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Abstract:  
 
The paper presents analytical solution of squeeze film characteristics in wide parallel 
rectangular conjunctions with incompressible electrically conducting couple stress 
fluids, subjected to a magnetic field. Analytical expressions are obtained by combined 
solution of modified Reynolds equation and Stokes micro-continuum for couple stress 
fluids with averaged inertia. Various cases of magneto-hydrodynamic (MHD), 
conducting and non-conducting fluid characteristics with and without convective 
inertial contributions are investigated.  
 
It is shown that in general couple stress fluids enhance the load carrying capacity of 
the contact and inhibit the incidence of thin films which can result in direct contact of 
surfaces. Convective inertia also significantly improves the load carrying capacity. 
However, with impulsive loading the response time of couple stress fluids deteriorates 
relative to Newtonian lubricants on account of their increased viscosity. An important 
conclusion of the study is that MHD couple stress fluids are best suited to applications 
with high relatively steady load applications. 
 
Keywords: Magneto-Hydrodynamics, squeeze film action, couple stress fluid, 
convective inertia, Hartman number  
 
1. Introduction  
 
Load carrying capacity and reduced frictional losses are two essential requirements 
for lubricated conjunctions. This is particularly true for many machines and 
mechanisms which are progressively subjected to increased loading and higher 
speeds. They include modern turbo-machinery, such as turbo-chargers, with some 
now operating at speeds in excess of 200,000 rpm. Other applications include 
matching gears, hydraulic actuators and viscous dampers subjected to combined 
squeeze and shear loading.   
 
The load carrying capacity of the usual lubricants is affected by temperature as their 
viscosity is significantly reduced at high shear rates. Additionally, at high contact 
pressures, lubricant viscosity is increased markedly with the repercussion of increased 
viscous friction, thus reduced operating efficiency. Therefore, across a range of 
operations, machines and mechanisms are subject to sub-optimal performance either 
due to increased viscous friction or poor load carrying capacity or both. Additionally, 
unusual contact geometries between moving parts may exist because of packaging 
constraints, which can inhibit the desired entraining motion of the lubricant into the 



contact. Therefore, an emerging trend has been to use electrically conducting fluids as 
lubricants in some machines and mechanisms. The aim is to avoid the undesirable and 
unpredictable changes in viscosity of lubricant with temperature and/or pressure. 
Thus, use of electro-rheological (ERF) lubricants, magneto- rheological fluids (MRF) 
and nano-fluids have been receiving increasing attention. These fluids which may be 
grouped as couple stress fluids are progressively used in machines subjected to non – 
periodic impulsive or chaotic dynamic loads such as vehicle or train suspension 
dampers which are primarily subject to squeeze film motion [1,2]. MR- Damper 
mechanisms have also been employed in shear mode for variety of rotor applications 

to guard against vibration, for example, in vehicle power train systems [3,4].  
 
A number of empirical and theoretical studies have investigated the performance 
characteristics of magneto-hydrodynamic (MHD) thin film bearings with different 
contact geometries in the presence of applied external magnetic fields. Some 
representative experimental and numerical studies include the study of MHD squeeze 
film characteristics by Maki and Kuzma[5], Usha and Vimala [6], Lin et al. [7] and 
Lin [8]. Additionally, Agrawal [9], Anwar and Rodkiewich [10], and Gupta and Bhat 
[11] have studied the lubricant behaviour in MHD slider bearings.  
 
With the development of some modern machine elements the use of a small quantity 
of additives to the lubricant has become of interest. These additive particles can be, 
for example,  high molecular weight polymers or ferromagnetic particles. The 
rheological flow behaviour of a Newtonian lubricant, blended with various additives 
cannot be accurately described by the classical continuum theory. Therefore, many 
micro-continuum theories have been proposed [12-14].  One involves the use of the 
“couple stress“ concept, which was originally developed to model non-Newtonian 
fluids such as synthetic fluids, polymer-thickened oils, liquid crystals, and even blood. 
In this method the sizes of blended particles are important. 
 
