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Abstract:  

Prediction of friction and transmission efficiency are design objectives in 

transmission engineering. Unlike spur and helical involute gears, there is a dearth 

of numerical analysis in the case of hypoid gear pairs. In particular, it is important 

to take into account the side leakage of the lubricant from the contact as the result 

of the lubricant entrainment at an angle to the elliptical contact footprint. In the 

automobile differential hypoid gears, high loads result in non-Newtonian 

behaviour of the lubricant, which may exceed its limiting shear stress, a fact 

which has not been taken into account in the open literature. This results in 

conditions which deviate from observed experimental tractive behaviour. The 

paper takes into account these salient practical features of hypoid gear pair 

analysis under high load. It highlights a non-Newtonian shear model, which limits 

the lubricant shear behaviour. Prediction of friction and transmission efficiency is 

in line with those reported in the literature.  

Keywords: Automobile differential; hypoid gear pairs; non-Newtonian 

limiting shear; elastohydrodynamic lubrication; transmission efficiency 

 

Abbreviations 

Roman Symbols 

A : Apparent contact area 

aA  : Asperity contact area 

a : Contact semi-major half-width 
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b  : Contact semi-minor half-width 

D                           : Deborah number  

 rE  : Reduced elastic modulus of the contact: 

2 21 1
/ p w

p wE E

 


   
   
    

pE  : Young’s modulus of elasticity of the pinion 

gear material 

wE  : Young’s modulus of elasticity of the gear 

wheel material 

                           :  

F : Contact load per meshing teeth pair (obtained  

through tooth contact analysis) 

aF  : Asperity load share 

                            : Boundary friction contribution 

                            : Viscous friction contribution 

                             : Lubricant shear modulus 

h    : Film thickness 

0ch    : Central contact oil film thickness 

0ch 
   : Central film thickness for a flooded inlet 

m    : Inlet boundary parameter 

*m    : Starvation demarcation boundary     

parameter 

,g pn n    : Unit vectors along the gear wheel and the  

pinion gear axes 

minor,majorn n
                      

: Unit vectors along the major and minor 

axes of the elliptical footprint 
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                           : Number of grid points in x and y 

directions  

l  : Contact dimension along the lubricant 

entrainment flow 

p  : Pressure 

ap  : Asperity pressure 

𝑝  
                          : Mean contact pressure:  

pr   : Radius of pinion gear tooth in the zx plane 

of contact 

wr  : Radius of gear wheel tooth in the zx plane of 

contact 

gearR  : Position vector of the contact point from the 

gear wheel axis 

pR  : Radius of pinion gear tooth in the zy plane of 

contact 

pinR  : Position vector of the contact point from the 

pinion axis 

wR  : Radius of gear wheel tooth in the zy plane of 

contact
 

 

zxR  : Equivalent radius of contact along the 

direction of minor axis of elliptical footprint 

zyR  : Equivalent radius of contact along the 

direction of major axis of elliptical footprint 

S(x,y) : Contact profile of the equivalent ellipsoidal 

solid 

U  : Speed of entraining motion 

ΔU                           : Relative sliding velocity  

u1, u2                          : Velocities of teeth surfaces  



4 

,g pv v   : Spatial velocity of the point of contact on 

gear wheel and on the pinion 

,n n

g pv v    : Normal components of  ,g pv v  

,t t

g pv v    : Tangential (surface) components of  

,g pv v  

, ,,t major t major

g pv v
                     

: Components of  ,t t

g pv v  along the major 

axis of the elliptical footprint 

,minor ,minor,t t

g pv v
                     

: Components of  ,t t

g pv v  along the minor 

axis of the elliptical footprint 

W : Calculated contact load (integrated pressure 

distribution) 

x : Direction/distance along the minor axis of the 

elliptical footprint 

y : Direction/distance along the major axis of the 

elliptical footprint 

,c cx y  : Lubricant film rupture boundaries along 

minor and major axes of the elliptical   

footprint 

z : Orthogonal direction to the plane of contact 

Z : Piezo-viscosity index 

 

Greek symbols: 

  : Lubricant pressure-viscosity coefficient 

  : Average asperity summit radius 

𝛾   
                             : Shear rate 

𝛾 𝑒  
                           : Elastic shear rate 

𝛾 𝑣  
                           : Viscous shear rate 

    : Contact deflection 

p    : Error in pressure convergence 
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w  : Error in load convergence 

  : Lubricant dynamic viscosity at pressure p 

0  : Lubricant dynamic viscosity at atmospheric 

pressure 

 : Effective viscosity  

  : Angle of lubricant entrainment into the 

contact 

 : Pressure-induced shear coefficient 

  : Stribeck’s oil film parameter 

  : Lubricant density at pressure p 

0  : Lubricant density at atmospheric pressure 

1,2  : Mean asperity height of contacting surfaces 

rms  : Root mean square of composite surface 

roughness 

  : Film relaxation damping factor 

τ                              : Shear stress  

τ0                              : Eyring shear stress  

τL                              : Limiting shear stress  

τL0                              : Limiting shear stress at atmospheric 

pressure 

p    : Poisson’s ratio of the pinion gear material 

w  : Poisson’s ratio of the gear wheel material 

  : Pinion angle of rotation 

  : Pressure under-relaxation factor 

g  : Angular velocity of the gear wheel 

p  : Angular velocity of the pinion wheel 
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                             : Asperity distribution per unit contact area 

 

1- Introduction 

Vehicle development is now driven by two over-riding objectives; fuel efficiency 

and reduced emissions. In the past couple of decades a trend towards compact and 

light weight constructions with improved combustion efficiency has attracted 

most attention. In general, the result has been significantly improved output 

power-to-weight ratio vehicles of all classes, but at the expense of a plethora of 

noise and vibration concerns, generally referred to as NVH (Noise, Vibration and 

Harshness) [1]. NVH refinement is as much a customer perceived quality issue as 

fuel efficiency and emission levels. In fact, recent trends have shown a direct link 

between NVH performance, fuel efficiency and emissions. Paradoxically, for 

lightly damped drivetrain systems [2] this link is friction.  

In drivetrains, friction is required for effective tractive action to transmit the 

engine power to the driven wheels. Friction also consumes some of the engine 

order vibration energy, which is responsible for most of the NVH phenomena [3]. 

Thus, friction acts as an energy sink, hence improving upon the lightly damped 

nature of the powertrain system. The role of lubricant can be crucial in the 

attenuation of vibration through viscous shear, as well as efficient transmission of 

power through traction [4 - 6]. It should be noted that the lubricant would be 

subject to changes in the regime of lubrication in the variously loaded 

conjunctions as shown by De la Cruz et al [7]. Thin films are often subject to 

mixed thermo-elastohydrodynamic conditions with friction being as a result of 

viscous shear of a lubricant film, as well as asperity interactions on the contiguous 

contacting pairs. In transmission systems, the shear of lubricant film may be 

assumed to be Newtonian, except for thin adsorbed films at the asperity summits 

[7]. The same is not always the case in highly loaded contacts of hypoid gear pairs 

of differentials, subject to significant shear, where a non-Newtonian regime of 

lubrication is prevalent and an appropriate lubricant rheological model should be 

used.  

