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Abstract: Augmentative and alternative communication (AAC) systems tend to rely on the
interpretation of purposeful gestures for interaction. Existing AAC methods could be cumbersome
and limit the solutions in terms of versatility. The study aims to interpret breathing patterns
(BPs) to converse with the outside world by means of a unidirectional microphone and researches
breathing-pattern interpretation (BPI) to encode messages in an interactive manner with minimal
training. We present BP processing work with (1) output synthesized machine-spoken words (SMSW)
along with single-channel Weiner filtering (WF) for signal de-noising, and (2) k-nearest neighbor
(k-NN) classification of BPs associated with embedded dynamic time warping (DTW). An approved
protocol to collect analogue modulated BP sets belonging to 4 distinct classes with 10 training BPs per
class and 5 live BPs per class was implemented with 23 healthy subjects. An 86% accuracy of k-NN
classification was obtained with decreasing error rates of 17%, 14%, and 11% for the live classifications
of classes 2, 3, and 4, respectively. The results express a systematic reliability of 89% with increased
familiarity. The outcomes from the current AAC setup recommend a durable engineering solution
directly beneficial to the sufferers.

Keywords: breathing interpretation; alternative and augmentative communication; acoustic sensors;
pattern classification; voice communication

1. Introduction

The escalation in the numbers of speech-disabled individuals renders a rising need for
augmentative and alternative communication (AAC) solutions [1,2]. AAC techniques range in
complexity and are classified into three main categories: no-technology AAC (interpretation of
gestures and body movements), low-technology AAC (basic communicative aids, books, and board
displays), and high-technology AAC (software designed to work with a machine) [3]. Existent
interdisciplinary AAC methods rely on machine interpretation of sets of purposeful gestures and
movements. Such procedures are beneficial yet require significant efforts from users in terms of gesture
acquisition and practice. Moreover, the predefinition of word sets offered by most solutions confines
the conveyance of user-specific messages. AAC researchers confirm that there is still wide room for
technology utilization and improvement in system versatility to train and adjust the devices [4,5].

Breathing consists of inhalation followed by exhalation, separated by a short pause. In medical
terminology, the term respiratory rate is the measurement of breathing cycles per minute [6]. Clinical
observations express typical respiratory frequency ranges of 0.2–0.8 Hz [7]. The detection of human
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breathing can be accomplished through different modalities that expand to comprise a wide range of
techniques. Common collection methods include the usage of electroencephalogram (EEG) signals [8],
smart wearable garments with fiber optic sensors [9], photoplethysmogram measurements of cardiac
activity [10], pressure and thermal sensors [11], and airflow examination [8]. The utilization of acoustic
signals and microphones to capture breathing signals is common; however this is for clinical respiratory
measurement purposes [8,12].

Limited research has been carried out for the translation of breathing signals into synthesized
machine-spoken words (SMSW). Early studies have started with the usage of sniffing signals in
the scope of AAC and in the control of devices for paralysis sufferers and individuals in locked-in
syndrome. The fine control of sniffing is measured through nasal pressure and has been utilized
to write text or drive a wheelchair [13]. Fine breath tuning has also aided communicative needs of
AAC users through Dasher, a text-entry tool available on several operating systems. It uses input
from a mouse (or other means) to manipulate a cursor on a screen to steer towards alphabetical
letters and start writing. A predictive language model accompaniment displays probable words for
the facilitation of the writing process. In the breath-triggered mode, AAC users navigate Dasher’s
software panels using a thoracic belt worn around the chest. The belt expands and contracts with
breathing movements, guiding the cursor of a special mouse towards cascading letters in the system.
With increased familiarity with this platform, well-trained users were reported to write English letters
at a rate of 15 words per minute [14]. However, the inhalation and exhalation movements used for
the expansion and contraction of the belt could be restrictive. Instead, breathing variations could
be detected through pressure or airflow sensors. A recent invention, “TALK” correspondingly uses
distinct inhalation and exhalation breathing signals together with a low-cost micro-controller board
to encode messages through Morse codes [4]. Generally, the main limitation of the digital encoded
representations of breathing signals in the above-listed studies is in the restricted direct information
content of the signals. Variations in breathing amplitudes, phases, and specific personal traits could
be representative of unique and comprehensive messages to be directly used for communicative
purposes [4]. Moreover, the need to input letters to form words infers slow conversational rates. Under
the analogue scheme, a study used a medical breathing mask together with processing electronics
and software to interpret patterns of breathing through pressure variations [4]. The approach showed
primary success in terms of utilizing breathing for the purpose of AAC. Analogue encoding provides
increased bandwidth at the low breathing frequencies by utilizing amplitude, frequency, and phase
changes to encode users’ intended meanings.

