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Abstract:  
Understanding a mechanical behaviour of polymer-based nonwoven materials that include large-

strain deformation and damage can help to evaluate a response of nonwoven fibrous networks to 

various loading conditions. Here, a nonwoven felt made by thermal bonding of polypropylene fibres 

was used as a model system. Its deformation and damage behaviour was analysed by means of 

experimental assessment of damage evolution based on single-fibre failure and finite element 

simulations. Tensile tests of nonwoven fabrics were carried out to characterise their damage 

behaviour under in-plane mechanical loading. It was found that progressive failure of fibres led to 

localization of damage initiation and propagation, ultimately resulting in failure of the nonwoven 

felt. To obtain the criteria that control the onset and propagation of damage in these materials, 

tensile tests on single fibres, extracted from the felt with bond points attached to their ends, were 

performed. A finite-element model was developed to study damage initiation and propagation in 

nonwovens. In the model, structural randomness of a nonwoven fibrous network was implemented 

by means of direct introduction of fibres according to the orientation distribution function. The 

evolution of damage in the network was controlled by a single-fibre failure criterion obtained 

experimentally. The proposed numerical model not only captured the macroscopic response of the 
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felt successfully but also reproduced the underlying mechanisms involved in deformation and 

damage of nonwovens. 

 

1. Introduction  
 
Nonwoven fibrous networks demonstrate complex deformation and damage behaviour linked to 

randomness of their microstructure and properties of constituent fibres. In thermally bonded 

calendered nonwovens, a fabric’s structure is composed of continuous and discontinuous regions. 

These continuous regions called bond points are connected by a network of randomly oriented 

fibres forming a discontinuous region with voids and gaps in it.  This combination of two regions 

with different microstructures, with continuous domains embedded into discontinuous medium, 

makes it difficult to predict the deformation and damage behaviour of thermally bonded fibrous 

networks. Experimental characterisation is not always viable and sufficient for a comprehensive 

understanding of complex phenomena involved in deformation and damage of nonwoven fibrous 

mats. The challenges involved in experimentation are linked to the need for specialised 

experimental devices as well as to significant efforts required for experimentation, especially for 

this type of materials, in which mechanical properties are defined by their non-trivial microstructure 

and constituent fibres’ properties. To tailor and optimise properties of these materials, an 

understanding of the relationship between their macroscopic behaviour and microstructure along 

with manufacturing-defined single-fibre properties is essential.  Therefore, the aim of this work is to 

develop a numerical model incorporating the fabric’s microstructure, properties of constituent fibres 

and main deformation and damage mechanisms.  

The behaviour of woven fibrous networks that are mostly used in composites for various multi-

functional applications, is better understood than that of nonwoven fibrous networks (either as 

standalone fabrics or in combination with epoxies in the form of composites) (Li et al., 2010; 

Blacklock et al., 2012; Rinalidi et al., 2012; Parsons et al., 2013). Still, several studies were 

performed to model and predict the mechanical response of nonwoven fibrous networks. Most of 
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the work in this field is related to paper, which is a very special type of nonwoven (Schulgasser, 

1981; Ostoja-Starzewski et al., 2000; Isaksson and Hagglund., 2004; Isaksson et al., 2007; Isaksson 

and Hagglund., 2009; Harrysson et al., 2008; Bronkhorst, 2003). In the context of nonwoven 

networks, several techniques were used to simulate a mechanical behaviour of these materials. A 

continuum model incorporating an orientation distribution of fibres by considering orthotropic 

symmetric planes was developed (Demirci et al., 2011, 2012). This model was used successfully to 

predict the stress—strain behaviour of high-density nonwovens but it was incapable to account for 

changes in the network’s topology with localization of damage. Ridruejo et al. (2012) introduced a 

continuum model to predict a meso-level response of the fabric without explicit introduction of 

fibres into the model, and thus, it was unable to reproduce the effect of the actual microstructure; 

mechanisms of fabric’s deformation and damage were implemented in a phenomenological way.  In 

order to resolve the issues with continuum models, another technique based on a composite 

laminate model, incorporating the effect of non-uniform orientation distribution of fibres, was used 

(Singh et al., 1998). In that model, fibre layers were stacked on top of each other in a way that the 

fibres in each new layer were at an angle relative to that in the preceding one. This model was 

unable to capture all the aspects of the real fabric’s behaviour such as re-orientation of fibres since 

they were fixed within the layer and could not slide on top of each other.  In an effort to incorporate 

a realistic non-uniform microstructure of nonwovens into the model, an approach based on 

homogenization was developed using a representative volume element (RVE). Petterson (1959) 

introduced the model to predict a macroscopic response of the fabric by homogenizing the 

behaviour of a unit cell incorporating a random distribution of fibres’ orientation. More recently, 

Silberstein et al. (2012) suggested an approach of employing a similar RVE-based technique to 

predict a macroscopic behaviour of the fabric. The model consists of a multilayer triangular 

network and uses a homogenization technique to predict a response to monotonic and cyclic 

loading.  Such models based on the homogenization technique do not predict localization of damage 

and changes in material’s microstructure caused by this damage. In order to overcome these 
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shortcomings, microstructure-based models employing direct introduction of individual fibres 

according to their orientation distribution were developed (Hou et al., 2009, 2011a, 2011b; 

Sabuncouglu et al., 2012a; Farukh et al., 2012a).  Though this modelling technique is 

computationally not as efficient as a continuum one, however, it can account explicitly for all the 

main mechanisms involved in deformation and fracture of nonwovens. Moreover, a model based on 

this technique naturally introduces voids and gaps into consideration that are a distinctive feature of 

fibrous networks especially in case of low-density nonwovens. Such models can simulate the 

deformation behaviour of the fabric very accurately but up to a certain level of deformation; none of 

these models can predict the damage initiation and propagation in nonwovens. A model, based on 

the same approach to introduction of discontinuous microstructure, was presented by Ridruejo et al. 