Significant changes in contact kinematics and loading during meshing result in the 

formation of thin elastohydrodynamic films, which are often insufficient to guard 

against direct interaction of ubiquitous asperities on the meshing surfaces. 

Therefore, often a mixed regime of lubrication would be prevalent, with a thin 

lubricant film subject to non-Newtonian shear. Hence, the use of a constant 

coefficient of friction to represent contact conditions in some studies [4, 5] is 

inappropriate. Alternatively, some earlier works have made use of empirical 

formulae to represent the coefficient of friction as a function of system parameters 

[8, 9]. In recent times a similar approach has been used by He et al [10], Velex et 

al [11, 12], and Kar and Mohanty [13], with friction described as a function of the 

length of the line of contact in their analyses of spur or helical gear teeth meshing.  

For hypoid gear pairs, it is more appropriate to represent the meshing of gear teeth 

pairs as lubricated conjunctions. Then, the thickness of a film of lubricant can be 

predicted, prior to ascertaining the regime of lubrication and thus the contributions 
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due to viscous shear and any boundary interactions in the same manner as that 

proposed by De la Cruz et al [7] for helical gears. This analytical treatment is 

highlighted by Karagiannis et al [14] using the Grubin’s extrapolated oil film 

thickness equation as a function of contact load and sliding velocity [15]. 

Karagiannis et al [14] predicted thin thermo-elastohydrodynamic films, which are 

subjected to non-Newtonian shear and of insufficient thickness to guard against 

asperity interactions on the meshing teeth pairs. Whilst the use of an extrapolated 

equation reduces the computation times for transmissions with several teeth pairs 

in simultaneous mesh, such equations do not often accurately represent the 

prevailing contact conditions in gear meshing problems. 

Although the gear lubrication problem has received considerable attention since 

Ertel and Grubin’s discovery of the mechanism of elastohydrodynamic lubrication, 

there are only very few recent contributions which combine tooth contact analysis 

or gear dynamics with lubricated conjunctions. De la Cruz et al [7] class this 

approach as tribo-dynamics. The study by the authors was concerned with the 

meshing of helical gears of automobile transmissions. The typical contact 

footprint for such helical gear teeth pairs is a long and narrow rectangular strip, 

which is usually approximated by an elastic line contact [7, 16].  

For hypoid gears, it is necessary to use the method of tooth contact analysis (TCA) 

to determine the contact footprint shape and orientation [17]. Xu and Kahraman 

[18] assumed a line contact approximation in their numerical solution of Reynolds 

equation for hypoid gear teeth pair meshing. Surface velocities of the contacting 

teeth were evaluated with the aid of Rodrigues' formula, using the angular 

velocities and the surface curvatures. However, it is important to note that a line 

contact footprint is idealised. A more realistic elliptical point contact would exist 

in practice. A recent work by Kolivand et al [19] provides a regressed equation 

for friction, based on mixed elastohydrodynamic conditions and non-Newtonian 

shear of thin lubricant films. However, the line contact assumption was retained. 

Simon [20] presented a thermo-elastohydrodynamic analysis of hypoid gear pairs. 

He considered the contact as an elliptical point contact. Similarly, 

Mohammadpour et al [21] also used an elliptical contact footprint, providing an 

isothermal Newtonian elastohydrodynamic solution of hypoid gears at high loads, 

representative of automobile differentials and with angled lubricant flow into the 

contact. They also accounted for inlet starvation, which is another important facet 

of lubrication of gears, using Hamrock and Dowson’s inlet starvation boundary 

[22]. The contact footprint is elliptical in shape for bevel and hypoid gears as 

shown also by Gabiccini et al [23] and others [24]. However, the elliptical 

footprint shape truncates at the tip or root tooth contact and loses its symmetry. 

The footprint shape resembles a tear-drop shape [24]. This problem is somewhat 

alleviated with profiling of teeth.       

Simon [20] assumed the entrainment flow vector to be along the minor axis of the 

contact ellipse. This ignores the side leakage of lubricant from the contact and 

leads to the breach of continuity of flow condition. Also, simulation studies were 

carried out at low input torque, not representative of vehicle differentials. There is 

experimental evidence of angled entrainment flow, for example by Gohar [25], as 

well as numerical predictions by Jalali-Vahid et al [26]. These indicate the 

importance of including the correct contact footprint shape, as well the the 

directions of entraining motion and side-leakage of the lubricant. The assumption 
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of a line contact footprint can be considered as reasonable in circumstances which 

promote an elliptical point contact of quite large aspect ratio, usually at relatively 

low load.  

The work in [21] is extended here to include non-Newtonian shear of thin films at 

high loads, whilst retaining the angled lubricant entrainment flow into the rolling 

and sliding contact and using realistic inlet boundary conditions. Furthermore, the 

non-Newtonian shear behaviour variously reported for hypoid gear pairs makes 

use of the lubricant shear rate as a function of hyperbolic sine function of shear 

stress, which allows the limiting shear stress of the lubricant to be exceeded. It 

also fails to explain the experimental measurements of prevailing gear traction. In 

the discussions on the work reported by Bair and Winer [27], Tewaarverk 

indicated that Eyring’s model is only valid for low pressures according to the 

available experimental traction data. The present paper introduces a traction 

regime to overcome this problem. Finally, unlike the solutions reported thus far, it 

is important to use the Ree-Eyring form of Reynolds equation for non-Newtonian 

lubricant flow. The formation of a thin non-Newtonian elastohydrodynamic films 

promote direct interaction of meshing teeth surfaces. Therefore, the contact load is 

carried by the lubricant film as well as by a small proportion of surface asperities 

of the counterfaces. Rough surface interactions is represented by the Greenwood 

and Tripp [28] model. Therefore, there are significant additions to the solution of 

hypoid gear pairs hitherto reported in literature.  

 

2- Hypoid gear pair model 

The developed model of a pair of hypoid gears comprises contacts of a number of 

teeth pairs in simultaneous mesh. For the automotive differential investigated here 

1-3 pairs of teeth are in simultaneous contact at the various stages of meshing. It is, 

therefore, necessary to calculate the contact geometry, kinematics and load share 

for each pair through tooth contact analysis. This is carried out using the Calyx 

software [18, 29]. A full description of the approach followed is given in 

Mohammadpour et al [21] with a brief description provided in section 2.3. 

 

Contacts of meshing teeth pairs are subject to elastohydrodynamic regime of 

lubrication. Thin elastohydrodynamic films in hypoid gears of automotive 

differentials are subject to relatively high loads, undergoing combined rolling and 

sliding motions. These conditions lead to non-Newtonian shear of the lubricant. 

Therefore, a suitable non-Newtonian model for lubricant shear behaviour should 

be used (section 2.1), as well as a suitable form of the Reynolds equation (section 

2.2). 

