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Abstract

The paper discusses a novel approach of accelerating the numerical Path In-

tegration method, used for generating a stationary joint response probability

density function of a dynamic system subjected to a random excitation, by

the GPU computing. The paper proposes the parallelization of nested loops

technique and demonstrates the advantages of GPU computing. Two, three

and four dimensional in space problems are investigated as a part of the

pilot project and the achieved maximum accelerations are reported. Three

degree-of-freedom system (6D) is approached by the Path Integration tech-

nique for the first time. The application of the proposed GPU methodology

for problems of stochastic dynamics and reliability are discussed.

Keywords:

1. Introduction

Efficiency of any computer simulations depend on three factors: devel-

opment of the theory describing the process, numerical methods used and

hardware capabilities. Until recently the computational capabilities have
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been developing surprisingly well doubling the single-core processor perfor-

mance twice every 18-24 months, as predicted by Moore’s law 50 years ago.

In recent years the doubling rate has slowed down forcing one to revisit the

Moore’s law. Latest observations indicate that the performance doubling

happens every 5-7 years with the potential of flattening out completely in

10-20 years from now. Graphics Processing Unit (GPU) computing is an-

other alternative that has been attracting more and more interest in last 10

years.

Graphics Processing Unit computing can be viewed today as the most

powerful computational hardware. Originally GPU has been developed and

used as a tool to manipulate and accelerate displayed images. Hence GPU

was designed to process relatively small amount of data (pixels) in par-

allel, which was very different in nature compare to a CPU. In last 10

years the GPU performance, measured in Floating-point Operations per Sec-

ond (FLOPS), has been doubling every year reaching hundreds of TFLOPS

(1012). The GPU advantage is mostly related to the number of threads (a

single smallest code sequence that can be executed independently) it can

host. Single or multiple core CPU systems may host twice as many threads

as cores, so a 32 core workstation is capable of hosting 64 threads. However

a number of CPU cores that can be managed is limited compare to GPU

that can host thousands of threads. These amazing capabilities have opened

a new research direction known as GPU computing.

It should be stressed that it is not a very straightforward task to use the

GPU architecture effectively due to its stream processing feature. Indeed,

if one thinks of a GPU as a matrix, each element of which is capable of

performing a small computational task, then the required communication

between thousands of cores/threads or writing/reading information to/from a
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CPU memory would take enormous amount of time, substantially decreasing

the computational effectiveness and even reducing the overall performance

below the CPU one. Thus, to use the GPU capabilities in full it is essential

to adapt existing codes by parallelizing them and minimizing the amount of

intercommunication. Mesh-free numerical methods for instance [1–3], used

intensively in CFD, compatible of GPU computing in contrast to the majority

of standard mesh-based numerical methods, where intercommunication is

required.

Unfortunately GPU computing was not much exploited in the area of

nonlinear and stochastic dynamics in particular. The fact that parallel pro-

cessing is a very powerful tool needed in stochastic mechanics was published

back in [4], when the multiprocessing computing had just been developing

and GPU computing was about to germinate. Apparently GPU computing

can be used for a number of purposes such as generating various paramet-

ric maps, basins of attractions, bifurcation diagrams, etc. Some results of

GPU computing can be found in solid mechanics, see for instance [5] and

references therein. In this paper we will focus on a more fundamental con-

cept used for describing a response of a stochastic system - a probability

density function (PDF). Knowledge of a joint response PDF not only pro-

vides the information on the system statistical characteristics, but also helps

in evaluating the system reliability. To find a stationary response PDF of

a dynamical system one may have to find a solution to the corresponding

Fokker-Plank-Kolmogorov (FPK) partial differential equation of parabolic

type. It can be handled by conventional methods such as cell mapping tech-

nique [6] or Path Integration (PI) approach. Despite some advantage of one

method over another, finding a joint response PDF of a generally nonlin-

ear multi-degree-of-freedom (MDOF) system is computationally challenging
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and expensive, therefore mostly low dimensional 1−2 DOF systems resulted

in 2 − 4D FPK equation (not counting time) have been analyzed, although

the amount of real time required was tremendous [7–10]. The fact that the

higher the order of a system the heavier the computational costs generated a

term the curse of dimensionality. In some special cases techniques like FFT,

decoupling or decomposition [11–13] can be adapted to reduce the amount

of computational efforts.