The aim of this study is to research breathing pattern interpretation (BPI) as an alternative
yet effective AAC solution by using the modulation of acoustic breathing patterns (BPs) to output
synthesized-voice-format messages. Users breathe effortlessly and learn to generate modulated
patterns picked up by a microphone to be translated to their choice of machine-spoken words.
Simultaneously, the system learns to recognize BPs along with the associated words to SMSW
whenever a BP is triggered. The communication process becomes unbound to pronunciation or
gestural movements that may be cumbersome to learn. Several algorithms exist in the literature for
classifying time series data [15,16]. Reliable recognition and high-quality signals are the basic elements
for successful classification [17]. The study looks at the determination of a suitable pattern classification
approach for BP recognition. Filtering and standard de-noising techniques are adapted to enhance
breath signal quality and to increase the total signal-to-noise ratio (SNR) [18].

2. Materials and Method

2.1. Overview of BPI Operational Modes

Figure 1 demonstrates the two operational modes supported by the system. The Offline
mode consists of the acquisition of training BP patterns. This expands to include BP libraries and
user-intended vocabulary linked with each BP. The Online mode consists of live pattern acquisition for
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classification by the machine to output SMSW. Potential system users should possess the ability of
breathing modulation and a level of cognitive ability that enables them to operate the device.

Figure 1. Overview of the two modes of operation: training operational mode and live operational mode.

2.2. BPI System Architecture

The proposed system architecture is presented in Figure 2. BP classification and word synthesis
are the core elements of the implementation. In Figure 2, a sample of four distinct sets of training and
live signals is depicted.

Figure 2. Proposed breath-to-speech system architecture, including the training mode, live mode,
processing, and pattern classification.

2.3. Experimental Protocol

The experimental protocols were implemented with the approval of Loughborough University’s
Ethics Committee. Informed consent was obtained from all subjects prior to participation. The protocol
was implemented with the participation of 23 healthy subjects sitting in an environment-controlled
room (16–18 ◦C, Relative Humidity (RH): 50–70%). An ultralight 7 g head-band cardioid unidirectional
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microphone (UM) (Monacor Stageline HSE-152/SK, back electret, sensitivity of 1.8 mV/Pa at 1 kHz)
connected to a 64-bit operating system running MATLAB (Version 2016a) was used. For hygiene
purposes, replacement of the microphone foam covers was carried out following each subject’s session.
The subjects were guided through the process of recording modulated BPs and testing the platform
prior to the start of the recording. Each subject made a selection of four BPs of his/her choice. As shown
in Figure 3, each BP was recorded over a 10 s window, and 10 repetitions were recorded for each of
the 4 BP classes to represent the training set (total: 40 training BPs). Further guidance throughout
the process of BP modulation was provided during the acquisition of the first class of training BPs.
The subjects were allowed 20 s of rest between the acquisition of training classes and a 2 min rest after
the completion of the training mode. Five extra “live” repetitions of each of the four BP classes were
acquired to be used as the test sets. Ten seconds of rest was provided between the acquired live sets.