2.1- Non-Newtonian lubricant shear characteristics 

Newtonian models of lubricant shear are accurate for the prediction of EHL film 

thickness, but fail to explain the measured experimental traction data (mainly by 

disc machines) for thin films, especially at high loads [30 - 32]. In particular, 
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these models neither account for the variation of traction with rolling speed nor 

for its variation with the speed of sliding. The shear stress is directly proportional 

to the rate of shear at low sliding velocities, but at higher sliding velocities the 

shear rate increases more rapidly than the resulting stress. It is known that the 

critical factor is the magnitude of shear stress, not the rate of shear. This critical 

value of stress, known as the Eyring shear stress 
0  [33], depends on the applied 

pressure and the lubricant molecular size, according to Hirst and Moore [34]. 

Above the Eyring shear stress the non-linear relationship between shear stress and 

shear rate deviates significantly from the idealised linear Newtonian model. Under 

EHL, Eyring shear stress is often exceeded and this is liable to influence the 

generated pressures and traction performance of the contact.  

In general, three regions of lubricant performance may be considered: (i)- at low 

sliding speeds the shear behaviour may be regarded as Newtonian, (ii)- at high 

sliding speeds shear heating can become important and (iii)- in the intermediate 

speed region, the lubricant behaviour exceeds Newtonian characteristics but it 

cannot be explained in terms of thermal effects [35]. In this intermediate region 

the fluid behaviour is assumed to be as the result of two potential non-Newtonian 

effects:   

(a)- Viscoelastic behaviour, in which the shear of a lubricant film is assumed to be 

partly due to its viscoelastic nature according to Johnson and Tevaarwerk [30]. 

The results obtained by Hirst and Moore [34] reinforce this hypothesis. Thus, the 

shear rate is noted as: 

1
e v v

G
       

   (1) 

Therefore, the complex behaviour of fluid is an interplay between the elastic term 

and the viscous term in equation (1). A more usual form of (1) is given in terms of 

Deborah number, D as [32]: 

v

D

x


 




 

    (2) 

where: 
U

D
Gl


 is the ratio of lubricant relaxation time, 

G


 over its transit time 

through the contact
l

U
. When 1D  , the elastic term in (2) becomes significant. 

Then, the shear modulus of lubricant is given by 0.1 3G p   ( Wp
ab

  is the 

average contact pressure), according to various disc machine experiments [32, 36]. 

Hirst and Moore [34] suggest that the transition to viscoelastic behaviour occurs at 

pressures above the lubricant solidification pressure, when the lubricant may be 

considered as an amorphous solid.  

(ii) Non-linearity of shear stress-strain rate behaviour: Hirst and Moore [34] and 

Johnson and Tevaarwerk [30] have pointed out that the lubricant viscoelastic 

behaviour must be non-linear. This has resulted in proposing various non-linear 

models, where as yet no agreed model is generally adopted. Lee and Hamrock [38] 

provide a good review of the various proposed models. 
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A point of agreement between the research workers has been that the shear stress 

should not exceed a limiting value,
L . This critical value of shear stress is 

regarded as a property of the lubricant at any specific pressure. Crook [39] tried to 

explain the limiting shear stress with the influence of shear heating for a 

Newtonian shear model. His theoretical results showed agreement with 

experiments at low and moderate contact pressures, but predicted very high 

traction coefficients at high pressures. Hirst and Moore [34] suggested that at 

lower pressures the viscosity of lubricant appears to fall when a critical shear 

stress is reached, whilst in the elastic region at higher pressures there appears to 

be an elastic limit. 

Johnson and Tevaarwerk [30] proposed a relatively simple non-linear constitutive 

equation for the non-Newtonian shear behaviour of the lubricant in the form of a 

hyperbolic sine function. This model broadly describes the observed shear 

behaviour of the lubricant obtained through slide-roll experiments with disc 

machines. For the first time, the Eyring shear stress  based on the energy 

barrier theory of Eyring [33] was included in a rheological model                        

0

0

sinhv

 


 

 
  

    (3) 

This model, widely used for non-linear, non-Newtonian traction [20, 32, 34, 40] 

does not include a limiting shear stress, 
L . Therefore, at high pressures the 

limiting shear can be exceeded. Bair and Winer [27] presented an alternative 

Maxwell model, based on their experimental observation. It is essentially an 

elastic-viscoelastic-plastic model. The model restricts the shear behaviour of the 

lubricant within its boundary limiting value. The problem with this model is the 

lack of real and applicable values for the limiting shear stress at different 

pressures, at least those available in the open literature. There is also an 

underlying presumption that viscoelastic behaviour occurs at relatively high slide-

roll ratios. However, high wear rates have also been noted for even low slide-roll 

ratios under tractive conditions [41], where one would normally assume 

Newtonian shear. Therefore, models based on a prescribed limiting shear stress 

may have their own limitations. The Johnson and Tevaarwerk [30] model 

(because of its relative simplicity) is well suited to numerical analysis. Therefore, 

it is used in this study as well. 

2.2- The elastohydrodynamic conjunction  

Conry et al [42] developed the Reynolds-Eyring equation based on the Johnson 

and Tevaarwerk’s shear model [30]. They neglected lubricant elastic shear for 

situations where large strain rates occur ( 1D  ). Conry et al [42] utilized their 

model to study elastohydrodynamics of line contacts. The Ree-Eyring fluid model 

was used by Wang et al [43] for thermo-elastohydrodynamics of line contacts, 

showing a reduction in the central film thickness with increased thermal loading 

and sliding motion. 
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The first two-dimensional non-Newtonian model was reported by Kim and 

Sadeghi [44], who used a multi-grid technique to simultaneously solve the Eyring 

stress-modified Reynolds equation and the elasticity potential equation. They 

found that an increasing slide-roll ratio had a negligible effect on the minimum 

film thickness, but as it was noted in the earlier one-dimensional solutions, 

increased sliding produced a significant reduction in the pressure spike at the exit 

constriction. However, the work in [44] was limited to slide-roll ratios less than 

21 per cent.  

The current study uses the approach of Conry et al [42] and extends it to the case 

of elliptical point contact with angled lubricant entrainment into the contact, as is 

the case for hypoid gear teeth pairs through mesh (Mohammadpour et al [21]). 

Thus:   

 

𝜕

𝜕𝑥
 
𝜌ℎ3

𝜂
𝑠(𝑥)

𝜕𝑝

𝜕𝑥
 +

𝜕

𝜕𝑦
 
𝜌ℎ3

𝜂
𝑠(𝑦)

𝜕𝑝

𝜕𝑦
 = 12𝑈  𝑐𝑜𝑠𝜃

𝜕

𝜕𝑥
 𝜌ℎ + 𝑠𝑖𝑛𝜃

𝜕

𝜕𝑦
 𝜌ℎ   

 (4) 

 

where   is the entrainment flow angle to the minor axis of the elliptical contact 

footprint (Fig. 1) [23] and U  is the speed of entraining motion:  1 2

1

2
U u u  . 

Any localised changes in the speed of entraining motion due to angled flow are 

considered small due to the minute contact footprint size. In reality, there will be 

small variations along the contact footprint. However, the rate of change of the 

lubricant entrainment velocity is small compared to the rate of change of the 

principal radii of curvature through mesh. In fact, the Reynolds equation based on 

laminar flow, assumes an instantaneous steady speed of entraining motion. The 

form of (4) omits the squeeze film effect as the result of approach and separation 

of gear teeth pairs. This is a transient effect which often increases the load 

carrying capacity of the contact, as noted by Gohar and Rahnejat [32]. This effect 

has been taken into account for film thickness estimation in different applications 

such as for cam-tappet contact [45, 46]. s(x) and s(y) are dimensionless modifying 

parameters for lubricant viscosity to comply with the non-Newtonian hyperbolic 

sine model:  