In this paper the curse of dimensionality of the PI approach will be ad-

dressed through the GPU computing. The PI methods, in the sense we

understand it here, was introduced by Feynman in quantum mechanics in

an effort to generalize quantum mechanics connecting it to the classical one

through time-space trajectories [14, 15]. The suggested generalization substi-

tuted the classical action principle by the integration over all possible prop-

erly weighted paths/trajectories. The PI methodology in some way helped

to explain the controversial and entangled result of the two-slit experiment

[15]. Historical development of the PI method, starting from a formula de-

rived by Onsager and Machlup [16] for the Ornstein-Uhlenbeck process to the

numerical implementation of the PI method [7, 17] can be found in [18]. De-

spite the lack of rigorous mathematical substantiation, unlike the well defined

Wiener path integral [19], the PI method has been widely used in various

areas of engineering, physics and finance [20–24]. In stochastic dynamics the

PI method has been successfully adapted for Markov processes along with

the Chapman-Kolmogorov equation for finding a response PDF as well as

reliability characteristics of a system [25–27].

The intent of this paper to fill the existing gap between the GPU com-

puting and its application to the problems of analyzing high dimensional

dynamical systems. It will be demonstrated that utilizing the simplest op-
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timization procedure in the code through the parallelization of nested loops

substantially accelerates the PI approach in finding a multidimensional joint

response PDF. Many finds Cuda language, built to optimize and control

the prerformance of a GPU cards, difficult to work with, therefore Ope-

nACC framework is used for parallelization of the nested loops. It should

emphasized that being the extremely powerful GPU cannot be considered as

panacea to all the difficulties one has to overcome in computing a multidimen-

sional PDF. GPU memory is rather limited compare to the CPU memory,

therefore computing very high dimensional problems will require the com-

munication between GPU and CPU, thereby reducing the GPU efficiency.

Nevertheless, the existing modern GPU cards (Tesla K80 for instance) allow

stepping up to the next level and dealing with 4D − 6D problems within a

reasonable time frame, which was not possible 10 years before. Moreover,

some clusters of GPUs can work in parallel and thus can handle significantly

larger amount of data, generated by high dimensional dynamical systems.

2. Path Integration and its numerical implementation with GPU

The Path Integration method is based on an iterative approach for cal-

culating numerically the response PDF of a system when the stochastic un-

known process follows the Markov property. This method was used as an

alternative for solving the FPK equation, which in many cases presents ex-

treme difficulties in obtaining a solution for the transition PDF. Consider,

then an n-dimensional Ito process X for which the following SDE can be

written in the general case:

Ẋ = α(X, t) + b(X, t)Z(t) (2.1)
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where α is the drift matrix and b the diffusion one, Z(t) is an m-dimensional

vector of independent Gaussian white noise stochastic processes, for the com-

ponents of which it holds <ξiξi> = δ(t). Without any loss of generality,

and since the systems presented in this paper satisfy the following simpli-

fication, let us assume that m = 1 and that the noise process enters the

system’s equations only through the last term. Thus b becomes a vector for

which bT = [0 ... σ]. The central part of the PI method is based on the

total probability law, which after recalling that for a Markov process the

Chapman-Kolomogorov equation is true it reads:

p(x, t) =

∞∫
−∞

p(x, t|x′, t′)p(x′, t′)dx′. (2.2)

with the prime denoting a time t′ before t. Based on Equation 2.2, the PDF

of the response process at any time t can be calculated by the integral over

the system’s state space, subject to knowledge of the TPD from t′ to t and

an initial PDF at time t′.

From a numerical point of view, one would need a discretized state space

for which the PDF at time t′ is known at all the mesh points as well as a

time discretization t = t′ + ∆t. Furthermore, an expression for the TPD is

required for the calculation to be possible. For a sufficiently small time step,

it has been proven [8] that the TPD is a degenerate multivariate Gaussian

distribution. Keeping in mind the assumptions made on b, which fulfill the

scope of this paper, the TPD reads:

p(x, t|x, t) =
n−1∏
i=1

δ (xi, − x′i − ri(x′, t′)∆t) · p̃(xn|x′) (2.3)

where

p̃(xn, t|x′, t′) =
1√

2πσ2∆t
exp

{
− [xn − x′n − rn(x′,∆t)]2

2σ2∆t

}
(2.4)
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In Equation 2.3 and 2.4 the propagation of x forward in time is required

and for that a 4th-order Runge-Kutta scheme is used denoted by rj, j =

1 . . . n, in order to achieve better accuracy in the deterministic path, which

previous studies [8, 28] have shown to be very important for the application

of PI.

