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Abstract: Power-efficient architectures have become the most important feature required for future embedded systems. Modern
designs, like those released on mobile devices, reveal that clusterization is the way to improve energy efficiency. However, such
architectures are still limited by the memory subsystem (i.e., memory latency problems). This work investigates an alternative
approach that exploits on-chip data locality to a large extent, through distributed shared memory systems that permit efficient
reuse of on-chip mapped data in clusterized many-core architectures. First, this work reviews the current literature on memory
allocations and explore the limitations of cluster-based many-core architectures. Then, several memory allocations are introduced
and benchmarked scalability, performance and energy-wise, compared to the conventional centralized shared memory solution to
reveal which memory allocation is the most appropriate for future mobile architectures. Our results show that distributed shared
memory allocations bring performance gains and opportunities to reduce energy consumption.

1 Introduction

In recent years, increased efforts to achieve power-efficient archi-
tectures are gaining attention over performance designs. One effort,
which is already a reality, is to explore clusterization to imple-
ment heterogeneous processor architectures. For example, modern
many-core architectures, such as those released on mobile chips, are
inspired by ARM’s so-called big.LITTLE technology [1]. Samsung
with Exynos chips and Qualcomm with its Snapdragon CPU are
few examples in such a trend. Instead of increasing core numbers to
improve performance, these architectures are distinguished by their
efficient utilization, where clusters are created to treat differently
light activities from high workloads. This demonstrates that efficient
many-core architectures will be constrained by memory allocation
and architectural optimizations (e.g., clusterized shared/distributed -
memory architectures and interconnection). Advanced memory opti-
mizations are even more important as the number of cores integrated
into a chip increases since the on-chip data exchange has a direct
impact on system performance and energy-efficiency.

Studies show that processors are the major on-chip power con-
sumers. According to [2], the processor consumption corresponds to
more than 50% of the total energy capacity of the mobile device
when the brightness of the screen drops to 25%. Specific bench-
marks have been used to further analyze processor consumption on
mobile devices [2–6]. These works revealed that the energy spent
on data movement in mobile processors is significant, achieving on
average 35% of total device energy [2]. Therefore, minimizing mem-
ory latency is a primary obstacle to improve processor performance
efficiently and reduce energy consumption.

As a consequence, the memory subsystem has to evolve into
some different organization that overcomes memory latency prob-
lems. According to [7], one way to mitigate these problems is by
adopting a distributed memory system architecture. The use of dis-
tributed memories reduce the communication volume compared to
the traditional shared memory solution, improving scalability and
alleviating the presence of hotspots in the system. From this perspec-
tive, distributed on-chip memories will likely become mainstream
for mitigating memory access bottleneck in emerging many-core
architectures [8].

In this context, the purpose of this paper is to review the cur-
rent literature on memory allocations and explore the limitations
of cluster-based many-core architectures to reveal which memory
allocation is the most appropriate for future mobile architectures.
The novelty of this work focuses on the exploration of memory data
allocation and architectural optimizations concerning emerging clus-
terized architectures which employ multiple memories in a unified
memory space, organized according to the system and application
requirements. In this sense, the use of distributed shared memory
(DSM) allocations will allow the efficient reuse of on-chip mapped
data in these cluster-based architectures.

The contribution of this work is twofold. First, we present a
detailed study that reveals the limitations of cluster-based many-core
architectures. To overcome the obstacles encountered, our second
contribution is to analyze the benefits of employing a proper mem-
ory allocation in clusterized many-core architectures targeting three
metrics: (i) scalability, (ii) performance, and (iii) energy efficiency.
To perform these experiments, we have adapted a many-core RTL
platform and developed a SystemC model that enables to investi-
gate the data locality and memory allocations impact on large-scale
clusterized many-core architectures.

In the rest of this paper, Section 2 presents related works that
discuss on-chip data locality and memory allocations in cluster-
ized many-core architectures. Section 3 overviews the evolution of
many-core architectures, introduces memory allocation alternatives
and presents the reference architecture abstractions. Section 4 inves-
tigates the impact of on-chip data locality on large-scale systems,
revealing possible limitations. Section 5 shows experimental results
on how on-chip distributed cache memory can influence the scal-
ability, performance, and energy-efficiency of future cluster-based
mobile devices. Finally, Section 6 points out the conclusions.

2 Literature Review

Mobile is by far the device most people own worldwide, snapping
up more than 80% of the worldwide device shipments [9]. This
explosive market growth motivated studies to further improve these
many-core systems, from methodologies to optimize applications in
mobile processors [10], to the use of dynamic voltage and frequency
scaling (DVFS) aiming at reducing power consumption [11].
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Fig. 1: Overview of many-core architectures, from the initial concepts, through the disruptive innovation of the big.LITTLE architecture with
the introduction of clusters, reaching the reference clusterized many-core architecture of this work.

A crucial aspect underlying the proper development of mobile
devices is to have, at the design phase, benchmarks that are repre-
sentative of real applications, like MobileBench [3] and Moby [4].
These works claimed that to improve mobile efficiency and perfor-
mance is essential to consider benchmarks that better match typical
use cases along with their library and system interactions. Using
such benchmarks, Gutierrez et al. [5] observed that smartphone
applications could spend up to 15% of their execution time in the
operating system (OS) code. Identifying these patterns may drive
the development of future mobile devices.