 

 
 

1
2 2

3

0

3 cosh sinhcos
1

sinh

x x xx

x x

U
s x

h

   

  

     
     

        (5) 

 
 

1
2 2

3

0

3 cosh sinhsin
1

sinh

y y yy

y y

U
s y

h

   

  

       
       
       

  (6) 

 

where: 

 

0 0

  and  
2 2

x y

h p h p

x y
 

 

 
 

 
    (7) 
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An effective viscosity is defined as: 

 

   
  or eff eff

s x s y

 
  

   (8)  

 

The value of limiting shear stress is obtained as [47]: 

 

0 'L L p   
  (9) 

 

The combined non-Newtonian shear model is used. In this approach the value of 

shear stress is continuously monitored during the meshing cycle for any pair of 

meshing teeth using (10). If the value of shear stress exceeds that obtained from 

(9), then its value is replaced by the limiting shear stress at the mean contact 

pressure p . 

eff

eff v

U

h


  


 

  (10) 

 

It should be noted that the Eyring stress also changes with pressure as well as the 

limiting shear stress [34]. These effects are neglected in the current analysis. This 

is because the high value of shear stress reached under the simulated conditions 

exceeds the value of Eyring shear stress used in the analysis. The shear stress is 

usually around the lubricant’s limiting shear stress. At lower shear, the higher 

pressures lead to increased Eyring stress. Consequently, for a specific condition 

the fluid behaviour can change to Newtonian or vice versa. Due to the prevailing 

high shear stress conditions in the current analysis, the Eyring shear stress is 

considered to remain constant.  

 

 

 

 

 
 
 
 
 
 
 
 

Fig.1 Representation of an elliptical point contact conjunction with angled 

entrainment flow 

y 

            

x 

Flow direction 
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The film thickness at any location within the contact, at any instant of meshing, is 

given by: 

 

     0, , ,ch x y h s x y x y  
  (11) 

The current analysis represents the surface roughness of the contiguous solid teeth 

using the Greenwood and Tripp [28] model, described later. Alternatively, The 

film thickness equation may include the amplitude of roughness on the surfaces 

by representative statistical functions. In such an approach the Ree-Eyring form of 

Reynolds equation (4) should be represented in terms of the average flow model 

described by Patir and Cheng [48]. Either approach has its own merits and 

drawbacks. The current approach is preferred in the current analysis, because it 

incorporates details of asperity geometry and deformation characteristics. The use 

of Greenwood and Tripp [28] also enables extension of boundary interaction 

model to elasto-plastic deformation of the asperities in a later stage.   

 

In equation (11), the undeformed parabolic conjunctional profile is: 
2 2

( , )
2 2zx zy

x y
s x y

R R
   

 and zx zyR R are the equivalent radii of contact of an ellipsoidal solid against a 

semi-infinite elastic half-space, representing the instantaneous contact of any 

pinion to gear wheel teeth pair in the planes zx (along the minor axis of the contact 

ellipse) and zy (along its major axis, fig. 2):  

 

1 1 1

zx p wR r r
 

 and  

1 1 1

zy w pR R R
 

  (12)   

The instantaneous radii of pinion and gear teeth are determined through TCA 

(Mohammadpour et al [21], see section 2.3).  

 

 
 

Fig.2  Contact Geometry of the equivalent ellipsoidal solid 
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The localised contact deflection  ,x y is obtained by solution of the elasticity 

potential integral: 

 

 
 

   

1 1 1 1

2 2

1 1

,1
,

A
r

p x y dx dy
x y

E x x y y
 

  


  (13) 

 

where (x, y) represents a point where the deflection of the semi-infinite elastic 

half-space of reduced elastic modulus 
rE
 
is calculated due to any arbitrary 

pressure distribution  1 1,p x y .   

 

To obtain a solution to the EHL problem comprising (4) - (13), the lubricant 

rheological state is required: 

 

For piezo-viscous lubricant behaviour [49]: 

 

      9

0 0 0exp ln 9.67 1 5.1 10 ln 9.67
Z

p          
     (14)  

 

where, 
   9

0 0

,  as 1.96 MPa
ln 9.67 5.1 10 ln 9.67

p

p

c
Z c

 

 
  

  
 

 

For lubricant density variation with pressure [50]: 

 

9

0 9

0.6 10
1

1 1.7 10

p

p
 





 
  

     (15) 

A key assumption made in this paper is isothermal conditions. Lubricant viscosity 

clearly reduces with temperature and hence its load carrying capacity [32]. 

Consequently, a thicker lubricant film thickness would result in practice than that 

obtained with an isothermal assumption here.  

 

2.2.1- Boundary Conditions 

A fully flooded inlet boundary condition is assumed in the EHL analysis. This 

means: 

 

 , 0x p     and   , 0y p   

 

Hence, the inlet boundary should be set at a suitable distance away from the 

leading edge of the elliptical contact footprint. This distance is usually set at 4-5 

times the contact footprint semi-half-width [22, 26] and changes with load in both 
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directions:  or 
yxm

b a
 . The starvation boundary is also a function of the 

height of the lubricant film at the inlet 
coh 

, which according to Birkhoff and 

Hays [51] is: 11.293co

co

h
h

  . The inlet boundary parameter m must vary 

according to the load and speed combination, meaning that it should be set at the 

so-called starvation boundary. In this case the same assumption has been used as 

that in Mohammadpour et al [21], who use the starvation boundary parameters 

according to Hamrock and Dowson [22]: 

 

 
0.58

2
*

01 3.06 c
Rm h


 
   

    (16) 

 

where for the flow component along the minor axis:  , zxR R b  . While for 

that along the major axis:  , zyR R a  . The inlet condition is set as *m m . 

The initial film thickness is estimated using Grubin’s [15] film thickness equation, 

including the side-leakage correction factor obtained by Gohar [52]: 

 

213 3124
0 0

2

2
1.212 1

3

zyc

zx zx zxr zx

Rh U W
R R RE R




       
 
  

  


    (17) 

 

The calculated inlet parameters are illustrated in Fig. 3 for the studied hypoid gear 

pair. The contact load is obtained as: 
c c

i i

x y

x x y y

W pdxdy
 

   . The inlet boundaries 

given by 
ix  and 

iy  are set to Hamrock and Dowson [24] inlet boundary. 

Ali et al [53] also provided a study of starved lubrication of non-conformal point 

contacts. Their work focuses on frictional effects of starvation. It presents an 

experimental and analytical results showing the relationship between friction 

under starved and fully flooded conditions. A similar approach for film thickness 

has been provided in [22]. 