Assuming t′ = 0 one could calculate the PDF at t = ∆t and by succes-

sively applying this procedure the PDF of the response could computed at

any time t, based on the previous time step and provided that ∆t is small

enough. A discussion about the choice of the time step could be found in [28].

Also, note that this method requires the computation of p(x′, t′) at points

that do not necessarily coincide with the mesh points used to discretize the

state space. To overcome this, an interpolation technique is used, namely

cubic B-splines, so that the required values could be computed.

A summary of the PI procedure may be formulated as following:

(1) The PDF at time t′ is inserted as input and interpolated by use of cubic

B-splines.

(2) For each grid point the value of the new PDF is calculated as follows:

(a) Find the points along the q axis where the noise is induced, at which

the TPD has significant contribution.

(b) Map these points backwards with a ∆t time step by the Runge-

Kutta method. Now we know all the possible paths that could signifi-

cantly influence the new PDF value at each grid point.

(c) Through the aforementioned interpolation, calculate the old PDF

value at the backwards-mapped points.

(d) Calculate the new PDF value at the grid point from the integral

of equation Equation 2.2 substituting p(x, t|x′, t′) from equation Equa-

tion 2.3.
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(3) Check convergence to steady state of the algorithm through the follow-

ing scheme: ∫
x

|p(x, t)− p(x′, t′)|dx < ε (2.5)

where ε is chosen properly.

Previous studies have shown that the PI method is a reliable and ex-

tremely accurate course of action, especially when the tails of the PDF are

concerned. This is of special importance for problems where rare events as-

sociated with the tails, play a key role such as in the reliability analysis.

However, the curse of dimensionality results in the heavily increasing com-

putational cost of mesh-based methods. The goal of the PI method is to

calculate the elements of an n-dimensional matrix approximating the contin-

uous response PDF, p(i1, i2, i3, . . . , in) where ij = 1, 2, . . . , kj with kj the size

of the grid at the j-th dimension. It is evident that adding a new dimension

n + 1 to the problem increases the necessary computations by a factor of

at least kn+1. This a serious constraint to the applicability of this method

since contemporary problems in stochastic modeling extend to at least some

DOFs, leading to a high number of dimensions in Equation 2.1. Thus, it is

reasonable that most of the cases reported in the literature and treated with

the PI method are SDOF systems.

Given this restrictive drawback, it is paramount to explore any potential

of reducing the execution time required for a computer code implementing

the PI method. The intention of the new GPU computing trend is not

to fully substitute computing using CPUs, but to introduce a cooperative

framework where the compute intensive parts of the computer code, such as

matrix calculations, are offloaded to the GPU, in order to exploit its parallel

capabilities. Besides the pioneering development of CUDA enables users to
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use GPU cards for scientific computing in full, however it requires explicit

programming from the user and in majority of cases it means the code has to

be completely rewritten in CUDA language. Several frameworks have been

developed to alleviate this need; one of which is OpenACC - a directive-based

framework that allows offloading part of the computations to the GPU. The

advantage of this framework is that the user is only required to identify the

parts of the code that should be compiled for parallel execution in the GPU.

This is performed through a range of available directives that the user inserts

within the code. In that way, the selected regions are offloaded to the GPU,

which typically contains thousands of compute cores, resulting in a more

timely execution of the code.

The key feature of the PI method regarding the introduction of the GPU

in the necessary calculation is that the desired values of p(i1, i2, i3, . . . , in) are

computed based on information available from the previous time step and

constants. This means that each of the points of the mesh can be treated in-

dependently as long as there is synchronization between different time steps.

Considering this, the parallelization of the code for execution in the GPU

is performed according to the following logic. The code needs to perform a

number of iterations for propagating the PDF in time, with the exact number

of iterations being unknown in the general case. However, the mesh points

used to discretize the state space are fixed throughout the whole code. Thus,

it is possible to parallelize the part of the code that is concerned with the

point-by-point calculation of the PDF.

The GPU algorithm is depicted in Fig.1(a), the code is split into three

regions. The first part, which includes initialization of the code, assigning

values to parameters, discretization of the state space, storing a user report,

etc., is executed serially in the CPU. This part includes the initiation of
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the iterative loop that propagates the system forward in time in a step by

step manner, as well as some preliminary calculations that are necessary

for each time step, such as the B-splines coefficients when allowed Fig.1(b).

