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Abstract

This paper investigates the outage performance of the amplify-and-forward (AF) relay system which exploits

buffer-aided max-link relay selection. Both the asymmetric and symmetric source-to-relay and relay-to-destination

channel configurations are considered. We successfully derive the closed-form expression for the outage probability,

and analyze the average packet delay. We prove that the diversity order is between N and 2N (where N is the

relay number), corresponding to a relay buffer size between 1 and ∞ respectively. We also analytically show the

coding gain. Numerical results are given to verify the analysis in this paper.
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I. INTRODUCTION

Relay selection can be applied in either a non-regenerative (e.g. amplify-and-forward (AF)) or a

regenerative (e.g. decode-and-forward (DF)) relay systems [1]. The max-min relay selection is often

considered as an optimum DF relay selection scheme, in which the best relay is selected with the highest

gain among all of the minimum of the source-to-relay and relay-to-destination channel gain pairs [2].

Although the max-min schemes achieves diversity order of N (where N is the number of available

relays), its performance is practically limited by the constraint that the best source-to-relay and relay-to-

destination links for a packet transmission must be determined concurrently. Recent research has on the

Z. Tian, G. J. Chen, Y. Gong and J. Chambers are with the Advanced Signal Processing Group, Loughborough University, Loughborough,
Leicestershire, UK, Emails: { z.tian,g.chen,y.gong,j.a.chambers }@lboro.ac.uk.

Z. Chen is with the National Key Laboratory of Science and Technology on Communications, University of Electronic Science and
Technology of China, Chengdu, Sichuan 611731, China, E-mail: chenzhi@uestc.edu.cn.



2

other hand found that, by introducing data buffers at the relays, this constraint can be relaxed to yield

significant performance advantage in practical systems [3]–[8].

An early example of buffer-aided relay selection is the max-max scheme [6]. In the max-max relay

selection, at one time slot t, the best link among all source-to-relay channels is selected, and a data packet

is sent to the selected relay and stored in the buffer. At the next time slot t+ 1, the best link among all

relay-to-destination channels is selected, and the selected relay (which is often not the same relay selected

at time t) forwards one data packet from its buffer to the destination. In this way, the strongest links from

both source-to-relay and relay-to-destination group channels are always selected so that it has significant

coding gain over the traditionary max-min scheme.

The max-max relay selection still follows the traditional transmission order then the source-to-relay

and relay-to-destination transmissions always carry on in an alternative manner, with a diversity order

of N which is the same as that for the max-min scheme. In the recent max-link approach [4], [8], this

constraint on the transmission order is further relaxed so that, at any time, a best link is selected among

all available source-to-relay and relay-to-destination links. Depending on whether a source-to-relay or a

relay-to-destination link is selected, either the source transmits a packet to the selected relay or the selected

relay forwards a stored packet to the destination. It is shown in [4] that the max-link relay selection not

only has coding gain over the max-min scheme, but also has higher diversity order than both the max-min

and max-max schemes. In particular, the diversity order can approach 2N when the relay buffer size is

large enough.

While the buffer-aided relay selection describes a promising way in the cooperative networks, existing

approaches has been mainly for the DF relay systems (e.g. [3]–[8]). This naturally arises the following

two questions:

• Whether is it necessary or not to apply buffer-aided relay selection in the AF relay network? In the

AF system, the relay simply amplifies and forwards the received signal to the destination. Because the

AF does not decode the received packets, it not only is easier to implement but also has higher level

of security than the DF system. When the data buffers are applied at the relays, another difference

between the DF and AF is that they need to store “decoded digital data” and “received real signal”

in the buffers respectively. This brings up two implementation issues: quantization and data storage.

It is interesting to point out that, because the relay works in the half-duplex mode that it receives

a data packet at one time slot and forwards it out at another slot, a data buffer (of size 1) actually
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exists even in the traditional AF or DF relay system. In order to store the data in the buffer, the

quantization is always necessary for both AF and DF systems, no matter whether the buffers are used

or not. Compared to its DF counterpart, therefore, the buffer-aided AF relay selection has the extra

implementation cost of storing quantized “real signal”, but it retains the advantage of no decoding

at the relays, making it particularly attractive in many applications such as the mobile relays which

are not always allowed to decode the source messages.

• How is the buffer-aided relay selection applied in the AF cooperative networks? In the traditional AF

relay selection, the best relay is selected with the highest end-to-end signal-to-noise-ratio (SNR) at

the destination [9], which is termed as the AF max-SNR scheme in this paper. When the AF relays are

equipped with data buffers, however, the traditional max-SNR or its variants (e.g. [10]–[12]) cannot

be used. This is because now the source-to-relay and relay-to-destination links are selected separately

and then the end-to-end SNR at the destination cannot be obtained instantaneously. In this paper,

following the traditional relay selection that the DF relay selection schemes such as the max-min

may also be applied in the AF system (e.g. [13]), we propose to apply the DF max-link in the AF

buffer-aided relay selection.

Of particular importance is the outage probability of the buffer-aided AF relay selection system. In the

DF system, generally, the outage probability for the source-to-relay and relay-to-destination transmission

can be obtained separately and then combined to the give the overall outage probability. In contrast, the

outage performance of an AF relay system depends on the probability distribution of the end-to-end SNR

at the destination, making it usually harder to analyze than that of its DF counterpart. Particularly, when

the relay buffer is introduced in the AF relays, the best source-to-relay and relay-to-destination links for

a packet transmission are determined at different times, thus they may be selected from different numbers

of available links. As a result, the distribution of the end-to-end SNR no longer follows the form of the

MacDonald distribution as that in the traditional AF max-SNR relay selection [9]. This makes the outage

performance of the buffer-aided AF relay selection much more difficult to analyze than both the traditional

max-SNR scheme and the buffer-aided DF max-link scheme. This is perhaps the main reason that the AF

buffer-aided relay selection has not been well studied.

In this paper, the buffer-aided AF max-link relay selection is carefully investigated. Unlike existing

buffer-aided relay selection approaches (e.g. [3], [5], [7]), this paper considers an asymmetric channel

configuration that the average gains for the source-to-relay and relay-to-destination channels are not the



4

same. While the asymmetric channel assumption makes the analysis even more difficult, it represents a

more practical scenario so that the analysis provides an important basis for new system design. The main

contributions of this paper is summarized as follows:

• Analyzing the outage probability of the AF max-link scheme for both the asymmetric and symmetric

channel configuration. As far as we know, this is the first time to consider asymmetric channels

in buffer-aided relay selection, and also the first to derive the outage probability closed-form for

the AF buffer-aided relay selection scheme. Numerical simulation is given to verified the analysis.

The results show that the outage performance gain of the AF max-link scheme over the traditional

max-SNR scheme is more significant in the symmetric than in the asymmetric channels. This gives

an important insight in designing the buffer-aided relay systems: for example, power controls at the

source and relay nodes may be used to achieve symmetric channel configuration for better outage

performance.