Figure 3. Experimental setup of acoustic breathing pattern (BP) detection, presented with the
subject using the head-band unidirectional microphone (UM). The allocated durations are shown
for (a) modulation testing, (b) BP acquisition in the training mode, (c) the rest duration between the
recorded sets, and (d) BP acquisition in the live mode.

2.4. BP Processing

The sound acquisition and recordings were completed using MATLAB. BPs were recorded from
the subjects at a rate of 22,050 Hz and an initial silence duration of 1 s. The signals were filtered to
suppress the contaminating ambient noise resulting from sources in the background or poor signal
quantization using the Weiner filtering (WF) approach in [19,20] following the assumption that noise
is stationary over the acquired time window. The decision-directed method for noise reduction in [19]
tracks the a priori SNR through the computation of the a posteriori SNR on the basis of the assumption
that SNRa-posteriori = SNRa-priori + 1. The a posteriori SNR was calculated from the corrupted signal and
the noise variance. The a priori SNR was tracked through the decision-directed method in [21], and
the Weiner estimate gain function was found using the a priori SNR through

W(f ) =
SNR(f )

SNR(f ) + 1
, (1)

where f is the discrete frequency variable [19,20]. Breathing signals were sub-sampled to 1000 Hz
for dimension reduction, with no violation to anti-aliasing. BP envelopes were extracted using
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a Butterworth low-pass filter with a cut-off frequency of 1/(0.25 × SF). The negative portions
of the signals were discarded, as proposed by [12]. The attained BP envelopes’ representative of
inhalation and exhalation were further sub-sampled to 100 Hz per pattern to speed up computations.
The information content was minimized to reduce time complexities; however, the instances of
exhalation and inhalation were identifiable, as displayed in Figure 4.

Figure 4. Subsampling of acoustic breathing patterns, with a sampling frequency of 22,050 Hz (top) and
100 Hz (bottom).

Each training BP envelope was assigned to a class and a label that was passed to the classifier.
Training BPs were labeled as patterns 1–4. Figure 5 presents a sample training set, and Figure 6 presents
the corresponding live set. In Figures 5 and 6, a sample BP envelope is displayed for each of the training
and the live classes, followed by the corresponding repetitions of the training set (10 repetitions per
class) and the live set (5 repetitions per class). Every class was assigned to a specific word or phrase. In
practice, words and phrases are user defined and can be changed according to an individual’s needs.
An example of a training library for four BPs is shown in Table 1. The training BP envelopes were
saved in a separate data file for classification against the acquired live inputs.

Table 1. Sample breathing pattern (BP) to text vocabulary. The label of every BP of the four acquired
training classes is mapped to a phrase.

Class Label Transit Language

1 Breath_Pattern_1 “Hello, good morning”
2 Breath_Pattern_2 “Thank you”
3 Breath_Pattern_3 “My name is ...”
4 Breath_Pattern_4 ”May I have a train ticket please?”
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Figure 5. Training breathing pattern (BP) set (user-selected), with (a) sample of class 1 BP pattern,
followed by 10 BP repetitions of class 1; (b) sample of class 2 BP pattern, followed by 10 BP repetitions
of class 2; (c) sample of class 3 BP pattern, followed by 10 BP repetitions of class 3; and (d) sample of
class 4 BP pattern, followed by 10 BP repetitions of class 4.

Figure 6. Associated live breathing pattern (BP) set for the training set displayed in Figure 5, with
(a) sample of class 1 live BP pattern, followed by five live BP repetitions of class 1; (b) sample of class
2 live BP pattern, followed by five live BP repetitions of class 2; (c) sample of class 3 live BP pattern,
followed by five live BP repetitions of class 3; and (d) sample of class 4 live BP pattern, followed by
five live BP repetitions of class 4.
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2.5. BP Classification and SMSW