(2011) who employed bundles of random fibres, without using their actual orientation in the real 

fabric, in the model. With that approach, a glass-fibre nonwoven felt, in which damage of the fabric 

occurred as failure of bonds rather than fibre bundles, was studied. In addition to these, models have 

been proposed by Isaksson et al. (2012) and Wilbrink et al. (2013) focussed on a crack-growth 

direction and bond failure in fibrous networks, respectively. Thus, it can be concluded that despite 

of the benefits of different reviewed models for analysis of various aspects of mechanical behaviour 

and mechanisms involved in deformation and failure of nonwoven fibrous networks, they present 

only partial solutions. None of the models can predict evolution of deformation and damage of the 

fabric up to its failure in terms of progressive failure of fibres while incorporating explicitly the 

realistic material’s microstructure by introducing fibres and constituent fibre properties into the 

model.  

In this paper, a thermally bonded nonwoven fibrous network with its actual microstructure was 

modelled in finite-element environment using a parametric modelling technique based on a 

specially developed user subroutine. A random anisotropic nature of the fabric was captured by 

introducing the fibres directly into the model according to their orientation distribution in the fabric. 

The variability of elastic-plastic mechanical properties of constituent fibres and a single-fibre failure 
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criterion were introduced into the model. Damage initiation and evolution in the model were 

controlled by this criterion as progressive failure of fibres resulted in damage initiation and 

propagation in nonwovens.  

2. Experimentation  

The model developed in this paper is based on experiments with single fibres and a nonwoven 

fabric reported in (Farukh et al., 2012b). These experiments provided information necessary for 

development of a finite-element model, such as a number of fibres and their orientation distribution 

function, dimensions of bond points, their shape, and a pattern obtained from morphological 

characterisation of the fabric as well as material properties obtained in single-fibre experiments. 

Moreover, tensile tests performed on specimens of the fabric provided a basis for physical 

interpretations of the results obtained with the model not only in terms of material’s constitutive 

behaviour but also the mechanisms involved in its deformation and damage. Therefore, single-fibre 

and fabric experiments crucial for this study are briefly recalled here. 

2.1 Material 

The materials used in this study were low-density (< 50 g/m2) thermally bonded calendered 

nonwovens based on polypropylene (PP) fibres, manufactured by FibreVisions®, USA. 

Polypropylene fibres of 18 µm diameter were used to manufacture a fabric. The staple fibre with 

length of 38.1 mm were laid randomly on a conveyor belt resulting in an anisotropic web, in which 

more fibres were oriented along the direction of the belt, called machine direction (MD) as 

compared to that in the direction perpendicular to MD on the plane of the web, called cross 

direction (CD). The web was then bonded with a hot calendering technique at a temperature of 

156oC, which lies within the optimal temperature window for PP. Different basis weights of 

material, i.e. 20, 30 and 40 g/m2 were used in this study. The overall microstructure of the fabric is 

shown at different scales in Fig. 1.  
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2.2 Assessment of properties  

2.2.1 Single-fibre behaviour 

The material properties, especially related to failure, of single fibres extracted from the studied 

thermally bonded fabric are different from those of the virgin fibres due to the pressure and 

temperature involved in the bonding process (Chidambram et al., 2000; Wang and Michielsen, 2001; 

Michielsen and Wand, 2002; Wang and Michielsen, 2002; Bhat et al, 2004; Farukh et al., 2012b). 

Therefore, individual fibres extracted from the fabric were used to obtain their material properties 

as these are its basic constituent. A complete detail on fibre extraction and preparation of the 

specimen is given in (Farukh et al., 2012b). Tensile tests were carried out on those extracted fibres at 

various levels of constant engineering strain rates — 0.5, 0.1 and 0.01 1/s — using Instron® Micro 

Tester 5848 with a high-precision ±5 N load cell. Due to difficulties to control the fibre’s length, a 

constant engineering strain rate was achieved by modifying the velocity of the cross-head with respect 

to the length of each fibre specimen. The following relationship was used for this purpose:  

const,
ol

ε
•ν

= =  (1) 

where ν  is the cross-head velocity and ol  is the initial length of the fibre. In order to assess variability of 

the obtained results, at least ten samples were tested for each strain rate. True strains ( trueε ) and true 

stresses ( trueσ ) were recorded during the tests:  

o
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where l  is the current specimen length, F  is the load, oA  is the initial area of fibre’s cross-section and 

engε  is engineering strain. In these calculations, it was assumed that the fibre’s cross-section was 
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perfectly circular and its diameter was constant along its length. True stress and true strain were 

computed based on the hypothesis that deformation in fibre took place at constant volume. The true 

stress-true strain curves obtained from the tests had a sigmoidal shape with elastic-plastic region 

(Fig. 2). The values of material density ( fρ ), elastic modulus ( fE ), Poisson’s ratio ( fν ) and initial 

yield stress ( yσ ) are given in Table 1.  The tested fibres showed a scatter in results along with 

variation in their stress-strain behaviour with a strain rate, which is due to viscous properties of the 

material. The elastic-plastic properties obtained from the single-fibre tensile tests were used as input 

into the finite-element model.  

2.2.2 Microstructural characterisation 

Characterisation of microstructural features of the undeformed network (fabric) was performed 

using scanning electron microscopy (SEM) (Carl Zeiss, Leo, 1530VP FEGSEM). One of the typical 

images obtained with SEM is shown in Fig. 1a. Dimensions of structural entities such as bond 

points and their pattern as well as orientation distribution of fibres required for the development of 

the finite-element model were obtained from these images. The complete details of determining the 

orientation distribution function (ODF) of fibres using an in-house software Nonwoven Anisotropy 

V1 were given in (Farukh et al. 2012a). The ODF obtained from these experiments is presented as a 

histogram in Fig. 3, which shows preferential orientation of fibres in MD as compared to CD and, 

thus, quantifies anisotropy of the studied fabric. 

 

2.2.3 Mechanical behaviour  

Rectangular coupons along the machine direction and cross direction were cut from the studied 

nonwoven fabric with the basis weight of 20 g/m2, and uniaxial tensile tests were performed on 

these specimens at strain rate of 0.1 and 0.01 1/s using Hounsfield Benchtop Tester with pneumatic 

grips. The force-extension graphs obtained from these experiments for both MD and CD direction 

are given in Fig. 4. These experiments demonstrated not only differences in the mechanical 

behaviour of the fabric in MD and CD but a significant scatter in results for both directions due to 
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the irregularities in fabric’s microstructure as well as geometric and material properties of 

constituent fibres. Along MD, the maximum load was attained at lower fabric’s extension as 

compared to that in CD followed by a gradual process of fibre failure giving the bell-shaped form to 

the force-extension curve. In contrast, a rapid fibre-failure process following large fabric’s 

extension was observed in CD resulting in a sudden drop on the force-extension curve. The features 

presented by the curves for various specimens in any particular direction — MD or CD — were the 

same, shown by solid lines in Fig. 4, even with a significant scatter among them. These lines 

correspond to experimental results giving the approximately median values of force and extension. 

