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Abstract 
A complementary study to our previous research to aid in the 
optimisation of the thermal bonding machine components for 
improved thermally bonded nonwoven production is introduced. 
The effect of the conveyer belt on the nonwoven’s thermo-fluid 
flow behaviour is investigated in detail. A hybrid model consisting 
of the discrete conveyer belt geometry and the continuum porous 
nonwoven web, is presented. A comparison study to predict the 
thermal and flow field differences in 3D and 2D formulations of the 
same problem is elucidated. The thermal and fluid flow 
distributions within the conveyer belt, nonwoven and the air 
domain are predicted with particular focus on the conveyer belt 
component of the Low & BONAR pilot machine. It has been shown 
that the developed 2D model provides accurate results for the 
conveyer belt temperatures. The three-dimensional flow effects on 
the thermal boundary have been predicted. The 3D approach is 
shown to be superior in depicting the wake behind the central 
conveyer belt thread. The amplitude of the wavy geometry is 
determined to be introducing different degrees of geometric three 
dimensionalities in the wake. The industrial partner Low & 
BONAR (former COLBOND bv.) provided technical data for the 
nonwoven and machine components. 
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Introduction 

Nonwovens are a sheet, web, or batt of natural or man-made fibres or 
filaments, excluding paper, that have not been converted into yarns, but are 
bonded to each other by any of several means [1]. The European 
Disposables & Nonwovens Association (EDANA) [2] defines a nonwoven 
as a sheet of fibres, continuous filaments, or chopped yarns of any nature 
or origin that have been formed into a web by any means and bonded 
together for instance by friction, and/or cohesion and/or adhesion, 
excluding paper or products, which are woven, knitted, tufted, stitch 
bonded incorporating binding yarns or filaments or felted by wet milling, 
whether or not additionally needled with the exception of weaving or 
knitting. Unlike traditional fabrics that are made by mechanically 
interlacing (weaving) or interlooping (knitting) yarns composed of fibres or 
filaments, nonwoven fabrics are made by mechanically, chemically, or 
thermally interlocking layers or networks of fibres and filaments. For a 
comprehensive list of different definitions, the reader may refer to Hutten 
[3]. 

The current study utilises the dry formed nonwoven product 
COLBACK®, which has been manufactured for primary and high-grade 
backing; for example, in flooring or the automobile industry as support 
medium for cabin air filters or carpets. Nonwovens have been a research 
topic since a long time, as they have a wide application area. Various topics 
within the nonwoven technology have been investigated related to the 
process, used materials and the simulation so far. Sample studies such as that 
from Randall [4], comprising process investigations have been followed by 
many studies, considering many aspects of the technology [5], including the 
machinery as well [6]. Modelling-aided research has been conducted since 
many years. Studies such as that from Ramaswamy and Holm [7] or Mao 
and Russel [8] have been followed by Tafreshi and Pourdeyhimi [9]. The 
increasing interest and contribution of various research groups led to a 
better understanding and improvement of the technology. 

For the present study, thermal bonding of the thermoplastic fibres 
through convective hot air is considered. The nonwovens are produced 
from continuous filament fibres. Bi-component fibres made of sheath-core 
fibres are utilised. In the cross section of these fibres, nylon (polyamide) 6 
(PA6) polymer forms an outer sheath phase surrounding the inner core 
made of polyester (PET) of the second phase. Each phase has its own 
material properties and contributes to an overall property of the fibre. A 
schematic of a typical thermal bonding machine is illustrated in Figure 1.  

The thermal bonding machine has a perforated drum, a wire-mesh drum 
cover and a wire-mesh conveyor belt. The drum and drum cover are 
enclosed by a hood with an open section to enable the conveyor belt and the 
transported web to enter and exit the thermal bonding machine. The 
nonwoven web at room temperature is transported by the conveyor belt, 



 

enters the machine and is then subjected to hot air flow, which is at or just 
above the melting temperature of the sheath fibre material. The web is 
located such that it is wrapped around the drum, sandwiched between the 
conveyor belt and the drum cover. First, it travels through the machine’s 
heating zone facilitating the bonding of the contacting fibres, and then it is 
briefly subjected to a cool air flow before leaving the machine [11,12]. 

