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Joint Transceiver Design for MIMO Channel
Shortening

Cenk Toker, Member, IEEE, Sangarapillai Lambotharan, Senior Member, IEEE, and
Jonathon A. Chambers, Senior Member, IEEE

Abstract—Channel shortening equalizers can be employed
to shorten the effective impulse response of a long intersymbol
interference (ISI) channel in order, for example, to decrease the
computational complexity of a maximum-likelihood sequence
estimator (MLSE) or to increase the throughput efficiency of an
orthogonal frequency-division multiplexing (OFDM) transmission
scheme. In this paper, the issue of joint transmitter–receiver filter
design is addressed for shortening multiple-input multiple-output
(MIMO) ISI channels. A frequency-domain approach is adopted
for the transceiver design which is effectively equivalent to an
infinite-length time-domain design. A practical space–frequency
waterfilling algorithm is also provided. It is demonstrated that the
channel shortening equalizer designed according to the time-do-
main approach suffers from an error-floor effect. However, the
proposed techniques are shown to overcome this problem and
outperform the time-domain channel shortening filter design. We
also demonstrate that the proposed transceiver design can be con-
sidered as a MIMO broadband beamformer with constraints on
the time-domain multipath length. Hence, a significant diversity
gain could also be achieved by choosing strong eigenmodes of the
MIMO channel. It is also found that the proposed frequency-do-
main methods have considerably low computational complexity as
compared with their time-domain counterparts.

Index Terms—Broadband beamformer, channel shortening,
equalization, joint transmitter–receiver design, multiple-input
multiple-output (MIMO), waterfilling.

I. INTRODUCTION

I NTERSYMBOL interference (ISI) which is caused by the
frequency-selective fading of a communication channel can

be a major cause of performance degradation. In many schemes,
such as IEEE 802.11g [2], HIPERLAN/2 [3], DAB [4], and
DVB [5], spatial multiplexing [6], space–time block coding with
time reversal (TR-STBC) [7] and [8], space–time orthogonal
frequency-division multiplexing (ST-OFDM) [9], together with
space-time trellis coding (STTC) [10] and [11], the use of ei-
ther a maximum-likelihood sequence estimator (MLSE) or mul-
ticarrier modulation (MCM) is considered as an effective tool to
tackle ISI. However, both methods have certain limitations re-
lated to the impulse response of the channel; in particular, the
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implementation of these methods can be impractical when the
channel has a relatively long impulse response.

The complexity of the MLSE for a long multipath channel
can be prohibitively high because, for example, for a channel of
length and a modulation size of , the trellis for the Viterbi
algorithm [12] requires states which can easily become
very large with increasing . The complexity would increase
even further for multiple-input multiple-output (MIMO) chan-
nels.

For an MCM scheme, a cyclic prefix of length at least
has to be appended to each transmission frame of length

. Clearly, this reduces the throughput efficiency
as the length of the channel increases.

These problems can be mitigated by channel shortening, a
preprocessing technique for the MLSE or for MCM, which par-
tially equalizes the channel so that the equalized channel has a
shorter impulse response than that of the original channel, but
does not reduce to a single spike (i.e., complete equalization).
The length of the shortened channel is determined by the allow-
able cyclic prefix length for MCM or the allowable computa-
tional complexity for the MLSE.

In the literature, there have been many attempts to design
a channel shortening filter using different criteria and objec-
tives. Addressing the complexity issue of the MLSE, a linear
front-end processor was proposed as early as the 1970s [13].
Later on, channel shortening was investigated for MCM in [14].
Channel shortening can be performed based on various criteria
[15]–[17]. Martin et al. [15] provided a common framework for
different types of channel shortening approaches which include
those based on the following criteria: minimum mean-square
error (MMSE) [13], [18], [19], and [20], maximum shortening
signal-to-noise ratio (MSSNR) [21], minimum ISI (min-ISI)
[22], [23], and [16], together with frequency domain methods
such as per-tone-equalizer (PTEQ) [24] and filter-bank equal-
izer (TEQFB). Maximum geometric SNR (MGSNR) [14], max-
imum bit rate (MBR) [23] and [16], and maximum data rate
(MDR) [17] are also other possible criteria for channel short-
ening filter design. Although almost all these works considered
the channel shortening problem for single-input single-output
(SISO) channels, the MMSE and MSSNR algorithms have also
been used for MIMO channels, e.g., in [25] and [26].

When the channel state information (CSI) is available at the
transmitter, it is possible to process the signal prior to transmis-
sion. This provides more degrees of freedom for equalization
and noise suppression, and thereby enhances the performance.
There are two major approaches for designing the transmitter
and the receiver filters in such a scenario. The first approach
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is based on the time-domain design as in [27] and [28], and
the second approach is based on the frequency-domain design
as in [29], [30], and [31]. In this paper, the frequency-domain
approach is adopted for joint optimization of the transmitter
and receiver filters for MIMO channel equalization, based on
the MMSE criterion. This is proven to be equivalent to an in-
finite-length time-domain equalizer design, such as [32]. Our
work is different and more challenging than joint transceiver de-
sign for complete equalization, because, in addition to the trans-
mitter and receiver filters, we also need to jointly optimize the
target impulse response (TIR).

When the MMSE criterion is used, the aim is to minimize the
distance between the equalized channel impulse response and a
TIR of a prescribed length. It is found that although there ex-
ists a closed-form solution for the receiver filter, such a closed-
form solution is not available for the transmitter and the TIR
filters. Instead, an iterative optimization method is necessary
to determine these filters. For the transmitter filter, in partic-
ular, a space–frequency waterfilling algorithm is found to op-
timize the MMSE criterion. An extension of the algorithm in
[33]–[35] is proposed as a practical way of implementing this
waterfilling scheme. It is also demonstrated that, under certain
transformations and conditions, the optimization problem can
be cast into the optimization of a set of independent SISO sub-
systems, which significantly simplifies the design procedure.

We also determine the computational complexity of our pro-
posed scheme and demonstrate that a significant saving in pro-
cessing power is obtained for the computation of the proposed
channel shortening filter parameters as compared with a time-
domain channel shortening approach.