The difference in load-carrying capacity of the material in MD and CD ascertain the anisotropic 

nature of the fabric. 

In order to study microstructural features of the deformed fabric, a high-speed camera (Photron 

Fastcam SA3) with advanced macro capabilities was used. Large rotations of fibres towards the 

loading direction followed by their progressive failure when they reached their stress or strain 

threshold were observed in these tests. The progressive failure of fibres was associated with the 

development and growth of localized fracture zones, formed by remaining fibres aligned along the 

loading direction, leading ultimately to failure of the fabric specimen; the sequence of these 

phenomena is shown in Fig. 5. When these experiments were repeated on fabrics with different 

basis weights, it was observed that the main mechanisms involved in deformation and damage of 

those materials remained the same. Furthermore, the strain rate did not cause any effect on the 

sequence of deformation and damage phenomena. These observations were close to those presented 

by Ridruejo et al. (2011). 

The phenomena of deformation as well as damage initiation and progression were effectively the 

same for both MD and CD except for the fact that rotation of fibres before their full engagement in 

load transfer was rather large in CD as compared to that in MD; this was due to the preferential 

orientation of fibres along MD. Moreover, this orientation resulted in a significantly higher load-
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bearing capacity in MD than CD apparent in Fig. 4. During deformation and damage of nonwovens, 

only rotation of bond points was observed, without any significant deformation of them. However, 

they played an important role in progressive failure of fabric as fibres always break at bond-point 

periphery.  

2.2.4 Damage analysis 

Damage in the studied thermally bonded nonwovens was initiated by failure of fibres reaching their 

stress or strain thresholds during the loading. This triggered the development of fracture zones 

within the fabric growing with subsequent fibre failures. This growth of fracture zones due to 

progressive failure of fibres ultimately led to rupture of the fabric. In thermally calendered bonded 

nonwovens, most of the fibres fail at the bond periphery in well-bonded and over-bonded fabrics 

due to the effect of manufacturing processes (Chidambram et al., 2000; Michielsen and Wand, 2002; 

Wang and Michielsen, 2002; Bhat et al, 2004). During manufacturing of thermally bonded nonwovens, 

fibres in areas of bond points melt partially due to high temperature and pressure involved and join 

together at a cooling stage. The bonding process results in changes in molecular orientation of fibres 

forming the bonds. The change in microstructure is rapid near the bond periphery leading to a 

decrease in the elastic modulus and strength of the fibres at bond edge (Chidambram et al., 2000; 

Wang and Michielsen, 2001; Michielsen and Wand, 2002; Wang and Michielsen, 2002; Bhat et al., 2004). 

Another obvious reason is a stress concentration at the fibre-bond point interface. As a result, it is not 

possible to use the material properties of virgin fibres or even of processed ones without taking the 

bond-point periphery region into account in damage analysis of the fabric. Thus, in this study, fibre 

samples were extracted from the fabric in a way that they were attached to individual bond points at 

their ends. Sticky strips of paper were attached to the bond point at the edges of the fibre for firm 

grip during testing. The strips were attached to the bond points as close to their edge towards the 

fibre as possible. That allowed the accurate stress-strain behaviour of the processed fibre to be 

obtained without amalgamating it with that of the bonds. Uniaxial tensile tests at strain rate of 0.01, 

0.1 and 0.5 1/s were performed on these samples to obtain the failure parameters, i.e. ultimate 
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tensile stress and corresponding strain. The same tests were performed on raw PP fibres used for 

manufacturing of the analysed nonwoven; it was found that failure stress and corresponding strain 

of fibres in thermally bonded nonwovens were significantly lower than those of the unprocessed 

fibres as shown in Fig. 6.  The experiments did not provide constant levels of failure strength and 

strain-at-failure; rather, there was a significant scatter in the obtained results. In order to assess the 

variability of results, tensile tests at each strain rate for processed and unprocessed fibres were 

repeated for at least ten times. Since damage initiation and propagation in nonwovens is associated 

with progressive failure of fibres, the experiments of single fibres with bond points at their edges 

provided the damage criteria necessary for modelling of deformation and damage behaviour of 

nonwovens. 

3. Modelling of nonwoven fabric 

3.1. Generation of fibrous network 

In case of fibrous networks, their randomness as well as presence of voids and gaps in their microstructure 

necessitates development of the model incorporating a realistic orientation distribution of fibres in the fabric. 

The finite-element technique offers an opportunity to develop a numerical model based on the mechanical 

behaviour of constituent fibres and microstructure of the network, which could predict the deformation and 

damage behaviour in nonwovens.   

A FE model of the studied nonwoven material was developed within the MSC. Marc software package using 

MSC. Patran as pre-processor. Starting from the material’s microstructure, the finite-element model was 

developed with the help of a subroutine, written in Patran Command Language (PCL), employing a 

parametric modelling technique as mentioned in (Sabuncuoglu et al., 2012, 2013; Farukh et al., 2012a). In 

the model, the anisotropic nature of the fabric microstructure was introduced by modelling the fibres directly 

according to their orientation distribution in the fabric.  Modelling of fibres according to their determined 

ODF (Fig. 3) was performed using the subroutine that incorporates a realistic microstructure of the fabric 

into the model. The FE model of the fabric developed in this study consists of bond points connected 

by the linking fibres. The bond points were modelled with shell elements (element type 139 in 
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MSC. Marc) with thickness identical to those in the fabric. The chosen finite element is a four-node, 

thin-shell element with global displacements and rotations as degrees of freedoms; a bilinear 

interpolation is used for the displacements and rotations. All the constitutive relations including a 

viscoelastic-plastic one can be used with this element. Because of these attributes, element 139 is 

suitable for representation of bond points and used in our simulations. It is defined geometrically by (x, 

y) coordinates of its four corner nodes. Due to the bilinear interpolation, the surface forms a hyperbolic 

paraboloid, which is allowed to degenerate to a plate. The shell elements are suitable to simulate the 

bond points in this study with a high edge-length-to-thickness ratio. Besides, they provide the 

opportunity to extend the use of the developed FE model to out-of-plane loading regimes (published 

elsewhere).    