 

The outlet boundary condition used is that of Swift [54] - Stieber 

[55]: 0 at  and 0 at c c

p p
p x x p y y

x y
 

     
 

, where the film rupture 

positions  and c cx y
 
are obtained by discarding any negatively generated 

pressures in the iterative numerical procedure. 
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Fig.3 Starvation boundaries along minor and major axes 

2.3- Tooth contact analysis 

In gear applications and especially in hypoid gears, it is necessary to compute the 

principal contact radii of curvature of the pinion and gear wheel teeth through the 

meshing cycle. These are subsequently used to obtain the principal radii of the 

equivalent ellipsoidal solid in (12) at any instant during the meshing cycle for any 

conjugate teeth pair. One method of obtaining the principal radii for any teeth pair 

is through tooth contact analysis (TCA). The method is outlined in detail by Litvin 

and Fuentes [17]. At any instant of time in the differential hypoid gears several 

teeth pairs are in contact. TCA calculates the load share variation per teeth pair 

during meshing cycle, as well as the corresponding meshing stiffness and the 

static transmission error.  

 

TCA analysis also provides the geometrical, kinematic and load data that are 

required for the EHL analysis. The contact load applied per teeth pair is a function 

of the dynamic response of the system. However, its distribution among teeth 

pairs in simultaneous contact is defined quasi-statically. The ratio of the applied 

load 
iF  on a given flank under consideration (Fig. 4) to the total transmitted load 

tF  (Xu and Kahraman [18]) is called load factor and it is as a function of the 

pinion angle:  

 

i

t

F
lf

F


 

 (18) 
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A similar technique was followed for spur and helical gears by Vaishya and Singh 

[56] and He et al [10]. 

 

 

Fig.4  Contact footprint and direction of angled flow  

 

It is also necessary to obtain the speed of lubricant entraining motion into the 

contact at any instant of time to be used in (4). The velocity of any point on the 

pinion and gear teeth in contact may be obtained as:  

 

    and p p p pin g g g gearv n R v n R    
  (19) 

 

Where  and are the unit vectors along the pinion and gear axes, 

respectively.  and  are the position vectors of the contact point with 

respect to the coordinate system attached to the axes of the pinion and gear, 

respectively. These velocities can be resolved along the normal direction (  and 

) and along the tangential plane ( ). The tangential components are 

used to obtain the rolling and sliding contact velocities. These components, as 

well as those along the major and minor axes of the Hertzian contact ellipse can 

be presented using vector dot products: 

 

, , , ,,  ,   and t major t major t minor t minor

p p major g g major p p minor g g minorv v n v v n v v n v v n      

                         (20) 

 

where,  and  are the components of the pinion surface 

velocities along the major and minor axis.  and  are the unit 

vectors of the major and minor axis. 

 

Thus, the speed of entraining motion along the minor and major axes of the 

elliptical footprint in Fig. 1 are obtained as:    

 

𝑣𝑟
𝑚𝑎𝑗𝑜𝑟

= 𝑣𝑝
𝑡,𝑚𝑎𝑗𝑜𝑟

+ 𝑣𝑔
𝑡,𝑚𝑎𝑗𝑜𝑟

= 𝑈𝑠𝑖𝑛𝜃 
  (21) 
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𝑣𝑟
𝑚𝑖𝑛𝑜𝑟 = 𝑣𝑝

𝑡,𝑚𝑖𝑛𝑜𝑟 + 𝑣𝑔
𝑡,𝑚𝑖𝑛𝑜𝑟 = 𝑈𝑐𝑜𝑠𝜃 

  (22) 

 

Clearly, the lubricant entrainment into the contact takes place at an angle to the 

minor axis of the Hertzian contact footprint:  

 

𝜃 = tan−1  
𝑣𝑟

𝑚𝑎𝑗𝑜𝑟

𝑣𝑟
𝑚𝑖𝑛𝑜𝑟   

  (23) 

 

Significant lubricant entrainment occurs along the major axis of the contact ellipse. 

The side-leakage flow has a significant effect on film thickness and should not be 

ignored. The precession of the contact footprint with respect to an assumed fixed 

lubricant velocity vector is as the result of combined rolling and sliding motion of 

teeth pairs through mesh. The variation in the aspect ratio is as the result of 

instantaneous contact geometry, being approximately proportional to . 

Note that the side leakage correction factor obtained by Gohar [52] is directly 

proportional to this ratio. The velocity of the side-leakage flow along the direction 

of major axis of the elliptical point contact is shown in table 2. 

This may be appreciated by fixing the direction of lubricant entrainment and 

noting the orientation of the elliptical contact footprint with respect to it as a pair 

of teeth progresses through mesh (Fig. 5). 

 

 

Fig.5  The processing elliptical footprint through a meshing cycle 

 

2.4. Method of solution of the EHL problem and convergence criteria 

Reynolds-Eyring (4) is discretised in the same manner as that described by Jalali-

Vahid et al [57] and Mohammadpour et al [21]. The low line relaxation effective 

influence Newton-Raphson method with Gauss-Seidel iterations is used to 
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describe the pressure at any nodal position (i, j) with a computation grid covering 

the solution domain. 

The iterative process comprises the following steps:  

1- During meshing and at each pinion angle,  , an initial guess is made for 

the central oil film thickness, using (17). The data for contact geometry, 

load and speed of entraining motion are obtained through TCA. 

2- Using the film thickness obtained in step 1, the inlet boundary condition is 

set as *m m for both the inlet boundaries ahead of the major and minor 

axes of the contact ellipse. A grid of 
x yn n is used to cover the domain 

bounded by the inlet menisci along the x (minor axis) and y (major axis) 

and extend beyond the elliptical contact to include the conjunctional exit 

boundaries at the lubricant film rupture points; 
cx
 
and 

cy .  

3- The pressure distribution and the corresponding lubricant film contour are 

obtained by simultaneous solution of (4)-(15) in an iterative manner, 

where the convergence criteria in steps 4 and 5 should be met. 

4- Pressure convergence is attempted as: 

1

, ,

,

k k

i j i j

pk
i j i j

p p

p





  (24)   

where, 
5 410 10p
   . In any iterative step the calculated value of shear 

stress is compared with the limiting shear stress obtained from equation 

(9). If the calculated value exceeds the limiting shear, then the effective 

viscosity is obtained from (10). This method is called the ―Combined non-

Newtonian Model‖. If pressure convergence is not achieved, then the 

generated pressures are under-relaxed as: 
1

. , ,  ,k k

i j i j i jp p p i j   . The 

under-relaxation factor is usually 0.01 0.8  and the steps 3-4 are 

repeated. 

5- The second convergence criterion seeks to establish quasi-static balance 

between the applied load per teeth pair, 
nF
 
and the lubricant reaction 

aW pdxdy F   , where Fa is the proportion of load carried by a small 

proportion of asperities, and given by equation (29) later. Thus, the load 

convergence criterion is: 

 

n
w

n

F W

F





  (25) 

 

where, 0.001 0.05w  . If the criterion is not met, the central film 

thickness 
coh

 
is adjusted and the entire iterative process - steps (3) to (5) - 

are repeated: 
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1

0 0

l l n
c c

F
h h

W



  
  

    (26) 

 

where, 0.1 0.1    is termed as damping factor.  