We also demonstrate that the proposed joint transceiver
design for MIMO channel shortening can be generalized to a
broadband MIMO beamformer with constraints on the max-
imum allowable multipath length. Hence, the proposed scheme
provides spatial and frequency diversity for a frequency-se-
lective channel while keeping the receiver complexity at a
tolerable level.

The proposed technique will be very useful in particular for
time-division duplex based wireless systems where the trans-
mitter can obtain the CSI using the channel reciprocity. How-
ever, this does not impose any restrictions for the adaptation
of our proposal to other systems where the CSI at the trans-
mitter can be obtained through a feedback channel. The mate-
rial in this paper was presented in part at the IEEE International
Conference on Acoustics, Speech and Signal Processing, March
2005 [1].

The paper is organized as follows. Section II provides an
overview of the MIMO channel shortening problem and de-
velops necessary constraints for the design. In Section III, we
design the receiver filter as a function of the transmitter filter and
the TIR filter. In Section IV, certain transformations that diago-
nalize the whole system are first defined, and an iterative design
procedure for the transmitter and the TIR filters is provided. In
Section V, we design the channel shortening equalizer in the fre-
quency domain without transmitter preprocessing. Section VI
investigates and provides the computational complexity anal-
ysis of both the proposed methods and the time-domain equal-
izer design procedure. Section VII discusses the beamforming

Fig. 1. The structure of the channel shortening problem of a MIMO frequency-
selective channel HHH(!); where the transmitter filter CCC(!); the receiver filter
QQQ(!); and the target impulse responseBBB(!) are jointly optimized to minimize
the mean-square error (MSE) criterion Ef""" (k)"""(k)g. The mutually uncorre-
lated data ddd(k) and noise nnn(k) have, respectively, power spectral density ma-
trices ��� (!) and ��� (!).

property of the transmitter and receiver filters. Simulation re-
sults are provided in Section VIII and conclusions are drawn in
Section IX.

Some of the common notations that are used throughout the
paper are as follows. A scalar, a vector, and a matrix are denoted,
respectively, by a lower case italic, a lower case boldface, and an
upper case boldface letter. The time and frequency indices are

and . Complex conjugate, transpose, Hermitian trans-
pose, convolution and trace operators are, respectively, repre-
sented by , and . The notation

will be used for both the length of a filter and the dimension
of a vector.

II. PROBLEM STATEMENT

Consider a frequency-selective MIMO channel with
transmit and receive antennas. The length of the impulse
response of all subchannels is assumed to be . The primary
goal of a channel shortening filter is to reduce this channel
impulse response length to a desired length , while taking
certain criteria and constraints into consideration. The most
widely examined criterion due to its noise immunity is MMSE
which motivates its use in this study. To proceed with our
development, along with the physical channel, and the trans-
mitter and receiver filters, as seen on the upper branch of
Fig. 1, a second virtual path is provided in the lower branch to
represent the desired shortened channel impulse response. This
branch is composed of a TIR with a delay . In addition to the
transmitter and receiver filters, the TIR filter coefficients and
the associated delay are also design parameters to be optimized
by the algorithm. The length of the TIR, , is not a design
parameter but a given fixed integer. It will be shown later that
the proposed design is insensitive to the delay , in contrast
to the conventional channel shortening/equalization methods,
for example [25], where the delay significantly affects the
performance.

The design will be performed in the frequency domain, there-
fore the notation and will be used, re-
spectively, for the frequency responses of the transmitter filter,
the channel, the receiver filter, and the TIR filter at a particular
frequency . Note that, since the design is for a MIMO channel,
all these filters are defined, respectively, as matrices with corre-
sponding dimensions and .
Here, is the number of the parallel input data streams in .
The signal at the output of the MIMO channel is

(1)
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where the zero-mean circularly symmetric additive Gaussian
noise is represented by an vector . Both the data
and the noise can be colored with power spectral density ma-
trices and . However, the data and noise are as-
sumed to be mutually uncorrelated. Also, one can write the TIR
in open form as

(2)

where is the unit delay operator and the matrix taps
are coefficients of the TIR filter.

The error signal vector is defined as the differ-
ence between the outputs of the TIR and the receiver filter, i.e.,
the difference between the desired signal and the (channel
shortening) equalized signal

(3)

Hence, the mean-square error (MSE) is defined as follows:

(4)

Substituting (3) into (4) and applying Parseval’s formula [36],
we can write the MSE in the frequency domain as

(5)

It can be shown that, without any constraints, the minimiza-
tion of (5) will yield the trivial solution and

. The first condition is meaningless because it blocks
the transmission and the data cannot be conveyed through the
equalized channel. The second condition means infinite transmit
power which is practically impossible. Therefore, certain con-
straints should be imposed on the filters. In our study, we impose
an orthogonality constraint on the TIR and a limited power con-
straint on the transmitter filter as follows:

(6a)

(6b)

where is an unitary matrix that will be described in
Section IV-A and is some finite power level. Therefore, the
optimization problem becomes the minimization of (5) under
constraints (6a) and (6b).

For notational simplicity, when there is no ambiguity, the
parenthesis will be dropped in the sequel for filters repre-
sented in the frequency domain. However, for the time-domain
representations, the parenthesis will be retained.

III. RECEIVER FILTER

The optimum receiver filter minimizing the MSE in (5) can
be found by employing the principle of orthogonality, i.e.,

(7)

Substituting (1) and (3) into (7) and employing Parseval’s for-
mula, we obtain

(8)

In order to satisfy the equality, it is adequate to make the inte-
grand equal to zero, yielding

(9)

where the matrix inversion lemma (MIL)1 is used in the second
line. It is interesting to note the whitening matched filter
front-end appears in .

By substituting (9) into (5) and utilizing the MIL, we obtain
the MSE as a function of only and

(10)
Remark 1: Observe that is directly related to , hence,

the constraint in (6a) also forces the receiver filter to be nonzero,
avoiding a trivial solution.

Remark 2: Another way of finding the optimum receiver filter
is actually enforcing the integral in (8) to be equal to zero, which
results in a different type of filter. Details of such a design can
be found in [37]–[39].

IV. TRANSMITTER AND TIR OPTIMIZATION

Minimization of (10) is not as straightforward as the receiver
filter design due to the involvement of matrices and the con-
straints in (6). The procedure will be greatly simplified if the
problem can be expressed in terms of a number of independent
parallel SISO subsystems. This can be achieved through certain
transformations.