Fibres were modelled with truss elements (element type 9 in MSC. Marc), which have only axial 

stiffness.  Since truss elements cannot carry any bending moment, they were appropriate for 

representation of fibres characterised by a rather low flexural stiffness. The chosen element type for 

fibres can describe properly a high level of deformations, characteristic to this type of nonwovens, 

as well as stress stiffening. This was verified by performing FE simulations of a case study for a 

single-fibre experiment before implementing the full numerical model. The total numbers of both 

types of elements for MD and CD models are given in Table 2. Information about the size, shape 

and pattern of bond points was obtained from SEM images of the fabric (see Table 3 and Fig. 7). In 

order to introduce the real material properties into the model, it is essential to determine the number 

of fibres to be modelled. This is calculated by the following relation:  

Fibre Fibre Fibre
Fibre

Fabric Fabric

  ,
   

L aN
A k
ρ

ρ
=  (4) 

where FibreL is the length of single fibre, Fibreρ is the density of constituent fibre material, Fibrea is the 

fibre’s cross-sectional area, Fabricρ is the areal density of the fabric, FabricA is the area of the fabric with 

dimensions equal to those of the FE model and k  is the model coefficient equal to a number of 
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fibres represented by a single truss element in the model. The value of k  can be changed from 1 to a 

higher magnitudes depending upon the efficiency of the computational system. If 1k = , each truss 

element represents the behaviour of a single fibre, and the number of truss elements introduced into 

the model is exactly equal to the number of fibres in the fabric’s sample with dimensions equal to 

those of the FE model. If the efficiency of the computational system is low and a higher value of the 

model coefficient k  is used, the geometric properties related to fibre should be updated respectively. 

For example, if 4k =  is used, the diameter of the truss element should be two times the diameter of 

a single fibre. Using the input information about the parameters mentioned in Eq. (4), the subroutine 

facilitates calculation of the number of fibres and introduction of truss elements into the model 

according to the ODF into the model. Since this model is based on the parametric modelling 

technique, it can be easily reformulated for different realizations of orientation distribution of fibres, 

sizes, shapes and patterns of bond points as well as fabric dimensions and areal densities. The 

developed network geometry for 20 g/m2 fabric is shown in Fig. 9a.  

3.2. Finite-element model 

The generated fibrous network was discretised into finite elements. Each truss element between the 

bond points was considered as one element. After spatially random distribution of fibres, based on 

the measured ODF, the location of respective truss elements was slightly adjusted to obtain the 

regular mesh in the bond points and to ensure connectivity between the truss and shell elements. In 

order to do this, the shell element was divided virtually into equal pieces, each with dimensions of 

the mesh element. Then, the tip of each fibre (the node of the truss element) attached to this bond 

point was shifted, if necessary, to the closest node of the shell elements on the exterior of the 

domain representing the bond point. Thus, a regular mesh in bond point was achieved with proper 

connectivity of truss elements (fibres) with shell elements (bond points). The mesh and connectivity 

of truss elements with shell elements is shown in Fig. 9b. The complete details of this process as 

well as of a generation of the parametric model are published elsewhere (Sabuncouglu et al., 2012, 

2013). As mentioned earlier, in experiments, during fabric’s extension most fibres reorient 
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themselves along the direction of stretching and undergo tensile loads. As a result, the number of 

fibres under compressive load is almost negligible as compared to that under tensile load. In order 

to simulate the global deformation of nonwovens, the local behaviour of the bulk of the fibres 

(under tension) must be properly accounted in simulations. Hence, to predict the behaviour of 

nonwoven accurately, truss elements were chosen to model fibres as they carry negligible bending 

load similar to real fibres in the network. Still, some of the truss elements carry compressive load 

depending upon their orientation distribution in the nonwoven structure (similar to real fabric, in 

which some of the fibres buckle under compressive loading) but that contributes very little to the 

global behaviour of the fabric.  

The influence of single-fibre material properties on the mechanical behaviour of the nonwoven 

network was incorporated by assuming fibres as isotropic, elastic-plastic with piece-wise linear 

hardening. The total strain of the fibre was a combination of elastic and plastic contributions.  In the 

elastic region, stresses in the fibres as a function of strain can be obtained by relating these two 

using the elastic modulus, whereas the von Mises yield criterion was used for the onset of plastic 

deformation.  Since fibres are explicitly introduced into the model as truss elements that bear only 

axial load, the von Mises yield criterion reduces simply to 1 yσ σ= , meaning that fibres start 

yielding when the stress level in them reaches their corresponding yield strengths.  The latter were 

obtained from single-fibre uniaxial tensile tests performed in this study. Thus, the incremental 

stress-strain relation in fibres in elastic region is given as (Simo and Hughes, 1997; MSC. Marc, 

2013): 

1 1n n n
e e eEσ σ ε+ += + ∆ , (5) 

where E  is the Young’s modulus. Using the flow stress definition based on table-based input, the 

hardening slope at each increment is obtained by numerically differentiating the values given in the 
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table; these values are based on a plot of the stress versus plastic strain for a tensile test. The 

generalized form of the work-hardening coefficient has the following form: 

p

dH
d
σ
ε

= , (6) 

where pdε  and dσ  are equivalent plastic strain and equivalent stress. The flow rule, describing 

changes in plastic strain component as a function of the current stress state), essential to define the 

incremental stress-strain relation for plastic material, can be expressed as: 

p p :d dε ε σ= ∇     where     
ij

σσ
σ
∂

∇ =
∂

. (7) 

It can be shown (MSC. Marc, 2013) that By rearrangement 

P : :
: :

C dd
H C

σ εε
σ σ

∇
=

+∇ ∇
, (8) 

where C  is the stiffness matrix. 
 

3.3. Material properties and boundary conditions 

The material properties implemented into the model were obtained from the single-fibre tensile 

tests. The experimental curves of single-fibre tensile tests (Fig. 8a) were used to define the elastic-

plastic behaviour of the fibres in the developed model. It was found that there was a significant 

scatter in results of single-fibre experiment results (Fig. 8a), which show the randomness in material 

properties of the constituent fibres. This scatter was the result of some local shape irregularities of 

the tested fibres due to the effect of heat or physical contact during the web-forming or hot-

calendering stages. In addition to shape irregularities, SEM images of the fabric showed that a fibre 

diameter is not constant along its length; this is another reason for a significant scatter in the results. 