• Analyzing the average packet delays for both the asymmetric and symmetric channels. The results

show that, when the relay-to-destination channels are stronger than the source-to-relay channels,

the AF buffer-aided relay system has the shorter delay. Therefore, the “best” delay and outage

performance requires different channel conditions. This actually brings up an interesting design topic

for future study: how the delay and outage performance can be well balanced.

• Proving that the diversity order of the AF max-link relay selection is between N and 2N (where N

is the number of relays), and the lower and upper diversity limits are reached when the relay buffer

size L is 1 and ∞ respectively.

• Analytically showing the coding gain of the AF max-link scheme compared to the traditional AF

max-SNR schemes.

The rest of the paper is organized as follows: Section II describes the buffer-aided AF max-link relay

selection; Section III derives the closed-form expression of the outage probability; Section IV analyzes

the average packet delay; Section V studies the diversity order; Section VI shows the coding gain; Section

VII shows numerical simulations to verify the analysis; finally Section VIII summarizes the paper.

II. AF MAX-LINK RELAY SELECTION

The system model of the buffer-aided AF relay selection is shown in Fig. 1, where there is one source

node (S), one destination node (D) and N relay nodes (Rk, 1 ≤ k ≤ N ). All nodes operate in the
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half-duplex mode, that is they do not transmit and receive simultaneously. Each relay is equipped with

a data buffer Qk (1 ≤ k ≤ N ) of finite size L (in the number of data packets). The data packets in the

buffer obey the “first-in-first-out” rule.

Fig. 1. The system model of the buffer-aided AF relay selection.

In this paper, we assume no direct transmission link between the source and destination nodes1. We

denote hSRk
(t) and hRkD(t) as the channel coefficients for S → Rk and Rk → D at time slot t respectively.

We assume the all channel coefficients are independently and slowly Rayleigh fading such that they remain

unchanged during one packet duration but independently vary from one packet time to another. The average

S → Rk and Rk → D channel gains are assumed as

E[|hSRk
(t)|2] = σ2

hsr
E[|hRkD(t)|2] = σ2

hrd
, for all k, (1)

respectively. We highlight that, while all channels for S → Rk and Rk → D are i.i.d. respectively, we do

not assume symmetric channel configuratiaon that σ2
hsr

= σ2
hrd

. Without losing generality, we assume that

the noise variances at all receiving nodes (Rk and D) are the same. As in most existing relay selection

approaches, we assume that the destination node has channel state information (CSI) for all channels so

that it can choose the best relay node for transmission2.

In the max-link relay selection, the best transmission link is chosen with the highest channel SNR

among all available source-to-relay and relay-to-destination links. A source-to-relay link is considered

available when the buffer of the corresponding relay node is not full, and a relay-to-destination link is

available when the corresponding relay buffer is not empty. If a source-to-relay link is selected, the source
1Including the direct link has little effect on the relay selection which is the main issue in this paper.
2While the CSI is normally estimated with pilot symbols or channels, this detail is beyond the scope of this paper.
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node transmits one data packet to the corresponding relay node, and the relay receives and stores the data

packet in its buffer3. The number of data packets in the buffer is then increased by one. On the other

hand, if a relay-to-destination link is selected, the corresponding relay transmits the earliest stored packet

in the buffer to the destination, and the number of packets in the buffer is decreased by one. In general,

the best selected relay node Ri (for either reception or transmission) can be expressed as

Rbest = arg max
Rk

 ∪
Rk:Ψ(Qk )̸=L

{|hSRk
|2},

∪
Rk:Ψ(Qk )̸=0

{|hRkD|2}

 , (2)

where Ψ(Qk) gives the number of data packets in the buffer Qk.

Without losing generality, at time slot t, we assume S → Rk is the strongest link so that the source

transmits data packet s(t) to the relay Rk. The received signal at Rk is given by

ySRk
(t) =

√
EshSRk

(t)s(t) + nRk
(t), (3)

where Es is the average transmission power at the source and nRk
(t) is the additive-white-Gaussian-noise

(AWGN) at Rk with mean zero and variance σ2.

Then ySRk
(t) is stored into the buffer Qk and waits for its turn to be transmitted. We assume that at

the next τ -th time slot, ySRk
(t) is forwarded from Rk to the destination node. It is clear that Ψ(Qk(t)) ≤

τ < ∞, where Ψ(Qk(t)) gives the number of data packets in the buffer Qk at time t. Since the relays

exploit AF, at the time slot (t+ τ), the received signal at destination is given by

yRkD(t+ τ) =
√
PRk

(t+ τ)hRkD(t+ τ)ySRk
(t) + nD(t+ τ), (4)

where nD(t+ τ) is the noise at the destination node with mean zero and variance σ2, and PRk
(t+ τ) is

the relay gain at Rk which is given by

PRk
(t+ τ) =

Es

Es|hSRk
(t)|2 + σ2

, (5)

where we assume all relay nodes have the same average transmission powers as the source node, namely

Es.

3The received signal needs to be quantized before it is stored in the buffer. As was mentioned in the introduction, the quantization existing
in any half-duplex relays, either AF or DF, with or without buffers. The quantization noise can either be ignored or absorbed in the channel
noise.
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Substituting (3) into (4) gives

yRkD(t+ τ) =
√
Es

√
PRk

(t+ τ)hRkD(t+ τ)hSRk
(t)s(t) + nD(t+ τ) + n′

Rk
(t), (6)

where n′
Rk
(t) =

√
PRk

(t+ τ)hRkD(t+ τ)nRk
(t).

We next derive the outage performance of the buffer aided AF relay system.

III. OUTAGE PERFORMANCE

The outage probability for the AF relay system can be defined as the probability that the instantaneous

end-to-end SNR at the destination, γD, falls below a certain target SNR γth such that

Pout = P (γD ≤ γth), (7)

where P (·) denotes the probability of an event. The Markov chain is used to model the transitions between

the states of the buffers, where the states describe the number of data packets at every buffer [4]. There

are (L+ 1)N states in total, and the lth state is expressed as

sl = (Ψ(Q1) Ψ(Q2) · · ·Ψ(QN)), l = 1, · · · , (L+ 1)N . (8)

Suppose at time t, the state is at sj . At time t+1, if a source-to-relay link is selected, a packet is transmitted

to the selected relay and the number of packets in the corresponding data buffer is increased by 1. On

the other hand, if a relay-to-destination link is selected, a packet in the selected relay is forwarded to

the destination. Then at the destination, we assume that if the packet can be successfully decoded, it is

stored at the destination, or otherwise is discarded4. In either case, the number of packets in the selected

relay’s buffer is decreased by 1. Thus depending on which relay receives or transmits data, at time t+1,

the buffers may move from state sj to several possible states. We denote A as the (L+ 1)N × (L+ 1)N

state transition matrix, where the entry Ai,j = P (Xt+1 = si|Xt = sj) which is the transition probability

to move from state sj at time t to state si at time (t+ 1).