 

In the above process, the indices i,j refer to a computational grid position, 

k denotes the pressure convergence iteration counter, n any teeth pair and 

l  is the load convergence iteration counter. 

 

6- After both convergence criteria are met, the entire process is repeated for 

the next value of the pinion angle. To observe the contact conditions for 

any pair of meshing teeth, the meshing cycle is sub-divided into 20 

discrete steps of the pinion’s rotation.   

 

3- Results and Discussion 

 

The current analysis investigates the contact conditions for a moderate to highly 

loaded hypoid gear pair of a vehicle's differential (Tables 1a and 1b). The results 

presented are for a typical gear meshing teeth pair cycle. These correspond to an 

engine torque of 144 Nm at 2524 rpm. The transmission is engaged in the 5
th

 gear 

with a ratio of 0.702:1. These are representative conditions of a highway driving 

about 70 mph speed for a light van or passenger car equipped with an engine 

similar to the characteristics given in appendix and with P205/65R15 BSW tyre. 

Table 2 lists the results of TCA for the load share of a contacting teeth pair, as 

well as the effective principal radii of contact through mesh. It also lists the speed 

of entraining motion of the lubricant into the contact along the minor and major 

axes of the Hertzian contact ellipse. These are the input to the elastohydrodynamic 

analysis. For this analysis, the computational finite difference domain is divided 

into 60 60x yn n    finite intervals. Simulation studies were carried out on a 

2.93 GHz Pentium Intel i7 machine with the computational time for one point of 

the meshing cycle being approximately 5000 CPU seconds. Figure 6 shows the 

effect of computational grid size upon convergence for the high loaded condition 

in table 2. Grid sizes of 40X40, 50X50, 60X60, 70X70 and 80X80 were used. 

This is shown in the figure. Small variations in pressure distribution and film 

thickness can be observed. Therefore, a grid size of 60X60 is deemed as adequate. 
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Fig.6  Grid convergence of the model 

 

Referring back to table 2, the pinion angle in column 1 corresponds to the various 

instances of a gear teeth pair through mesh. In this case, for the teeth pair 

considered, the meshing cycle commences at the pinion angle of 0.503 radians 

and ends at the angle of 1.34 radians. Note that the entrainment flow velocity 

components along the major and minor axes of the elliptical point contact 

footprint are quite comparable. Therefore, both the assumption of a line contact 

analysis, as well as the simplifying assumption for the speed of entraining motion 

being along the minor axis - commonly used in the literature - are not justified. In 

fact, Fig. 7 shows significant slide-roll ratios for the aforementioned differential 

hypoid gear pair, and also well in excess of the analysis carried out by Kim and 

Sadeghi [44]. Table 2 also provides the principal radii of the equivalent ellipsoidal 

solid contacting an elastic half-space at any instant of time through mesh. These 

are required for the solution of the Reynolds-Eyring (4), as well as the initial 

guess values for the film thickness obtained from (17). 
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Fig.7  Contact kinematics under prescribed differential running conditions 

 

Fig.s 8 and 9 show the pressure distribution and the corresponding film thickness 

contour for the pinion angle of 0.9582. This is the point in the meshing cycle with 

the highest load share for the teeth pair considered, where the slide-roll speed ratio 

is 0.4. 
 

 

Fig.8  Three dimensional elastohydrodynamic pressure distribution (position of 

maximum contact load) 

 

Fig.9  Lubricant film contour (position of maximum contact load)  

X 

X 
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The maximum pressures are of the order of 0.8 - 1 GPa, with the minimum film 

thickness in the region of 0.5 - 0.6 µm. The island of minimum film thickness 

occurs in the exit constriction at the contact outlet and along the entrainment flow 

at an angle to the minor axis of the elliptical contact (along X-X). The minimum 

film thickness can be observed more clearly by a cut through this cross-section of 

the film contour (as shown in Fig. 10), and is around 0.55 m . The root mean 

square surface roughness of the face-hobbed hypoid gears investigated here is 

approximately: =  . This yields a Stribeck oil film 

parameter of . Therefore, a mixed regime of lubrication would be 

expected. 

 

 

Fig.10  Elastohydrodynamic film shape along the section X-X’ under Newtonian 

and non-Newtonian shear 

 

Fig. 11 shows the shear stress variation within the contact under the same 

conditions. The non-Newtonian shear stress variation, based on the sine 

hyperbolic function (3) is also shown in the figure. It is clear that it exceeds the 

limiting shear stress throughout the contact domain at all values of generated 

pressure (9). The results using the proposed ―combined non-Newtonian shear 

model‖ are also shown in the same figure, which confines the lubricant shear 

characteristics to the limiting shear stress. Additionally, the shear stress variation 

is shown, if Newtonian shear characteristics are to be assumed. Note that if that 

were to be the case, very high shear stresses, well in excess of the limiting shear 

stress are predicted, which have unrealistic values. Bair [58] presented viscosity 

measurements for a range of lubricants, including transmission fluids at pressures 
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up to 1.4 GPa and temperatures up to 165 C . The results of Bair’s viscometer 

measurements show that at fairly moderate pressures, the Newtonian assumption 

for lubricant behaviour yields excessive values for viscosity for the temperatures 

usually encountered in transmissions and far in excess of the limiting shear stress, 

similar to those shown in Fig. 11. The results obtained, using the ―combined non-

Newtonian Model‖ of the current analysis conform to the limiting shear stress 

value as shown in the figure throughout the meshing cycle. This observation 

seems to suggest that at least under the current assumed isothermal conditions, the 

contact conditions are confined to a narrow region of elastohydrodynamic 

behaviour and lubricant traction occurs at the limiting shear stress throughout the 

meshing cycle. These conditions can be confirmed by presenting the results on the 

Greenwood chart for fluid film regimes of lubrication (Fig. 12) and the traction 

chart of Evans and Johnson [36] (Fig. 13). In the Greenwood chart (Fig. 12), the 

elastic parameter is eG W U *8 3 *2 , while the viscous parameter is 

vG G W U * *3 *2 . Note that: 
*

r zx

UU
E R

 , *
2

r zx

WW
E R

 and 
*

rG E . 

Elastohydrodynamic conditions for contacts with significant slide-roll ratios at 

high loads are indicated by an increasing combination of eG  and vG . Fig. 13 

confirms that except for the instances at the beginning and at the end of the 

meshing cycle, where lubricant shear behaviour tends to Newtonian conditions, 

the traction conditions remain close to the limiting Eyring shear, except at the 

highest loaded part of the cycle where there is a tendency towards viscoelastic 

behaviour of the lubricant. The hyperbolic sine shear characteristics adopted in the 

current analysis does not take into account the elastic contribution in this surmised 

viscoelastic behaviour. It is necessary to ascertain the significance of this finding 

with regard to the analysis carried out.  