 

 
Figure 1.  Schematic view of a typical thermal bonding machine and 

components [10]. 

The hot air flows through the conveyer belt, then through the porous 
nonwoven web and ultimately through the drum cover and the drum 
(Figure 1). All components enter the heating zone at different but much 
lower temperatures than the air temperature, thus absorbing a significant 
amount of energy from the air [11]. For details about the flow and heat 
transfer inside the machine together with experimental measurements, see 
Peksen et al. [11]. In our previous studies, the thermal bonding process has 
been investigated using computational fluid dynamics (CFD) [10–15]. 
Process parameters have been systematically assessed and suggestions for 
improved production rates and energy efficiency could be given [12]. In 
another study, the melting-solidification process of the thermoplastic fibres 
during the non- woven web formation has been elucidated. The fibres’ 
geometrical information, describing the material behaviour was 
mathematically described and implemented within the CFD code FLUENT®. 
Properties such as fibre thickness, sheath fraction, melting temperature, 
latent heat of fusion and the liquid fraction were successfully investigated. 
These enabled the assessment of different fibre types and to determine the 
properties of the fabric. The thermal gradients inside the web were 
determined [13]. Our recent studies investigated the effect of component 
material type on the thermal bonding production rate and the energy 
efficiency of the system components. It was shown that the conveyer belt 
has the highest effect on the energy efficiency in COLBACK® 
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manufacturing. The process control and attempt to optimise the current 
through-air bonding process showed the importance of the conveyer belt 
[12]. From an industrial point of view, a thorough understanding of the 
conveyer belt, however, requires a discrete modelling of its geometry to 
exploit its effect on the porous nonwoven’s thermo-fluid flow behaviour. The 
current study has been performed to understand and improve the 
knowledge of utilizing the conveyer belt within the thermal bonding 
process. The pilot machine facilities at Low & BONAR (former COLBOND 
bv), the Netherlands are used for the study. A hybrid model approach 
composing of discrete belt and continuum phase porous web is presented. 
A conjugate heat transfer approach has been introduced to investigate the 
thermal behaviour of the solid conveyer belt component. A comparison 
study to predict the differences in 3D and 2D formulations is presented. 
The results will shed light on the suitability of the models for future studies. 
The thermal and fluid flow distributions within the conveyer belt, 
nonwoven and the air domain are predicted with particular focus on the 
conveyer belt component of the BONAR pilot machine. 

Methodology 

To perform the CFD analyses, the solid geometry of the conveyer belt has 
been generated for a thorough understanding of the architecture and its 
effect on the nonwoven’s thermo-fluid flow behaviour. The conveyer belt 
has a very complex woven structure. The accurately presented solid model 
will not only provide an understanding of the influence of geometry, but will 
give an insight into interpreting the results. It will shed light on the limits of 
employing a 2D analysis compared to a detailed 3D design analysis. The 
woven structure is characterised by the orthogonal interlacing of two sets 
of metal threads, running perpendicular to the direction of the other. Each 
steel thread is being undulated when it passes over or under another 
thread, i.e. a plain weave structure. This issue makes it difficult to model the 
metal threads rather than assuming straight cylinders. 

Hybrid modelling approach 

A hybrid model, composing of discrete and continuum phases is 
presented.     A comparison study to predict the differences in 3D and 2D 
formulations is elucidated. The belt structure used is not a layered 
laminate; therefore, the inter- leaving effect that is caused due to multiple 
stacked layers is neglected. In this case, the thickness t of the belt is t ¼ Cf 
Dx þ Dy , where Cf is the compression factor and Dx and Dy the diameter 
of the belt threads in x and y directions, respectively. Restricting the 
attention to one layer, the compression factor is considered to be Cf 1. 
Assuming the structures as isotropic will therefore result in equal wire 
length and thickness, i.e. the crimping effect is assumed to be negligible 
and the thickness of the thread equals to twice the radius, providing a 
similar appearance with the real structure. This enables to investigate a 
particular section in detail. The wavy form has been achieved using a sinus 



 

function with a period of 4p. The analysis results of the developed 3D 
model will be used for comparison purposes with the 2D cross section of 
the model. The ratio T/d (T is the centre-to-centre cylinder spacing and d 
is the cylinder diameter) is 5.23 and the Reynolds number employed is 21. 
Equal space between the threads in horizontal direction is considered, 
whereas the distance of the middle thread to the ones on the sides in vertical 
direction is equal to one diameter of the cylindrical belt thread. The 
configuration change will certainly affect the Re number, and thus will be 
a topic of interest in future, as the current focus is the comparison of a 
present configuration. 

