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Abstract—Wireless networks are increasingly becoming suscepti-
ble to more sophisticated threats. An attacker may spoof the 
identity of legitimate users before implementing more serious 
attacks. Most of the current Intrusion Detection Systems (IDSs) 
that employ multi-layer approach to help towards mitigating 
network attacks, offer higher detection accuracy rate and low 
numbers of false alarms than IDSs that employ single layer ap-
proach. However, few of the current multi-layer IDSs could be 
used off-the-shelf without a prior thorough training with com-
pletely clean datasets or fine tuning period. Dempster-Shafer 
theory has been used with the purpose of combining beliefs of 
different metric measurements across multiple layers. However, 
an important step to be investigated remains open; this is to find 
an automatic and self-adaptive process of Basic Probability As-
signment (BPA). This paper describes a novel BPA methodology 
able to automatically adapt its detection capabilities to the cur-
rent measured characteristics, with a light weight process of gen-
erating a baseline profile of normal utilisation and without inter-
vention from the IDS administrator. We have developed a multi-
layer based application able to classify individual network frames 
as normal or malicious with very high accuracy. 

Keywords-Basic probability assignment; Data fusion; 
Dempster-Shafer; Multi-layer measurements; Spoofing attacks; 
WiFi 

I.  INTRODUCTION 
MAC layer spoofing attacks are among the most serious 

threats to wireless networks [1]. There exist numerous attacks, 
ranging from Denial-of-Service (DoS) to session hijacking that 
can be implemented because an attacker may masquerade itself 
as a legal user [2]. In the last few years there has been increas-
ing interest in using detection methodologies to identify spoof-
ing attacks in IEEE 802.11 networks [2, 9, 10]. The implemen-
tation of wireless network monitoring tools, such as Intrusion 
Detection Systems (IDSs), is fundamental in security infra-
structures in order to provide another level of defence for IEEE 
802.11 networks. 

Although there are cases in which an algorithm that utilises 
a single metric approach might give positive results, the true 
status of a network is rarely accurately detectable by examining 
a single metric from one network layer of the protocol stack. 
As many researchers have previously demonstrated [3-5], the 
combined use of multiple metrics from the same or different 
network layers may result in higher detection accuracy rate 
with lower numbers of False Negatives (FN) and False Positive 

(FP). Hence, utilising a multi-layer approach may help towards 
automating the overall process of detecting and mitigating 
wireless network attacks. 

Data fusion can be defined as the process of collecting in-
formation from multiple and heterogeneous sources, and com-
bining them towards obtaining a more accurate final result [5]. 
The Dempster-Shafer (D-S) theory of evidence is a good can-
didate for this purpose. D-S has been previously used in the 
intrusion detection field to enhance the detection accuracy [5-
7]. 

Despite having been proven as a powerful and efficient 
technique, a very important step to be investigated remains 
open in D-S theory. This is to find an automatic and self-
adaptive process of Basic Probability Assignment (BPA), 
based on the measured characteristics of the network. The ma-
jor challenge for applying D-S theory in IDS is to automatical-
ly determine the beliefs from the network measurements [8]. 

There exist multiple ways of assigning probabilities to each 
of the hypotheses in D-S theory, ranging from data mining 
techniques to empirical approaches. However, few of them 
could be used off-the-shelf without a prior thorough training or 
fine tuning period. Furthermore, most of the alternative tech-
niques have to be trained with completely clean datasets. This 
requires the audit data traffic to be appropriately preprocessed 
and cleaned in order to yield meaningful results [19]. 

In this work, we propose a novel BPA methodology able to 
automatically adapt its detection capabilities to the current 
characteristics of the wireless network, without intervention 
from an IDS administrator. We have developed a multi-layer 
based application, written in the C language, able to classify 
network frames as normal or malicious, with very high accura-
cy. The proposed method only requires a lightweight process of 
generating a baseline profile of normal utilisation, in order to 
generate high intrusion detection accuracy and low number of 
false alarms. The processing requirements of the proposed 
methodology allow for implementing the detection in real-time. 

The aim of our methodology requires the system to be 
computationally low cost, scalable and applicable to other 
wireless technologies. The methodology has been tested with 
two different types of attack, an Opportunistic Injection at the 
physical layer and a Deauthentication attack, both requiring the 
prior spoofing of a legal user identity. 

The paper is organised as follows. In section II, the most 
relevant work is reviewed. A brief description of the D-S is 
presented in section III. In section IV, the proposed algorithms 
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for belief assignment and the concepts about the sliding win-
dow approach are explained. The methodology, testbed, and 
attack scenarios are presented in section V. In section VI, the 
obtained results are discussed. Finally, conclusions are given in 
section VII. 

