourth loading cycle the unloading branches do not coincide with 

the corresponding ones of the undamaged specimen, i.e. the strain range between cycles is less in 

this case. As a result, this simulation is concluded at a lower overall strain level. It should be also 

mentioned that the damage parameter shows a similar trend to the monotonic loading case. A 

plateau in the damage accumulation is noted at all unloading points.  

Moreover, it is worth investigating the effect of the damage model application in the overall 

deformation mechanism of the specimen. In Fig. 13, full-field results (displacement uy, Von Mises 

stress, and strain εyy) for the undamaged and damaged specimens under monotonic loading are 

plotted at the same loading stage (the response is similar in the cyclic loading case). In both cases 

we observe localized deformation around the midpoint of the specimen’s height, however, this local-

ization is symmetric in the undamaged specimen case and antisymmetric in the damaged one. In 

the first case, the deformation mode corresponds to tensile necking, i.e. a reduction of the specimen’s 

cross-sectional area in a small region. On the other hand, the use of a local damage model leads to 

shear deformation mode, as discussed by the authors [57]. This is mostly evident in the Von Mises 

stress plot where a diagonal zone of high intensity across the specimen’s width is formed. It should 

be also noted that the localization region is affected by the mesh characteristics (element type, mesh 

density and discretization type). 
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Fig. 13: Comparison of deformation modes between the (a) undamaged and (b) the damaged dogbone spec-
imens under monotonic loading. 

3.2 Application to 3-point bending modeling 

A beam under 3-point bending loading conditions was investigated next to examine the differences 

caused by the damage model in this geometry that resembles a structural component. It is reminded 

that similar to the previous analysis, the experimental information in the form of stress-strain input 

and damage parameter evolution is applied everywhere in the structure at the element level. Results 

for monotonic loading conditions are presented in Fig. 14. Specifically, contour plots for the dis-

placement uy, Von Mises stress, and strain εyy are given for the case of plasticity (Fig. 14a) and 

plasticity coupled with damage (Fig. 14b) at the same loading stage. The use of fixed colormaps 

emphasizes the shift in the response between the two solutions. The maximum beam deflection (at 

the center) and the normal strain on the y-direction are higher when the damage input is considered 

while the Von Mises stress is lower as the load carrying capacity of the structure reduces due to 

damage. A quantitative comparison of the maximum values in the three plots yields a 27% increase 
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in the vertical displacement, a 23% reduction in the Von Mises stress and an 8% increase in the 

normal strain, when damage is added in the simulation. 

 

Fig. 14: Full field plots for displacement uy, Von Mises stress, and strain εyy for monotonic loading in the 
case of (a) plasticity and (b) plasticity and damage. 

Moreover, the full-field damage evolution at different loading stages is presented in Fig. 15. 

The damage is accumulated at the center of the beam where the load is applied in a symmetric way 

with respect to the beam’s thickness. The maximum damage value for the four plots are 27%, 52%, 

73%, and 100%. In snapshot (d), it is clear that several elements have reached ultimate damage 

levels. As a reference, it is worth evaluating the ratio of maximum displacement over the displace-

ment at failure (case d) for each of the cases (a) to (c). The corresponding values are 23%, 42%, 

and 79%.  
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Fig. 15: Damage parameter evolution for monotonic loading. The maximum damage levels are: (a) 27%, (b) 
52%, (c) 73%, (d) 100%. 

A beam of the same geometry was also studied under (tensile) cyclic 3-point bending loading 

conditions both using the plasticity law only and employing the stiffness degradation approach. In 

this series of simulations, the stress amplitude per number of fatigue cycles information (S-N curve) 

was utilized as extracted from the literature [60] (Fig. 16). A static initial analysis under the maxi-

mum load of the given S-N curve was performed first to define the stress at each node of the 

structure. Using the stress distribution from this analysis, the fatigue life for each integration point 

was calculated using the S-N diagram. Then, the simulation was run at discrete number of cycles 

setting the number of loading cycles as a function of computational time. For any given number of 

cycles, the life fraction was calculated, and the associated value of the damage parameter was in-

troduced in the analysis based on the MSD curve presented in Fig. 9 In this way, the stiffness was 

degraded at each integration point depending on the loading cycle the analysis was running on. 
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Fig. 16: S-N curve for Al 7075 under tensile cyclic conditions ( 0.1R  ). 

The results of this numerical investigation are shown in Fig. 17, which is organized in a similar 

manner to the monotonic case discussed earlier (see Fig. 14): on the top row full-field plots for the 

displacement uy, Von Mises stress, and strain εyy are given for the case of plasticity only while on 

the bottom row the same quantities are presented for the case of plasticity coupled with damage, at 

the same point of fatigue life. Under these loading conditions it is observed that all quantities are 

significantly increased when damage information is added in the analysis due to the reduction in 

stiffness. Specifically, the value of the maximum deflection is 1.75 times higher, the maximum Von 

Mises stress 3.41 times higher, and the normal strain is increased by 4.96 times. 

The effect of this increase is further explained in Fig. 18, where the full-field damage evolution 

(a) and the maximum beam deflection for the two approaches (b) at different stages of fatigue life 

is shown. The accumulation of damage is already noticed at 1024 cycles while an ultimate failure 

value is reached in some finite elements at 16,384 cycles. In Fig. 18b, it is shown that the maximum 

beam deflection remains constant when damage is not incorporated in the model. On the other 

1x104 1x105 1x106 1x107
0

100

200

300

400

500

600

 

 

 
(M

P
a)

No of cycles



26 
 

hand, the maximum displacement increases significantly with respect to the number of loading 

cycles. At 4,096 cycles, the values of the two simulations practically coincide, while for 16,384 the 

increase is 3.84%, for 65,536 cycles 16.4% and for 524,288 cycles 74.5%. Therefore, the degradation 

of stiffness is essential so as the outcome of the cyclic loading simulation becomes realistic. 

 

Fig. 17: Full field plots for displacement uy, Von Mises stress, and strain εyy for cyclic loading in the case of 
(a) plasticity and (b) plasticity and damage. 

 

 

Fig. 18: (a) Damage evolution under cyclic loading, (b) variation of the deflection in the middle of the 
beam with respect to the number of fatigue cycles using both approaches. 
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4. Concluding remarks 

A data-driven continuum level local damage model based on multiphysics experimental information 

was proposed in this work. The material was tested inside an SEM and its deformation was moni-

tored using nondestructive acoustic (AE) and optical metrology (DIC) techniques. Data collection 

was followed by outlier analysis and a microstructurally sensitive damage law was generated. This 

experimental information was incorporated in numerical models based on custom subroutines im-

plemented in a Finite Element Method that combine a plasticity model with a stiffness degradation 

approach. Monotonic and cyclic numerical simulations of different geometries were completed in 

order to study the damage evolution process. The results showed the influence of a microstructure-

based damage model in the macroscopic material response. The behavior deviated significantly when 

compared to analysis based on a macroscopic plasticity law. This effect was emphasized in high-

cycle fatigue simulations where the use of a damage model is essential to predict a realistic response. 

In conclusion, this work contributes to the development of physics-based data-driven damage models 

that aim to enhance our understanding on material failure and identification of damage precursors. 
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