3D micro modelling of the hybrid system using CFD 

The CFD modelling of the 3D belt structure is a challenging problem. The 
computational domain requires an air domain, surrounding the 3D 
conveyer belt and the porous nonwoven layer. This is performed to enable 
the air to flow through the nonwoven web and to render possible heat 
transfer between the air and the solid belt structure, which leads to 
another challenge, i.e. to perform a conjugate heat transfer analysis using 
the CFD technique. Figure 2 illustrates the computational domain and its 
dimensions. The wire radius is 0.6 mm and the nonwoven thickness 0.909 
mm, respectively, which has been measured [11]. 

Figure 2. Computational domain consisting of air, belt and web. 

 

Figure 3 shows the computational grid and the applied boundary 
conditions. The computational grid consists of 777,683 elements built of 
tetrahedral elements. The mesh is finer resolved at the belt compared to the 
nonwoven fabric each having 299,912 and 7291 elements, respectively. 

This enables the temperature distribution within the belt, being well 
resolved and being mesh independent. The benefit of the conjugate analysis 
is that it enables to solve the energy equation within the solid region 
simultaneously with the air- flow, thus the temperature distribution within 



the belt structure can be thoroughly investigated. The boundary conditions 
for the used analyses are given in Table 1. Inlet boundary conditions are 
given as velocity and air temperature that are typically used during the 
thermal bonding process. The mathematical formulation of the governing 
equations has been given in detail in our previous studies and will not be 
repeated here [11,13,15]. The material properties are taken from Peksen 
et al. [11,12]. Outflow condition is given at the outlet; the front–rear and 
sides are specified as symmetry boundaries. 

 

 
Figure 3.  Computational grid and applied boundary conditions. 

 

Table 1. Utilised boundary conditions for the calculations.  

Air inlet velocity (m/s) 0.665 
Air inlet temperature (0C) 2250C 
Air outlet conditions Diffusion flux 
zero/outflow 
Surrounding sides Symmetry 

 

The analysis is performed using the computational facilities at 
Loughborough University, UK utilising the ANSYS FLUENT® Software. A 
grid interface utility is used to couple the two different domains, i.e. the air 
and the belt region on the interface with congruent mesh on the interface. 
This prevents to define additional boundary conditions on the air–belt 
interface. No-slip conditions are applied on the walls of the belt. Because 
the continuum web is considered to be as porous media, i.e. a special type of 
fluid domain, an additional interface is not needed to be defined. The 
computation is first performed within the intersection between the 
interface zones that comprise the boundary. The resulting intersection 
produces an interior zone where two interface zones overlap. The grid 
interface is exactly in the same shape as the belt threads. The analysis used is 



 

a time-dependent transient one. The coupled heat transfer calculations for 
convection and conduction are carried out for a duration of 22.4 s. This is 
the time the system is subject to heat within the heating zone of the 
machine that is required for the conveyer belt to transport the web with a 
speed of 5 m/min through the heating zone [11,12]. Radiation is negligible 
when compared to convection and conduction, hence it is not used for the 
simulations. The coupled grid interface is defined between the air interface 
and walls of the solid belt, and another coupled grid interface is defined 
between the air interface and walls of the tips of the solid belt. The 2D 
model considers the cross section of the physical domain, considering the 
air, conveyer belt and again the porous nonwoven COLBACK®. The two 
models are compared in terms of thermo-fluid flow. 

Results and discussion 

To compare and test the limits of a 2D analysis to a 3D approach, a 
transient conjugate heat transfer analysis using the CFD technique is 
performed for both approaches. The thermal and flow field behaviour of 
the hybrid systems is investigated to understand the differences between 
the two approaches. 