A. Transformations

First, consider the eigendecomposition of the spectral density
matrix of the data process

(11)

where is an unitary matrix and the eigenvalues
of are the entries of the

1Matrix Inversion Lemma: (AAA +BCDBCDBCD) = AAA �AAA BBB(DADADA BBB +
CCC ) DADADA .
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diagonal matrix . The matrix , or equivalently,
, can be rank deficient for a particular frequency . Al-

though we assume that the matrix is full rank for the
sake of notational simplicity, this work can be extended to the
rank deficient case by simply replacing the parameter by the
rank of without affecting the logic of the analysis pre-
sented here. In fact, the waterfilling algorithm provided in Sec-
tion IV-D automatically performs this task.

The second decomposition that will be used is

(12)

where the diagonal matrix , of size , contains
the positive eigenvalues of and
the unitary matrix contains the corresponding
eigenvectors. Similarly, the unitary matrix,
spans the null space of . The parameter

for a particular frequency is the number of subchannels
(i.e., nonzero eigenmodes) that can convey information in the
equivalent system after diagonalization, and is defined as

. The value of can be frequency
dependent. Without loss of generality, the entries of are
assumed to be ordered as follows:

(13)

Remark 3: Note that these decompositions are carried out
for each distinct frequency . In a practical application, the
frequency range is partitioned into bins with

, and the decompositions are evalu-
ated for each particular .

We now define two matrices, and , of size
and , respectively, such that

(14a)

(14b)

We will prove later that for optimum and , the ma-
trices and are diagonal. Using the decompositions
(11), (12), and the definitions (14), the optimum receiver filter
in (9) can be rewritten as

(15)

where .
When the receiver filter is set to its optimum condition, as in

(15), the receiver filter output can be written as

(16)

where and are, respectively, the frequency-
domain representations of the signal at the receiver filter output,
the data, and the noise.

Fig. 2. The equivalent system in the frequency domain after the transforma-
tions UUU(!) and VVV (!). The transformed data and noise processes are spatially
white and the original MIMO channel is replaced with an ideal channel which
is an identity matrix.

Substituting (14) and (15) into (16), and using the property
from (12) and the definition

(17)

we can write the error signal at frequency as

Hence, with the substitution for the optimum receiver filter in
(15), the MSE in (5) can be written as

(18)

where in the second line we used (17) as well as the property
for appropriate dimensions to eliminate

the matrices and .
Now, using the analogy between Fig. 1 and (5), we can ex-

press the transformed system as in Fig. 2 considering (18), and
by defining the transformed data and noise signal vectors
and , with power spectral densities and .

In summary, the transmitter, receiver, and TIR filters can be
expressed in the transformed domain with the following pairs:

After substituting the definitions in (14) into the MSE expres-
sion in (10), the optimization problem reduces to determining
the optimum and to minimize the MSE

(19)
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Fig. 3. The equivalent system in the form of uncoupled parallel SISO subchan-
nels. The new set of data and the noise are white, and the subchannels are AGN
with unity taps.

under the following constraints obtained by substituting (14)
into (6):

(20a)

(20b)

Remark 4: Note the similarity of (20a) to the orthogonality
constraint of [25].

B. Diagonalization

In this subsection, we will prove that under certain condi-
tions the optimum transformed filters and
are diagonal with entries , , and

. This will allow us to express the optimization
problem as independent parallel SISO subsystems as demon-
strated in Fig 3. Notice that the effective channel has become a
unity tap with additive Gaussian noise , i.e., the th entry
of the vector .

1) Optimum TIR Design: In order to prove that the optimum
is diagonal, we first state the following theorem.

Theorem 1: The matrix is diagonal for
optimality.

Proof: See Appendix I.
Theorem 2: The optimum TIR, , is diagonal.

Proof: See Appendix II.
Due to the diagonality of , the TIR can be expressed

as independent SISO sub-TIRs. Moreover, the orthogonality
constraint in (20a) can be rewritten as

(21)

2) Optimum Transmitter Filter Design: Since CSI is avail-
able at the transmitter, it is possible to activate only the nonzero
eigenmodes of the diagonalized channels, i.e., , in order
not to waste transmit power and to prevent information loss.

Theorem 3: The optimum transformed transmitter filter
is diagonal for the ordering

(22)
Proof: See Appendix III.

Using the diagonality of , we can rewrite the constraint
on transmit power in (20b) as

(23)

C. Joint Transmitter Filter and TIR Optimization

With the diagonality of the transformed transmitter filter and
TIR structures, we can write the MSE expression in (19) as the
sum of a set of independent subchannel MSEs

(24)

Together with the constraints in (21) and (23), the cost func-
tion in (24) does not provide a closed-form solution for the
transmitter filter and TIR expressions. However, as provided by
the following theorem, given that the cost function
is convex with respect to the variable sets

and , the
optimization can be carried out in an iterative manner. That is,
in the first step of a particular iteration, the transmitter filter is
calculated while the TIR which was calculated in the previous
iteration is kept fixed. Similarly, in the second step, the TIR is
calculated assuming that the transmitter filter is fixed. These al-
ternating iterations are carried out until the reduction in MSE
becomes negligible.

Theorem 4: The integrand of (24) is jointly convex in
and .

Proof: This can easily be proven using Jensen’s inequality
[40], which states that a function2

is convex if the domain of is a convex set and if
, the following inequality holds:

(25)

where is a real scalar. The function to be investi-
gated is

The domain of is convex since and
. Substituting into (25) as

(26)

2 is the set of positive real numbers also including the zero element.
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where and . The inequality
can be verified by expanding and simplifying (26), concluding
the proof of Theorem 4. For further details see [39].

Corollary 1: Convexity of the integrand of (24) guarantees
the convexity of the integration itself [40], hence, there exists
a single minimum of the MSE with respect to and

. Therefore, the convexity of the iterative method is
also guaranteed. Simulations revealed that three to four itera-
tions are adequate to converge to the vicinity of the minimum
point.

Remark 5: The MSE in (24) depends on independent sets
of variables and . As proven in the preceding
theorem, each set is convex within itself. Hence, the global min-
imum can be attained by independent minimizations.