The second part consists of n nested loops that access each point of the

mesh, calculates and stores the value of the PDF at the particular time

step. This is the part that is instructed to be compiled for execution in

the GPU. Depending in the system’s dimension, the size of the grid in each

dimensions is constrained by the capabilities of the available GPU(s), several

threads (and blocks of threads) are created that perform the computations

in parallel. Note that this part of the code is terminated before the master

iterative loop is finished. This means in turn that the calculation of the PDF

at time t is completed before the code moves on to the next time step, thus

avoiding using the old values of the PDF at t − ∆t for the calculations at

t + ∆t which would lead to erroneous results. The third, serially executed

part includes the convergence checks, termination of the master loop, as well

as some final operations mostly related to storing data.

3. Numerical results

In this section, the approach described earlier is applied to selected cases

of stochastic systems. The purpose is to demonstrate the achieved accelera-

tion by recording and comparing the execution times of the PI codes exclu-

sively in the CPU with the time needed for the execution when the GPU is

utilized too. To that end, all the factors that influence the performance such

as the mesh size, the time step and the system’s parameters were identical

for each system to facilitate a fair comparison. The numerical results that

follow for 2,3 and 4D problems were obtained in a machine with two Intel

Xeon E5620 processors and an NVIDIA Quadro K5000 with 1536 CUDA
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cores. The results for 6D problem were generated by 4xAMD Opteron 6376

and Quadro K6000 with 2880 CUDA cores. At the end of this section, a

table is presented concentrating the times needed for the execution of the PI

codes for all the cases that follow.

3.1. Linear system

The first system to be concerned is a linear SDOF oscillator excited by a

Gaussian white noise for which <ξ(t)ξ(t)>=Dδ(t) with D=σ2. The equation

of motion of this basic system reads:

ẍ+ 2αẋ+ Ω2x = ξ(t) (3.1)

where x is the displacement of the oscillator, Ω - its natural frequency and

α the viscous damping coefficient. Transforming Equation 3.1 to a system

of first order differential equations with x1=x anf x2=ẋ we get the following

2D system:

ẋ1 = x2

ẋ2 = −2αx2 − Ω2x1 + ξ(t)
(3.2)

This is a very basic stochastic system for which an analytical solution to

the FPK equation has been obtained. In fact, the response PDF is a mul-

tivariate Gaussian one with <x1x1>=D/4α and <x2x2>=D/4αΩ2. Given

this knowledge, Equation 3.2 is often used for benchmark studies involving

an initial assessment of other methods. Then, the problem is solved with the

numerical PI method as described in Section 2 by sole use of the CPU, which

for brevity will be referred to as CPU computing, as well as offloading part

of the computations to the GPU. The execution time for both approaches is

recorded seeking to quantify the acceleration of the code’s execution. The

necessary discretization is performed with a 101×101 mesh that spans along

11



proper ranges estimated by MC simulations and the time step is chosen to

be ∆t=0.0035 secs, according to the scheme found in [7].

Figure 2 shows the joint response PDF of Equation 3.2 calculated with

the PI method and implementing the GPU approach for α = 0.15, Ω = 1.0

and D = 0.5. Comparing the results with the regular computation in the

CPU, which can be seen in Figure 3 for the PDF of x1 shows an almost

ideal corroboration, indicating that any errors in the parallelization struc-

turing have been avoided. When compared with the analytical solution, the

second moment <x1x1> was found based on Figure 2 to be <x1x1>num =

<x1x1>an = 0.8333, while for x2, it was found <x2x2>num = 0.8342 and

<x2x2>an = 0.8333. The achieved acceleration of the execution time will be

discussed later along with the presentation of the timings of all the examined

cases.

3.2. Duffing nonlinearity

For the next case, a cubic nonlinear term is added to Equation 3.1 result-

ing in a Duffing type nonlinearity. Applying the same standard transforma-

tion as in the linear system, leads to the following 2D system:

ẋ1 = x2

ẋ2 = −2αx2 − Ω2x1 + λx31 + ξ(t)
(3.3)

This is another well-known system for which an analytical solution to

the FPK equation has been found and bares the interesting characteristic

of having a double-well potential when λ is positive. Again, the system is

solved via the PI method applying both CPU and GPU approaches and the

recorded execution times are compared. The analytical solution is used here

too to verify the numerical results. The discretization mesh is again chosen

to be 101×101 and the time step ∆t=0.005 secs.
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Figure 4 shows the joint response PDF of Equation 3.3 calculated with

the PI method and implementing the GPU approach for α = 0.15, Ω = 1.0,

λ = 0.25 and D = 0.5, where the characteristic double-well structure of the

PDF is obvious. In order to verify this computation, px1 is plotted against its

counterpart stemming from the regular CPU computing application of the

PI method in Figure 5. Again, the agreement between the results of the two

approaches is more than sufficient.