We assume that, when the data packet s(t) is transmitted from the source to the destination through

the best selected relay Rk, the strongest source-to-relay and relay-to-destination links are selected when

the buffer state is at si and sj respectively. It is then from (6) that, the instantaneous end-to-end SNR at

4The discarded packet may need to be retransmitted. For example, in the TCP/IP protocol, the re-transmission is handled in the transport
layer. The detailed implementation issue is beyond the scope of this paper.
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the destination for receiving s(t) is obtained as

γ
(si,sj)
D (t+ τ) =

γ
(si)
SRk

(t)γ
(sj)
RkD

(t+ τ)

γ
(si)
SRk

(t) + γ
(sj)
RkD

(t+ τ) + 1
. (9)

where γ
(si)
SRk

(t) and γ
(sj)
RkD

(t + τ) which are the instantaneous SNRs for S → Rk and Rk → D links at

time t and t+ τ respectively, and the superscripts (si) and (sj) denote that the corresponding best links are

selected when the buffer state is at si and sj respectively. Because we assume all channels at all times are

independent fading, for clearer exposition, the time indices t and τ are ignored unless otherwise necessary

in the rest of the paper.

By considering all possible states for si and sj , the outage probability of the max-link AF relay selection

is given by

Pout =
∑
si

∑
sj

P (si)P (sj)P (γ
(si,sj)
D < γth), (10)

where P (si) and P (sj) are the probabilities that the buffer state is at si and sj respectively.

Below we show the derivation of P (γ
(si,sj)
D < γth) and P (si).

A. P (γ
(si,sj)
D < γth)

We suppose at one time the strongest link is selected when the buffer state is at s. The buffer

state s uniquely corresponds to a pair of {K(s)
sr , K

(s)
rd }, where K

(s)
sr and K

(s)
rd are the numbers of the

available source-to-relay and relay-to-destination links respectively. Recall that a source-to-relay or relay-

to-destination link is considered as “unavailable” if the buffer of the corresponding relay node is full or

empty respectively.

Because all channels are assumed to independently Rayleigh fading, the instantaneous SNR for every

channel, γw (w ∈ {SRk, RkD}), is independently exponentially distributed. Then based on the theory of

order statistics [14], the cumulative distribution function (CDF) of the selected channel gain, γ(s)
w , is given

by

F
γ
(s)
w
(x) = (1− e−

x
γ̄sr )K

(s)
sr · (1− e

− x
γ̄rd )K

(s)
rd , w ∈ {SRk, RkD}, (11)

where γ̄sr =
Esσ2

hsr

σ2 and γ̄rd =
Esσ2

hrd

σ2 which are the average SNR-s for the source-to-relay and relay-

to-destination channels respectively. Differentiating (11) with respect to x gives the probability density
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function (PDF) of γ(s)
w as

f
γ
(s)
w
(x) =

Ksr

γ̄sr
e−

x
γ̄sr (1− e−

x
γ̄sr )Ksr−1(1− e

− x
γ̄rd )Krd

+
Krd

γ̄rd
e
− x

γ̄rd (1− e
− x

γ̄rd )Krd−1(1− e−
x

γ̄sr )Ksr , w ∈ {SRk, RkD}.
(12)

Supposing the strongest source-to-relay and relay-to-destination links are selected when the buffer state

is at si and sj respectively, because all channels are assumed to be mutually independent, we have

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) = f
γ
(si)
SRk

(x)f
γ
(sj)

RkD

(y), (13)

Therefore we have

P (γ
(si,sj)
D ≤ γth) =

∫∫
xy

x+y+1
<γth

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) dx dy, (14)

which becomes

P (γ
(si,sj)
D < γth) = 1+

K
(si)
sr∑
m

K
(si)

rd∑
n

(m,n)̸=(0,0)

Cm

K
(si)
sr

Cn

K
(si)

rd

(−1)m+n2e−M4γth
√
M4Mγth·

· [K
(sj)
sr

γ̄sr

K
(sj)
sr −1∑
a1=0

K
(sj)

rd∑
a2=0

(−1)a1+a2Ca1

K
(sj)
sr −1

Ca2

K
(sj)

rd

e−M1γth

√
M1

B(1, 2
√
M1M4Mγth)

+
K

(sj)
rd

γ̄rd

K
(sj)

rd −1∑
a3=0

K
(sj)
sr∑

a4=0

(−1)a3+a4Ca3

K
(sj)

rd −1
Ca4

K
(sj)
sr

e−M2γth

√
M2

B(1, 2
√

M2M4Mγth)],

(15)

where

M1 =
1

γ̄sr
+

a1
γ̄sr

+
a2
γ̄rd

,M2 =
1

γ̄rd
+

a3
γ̄rd

+
a4
γ̄sr

,M4 =
m

γ̄sr
+

n

γ̄rd
,Mγth

= γth(γth + 1), (16)

and B denotes the modified Bessel function of the second kind [15].

Proof see Appendix.

B. P (si)

Because the average channel gains for the S → Rk and Rk → D links are not the same, at any time

the probabilities to select the source-to-relay and relay-to-destination transmission are also not the same.

This is very different from existing buffer-aided relay selection schemes (e.g. the max-link approach in

[4]) where the selection of any available link is equally likely. With this observation, we divide all states
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which can be moved from sl into two sets, U+
l and U−

l , where U+
l contains all states to which sl can move

when a source-to-relay link is selected and U−
l contains all states to which sl can move when a relay-

to-destination link is selected. We let p(sl)S→R and p
(sl)
R→D be the probabilities that the source-to-relay and

relay-to-destination transmissions are selected at state sl, respectively. It is clear that p(sl)S→R + p
(sl)
R→D = 1.

On the other hand, because we assume all source-to-relay channels are i.i.d. fading and all relay-to-

destination channels are also i.i.d. fading, the selection of one particular link within either U+
l or U−

l is

equally likely. Therefore, the probability to select a source-to-relay or relay-to-destination link at state sl

is given by
p
(sl)
+ =

(
1

K
(sl)
sr

p
(sl)
S→R

)
=

1

K
(sl)
sr

(1− p
(sl)
R→D),

p
(sl)
− =

(
1

K
(sl)
rd

p
(sl)
R→D

)
=

1

K
(sl)
rd

p
(sl)
R→D,

(17)

respectively.

With these observations, the (i, j)-th entry of the state transition matrix A is expressed as

Ai,j =


p
(sj)
+ = 1

K
(sj)
sr

(1− p
(sj)
R→D), if si ∈ U+

j ,

p
(sj)
− = 1

K
(sj)

rd

p
(sj)
R→D, if si ∈ U−

j .

0, elsewhere,

(18)

Because the transition matrix A in (18) is column stochastic and irreducible5, the stationary state

probability vector is obtained as (see [17], [18])

π = (A − I + B)−1b, (19)

where π = [π1, · · · , π(L+1)K ]
T, b = (1, 1, ..., 1)T , I is the identity matrix and Bn,l is an n × l all one

matrix. Or in the stationary state, we have πl = limt→∞ P (sl) for l = 1, · · · , (L+ 1)K .