These characterizations help to identify possible limitations on
many-core architectures. One of the most striking is the inefficient
use of on-chip memories, resulting in natural bottleneck appearances
due to the increased number of cores, and consequently, a system
performance degradation. Such limitations instigated researchers to
work on data locality for many-core systems [2, 12, 13].

In [12], abstract models are proposed to investigate the effects
of memory locality on the placement of threads in shared-memory
applications with different distance metrics. They predict that future
many-core systems will have a distributed memory architecture,
with memory embedded in the processor tiles or stacked on top of
them. Following this trend, some works already provide a distributed
global address space, commonly using scratchpad memories, mak-
ing the on-chip data memory to be physically distributed among all
cores [14–16].

Yan and Fu [13] aim to reduce memory latencies for mobile
devices by addressing data locality improvements through applica-
tion profile and partitioning. This research focuses on the energy-
efficient cache design in emerging mobile devices. They propose to
partition the level-2 (L2) cache into two distinct segments, which
are user and kernel space. Authors argue that more than 40% of L2
cache accesses are OS kernel accesses in interactive applications.
Their approach results in 15% energy savings without performance
loss, due to its better utilization, thereby reducing the memory area.

Pandiyan and Wu [2] investigate the impact of data movement
on overall energy consumption in smartphone devices. Results show
that data movement is responsible for 35% of the total device energy.
Authors also concluded that data exchange energy could reach 41%
for realistic web browsing and on average 23.5% for processor stalls
in current smartphones. This characterization study shows the impact
that a poor memory subsystem causes in the efficiency of a mobile
device.

Due to the great success of big.LITTLE architectures [1], recent
studies also address architecture limitations in clusterized many-core
systems. In [17], a technique for deploying hierarchical data flow
graphs efficiently onto clustered many-core processors is proposed
to help retrieve data locality, which is crucial for high performances
and power consumption. On and Hussin [18] analyzed the impact
that different many-core clustering methods have on multiprocessing
architectures. To improve performance, Kakoee et al. [19] proposed
a shared-L1 cache architecture for tightly coupled processor clus-
ters. These works demonstrate that memory access latencies differ
strongly in such architectures, depending on the data locality on the
clusters. In architectures with non-uniform memory access (NUMA)
characteristics, this problem is further aggravated, since the remote
memory access imposes high overhead, making them more sensi-
tive to data locality. This data locality problem was our motivation

to deeply explore the memory allocation in these modern clusterized
many-core architectures.

Madalozzo et al. [7] proposed a scalability evaluation in many-
core systems, comparing shared and distributed memory architec-
tures. Ma et al. [8] explore five different memory hierarchies, from
centralized to distributed memories, revealing their effects on the
scalability of many-core embedded systems. Results show excel-
lent performance scalability using distributed memories for many-
core embedded systems up to 32 cores. Unlike, our work extends
both simple analyzes by exploring the scalability, performance, and
energy-efficiency of different memory allocations in emerging clus-
terized many-core architectures. First, we investigate the limitations
caused by the memory subsystem on large-scale many-core systems
through a trace-driven simulation technique. Then experiments are
performed through a precise and realistic platform.

Furthermore, some authors [2] argue the high stalled cycle energy
consumption justifies the inclusion of more cores to achieve power-
efficient architectures. Other authors claim that the number of cores
will be regulated by the power wall and utilization wall [20]. In
this regards, this work developed a SystemC model that shows the
proper cluster size for each memory allocation. These tips can help
future mobile devices to achieve the best trade-off between power
consumption and performance.

3 Target Architecture Definitions

3.1 Many-core Architecture Models

This section overviews the evolution of many-core architectures.
This architectural breakthrough is because the application perfor-
mance requirements cannot be satisfied merely by raising the fre-
quency of a monolithic core, which increases the chip’s overall
temperature and power consumption. One solution to overcome
these bottlenecks is through the integration of multiple cores on the
same chip [21].

Initially, many-core architectures were designed using symmetric
or asymmetric cores organized through traditional memory hierar-
chies composed of several memory levels (e.g., L1, L2, and L3).
As core count increases, networks-on-chip (NoC) have become the
de facto standard on-chip communication infrastructure to main-
tain system scalability. Figure 1a is an example of a NoC-based
many-core architecture with a hybrid memory architecture.

Such systems face two major challenges. First, to handle the
execution of multiple applications concurrently (i.e., with different
workloads). Second, to provide a proper memory architecture that
promotes greater performance. Figure 1b shows the big.LITTLE
architecture, in which CPU clusters of heavy and lightweight cores
are coupled. Both cores are capable of executing the same instruc-
tions, and the difference lies in the way the cores handle the exe-
cution. Heavy cores are responsible for computing intensive tasks,
such as high-definition video playback, whereas the lightweight
cores handle lesser demanding tasks, such as text editing. Develop-
ers reported over 50% in energy savings for popular activities such
as web browsing and music playback with the duo configuration [1].
Unlike, the second challenge remains open, which motivates us to
investigate different memory allocations in this new target device.
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Fig. 2: Visual representation of five different memory allocations that cover CSM and DSM clusters.

3.2 Shared Memory Models

Inspired by ARM’s big.LITTLE technology [1], modern mobile
devices are being released with support for multiple clusters. To
investigate the opportunities that adequate memory allocation can
bring to these devices, we defined a reference clusterized many-core
architecture, as shown in Figure 1c. From here, tile is defined as the
set of core, local memory, and a network interface; and the cluster is
a set of tiles. On top of that NUMA architecture, two shared memory
models can be exploited within a cluster:

– Centralized Shared Memory (CSM): Host tile may share a region
of its local memory with remote tiles.
– Distributed Shared Memory (DSM): All tiles participating in
a given cluster share a region of their local memory with other
participating tiles.