3.3. External imperfect periodic excitation

A step towards increasing requirements is taken by investigating the ac-

celeration of the code for a SDOF oscillator subject to an external imperfect

periodic excitation with random phase modulations. This system leads to

the following 3D system of equations [29]:

ẋ1 = x2

ẋ2 = −2αx2 − Ω2x1 + A cosx3

ẋ3 = ω + ξ(t)

(3.4)

The necessary introduction of a third dimension has a strong impact on

the required time for the execution of the code even if the size of the 3rd

dimension is relatively small, as it was taken to be herein. In fact, the space

of x3 is discretized at 22 points for [−π, π), while the rest of the mesh is kept

as before and the time step was ∆t=0.03 secs.

For the sake of completeness, the joint PDF px1x2 is shown in Figure 6

for α = 0.15, Ω = 1.0 and an excitation of A = 1.0, ω = 1.0 and D = 0.5.

The marginal PDFs px1 and px2 are plotted in Figures 7 and 8 respectively

and the results from the GPU and CPU approaches are again found to agree

to a satisfactory extent.
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3.4. Linear tuned mass damper

A 2-DOF system is considered posing the challenge of another 4th di-

mension in the numerical implementation of the PI method. To the best

knowledge of the authors, the numerical solution of a 4D system calculated

by the method described in section 2 has not been reported before. We

should mention though that the PDF of 4D systems has been computed in

[11, 30], applying a variation of the PI method where the Fourier transform

is utilized to convert the integration in Equation 2.2 to a convolution. This

approach has been found to increase the efficiency of the PI code with re-

spect to the execution time. Nevertheless, GPU computing can be integrated

into the modified PI method in order to achieve better acceleration of the

computation.

The equations of motion of a linear 2-DOF system modeling a tuned mass

damper [31] can be found:

ẋ1 = x2

ẋ2 = −2ζ2Ω2µ(x2 − x4)− 2ζ1Ω1x2 − (Ω2
1 + µΩ2

2)x1 + Ω2
2µx3 + ξ(t)

ẋ3 = x4

ẋ4 = −2ζ2Ω2(x4 − x2)− Ω2
2(x3 − x1)

(3.5)

where x1 and x3 are the displacements of the two masses M and m respec-

tively, ζi the damping ratio of each mode, Ωi their natural frequency and

µ=m/M . It is quite often in the analysis of tuned mass dampers to neglect

the damping ratio of the primary mass, i.e. ζ1=0. The mass ratio is often

chosen to be relatively small, and thus it is taken to µ=0.1. The natural

frequencies are selected to be equal Ω1=Ω2=1.0 while the noise intensity is

D=0.1. An interesting subject is the choice of an optimum value for the
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damping ratio of the secondary mass, designed to damp the motion of the

primary one. Following [31], the latter is set to be ζ2=
√
µ/2.

Figures 9 and 10 show the joint response PDFs px1x2 and px3x4 respec-

tively, computed with the PI method and accelerated by the GPU approach.

The focus is on the response PDF of the primary mass M , the motion of

which is intended to be damped. Unfortunately, this result could not be

extracted by the regular CPU computing due to the extreme computational

cost that it would incur. Instead, standard MC simulations could be used to

assess the response moments, although in this particular case an analytical

solution for the second order moments is available. Based on the PDF shown

in Figure 9, the second moments are calculated as <x1x1>num=0.3489 while

the sampling showed <x1x1>MC=0.3479. For the velocity, it is similarly

found <x2x2>num=0.3153 and <x2x2>MC=0.3193. It could be seen that

there is sufficient agreement between the PI results and the values extracted

by MC simulations.

3.5. Timing

The core of this paper highlights the need to accelerate the numerical im-

plementation of the PI method in order to more efficiently meet the demand

for calculating the response PDF of high-dimensional systems. Previously in

this section, four different stochastic systems were solved with the PI method,

applying the regular CPU and GPU computing approaches. Henceforth, the

recorded execution times are presented in Table 1 along with the achieved

acceleration.

