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Abstract—This paper presents a new approach to introducing
adaptive filters based on the least-mean-square (LMS) algorithm
and its variants in an undergraduate course on digital signal
processing. Unlike other filters currently taught to undergraduate
students, these filters are nonlinear and time variant. This proposal
introduces adaptive filtering in the context of a linear time-
invariant system using a real problem. In this way, introducing
adaptive filters using concepts already familiar to the students
motivates their interest through practical application. The key
point for this simplification is that the input to the filter is
constant so that the adaptive filter becomes linear. Therefore, a
complete arsenal of mathematical tools, already known by the
students, is available to analyze the performance of the filters
and obtain the key parameters to adaptive filters, e.g., speed
of convergence and stability. Several variants of the basic LMS
algorithm are described the same way.

Index Terms—Adaptive filters, algorithms, digital signal pro-
cessing (DSP).

I. INTRODUCTION

ADAPTIVE filters have been demonstrated to be useful
since they were first introduced by Widrow and Hoff

during the 1960s [1]. Thereafter, they have found countless
applications [2]. As a consequence, adaptive filters have
been included in the syllabus of undergraduate digital signal
processing (DSP) courses. Unfortunately, these filters do not
adapt well to the normal course contents for several reasons.

• Adaptive filters are time variant. Therefore, most of the
analysis tools provided to the students (e.g., or Fourier
transforms) are not directly applicable.

• Modification of adaptive filters coefficients is nonlinear.
This modification provokes dynamic behaviors (e.g.,
chaotic behavior in the output).

• Adaptive filters rely on certain constants. The boundaries
of these constants are fixed using rather advanced mathe-
matical tools unfamiliar to students. Therefore, students
observe that the filter performs well for certain values
but do not understand why. Teachers want to avoid this
situation.

This communication proposes introducing the least-mean-
square (LMS) algorithm and some of its variants through a real
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problem, such as the conditioning of a signal for estimating the
weight of individual fruits traveling on a conveyor belt. The au-
tors’ aim is to provide an intuitive view of the process and show
how a transfer function for an adaptive filter can be obtained in
particular cases. This fact is used to explain the performance of
adaptive systems as a function of the values of the constants in-
cluded in their expressions.

II. DESCRIPTION OF THE PROBLEM

Dynamic weighting is a common application in some indus-
trial areas, for example, fruit-sorting and -grading machinery in
fruit-packing houses. In this case, the authors try to estimate the
weight of fruits traveling onto a conveyor belt with individual
cups that contain separate fruits, using a load cell and the min-
imum analog conditioning and amplifying circuitry [3], [4].

In order to obtain the registers, a real commercial fruit-sorting
and -grading machine provided by Maxfrut, SL, Alzira, Spain,
with two sorting lines was used. The acquisition hardware is
a modified board card provided by Dismuntel, SL, Algemesí,
Spain, based on the LTC1100 instrumentation amplifier from
Linear Technologies. Data were acquired with a DAQ-Card
AT-MIO16 from National Instruments, with a low-pass filter
and a cutoff frequency of 200 Hz sampled at 1 kHz with a
16-b resolution. The 10-lb load cell is steel-made by Artech
Industries, Inc., with 2.096 mV/V @ 10 lbs.

The speed of the conveyor varies from 2–15 fruits/s, de-
pending on the nature of the goods processed. Obviously, the
quality of the signal strongly depends on this speed (Fig. 1). In
this paper, the process by which the actual weight is estimated
from the load-cell measurement is not of direct concern;
rather, the focus is upon the preprocessing of the load-cell
measurement over some observation window. Such a window
of data is termed a data register.

At first sight, the signals seem to be heavily distorted by
power-line noise. To verify this hypothesis, a basic spectral anal-
ysis of the signal was performed. An average fast Fourier trans-
form (FFT) of a series of 10-s intervals rules out this possibility.
The origin of the distortion is the dynamic response of the load
cell and the machine vibration. Simple algorithms for weight
estimations, such as moving average, are only acceptable at low
conveyor speeds.

Then, consider the ideal waveform of a load-cell response to
propose other alternatives (Fig. 2). The height of the pulse
depends on the weight and the width on the conveyor speed.
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Fig. 1. Raw signals at lower (5 fruits/s) and higher (12 fruits/s) speeds of the conveyor. Vertical axis contains the values given by the analog-to-digital converter
(1 gr is approximately 6 u), and the sampling rate is 600 Hz.

The algorithm must be fast enough to estimate the weight at
maximum speed (minimum value of ).

Fig. 2 shows that weight estimation is basically reduced to a
local mean value estimator, whose length depends on the con-
veyor speed.

Since this estimator suits adaptive filters very well, a mono-
tonic increasing error function must be defined. The most com-
monly used one is the mean-square error.

Fig. 3 shows a simple adaptive structure that may solve the
problem. The input to the adaptive filter is a constant value (1
for simplicity), and the length of the filter is 1. In this way, the
load-cell (reference) signal and the input to the filter are un-
correlated except for the direct current (dc) component of the
load-cell signal. Therefore, the minimum for the error function
is achieved when the average (dc estimation) of the reference
signal (weight estimation) is equal to the output of the filter.