CSM is similar to current mobile architectures since a single local
memory is shared within the cluster and used as L2 cache mem-
ory. On the other hand, DSM is the architecture to be exploited.
As suggested by Ma et al. [8], DSM can ensure the energy-efficient
expected for future mobile architectures. Note that in this implemen-
tation only instructions get distributed across tiles participating to a
cluster whereas shared data remain hosted on a host tile. This dis-
tinction is because mobile applications are typically user-interactive
applications, which involve rich GUI display using shared libraries
and system codes, leading to a large instruction working set [2, 4, 5].
On the other hand, the data access patterns in mobile applications
have small footprints and exhibit good locality [4, 5].

Figure 3 illustrates a comparison between CSM and DSM sys-
tems when both make available the same global address space size.
To create a global address space in DSM, part of the local memory
range in each tile is reserved for global use. All these regions are then
composed in a global address range, logically contiguous but phys-
ically distributed inside the cluster. However, the shared memory
solution shown in CSM clusters cause architecture limitations due
to temporary high contention on single resources, which generate
work imbalance and reduce performance.
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Fig. 3: A physical view of on-chip CSM and DSM systems. In CSM,
Host has the physically shared memory, while in DSM, several tiles
are clustered to build the global address space. This non-fixed shared
memory architecture in DSM produces a more efficient design.

3.3 Memory Allocation Alternatives

To select the most suitable memory allocation for future mobile
devices, we picked five distinct ones, from centralized to distributed
memories, as suggested by Ma et al. [8]. They have different char-
acteristics and are used either in current mobile devices or are trends
presented in the literature to improve architecture scalability.

Figure 2 illustrates the exploited memory allocations. Two mem-
ory allocations are considered for the CSM system. Long Hops
represents the memory allocation of current mobile devices, where
cores participant of the same cluster shares single memory access.
The second CSM allocation, referred to as Short Hops, consists
in assigning all of the shared memory in a central tile for better
reachability.

On the other hand, three memory allocations are assessed for
DSM. Contiguous memory allocation is the default. It will be used in
early DSM investigations, where instruction or data blocks are stored
in each local memory. In contiguous memory allocation, the shared
memory is divided by sequential memory blocks, and each pattern in
Figure 2 represents one memory block of M kB that will be assigned
to a tile. For example, considering a shared memory of 64 kB, a 4x4
cluster has a memory block size of 4 kB (M=4), while an 8x8 cluster
has a memory block size of 1 kB (M=1). While Ma et al. [8] explore
flavors of this unique DSM allocation, playing with interconnecting
latencies, we further investigate other memory allocations. Depend-
ing on application behavior, contiguous memory allocation tends to
degrade system performance due to the many requests coming from
different cores simultaneously.

Interleaved memory allocation has the same memory block size
as M kB. However, instead of subsequent memories, it consists of
assigning every other memory position (N) to another tile in a cyclic
fashion, where each N has 32-bit word size. Interleaved outperforms
contiguous memory allocation for critical code regions. However,
it is less suitable for regular applications that contain a balanced
number of memory requests.

Finally, Distributed memory allocation assigns memory blocks on
the sole basis of their nature: microkernel and applications, using a
honeycomb pattern. Within a category (i.e., OS or APP), Contiguous
memory allocation is used. This memory allocation is investigated
because studies show that future mobile devices need to better
handle the large and varied code footprints of interactive applica-
tions [5, 13]. Some architectures already presented such asymmetric
behavior, as Cortex-A57 and Cortex-A73 (as will be seen in Table 2).
Thus, this growing gap between data and code footprints must be
effectively addressed.

3.4 Reference Architecture Abstractions

Different abstractions (Figure 4) of our reference clusterized many-
core architecture has been developed to accurately evaluate pro-
moted memory allocations, considering different metrics like sup-
port for large scenarios (Section 4), accuracy (Section 5.2) and
performance and energy savings (Sections 5.3 and 5.4). A trace-
driven simulation technique is employed to investigate the on-chip
data locality impact on large-scale system performance, allowing the
exploration of clusters composed of a large number of cores. This

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2018 3



VHDL
model

SystemC
model

Trace-Driven
model

Fig. 4: Different abstraction layers are necessary to cover evalua-
tions with distinct goals, ranging from accurate to fast simulations.

experiment aims to find out the possible limitations of cluster-based
designs. Further, the trace-driven technique collects data (i.e., traces)
to be used afterward.

A precise and realistic platform is necessary to analyze the hard-
ware impact of this paradigm shift, from centralized- to distributed-
shared memory architectures. This platform model described in
RTL provides accurate data, such as memory latency, which shows
the scalability achieved by the DSM approach. Finally, a SystemC
model is developed using as input the same trace file captured from
the trace-driven technique. Such abstraction allows the exploration
of several memory allocations, providing hints on performance and
energy-wise for future clusterized many-core architectures.