Remark 6: Note that the delay term does not ap-
pear in (24) which means that the optimization is independent
of the delay in contrast to the finite-length channel short-
ening filter design, for example [25], where the delay parameter

—together with the target impulse response—is used to select
a submatrix in a square window centered on the main diagonal
of a certain covariance matrix. Observe that the frequency-do-
main approach in this paper is effectively equivalent to an in-
finite-length filter design in the time domain. When the filter
length is finite, the covariance matrix is Hermitian symmetric
but not Toeplitz. It can be shown that as the filter length in-
creases, the covariance matrix approaches a Toeplitz form [32],
[39]. In this case, since the covariance matrix is Toeplitz, all the
submatrices in a square window chosen along the main diagonal
by the delay parameter will be the same, meaning that the de-
sign becomes insensitive to the delay .

D. Transmitter Filter Design (Space–Frequency Waterfilling)

In the iterative method, the optimization of the transmitter
filter is first investigated assuming the TIR is known a priori.
The following theorem summarizes the transmitter filter design.

Theorem 5: For the optimum transmitter filter
, the magnitude response

should be

(27)

for where is chosen to satisfy the power con-
straint in (23).

Proof: Construct the Lagrangian by adding the power con-
straint (23) to the MSE (24) with the variable . The result
in (27) is obtained by differentiating the Lagrangian cost func-
tion with respect to , equating it to zero and imposing

.
Remark 7: Note that (27) is a waterfilling algorithm which

distributes the total transmit power among each subchannel and
frequency so as to minimize the MSE criterion. Also note that
(27) only determines the magnitude response of the transmitter
filter whereas the phase is not required for optimality, and it can
be chosen arbitrarily for a general solution. However, the phase
could also be used to manipulate the impulse response of the
filters, see for example [41]. The phase could also be exploited
to obtain a stable infinite impulse response (IIR) realization.

Assuming that the frequency range is divided into
bins, the following algorithm which is an extension of [33]–[35]
finds the exact solution of the space–frequency waterfilling in
(27) and the waterlevel in at most iterations, in contrast
to [29]–[31], where the number of iterations can be unbounded.
In our case, the total energy is distributed among both space and
frequency jointly, rather than only in the frequency domain. For
more details see [39].

Algorithm: Let the set of ordered pairs be sorted
in ascending order according to the quotient
where and

and
.

1) Calculate the waterlevel according to

2) If for the last element of the set takes a nega-
tive value, i.e., , then remove
the pair from and move the cursor to the position
above and go to Step 2.

3) If no negative value is left, stop the loop and calculate the
final power levels of each bin according to (27) using the
waterlevel obtained from the last iteration.

E. TIR Design

The second step of the iterative optimization involves the TIR
design, under the assumption that the transmitter filter is known
a priori. We can write the transformed TIR for each
subchannel in a vector form as

...

(28)

Substituting this definition into (24) and performing the nu-
merical evaluation of the resulting integral, the MSE for the th
subchannel becomes

(29)

where the autocorrelation matrix is

(30)

Also, substitution of (28) into the constraint (21) yields

The optimum TIR for the subchannel which minimizes (29)
subject to the above constraint is the eigenvector corresponding
to the smallest eigenvalue of the matrix .

Remark 8: Note the structural similarity between the channel
shortening equalization and the decision feedback equalization
(DFE), e.g., [20], [30], and [42]. Under the assumption of
correct tentative decisions in the DFE, the structure of both
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equalizers become the same [43]. However, the underlying
purpose and design methodology of these equalizers have
fundamental differences. Ultimately, the DFE attempts to
completely equalize the channel, whereas channel shortening
equalizer converts the original channel into a certain partial
response channel. The feedforward filter in both cases has the
same structure and similar functionalities. However, the feed-
back filter of the DFE is actually used to cancel the post-cursor
ISI, whereas the TIR models the partial response. Moreover, the
feedback filter is calculated by Cholesky or spectral factoriza-
tion, whereas the TIR is found from eigendecomposition. For
a detailed discussion on this comparison, the reader is referred
to [39].

V. FREQUENCY-DOMAIN RECEIVER-ONLY DESIGN

We could set , i.e., avoid transmitter prepro-
cessing, and design the receiver filter and the target impulse re-
sponse accordingly, where is the Kronecker delta function.
In this case, only the receiver will be designed using the fre-
quency-domain approach, namely, frequency-domain receiver-
only design. The MSE expression in (5) is still valid with the
substitution , however, we can no longer exploit the
diagonalization procedure. The receiver filter can be shown to
be the same as (9) except . The TIR can be found by
substituting

... (31)

into (10) where the matrix taps have been defined in (2).
Then the MSE expression becomes

where

This matrix can be considered to be in analogy with the matrix
in [25] when the length of the FIR filter goes to infinity, i.e.,

. Together with the orthogonality constraint, can
be further minimized as explained in Section IV-E.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we compare the proposed equalizer design
with the time-domain MMSE channel shortening design in
terms of computational complexity (number of flops) [44],
[45]. We define a flop as one of the following operations:
addition, subtraction, multiplication, division, or square-root
of real scalar floating-point numbers. Contemporary digital
signal processor (DSP) integrated circuits (ICs) can perform
these operations in a single cycle, e.g., [46]. For complex
scalars, addition needs two real summations, i.e., two flops, and
multiplication requires four real multiplications and two real
summations, i.e., six flops.

The matrix operation used in this analysis, and their complex-
ities can be summarized as follows.

1. Matrix multiplication: For ,
requires flops for arbitrary matrices or flops
for diagonal matrices, respectively.

2. Fast Fourier transform (FFT) and inverse FFT (IFFT) of
size are performed in flops.

3. Singular value decomposition and eigendecomposition of
an matrix have similar complexities of flops.

4. Inversion of a block-Toeplitz matrix with diagonal blocks
of size of needs (only multiplications).

5. Inversion of an positive definite matrix has a com-
plexity of flops.

For a fair comparison, we consider the same scenario for both
the proposed frequency-domain methods, and the time-domain
MMSE design, i.e., there are transmit and receive an-
tennas, and the corresponding channel has taps which is to
be shortened to taps. Also assume that input streams are
loaded in both cases.

A. Proposed Method With Joint Transceiver Optimization

Assuming the frequency range is divided into bins.
1. The matrices and are calculated

from their time-domain counterparts by performing the
FFT which requires a total of
flops.