By making use of this approach some analytical and numerical studies for squeeze 
film lubrication have been reported.  Ramanaish and Sarkar [15] studied squeeze film 
lubrication in thrust bearings as well as finite parallel plates with different geometrical 
shapes (Ramanaish [16]). Lin [17,18]  studied squeeze film lubrication of a  long 
partial journal bearing, as well as a hemispherical bearing. The effect of fluid inertia 
was considered by Lin et al [19] in parallel wide rectangular plates. Das [20] studied 
lubrication of slider bearings with an MHD coupled stress fluid as the lubricant and in 
the presence of an external magnetic field. Recently, Naduvinamani and Rajashekar 
[21] investigated the effect of MHD coupled stress fluid on the squeeze film 
behaviour for the classical ball-on-plate geometry.  
 
Hitherto, the characteristics of a squeeze film between two parallel wide rectangular 
plates with an MHD coupled stress fluid in the presence of an external magnetic field, 
including inertial effects has not been studied. The current study undertakes this 
approach, using the Stokes coupled stress fluid model and the principle of averaged 
inertia. The modified Reynolds equation, governing the squeeze film pressure is 
derived, based on Stokes micro-continuum and averaged inertia. The results of 
squeeze film characteristics such as the load carrying capacity and time history of film 
thickness are presented for various values of couple stress parameter, lubricant inertia 
and Hartman's number. 
 



2. The analytical approach  
 
The geometry of problem is shown in figure 1. It is assumed that the squeeze velocity 
between the plates remains constant. Since the plates are considered to be wide, any 
side leakage flow from the conjunction in the y direction is neglected.  It is necessary 
to calculate the flow parameters such as the pressure distribution, load carrying 
capacity and film thickness in the solution of the problem. Momentum equations for a 
MHD coupled stress fluid are used in the presence of a uniform magnetic field, 
including the fluid inertia. Therefore, the governing equations are derived as follows 
(see the Nomenclature in Appendix A):  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig1. Squeeze film geometry between two wide parallel plates. 
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The continuity of flow condition with no side leakage yields: 
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where u and w are velocity components in the x and z directions respectively, η   is the 
material constant responsible for the coupled stress fluids, σ  is the electrical 
conductivity of the lubricant and oB  represents the applied magnetic field. With no-
slip condition at the conjunctional surfaces, no-coupled stress condition [12] and also 
zero pressure at the conjunctional boundaries:  
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Since the lubricant film is thin, the inertial forces are assumed to remain constant in 
equation (1). Therefore, integrating over the film thickness and considering the mean 
value of inertial forces, equation (1) can be written as: 
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By introducing the modified pressure gradient: 

∫
= ∂

∂
+

∂
∂

=
h

z
mp x

pdzu
xh

g
0

2 )(ρ                                                                                           (8) 

 
then, equation (7) becomes: 
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Making use of non-dimensional parameters: 
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the dimensionless form of equation (9) becomes:  
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The non-dimensional boundary conditions are: 
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The boundary conditions (12) and (13) are used for the solution of equation (11). This 
yields the non-dimensional velocity distribution inside the lubricant film. Three 
different cases are considered according to the parameter, n:  
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It can be seen that for a constant viscosity condition, n  is a direct function of the 
magnetic field intensity, fluid electrical conductivity and the material constant. By 
increasing these quantities, an enhancement in the value of n would be expected. This 
yields a higher load carrying capacity. Analytic solution for three cases: Case 1: 1n < , 
Case 2: 1n =  and Case 3: 1n >  are outlined in Appendix B.  
 
Load carrying capacity is obtained by integration of Pressure distribution *p (derived 
in Appendix B). Therefore, the dimensionless load carrying capacity per unit width 

(Note: 𝑊𝑊
𝑏𝑏

= ∫ 𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿
2
𝑥𝑥=−𝐿𝐿2

),  for Cases 1-3 becomes: 

  
(a)- Case 1: 
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For Re = 0,  equation (35) converts to: 










−
=

),*,(
1

12
1* *

0
aMhf

W                                                                                            (15)       

 
which is the usual expression for the non-inertial fluid flow condition. 
  
In the absence of a magnetic field (i.e. M=0), equation (14) represents the 
dimensionless load carrying capacity for a non-Newtonian coupled stress model fluid, 
which was studied by Lin[ 19].  
 
The case represented by:  Re = 0 , M=0 and l*=0 )( ∞→a is for a non-conducting 
Newtonian fluid in a non-inertial flow condition. Then, equation (15) for 1* =h  
convert to: 

1*=W                                                                                                                       (16) 
 
Equation (16)  is that obtained by Hamrock [22] for this case. 
 