This scatter in single-fibre experimental results was introduced into the model; it means that 

different flow curves (and, respectively, yield points) were assigned to the fibres in the model based 
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on the experimental data. It was found that implementation of variation in fibres’ material 

properties not only in terms of their failure parameters but also the stress-strain curves along with 

the fibre orientation distribution into the FE model is essential to simulate a realistic deformation 

and damage behaviour of the fabric (Farukh et al., 2012b). Therefore, different stress-strain curves 

and damage parameters were assigned in a random way to the truss elements in the FE model 

according to the data obtained from the tensile experiments at strain rate of 0.1 1/s performed on ten 

processed single-fibre specimens. These data was used as an indicator of scatter in material 

properties for all the fibres within the fabric. According to this, seven sets of fibres with different 

material properties in terms of stress-strain relationships and damage parameters were implemented 

in the model (Fig. 8). The numbers of fibres in each set as a fraction of the overall number of fibres 

within the fabric, obtained with the random sampling technique, with their corresponding stress and 

strain threshold values are given in Fig. 8. Since damage was not observed in the bond points during 

the fabric’s tensile tests, therefore, damage criteria discussed below were not applied to them. The 

simulations of tensile tests were carried out by applying a set of boundary conditions to the FE 

model, within the framework of the implicit algorithm for quasi-static loading with large 

displacements and rotations. The FE solver (MSC.Marc) in this study is based on the total 

Lagrangian method, using the second Piola-Kirchhoff stress and Green-Lagrange strain (the details 

can be found in (MSC.Marc, 2013)). The nodes on the side R-S of the model (Fig. 9) were fully 

constrained whereas a uniform axial displacement condition corresponding to the strain rate of 0.1 

1/s was applied to the nodes on side P-Q of the model as shown in Fig. 9.  

3.4. Modelling of damage 

Upon stretching the nonwovens, fibres start to re-orient themselves along the loading direction and 

increasing their participation in a load-bearing. The fibres fail when the applied stresses reach their 

strength threshold causing damage initiation in nonwovens. Further failure of fibres results in 

damage propagation followed by ultimate failure of the fabric. Since fibres are randomly oriented 

within the fabric and have different levels of stress and strain threshold, they fail progressively 
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resulting in a gradual growth of damage in nonwovens. The mechanisms involved in damage 

initiation and growth as well as the changes in network topology due to fibres’ failure can be 

explicitly accounted for in the discontinuous model based on direct introduction of fibres, with their 

actual orientation distribution, into the model like the one developed in this study. 

Numerical simulations of the onset and propagation of damage as a result of progressive failure of 

fibres could be taken into account using critical stress or strain-based failure criteria or the 

combination of both.  

Since fibres are represented by two-dimensional truss elements in this study that can bear only 

uniaxial loads along the direction of loading, therefore, the formulation of failure criteria used in the 

developed model are: 

Critical stress failure criterion: 

1If 1,
tY

σ 
= 

 
1.dσ =  

(14) 

Critical strain failure criterion: 

1If 1,
yte
ε 

=  
 

1.dε =  

(15) 

Here, 1σ  and 1ε  are longitudinal stress and strain at integration point of a truss element, 

respectively; tY  and yte  represent maximum allowable longitudinal tensile stress and maximum 

allowable longitudinal tensile strain, respectively. dσ  and dε  are the damage variables associated 

with the failure mode of an element under tensile stress and strain, respectively. As was observed in 

the tensile tests on the studied fabric at various strain rates, some of the fibres sustained their 

participation in load bearing even at strain levels larger than critical strain values for single fibres at 
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corresponding strain rates (Fig. 10a). Following these experimental observations, it was decided to 

use only the maximum tensile stress for the single-fibre failure in FE model; the respective values 

used in the FE model are given in Fig. 8. Since fibres were introduced explicitly into the model, the 

critical stress values of fibres obtained with the single-fibres tensile tests performed at the strain rate 

corresponding to model’s boundary conditions were used as failure criterion in this study.  In FE 

simulations, an element-deletion approach was used to remove the elements from the model based 

on the value of damage variables as calculated with Eq. (14). An element (fibre in this study) was 

assumed to fail and removed from the model when the damage condition (i.e. 1dσ = ) was satisfied 

at its integration location to avoid the convergence problem. Thus, the damage parameters were 

calculated for all the fibres and the elements with 1dσ =  were removed from the model and did not 

offer any resistance to subsequent deformation. 

4. Numerical results and discussion 

The parametric computational model that captures the fabric’s anisotropic behaviour linked to its 

microstructure and material properties of its constituent fibres was developed; it also incorporates 

the critical stress-based single-fibre failure criterion. This model was used to predict the behaviour 

of thermally bonded nonwoven. The deformation and damage behaviour in the fabric, which is a 

result of large rotations and progressive failure of fibres, was simulated for both MD and CD, as 

shown in Fig. 10b and Fig. 11b. Apparently, the main features of deformation and damage process, 

observed in real specimens of the modelled fabric, including formation and growth of localized 

zones, are reproduced in simulations.  In order to compare the model’s predictions with 

experimental results, the force-extension graphs were used as shown in Fig. 12. The shaded areas in 

Fig. 12 represent the bands of experimental results performed on multiple specimens for the 

corresponding directions. A good agreement between the simulations and experimental results was 

observed, including the extent of material’s anisotropy. Implementing different statistical 



        

 18 

realizations of material properties by changing them for corresponding fibre sets based on the 

experimentally obtained data (Fig. 8), led to changes in force-extension curve as shown in Fig. 12.  