Temperature field analysis 

Figure 4 shows the contour plot results of the temperature distribution of 
the surface plane obtained from the 3D analysis, and the 2D approach 
with the same constituent’s dimensions including web, air domain, belt 
thread diameter, and their location in the computational domain. The 
rectangular area adjacent to the circular belt threads represents the 
boundary of the porous web domain. Boundary conditions consisting of 
inlet, outlet and symmetry together with the same specified values are 
valid for both 3D and 2D analyses. The inlet and outlet distances are set to 
the exact positions as used in the 3D analysis. Hence, the comparison uses 
the same legend to perform an exact comparison. The performed analyses 
are plotted such that the first plot presents the 3D analysis and the second 
one shows the result for the 2D analysis. The nonwoven web is under the 
conveyer belt threads highlighted in black boundaries. 

The contour plots of the temperature profile reveal that in the first 4 s, 
the belt temperature reaches around 850C for both cases. The separation 
point of the flow shows similar behaviour; however, it is forced a little rear 
in the 3D case. 

According Saha et al. [16], the separation points in flow over circular 
cylinders vary with the Reynolds number and hence they should be fixed in 
the present case at the leading front edges. But it is visible that three-
dimensional disturbances affect the flow distribution in the 3D analysis 
due to the flow interaction in z-direction causing the thermal boundary 
showing no more a symmetric shedding on the sides and varies in the wake 
(the region of recirculating flow immediately behind the obstacle) behind 



the thread. 

This is due to the different wavelength and the amplitude of the belt 
thread waviness, introducing different degrees of geometric three-
dimensionality in the wake as it was detailed in the work of Darekar et al. 
[17]. The effect of an introduced stagnation point on a wavy cylindrical 
structure causes different wake topologies for cylinders with the waviness 
at both the leading and trailing edge surfaces, which is the case in the 
presented 3D analysis. In contrast to the standard flow past a non-wavy 
cylinder as it is simulated in the 2D case, there are now two additional 
length scales, i.e. the wave length and the amplitude, introduced. 

The reason for the 3D disturbance effect is the pressure drop caused due 
to the wavy structure. In the experimental investigations of Lam et al. 
[18], this effect was shown. The wavy structure leads to drag reduction and 
the fluctuating lift coefficients of the wavy cylinders result in lower values 
than that of the straight circular cylinders. 

 

 
Figure 4.  Temperature contour plot results of the 3D vs. 2D comparison; t = 

2-4 s. 



 

As can be seen from the contour plots, the temperature of the porous 
web is affected from this waviness the most at the region in the wake 
behind the central thread. Due to the cut of the plane, the central thread is 
on a position not as close to the web as the threads on either side. 
Therefore, the air in the 3D case is able to flow at this region, as well as 
from the z-direction. This is not the case in the 2D configuration. 

Figure 5 illustrates the contour plot results of the temperature 
distribution of the surface plane obtained from the 3D and 2D analyses for 
the instants 8 s and 12 s. Results show that the belt temperatures are in good 
agreement with each other. The nonwoven temperatures are similar except 
for the region of the wake of the central cylinder. The convective effect 
decreases as the temperature in the computational domain approaches the 
air temperature. 

 

 
Figure 5.  Temperature contour plot comparison; t = 8 s–12 s for 3D and 2D. 

 

 

The gradient at the wake region under the central belt thread retains as 



visible in the previous time intervals, suggesting that the flow behaviour 
at this region remains steady and is not affected over time. The air domain in 
the 3D case shows a uniform distribution at these time instants, surrounding 
the wake regions, whereas in the 2D case a clear boundary is visible. This 
can be attributed to the flow in z-direction, which is in all plots visible and 
streams in higher temperature values among the belt threads. This leads to 
the fact that the wake region becomes warmer but narrower compared to 
the 2D case. 