II. RELATED WORK 
The application of D-S theory for improving the perfor-

mance of IDSs is a very active research topic. One of the most 
thorough descriptions of D-S is presented in [12]. The authors 
present a comparative study between D-S theory and Bayesian 
inference as data fusion algorithms. 

Among all the works on IDS that investigate the use of D-S 
theory, there exist multiple ways of assigning probabilities to 
each of the hypotheses. For instance, [18] utilises expert opin-
ion to manually assign the belief probabilities. This BPA pro-
cess is completely subjective and might not be adequate for 
automatic and self-adaptive IDSs. 

In [4], the authors describe a cross-layer methodology to 
increase the performance of an anomaly IDS, detecting DoS 
attacks, based on a real wireless mesh networks. The system 
uses three different machine learning algorithms, all of which 
require prior thorough training to be efficient. These are Bayes-
ian network, Decision tree, and Support Vector Machine. Simi-
lar to our work, they use a sliding window scheme and com-
pare the efficiency of a cross-layer approach against a single 
layer approach. However, the data fusion is not carried out 
using D-S theory. 

In [5], the authors present a prototype for Distributed DoS 
detection over wired link, based on D-S theory. The system, 
periodically, fuses the knowledge collected from different sen-
sors within the network, in order to infer the current state of the 
monitored network. The authors express the BPA as three fixed 
functions. Again, the BPA process is based on previous exper-
iments and subjectivity of the IDS administrator. As the three 
functions have a fixed shape, this method might be inadequate 
for automatic and self-adaptive IDSs. 

The authors in [7] present and evaluate an IDS for detecting 
DoS attacks by seeking changes in the Signal-to-Noise Ratio. 
The value of this single metric is measured from distinct nodes 
running two different local algorithms, Single Threshold and 
Cumulative sum. Based on the measured information, their 
system generates the BPAs through the use of a linear function. 
The BPAs are fused with D-S theory. The experiments in this 
work were also carried out in a real IEEE 802.11 testbed. 

Another example, [13] proposes two different ways of as-
signing belief probabilities, for two different datasets. In the 
first case, their method calculates a threshold based on the 
length of the dataset, and then utilises that threshold and fixed 
functions to assign the belief probabilities. In the second case, a 
scaled approach with pre-defined beliefs is used. In contrast to 
our work, the mechanisms proposed in [13] would be unable to 
automatically adjust to changes in the dataset profile, without 
the intervention of the IDS administrator, because the use of 
fixed functions and pre-defined threshold. 

The methodology employed by [8] uses data mining tech-
niques to proceed with the BPA tasks. The use of data mining 
techniques mostly focuses on processing large amounts of audit 
data traffic rather than performing real-time detection. Apart 
from that, the audit data traffic must be appropriately prepro-

cessed and cleaned in order for a data mining techniques to 
yield prominent results in intrusion detection [19]. 

From the presented results, all of these methods are effec-
tive in increasing the detection rate and reducing the number of 
false alarms of the IDSs. However, none of the referred works 
investigate methods to find an automatic and self-adaptive pro-
cess of BPA, and few of them could be used off-the-shelf with-
out a previous training or fine tuning period. 

On one hand, systems that make use of data mining tech-
niques for BPA require the gathering of large amounts of data 
traffic, processing it and complete a training period before be-
ing able to perform intrusion detection tasks. These systems are 
unable to automatically adapt to changes in the network traffic 
behaviour in real-time. On the other hand, systems that have 
been empirically assigned fixed probability values by the IDS 
administrator, or systems that employ fixed functions to assign 
the belief probabilities are unable to automatically adjust to 
changes in the network traffic behaviour, without the interven-
tion of the IDS administrator. 

In this work, we propose a network-based anomaly detec-
tion system, which uses a novel statistical-based BPA assign-
ment scheme methodology able to automatically adapt its de-
tection capabilities to the current characteristics of the different 
metrics of the wireless network, without intervention for an 
IDS administrator. 

III. DEMPSTER-SHAFER THEORY 
The D-S theory of evidence is a mathematical discipline 

that combines evidence of information from multiple and het-
erogeneous events in order to calculate the belief of occurrence 
of another event. We have presented a more detailed descrip-
tion of D-S theory in our previous work [11], along with a 
comprehensible practical example of D-S. 

D-S starts by assuming a Frame of Discernment Θ = {θ1, 
θ2,..., θn}, the finite set of all possible mutually exclusive prop-
ositions about some problem domain. With regards to this 
work, the frame of discernment is comprised of A = Attack and 
N = Normal. Assuming Θ has two outcomes {A, N}, the total 
number of subsets of Θ, defined by the number of hypotheses 
that it composes, is 2Θ = {A, N, {A|N}, Ø}. In which {A|N} = 
Uncertainty. 