Apparently, an initial slightly stiffer behaviour in CD as compared to experiments can be 

attributed to the fact that a curl of fibres was not introduced into the model. This can be explained 

by predominant orientation of fibres along MD, with a small fraction aligned along CD. When 

stretched in MD, most of fibres in the fabric start participating in load-bearing early, reducing the 

effect of curl. Thus, the tested specimens showed an almost negligible portion of compliant 

behaviour in MD, whereas the fabric’s subsequent response was dominated by the stretching 

behaviour of the fibres, which the developed model can predict rather well. However, in the 

specimens stretched in CD, most fibres at first reoriented along the direction of loading, with fibre 

curl playing an important part in this process. Hence, a significant portion of the fabric’s initial 

response for this direction (CD) was dominated by uncurling and rotation of fibres rather than their 

stretching. This resulted in a compliant initial behaviour of the fabric tested in CD, which the model 

without the account for fibre curl could not reproduce fully adequately, predicting somewhat stiffer 

results.  

Another apparent difference between the model’s prediction and experimental results is the 

scatter being higher in the latter case. The experimental scatter can be related to the following 

factors: variation in material properties and strength of fibres, randomness in microstructure and 

variation in fibres’ geometry. The first source of scatter was taken into account in the simulations 

by providing different material properties and levels of strength to different sets of fibres as shown 

in Fig. 13. Randomness in material’s microstructure can be easily implemented into the model by 

using the parametric modelling technique based on the subroutine, developed in this study. In the 

experiments on the studied fabric, all the testing parameters such as specimen size and boundary 

conditions were kept constant; the variation was linked to the orientation distribution, material 

properties and position of fibres. Thus, it is obvious that using different microstructures by 
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changing the ODF for developing the model and seeding random numbers to fibre positions (Fig. 

13) would increase the extent of variability in simulation results providing better agreement with the 

experimental results. The effect of varying the material properties of individual fibres in the form of 

force-extension curve is given in Fig. 12. It should be noted that the variation in the mechanical 

response based on assigning different material properties to fibres in the models was identical to 

scatter reported experimentally. 

 Explicit introduction of fibres into the model can help to predict the levels of stresses and 

strains in each element (fibre in this case) of the model. Since fibres were modelled randomly 

according to the ODF measured for the real fabric and their participation in load bearing changed as 

they were aligned along the loading direction, the level of strain ( fε ) and corresponding stress ( fσ

) in each fibre varied from the global strain in the fabric (ε ) depending upon its orientation with 

respect to the loading direction and position in the network as shown in Fig. 14 and Fig. 15. The 

probability distribution functions of normalised strains in fibres with respect to global strain and 

corresponding stresses at various levels of fabric’s extension are presented for each interval of 

strains and stresses in Fig. 14 and Fig. 15, respectively. As most of the fibres failed at levels less 

than 100% of fabric’s extension along MD, therefore, the figures present the data for strains and 

corresponding stresses not exceeding this magnitude. Two different patterns of change in the 

probability distributions for MD and CD with increasing deformation of the fabric are obvious in 

Fig. 14. For CD (Fig. 14b), the distribution effectively retains its shape for different strains with 

only minor changes to the bands. For MD (Fig. 14a), in contrast, significant shifts of the 

distribution’s median are observed.  The peak for normalised fibre strains shifts to lower values 

with increasing fabric strain. The difference in patterns for stress distributions for MD and CD (Fig. 

15) is also similar to that for normalised strains. Still, if for CD the character of changes is 

practically the same, the case of MD (Fig. 15a) has its specific development. Here, at the initial 

stage (up to fabric strain of 50%), the shift is to higher levels of stress of fibres, reflecting their 

increasing participation in the load-bearing process as a result of reorientation towards the loading 
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direction. However, this trend reversed between 75% and 100% of fabric’s extension when many 

fibres reached their stress threshold and failed resulting in the stretch back of fibres outside the 

localised failure zones due to elasticity (Fig. 10a). Thus, the developed model can be used to predict 

stress distributions at any level of fabric’s extension. Besides, explicit introduction of fibres into the 

model helped to understand the evolution in stresses in fibres and arrangement of the neighbouring 

elements caused by progressive failure of fibres. This demonstrates that model is also capable to 

qualitatively reproduce the changes in the topology of the network. Since most of the fibres regain 

their unstressed or low-magnitude-stress state at 100% of fabric’s extension along MD (Fig. 15a), 

therefore, the stretch back in the fabric after 100% fabric extension is negligible as shown in Fi.g 

10a (v) and (vi). 

The discussed change in distributions of fibres’ parameters with increasing deformation of 

the fabric is also reflected in changes of the maximum and minimum values of stresses shown in 

Fig. 16. Apparently, the maximum stress in fibres along MD and CD increased continuously until it 

reached its maximum value. However, this increase for MD was rapid as compared to that for CD; 

fibres in the former case started to participate in load bearing earlier than in the latter; this is 

consistent with the fabric’s structure having preferential orientation of fibres along MD. The 

minimum value of stress in fibres for CD was negative as a result of lateral shrinking. Such fibres 

under compressive load offered resistance to reorientation of other fibres along the loading direction 

during the fabric’s extension process; therefore, the model predicted a slightly stiffer behaviour 

compared to that observed in the experiments as shown in Fig. 12b. An interesting point can be 

noted here: the variation in the minimum value of stresses for both MD and CD was negligible for 

all the levels of fabric’s extension as a result of a continuous transfer of stresses to the neighbouring 

elements caused by progressive failure of fibres. Due to this stress shift, some fibres start to take 

load during fabric’s extension while some fibres return back to the unstressed state due to failure of 

their neighbours. 
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 The process of reorientation of fibres towards the loading direction followed by their failure 

upon reaching the critical stress led to localisation of damage in the form of fracture zones as shown 

in Fig. 10 and Fig. 11, which appearance was similar to that observed in experiments. (A fracture 

zone in this study is a narrow gap in the direction of loading caused by the localized failure of fibres 

and formed by remaining fibres adjoining this gap.) The development of localised fracture zones 

was caused by an avalanche of failures due to load redistribution (i.e. increase in the load of 

neighbouring fibres transferred from the ruptured ones). Subsequent loading caused more fibres to 

fail, resulting in the growth of fracture zones. These phenomena of initiation and growth of fracture 

zones with fabric’s extension are shown in Fig. 10 and Fig.11. The growth in fracture zones for 

loading along MD was slower as compared to that along CD. Since multiple fracture zones were 

developed in the fabric during its extension, the ones shown by the arrows in Fig. 10 and Fig. 11 are 

presented in Fig. 17 in terms of the normalized length of the fracture zone. The latter is introduced 

to quantify this process and is defined as a ratio of the length of fracture zone 𝑙fz  measured as the 

average distance between two sides of the zone along the loading direction (i.e. parallel to the main 

specimen’s axis)to the current total length of fabric ( L ). . The fracture zone developed along MD 

after  fabrics’ extension of 50% and reached approximately half of the fabric’s length at 200% 

extension. In contrast, for CD it started only after 180% extension, and the specimen of fabric failed 

at that fracture zone at fabric’s extension of 200%. This shows that the development of fracture 

zone by the progressive failure of fibres was rapid for loading along CD and more protracted for 