4 Limitations on Clusterized Many-core
Architectures

4.1 Introduction

To assess the influence of on-chip data locality on large-scale mobile
architectures, more efficient simulation and modeling techniques
become stringent requirements to investigate systems at these scales.
In this context, some system-level architecture simulators (e.g.,
gem5 [22]) have gained momentum to perform design space explo-
ration. For example, some works [23, 24] used gem5 to accurately
model and simulate ARM cores, such as Cortex-A9 and Cortex-A15.

In previous work [25], we demonstrate that it is possible to model
and exploit state-of-the-art many-core architectures using a system-
level architecture simulator. The proposed big.LITTLE architecture,
based on the Samsung Exynos 5 (model 52422), was evaluated
against a real computer board to assess the models’ accuracy. Our
gem5 model predicts performance with a 20% error [25].

To exploit the big.LITTLE architecture model for large-scale
designs, we applied a trace-driven technique in gem5 [26]. This
technique decreases simulation complexity by abstracting away core
execution into traces. Results show that cache misses of all cores
follow the same memory access time pattern. Thus, this pattern can
be used as a trace template to be replicated among more cores. This
approach revealed opportunities to investigate performance scalabil-
ity limitations on emerging large-scale clusterized mobile devices.
Besides, extracted traces are also used to explore different memory
allocations in many-core architectures via a SystemC model.

4.2 Trace-driven Simulation

Figure 5 shows the trace-driven simulation flow, which is com-
posed of three phases: (A) trace collection, (B) trace processing
and (C) trace simulation. First, we define the target system (i.e.,
our big.LITTLE architecture). The hardware architecture comprises
up to 4 cores, each having its private instruction and data caches.
Communications between cores and external memory are achieved
through a stream of request and response events via a communication
infrastructure that comprises a shared level-2 cache memory, such as
those found in the Samsung Exynos 5 design. After characterization,
execution traces are collected (A) from gem5 simulator [26], at the
boundary between private caches and interconnect.

Trace files are then processed (B) and prepared for use in the tar-
get trace-driven simulation. In the last phase (C), recorded traces
are injected through injectors. Whenever a request is issued from an
injector to the memory, a regular simulation procedure is initiated, so
that interconnect and memory congestion are adequately accounted.
In this work, this technique was used to explore up to 256 cores.

Trace
gem5 

simulator

Cluster 1 Core 1
Cluster N

Cluster 2

Core 2

Core 3 Core N

Up to 4 cores

gem5 
simulator

From 8 to 256 cores

C

D

BA

Fig. 5: Our experimental flow has two proposals. First three phases
(A-C) show the trace-driven simulation flow, used to extrapolate the
available number of cores in mobile architectures. On the other hand,
the SystemC model (D) uses the traces collected up to the second
phase (B) as input files to evaluate different memory allocations.

Table 1 Simulation results (gem5): speedup, memory footprint and accuracy.
Applications FFT HIST MJPEG OCEAN REDUCT SW

Simulation FS 119.57 60.01 3.62 15.92 97.82 3.05
time (s) TD 14.08 0.073 0.03 2.82 0.14 0.03
Speedup gain 8.5 800 136 6 734 122

Trace file (GB) 11.6 0.06 0.04 2.48 2.49 0.05
Execution FS 1.745 0.2672 0.0264 0.6027 0.3716 0.0186

time (s) TD 1.852 0.2649 0.0262 0.6025 0.3715 0.0178
Exec. Time Error (%) 5.79 0.85 0.98 0.03 0.02 4.26

4.3 Limitations Assessments

Trace files are collected from the timing full-system configuration
(FS) of the gem5 simulator (i.e., our reference architecture) and then
executed in our trace-driven (TD) simulator without any architec-
tural change. Table 1 shows for several benchmarks the simulation
speedup and observed mismatch, expressed in execution time on 4-
core ARMv7 architecture. Results provided by the TD simulation
show a speedup gain of up to 800×, depending on the workload
nature, along with an execution time error below 5.79%. The highest
percentage of execution time error comes mainly from applications
composed of multiple threads with dependencies between them, e.g.,
induced by synchronizations. Another source of error comes from
the cold-start bias problem [27], i.e., the mismatch caused by simu-
lations that begin with an empty cache memory subsystem while the
reference simulation has information on it. Although we have elimi-
nated the cold-start error for private caches (i.e., L1), we are not able
to predict the other levels of cache (e.g., L2). This small mismatch is
seen in OCEAN and REDUCT workloads. In short, results shown in
Table 1 reveal that the trace-driven technique can be used to decrease
simulation time while maintaining accuracy.

The proposed trace-driven simulation technique reveals the lim-
itations of future large-scale cluster-based mobile architectures.
Figure 6 shows the platform behavior when the number of cores
varies for TD, using FS as the 1-core reference. Experiments with
up to 256 cores have been conducted, showing that most of the
simulation effort falls into cache subsystem simulation (i.e., cache
coherence/bus snooping). As the results show that 88% of simula-
tion runtime is spent on handling the cache subsystem, this will be
the biggest villain for future mobile devices. Further, it is well known
that on-chip caches consume a significant fraction of the total proces-
sor energy budget [13]. However, this is the first time someone has
quantified these limits targeting future clusterized mobile devices.

TABLE III
APPLICATION PROBLEM SIZE IMPACT ON CORRELATION COEFFICIENTS.

Application Radix LU Ocean Barnes

Problem size 1 0.82 0.65 0.57 0.59
Problem size 2 0.87 0.75 0.66 0.73
Problem size 3 0.90 0.90 0.80 0.80

sizes, originating from the increased pressure to memory sub-
system: a higher dynamics in the cache miss rate over time
results in more prominent correlation.