(b)- Case 2:  
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(c) - Case 3:  
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The dimensionless response time is: 
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The time history of film thickness is obtained by making use of equations (14), (17) 
and (18) for case 1, case 2 and case 3, respectively as: 
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The above equations are highly non-linear ordinary differential equations. Therefore, 
the solution method should shift from analytical to a numerical one. In order to  
achieve accurate results a higher-order Runge-Kutta method is used taking into 
account the following initial condition:  
 

1* =h            at             0* =t  
 
3-Results and discussion: 
 
A Magnetorheological lubricant in the conjunction of a pair of wide parallel 
rectangular plates subjected to a magnetic field is considered. Tables 1 and 2 in 
Appendix C list the lubricant rheological and magnetic field parameters used in the 
current study. In tables 1 and 2, the parameter, a represents the effect of coupled 
stresses, M shows the effect of external magnetic field and the Reynolds’ number, Re 
defines the effect of inertial loading on the squeeze film action. It should be noted that 

only in the case 1: 
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 ,l* and M  can diminish, which yields Newtonian and 



non-conducting fluids respectively. In cases 2 and 3: M=0 or l*= 0 ( )∞→a  would 
have no physical meaning and thus such cases cannot be interpreted.  
 
Pressure distribution, load carrying capacity and film thickness are obtained for the 3 
different cases. The effect of fluid inertia is considered, as well as the Stokes micro-
continuum theory. The principle of averaged inertia is used for analyzing the squeeze 
film characteristics. 
 
The generated lubricant pressure distribution for different values of M, Re and a are 
shown in figures 2-5. When the values of M , Re and l

* increase (i.e. a decreasing 
value of a), the maximum lubricant pressure is enhanced. This is because an 
increasing Hartman number, M and coupled stress parameter l

* increase the lubricant 
viscosity, thus the pressure distribution and hence the load carrying capacity.  
 

 

Fig.2: Dimensionless  pressure distribution  for the case 1, 
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Fig.3: Dimensionless  pressure distribution  for the case 1, 
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Fig.4: Dimensionless  pressure distribution  for the case 1, 
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Fig.5. Dimensionless  pressure distribution for the case 1, 
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Figures 6-8 show the variation of dimensionless load carrying capacity W* with the 
coupled stress parameter l* for different values of dimensionless film thickness h* for 
non-inertial non-conducting (Re = 0, M=0), non-inertial conducting and inertial 
conducting fluids respectively. Since the coupled stress effect yields a higher film 
pressure, then the load carrying capacity increases accordingly. In fact, as shown in 
Figures 6-8, the load carrying capacity is a function of l* as would rationally be 
expected (increasing l* improves the load carrying capacity). This finding indicates 
that the least load carrying capacity is attained in the case of a Newtonian fluid. 
Clearly, also reducing h* yields increased loading. This is evident in, for example 
equation (36), except for non-inertial flow condition, where there is no dependence on 

* 1h = . On the other hand, increasing Re and M will naturally increase W*.  
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Fig.6: Variation of load capacity W* with couple stress parameter l* 

for the case1: 
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Fig.7: Variation of load capacity W* with couple stress parameter l* 

for the case1: 
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Fig.8: Variation of load capacity W* with couple stress parameter l* 
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for the case1: 
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Aside from load carrying capacity as a performance measure for contacts, in order to 
guard against incidence of direct contact of solid surfaces, the response time to 
applied loads, particularly those leading to squeeze of lubricant film is an important 
measure of performance. Figures 9-10 show the variation of dimensionless film 
thickness h* with dimensionless response time t* for different values of  the inverse 
coupled stress parameter a  under both non-inertial and non-conducting (Re = 0 , 
M=0) ) and non-inertial conducting (Re=0 , M = 4 ) conditions. It is shown that for a 
non-Newtonian fluid the response time is longer than for a Newtonian one, although 
the ultimate load carrying capacity is conversely true (see figures 6-8). The physical 
implication of these results is that for certain impulsive loading conditions (depending 
on the maximum applied load) the Newtonian fluids may actually perform better.     
 