First, the 2D systems, the linear one in Equation 3.2 and the nonlinear one

in Equation 3.3 are found to demonstrate an acceleration of 19 times faster

execution of the PI code and 18 times respectively. Even though the actual

time needed to calculate the PDF via the CPU computing is not demanding
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since it spans to the scale of a few minutes, the much less time spent with

the GPU computing is indicative of the potential acceleration. Furthermore,

this achievement could be of advanced importance when high- throughput

parametric studies of 2D systems are concerned allowing for either much

better accuracy by increasing the size of the discretization mesh or a vast

number of investigated cases in the unit of time. Better accuracy is of special

interest in reliability problems where the influence of rare events, governed

by the PDF’s tail, can be better estimated.

Furthermore, when the 3D system in Equation 3.4 is concerned, the ac-

celeration is found be even better, at 29 times faster execution, bringing the

required time from the scale of a few hours down to a few minutes. This prac-

tically introduces the potential of parametric studies for 3D systems, since

the computational cost of the CPU computing approach would inhibit any

attempt to conduct such a bulky task. Note that the acceleration is 10 times

more than the one for the 2D systems. This is a feature of the increased

potential for parallelization, since the 3D system needs an extra nested loop

to account for the 3rd dimension. This feature, however, is constrained by

the utilized hardware and in fact, by the available GPU memory as well as

the memory bandwidth.

The previous hardware constraint becomes evident when 2-DOF tuned

mass damper in Equation 3.5 or higher order systems are considered. The

recorded acceleration on Quadro K5000 card was 17 times faster than that

without it (CPU only) due to the fact that the 4D matrix required more

memory than the GPU card had. Unfortunately OpenACC is not capable of

working with many GPU cards, thus to cope with this problem the code was

adapted to transfer data between GPU and CPU minimizing this exchange.

It should be noted that the times presented in Table 1 for this case, are based
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System Space Dimen GPU (sec) CPU (sec) Speed up

Linear 2D 37 711 ×19

Duffing 2D 30 546 ×18

External 3D 597 17550 ×29

TMD* 4D 3076 52066 ×17

TMD* 4D 1800 52066 ×29∗∗

*per 100 time steps

**calculated by NVIDIA K6000 card

Table 1: Times required for the execution of the PI code for calculating the response

PDF of the systems shown in Equations 3.2-3.5 (1st to 4th row respectively) using the

CPU computing and the GPU computing approaches. The acceleration of the calculation

achieved for each system is also shown in the last column.

on 100 iterations of the master loop, i.e. 100 time steps, since it was unfeasible

to acquire a converging stationary PDF with the CPU approach due to the

extreme computational cost. To conduct the experiment with enough GPU

memory a K6000 NVIDIA card has been used. The acceleration of 29 times

was recorded with that card, reducing the computational time to only 30

minutes per 100 iterations.

4. 6-D ship roll motion problem

The problem, reported in [32], describes the nonlinear roll motion of a

ship due to Pierson-Moskowitz spectrum. The latter is obtained by using the

measuting filters approach [33] and trasmitting a white noise signal through

two second order linear filters, rather than a single second order filter [34, 35],

so that the set of equations, including the ship dynamics, may be written as

following:
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ẋ1 = x2

ẋ2 = −d1x2 + d2x2|x2|+ d3x1 − d4x31 + x3

ẋ3 = x4 − λ1x3

ẋ4 = x5 − λ2x3 + ξ(t)

ẋ5 = x6 − λ3x3

ẋ6 = −λ4x3,

(4.1)

where λi, di - are given constants and ξ(t) - Gaussian zero mean white noise

with intensity σ2 [32]. This problem was treated by Monte-Carlo simulations

and has never been treated by the PI approach.

It should be stressed that all previous calculations have been performed

using a standard Microsoft Visual Studio compiler. It turns out that the time

required to study the 6D problem, and we guess it is valid for any similar

or higher order problems, depends substantially on the compiler and code

architecture. For instance, a better compilers, like a PGI Parallel Fortran

Compiler, which is used in the following 6D problem, can optimize the code

performance for CPU computing, reducing the computational time. The code

architecture can also be improved, but since Open ACC does not provide all

the versatility available in CUDA language, one cannot expect the best of all

performance from the code.