2. For the eigendecomposition of and
and flops

are required, respectively.
3. Calculations of and

require
and flops, respectively.

4. Waterfilling: Calculation of and requires
flops in total.

The number of iterations needed for finding the water-
level depends on the channel condition and the SNR. But
simulations suggested that at most 100 iterations are ad-
equate to find the solution. For 100 iterations, the water-
filling algorithm requires flops in total.

5. TIR calculations: The integrand for can be cal-
culated in flops, and the inverse Fourier transform
integral can be performed using the IFFT with a total of

flops. Using the diagonal TIR im-
pulse response vectors are calculated by employing
eigendecomposition with flops, followed by
FFTs to find using flops.

6. We assume that for the transmitter-TIR optimization, three
iterations are performed. Therefore, steps 4 and 5 are re-
peated three times.

7. Using the operations in (14a) and (15), the transmitter, TIR,
and receiver filters are calculated in

and

flops, respectively.
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8. Finally, the time-domain counterparts of the designed fil-
ters are obtained by a series of FFT operations which re-
quire flops.

B. Proposed Method With Receiver-Only Optimization

Assuming the frequency range is divided into bins.
1. Repeat step 1 of the joint transceiver optimization,
2. The matrix is calculated using a

total of

flops,
3. The matrix can be calculated from this matrix using

IFFT operations which require
flops.

4. TIR, , can be calculated using flops.
5. Next the receiver filter needs

flops.
6. Finally, to find the time-domain filter coefficients

IFFTs require flops.

C. Time-Domain MMSE Equalizer

For this analysis, we will follow the derivations in [25] with
a slight change in notation. We will use the following substitu-
tions: and .

1. Calculation of requires a total of

flops. Besides, the inverse needs complex
multiplications.

2. To find we need a total of

flops.
3. To find the minimum MSE and the corresponding TIR,

, the eigendecomposition of a window of , i.e.,
has to be taken times, yielding a complexity
of flops.

4. Finally, the receiver filter can be found in
flops.

The complexity of the proposed frequency-domain methods
is a function of the FFT size , whereas the complexity of the
time-domain equalizer mainly depends on the filter length .
The results for various and values are given in Table I
for a scenario where an MIMO channel
of length is shortened to length when all

TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF THE PROPOSED JOINT

TRANSCEIVER METHOD AND THE TIME-DOMAIN MMSE METHOD IN TERMS

OF FLOPS. AN n = 2� n = 2 MIMO CHANNEL OF LENGTH n = 10

IS SHORTENED TO LENGTH n = 2

the possible eigenmodes are loaded. We observe that the joint
transceiver with FFT size has similar computational
complexity to the time-domain equalizer with taps,
whereas the computation of the frequency-domain receiver-only
equalizer requires even lower complexity compared to both the
joint-transceiver and time-domain approaches. From Table I, we
observe that the computational complexity of the frequency-do-
main approach increases linearly with the FFT size, however,
the processing requirements of the time-domain approach in-
crease exponentially with the filter length.

Remark 9: An important issue arises in the selection of the
FFT size. The proposed method in fact considers continuous
frequency which may have an infinite length impulse response.
However, for implementation purposes, one needs to perform
sampling in the frequency domain. If the sampling period, i.e.,
the FFT size, is shorter than the effective length of the filter im-
pulse response, aliasing will occur in the time domain which
will destroy the equalizer characteristics. Therefore, the FFT
size should be chosen long enough to cover the effective equal-
izer impulse response. In simulations, we observed that an FFT
size of is adequate.

Remark 10: In the above computational complexity anal-
ysis, we determined the complexity of computing the required
parameters for the proposed frequency-domain approach and
the time-domain channel shortening approach. Once these pa-
rameters are determined, both the transmitter and the receiver
can directly be implemented using -tap FIR filters with matrix
coefficients of dimensions and , respectively.
Similarly, the implementation of the time-domain equalizer can
be realized as a single -tap FIR filter with matrix coefficients of
dimensions . In the simulations section, itwill be demon-
strated that the performance of the time-domain approach comes
closer to our proposed frequency-domain approach (receiver-
only design) only when the filter length is very high. However,
the computational cost of determining the optimum filter pa-
rameters according to the time-domain approach is significantly
higher than that of the frequency-domain approach. Therefore,
in systems where the complexity of determining the receiver
parameters dominates the implementation complexity, the fre-
quency-domain approach could be proven to be advantageous.

Remark 11: If the implementation complexity, i.e., filter
length in the transceiver, is also an important issue besides the
computational complexity associated with designing the filters,
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Fig. 4. Implementation of broadband MIMO beamformer.

one may opt for computing a shorter version of the proposed
equalizer. There exist several methods for this purpose. The
first one is to approximate the long impulse response of the
calculated filter by an IIR filter. However, care should be taken
to ensure stability, since the proposed method does not explic-
itly impose any conditions on the stability of such an IIR filter.
One method for designing such a stable IIR filter is proposed
in, e.g., [47]. Another method is to employ a model reduction
technique, which may introduce significant complexity while
reducing the finite impulse response (FIR) filter size. A third
approach is to exploit the degrees of freedom associated with
the phase selection at the transmitter and the receiver to reduce
the impulse response length [41].

VII. BROADBAND MIMO BEAMFORMER

A demonstration of the proposed frequency-domain-based
technique is depicted in Fig. 4 where and repre-
sent, respectively, the Fourier and inverse Fourier transforms.
Although the transmitter and receiver filters are physically
implemented in the time domain, i.e., as and , for
the purpose of analysis, we consider their frequency-domain
counterparts. The block removes the spatial correlation
of the input in the frequency domain. Likewise, the matrix

obtained from the singular value decomposition of the
matrix at each frequency is used to
steer MIMO beams along each spatial-frequency eigenmode.
The diagonal transmitter operator performs spatial and
frequency waterfilling as explained before under the constraints
on the length of the overall impulse response and the total
transmit power. The diagonal filter , jointly with

, performs channel shortening equalization at each
eigenmode so that the length of the impulse response of the
equalized channel (i.e., the combination of the transmitter filter,
the actual channel and the receiver filter) does not exceed a
specified value. When the number of input streams is one,

will be the dominant left singular value of at each
frequency , resulting in a coherent transmitter (beamformer)
which directs the total transmit power into the dominant eigen-
modes at each frequency. However, the overall framework will
ensure that the effective channel impulse response in the time
domain is shortened to a specified value.