 

 

Fig.9. Variation of film thickness  h* with response time t* for different h*, case1: 
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Fig.10. Variation of film height h* with response time t* for different h*. case1, 
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When case 2 is investigated, it is necessary to select values of M and a  which satisfy 

the equality: 





 =12

a
M . Figure 11 shows the generated dimensionless pressure 

distribution p* for the 3 different sets of inverse couple stress parameter, a , Hartman 
number,  M  and the convective inertial parameter, Re. For all the 3 sets, the film 
thickness parameter h* is considered to be constant at h*= 0.5. Increasing Re, results 
in an increased p*, and clearly the load carrying capacity For a non-Newtonian and 
electrically conducting fluid the variation of load carrying capacity with Reynolds 
number is shown in figure 12. It is found that an increasing convective inertia leads to 
enhanced load carrying capacity. This is altogether an accepted outcome due to 
enhanced flow dynamics. Another outcome of this enhanced flow is improved fluid 
film response time (figure 13). 

 

 
Fig.11: Dimensionless  pressure distribution p*  

for case2: 
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Fig.12:Variation of  load capacity W* with Reynolds number for case2: 
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Fig.13: Variation of film thickness h* with response time t* for different h*,  

for case 2: 
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Case 3: 
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For investigating case 3, the selected values for M and a  should satisfy the above 
inequality. Dimensionless pressure distribution p*is shown in Figure 14 for different 
values of convective inertial parameter Re for a constant film thickness of  h* = 0.5. It 
is found that by increasing Re, the generated pressures are enhanced, thus the load 
carrying capacity. 

 
Figure.15 shows the variation of load capacity W* with couple stress parameter l* for 
different values of h* under the non-inertial, electrically conducting cases;  Re = 0 and 
M=11. Choosing M=11 is because of satisfying mathematical condition of case 3: i.e.
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M . As shown in figure 15, increasing the couple stress parameter l* enhances 

the load carrying capacity. Figure.16 displays variation of load capacity W* with 
couple stress parameter l* for different values of h* under the convective inertia and 
electrically conducting cases Re=5, M=11. As shown in the figure, increasing the 
convective inertial parameter enhances the load carrying capacity.  Figure 17 presents 
variation of load carrying capacity with Hartman number for different values of Re. 
As it can be seen, using an electrically conducting fluid in the presence of magnetic 
field enhances the load carrying capacity.  
 
Figure 18 shows the variation of film thickness h* with response time t* for different 
values of h* for various values of Re. Increasing values of Re enhance the response 
time.  
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Fig.14. Variation of film pressure p* with coordinate x* for 5.0* =h  
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Fig.15. Variation of load capacity W* with couple stress parameter l* 

For different h* case3: 
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Fig.16. Variation of load capacity W* with couple stress parameter l* 

For different h* case3: 
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Fig17. Variation of load carrying capacity with Hartman number. under the various values of Re. 

case3: 
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Fig.18. Variation of film height h* with response time t* for different h*under the various values of Re, 

case 3: 
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Conclusion 
 
Stokes micro-continuum theory and principle of averaged fluid inertial flow are used 
to derive a combination of analytical and differential equations for determination of 
contact conditions for elector-rheological and magneto-rheological fluids in contact of 
wide plates under squeeze film motion. Variation of pressure distribution, film 
thickness, load carrying capacity and lubricant film response characteristics subjected 
to externally applied loads are determined according to the combination of Hartman 
number, fluid convective inertia, and couple stress parameter. It is shown that in 
general non-Newtonian MHD couple stress fluids enhance the load carrying capacity 

4 6 8 10 12 14
20

30

40

50

60

70

80

M

W
*

 

 

Re=0, a=5, h*=0.5
Re=5, a=5, h*=0.5
Re=10, a=5, h*=0.5

00.10.20.30.40.50.60.70.80.91
10-2

10-1

100

101

102

103

h*

t*

 

 

a=10, M=6, Re=0
a=10, M=6, Re=5



of the contact and inhibit the incidence of thin films which can result in direct contact 
of surfaces. Convective inertia also significantly improves the load carrying capacity. 
However, with impulsive loading the response time of couple stress fluids deteriorates 
relative to Newtonian lubricants on account of their increased viscosity. An important 
conclusion of the study is that MHD couple stress fluids are most suited to 
applications with high steady load intensity. Therefore, for transient conditions some 
degree of control of supplied magnetic field would be ideal. Furthermore, because of 
enhanced viscosity such lubricants are best suited to relatively high kinematic contact 
conditions where usual lubricants are unsuited because of shear thinning. The 
drawback would be increased viscous friction with MHD couple stress fluids and 
increased convective inertia.         
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Appendix A: 
 