Classic Euclidean distance (ED) and dynamic time warping (DTW) were embedded in a k-nearest
neighbor (k-NN) classifier, with k = 1. The ED is given by

d(U, V) = (
m

∑
i = 1

(ui − vi)
2)1/2, (2)

where ui and vi are the ith features of time series U and V, respectively. On the other hand, DTW
uses dynamic programming to search for flexible similarity measures between temporal series.
For two time series U and V of lengths a and b, respectively, a warp path W = w1, ... , wK can
be constructed such that wk = (i, j)k, where i and j are indexes from time series U and V, respectively,
and max(b,a) ≤ K < b + a − 1. Constraints associated with the warping path include conforming to
boundary conditions, with W1 = (1,1) and WK = (a,b); continuity; and monotonicity. The distance path
minimizing the cost between the series can be found through

D(i, j) = d(ui, vj) + min


D(i, j − 1)
D(i − 1, j)
D(i − 1, j − 1)

(3)

where d(ui, vj) is the distance between ui and vj [22]. In this study, d(ui, vj) was computed using the
ED. A one-nearest neighbor 1-NN classification coupled with a warped distance is hypothesized as
a powerful candidate in time series classification [22,23]. DTW has an O(N2) time complexity [24].
On the other hand, the ED is assumed to be common, faster, and less computationally demanding.
BPs were normalized and the offset was removed. In MATLAB, training BPs for the four classes were
arranged in a 40 by [SF × 10] matrix. A function was created to measure the DTW distance between
the training patterns and the live input. The output of the defined function was an [M × 1] vector
containing computed DTW distances between the live sample’s envelope and the first to Mth training
BP envelopes. The ED was directly embedded in the 1-NN classifier, and the distance to the Mth
training BP envelope was similarly computed. Classification operations are displayed in Figure 7.
The word/phrase corresponding to the label of the smallest distance and the BP matching envelope
were assigned to a new string variable passed to the machine’s default synthesizer through MATLAB
to output SMSW.

Figure 7. Classification operations, showing the arrangements of the live breathing pattern (BP) matrix,
the training BP matrix, and the associated classification distances.
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3. Results

BP classification results were analyzed for each separate class. For 23 subjects, 92 sets of live
modulated BPs were acquired for the four classes, with a total of 460 live BP signals. An individual
confusion matrix (CM) was created for every subject on the basis of the ED and DTW 1-NN
classification. The predicted and actual class labels were used for the creation of a percentage value
representative of the correct classifications per subject. This was attained from the ratio of correct live
BP classifications to the total of the 20 live BPs. The results were aggregated for all 23 subjects who
participated in the experimental protocol. Seven sets of outliers were omitted for subjects who had
difficulties recalling the selected BP.

The classification accuracy for a 1-NN classifier using both the embedded DTW measure and
the default ED are shown in Tables 2 and 3. These two tables display the CMs pertaining to the four
classes of the BPs and the percentage of correct and incorrect classifications among the 23 subjects
for each distance measure of each class. Figure 8 gives a comparative bar chart, which contrasts with
the highest classification success rates belonging to the two techniques (ED and DTW). The highest
classification success rates for each technique as shown in Tables 2 and 3 are appropriately colored
with respect to the bar graph in Figure 8. A reliability rate of 89% was found with DTW classified BPs
in comparison to 74% using the ED with increased user familiarity with the platform. Average rates
are also indicative of an overall performance of 86% for the DTW BP classification (error rate of 14%)
in comparison to 59% for the ED BP classification (error rate of 41%).

Table 2. Confusion matrix of 1-NN DTW, showing cumulative classification accuracy of the predicted
BPs classes in comparison with the true BP classes. The highest classification rates are given in
dark green.

Table 3. Confusion matrix of 1-NN ED, showing cumulative classification accuracy of the predicted BPs
classes in comparison with the true BP classes. The highest classification rates are given in light green.

The examined data show that the performance of the ED was less reliable as the BPs became more
structurally complex. The BP sequences suffered mismatches related to speeds of pattern repetition
and temporal shifts, even over the short examined window of 10 s. DTW-classified series were
more robust to temporal mismatches, however, at the cost of a heavier computational complexity.
Hence, sub-sampling of the BP time series was rendered essential. Following the BP classification,
the synthesized words/phrases were spoken on the basis of matching the label of the selected training
envelope with the associated phrase. A correct classification guaranteed the immediate production of
the desired word/phrase.
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Figure 8. Four classes’ classification performance with dynamic time warping (DTW) and Euclidean
distance (ED).