E. Trace-Driven Simulation Cost

We here analyse the breakdown of the simulation effort on
the host machine for the following components: trace injec-
tor, cache, bus, memory and gem5 simulator. A single core
Full System simulation is also given for reference. From the
achieved experiments, we observed similar distributions that
can be instantiated as in Fig.8 for the MJPEG decoder. The
analysis is performed with the standard gprof profiling tool1.
The most part of the TD simulation falls into the realization
of cache coherent snooping protocol. Since the target system
is bus-based, the memory traffic congestion and performance
degradation is induced by increasing processors and injectors.
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Fig. 8. Simulation time distribution among cache, bus, memory and gem5
simulator during trace-driven simulation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an extension of the well-known
gem5 simulator with a trace-driven approach for an efficient
exploration of manycore architectures. Our solution provides a
fast and accurate simulation compared to the current gem5 ver-
sion, while preserving all design capabilities of gem5. A num-
ber of experiments has been reported, showing all the benefits
of our trace-driven extension: scalability via trace replication,
speedup and accuracy. The obtained results showed a simula-
tion speed of up to 800 times faster than the timing gem5 Full
System mode, while the achieved accuracy varies from 0.02%
to 6%. Our implementation aims to be made freely available
online 2 for manycore architecture exploration, while decreas-
ing the gap between simulation accuracy and performance.

Future work include improvements of the current trace-
driven simulator by addressing issues concerning the optimiza-
tion of trace file, the out-of-order processor support and differ-
ent memory mapping algorithms. We also plan to support other

1http://sourceware.org/binutils/docs/gprof
2http://www.lirmm.fr/ADAC

programming models enabling the architecture exploration of
complex computer systems like GPUs.
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Fig. 6: Simulation time breakdown for timing full-system (FS) and
trace-driven (TD) simulation modes, highlighting the increasing
pressure that cache subsystem will cause in large scenarios.
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Table 2 Level 1 memory system of Cortex-A series processors [28].
SoC cores Technology L1 cache size

Qualcomm
Cortex-A5 45nm 32kB

Snapdragon S4 Play
Samsung

Cortex-A9 45nm 32kB
Exynos 4 Dual

Samsung Cortex-A15
28nm

32kB
Exynos 5 Cortex-A7 8kB, 16kB, 32kB, 64kB

Qualcomm Cortex-A57
20nm

inst.: 48kB, data: 32kB
Snapdragon 810 Cortex-A53 8kB, 16kB, 32kB, 64kB

Qualcomm Cortex-A73
14nm

inst.: 64kB, data: 32kB, 64kB
Snapdragon 660 Cortex-A53 8kB, 16kB, 32kB, 64kB

Qualcomm Cortex-A75
10nm

64kB
Snapdragon 845 Cortex-A55 16kB, 32kB, 64kB

Furthermore, Pandiyan and Wu [2] investigated the impact of data
movement using a Samsung Galaxy S3 smartphone, which houses
an Exynos SoC with a quad-core Cortex-A9 processor [29]. They
observe that, on average, 23.5% of the device’s total energy is spent
on stall cycles in the application processor. This result is quite similar
to the simulation runtime spent on cache memory using 4 cores, as
shown in Figure 6. This corroborates that our trace-driven approach
can be used to represent and evaluate current mobile devices.

This high-level abstraction of a clusterized many-core architec-
ture shows that we can simulate faster and still maintain the accuracy
of experiments. Besides, results support that cache memory is the
bottleneck for future mobile devices, being our motivation to explore
memory allocations that can alleviate the memory subsystem.

5 Memory Allocation Analysis

5.1 Experimental Setup

Over the last few years, several generations of mobile architectures
have been designed, including the introduction of the big.LITTLE
architecture. While the miniaturization of process technology and
powerful processors were expected, one feature caught the atten-
tion due to its constancy. Table 2 shows the level-1 cache memory
sizes in different multicore and big.LITTLE architecture genera-
tions. The latest releases of multicore architectures presented the
same L1 cache size (32kB) for data and instruction on each core.
In big.LITTLE architectures, heavy cores have almost the same
fixed cache memory size (i.e., 32kB or 64kB). However, lightweight
cores have a broad range, but of the same L1 cache memory sizes,
from 8kB to 64kB. Also, some cores, such as Cortex-A57, have
larger instruction cache sizes than data cache sizes, which cor-
roborates with the discussion on distributed memory allocation in
Section 3.3. These are the cache memory sizes that must be evalu-
ated to determine what impact the memory allocations can have on
future clusterized many-core architectures.

Table 3 gives the details of the architecture configurations used
throughout these experiments, highlighting the extracted range of
cache memory sizes and small-medium sized clusters. Furthermore,
Table 2 showed that technological advances do not directly influence
the L1 cache size. In this regard, the technology was set at 45nm
using an open-source library [30], which facilitates the replication
of the experiments by other researchers.

For memory allocation exploration, a critical step is communica-
tion within a cluster in which the network topology selection has a
direct impact on the overall system performance. However, the NoC
topology exploration results are out of the scope of this paper. In this
sense, we chose to explore the 2-dimension mesh topology. Besides
being one of the most used topologies in literature, routing in a 2-
dimensional mesh is easy, resulting in potentially small switches,
high capacity, short clock cycle, and overall scalability [31]. Further-
more, 2-dimensional mesh topology well matches the planar, regular
layout of a cluster-based design, which can increase the scalability
of architectures such as ARM’s big.LITTLE.