Each hypothesis from Θ receives from an observer a proba-
bility or belief within [0, 1]. This is known as the Basic Proba-
bility Assignment (BPA). The function 𝑚   𝐴  is defined as A’s 
basic probability number. It describes the measure of belief that 
is committed exactly to hypothesis A. 

 

𝑚 ∶   2! → 0, 1                       𝑖𝑓  

  𝑚   ∅ = 0
𝑚   𝐴 ≥ 0,∀𝐴 ⊆ Θ

𝑚   𝐴 = 1
!  ⊆  !

                  (1) 

 
Let 𝑚! and 𝑚! be the BPAs from observer 1 and 2 respec-

tively. Their orthogonal 𝑠𝑢𝑚,𝑚 = 𝑚!⨁𝑚!, is called Demp-
ster’s rule of combination, and is defined as 

𝑚 𝐴 =   
𝑚! 𝑋 ∗𝑚!(𝑌)!∩!!!

1 − 𝑚! 𝑋 ∗𝑚!(𝑌)!∩!!∅
      ∀  𝐴 ≠ ∅                (2) 



 

Among different data fusion methods, the D-S theory of ev-
idence has been chosen in this work for three main reasons. 
Firstly, D-S is able to combine evidence from multiple and 
heterogeneous sources. Second, D-S is suitable for detecting 
previously unseen attacks because it does not require a priori 
knowledge. Finally, and more importantly, D-S provides the 
ability of managing and assigning probability to Uncertainty, 
which allows a large range of problems to be tacked. 

The authors in [5, 12] present a comparative study of dif-
ferent data fusion methods. This work concludes that D-S theo-
ry is more promising than Bayesian inference. The Bayesian 
approach provides a powerful method to provide final conclu-
sions. However, this method requires complete knowledge of 
the conditional probabilities of all of the used metrics and spec-
ification of the a priori probability distribution of the different 
hypotheses. This last requirement is unfeasible in many appli-
cations [18]. Additionally, the Bayesian method does not allow 
allocation of probability to Uncertainty but only to the hypoth-
eses Normal or Attack [13]. 

IV. BELIEF GENERATOR MECHANISMS 
In order for the proposed methodology to be efficient, two 

conditions must be assured. First, the number of legal frames 
must be larger than the malicious frames. Normal data is more 
predominant than malicious data in real network traffic [14]. 
Second, the difference between metrics of legal and malicious 
frames must be statistically differentiable and quantifiable. 
Regarding the first assumption, we have tested scenarios in 
which the proposed system performs with high detection rate 
even if there are malicious frames in the initial profiling set. 

A. Sliding Window Scheme 
Before being able to identify any attack, the IDSs need to 

define what is considered as normal traffic. The proposed sys-
tem operates on a sliding window scheme using incoming 
frames from the legal client. 

The content of the 𝑛 frames within the sliding window 
composes the profiling dataset of the system, every time a new 
frame is analysed. For each new incoming frame, different 
metrics are extracted and different statistical parameters are 
calculated from the metrics. These statistical parameters are 
used as a reference of normality for assigning the beliefs by the 
method proposed below. The system has one sliding window 
for each used metric. 

In order to avoid malicious frames altering the reference of 
normality, the system slides the window only if the current 
analysed frame has been classified as legal. Otherwise, the slid-
ing window stays static, drops the frame classified as malicious 
and replaces the last slot in the sliding window with the next 
incoming frame. Fig.1 represents an example of a sliding win-
dow with 𝑛 = 20 frames, in which the 20th frame has been 
classified as malicious and the sliding window stays static, only 
replacing the malicious frame. 

Nonetheless, malicious frames could still alter the reference 
of normality. The system needs to capture 𝑛 frames prior being 
able to carry out the detection of new incoming frames. The 
very first sliding window could contain malicious frames. In 
the case where the majority of frames in the initial window are 
malicious, the detection mechanism would misclassify. This 
fact will influence the overall detection performance of the 

system. As explained in Section VI, the proposed methodology 
produces good results, even if there exist malicious frames 
within the first sliding window. 

Because the proposed system operates on a sliding window 
scheme, finding the optimum sliding window length is very 
important. The length 𝑛 of the sliding window will influence 
the overall detection performance of the system. A long win-
dow would include, on average, a larger proportion of legal 
frames and the statistics would average out to represent the 
normal profile. However, a larger the window length will also 
slow down the detection process. In contrast, there exists direct 
correlation between the lightness of the profiling dataset and 
the chances of misclassification. In our experiments, we have 
used 𝑛 = 31 as the length 𝑛 of the sliding window. As demon-
strated in Section VI, the proposed methodology generates 
meaningful results using the sliding window length 31 < 𝑛. 

Figure 1.   Sliding window scheme. 