Equalization of the remaining paths (i.e., after channel short-
ening) can be performed using a Viterbi equalizer. Compared to
a complete equalization (i.e., equalized to a single spike), MLSE
combined with channel shortening provides extra degrees of
freedom for equalization and noise suppression. This broadband
beamformer differs from the broadband beamformer proposed
in [30] as our approach imposes a constraint on the length of the

effective channel. Hence, this treats a very general framework,
and the case for complete equalization can be obtained by set-
ting the TIR length to one.

VIII. SIMULATIONS AND RESULTS

There are two measures of performance adopted in this study.
The first one is the shortening signal-to-interference-plus-noise
ratio (SINR) at the output of the channel shortening filter. It is
defined as

(32)

where is the energy of the signal within the time window
defined by the finite-length TIR, is the energy of the signal
outside this window, and is the total noise energy. The
second measure is the bit-error-rate (BER) performance. Note
that the SINR metric is similar to the shortening SNR (SSNR)
metric in [21] with the addition of the noise power term .

The performance of the proposed frequency-domain ap-
proach for both the receiver-only and the joint transceiver based
schemes is compared with that of the finite-length time-domain
MMSE scheme of [25]. A randomly generated tap

MIMO channel is shortened to an
tap MIMO channel. The channel taps are assumed to
be zero-mean circularly symmetric, white complex Gaussian
random variables, i.e., they are both spatially and temporally
uncorrelated, and they are normalized so that the variance of the
channel is unity. Even though a more realistic scenario would
scale the taps according to a certain power delay profile, we have
chosen this setup to account for a bad channel. The noise vector

is composed of zero-mean circularly symmetric, white
complex Gaussian random variables. For all the simulations we
use quaternary phase-shift keying (QPSK) modulation except
the last one. For the frequency-domain design the FFT size
is chosen as whereas for the time-domain design,
various filter lengths and are considered.
As discussed in Section VI, the computational complexity of

and are comparable, and as increases, the
computational complexity of the time-domain design increases
exponentially. However, the performance of the time-domain
equalizer with is very poor. Therefore, instead, we will
consider the case as the lowest value of . For the
joint transceiver design, the number of iterations used for the
transmitter filter and TIR optimization is ten, however, it was
observed three or four iterations were adequate most of the time.

Fig. 5 provides the SINR performance comparison of the
proposed methods and the time-domain design. It is seen that
the joint transceiver design outperforms all other approaches in
terms of SINR. Even with longer filter lengths, i.e., ,
the time-domain design under-performs both the frequency-do-
main joint-transceiver and receiver-only equalizers. One
interesting observation about the time-domain FIR filter is the
appearance of error floors. This is because a short FIR filter does
not have enough degrees of freedom to completely equalize a
FIR channel and there will be significant residual error yielding
a loss in performance. However, as the filter length increases
its performance gets closer to that of the frequency-domain
receiver-only design. Therefore, this set of simulations also
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Fig. 5. SINR comparison of the finite-length time-domain design for filter
lengths, n = 16; 32; 64; and 256 to the proposed frequency-domain designs
with both joint transceiver and receiver only processing (N = 256) for an
n = 2 transmit, n = 2 receive antenna scenario where the channel of
length n = 10 is shortened to n = 2 taps.

Fig. 6. BER comparison of the finite-length time-domain design for filter
lengths, n = 16;32;64; and 256 to the proposed frequency-domain designs
with both joint transceiver and receiver only processing (N = 256). n = 2;
n = 2; and the channel of length n = 10 is shortened to n = 2 taps.

demonstrates the equivalence of the infinite-length time-domain
approach and the frequency-domain receiver-only approach.
Hence, the frequency-domain receiver-only design always
outperforms the FIR design. Moreover, due to the additional
degrees of freedom at the transmitter, the performance of the
joint transceiver design is superior to both of them with a gain
of 3 dB over the frequency-domain receiver-only equalizer.

In Fig. 6, we examine the BER performance of the proposed
frequency-domain joint transceiver and receiver-only methods
and compare them to the BER performance of the time-do-
main channel shortening equalizer. Both of the two eigenmodes
arising from this scenario are loaded . In order to de-
tect the transmitted data in this spatial multiplexing scenario, an
MLSE receiver is employed at the receiver end.

Note that the front-end channel shortening equalizer makes
the noise colored, and this coloring should be incorporated into

Fig. 7. Demonstration of the BER performance of the proposed joint trans-
ceiver design when the number of receive antennas is fixed to one and the
number of transmit antennas varies between one and four.

the MLSE algorithm for optimum operation. However, this in-
creases the computational complexity of the algorithm, which is
in contrast to the purpose of channel shortening. A suboptimum,
but with lower complexity MLSE algorithm would assume un-
colored noise.

It has been demonstrated in [26] that incorporating only the
zeroth lag of the covariance of the noise into the MLSE algo-
rithm does not significantly increase the complexity, but en-
hances the performance. Hence, we treat the noise in the MLSE
algorithm as temporally white, but incorporate the spatial cor-
relation as in [26].

From the BER curves in Fig. 6, we observe that even though
the proposed frequency-domain method has a relatively lower
computational complexity, it significantly outperforms the
time-domain equalizer for all values. The performance of
the time-domain design approaches that of the receiver-only
frequency-domain design only for very long filter lengths. For
shorter filter lengths, e.g., and , the time-domain
equalizer suffers from a severe error-floor effect. We also observe
that the transmitter processing provides a significant gain over
the receiver- only equalization, e.g., at , 2.5-dB
gain is observed. We also note the diversity gain obtained using
transmitter processing.

Fig. 7 provides the simulation results when the number of
transmit antennas varies from one to four but the receiver has
a single antenna. The multiple-input single-output (MISO)
channel of length is shortened to using the
proposed joint transceiver design. Apparently, there is only a
single spatial eigenmode, hence, the number of input streams
is fixed to one. As it can be observed from Fig. 7, there are
significant diversity and array gains that shift the curve to the
left as the number of transmit antennas increases.