Below we derive p
(sl)
R→D in (18).

C. p
(sl)
R→D: probability of selecting the relay-to-destination transmission at state sl

If there are no relay-to-destination links available (or K
(sl)
rd = 0), we have p

(sl)
R→D = 0. On the other

hand, if there are no source-to-relay links available (or K
(sl)
sr = 0), we have p

(sl)
R→D = 1. For other cases,

5Column stochastic means all entries in any column sum up to one, irreducible means that it is possible to move from any state to any
state [16], [17].
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p
(sl)
R→D is given by

p
(sl)
R→D = P (x < y) =

∫ ∫
x<y

fXY (x, y)dxdy

=

∫ ∞

0

∫ y

0

fXY (x, y)dxdy,

(20)

where x and y are the maximum SNR-s from the K
(sl)
sr number of source-to-relay and K

(sl)
rd number of

relay-to-destination links respectively, and fXY (x, y) is the joint PDF of x and y. Because x and y are

mutually independent, we have

fXY (x, y) = fX(x)fY (y) =
K

(sl)
sr K

(sl)
rd

γ̄srγ̄rd
e
−( x

γ̄sr
+ y

γ̄rd
)
(1− e−

x
γ̄sr )K

(sl)
sr −1(1− e

− y
γ̄rd )K

(sl)

rd −1. (21)

where fX(x) and fY (y) are the PDF-s of x and y respectively. Substituting (21) into (20) gives

p
(sl)
R→D =

∫ ∞

0

∫ y

0

K
(sl)
sr K

(sl)
rd

γ̄srγ̄rd
e
−( x

γ̄sr
+ y

γ̄rd
)
(1− e−

x
γ̄sr )K

(sl)
sr −1(1− e

− y
γ̄rd )K

(sl)

rd −1dxdy

=
K

(sl)
rd

γ̄rd

∫ ∞

0

e
− y

γ̄rd (1− e
− y

γ̄rd )K
(sl)

rd −1(1− e−
y

γ̄sr )K
(sl)
sr dy.

(22)

Applying a binomial expansion on (1− e
− y

γ̄rd )K
(sl)

rd −1 and (1− e−
y

γ̄sr )K
(sl)
sr gives

(1− e
− y

γ̄rd )K
(sl)

rd −1 =

K
(sl)

rd −1∑
m=0

Cm

K
(sl)

rd −1
(−1)me

− ym
γ̄rd ,

(1− e−
y

γ̄sr )K
(sl)
sr =

K
(sl)
sr∑

n=0

Cn

K
(sl)
sr

(−1)ne−
yn
γ̄sr .

(23)

Then we obtain

p
(sl)
R→D =

K
(sl)
rd

γ̄rd

K
(sl)

rd −1∑
m=0

K
(sl)
sr∑

n=0

Cm

K
(sl)

rd −1
Cn

K
(sl)
sr

(−1)m+n

∫ ∞

0

e
− y

γ̄rd
− ym

γ̄rd
− yn

γ̄sr dy

=

K
(sl)

rd −1∑
m=0

K
(sl)
sr∑

n=0

Cm

K
(sl)

rd −1
Cn

K
(sl)
sr

(−1)m+n K
(sl)
rd · γ̄sr

γ̄sr + γ̄sr ·m+ γ̄rd · n

(24)

D. A special case: symmetric S → R and R → D channels with σ2
hsr

= σ2
hrd

In this section, we consider a special case that the average channel gains for the source-to-relay and relay-

to-destination links are the same, or σ2
hsr

= σ2
hrd

. Under this symmetric channel scenario, the probabilities

to select any available source-to-relay and relay-to-destination link at state sl at any time are the same.

Thus (17) can be simplified as

p+sl = p−sl =
1

K(sl)
, l = 1, · · · , (L+ 1)N , (25)
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where K(sl) = K
(sl)
sr +K

(sl)
rd which is the total number of the available links (including both source-to-relay

and relay-to-destination links) at state sl. Then the state transition matrix is given by

Ai,j =


1

K(sj)
, if si ∈ Uj,

0, elsewhere,
j = 1, · · · , (L+ 1)N , (26)

where Uj is the set of all possible states to which can be moved from sj at the next time slot.

The stationary state probability vector is then obtained by substituting (26) into (19). Alternatively,

because at any time the probability to select one available link is uniform and every link corresponds to

one transition of states, the stationary probability for a state is proportional to its corresponding number

of available links so that we have

πj = lim
t→∞

P (sj) =
K(sj)∑(L+1)N

l=1 K(sl)
. (27)

For the proof of (27) please refer to Chapter 11 Section 3 Ergodic Markov Chains in [16].

Next, we need to calculate the outage probability for the “symmetric” channel, Psymmetric(γ
(si,sj)
D < γth),

when the strongest source-to-relay and relay-to-destination links are selected at state si and sj respectively.

By letting γ̄ = γ̄sr = γ̄rd, and following the similar procedure in Section III-A, we can obtain

Psymmetric(γ
(si,sj)
D < γth) =1 +

K(sj)

γ̄
·
K(sj)−1∑

n=0

K(si)∑
m=1

Cn

K(sj)−1
Cm

K(si)
(−1)m+n2e−

γth
γ̄

(1+m+n)·

·

√
mγth(γth + 1)

(n+ 1)
B
(
1,

2

γ̄

√
mγth(γth + 1)(n+ 1)

)
.

(28)

Finally, substituting (27) and (28) into (10) gives the overall outage probability for the symmetric

channel configuration as

P symmetric
out =

∑
si

∑
sj

K(si)∑(L+1)N

l=1 K(sl)
· K(sj)∑(L+1)N

l=1 K(sl)

1 +
K(sj)

γ̄

K(sj)−1∑
n=0

K(si)∑
m=1

Cn

K(sj)−1
Cm

K(si)
·

·(−1)m+n2e−
γth
γ̄

(1+m+n)

√
mγth(γth + 1)

(n+ 1)
B
(
1,

2

γ̄

√
mγth(γth + 1)(n+ 1)

))
.

(29)

IV. AVERAGE PACKET DELAY

In the AF max-link scheme, at a transmission node (either the source or a relay), a data packet can

only be transmitted out if the corresponding link is selected. This brings up 2 issues: first, the packets

may not arrive at the destination in order; second, each packet may suffer from different delay within the
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systems. While the first issue can be easily handled by for instance numbering every packet, the delay

becomes a main issue in buffer-aided relay selection systems [8].