B. Method to Assign Belief in Attack 
We propose three different methodologies for assigning the 

belief to each hypothesis of Θ, 2Θ = {Attack, Normal, Uncer-
tainty, Ø}. One method generates the belief in Attack, and a 
second method generates the belief in Normal. Both work con-
currently. Then, based on the belief in Normal and Attack, a 
third method calculates a balanced belief in Uncertainty. 

The methodology that we propose assigns beliefs in Attack 
based on two factors, the Euclidean distance of the current 
frame from the mean, and frequency of the data. The system 
calculates an angle 𝛼 with the distance and the frequency, in 
order to correlate both factors. 

Let us consider a dataset of length 𝑛. The system calculates 
the mean and the highest number of times that a metric is re-
peated, known as the frequency (𝐹), for the 𝑛 elements in the 
dataset. Then, the system calculates the angle α generated by 
the frequency and the value with the largest Euclidean distance 
(𝐷!"#) from the mean, as represented in Fig.2. This angle α 
represents the maximum possible belief in Attack. 

For each new incoming frame, the system calculates the 
angle β generated by 𝐹 and the distance (𝐷) of this value from 
the mean. The angle β would be bounded by 0 and α, 0 ≤ β ≤ α. 

Due to the way D-S theory and the BPA are assigned in our 
methodology, the maximum possible belief in both, Normal 
and Attack, is set to 50%. 

𝛽 = cos!!
𝐹

𝐷! + 𝐹!
!
!
                                                    (2) 



 

 

Using a simple linear function, the system then assigns the 
belief in Attack. The minimum belief in Attack, 0%, is defined 
by the angle 0 radians. 

C. Method to Assign Belief in Normal 
The methodology that we propose assigns beliefs in Nor-

mal, based on the degree of dispersion of the values in the da-
taset. The system makes use of quartiles to create classes with-
in the dataset and assigns a fixed belief to each of class. 

Let us consider a dataset of length 𝑛, sorted in an ascending 
way. From this sorted dataset, the first quartile (𝑄!) will define 
the boundary for the lower 25% of the data, the second quartile, 
or median (𝑀𝑒), will define the boundary for the 50% of the 
data, and the third quartile (𝑄!) will define the boundary for 
the lower 75% of the data. 

Similar to the process used with the ‘box and whisker’ 
method [15], the 𝑀𝑖𝑛 and 𝑀𝑎𝑥 values are respectively calcu-
lated using the following equations: 

𝑀𝑖𝑛 = 𝑄! − 1,5  ×𝐼𝑄𝑅                                                          (3) 

𝑀𝑎𝑥 = 𝑄! + 1,5  ×𝐼𝑄𝑅                                                          (4) 

where the Interquartile Range (IQR) is the difference be-
tween 𝑄! and 𝑄!. 

IQR = 𝑄! − 𝑄!                                                                        (5) 

Figure 2.  BPA method for belief in Attack. 

Figure 3.  BPA scale for belief in Normal. 

Each of the values defines the boundaries of different clas-
ses. The metrics of each new incoming frame are allocated 
within one of these classes. Depending on the class that the 
current frame is allocated to, the system assigns the belief in 
Normal. 

Fig.3 illustrates the different classes and the belief value as-
sociated to each of them. If the value of current frame coin-
cides with 𝑀𝑒, the belief is 50%. If the value is allocated be-
tween the 𝑄! and 𝑀𝑒, or 𝑄! and 𝑀𝑒, the belief in Normal is 
40%. Values between 𝑀𝑖𝑛 and 𝑄!, or 𝑄! and 𝑀𝑎𝑥 will acquire 
belief of 30%. The rest of the values will acquire belief of 15% 
in Normal. 

D. Method to Assign Belief in Uncertainty 
Based on the outcome of the two previous methods, the 

proposed methodology assigns beliefs in Uncertainty. The Un-
certainty is considered in this work as an adjustment parameter. 

The outcome of the two previous methods could provide 
four different conclusions: 

• Low belief in Attack and high belief in Normal. 
• High belief in Attack and low belief in Normal. 
• High belief in Attack and high belief in Normal. 
• Low belief in Attack and low belief in Normal. 

For the first and second cases, both methods have reached 
consistent conclusions. Hence, it is expected that the belief in 
Uncertainty must be low. In contrast, in the third and fourth 
cases, both methods have reached contradictory conclusions. 
Therefore, the expected belief in Uncertainty is expected to be 
high in both cases. 