Finally, in Fig. 8, we demonstrate that the proposed technique
can be considered as a broadband beamformer with constraints
on the multipath length. A MIMO channel with
multipath components is shortened to a length
MIMO channel. A spatial-multiplexing scheme employing an
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Fig. 8. Demonstration of diversity gain corresponding to the proposed joint
transceiver structure when n = 1 and 2 for the 2 � 2 MIMO channel.

MLSE receiver (to process the remaining two paths) is consid-
ered. Two scenarios are examined. In the first one, only one of
the two eigenmodes with the lowest MSE is selected for trans-
mission resulting in a beamformer in each frequency bin. In the
second scenario, both eigenmodes are loaded with data streams,
and the transmit power is distributed among these channels ac-
cording to the proposed space–frequency waterfilling algorithm.
In order to keep the throughput unchanged for both scenarios,
we used QPSK modulation for and binary phase-shift
keying (BPSK) for . From the slopes of the curves it can
be observed that loading the best out of two subchannels (i.e.,

) provides twice the order of diversity as compared to
when both eigenmodes are activated .

When both modes are used, the diversity order is approxi-
mately two as the effective length of the shortened channel used
for MLSE is two. However, when (i.e., only the strongest
subchannel is used), the diversity order increases significantly
(greater than four). This is due to the diversity introduced by
the transmitter and the receiver antennas in addition to the mul-
tipaths. Hence, the proposed technique provides a tradeoff be-
tween the data rate (multiplexing), the diversity gain, and the
complexity of the MLSE receiver characterized by the length of
the resulting shortened channel.

IX. CONCLUSION

A frequency-domain approach which includes both the
receiver-only and the joint transceiver design was proposed
for MIMO channel shortening under the MMSE criterion. It
was demonstrated that the proposed frequency-domain re-
ceiver-only equalizer is effectively equivalent to an infinite-
length time-domain equalizer. For the joint transceiver design,
it was proven that under certain transformations and conditions,
the problem could be cast into transmission over parallel inde-
pendent SISO subsystems, significantly simplifying the design.
A significant gain in terms of SINR ratio and BER was observed
when the transmitter preprocessor was employed. A practical
space–frequency waterfilling algorithm was also provided for
the transmitter filter design. The computational complexity of
determining the filters using the frequency-domain approach

is considerably lower than that of the time-domain approach.
Finally, we demonstrated that our proposed method could
also be considered as a broadband MIMO beamformer with
constraints on the time-domain multipath length, hence it
provides a tradeoff among the data rate (spatial multiplexing),
the diversity gain, and the complexity of the MLSE.

APPENDIX I
PROOF OF THEOREM 1

We start the proof by first deriving two key equations that will
be used in the calculations of several matrices in the following
sections. Later, Theorem 1 will be proven on the bases of these
structures.

Substituting the definitions in (14) and (15) and the decom-
positions in (11) and (12) into (5), the MSE becomes

(33)

where and we used the property
for appropriate dimensions. By setting the derivative

of (33) with respect to to zero, we obtain

(34a)

(34b)

Also, constructing the Lagrangian using (33) and (20b) with
a Lagrange multiplier , and equating the differentiation with
respect to to zero, we obtain

(35)

Proposition 1: is diagonal.
Proof: Postmultiplying (35) with we obtain

Since the right-hand side is Hermitian symmetric, the left-hand
side must also be Hermitian symmetric. Substituting (34b) re-
sults in

(36)

where and are
again Hermitian symmetric and is diagonal by definition.
Since for a Hermitian symmetric matrix , (36) can be
written as , hence

Therefore, we have

which is possible only when or and are both diag-
onal. Inspection of (36) reveals that . Therefore, we con-
clude that and
are diagonal. Hence, is diagonal.
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Using the matrix inversion lemma, we can rewrite the matrix
as

(37)

The second term in the right-hand side is written as
. How-

ever, has been proven to be diagonal. Hence, is
diagonal, and so is , completing the proof
of Theorem 1.

APPENDIX II
PROOF OF THEOREM 2

Write the arbitrary matrix in a vector form as follows:

... (38)

Define . Using (31) in (19) we can
write the MSE as

where the matrix is

...

(39)

Note that the term is di-
agonal, and the integral in (39) is the inverse Fourier transform
converting the spectral density function
into a correlation matrix working in a block-by-block basis.
It can be shown that is a block Toeplitz matrix where each
block is a diagonal matrix, i.e.,

...
...

. . .
...

(40)

where

...
. . .

...

(41)

for some scalar determined by the numerical evaluation
of (39).

As stated in Section IV-E, the coefficients of the TIR are as-
signed as the eigenvectors of . Using the relation

, where is one of the eigenvalues of and is the cor-
responding eigenvector, it can be shown that should
be in the following form when the structure of is as in (40)
and (41):

(42)

where , are some possibly nonzero, com-
plex-valued scalars. For the first set of eigenvectors corre-
sponding to the first entries of the matrices is equal to .
Similarly, there are eigenvectors corresponding to the second
entries of the matrices , with , and so on, for all
yielding a total of eigenvectors. For more details see [39].

Recall that there are subchannels corresponding to the
input data streams. Since each diagonal entry of (41) cor-

responds to a separate subchannel, the scalars forming
the “diagonal” target impulse for the th subchannel are
found as the elements of the eigenvector corresponding to the
smallest eigenvalue of the following “sub”-correlation matrix
constructed from by taking the th diagonal entry of (41)

...
. . .

...

These eigenvectors, , from (42), determined as ex-
plained above, constitute the columns of the optimum matrix
in (38), i.e., as shown at the bottom of the page. Equivalently,
substituting into (31) we have

...
. . .

...

...
. . .

...
...

. . .
...
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...
. . .

...

...
. . .

...

Hence is diagonal.

APPENDIX III
PROOF OF THEOREM 3

The proof is composed of three parts. First and will be
shown to have all zero rows, in part i). Using this property
they will be reduced to full rank square matrices of dimension

. In part ii), it will be proven that these “reduced” matrices
have only one nonzero entry in each row and column. Finally,
in part iii), depending on the assumptions (13) and (22), it will
be shown that the optimal is a rectangular diagonal matrix.