 

Furthermore, in figure 13 the tractive region referred to as ―Eyring‖ implies the 

dependence of the Eyring shear stress upon the sliding velocity (variation along 

the ordinate). The dependence of Eyring shear stress upon the prevailing 

instantaneous sliding velocity is a function of the characteristic velocity of the 

process required to reach an activation energy to shear/dislocate a unit volume of 

the fluid/lubricant. A thermodynamic energy balance is required to establish the 

variation of Eyring shear stress with sliding velocity (Briscoe and Evans [47]). 

The current paper is an isothermal analysis, thus the Eyring shear stress is 

assumed to remain constant.  
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Fig.11  Shear stress variation within the contact at the maximum meshing load  

 

 

Fig.12  Piezo-viscous (EHL) conditions during teeth pair meshing cycle  

Key: IR=Iso-viscous Rigid, IE=Iso-viscous Elastic, VR=Viscous Rigid, 

VE=Viscous Elastic (EHL)  

G
v
 

G
e
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Fig.13  Traction regime in differential gear teeth meshing superimposed on the 

chart of ref. [36] 

Fig. 14 shows the variation of Deborah’s number during a meshing cycle for a 

teeth pair. As it can be seen that its value remains far less than unity, indicating an 

insufficient time for lubricant relaxation in passage through the contact. Thus, the 

omission of the elastic behaviour of the lubricant in the current analysis is well-

founded.  

 

Fig.14  Variation of Deborah Number during a meshing cycle  

The main aim of the analysis is to determine the coefficient of friction and thus, 

the transmission efficiency of the hypoid gear pair. There is a dearth of reported 

U* 

p
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analysis in this regard for hypoid gears. For helical gears there has been 

considerably more research effort, including [59, 60]. For hypoid gears, there 

have been scoring tests and efficiency measurements by Naruse et al [61] and 

approximation of power loss for hypoid gears as a combination of spiral bevel 

gears and a worm gear by Buckingham [62]. These studies have indicated 

transmission efficiency in the order of 96%-98%. A more comprehensive analysis 

is carried out by Xu et al [63], who used a combination of TCA and thermo-

elastohydrodynamics of hypoid gear pairs to predict the coefficient of friction. 

The lubricant behaviour was assumed to be Newtonian. The coefficient of friction 

was predicted to be around 0.02-0.03 with transmission mechanical efficiency of 

97%-98%. Recently an experimental investigation of axle efficiency has been 

presented by Hurley [64]. This work shows an overall efficiency of 92% to 98% 

for a range of speeds and torques. Essentially, a similar approach is used here but 

with non-Newtonian lubricant behaviour and angled flow into the contact, thus 

accounting for the lubricant side leakage from the contact. In addition, mixed 

regime lubrication is assumed due to thin film thickness and relatively high 

roughness. Under this condition, viscous shear of the lubricant and boundary 

interaction of contacting surfaces both contribute to the generated friction as: 

r v bf f f 
  (27) 

 

To obtain boundary friction, the Greenwood and Tripp [28] model is used. This 

model assumes a Gaussian distribution of the asperity heights with a mean radius 

of curvature for the typical asperity summit, . In the current study, the plastic 

deformation of asperities is neglected. Greenwood and Tripp [28] have shown a 

small difference of 5% in friction, depending on contact conditions. Therefore, for 

simplicity, elastic state of asperities is only considered in the current analysis. 

However, inclusion of plasticity is important if thermal conditions are taken into 

account with a significant asperity distribution. The area of asperity contact 

and the load  carried by the asperities may be estimated as: 

 

  (28) 

  (29) 

 

In these formulae A is the apparent contact area and  is the density of asperity 

peaks per unit area. The statistical functions F2 and F5/2 depend on the Stribeck’s 

oil film parameter, :  

 

  (30) 

 

According to Teodorescu et al [65] the results of numerical integration for these 

functions of interest and their least square fittings yield: 
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  (31) 

   (32) 

 

According to Greenwood and Tripp [28], the roughness parameter  is 

reasonably constant with a value of 0.03-0.05 for steel surfaces and the ratio  

is in the range 10
-4

 - 10
-2

 (this being a representation of the average asperity slope 

[32]). Assuming  this results in = 0.04 - 0.07 and with an average 

value of = 0.055, the asperity contact area becomes: 

 

  (33) 

 

Considering the same data and assuming that =0.001, the load carried by the 

asperities becomes: 

 

  (34) 

 

The boundary shear stress is obtained as: 

 

  (35) 

 

where a thin adsorbed film at the summit of an opposing asperity pair acts in non-

Newtonian shear at asperity pressure . Thus: 

 

   (36) 

 

The viscous friction is calculated as: 

 

   (37) 

 

where  is the area of full fluid film lubrication. Note that v aA A . 

In fact less than 1% of the overall contact area is found to be that of the asperity 

contact area. The value of aF  is also found to be approximately 1% of the 

contact load. However, this small asperity contact area accounts for 2.5-6% of the 

overall friction as shown in figure 15. An interesting point to note is that unlike 

spur and helical gears where there is no sliding motion of gear teeth at the pitch 

point, thus no viscous friction, the hypoid gear pair contact has no pitch point and 
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thus there is no pure rolling motion during the meshing cycle. Under thermal 

conditions, with thinner lubricant films, one would expect a greater contribution 

from boundary friction. 

  

Fig. 15: Boundary friction as a proportion of total friction in mixed regime of 

lubrication 

 

Fig. 16 shows the variation of coefficient of friction for a teeth pair through a 

complete meshing cycle. The average value is predicted to be 0.067. This value is 

twice that predicted in [63]. The reasons for the difference between these 

predictions are manifold, including different gear geometries, loading and speed 

and particularly the assumed inlet boundary conditions (which are fully flooded in 

[63] but just flooded in the current analysis). In many gearing applications, 

starvation of the contact occurs for a variety of reasons. They include physical 

restrictions to lubricant flow rate [66], excessive side leakage of the lubricant 

from the contact domain [67, 68] and in some gearing systems windage (flow of 

air or vapour around the meshing gears) or attitude and inclination of the 

transmission [66]. Therefore, it is necessary to take into account inlet boundary 

conditions which are different to the usually assumed flooded condition. However, 

it is difficult to predict precise inlet boundary in rolling and sliding contacts with 

different contiguous surface velocities, which often cause flow reversals at the 

inlet [69]. Therefore, the current analysis uses inlet boundaries, based upon the 

generic work of Hamrock and Dowson [22]. The comparison between such an 

inlet and the fully flooded condition becomes less pronounced, in terms of 

pressure distribution and friction at high loads, because the prevailing conditions 

are non-Newtonian with limiting lubricant shear. Under these conditions, the 

dominant influence on shear, thus friction, is due to pressure rather than Couette 

shear. Nevertheless, for the sake of completeness, it is important to take into 
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account a more realistic inlet boundary than the general assumption of a flooded 

inlet. Fig.17 shows a comparison between fully flooded and starved conditions. 

The comparison between pressure and film thickness is also presented. 

 

There is also the inclusion of non-Newtonian lubricant shear and mixed regime of 

lubrication in the current analysis and inclusion of thermal effects [63]. 