We propose the following method for assigning the belief 
in Uncertainty. First, a provisional value is assigned to Uncer-
tainty using a linear correlation between the belief in Normal 
and Attack. This is: 

𝐵𝑒𝑙𝑖𝑒𝑓!"#. =
0.5 ∗ 𝐵𝑒𝑙𝑖𝑒𝑓!"#
𝐵𝑒𝑙𝑖𝑒𝑓!"#

                                              (6) 

where 𝐵𝑒𝑙𝑖𝑒𝑓!"# and 𝐵𝑒𝑙𝑖𝑒𝑓!"# are the larger and the low-
er of both beliefs, Normal and Attack, respectively. 

As mentioned above, the maximum possible belief corre-
sponds to 0.5. Therefore, belief in Uncertainty is also scaled to 
a maximum of 50%. For instance, if the belief in Normal and 
Attack are 0.4 and 0.497, respectively, the value for Uncertain-
ty would be: 𝐵𝑒𝑙𝑖𝑒𝑓!"#. = 0.5 ∗ 0.4/0.497 = 0.402. 

Using this example, the summation of all the beliefs is 
higher than 1. This breaks one of the conditions in the defini-
tion of BPA by the D-S theory, explained in (1). 

Therefore, an adjustment value 𝜇 is calculated as follows: 

𝜇 =
𝑋 − 1
3
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where 𝑋 is the summation of the three beliefs. Continuing 
with the previous example, 𝑋 = 0.4 + 0.497 + 0.402 = 1.22. 
Then, the adjustment value is 𝜇 = (1.229 − 1)/3 = 0.099 . 
Therefore, the beliefs in Normal, Attack and Uncertainty are 
readjusted to 0.3, 0.397 and 0.303, respectively. 

V. SYSTEM METHODOLOGY 
For the purpose of this work, we have tested our proposed 

approach in an IEEE 802.11 network composed of four differ-
ent parties. These are an Access Point (AP); a monitoring node 
utilising the TShark [17] software for collecting frames; an 
attacker; and a client associated with the AP, accessing various 
websites hosted on the Internet across different geographical 
locations. The fact that the attacker was placed very close to 
the AP, around 1.5 meters away, may degrade the detection 
accuracy. The monitoring node is responsible for performing 
the proposed intrusion detection. When the monitoring node 
captures any frame destined to the clients, TShark identifies 
and isolates the respective metrics of each frame. Then, the 
gathered dataset is passed to the data fusion process to be ana-
lysed. The monitoring node and the attacker were running 
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Linux and all the devices except from the Linksys WRT54GL 
AP used the Atheros chipset in their wireless cards. 

A. Metrics 
We have generated our own IEEE 802.11 dataset for the 

development and assessment of this work. The captured frames 
are stored in pcap format. Among all the available metrics, four 
have been experimentally selected as the most appropriate for 
detecting the attacks. These are the Received Signal Strength 
Indication (RSSI) at the PHY layer, the Injection Rate and the 
Network Allocation Vector (NAV) value at the MAC layer, 
and the Time To Live (TTL) value at the Network layer. 

Due to the fact that management and control frames include 
only information from the PHY and MAC layers in which TTL 
is not included, in the deauthentication experiments TTL has 
been replaced by the Delta Time (ΔTime) value. The ΔTime is 
defined as the time difference between two consecutive frames. 

B. Attacks Description 
1) Opportunistic Injection Attack 

The presented methodology has been tested with two dif-
ferent types of opportunistic injection attacks at the PHY layer. 
Both injection attacks were implemented with the Airpwn tool. 
Firstly, Airpwn spoofs the AP MAC address. Then, it listens 
for legal requests from the clients and injects its own crafted 
HTML code. In the first type (Attack01), the attacker replaces 
the whole content of the website. In the second type (Attack02) 
the attacker replaces only the images in the website. Both could 
cause harm of varying severity, i.e. to redirect the client to a 
phishing website. 

2) Deauthentication Attack 
Another type of attack that has been investigated is the 

deauthentication of wireless clients from the legal AP. This 
type of attack is commonly utilised in DoS attacks but also 
constitutes the first step of breaking into WPA2 encrypted 
wireless networks. In the latter case, the attacker injects a few 
spoofed deauthentication frames with the purpose of forcing 
the client to re-establish a connection with the AP. At a later 
stage and off-line, the attacker could succeed in cracking 
WPA2 by applying brute force or dictionary attack techniques. 
The suite of tools used to implement this attack is Aircrack. 

The detection of the deauthentication attack was possible 
just by using management and control frames for two reasons. 
Firstly, deauthentication attacks are highly correlated with in-
formation in the management frames. Furthermore, because the 
network was encrypted with WPA2, and with the assumption 
that the monitor node does not have the key, it was not possible 
or necessary to retrieve information above the MAC layer. 

C. Evaluation Mechanisms 
In order to evaluate the effectiveness of the proposed meth-

odology, the results from the multi-layer scheme are compared 
against the same methodology, but utilising fewer metrics. All 
cases have been evaluated with the same gathered dataset. 