Figure 6 depicts the temperature distribution at 16 s and 22.4 s. The 
results for both the 3D and 2D analyses show a temperature value of 
approximately 174–1750C for the belt threads. The gradients within the 
nonwoven are visible where temperatures vary from 1920C at regions 
inside the wake of the belt up to the air temperatures. This is also visible at 
time frame 22.4 s, where the temperature of the belt reaches approximately 
1950C. 

 

 
Figure 6.  Temperature contour plot results at t = 16 s-22.4 s for 3D and 2D. 



 

From the predicted temperature values, it is obvious that the 2D analysis 
reflects the same results for the thermal behaviour of the belt as the 3D 
analysis, which suggests the use of the 2D case for future parametric 
studies. 

The affects observed on the temperature distribution within the porous 
web in the 3D case show that the 2D analysis could not capture the 
thermal effect of air in the wake behind the central belt thread. The 
differences in the flow behaviour are not crucial compared to the belt 
temperature values, which is the main focus of the current study rather than 
the airflow through the system. 

Therefore, the compared 3D and 2D results for the belt support the use 
of the 2D model which as well saves significant computational time and 
effort compared to the 3D model. Moreover, the difficulties in generating 
and analysing the 3D structure are additional issues suggesting the use of 
the 2D model instead of the 3D one. Another reason to attempt the 2D 
approach is that no thermal gradients are visible within the steel belt 
thread, which is an expected issue due to the thermal conductivity order 
differences of the air and the steel material. 

Flow field analysis 

Figure 7 illustrates the velocity field comparison of the 3D and 2D 
analyses. The rectangular domain below the circular belt threads 
represents the boundary of the porous web domain. The contours of the 
plot are set to be continuous to visually better capture the fluctuations in 
the 3D analysis. 

 

 
Figure 7.  Velocity contour plots of the 3D vs. 2D comparison. 

 



 

Figure 8. Velocity distribution of the hybrid system in 3D and 2D, together 
with a closer view of the central belt thread, web and the wake. 

 

The results show that in the 3D case, the air velocity reaches higher values 
in the wake behind the threads and just a small region behind the closest 
point to the surface of the threads approaches to values very close to zero, 
whereas in the 2D case this region is longer and is clearly visible extending 
till into the porous web. This shows clearly the contribution of the air flow 
in z-direction, disturbing the flow and is supporting the idea that the 
pressure gradient is lower in the 3D case compared to the 2D case where 
the effect of the waviness of the structure is not considered. Therefore, the 
air velocity values are higher and increase rapidly after passing the body, i.e. 
the belt hindering the flow. 

This also explains the higher temperatures in the wake behind the central 
thread. The zoomed-in views comparing the velocity contour plots in Figure 
8 depicts this case in detail illustrating clearly that the region in the wake 
behind the belt threads reaches higher velocity values than it is predicted 
for the 2D case. 



 

The wake is longer in the 2D case. The region with lower velocity 
values is wider than for the 3D analysis and passes through the whole porous 
web, whereas in the 3D case the wake shows higher velocity values and at 
the same time is narrower. 

Conclusions 

In this paper, a hybrid model for the conveyer belt and nonwoven web has 
been introduced to improve the understanding of the effect of conveyer belt 
component on the thermo-fluid flow behaviour of the nonwoven web. The 
data are based on the conveyer belt component and porous web 
(COLBACK) used on the pilot machine at Low & BONAR (former COLBOND 
bv), the Netherlands. A comparison study to predict the differences in 3D 
and 2D formulations was presented. It was shown that the 2D model 
provides accurate results for the belt temperatures, which suggests the use 
of the developed 2D model for further parametric studies. The 3D model is 
shown to be superior for capturing detailed thermal effects in the wake 
behind the central belt section. It was shown that the 2D case could not 
capture the thermal effects in the in this region. This is due to the three-
dimensional flow disturbances, which affect the flow distribution in z-
direction. This prevents the thermal boundary to show a symmetric 
shedding on the sides, and flow variation in the wake behind the thread. The 
differences of the flow behaviour are not crucial compared to the belt 
temperature values. The study implied that the geo- metrical features of 
the belt need further assessment, using the developed 2D model. In 
particular, the effect of different belt configurations and material types on 
the thermal and flow distribution, as well as on the nonwoven will further 
improve the understanding. 
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