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Coherence scanning interferometry (CSI) offers three-
dimensional (3D) measurement of surface topography with
high precision and accuracy. Defocus within the interfero-
metric objective lens, however, is commonly present in CSI
measurements and reduces both the resolving power of the
imaging system and the ability to measure tilted surfaces.
This Letter extends the linear theory of CSI to consider
the effects of defocus on the 3D transfer function and
the point spread function in an otherwise ideal CSI instru-
ment. The results are compared with measurements of
these functions in a real instrument. This work provides
further evidence for the validity of the linear systems theory
of CSI.
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In two-dimensional imaging systems, such as those used in
wide-field microscopy, the effects of defocus generally degrade
image quality, although in certain circumstances one or more
defocused images have been used as a means of edge enhance-
ment [1] and to retrieve phase information from intensity
images [2]. The effect of defocus in three-dimensional (3D)
imaging instruments, such as confocal microscopy, is more
complex and depends on the relative focus of the illumination
and observation optics, such that markedly different responses
are observed for the reflection and transmission imaging modes
[3]. In this Letter we consider the effect of defocus on the per-
formance of the interference microscopes that form the basis of
the measuring technique known as coherence scanning inter-
ferometry (CSI). Reference [4] shows how easily defocus causes
measurement errors in CSI. In a way that is analogous to con-
focal microscopy, it is the relative defocus between the object

and reference arms that is important in this case, and the
effect of defocus on the transfer function (TF) and point spread
function (PSF) that characterize the 3D performance in CSI is
determined.

CSI is a well-established technique for 3D measurement
of surface topography with high precision and accuracy [5].
When using CSI tomeasure the surface topography of an object,
either the object or objective lens is scanned axially to generate
an image stack that contains interference fringes, fromwhich the
surface topography is reconstructed. Two of the most common
interferometric objectives used in CSI are those of Michelson
andMirau design (Fig. 1). Michelson objectives are mostly used
for low numerical aperture (NA), low-magnification systems
(10× and lower) whileMirau objectives are more useful at higher
NA and higher magnification (10× to 100×). In addition,
Linnik objectives are often used for high-magnification systems,
when a larger working distance than with a Mirau objective is
desired [6,7].

If the reference mirror of the interferometer is positioned
at the focal plane of the lens, the sharpest image is obtained
exactly when the optical path difference (OPD) between the
two arms of the interferometer is zero, where the modulation
envelope of the low-coherence interference signal is at its peak.
In a Mirau objective, the reference mirror is a surface conjugate
to the best focus plane of the object [7]. In this case, the surface
topography can be reconstructed from the fringes with the
optimal lateral resolution.

Defocus in CSI means that the reference mirror is not
accurately positioned at the conjugate focal plane of the lens,

Fig. 1. Common interferometers in CSI: (a) Michelson and
(b) Mirau type.
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as illustrated by the dashed line in Fig. 1. Consequently, the
peak position of the coherence envelope of the fringes will
be shifted away from where the sharpest intensity image of
the surface is obtained. In other words, there is an offset
between the interferometric focus and the microscopic focus,
where the former is determined by the OPD and the latter
is determined by the position of the focal plane of the lens,
in a similar manner to that of an ordinary microscope. In this
study, a ZYGO NewView 8300 system with 50× Mirau objec-
tive (0.55 NA) is used. The position of the beam splitter can be
adjusted along the optical axis in order to place the reference
mirror into focus [Fig. 1(b)]; nevertheless a perfect mechanical
adjustment is difficult to achieve, particularly for Linnik
objectives [8].

The common method for evaluating the degree of defocus is
conducted in the spatial domain by imaging a planar surface
with features, and the sharpest image of the surface is expected
when the fringes are brightest or darkest. For example, a rec-
tangular grating with sharp edges or a slightly roughened opti-
cal flat can be used. As shown in Fig. 2, the axial offset between
the microscopic and interferometric signals can be observed in
the cross-sectional views of the 3D CSI images of a roughened
optical flat. The intensity variation in the background of the
fringes can be considered as the microscopic image of the sur-
face, i.e., the convolution between the 3D microscopic PSF and
the object function [9]. The small particulates in the surface
may form the dark and spindle-shaped artefacts in the cross-
sectional images. Thus, the central position of the “spindle”
(in the axial direction) can be used for estimation of the focal
plane of the lens. The estimated axial offsets between the in-
terferometric focus and the microscopic focus are −2.4 μm,
−1.3 μm, −0.1 μm, 1.5 μm, and 3.3 μm, for Figs. 2(b)–2(f ),
respectively. The measurements were done by adjusting the
position of the beam splitter by manually rotating the outer
casing of the objective lens.

In this study, we will present a new method to analyze the
defocus condition of a CSI system by examining the 3D TF of
the system in the spatial frequency domain, and the effects of
defocus on the TF will be investigated. The advantage of this
approach is that a CSI system can be effectively characterized by

its TF, including the spatial bandwidth, resolution, and optical
aberrations in the system [10,11].