The results are evaluated by comparing the False Negative 
Rate (𝐹𝑁!"#$), False Positive Rate (𝐹𝑃!"#$) and Detection Rate 
(DR). These are: 

𝐷𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                              (8) 

𝐹𝑁!"#$ = 𝐹𝑁/(𝑇𝑃 + 𝐹𝑁)                                                            (9) 

𝐹𝑃!"#$ = 𝐹𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)                                    (10) 

where True Positive (TP) is the number of attack frames 
correctly classified as malicious, True Negative (TN) is the 
number of non-attack frames correctly classified as legal 
frames, False Positive (FP) is the number of non-attack frames 
misclassified as malicious, and False Negative (FN) is the 
number of attack frames misclassified as legal frames. 

VI. RESULTS 
The experimental results are presented in the form of ‘Bar 

Charts’. The Y-axis of the graphs represents the percentage of 
DR and FP. The X-axis of the graphs represents the index of 
the used metrics. Each index corresponds to one possible com-
bination of metrics, with #1 being the set that combines all the 
considered metrics and set #15 a single metric set. Therefore, 
the best results are to be expected from the test index #1. 

The indexes of all the possible sets metric combinations are 
presented in Table I. 

TABLE I.  INDEXES OF THE USED METRICS 

Index-Metrics Index-Metrics Index-Metrics 

#1-RSSI-Inj.Rate-TTL-NAVa #6-Inj.Rate-TTLa #11-Rate-NAV 

#2-RSSI-Inj.Rate-TTLa #7-TTL-NAVa #12-RSSI 

#3-RSSI-Inj.Rate-NAV #8-RSSI-TTLa #13-Inj.Rate 

#4-Inj.Rate-TTL-NAVa #9-RSSI-Inj.Rate #14-TTLa 

#5-RSSI-TTL-NAVa #10-RSSI-NAV #15-NAV 

a. TTL is replaced by ΔTime in Deauthentication Attack Results. 

A. Opportunistic Injection Attack Results 
The multi-layer results for the injection attack experiments 

with non-attack traffic, using all the metric combinations, are 
presented in Fig.4. As expected, none of the combinations pro-
duce attack detection. DR is 0% in all the cases. In terms of 
FPs, the detection results using all the considered metrics (#1) 
are the best results, generating 0% of FP. Using fewer numbers 
of metrics produces higher numbers of FPs. As can be seen, the 
combination of RSSI-Inj.Rate-TTL (#2) and RSSI-TTL-NAV 
(#5) generate 1.21% and 1.18%, respectively. Furthermore, the 
use of a dual metric, RSSI-TTL (#8), and single metric, RSSI 
(#12) generates the most significant results, with 33.7% and 
35.1% of FPs, respectively. 

Figure 4.  Injection Attack Results with Non-Attack Traffic. 

The results for the Attack01 experiments, using all the met-
rics combinations, are presented in Fig.5. In these experiments, 
all the metric combinations produce 100% DR. Similar to the 
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previous results, the set of metrics RSSI-Inj.Rate-TTL (#2), 
RSSI-TTL-NAV (#5), RSSI-TTL (#8) and RSSI (#12) are the 
only sets that produce FPs. In this set of experiments, the com-
bination of three metric, #2 and #5, both produce 0.37% of 
FPs. More significant, set #8 generates 39.13% of FPs, and the 
single metric #12 generates 69.28% of FPs. Also in these ex-
periments, the multi-layer results are the best overall. 

Figure 5.  Injection Attack Results with Non-Attack Traffic. 

Fig.6 and Fig.7 illustrate the results for the Attack02 exper-
iments and the results when both types of injection attacks are 
launched together, respectively. Similar to the results for the 
Attack01 experiments, the set of metrics RSSI-TTL (#8) and 
RSSI (#12) are the sets with higher numbers of FPs. Set #8 
produces 25.29% of FPs and the single metric #12 exceeds 
41% of FPs, in the Attack02 experiments. None of the other 
possible combinations reaches 0.5% of FPs. In terms of DR, 
only the results of single metric #12 are lower than 100%. 
Again, the multi-layer results are the best results overall. 

Figure 6.   Injection Attack Results with Attack 02 Traffic. 

In the experiments with both attacks, the set #8 exceeds 
39.9% of FPs and the single metric #12 exceeds 53.4% of FPs. 
None of the other possible combinations reaches 0.1% of FPs, 
but the two cases #2 and #5 that exceed 2% of FPs. In terms of 
DR, all the combinations produce perfect results. As expected, 
the multi-layer results are the best results. 