MD.  This phenomenon can be attributed to the preferential orientation of fibres along MD, i.e. in 

this case fibres, already more aligned along the loading direction (coinciding with MD), started 

participating in a load transfer while other fibres still re-oriented, resulting in more gradual damage 

evolution. Whereas, during loading in CD, most of the fibres reoriented along the loading direction 

and started participating in the load-bearing process practically at the same stage of the deformation 

process. Since the process of individual fibre failures responsible for damage evolution in the fabric 
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was more gradual along MD than CD, a longer tail in the force-extension curves was observed in 

the former case as shown in Fig. 11. 

The model developed in this study is not only capable to predict the deformation and 

damage behaviour accurately in terms of anisotropy, nominal strength, force-extension behaviour 

and changes in network topology as a result of damage evolution but it also properly reflects the 

effect of grip constraints on the deformation behaviour of the fabric specimen (Fig. 10 and Fig. 11). 

The transverse strain in the fabric gradually increases from the grip on each end of the fabric to the 

region of maximum transverse strains in the middle. Such transverse strains in the fabric were 

significantly higher for MD, producing a visible necking effect in this case as compared to that in 

CD with negligibly small transverse strains at the initial stages of fabric’s extension as shown in 

Fig. 10 and Fig. 11. However, after a certain level of fabric’s extension along CD, significant 

transverse strains and, thus, necking was observed there (Fig. 11a).  The reason for this different 

behaviour was the preferential orientation of fibres along MD in the fabric. In the model, for MD, 

visible necking in the fabric was observed similar to the experimental observations. Since fibres 

were taking the compressive load during fabric’s extension along CD (shown in Fig. 16b) the 

necking in fabric was negligible even at higher levels of strains along that direction.  

The damage evolution in fibrous networks can be characterised by a ratio /fN N , where 

fN is the accumulated number of fibres failed at any particular level of fabric’s extension and N is 

the total number of fibres failed during deformation and damage of the fabric up to its rupture. As 

the number of failed fibres depending upon failure locus can vary with variation in the ODF and 

positions of fibres within the fabric, therefore, the total number of fibres within the fabric specimen 

was not used as denominator in the introduced damage measure. Evolution of the damage parameter 

/fN N  with fabric’s extension for both studied cases — MD and CD — is given in Fig. 18. It 

shows that the growth of damage caused by progressive fibre failure, a key feature of deformation 
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and damage of fibrous networks, was more gradual along MD than CD because of the reasons 

discussed above.    

Another interesting observation was that the concentration of stresses at the edges of the 

bond points perpendicular to the direction of loading was very pronounced as compared to their 

other parts as shown in Fig. 19. Since fibres in thermally bonded nonwovens always fail at bond 

points, as mentioned in Section 2.2, the sharp stress concentration at bond points’ edges is 

consistent with the experimental observations and various studies in the literature. However, the 

stress concentration at edges of bond points parallel to the loading direction was limited because 

these edges undergo compressive loading due to lateral contraction of the fabric as mentioned 

before (Fig. 10 and Fig. 11).  Thus, the model developed in this study is also capable to simulate the 

stress distribution within bond points along with the areas of high stress concentration along its 

edges.  

 

5. Conclusions 

A micromechanical numerical model was developed in this study to simulate deformation as well as 

damage initiation and propagation in thermally bonded nonwoven fibrous networks. A subroutine, 

based on the parametric modelling technique, was used to develop this model. The fibres were 

introduced directly into the model according to their ODF obtained from the SEM images of the 

fabric using the image-analysis technique. This direct microstructure-based numerical approach 

maintains a relation between the microstructure of a nonwoven fibrous network and its deformation 

and damage behaviour. Moreover, this technique naturally introduced voids and gaps in fabric’s 

microstructure, observed experimentally, into the model that cannot be achieved with a traditional 

continuous model.  

All the parameters necessary for simulation of such a fibrous network, including the orientation 

distribution function for fibres, geometric properties, material properties, failure criteria as well as 
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the shape, size, dimensions and pattern of bond points were obtained with single-fibre and fabric 

experiments. The developed model reproduced mechanisms of fabric deformation and progressive 

damage observed in the uniaxial tensile tests. The simulation results were validated by means of 

comparison with these tests. The model was not only found to be in good agreement with 

experiments in terms of deformed shape of specimens and force-extension curves but also 

reproduced all the main features of fabric deformation and damage behaviour including: 

• anisotropic behaviour;  

• fibre re-orientation towards the loading direction that was more pronounced for CD than 

MD;  

• failure of fibres on reaching their stress or strain thresholds leading to development of 

fracture zones; 

• growth of the fracture zones due to progressive failure of fibres; the growth rate for fracture 

zones was higher for CD than MD; 

• character of transverse strain including the grip effect; 

•  stress concentration at edges of the bond points. 

The model developed with direct introduction of fibres according to their orientation distribution 

using the subroutine-based parametric modelling technique provides an opportunity for a direct 

study of the effects of variation in the fibrous network’s geometry on its overall deformation and 

damage behaviour. Furthermore, the effect of variation in geometric properties of fibres and bond 

points can be studied using this model. This model not only captures the anisotropic force-extension 

behaviour of the material linked to its microstructure and material properties of constituent fibres 

but also provides an insight into specific features of deformation of fibres and the entire fabric as 

well as progressive damage mechanisms. Such capabilities of the model to capture all the main 

mechanisms and features of the fabric’s response would underpin understanding the behaviour of 

the nonwoven fibrous networks and their structure-properties relationship. 
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Captions 

Fig. 1. SEM images of 20 g/m2 PP fibre nonwoven 

Fig. 2. Mechanical behaviour of PP fibre at various strain rates  

Fig. 3. Orientation distribution function of fibres (90o corresponds to MD whereas 0o and 180o 

correspond to CD) 