In general, a packet delay includes delays at both the source and selected relay nodes, which are

denoted as Ds and Dr respectively. A simple example is illustrated in Fig. 2, where there are 3 packets

(s(1), s(2) and s(3)) transmitted out consecutively from the source. The transmission time-span for

every packets is represented by a horizontal bar in Fig. 2, where Ds and Dr indicate the delay time

slots at the source and relay nodes respectively, S − R and R − D indicate the transmission time slots

for source-to-relay and relay-to-destination respectively. For example, packet s1 is transmitted from the

source to a relay node at time slot 2. After that, packet s2 waits for 3 time slots (slots 3, 4 and 5) and

is then transmitted to a relay. After s2 arrives the relay at slot 6, it waits for another 4 time slots (slots

7-10) before it is eventually transmitted to the destination at slot 11. Thus the delays for s2 at the source

and relay nodes are 3 and 4 respectively in this example. Fig. 2 also shows that the packets arrive at the

destination in the order of [s1, s3, s2], which is clearly not as same as the transmission order.

Fig. 2. An example of packet delay in the AF max-link scheme.

We particularly highlight that, while different packet may suffer from different delay, the system

throughput (or the average data rate) of the AF max-link scheme is not scarified. This is because that, at

any time slot, there is always one link selected for transmission. Therefore, when a packet is “waiting” for

transmission at a node, another packet must be transmitted at another node. Suppose there are M packets

in total. Because each packet takes 2 time slots for transmission (excluding the waiting time), if M is large

enough, the overall transmission time to deliver all packets is approximately 2M . Therefore, the system

average throughput is η = M
2M

= 0.5, which is the same as that for the classic 3-node “S → R → D”

relay system [19].
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According to the Little’s law [?], the average packet delay at the node i can be obtained as

E[Di] =
E[Qi]

ηi
, (30)

where E[Qi] and ηi are the average queuing length and throughput at the node.

In the following two subsections, we derive the average packet delay at the source and relay nodes

respectively.

A. Average packet delay at the source

Because all data are transmitted from the same source node, the average throughput at the source node

is the same as that for the overall system which is given by

ηs = η = 1/2 (31)

On the other hand, if we assume that the source always has data to transmit, the queuing length at

the source depends on how fast the data leave the source, which again depends on the probability that a

source-to-relay link is selected. Considering all buffer states at the relay, the probability that a source-to-

relay link is selected can be obtained as pS→R =
∑(L+1)N

l=1 πl · p(sl)S→R =
∑

sl
P (sl) · (1− p

(sl)
R→D), where πl

is the stationary probability for state sl which is obtained in (19), and p
(sl)
R→D is the probability to select a

relay-to-destination link at state sl which is given by (24). Alternatively, for any fixed sized buffers, the

number of data arriving at the whole the relays must be equal to that leaving these relays, because no

data can stay in a relay node forever and fails to reach the source. Thus we must have

pS→R = pR→D = 1/2 (32)

This implies that the average queuing length at the source node is

E[Qs] = 1/2 (33)

Substituting (31) and (33) into (30) gives the average packet delay at the source node as

E[Ds] =
E[Qs]

ηs
= 1. (34)

We highlight that (34) holds for both symmetric and asymmetric channel scenarios.
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B. Average packet delay at the relay

Because the probabilities to select any of the relays are the same, the average packet delays at any of

the relay are also the same, so is the average throughput at any relay which is given by

ηr =
η

N
=

1

2N
(35)

Let Q(sl)
r be the queuing length (or the average number of packets) for the selected relay at the buffer

state sl. Considering all buffer state sl, the average queuing length at the selected relay is obtained as

E[Qr] =

(L+1)N∑
l=1

πlQ
(sl)
r , (36)

Substituting (35) and (36) into (30) gives the average packet delay at the relay as

E[Dr] =
1

2N

(L+1)N∑
l=1

πlQ
(sl)
r (37)

Finally combining the delay at the source and relay nodes gives the overall average delay in the AF

max-link system as

E[D] = E[Ds] + E[Dr] = 1 +
1

2N

(L+1)N∑
l=1

πlQ
(sl)
r . (38)

On the other hand, if the source-to-relay and relay-to-destination channels are symmetric (i.e. σ2
hsr

=

σ2
hrd

), the average packet delay at the relay in (37) can be obtained as E[Dr] = L/2, and the the overall

average delay becomes E[D] = 1 +NL.

C. Numerical example

We have done extensive numerical simulation which all well match the above delay analysis. Some of

the results are shown in Table I and II, where for fair comparison, we let γ̄sr(dB)+ γ̄rd(dB) = 40dB in all

cases. It is clearly shown that, with more relay number N and larger buffer size L, we have larger delays.

Moreover, if the relay-to-destination link SNR is stronger than the source-to-relay SNB, we have smaller

delay. This is not surprising because higher relay-to-destination SNR implies that the relay-to-destination

link is more likely to be selected and the data is more quickly forwarded to the destination.
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TABLE I

AVERAGE PACKET DELAYS

(N,L) = (2, 2) Dave

(γ̄sr, γ̄rd) Simulation Theory
10 30 2.0313 2.0300
15 25 2.2984 2.2999
20 20 4.9939 5
25 15 7.6987 7.7001
30 10 7.9706 7.9700

TABLE II

AVERAGE PACKET DELAYS

(N,L) = (4, 4) Dave

(γ̄sr, γ̄rd) Simulation Theory
10 30 2.0401 2.0416
15 25 2.4263 2.4273
20 20 17.0481 17
25 15 31.5646 31.5727
30 10 31.9534 31.9584

V. DIVERSITY ORDER

In order to show the diversity order of the AF max-link scheme, we assume all channels are i.i.d such

that σ2
hsr

= σ2
hrd

= σ2
h, and then the outage probability is given in (29). The diversity order can be defined

as

r = − lim
γ̄h→∞

logPout

log γ̄h
, (39)

where γ̄h = (Esσ
2
h)/σ

2 which is the average SNR for every channel. However substituting (29) into

(39) does not explicitly shows the diversity order. Instead, we first derive the upper and lower bounds of

the outage probability, from which the diversity order is obtained; then we show that the minimum and

maximum diversity orders are obtained when the relay buffer sizes are 1 and ∞ respectively.

A. Outage probability bounds

Noting γ
(si)
SRk

= γ̄h|hSRk
|2, γ(sj)

RkS
= γ̄h|hRkD|2, and from (9), we have

lim
γ̄h→∞

γ
(si,sj)
D =

γ
(si)
SRk

γ
(sj)
RkD

γ
(si)
SRk

+ γ
(sj)
RkD

. (40)
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Since γ
(si)
SRk

> 0 and γ
(sj)
RkD

> 0, we have

1

2
min(γ(si)

SRk
, γ

(sj)
RkD

) ≤
γ
(si)
SRk

γ
(sj)
RkD

γ
(si)
SRk

+ γ
(sj)
RkD

≤ min(γ(si)
SRk

, γ
(sj)
RkD

). (41)

From (40) and (41), we have

PL
e ≤ lim

γ̄h→∞
P (γ

(si,sj)
D < γth) ≤ PU

e , (42)

where PL
e = P (min(γ

(si)
SRk

, γ
(sj)
RkD

) < γth) and PU
e = P (1/2 · min(γ

(si)
SRk

, γ
(sj)
RkD

) which are the lower and

upper bounds for limγ̄h→∞ P (γ
(si,sj)
D < γth) respectively.