From the presented results of single metrics, Inj. Rate 
(#13), TTL (#14) and NAV (#15), it is doubtful that there is 
any benefit utilising a combination of different metrics. Each of 
the three cases produces perfect detection, as does the multi-
layer combination case. Additionally, all the cases that produce 
high rates of false alarms make use of the metric RSSI. This 
fact indicates that the utilisation of the metric RSSI tends to 
deteriorate the results. However, as presented below for the 
case of the deauthentication attack, the use of the metric RSSI 
helps to improve the results for the multi-layer approach, and 

the results using all the considered metrics are the best results 
overall. 

Figure 7.   Injection Attack Results with Attack 01-Attack 02 Traffic. 

B. Deauthentication Attack Results 
As explained in Section V, the communication between the 

client and the AP was protected with WPA2 and a pre-shared 
key. Even though the system utilises metrics from just the two 
lower layers of the protocol stack, the presented methodology 
was able to detect the deauthentication attack. 

The multi-layer results for the deauthentication attack ex-
periments, using the four considered metrics, are presented in 
Fig.8. As can be appreciated, these are the best results overall 
in detecting the attacks. The detection system generates 0% of 
FNs and 2.17% of FPs. Similar to the experiments with injec-
tion attack, the FPs are caused because the analysed metrics of 
the malicious frames are very close to the legal frames. 

In contrast to the experiments with injection attacks, the use 
of RSSI benefits the results because the number of FPs have 
been reduced. The metrics Inj.Rate and ΔTime have also a dif-
ferent influence over the generated results. In these experi-
ments, the ΔTime increases the number of FPs, and the Inj.Rate 
is completely ineffective in detecting the deauthentication at-
tack. This is because management frame, both legal and mali-
cious, are transmitted at a fixed rate of 1 Mbps. As can be seen 
in Fig.8, the use of Inj.Rate degrades the DR results of all the 
possible metric combinations; specially, the sets Inj.Rate-
ΔTime (#6), RSSI-Inj.Rate (#9), Inj.Rate-NAV (#11) and 
Inj.Rate (#13). However, when using the four metric multi-
layer approach, the use of Inj.Rate preservers high DR and 
does not degrade the results in terms of FP. 

In addition, the use of Inj.Rate benefits the results because 
it reduces the number of FPs. In particular, the use of RSSI-
ΔTime-NAV produces 0% of FNs but 9.13% of FPs. When 
including the Inj.Rate, the number of FPs is reduced to 2.17%. 

Figure 8.  Deauthentication Attack Results. 
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C. Optimum Sliding Window Length 
In order to find the optimum sliding window length, the de-

tection process has been carried out for all the possible lengths 
between 1 and 150 frames. For each of the iteration, the length 
of the sliding window was increased by one frame. The analy-
sis has been performed in an off-line manner, using the same 
datasets in all the iterations. The selection of the optimum slid-
ing window length is based on four parameters, the sliding 
window length, the percentage of DR and FP results, and the 
processing time required to obtain the detection results. 

Figure 9.  Multi-Layer Results Injection Attack02 Variable Window Size. 

The multi-layer results for the Attack02 experiments are 
shown in Fig.9. If the length of the sliding window is 𝑛 < 12, 
the detection performance is highly degraded. On the other 
hand, any length 𝑛 above 12 frames, 𝑛 ≥ 12, produces perfect 
detection, with 100% of DR and 0% of FP. The processing 
time linearly increases with the value of 𝑛. If 𝑛 = 1, the system 
requires 3µsec to obtain a decision whether the analysed frame 
is malicious or not. If 𝑛 = 150, the same system requires 
173µsec to obtain a final decision. Given that the average in-
terarrival time is 2.37msec, any sliding window length could 
produce results in real-time. 

The results for the rest of the injection attack experiments 
are not shown. The performance of these experiments was sim-
ilar to the results just presented, sharing 𝑛 = 12 as the mini-
mum sliding window length for generating perfect detection in 
all the injection attack experiments. 

Figure 10.  Multi-Layer Results Deauthentication Variable Window Size. 

A similar approach has been implemented with the deau-
thentication attack. The multi-layer results for the deauthentica-
tion attack experiments are shown in Fig.10. If the length of the 
sliding window is 𝑛 < 31, the results are highly inconsistent, 
in terms of FPs. The system produces almost perfect detection, 
when the length 𝑛 value is higher than 31 frames, 𝑛 ≥ 31, with 

100% of DR and 2.17% of FP. In terms of processing time, if 
𝑛 = 1, the system requires 6µsec to obtain a decision for these 
experiments. Meanwhile, if 𝑛 = 150, the system consumes 
445µsec in obtaining a final decision. The results could also be 
calculated in real-time. 

In our experiments, we have used 𝑛 = 31 as the length 𝑛 of 
the sliding window, because it is the minimum value that pro-
duces the best results in all the experiments. However, any 
value above 31 could be chosen. 