In this work, we consider a set of workloads from scientific
to multimedia computing domain. These workloads were selected
according to their characteristics to deeply evaluate the different

Table 3 Summary of architecture set evaluated throughout all experiments.
Note that not all parameters are related to all abstraction models, e.g., the
target technology is only relevant to the RTL model.

Cluster sizes 4x2; 4x4; 4x8; 8x8
Topology 2-dimension mesh

Communication Dual 32 bits channel NoC @ 500MHz
CPU core 32 bit, 5 pipeline stage Microblaze ISA @ 500MHz

CPU caches 8kB-64kB direct mapped L1 I$ and D$ caches, 256 bit/line
Tile local shared RAM 8kB-64kB
Tile local private RAM 64kB microkernel + 64kB code/data

Thread assignment
1 worker thread/tile for avoiding performance penalties

from context switching, main thread on host tile
Target technology 45nm CMOS bulk - FreePDK library [30]

Memory information Evaluation by using NVSIM tool [32]

memory allocations. Some of them come from the SPLASH-2
benchmark suite [33]: Radix, Barnes, LU, and Ocean, which are
relevant due to the presence of multiple dependencies on correspond-
ing algorithms. In addition, we adopted further workloads: Motion
JPEG (MJPEG), Finite Impulse Filter (FIR), Smith-Waterman (SW),
Advanced Encryption Standard (AES), Histogram graph computing,
Merge Sort, N-body for simulating a dynamical system of parti-
cles, Reduction of vectors, Vector Operations (VO) and Fast Fourier
Transform (FFT). These workloads cover from low to intensive
memory utilization and have a wide coverage of memory locality.

5.2 Scalability Analysis

To measure the scalability impact on clusterized distributed and
centralized-memory architectures, we first model both architectures
in a precise and realistic RTL platform [34]. This platform is an
open-source RTL multiprocessor core designed for scalability and
adaptation. A shared-memory programming API is supported in
such distributed memory platform based on the POSIX thread API.
It features most common primitives such as locks and semaphores
so that porting from existing code is trivial [34]. Furthermore, this
programming model has the advantage of being scalable and have
easy programmability.

To maintain the scalability of many-core architectures, designers
have split workloads among multiple threads to scale system perfor-
mance through parallel applications effectively. However, scalabil-
ity may be compromised by several aspects, including contention
for shared resources and available tiny cache memory sizes on
mobile devices. In this regard, workloads were distributed to run on
physically centralized- and distributed-shared memory cluster-based
architectures to evaluate the gains and penalties inherent in both
implementations. The speedup of each workload is normalized to
the minimum cluster size (1-tile) to facilitate comparison. First, the
Smith-Waterman kernel was evaluated in cluster sizes ranging from
1 to 32. Due to its intrinsic characteristics as a compute-intensive
workload, both CSM and DSM memory architectures work properly,
resulting in limited cache miss rate and near-linear scalability.

On the contrary, video applications (e.g., MJPEG) often used in
mobile devices are memory-intensive workloads, suffering a sig-
nificant impact from the implemented memory architecture. For
example, Figure 7a shows that the CSM model (Long Hops type)
presents a speedup limitation for small cache memory sizes (i.e.,
8kB), which impacts on the performance of lightweight cores, such
as Cortex-A7 and Cortex-A53. This scalability degradation is shown
through the two highlighted moments in Figure 7a. Before the first
moment, the scalability is almost proportional to the increase in the
number of tiles, since the latency remains practically constant as
shown in Figure 7b. Between the two moments, the latency begins
to increase with each addition of a new tile, however, there is still
a slight increase in speedup. It occurs because the time to process
the local cache information is longer than the time to request a new
instruction block. Finally, from the second moment, the tiles are no
longer able to process the data sufficiently to overcome the latency
time, causing the increase of tiles to worsen the scalability.

On the other hand, results show that by aggregating the band-
width of available multiple distributed memories, MPJEG presents
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Fig. 7: MJPEG performance (a) for several cluster sizes and configurations are presented and correlated to average cache miss latency (b).
Results show a bottleneck principle as the number of tiles increases, highlighting the huge impact that memory allocation makes on memory-
intensive workloads.

performance improvement of up to 52% in the DSM design (Con-
tiguous type) in a small cluster size (i.e., 4x4), as shown in Figure 7a.
DSM designs help alleviate the congestion occurring on the commu-
nication network because it avoids having requests for the same tile,
resulting in decreased cache miss latency as illustrated in Figure 7b.
This increase in cache miss latency in CSM over DSM results in
longer execution time.

As this memory-intensive workload presents a high-pressure
principle on the communication/memory subsystem, detailed eval-
uations were performed according to the monitoring information
shown in Figure 8. Here, the comparative DSM design is configured
by installing workload code over 10 tiles out of the 16 tiles available
in a 4x4 cluster.

Figure 8a clearly shows the workload code installed on host tile
(CSM) or distributed across several tiles (DSM). These different
memory architectures have a direct impact on the MJPEG scalabil-
ity. Figure 8b shows the NoC bandwidth. In CSM, all traffic naturally
converges to the host tile, leading to a communication and memory
access bottleneck. It causes an overload on the host tile to handle all
remote memory access, as illustrated in Figure 8c.