Supposing the total numbers of available links for buffer state si and sj are given by K(si) and K(sj)

respectively, the lower bound PL
e can be obtained as

PL
e = P (min(γ

(si)
SRk

, γ
(sj)
RkD

) < γth)

= 1− (1− FX(γth))(1− FY (γth))

= (1− e
− γth

γ̄h )K
(si) + (1− e

− γth
γ̄h )K

(sj) − (1− e
− γth

γ̄h )K
(si)(1− e

− γth
γ̄h )K

(sj)

.

(43)

Further noting that ex ≈ 1 + x for very small x, and ignoring the high order terms, we have

lim
γ̄h→∞

PL
e =

(
γth
γ̄h

)min{K(si),K(sj)}

. (44)

Then we have − limγ̄h→∞
logPL

e

log γ̄h
= min{K(si), K(sj)}. Further noting that N ≤ K(si) ≤ 2N and N ≤

K(sj) ≤ 2N , we have

N ≤ − lim
γ̄h→∞

logPL
e

log γ̄h
≤ 2N. (45)

On the other hand, the upper bound PU
e can be obtained as

PU
e = P (1/2 ·min(γ

(si)
SRk

, γ
(sj)
RkD

) < γth)

= 1− (1− FX(2γth))(1− FY (2γth))

= (1− e
− 2γth

γ̄h )K
(si) + (1− e

− 2γth
γ̄h )K

(sj) − (1− e
− 2γth

γ̄h )K
(si)(1− e

− 2γth
γ̄h )K

(sj)

,

(46)

Then following the similar procedure as that for PL
e , we have

lim
γ̄h→∞

PU
e =

(
γth
γ̄h

)min{K(si),K(sj)}

, (47)
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and

N ≤ − lim
γ̄h→∞

logPU
e

log γ̄h
≤ 2N. (48)

It is clear from (44) and (47) that, when γ̄h → ∞, logPL
e and logPU

e have the same gradients against

log γ̄h. Then using (45) and (48) in (42), we must have

N ≤ − lim
γ̄h→∞

logP (γ
(si,sj)
D < γth)

log γ̄h
≤ 2N. (49)

Particularly, if K(si) = K(sj) = K, we have

− lim
γ̄h→∞

logP (γ
(K,K)
D < γth)

log γ̄h
= K. (50)

Finally, because (49) holds for every si and sj , from (10), the diversity order of the max-link AF relay

selection can be obtained as

N ≤ r ≤ 2N. (51)

It is clear that the diversity order r is a function of both the relay number N and buffer size L. Below we

show the upper and lower limits of the diversity order are reached when L = 1 and L → ∞ respectively.

B. Buffer size L = 1

If the buffer size L = 1, the available number of links at any state is N , or we have P (K(si) = N) = 1

for all si. Then from (10), the outage probability is given by

P
(L=1)
out = P (γ

(N,N)
D < γth). (52)

Furthermore from (50), we have the diversity order for L = 1 as

r = − lim
γ̄h→∞

P
(L=1)
out

log γ̄h
= N. (53)

C. Buffer size L → ∞

If the buffer size is L, there are (L − 1)N states which are neither full nor empty so that their

corresponding number of available links is 2N . Since the total number of buffer states is (L + 1)N ,

the number of states whose corresponding links is not 2N is (L+ 1)N − (L− 1)N . Thus the probability
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that the available link is not 2N is given by

P (K ̸= 2N) =
∑

K(sj) ̸=2N

πj, (54)

where K(sj) and πj are the total number of available links and stationary probability for the state sj

respectively. Substituting (27) into (54), and recalling that N ≤ K(sj) ≤ 2N for all j, we have

P (K ̸= 2N) =
∑

K(sj) ̸=2N

K(sj)∑(L+1)N

l=1 K(sl)

≤
∑

Dj ̸=2N

2N∑(L+1)N

l=1 N
= 2 · (L+ 1)N − (L− 1)N

(L+ 1)N − 1
.

(55)

It is clear from (55) that limL→∞ P (K ̸= 2N) = 0.

Therefore, if L → ∞, the outage probability in (10) can be simplified as

P
(L→∞)
out = P (γ

(2N,2N)
D < γth). (56)

Then from (50), we obtain the diversity order for L → ∞ as

r = − lim
γ̄h→∞

P
(L→∞)
out

log γ̄h
= 2N. (57)

VI. CODING GAIN

Compared with the traditional max-SNR relay selection scheme, the AF max-link scheme has not only

diversity but also coding gain. In order to highlight the coding gain, we assume the relay buffer size of

the max-link scheme is L = 1. Then the diversity orders for both the max-link and max-SNR schemes

are N , and the outage performance advantage of the AF max-link over the max-SNR scheme comes from

the coding gain.

From (52), when L = 1, the outage probability of the AF max-link scheme is given by P
(L=1)
out =

P (γ
(N,N)
D < γth) whose lower and upper bounds (PL

e and PU
e respectively) can be obtained using (42). As

is shown in Section V-A, when the channel SNR γ̄h → ∞, logPL
e and logPU

e have the same gradients

against log γ̄h. This implies that, for γ̄h → ∞, we must have

10 logP
(L=1)
out = α+ 10 logPL

e , (58)

where 0 ≤ α ≤ log(PU
e /PL

e ) which is a small constant.
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We note that, ex ≈ 1 + x for very small x. Substituting (43) into (58), and ignoring the high order

terms at the high SNR, we have

lim
γ̄h→∞

10 logP
(L=1)
out = α+ 10 log

[
2 ·
(
γth
γ̄h

)N
]

(59)

On the other hand, in the traditional max-SNR scheme, the best relay is selected that maximizes the

SNR at the destination. To be specific, if the relay Rk is selected, the end-to-end SNR at the destination

can be obtained as

γ
(Rk)
D =

γSRk
γRkD

γSRk
+ γRkD + 1

, (60)

where γSRk
and γRkD are the instantaneous channel SNR for S → Rk and Rk → D links respectively.