Since the rank of the MIMO channel is , in the sequel the
dimension of will be assumed to be . A more general
case would consider as an matrix, but due to the
rank of the channel, loading the last eigenmodes (with
zero eigenvalues) would be a waste of transmit power. There-
fore, without loss of generality, the last rows are set
to zero. Hence, for notational simplicity is assumed to be of
dimension until the end of this proof. In fact, the wa-
terfilling algorithm will set the powers of the excess antennas to
zero since for , cf. (12) and (27).

Also, note that the case is excluded in the analysis,
i.e., the number of input streams is greater than the number
of available eigenmodes. This will clearly waste the transmit
power and will increase the MSE by introducing additional
terms. When CSI is available at the transmitter, this case can
be avoided by loading the channel with a sufficient number
of input streams. Hence, for clarity of the proof, this case is
ignored here. A more detailed analysis for this case can be
found in [39].

In order to prove Theorem 3, the following proposition is es-
tablished.

Proposition 2: and are diagonal.
Proof: Postmultiplying (35) by , we obtain

(43)
Premultiplying (34a) by , we obtain

(44)

Subtraction of (44) from (43) yields

(45)

Assume that the diagonal matrix is nondegenerate (i.e.,
) which is almost sure due to the randomness of

in (12). Clearly, the matrices and are

Hermitian symmetric and the right-hand side is also multiplied
by the diagonal matrix . In such a case, equality holds if and
only if and are “diagonal” (postmul-
tiplying a Hermitian symmetric matrix by a nondegenerate di-
agonal matrix scales the columns which destroys the symmetry,
hence makes the equality impossible unless the Hermitian ma-
trix itself is diagonal). In the case of a degenerate , i.e.,

, a small perturbation matrix can be added
to as in [28] to obtain so as to have
each diagonal element different. Use of in (45) instead of

requires the diagonality of from the above dis-
cussion. Without loss of generality taking the limit
preserves the diagonality of and .

a) Part I: Recall that is a matrix, similarly, and
are matrices. Also, from (34b) notice that , hence

, have the same structure as , i.e., have zeros at the same
positions, since all other terms in that equation are diagonal.
Also remember that is a full-rank diagonal matrix.
Postmultiplying (34a) by and premultiplying (35) by ,
one can obtain the following set of equations:

(46a)

(46b)

Since is diagonal as stated in Proposition 1, from (46a),
must also be diagonal. Similarly, since is di-

agonal as demonstrated in Appendix I, from (46b), must
also be diagonal. Also recall from Proposition 2 that
is diagonal.

We define those diagonal matrices as

(47)

(48)

(49)

where and are nonnegative definite full rank
diagonal matrices (i.e., all eigenmodes are assumed to be
active) and is a nonnegative definite diagonal matrix
with rank . Clearly, when and are full rank
square matrices.

When , a closer examination of (49) reveals that the
rows of corresponding to zeros on the main diagonal of
must be zero. This can be proven as follows. First, note that
is a full-rank diagonal matrix by definition, hence, has
zeros exactly at the same the position as . Let be such
a zero element, then from (49) ,
where “ ” means all elements on the th row. However,
this is the definition of a vector norm which is equal to zero if
and only if . Therefore, is a rank matrix
with rows consisting of all zeros. Similarly, can be
shown to have columns with all-zero entries.

Therefore, without loss of generality, in the sequel, the
“squeezed” versions of and matrices which will
be denoted by and will be used. The all-zero rows
are deleted from and and the corresponding rows and
columns of are also removed. Observe that and are
full-rank “square” matrices with dimensions . Also,

is still a full rank square diagonal matrix.
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b) Part II: Considering (47) and (48), we can write and
as follows:

(50a)

(50b)

for some unitary matrices and and a permutation ma-
trix (since the rows of are our primary concern in the
case , the permutation matrix is set to permute the
rows). Note that . The diagonal matrix

can be re-expressed in terms of these definitions as
, hence

(51)

where is a full rank diagonal matrix. Note that
is still diagonal. Now, can be written as

where both lines are equal. Hence, also considering (51), these
equations imply that

for arbitrary . Substitution of (50b) into (19) yields

where the second equality follows from the fact that all matrices
in the bracket are diagonal hence they commute. It can also be
shown that the same property holds for the power constraint in
(20b), meaning that the optimization is insensitive to the selec-
tion of . Hence, without loss of optimality, we can set .
Therefore, we can conclude from (50) that and are diag-
onal up to a permutation. This guarantees that there is at most
one nonzero entry in the rows and columns of and .

c) Part III: In this subsection, a sketch of the proof for the
optimality of choosing the transmitter filter as diagonal is pro-
vided for the ordering (22).

Let the diagonal elements of be . It can be
shown that when , the MSE in (19) can be written for

as

(52)

where is diagonal with components as proven
before. Define the permuted matrix which is identical
to everywhere except the th and th rows of

which are permuted only at frequency

It can easily be shown that this permutation does not affect
or but swaps the th and th entries of , i.e.,

is still a diagonal matrix with diagonal entries .
Therefore, the MSE for the permutation can be written as

(53)

The difference between and is de-
fined as

otherwise

(54)

since the permutation is effective only at and for the pair
and , and both scenarios are identical elsewhere. In order to

satisfy the power constraint, the following equality must hold:

(55)

First, consider the case

(56)

Then select and such that

and (57)

which clearly satisfies (55). Substitution of (57) into (54) yields

which is nonnegative because from as-
sumption (22). The second parenthesis follows from the as-
sumption (56).

For the second case, i.e., if

(58)

we set and as

and

(59)

Substituting (59) into (54), we obtain

(60)
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which means both scenarios end up with the same MSE. How-
ever, looking from the transmitted power point of view

(61)

which can be shown to be greater than or equal to one under the
assumptions (13) and (58). Note that and

. The relation in (60) and (61) means that the same MSE
is achieved while the permuted scenario needs more transmit
power. Since the MSE is monotonically related to the transmit
power, the diagonal scenario yields a lower MSE than the per-
muted scenario when the transmit power of both scenarios are
set equal.

The argument in this section is valid for each frequency and
all pairs and . Hence, repeating the algorithm for all of the
frequencies and pairs confirms that the diagonal scenario yields
the lowest MSE among all permutation scenarios. Hence, the
optimum permutation is . With this permutation, (53)
yields (24).

This concludes the proof of the diagonality of the optimum
transmitter filter for the ordering (22).
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