In contrast, the DSM system does not suffer from this problem, as
the communication load is distributed across several tiles, as illus-
trated in Figure 8b. Results show that the peak NoC bandwidth
usage has been reduced from 64.0% to 28.1%. Behavior may signifi-
cantly differ from one application to another, as critical code regions
are not homogeneously distributed across the global address space,
as clearly shown in the tiles that deal with more remote memory
requests in Figure 8c, e.g., tiles 31 and 13. Although there is a signifi-
cant imbalance in memory traffic, and therefore some critical regions
in NoC traffic. These results clearly show that DSM outperforms
CSM, exhibiting an improvement over 2× in NoC traffic and almost
3× to handle memory requests for a memory-intensive workload.

This section showed a first impact, where the proper use of
on-chip distributed memories might mitigate memory requests for
memory-intensive workloads and performs similarly for compute-
intensive workloads. These results corroborate with those presented
by Ma et al. [8], indicating that distributed-shared memory architec-
tures are a prominent approach for future mobile devices to alleviate
memory congestion problems and extend system scalability. Further-
more, this approach can keep constant the cache memory sizes in
future mobile devices.

5.3 Performance Analysis

Section 4 showed a massive perturbation in-memory communica-
tion when the number of cores in a cluster-based architecture grows
exponentially. Further, investigations on scalability in Section 5.2
revealed a pattern of uneven access to multiple on-chip memories
when contiguous memory allocations are used to treat memory-
intensive workload. Previous analyzes have shown that memory
allocations may help alleviate the problem to achieve better scalabil-
ity and possibly better performance in future clusterized many-core
architectures. However, for further analysis, it is mandatory to raise
the abstraction level above that offered by RTL. The presented
trace-driven simulation technique was adapted for this purpose, the
collected traces are no longer injected into another gem5 simula-
tion to evaluate future mobile designs, but instead, are injected in
a cycle-accurate model comprising communication architecture and
memories. This cycle-accurate model can analyze system behaviors
by exploiting a wide range of parameters, such as different memory
allocations, memory latency, bus channel width, and others.

Figure 5 describes our experimental flow, where we developed a
SystemC model (D) to replace the trace-driven simulation (C). From
here, the target simulation contains cycle-accurate SystemC NoC
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and memory models. Trace injectors read trace files and, accord-
ing to the given memory allocation, generate the memory request
transactions that are then transmitted to the NoC.

To validate the cycle-accurate model, consistent behavior was
obtained by comparing normalized speedups in the RTL model, as
presented in Section 5.2, and SystemC model for Smith-Waterman
and MJPEG workloads. Figure 9 presents speedup mismatches
below 5% using a CSM mode with 8kB shared memory. Besides
such accuracy, the cycle-accurate model is at least one order of
magnitude faster than RTL model. In light of these advantages,
the proposed cycle-accurate model is more suitable for dealing
with large systems and easy to assess different memory allocations,
encouraging its use to properly adjust the cluster size accordingly
without losing its efficiency.

On top of this cycle-accurate model, we set up the five memory
allocations proposed in Section 3.3. To illustrate the performance
improvements brought about by careful selection of these memory
allocations, Figure 10 shows CSM Long Hops-normalized execution
time for different cluster sizes. These experiments were conducted
considering from current octa-core up to 64-core systems. This ceil-
ing is because maintaining a reduced SoC size is crucial to the
success of mobile phones. Besides, Figure 6 showed the memory
subsystem is responsible for more than 74% of the execution time in
systems with more than 32 cores, indicating a saturation principle.

Results demonstrate that evaluated memory allocations can
bring a huge impact on cluster performance, alleviating contention
in shared resources by reducing memory accesses. CSM Short-
hops memory allocation leads to a hardly noticeable improvement
performance-wise compared to CSM Long-hops. It originates from
previously observed memory bottleneck not addressed by this mem-
ory allocation, which only relocates all shared data to a central tile,
as shown in Figure 2.

On the other hand, DSM always performs better than CSM archi-
tectures, as first introduced by scalability analysis in Section 5.2.
However, different performances are observed over the three dis-
tributed memory allocations. Contiguous memory allocation tends
to preserve critical code regions due to the huge block sizes, mak-
ing these critical code regions not being homogeneously distributed
across the global address space. It is the reason for Interleaved
and Distributed memory allocations overcome Contiguous mem-
ory allocation. The better distribution of memory requests and the
charge reduction over the tiles minimize the possibility of memory
bottleneck for this kind of imbalance memory requests.

Interleaved and Distributed memory allocations obtain a signifi-
cant reduction in execution time for most workloads, especially for
large array sizes. The difference between them heavily depends on
the behavior of each application and the size of the performed clus-
ter. For further analysis, Figure 11 depicts the same information.
However, emphasizing the average execution time of the entire set
of benchmarks. It highlights that for performance-wise, Interleaved
memory allocation is the best choice. Besides, for large systems like
8x8 tile array size, up to 3× reduction in execution time is observed.
It shows the criticality of memory access for such workloads.
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Fig. 11: Averaged execution time, highlighting that the interleaved
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Fig. 12: Execution time, power consumption and power-delay product for (top) all memory allocations using Smith-Waterman keel and
(bottom) normalized metrics using all benchmarking kernels for the two best performance-wise memory allocations.