Similar to (42), we can obtain the lower and upper bounds for P (γ
(Rk)
D < γth) at the high SNR as

P (min(γSRk
, γRkD) < γth) ≤ P (γ

(Rk)
D < γth) ≤ P (1/2 ·min(γSRk

, γRkD) < γth). (61)

Because the best relay in the max-SNR scheme is selected among N pair of source-to-relay and relay-

to-destination links that maximizes (60), the outage probability can be obtained as

P
(max−SNR)
out = [P (γ

(Rk)
D < γth)]

N (62)

Substituting (61) into (62) gives

[P (min(γSRk
, γRkD) < γth)]

N ≤ P
(max−SNR)
out ≤ [P (1/2 ·min(γSRk

, γRkD) < γth)]
N . (63)

For the similar reasons in obtaining (58), at the high SNR, we must have

10 logP
(max−SNR)
out = β + 10 log[P (min(γSRk

, γRkD) < γth)]
N (64)

where β is a small positive constant. Because the channel SNR are exponentially distributed, we have

[P (min(γSRk
, γRkD) < γth)]

N =
(
(1− e

− γth
γ̄h ) + (1− e

− γth
γ̄h )− (1− e

− γth
γ̄h )(1− e

− γth
γ̄h )
)N

. (65)

Substituting (65) into (64), and ignoring the high orders at the high SNR, we have

lim
γ̄h→∞

10 logP
(max−SNR)
out = β + 10 log

(
2 · γth

γ̄h

)N

(66)
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Finally from (59) and (66), when the buffer size L = 1, the coding gain of the AF max-link scheme

over the traditional AF max-SNR scheme is given by

θ(L=1)(dB) = lim
γ̄h→∞

(
10 logP

(max−SNR)
out − 10 logP

(L=1)
out

)
= 10(N − 1) log 2 + (β − α)

≈ 10(N − 1) log 2,

(67)

where the approximation in (67) comes from the fact that both α and β are small positive constants.

We recall that the data buffers (with size 1) also exist at the relays in traditional relay selection scheme,

because the data need to be stored in the relay at one time and forwarded to the destination at the next

time. It is clear from (67) that, even with L = 1, the AF max-link still has better outage performance

than the traditional AF max-SNR scheme because of the coding gain. It is also shown in (67) that more

relays lead to higher coding gain. Only when N = 1, does the coding gain disappear because then both

the max-link and max-AF schemes reduce to the standard 3 nodes relay system.

While the coding gain analysis above is for buffer size L = 1, it is also useful in understanding more

general case with other buffer sizes, where the coding gain also exists. In general, the coding gain depends

on the number of available links for selection, which again depends on both the relay number N and

buffer sizes L. With larger L and N , we have larger coding gain. This will be verified in the simulation

later in this paper.

VII. SIMULATION AND DISCUSSIONS

In this section, numerical results are shown to verify the analysis in this paper. In the simulations below,

the average transmission powers for all transmission nodes is set as Es = 1, the noise variances for all

receiving nodes are set as σ2 = 1. All simulation results are obtained with 1,000,000 independent runs.

A. Outage performance of the AF max-link scheme

Fig. 3 verifies the outage probability expression in (29) with simulation results under varies scenarios.

It is clearly shown that in all cases the theoretical analysis well matches the simulation results. Both Fig.

3 (a) and (b) show that the best outage performance is obtained when the source-to-relay and relay-to-

destination channels are symmetric.

Fig. 4 (a) and (b) show the outage performance against different buffer lengths L for symmetric and

asymmetric channel configurations respectively, where the relay number is fixed at N = 3. It is clearly
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N= 3 L= 10 γsr = 28dB γrd = 32dB (Simulation)

N= 3 L= 10 γsr = 28dB γrd = 32dB (Theory)

N= 3 L= 10 γsr = 29dB γrd = 31dB (Simulation)
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(a) N = 4, L = 4 (b) N = 3, L = 10

Fig. 3. Outage probability performance of the AF max-link scheme: theory vs simulation.

shown that the outage performance improves with larger buffer size L, but the improvement is less

significant when L becomes larger. It is shown in Fig. 4 (a) and (b) that, when L = 50 and L = 20, the

outage performance is almost as same as that for L → ∞ for the asymmetric and symmetric channel

configuration respectively. Therefore, in practice, the full outage order 2N can be achieved with finite

buffer sizes. It is also shown that, with larger buffer size L, the outage performance improvement in the

symmetric channel (Fig. 4 (a)) is much more significant than that in the asymmetric channel (Fig. 4 (b)).
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N= 3 L→ ∞ γsr = γrd = 25dB
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N= 3 L= 1 γsr = 25dB γrd = 30dB (Simulation)

N= 3 L= 1 γsr = 25dB γrd = 30dB (Theory)

N= 3 L= 2 γsr = 25dB γrd = 30dB (Simulation)

N= 3 L= 2 γsr = 25dB γrd = 30dB (Theory)

N= 3 L= 3 γsr = 25dB γrd = 30dB (Simulation)

N= 3 L= 3 γsr = 25dB γrd = 30dB (Theory)

N= 3 L= 20 γsr = 25dB γrd = 30dB (Simulation)

N= 3 L= 20 γsr = 25dB γrd = 30dB (Theory)

(a) Symmetric channels (b) Asymmetric channels

Fig. 4. Outage probability performance of the max-link scheme for different buffer length L.

Fig. 5 shows how the outage performance changes with different relay numbers N for a fixed buffer

size L = 8, where the asymmetric channel configuration with γ̄sr = 30dB and γ̄rd = 25dB is considered.

It is clearly shown that the outage performance improves with more relays. The results for other channel



23

configurations are similar so they are not presented.
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N= 2 L= 8 γsr = 30dB γrd = 25dB (Simulation)

N= 2 L= 8 γsr = 30dB γrd = 25dB (Theory)

N= 3 L= 8 γsr = 30dB γrd = 25dB (Simulation)

N= 3 L= 8 γsr = 30dB γrd = 25dB (Theory)

N= 4 L= 8 γsr = 30dB γrd = 25dB (Simulation)

N= 4 L= 8 γsr = 30dB γrd = 25dB (Theory)

Fig. 5. Outage probability performance of the max-link scheme for different relay number N .

B. Outage performance comparison between of the AF max-link and max-SNR schemes

Fig. 6 compares the proposed AF max-link and traditional max-SNR schemes in symmetric and

asymmetric channels. For fair comparison, we let γ̄sr(dB) + γ̄rd(dB) = 40dB in all cases. It is clearly

shown that, for the both the AF max-link and max-SNR schemes, the best outage performance is achieved

in the symmetric channel. Moreover, the outage performance advantage of the AF max-link scheme over

the traditional max-SNR scheme is also more significant in the symmetric than in the asymmetric channels.

For example, when the target SNR=10dB, the outage probability difference between the max-link and

max-SNR are approximately as large as 28dB for symmetric channels, and only about 2dB for asymmetric

channels6.

This can be explained as following: In the AF max-link scheme, as is shown in (10), the outage

performance depends on both the outage probability for every buffer state and the distributions of the buffer

states, because different buffer state may correspond to different available links for the relay selection.