The most exploited adaptive algorithms, the LMS and some
of its variants [2], are applied to solve this problem. The next
section shows the theoretical development used to obtain the
performance characteristics of these algorithms in this particular
problem.

III. THEORETICAL DEVELOPMENT

A. The LMS Algorithm

A commonly exploited technique to determine the minimum
of a function is the method of “steepest descent.” It is an iterative
method defined by

(1)

where is the function to be minimized, is a column vector
that contains the parameters of the adaptive filter at instant ,

Fig. 2. Sketch of a “perfect” weighting signal.

Fig. 3. Scheme of the proposed adaptive filter. Error is minimized when the
dc component of the load cell matches the output of the filter.

and is a parameter (adaptation constant). Equation (1) has a
clear intuitive meaning. Parameters at a given instant are ob-
tained from the current values, slightly modified according to
the direction of the steepest descent of . Vector analysis states
that this direction is opposite to the gradient of the cost function
[2]. The constant 1/2 is added to simplify the final expressions.
Fig. 4 shows an example of the evolution of the two weights
(filter coefficients) and the error (sum squared error) toward the
minimum of the error function.
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Fig. 4. Scheme of the steepest descent method.

The LMS algorithm considers as the instantaneous squared
error, defined as [5], [6]

(2)

where is the error committed by the adaptive filter. This
error is given by the difference between the desired signal
and the filter output , as

(3)

where ,
and denotes vector

transposition. From (2) and (3), (1) can be written as

(4)

which contains the update of the filter coefficients for the basic
LMS algorithm. Nonlinearity appears since there is a multipli-
cation between the error and the input signals.

In this special case, these expressions are simplified. Since
is equal to one, and the length of the filter is one, the filter

outcome is the filter coefficient. Therefore, (4) can be written as

(5)

Equation (5) is a linear equation since the multiplication in (4)
vanishes under these special conditions. Then, a transfer func-
tion can be obtained for the filter by applying the transform to
both sides of (5), as follows:

(6)

This transfer function enables the analysis of the filter perfor-
mance as a function of .

• Stability. There is a single pole at ; therefore, the
boundaries for the adaptation constant are 0 and 2, which

correspond to the values usually specified for adaptive
filters [5].

(7)

where is the length of the filter and the is the
energy of the input. In this case, both values are equal to
1.

• Speed of convergence. The adaptation constant controls
the speed of convergence of the adaptive filter. The smaller
the constant, the slower the convergence. For a small value
of , the time constant for the th coefficient of the filter
is given by [7]

(8)

where is the th eigenvalue of the autocorrelation matrix
of the input signal. In this case, , so .

To obtain this expression for this case, from (5), the
impulse response of the filter (assumed to be causal) is

(9)

where is the step function.
If is defined as the sampling instant when the signal

decreases its value from the maximum to of
this value, one obtains

(10)

which can be written as

(11)

Since is usually very small, the following approxima-
tion is proposed:

(12)

Thus, (11) is reduced to

(13)

where is the number of samples required by the filter
to decay from its maximum value to a certain percentage
of that maximum ( ). This value is equivalent to the
speed of convergence and matches (8).

In a similar way, different variants of the basic LMS algorithm
can be analyzed for this special case, and decisions about their
suitability can be derived.

Averaged LMS Variant: Any real system is contaminated by
a series of random interferences, such as measurement errors,
machine vibrations, and drifts in analog components. To remove
this interference, the averaged variant is proposed. The aver-
aged LMS (ALMS) algorithm updates the filter coefficients ac-
cording to

(14)
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The improved performance of the ALMS algorithm in the
presence of noise is because of the averaging of the gradient
terms, which reduces the effect of the Gaussian noise on the
filter coefficients. In this case, (14) is written as

(15)

If one applies the transform of this expression

(16)

where . The dc gain is unity. In order to obtain the
transient response and stability of the filter, one should obtain
the poles of the transfer function. To simplify this action, (16)
is written as

(17)
Zeros are uniformly distributed along a circumference with

radius 1. Pole locations depend on the average length and the
adaptation constant . To obtain them, we propose the root-
locus method. Fig. 5 shows the results of applying this technique
for . The unit circumference is represented to check sta-
bility. MATLAB and its control library (rlocus instruction) were
used to generate the graphic in Fig. 5.

Using these techniques, stability can be verified, and one can
ascertain the aspect of the impulse response: oscillatory if poles
are complex, and exponential if real. Therefore, one has

• impulse response:

Non-oscillating response

Oscillating response

• stability:

Momentum LMS Variant: As the speed of the conveyor in-
creases, the convergence of the adaptive filter must be faster in
order to avoid overlap between consecutive stimuli to the load
cell. The momentum LMS (MLMS) variant [5] increases the
adaptation speed by adding to the update expression of the LMS
a term that depends on the gradient of the last update, as follows:

(18)

where is the so-called momentum constant.
If one adapts this expression to the single filter coefficient

case, one obtains

(19)

If one applies the transform to (19)

(20)

Once again, a unity dc gain is observed.
Stability and transient response depend on both adaptation

and momentum constants. To analyze the filter behavior, one
must adjust to fix the momentum parameter and vary the adap-

Fig. 5. H(z) pole positioning (in bold face) as a function of � for N = 2.
Stability is assured for 0 < � < 1, and an oscillating response appears when
� > 3 � 2

p
2.