       Nomenclature 
 

 
applied magnetic field   Bo    length and width of  the 

plates 
 b>>L 

 L,b 

film thickness at t=0   
                               

ho    
characteristic length of the 
additives, (η

µ
)
1
2 

𝑙𝑙 

coordinate, 𝑥𝑥
𝐿𝐿
 

 (dimensionless) 
x*    

Hartman number ,  Bo ho�
σ
µ
 M 

squeezing velocity 
,−dh

dt
 

 ω   dimensionless load-carrying 
capacity , 𝑊𝑊ℎ𝑜𝑜3

𝜇𝜇𝐿𝐿3𝑏𝑏𝑏𝑏
 W* 

squeeze film 
pressure, 𝑝𝑝ℎ𝑜𝑜

3

𝜇𝜇𝐿𝐿2𝑏𝑏
  

p,p* 

response time, 𝑊𝑊ℎ𝑜𝑜2

𝜇𝜇𝐿𝐿3𝑏𝑏
𝑡𝑡  t , t* 

lubricant viscosity    
 
 
 

μ  
electrical conductivity           
                                               
   

σ 

http://www.ingentaconnect.com/content/maney/trb;jsessionid=21g1w8oxp6wxv.alice
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material constant 
responsible for couple 
stress fluids 

η 

convective inertia Re 

lubricant  density        
      

ρ  
dimensionless velocity in the 
x direction , 𝜇𝜇𝜇𝜇

 ℎ𝑜𝑜2(−𝑔𝑔𝑚𝑚𝑚𝑚)
            

    

u* 

couple stress 
parameter, l/ho      

l* inverse  coupled stress 
parameter,     ho / l                 
   

a 

Film thickness, ℎ
ℎ𝑜𝑜

 
(dimensionless)   

h,h* modified pressure gradient    
                        gmp 

  velocity components in  the 
x and z directions 
respectively     

u,w  

 
 

 
 
 

Appendix B: 
 
To obtain the contact load carrying capacity, it is necessary to determine the squeeze 
film pressure distribution, *p . This, in turn requires the evaluation of velocity 
distribution in the contact conjunction. Therefore: 
    

1- Case 1: 2 1Mn
a

= 〈  

2 2
2 2 2

1 1 sinh( ( * *)) sinh * sinh( ( * *)) sinh ** 1 ( 1)
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Now, let *
2

u
gh

u mpo

µ
−

=   and substitute into the continuity of flow equation (3) and 

integrate with respect to z over the film thickness. Then, substituting for u*  from the 
above equations and considering a symmetrical pressure condition between the two 
plates yields: 
 

1- case 1: 2 1Mn
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3-Case 3: 2 1Mn
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. 
By substituting the modified pressure gradient mpg  from equations (B4),(B6),(B8) and 
the velocity component u from equations (B1),(B2),(B3) into equation (8), one can 
derive the squeeze film pressure, the load-carrying capacity and the time history of the 
lubricant film thickness. It should be noted that the thinness of the lubricant film 
constitutes: 𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
= 0, which means that the viscosity of the lubricant µ  is considered as 

constant. Therefore, an analytical solution is possible for  the three cases considered 
as: 
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Applying the boundary conditions (6) and then integrating equation (B10) yields: 
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and using the non-dimensional parameters: 
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Similarly, for cases 2 and 3 the dimensionless pressures are obtained as: 
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Appendix C 

 
 
Table 1: Lubricant rheology  

Unit Value symbol Parameter name 
(metre)  m 1.667× 10-5 ho Initial film thickness 
(Pascal-second) Pa.s    2.449× 10-4 µ Lubricant viscosity 

 
(Newton-second) N.s  0.2722×10-14     η Couple stress material 

constants 



3m
kg              820 ρ Lubricant density 

s
m

             21096.8 −×
 

ω Squeezing velocity 

             m 
 

610334.3 −×  l characteristic length 
of the additives 

- 2.0 l* couple stress 
parameter 

 
- 5 a inverse  couple stress 

parameter 
 
- 5 Re  convective inertia 

 
 
 
 
 

Table 2: Parameters of the magnetic field 
 

Unit Value Symbol Parameter name 
(metre) m 510667.1 −× oh Initial film thickness 
(Pascal-second) Pa.s 41027.2 −× 

µ Lubricant viscosity 
( Siemens per meter ) S/m 6103.3 ×

 
σ 

Electrical 
conductivity 

(Weber per square metre) wb/m2 
2

 
oB Magnetic field 

- 4
 

M Hartman number 
 