Recent studies show that CSI measurement of a surface can
be considered as a linear filtering operation if the Kirchhoff
approximation is made, such that multiple scattering from
the surface is negligible. This assumption requires the surface
to be slowly varying on the optical scale, i.e., the local radius of
curvature is much larger than the wavelength [12]. The detailed
derivation of the linear theory of surface measurement by CSI
can be found elsewhere [10,13]. The linear systems theory
shows that the interference term of the CSI signals in the spatial
frequency domain (k-space), I�k�, can be expressed as the
multiplication of the object spectrum, O�k�, and the TF (also
understood as the linear shift-invariant filter), H �k�, as

I�k� � O�k�H �k�; (1)

where O�k� is the Fourier transform of the object function,
defined by the optical property and topography of the
surface [13],

o�x; y; z� � 4πjRw�x; y�δ�z − s�x; y��; (2)

where j � ffiffiffiffiffi
−1

p
, R is the Fresnel amplitude reflection coeffi-

cient, and w�x; y� is a window function with smooth cutoff
for making the object function space-limited. The object is de-
fined as an infinitely thin foil by the Dirac delta function δ�z�
based on the surface topography s�x; y� (this is referred to as the
“foil model” of the surface in other publications). Using the foil
model, if the object function is known, then the TF can be
easily retrieved. It has been shown that a precision sphere which
has uniformly distributed surface slopes can be used for calibra-
tion of the TF [14,15], where the diameter of the sphere should
be much greater than a wavelength and smaller than the field
of view.

Based on the linear theory, the theoretical TF of CSI can be
calculated given the spectrum of the light source and NA of the
system. We first consider the 3D TF of an optical system that
operates at the wavenumber k0 � 1∕λ (λ is the illumination
wavelength) and is restricted by a finite NA (NA) given by [13]

G�k; k0� �
j

4πk20
δ�jkj − k0�step

�
k · ẑ
jkj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − N 2

A

q �
: (3)

The TF of an optical system is a spherical shell in k-space
truncated by the Heaviside step function that is determined by
the NA [Fig. 3(a)]. The spherical shell is referred to as the
Ewald sphere and its radius is k0 [10,16]. In the spatial domain,
the 3D impulse response, i.e., PSF, of the optical system is
obtained as the inverse Fourier transform of the TF as
g�r; k0� � F −1fG�k; k0�g.

Fig. 2. (a) Intensity image of the roughened optical flat in the x − y
plane and cross-sectional CSI images of the surface taken at different
focus conditions. The estimated axial offsets are (b) −2.4 μm,
(c) −1.3 μm, (d) −0.1 μm, (e) 1.5 μm, and (f ) 3.3 μm. (Direction
is defined in Fig. 1.)

Fig. 3. Cross-sectional views of (a) the TF of an optical system with
a finite NA and (b) the TF of CSI (monochromatic illumination is
assumed).
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According to Coupland et al. [13], the TF of CSI is given by
the convolution of G�k; k0� with itself [see Fig. 3(b)] and in-
tegrated over the entire spectrum of the light source, S�k0�, as

H �k� �
� jkj2
2k · ẑ

�

×
ZZ

G�kr ; k0�G�k − kr ; k0�d 3krS�k0�dk0; (4)

where kr is the wave vector of the reference light and ẑ is a unit
vector in the direction of the optical axis. According to Eq. (1),
the imaging process can be considered as a linear filtering
operation that modifies the object spectrum by selecting only
the spatial frequency components that lie within the passband
defined by H �k�.

Defocus in CSI appears when there is an offset, δz,
of the reference mirror along the optical axis, which is equiv-
alent to introducing a linear shift to the impulse response
of the reference beam. The PSF is, therefore, modified as
g�r � 2δz · ẑ; k0�, where the factor “2” comes from the fact
that the OPD is doubled by the reflection of the reference
beam. Using the shift property of the Fourier transform and
taking the inverse Fourier transform of the modified PSF,
we obtain the TF of the optics of the reference arm as
G�k; k0� exp�j4πkδz · ẑ�, where the additional exponential
term indicates a phase shift determined by 2δz. By replacing
one of the G�k; k0� terms in Eq. (4), we obtain a more general
expression for the TF of a CSI system, taking account of
defocus:

Hd �k� �
� jkj2
2k · ẑ

�ZZ
G�kr ; k0� exp�j4πkrδz · ẑ�

× G�k − kr ; k0�d 3krS�k0�dk0: (5)

It is noted that a special case occurs when the reference
mirror is in focus, i.e., δz � 0. Based on Eq. (5), the theoretical
TF of the CSI system used in this study can be calculated.
A Gaussian spectrum of the illumination source is assumed,
and based on the specification of the instrument, the central
wavelength is 0.58 μm and the bandwidth (full width at
half-maximum) is 0.8 μm. As shown in Fig. 4, the TFs are
calculated at different defocus conditions, and the correspond-
ing PSFs are obtained by taking the inverse Fourier transform
of the TFs. As shown in Fig. 4, the spatial bandwidth of the
CSI, determined by the magnitude of the TF, reduces with the
increasing offset of the reference mirror from the focused posi-
tion. This reduction is particularly noticeable in the lateral
direction of k-space. Therefore, the high spatial frequency
components of the object spectrum, corresponding to high sur-
face slopes and fine structures, cannot be fully recorded and
reconstructed. The reduction of the bandwidth also causes
the broadening effect of the PSF.