The code was executed on 4xAMD Opteron 6376 with Quadro K6000 and

PGI FORTRAN compiler. Results of the numerical simualtion have shown

that GPU approach 11 times faster than that of CPU for a single iteration.

This acceleration may not seem as high as one we reported earlier, but since

CPU take about 38 hours in real time (around 161M nodes in total) for

the single iteration and on average it is required 300 to 500 iterations for

convergence, reported acceleration is very much appreciated. Nevertheless, a
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single GPU card is yet not enough to speed up the calcualtions and further

reduce the cumputational time. To imporve this the CUDA based PI code

has to be created and run on a cluster of GPUs, however this is a plan for

the future work, because OpenACC does not allow running the application

on multiple GPU cards.

5. Conclusions

The paper presents an approach for accelerating the Path Integration

method utilizing a GPU computing methodology. The proposed methodol-

ogy resulted in a parallel execution of nested loops, which allowed signifi-

cantly accelerating the calculations keeping the same accuracy of the results.

It was reported that in the case of a SDOF system the achieved acceleration

was 19 times, whereas for a TDOF system the maximum observed acceler-

ation was 29 times. It is very well explained by the fact that for a SDOF

system the GPU card was not fully loaded therefore the reported acceleration

was lower than that for the TDOF system. Besides the proposed paralleliza-

tion there are some other means of improving the existing code, which will

be explored in the nearest future. The paper for the first time studies the

application of the PI approach to a 6D system. Numerical results have shown

that the computational time depends on the code architecture and compiler

used. The particular example, studied in the paper, indicated 10 times ac-

celration using K6000 GPU card. High dimensional systems may appear as

a result of a study of stochastic MDOF systems or lower order systems with

non-Gaussian excitations [36]. The problems of reliability of large systems or

networks, where the conventional Monte-Carlo simulation technique is not

suitable by a number of reasons [37], become a perfect candidate for the

proposed GPU methodology as well. Moreover, mentioned techniques for
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external Gaussian excitation can be used along with GPU computing even

further increasing the efficiency of the GPU computing.
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Initialization of the code 

Pre-calculations 

 

Start iterative time-forward loop 

 Step related calculations 

 

 

 

 

 

 

 

end iterative loop 
 
final computations 
  

 Point by point calculation 

  do 
       do 
            ... 
  n nested loops  Calculate TPD values and p(t’) 
            ... 
       end do 
  end do 
 
 
 

serial execution 

parallel execution 

serial execution 

(a) (b)

Figure 1: Sketch (a) and algorithm (b) of the code marking the regions of the code executed

serially in the CPU and parts offloaded to the GPU memory for parallel execution.
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Figure 2: Joint response PDF px1x2 for Equation 3.2 calculated with the PI using the

GPU computing approach for α = 0.15, Ω = 1.0 and D = 0.5.
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Figure 3: Response PDF px1 for Equation 3.2 calculated with the PI using both the GPU

computing approach (◦) and the CPU computing (+), for α = 0.15, Ω = 1.0 and D = 0.5.
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Figure 4: Joint response PDF px1x2
for Equation 3.3 calculated with the PI using the GPU

computing approach for α = 0.15, Ω = 1.0, λ = 0.25 and D = 0.5. The characteristic

double well structure is noticed.
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Figure 5: Response PDF px1 for Equation 3.3 calculated with the PI using both the GPU

computing approach (◦) and the CPU computing (+), for α = 0.15, Ω = 1.0, λ = 0.25

and D = 0.5.
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Figure 6: Joint response PDF px1x2
for Equation 3.4 calculated with the PI using the

GPU computing approach for α = 0.15, Ω = 1.0 and an excitation of A = 1.0, ω = 1.0

and D = 0.5.
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Figure 7: Response PDF px1 for Equation 3.4 calculated with the PI using both the GPU

computing approach (◦) and the CPU computing (+), for the same parameters as in Figure

6.
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Figure 8: Response PDF px2
for Equation 3.4 calculated with the PI using both the GPU

computing approach (◦) and the CPU computing (+), for the same parameters as in Figure

6.
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Figure 9: Joint response PDF px1x2 for Equation 3.5 calculated with the PI using the

GPU computing approach for µ=0.1, ζ1=
√
µ/2, ζ2=0, Ω1=Ω2=1 and D=0.1.
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Figure 10: Joint response PDF px3x4
for Equation 3.5 calculated with the PI using the

GPU computing approach for the same parameters as in Figure 9.
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