Fig. 4. Force-elongation curves in tension at strain rate of 0.1 1/s along MD (a) and CD (b) 

Fig. 5.  Deformation and damage mechanisms in low-density thermally bonded nonwoven during 

tensile tests at 0% strain (a); 25% strain (b); 50 % strain (c); 80% strain (d). Loading 

direction was along MD and arrows indicate some fracture zones 

Fig. 6. Effect of bonding on single-fibre’s ultimate tensile stress (a) and strain (b) 

Fig. 7. Paramters of pattern of modelled fabric 

Fig.8. Stochasticity in material properties implemented into FE model: (a) stress-strain curves; (b) 

critical values of stress and strain 

Fig. 9. (a) FE model showing stochasticity in material properties and fibres’ orientation distribution; 

(b) zoomed view of bond point showing truss elements connected to shell elements  

Fig. 10. (a) Experimental results for fabric subjected to uniaxial tension along MD to various 

extensions: (i) 25%; (ii) 50%; (iii) 75%; (iv) 100%; (v) 150%; (vi) 190%; (b) 

corresponding FE model results for equivalent (von Mises) stresses in (MPa) 

 

Fig. 11. (a) Experimental results for fabric subjected to uniaxial tension along CD to various 

extensions: (i) 25%; (ii) 50%; (iii) 75%; (iv) 100%; (v) 150%; (vi) 190%; (b) 

corresponding FE model results for equivalent (von Mises) stresses in (MPa) 
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Fig. 12. Calculated responses to uniaxial tensile test for MD (a) and CD (b) (Shaded area represents 

scatter in experimental results) 

Fig. 13. Flow chart on implementation of stochasticity in FE model  

Fig. 14. Distribution of normalised strains for fibres for various values of fabric strain deformed 

along MD (a) and CD (b) 

Fig. 15. Distribution of stresses for fibres for various values of fabric strain deformed along MD (a) 

and CD (b) 

Fig. 16. Minimum and maximum values of stress in fibres for various values of strain in fabric 

deformed along MD (a) and CD (b) 

Fig. 17. Growth in fracture zone with fabric’s extension  

Fig. 18. Evolution of damage parameter with fabric’s deformation 

Fig. 19. Equivalent von Mises (MPa) stress concentration at edges of bond points (loading direction 

was along MD) 
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Tables 

Table 1. Properties of polypropylene fibre (as extracted from nonwovens) 

3(g/cm )fρ  (MPa)fE  fν  (MPa)yσ  

0.89 350±42 0.42 (FiberVisions, 2010) 75±9 

 



        

 32 

Table 2. Number of elements for MD and CD models  

 

 

 

  

 
 

Shell (element type 139) Truss (element type 9) 

MD 11420 2285 

CD 9750 2067 
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Table 3. Parameters of fabric (see Fig. 7) 

 
 

Parameter Magnitude 

Fabric 

FabricA  
(W x L) 

(mm x mm) 

 
MD:  10 x 16.5 
CD :  16.5 x 10 

Fabricρ (kg/m2) 20 x 10-3 

Parameters of bond 
points pattern 

A (mm) 
B (mm) 

1.0668 
0.5588 

C (mm) 
D (mm) 
E (mm) 

0.7 
1.8 
0.2 

Fibres 

Fibrea (mm2) 
FibreL (mm) 

Fibreρ (kg/m3) 

0.0003 
38.1 

0.89 x 103 

Model coefficient k  1 
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Fig.  1. SEM images of 20 g/m2 PP fibre nonwoven 
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Fig.  2. Mechanical behaviour of PP fibre at various strain rates 

 

Fig.  3. Orientation distribution function of fibres (90o corresponds to MD whereas 0o and 180o correspond to CD) 
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(a) (b) 

Fig.  4. Force-elongation curves in tension at strain rate of 0.1 1/s along MD (a) and CD (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5. Deformation and damage mechanisms in low-density thermally bonded nonwoven during tensile tests at 0% strain 

(a); 25% strain (b); 50 % strain (c); 80% strain (d). Loading direction was along MD and arrows indicate some fracture 

zones 
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(a) (b) 

Fig.  6. Effect of bonding on single-fibre’s ultimate tensile stress (a) and strain(b) 
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Fig.  7. Parameters of pattern of modelled fabric 

  

  

(a) (b) 

Fig.  8. Stochasticity in material properties implemented into FE model: (a) stress-strain curves; (b) critical values of stress 

and strain 
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(a) (b) 

Fig.  9. (a) FE model showing stochasticity in material properties and fibres’ orientation distribution; (b) zoomed view of 

bond point showing truss elements connected to shell elements 
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(a) 

 

(b) 

Fig.  10. (a) Experimental results for fabric subjected to uniaxial tension along MD to various extensions: (i) 25%; (ii) 50%; 

(iii) 75%; (iv) 100%; (v) 150%; (vi) 190%; (b) corresponding FE model results for equivalent (von Mises) stresses in (MPa) 
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(a) 

 

(b) 

Fig.  11. (a) Experimental results for fabric subjected to uniaxial tension along CD to various extensions: (i) 25%; (ii) 50%; 

(iii) 75%; (iv) 100%; (v) 150%; (vi) 190%; (b) corresponding FE model results for equivalent (von Mises) stresses in (MPa) 
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(a) (b) 

 

Fig.  12. Calculated responses to uniaxial tensile test for MD (a) and CD (b) (Shaded area represents scatter in experimental 

results) 

 

Fig.  13. Flow chart on implementation of stochasticity in FE model 
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(a) 

 

 

(b) 

Fig.  14. Distribution of normalised strains for fibres for various values of fabric strain deformed along MD (a) and CD (b) 
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(a) 

 

(b) 

Fig.  15. Distribution of stresses for fibres for various values of fabric strain deformed along MD (a) and CD (b) 
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(a) (b) 

Fig.  16. Minimum and maximum values of stress in fibres for various values of strain in fabric deformed along MD (a) and 

CD (b) 

  

 

Fig.  17. Growth in fracture zone with fabric’s strain 
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Fig.  18. Evolution of damage parameter with fabric’s deformation 

  

 

Fig.  19. Equivalent von Mises (MPa) stress concentration at edges of bond points (loading direction was along MD) 
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