The phase terms of the TFs are shown in the second column
of Fig. 4. For visualization purposes, 3D windows determined
by 1% of the magnitudes of the TFs are applied to the respec-
tive phase plots, displaying only the phase terms within each
passband, i.e., the phase terms in the irrelevant regions in
k-space are not plotted. Horizontal fringes are observed in
the phase terms when defocus is present, and the spacing fre-
quency of these fringes is proportional to the amount of offset.
The horizontal fringes also indicate that the phase term is not

dependent on the lateral spatial frequency components, i.e.,
defocus is an axial aberration.

As we know that height measurement in CSI is dependent
on the phase of the recorded fringes, it follows that a
non-uniform phase term in the TF will shift and distort the
recorded fringes and correspondingly change the height mea-
surement result. As a consequence, the axial position of the
PSF is shifted in the presence of defocus, and this shift explains
the offset between the interferometric focus and the micro-
scopic focus (Fig. 2). Moreover, changes in the magnitude
of the TF mean that we should expect loss of signal and tilt
dependent errors due to defocus.

In general, the effects of defocus on the TFs and PSFs are
identical for positive and negative offsets (δz larger or smaller
than zero) except for the changes in the signs of the gradient of
the phase terms, corresponding to the PSFs being shifted
downwards and upwards along the optical axis.

As discussed before, the TF of CSI can also be measured
experimentally using a precision sphere, and in this case a
sphere with a diameter of 36.6 μm is used. The detailed pro-
cedure of the calibration can be found elsewhere [14,15]. The
CSI image stacks of the sphere are acquired at the same focus
conditions as those shown in Fig. 2. The acquired CSI images
and the measured height maps near the top of the spherical cap
are shown in Fig. 5. The contrast of the fringes decreases and

Fig. 4. Cross-sectional views of the theoretical TFs and PSFs
of CSI at different focus conditions: (a) −2.4 μm, (b) −1.3 μm,
(c) −0.1 μm, (d) 1.5 μm, and (e) 3.3 μm. Note the change in z-axis
of the PSF plot.
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the measurement error increases as the amount of defocus
becomes larger. For an ideal CSI system with NA 0.55, the
maximum detectable slope angle is approximately 30° on the
smooth spherical cap.

The measured TFs and the derived PSFs of the CSI system
are shown in Fig. 6. We assume that the axial position of the
sphere was not changed in the instrument’s coordinate system
because the sphere was not moved during the measurements. In
general, the experimental results agree with the theoretically
calculated TFs, although some discrepancies are observed in

both the magnitudes and phase terms of the TFs. Comparing
Fig. 6 with Fig. 4, the magnitudes of the TFs are unbalanced
for the positive and negative offsets of the reference mirror of
the interferometry, and the horizontal fringes in the phase terms
are not as straight as predicted in the simulated results. The
discrepancies indicate the presence of other optical aberrations
that are dependent on lateral frequency components, e.g.,
spherical aberration, as is clearly seen in the phase term of
Fig. 6(c).

In summary, the fringe generation in CSI in the presence of
defocus is analyzed based on the linear systems theory of surface
measurement. We demonstrate that defocus in CSI can be
revealed and evaluated in the spatial frequency domain by
measuring the TF of the system using a precision sphere.
The advantage is that the TF provides information on the spa-
tial bandwidth (characterized by its magnitude part) and optical
aberration (characterized by its phase term) in the system.
Moreover, the resolution and PSF of the system may also be
derived from the TF. In the presence of defocus, the lateral
resolution of the system and the fringe contrast of high surface
slopes are degraded because of the reduction of spatial band-
width and broadening of the PSF. The unbalanced magnitudes
of the TFs and the lateral dependencies of the phase terms
indicate the presence of other aberrations, e.g., spherical aber-
ration, and will be addressed in our continued research. In
addition, this study provides further experimental evidence
for the validity of the linear systems theory of surface measure-
ment by CSI.
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Fig. 5. Top-view CSI images of the spherical cap at different
focus conditions (top row) and the corresponding height maps
(bottom row): (a) −2.4 μm, (b) −1.3 μm, (c) −0.1 μm, (d) 1.5 μm,
and (e) 3.3 μm.

Fig. 6. Measured TFs and derived PSFs at different focus condi-
tions: (a) −2.4 μm, (b) −1.3 μm, (c) −0.1 μm, (d) 1.5 μm, and
(e) 3.3 μm.
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