D. Malicious Frames within the Initial Sliding Window 
Apart from the prior thorough training or fine tuning peri-

od, other proposed algorithms, such as data mining techniques, 
require training with completely clean datasets. Generally, the 
term clean dataset refers to two different meanings, handling 
missing data and removing spurious data [19]. This work has 
only considered the effect that spurious frames have over the 
detection performance. 

In order to generate meaningful results, the detection sys-
tems based on data mining techniques require a training period 
using clean datasets. Otherwise, the detection results would be 
highly inaccurate. Our proposed methodology produces good 
results, even if there exist malicious frames within the first 
sliding window. Also, the proposed methodology drops the 
frames classified as malicious, to avoid malicious frames alter-
ing the reference of normality. 

The percentage of malicious frames within the first sliding 
window influences massively the detection results of the pro-
posed methodology. In order to calculate the maximum number 
of malicious frames accepted by our methodology, the detec-
tion process has been repeated several times, introducing one 
additional new malicious frame for each of the iteration. The 
results of these experiments are based on the percentage of DR 
results, the percentage of malicious frames within the initial 
sliding window, and the sliding window length. 

 

Figure 11.  Percentage of Malicious Frames in the First SW - Attack01. 

The multi-layer results for the Attack01, Attack02 and the 
experiments when both types of injection attacks are launched 
together, are shown in Fig.11, Fig.12, and Fig.13, respectively. 
There exists an evident consistency in the results of all these 
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experiments. For any sliding window length larger than 12 
frames, 𝑛 ≥ 12, the detection system produces perfect detec-
tion with up to 43% of malicious frames within the initial slid-
ing window. A higher percentage of malicious frames makes 
the detection accuracy to drastically drop. 

Fig.14 shows the multi-layer results for the deauthentica-
tion attacks. The detection system produces perfect detection 
with up to 20% of malicious frames within the initial sliding 
window, if the length of the sliding window is between 31 and 
90 frames, 31 ≤ 𝑛 ≤ 90. If the length of the sliding window is 
𝑛 < 90, the system produces perfect detection with up to 13% 
of malicious frames within the initial sliding window. Remark-
able is the fact that, for any amount of malicious frames within 
the initial sliding window and for any sliding window length 
smaller than 31 frames, 𝑛 < 31, the detection system is unable 
to produce higher DR than 95%. In contrast to the injection 
attacks experiments, the detection accuracy gradually drops 
along with the percentage of malicious frames within the initial 
sliding window. 

Figure 12.   Percentage of Malicious Frames in the First SW - Attack02. 

 

Figure 13.  Percentage of Malicious Frames in the First SW - Attack01-
Attack02. 

VII. CONCLUSIONS 
This paper tackles an important step that remains open in 

the use of D-S theory in network security infrastructures, find-
ing an automatic and self-adaptive process of Basic Probability 
Assignment. The authors of this work have proposed and eval-
uated a novel BPA methodology able to automatically adapt its 
detection capabilities to the current characteristics of the wire-
less network, without intervention from an IDS administrator 
for selecting thresholds or manually/experimentally assigning 
beliefs. The system only requires a light profiling process of 31 
frames. An analysis has been carried out a per frame bases. 

The proposed methodology has been evaluated with real 
WiFi data traffic in a testbed environment. Two different types 
of attack have been investigated; an Opportunistic Injection 
attack and a Deauthentication attack. In order to evaluate the 
effectiveness of the proposed methodology, the results from the 
multi-layer methodology are compared against the same meth-
odology, but utilising metrics from fewer layers. 

As explained throughout this work, using the proposed 
methodology, there exist some injection attacks that can be 
easily detected by utilising the information from only one sin-
gle metric. However, using solely the same single metric for 
detecting a deauthentication attack would be highly ineffective. 
In both attack scenarios, the combination of information from 
all the metrics produces the best results overall in detecting 
malicious injected frames. By considering these results, it is 
clear that the proposed manner of intelligent combination of 
beliefs from different metrics yields an improved performance, 
in terms of detection rate and false alarms  

 

Figure 14.  Percentage of Malicious Frames in the First SW - Deauth Attack. 

The classification of a single frame takes from 3µsec to a 
couple of hundreds µsec, allowing the detection to be carried 
out in real-time. As has been demonstrated in this work, our 
proposed methodology is able to produce perfect detection 
even if the dataset used as a reference of normality contains 
malicious frames. 

As for future work, we will investigate methods to automat-
ically select the most appropriate metrics for detecting each of 
the attacks taking place. This will help to reduce the number of 
false alarms and towards better mitigation techniques. Finally, 



the proposed technique can be installed in multiple monitors 
that could collaboratively work for achieving higher DR. 
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