5.4 Energy Efficiency Analysis

Mobile devices are driven by energy efficiency because this metric
directly affects consumer perception. As battery-dependent devices,
it reduces the time between recharges and can still relieve the over-
all weight of the device. In this sense, we first created a power
consumption model based on the model presented by Hu and Mar-
culescu [35]. It models a regular tile-based NoC architecture using
a mesh topology with XY routing, similar to the one used in this
paper. Monitors spread throughout the system have collected the
required information. The remaining data to characterize the model
were obtained through tools shown in Table 3.

However, power consumption varies depending on the program
being executed. Although this metric is important for measuring the
heating of the device, choosing a memory allocation based only on
the power consumption metric can be misleading. In this sense, we
must measure power and performance together for a given program
execution by using a fused metric, such as the power-delay product
(PDP). In general, the PDP-based formulations are more appropriate
for low-power, portable systems in which battery life is the primary
index of energy efficiency [36].

Figure 12 (top) presents the execution time, average power con-
sumption and corresponding power-delay product for different clus-
ter sizes for all five memory allocations. For a fair comparison, all
experiments run a 64-thread Smith-Waterman application. Note that
in a system with 64 tiles (8x8 cluster size), each thread is allocated
to a single tile. Unlike, other cluster sizes must execute more than
one thread per tile. For example, 8 threads are allocated to each tile
in a 4x2 cluster size.

Due to the compute-intensive nature of this workload, the best
performance is obtained for large cluster sizes. However, the power-
delay product is interestingly obtained for 4x4 cluster sizes for most
memory allocations. It suggests that the overall increase in commu-
nication distance, related to the code distribution across more tiles,
is not compensated by the reduction in execution time.

To refine the choice in finding an energy-efficient memory allo-
cation for future cluster-based mobile devices, we focus on the two
best performance-wise memory allocations discussed in Section 5.3:
Interleaved and Distributed. In addition to their intrinsic ability to
better spread memory traffic across multiple memories, the average
transaction route length also impacts on energy savings.

Figure 12 (bottom) shows the same data for all benchmark ker-
nels when Interleaved and Distributed memory allocations set to
4x4 and 8x4 cluster sizes are evaluated. Results are normalized for

0% 25% 50% 75% 100%

Execution Time

Power Consumption

Power-Delay Product

4x4 - Interleaved
8x4 - Interleaved

4x4 - Distributed
8x4 - Distributed

Fig. 13: Averaged and normalized execution time, power con-
sumption and power-delay product, highlighting that the distributed
memory allocation is the best choice for energy saving clusters.

each benchmark against the worst memory allocation performance.
The benefit is tightly correlated with the characteristics of bench-
marks. For example, Distributed memory allocation presents better
results for compute-intensive workloads (e.g., SW). On the other
hand, Interleaved memory allocation is best for memory-bound
workloads, such as MJPEG.

As these memory allocations have distinct advantages, the results
were aggregated into Figure 13 and show the average for all bench-
marks. From these results, two suggestions may be drawn. For
energy saving clusters, Distributed memory allocation is the best
choice, and the cluster size shall be set to 16 nodes at most. However,
for performance clusters, Interleaved memory allocation presented
better results, and larger cluster sizes may be used at the expense of
lower energy efficiency.

It is not a final decision because the application scalability has a
huge impact and must be considered. For kernels whose execution
time is dominated by sequential code regions, cluster size shall be
limited. Unlike, highly parallelizable kernels may benefit from larger
cluster sizes at the cost of increased power consumption.

In this work, the number of cores inside different cluster sizes
was investigated to find an efficient clusterized many-core archi-
tecture concerning scalability, performance and energy efficiency.
For many-core architectures like ARM’s big.LITTLE [1], our
insights show that energy saving clusters can be extended up to
16 lightweight cores if we have parallel applications or a sufficient
amount of concurrent applications to justify this choice. On the other
side, performance clusters have no restriction on cluster sizes, which
means that it will be restricted by mobile SoC size and proces-
sor performance in the coming years, depending on the processing
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demand. These observations can guide the development of future
energy-efficient clusterized many-core architectures.

6 Conclusions

Cluster-based mobile devices are a reality and inspired us to explore
the limitations of this new target device. Thanks to a novel trace-
driven simulation technique, results might be extended to large
cluster-size architectures (up to 256 cores). It reveals that the greatest
villain for future mobile devices is the memory subsystem.

Explorations on five different memory allocations are performed
to find power-efficient architectures. Centralized shared memory
is the most common architecture found in the literature. How-
ever, initial investigations on scalability have revealed an uneven
access pattern to multiple on-chip memories when using Contiguous
memory allocation. Differently, distributed shared memory has the
distinct advantage of aggregating the bandwidth of multiple phys-
ical memories, resulting in performance gains and opportunities to
reduce energy consumption.

For future cluster-based mobile devices to benefit from better
throughput, Interleaved is the most appropriate memory allocation,
and larger cluster sizes may be used at the expense of lower energy
efficiency. This decision may be guided by the scalability of a given
application, making it inefficient if sequential code regions dominate
the evaluated kernel. Unlike, for workloads where energy-savings
are mandatory, our experiments show that cluster size shall be set to
16 tiles at most along with the Distributed memory allocation.

In addition to helping discuss the impact of architectural decisions
made regarding memory allocations for future cluster-based mobile
devices. The trace-driven SystemC model leaves the legacy that can
be used to explore other many-core architectures, or even used to
evaluate a specific application on mobile devices quickly.
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