On the one hand, the outage probability for a given buffer state is always minimized in the symmetric

channel. This is because that, as is shown in the outage bound in Section V-A, the outage probability for

any buffer state depends on the minimum SNR of the source-to-relay and relay-to-destination channels,

which is clearly minimized in the symmetric channels. On the other hand, if the channels become more

asymmetric, the relay buffers are more likely to be full or empty, corresponding to fewer available links,

which also deteriorates the outage performance.
6Outage probability in dB = 10 log(outage probability)



24

In comparison, the traditional AF max-SNR scheme does not have buffer states and the available

links for selection is always equal to the relay numbers. Thus the outage performance solely depends

on the minimum SNR of the source-to-relay and relay-to-destination channels, and is optimum in

symmetric channels. Therefore, when the channels become more asymmetric, there are two and one

deteriorating factors in the outage performance for the max-link and max-SNR respectively, so that the

outage performance of the max-link deteriorates faster than that of the max-SNR scheme. Therefore,

compared with the traditional relay selection scheme, the buffer-aided max-link scheme is most effective

in the symmetric channel configuration.
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max-link N= 3 L= 10 γsr = 15dB γrd =25dB (Simulation)

max-link N= 3 L= 10 γsr = 25dB γrd =15dB (Simulation)

max-link N= 3 L= 10 γsr = 15dB γrd =25dB (Theory)

max-link N= 3 L= 10 γsr = γrd =20dB (Simulation)

max-link N= 3 L= 10 γsr = γrd =20dB (Theory)

max-SNR N= 3 γsr = 15dB γrd =25dB (Simulation)

max-SNR N= 3 γsr = 25dB γrd =15dB (Simulation)

max-SNR N= 3 γsr = 15dB γrd =25dB (Theory)

max-SNR N= 3 γsr = γrd =20dB (Simulation)

max-SNR N= 3 γsr = γrd =20dB (Theory)

Fig. 6. Outage performance comparison between the AF max-link and max-SNR schemes with different channel configurations.

C. Diversity order and coding gain

In order to show the diversity gain, Fig. 7 considers a symmetric channel configuration that γ̄sr = γ̄rd =

25dB. As is proved in Section V, the diversity orders of the AF max-link scheme are N and 2N , when

the buffer sizes are L = 1 and L → ∞ respectively. On the other hand, diversity order of the max-SNR

is N . Therefore, the max-link schemes with (N,L = 1) and (N,L → ∞) have the same diversity orders

as those for the max-SNR with N and 2N respectively, which is clearly verified in Fig. 7.

It is interesting to observe that, because of the coding gain, the max-link scheme with (N = 5, L = 1)

has significant better outage performance than the max-SNR scheme with N = 5, though they have the

same diversity orders. Fig. 7 shows that, when SNR = 14dB, the outage probability difference between

max-SNR with N = 5 and max-link with (N = 5, L = 1) is approximately 11dB, which well matches

the approximate coding gain obtained from (67) that 10(N − 1) log 2 = 12dB when N = 5.
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On the other hand, for the max-link scheme N = 5, L → ∞, the available link for every buffer state is

2N = 10. Then following the similar procedure in Section V, we can obtain that the coding gain of the

max-link with N = 5, L → ∞ over the max-SNR with 2N = 10 is approximately 10(2N − 1) log 2 =

27dB. But Fig. 7 shows that, when SNR = 14dB, the outage probability difference between the max-SNR

with N = 10 and max-link with (N = 5, L → ∞) is approximately 31dB, which well matches the

analytical result.
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Fig. 7. Diversity order and coding gain of the AF max-link scheme.

VIII. CONCLUSION

In this paper, we carefully studied the performance of buffer-aided AF max-link relay selection scheme

for both symmetric and asymmetric channels. We derive the closed form expression of the outage

probability of the proposed scheme. The results showed that the max-link scheme is most effective over the

traditional max-SNR scheme when the source-to-relay and relay-to-destination links are symmetric. We

also derived the average packet delay of the max-link scheme under both both symmetric and asymmetric

channel configurations. We proved that the diversity order of the AF max-link scheme is between N and

2N , where the lower and upper limits were obtained when the buffer size is 1 and ∞ respectively. We

also analytically showed the coding gain of the max-link scheme over the traditional max-SNR scheme.

Finally, extensive numerical simulations were given to verify the analysis in this paper.
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APPENDIX - PROOF OF (15)

Since the integration area of (14) is closed by the curve γth(x+1)
x−γth

, x ≥ 0 axis and y ≥ 0 axis, the

integration can be split into three parts as

P (γ
(si,sj)
D ≤ γth) =

∫ ∞

γth

∫ γth

0

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) dx dy︸ ︷︷ ︸
A

+

∫ γth

0

∫ ∞

0

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) dx dy︸ ︷︷ ︸
B

+

∫ ∞

γth

∫ γth(y+1)

y−γth

γth

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) dx dy︸ ︷︷ ︸
C

.

(68)

Parts A and B can be obtained as

A =

∫ ∞

γth

∫ γth

0

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) dx dy

= [1− F
γ
(sj)

RkD

(γth)]Fγ
(si)
SRk

(γth)

B =

∫ γth

0

∫ ∞

0

f
γ
(si)
SRk

γ
(sj)

RkD

(x, y) dx dy

= F
γ
(sj)

RkD

(γth),

(69)

respectively. Part C is further divided into parts C1 and C2 as

C =

∫ ∞

γth

f
γ
(sj)

RkD

(y)

∫ γth(y+1)

y−γth

γth

f
γ
(si)
SRk

(x) dx dy

=

∫ ∞

γth

f
γ
(sj)

RkD

(y)F
γ
(si)
SRk

[
γth(y + 1)

y − γth
] dy︸ ︷︷ ︸

C1

− [1− F
γ
(sj)

RkD

(γth)]Fγ
(si)
SRk
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C2

.
(70)

Noticing C2 is equal to part A, we now need to calculate part C1. First applying a binomial expansion

on F
γ
(si)
SRk

[γth(y+1)
y−γth

] which gives

F
γ
(si)
SRk

[
γth(y + 1)

y − γth
] =

K
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sr∑
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K
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K
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(−1)m+ne
− m
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− n
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= 1
(m,n)=(0,0)

+

K
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m=0

K
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rd∑
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(m,n) ̸=(0,0)

Cm

K
(si)
sr

Cn

K
(si)

rd

(−1)m+ne
−( m

γ̄sr
+ n
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)· γth(y+1)

y−γth .

(71)
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We let M4 =
m
γ̄sr

+ n
γ̄rd

and substituting (71) into part C1 gives

C1 =

∫ ∞

γth

f
γ
(sj)

RkD

(y) dy +

K
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sr∑
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K
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,

(72)

which is further split into another two parts as C11 (for (m,n) = (0, 0)) and C12 (for (m,n) ̸= (0, 0))

respectively. Noticing C11 is actually equal to 1−B as is shown in (69).

Applying a binomial expansion on f
γ
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(y) which gives

f
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where M1 =
1
γ̄sr

+ a1
γ̄sr

+ a2
γ̄rd

and M2 =
1
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. Thus for C12,
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where Mγth = γth(γth + 1) and B denotes the modified Bessel function of the second kind [15].

Finally, substituting A, B and C back into (70) gives
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