4. Discussion

During the BP acquisition phases, the utilization of the cardioid UM aided in the limitation of
audible noise collection by the microphone. Moreover, filtering stationary background noises through
the single-channel Weiner filter ensured better signal quality. Minimal variations in the acquisition
process resulted from the dependability of angles of recording on subjects’ preferred UM positioning
in relation to the UM’s diaphragm. Breathing intensity at the input of the microphone was hence
slightly variant among the subjects [8]. However, variations were minimal between the training and
live datasets of the same subject, with limited effects on classification accuracy.

For BP classifications, an increase in user familiarity with the platform was predominant with
patterns belonging to the fourth class. In class 1, necessary guidance regarding BP modulation was
provided to the subjects during the acquisition. This resulted in a cumulative error rate of 13.0% with
1-NN DTW. There was no guidance provided for subsequent classes. Generally, as the subjects became
more acquainted with the platform, the process of BP modulation was easier to attain. In turn, any
experienced users were found to have a better control of the AAC device. DTW classification of the
BPs of the final class (class 4) showed both the least number of omitted patterns and the highest rate of
classification successes, as per Table 2. The error rates for 1-NN DTW decreased by 17%, 14%, and 11%
for the live classifications of classes 2, 3, and 4, respectively.

In light of the obtained data, the variations in speeds and data shifts of the modulated BPs were
seen to be inevitable, as the live patterns did not possess the exact compositions of the training patterns;
1-NN ED deteriorated with increasing numbers of BPs, even over short time windows. For instance, by
examining the third class of the sample BP corresponding to the training and live sets in Figures 5 and 6,
the live BP set was shown to be more stretched over the allocated window. In consequence, 1-NN ED
did not correctly classify this live BP set, while 1-NN DTW correctly classified the entire set. Although
DTW is a “loose” metric, previous empirical research on large sets of speech signals shows that DTW
could be used to classify audio signals [25]. Moreover, the warping complexity was managed through
the restriction of each BP in this study to a sampling frequency of 100 Hz over the short recording
time window.

The implementation of fast DTW for real-time applications will be addressed in the forthcoming
developments of the system. Moreover, in the current prototype system, the user is prompted to input
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the BP by pressing on the “Enter” button on a keyboard. However, this would not be an ideal solution
in a real system. Therefore, automatic recognition of the modulated BPs together with the recognition
of more than four user-defined BPs will need to be addressed. Preliminary tests have been carried out
using machine learning techniques with deep learning (DL) functionality. This is being investigated to
evaluate its robustness with different users and will be reported in a future study.

5. Conclusions

The modulation of BPs and translation into SMSW are presented in this study. The processing
and classification of acoustically collected breathing signals along with associated BPI assumptions
are described for the development of the proposed AAC solution. The endorsed BP training and live
modes for AAC communication are detailed in Figure 1. The collection and proofing of the BPs were
attained through the utilization of the UM together with single-microphone noise filtering. The BP
envelope extraction along with training set creation and associated vocabulary were accomplished,
with four distinct classes of BPs.

BP classification accuracies were obtained through cumulative CMs of 23 subjects, with 1-NN
classifiers embedded with ED and DTW measures. Temporal variations in the BP sets confined the
usability of 1-NN ED to BP classification. The experimental results for BP classification through
1-NN DTW at a rate of 100 Hz showed a reliability of 89% with increased familiarity with the AAC
system. The outcome from the present study reveals a durable and conceptual solution to meet the
growing demand of one of today’s AAC areas related to synthesized speech production. A one-stop
engineering approach can be recommended as a future expansion of the study by embedding software
and hardware to attain an all-in-one plug-in solution.
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