 

Fig.16  Variation of coefficient of friction during meshing cycle 

 

 

Fig.17  Comparison between flooded and starved conditions (0: centre of 

Hertzian contact) 

 

However, good agreement is observed when mechanical inefficiency is obtained 

as the ratio of power loss over the input power, where the power loss is obtained 

as: P f U  . Fig. 18 shows the percentage inefficiency for the differential 

hypoid gears, based on the simultaneous meshing of 1-3 conjugate teeth pairs per 
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meshing cycle. This indicates a mean mechanical efficiency of 97.9% (i.e. mean 

losses of 2.1%). The power loss predicted here is within the range of 1-3%, also 

predicted by Xu and Kahraman [18] and Kolivand and Kahraman [19].  
   
 

 

 

Fig.18  Inefficiency of the differential hypoid gear pair during the meshing cycle 

 

4- Concluding Remarks 

The paper has shown that hypoid gear teeth pairs yield an elliptical footprint 

contact, where the lubricant entrainment into the contact occurs at an angle to its 

minor axis. This results in significant side leakage from the contact, which should 

be taken into account. The contact of differential hypoid gears of automobiles is 

subject to moderate to high loads, resulting in thin non-Newtonian films under 

elastohydrodynamic regime of lubrication, which indicates tractive characteristics 

of an Eyring fluid. The mechanical efficiency of the differential unit as the result 

of frictional losses alone is on average 97.9%, which agrees with thermo-

elastohydrodynamic Newtonian analysis of other research workers. The current 

analysis is for medium speed range of C-segment class vehicles. It is expected that 

thinner films may occur at lower engine speeds, resulting in more prominent 

mixed regime of lubrication. Furthermore, thinner films may also result, if thermal 

shear heating is taken into account. Therefore, it is intended to expand the current 

analysis to thermo-elastohydrodynamics with non-Newtonian shear. The devised 

―combined non-Newtonian model‖, confining the contact shear stress within the 

limiting shear of the differential fluid has indicated that at high loads and with 

significant slide-roll ratio (around 0.4 or above), there may be a tendency for the 

lubricant relaxation to occur and result in viscoelastic traction. It is intended to 

extend the analysis to investigate the likely occurrence of such phenomenon in 

differential gears.   
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Figures captions: 

Fig.1  Representation of an elliptical point contact conjunction with angled 

entrainment flow 

Fig.2  Contact Geometry of the equivalent ellipsoidal solid 

Fig.3  Starvation boundaries along minor and major axes 

Fig.4  Contact footprint and direction of angled flow  

Fig.5  The processing elliptical footprint through a meshing cycle 

Fig.6  Grid convergence of the model 

Fig.7  Contact kinematics under prescribed differential running conditions 

Fig.8  Three dimensional elastohydrodynamic pressure distribution (position of 

maximum contact load) 

Fig.9  Lubricant film contour (position of maximum contact load)  

Fig.10  Elastohydrodynamic film shape along the section X-X’ under Newtonian 

and non-Newtonian shear 

Fig.11  Shear stress variation within the contact at the maximum meshing load  

Fig.12  Piezo-viscous (EHL) conditions during teeth pair meshing cycle  

Fig.13  Traction regime in differential gear teeth meshing superimposed on the 

chart of ref. [33] 

Fig.14  Variation of Deborah Number during a meshing cycle 

Fig. 15: Boundary friction as a proportion of total friction in mixed regime of 

lubrication 

Fig.16  Variation of coefficient of friction during meshing cycle 

Fig.17  Comparison between flooded and starved conditions (0: center of 

Hertzian contact) 

Fig.18  Inefficiency of the differential hypoid gear pair during the meshing cycle 
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Tables: 

Table 1a: Gear pair parameters  

Pinion parameters:  

Number of pinion teeth 13 

Pinion face-width (mm) 33.851 

Pinion face angle (deg) 29.056 

Pinion pitch angle (deg) 29.056 

Pinion root angle (deg) 29.056 

Pinion spiral angle (deg) 45.989 

Pinion pitch apex (mm) -9.085 

Pinion face apex (mm) 1.368 

Pinion Outer cone distance (mm) 83.084 

Pinion offset (mm) 24.0000028 

Pinion hand Right 

 

Gear parameters:  

Number of gear teeth 36 

Gear face width (mm) 29.999 

Gear face angle (deg) 59.653 

Gear pitch angle (deg) 59.653 

Gear root angle (deg) 59.653 

Gear spiral angle (deg) 27.601 

Gear pitch apex (mm)               8.987 

Gear face apex (mm) 10.948 

Gear Outer cone distance (mm) 95.598 

Gear offset (mm) 24 
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Table 1b: Properties of contacting solids and lubricant  

Pressure viscosity coefficient (α) 2.19e-8 [Pa-1] 

Atmospheric dynamic viscosity (  0.08 [Pa.s] 

Inlet density  846 [kg/m3] 

Modulus of elasticity of contacting solids 210 [GPa] 

Poisson’s ratio of contacting solids 0.3 [-] 

Eyring shear stress ( 0 ) 
5 (MPa) 

Atmospheric limiting shear stress ( 0L ) 
2.3 (MPa) 

Pressure-induced shear coefficient ( ) 0.047 
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Table 2: Equivalent geometry, load share and kinematics of a teeth pair through mesh 

pinion 

angle 
 (Rad) 

Contact 

load 

F (kN) 

Magnitude 

of 

entraining 

velocity 

[m/s] 

Velocity 

along the 

minor 

axis 

sinU   
(m/s) 

Velocity 

along the 

major axis 

cosU  (m/s) 

Principal 

radius zxR
 

(m)  

Principal 

radius 

zyR
(m) 

0.5027 0.59 12.78 11.46 5.65 0.0157 1.0067 

0.5341 0.93 12.66 11.31 5.69 0.0158 1.0297 

0.5812 1.34 12.48 11.07 5.75 0.0160 1.0626 

0.6283 1.73 12.30 10.84 5.81 0.0162 1.0937 

0.6754 2.15 12.13 10.61 5.88 0.0164 1.1228 

0.7226 2.61 11.97 10.37 5.95 0.0166 1.1501 

0.7697 3.11 11.80 10.14 6.03 0.0168 1.1754 

0.8168 3.68 11.64 9.91 6.11 0.0171 1.1988 

0.8639 4.22 11.49 9.67 6.19 0.0174 1.2204 

0.9111 4.71 11.34 9.44 6.28 0.0177 1.2400 

0.9582 4.56 11.20 9.21 6.36 0.0180 1.2578 

1.0053 4.02 11.05 8.97 6.45 0.0183 1.2736 

1.0524 3.59 10.92 8.74 6.55 0.0186 1.2876 

1.0996 3.21 10.78 8.50 6.64 0.0190 1.2996 

1.1467 2.81 10.66 8.26 6.73 0.0194 1.3098 

1.1938 2.36 10.53 8.02 6.83 0.0198 1.3180 

1.2409 1.87 10.42 7.78 6.92 0.0202 1.3243 

1.2881 1.31 10.30 7.54 7.03 0.0206 1.3288 

1.3352 0.74 10.19 7.29 7.12 0.0211 1.3313 
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Appendix: 

 

 

Fig.18  Sample engine map 

 

 

 

 

1: Torque 
2: Power 