Fig. 6. Root locus obtained for � after fixing �.

tation constant. Therefore, if one obtains parameter as a func-
tion of the poles and , one obtains

(21)

As (to assure stability), the root locus for this expression
is shown in Fig. 6.

Fig. 6 shows the break points and the values of that make the
filter unstable (poles out of the unit circle). This diagram makes
it possible to draw conclusions about the impulse response and
stability. One can ascertain

• impulse response:

Non-Oscillating response

Oscillating response

Non-Oscillating response

• stability:
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Fig. 7. Outcomes after applying the basic LMS algorithm on the low- and high-speed registers with two settings of alpha.

Fig. 8. Outcomes after applying the ALMS algorithm on the low- and high-speed registers with two settings of alpha.

Final Comments: The variants described here are those that
yielded better results in this problem. Other variants that modify
the gradient with linear operators can be analyzed in the same
way [5]. The normalized LMS (NLMS) is not considered de-
spite its generally good speed performance [8], because in this
case it is equivalent to the basic LMS.

IV. EXPERIMENTAL RESULTS

Students are provided with a set of real registers at several
speeds, with different weights and configurations, i.e., fruits in
adjacent or nonadjacent cups or not, combinations of heavy and
light fruits, and dummy load cells (attached to the machine but
not weighting).

They are asked to visualize certain registers both in the time
and frequency domains. In this way, they rule out power-line
noise as the origin of distortion. They also verify the perfor-
mance of basic low-pass filtering techniques (basically, moving
averages) to observe their poor performance at speeds above
4 fruits/s.

Afterwards the students are asked to program the three
adaptive algorithms, and test their performance, stability, and
speed of convergence depending on the constants. Fig. 1 shows
the reference signals used to check the performance of the
aforementioned adaptive algorithms: one for low conveyor
speed (5 fruits/s), and another for higher speeds (12 fruits/s).
Figs. 7–9 show the results obtained with the different adaptive
algorithms and constant values. On the left, low-speed registers
are shown, and on the right the high-speed ones.

Fig. 7 shows the performance of the basic LMS. The most
remarkable point is that the increase of the adaptation constant
speeds up the convergence but endangers stability, a situation
reflected in the increase of the oscillation amplitudes.

For the ALMS variant, the adaptation value was fixed at
0.1, and different average lengths were tested. Fig. 8 shows the
main characteristic of the ALMS, i.e., its ability to reduce the
Gaussian noise in the signal. As the average length increases,
lower amplitude oscillations are observed in the ideally flat
tracts.
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Fig. 9. Outcomes after applying the basic MLMS algorithm on the low- and high-speed registers with two settings of alpha.

TABLE I
APPROXIMATE AMPLITUDES OF THE LAST COMPLETE OSCILLATION AT LOW

SPEED MEASURED IN CONVERTER UNITS (1 g � 13 u)

For the MLMS variant, the adaptation constant was fixed
at 0.1, and different momentum constants were tested. Fig. 9
shows how, as the momentum constant increases, the conver-
gence speed of the filter increases as well [5]. Low-momentum
constants do not improve the results obtained with the basic
LMS algorithm.

All these algorithms improve the quality of the original
signal. This fact is easily observed by comparing Fig. 1 with
Figs. 7–9 at low speeds. The oscillation amplitudes in the
weighting plateaus are drastically reduced (Table I), and
cup-to-cup transitions are not distinguished in the original
signal but are evident in the processed ones. Table I suggests
that the LMS algorithm with a small adaptation constant is the
best option; nevertheless, this option slows the response of the
system, and hence, it may be unsuitable for higher speeds.

Some of the real records and MATLAB routines can be freely
downloaded from http://www.uv.es/~soriae/pesada.htm

V. CONCLUSION

This paper presents a strategy for introducing adaptive filters
in an undergraduate DSP course based on a real application.
Because adaptive filters are time variant, they require different
analysis tools than the usual linear time-invariant systems. This
requirement provokes a rather descriptive and unproven intro-
duction of their characteristics. This communication solves the
problem by using a real application that simplifies the problem
and shows the student the usefulness of adaptive filters. The
key point for this simplification is that the input to the filter is
constant so that the adaptive filter becomes linear. Therefore, a
complete arsenal of mathematical tools, already known by the
students, is available to analyze the performance of the filters
and obtain the key parameters to adaptive filters, e.g., speed of
convergence and stability. Several variants of the basic LMS al-
gorithm are described the same way. With this introduction, the
student is better prepared to entirely understand the basic con-
cepts of adaptive filters.
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